Dialgebraic Specification and Modeling

Peter Padawitz
University of Dortmund

Is5-www.cs.uni-dortmund.de/~peter/Swinging.html Is5-www.cs.uni-dortmund.de/~peter/Expander2.html

September 20, 2005

Goals and characteristics of this approach

> uniform syntax for algebraic and coalgebraic specifications signatures
(products of) sorts
functions $f: s_{1} \times \cdots \times s_{n} \rightarrow s \quad g: s_{1} \times \cdots \times s_{m} \rightarrow s_{1} \times \cdots \times s_{n}$ relations $r: s_{1} \times \cdots \times s_{n}$
terms (conditional) equations Horn clauses first-order formulas cosignatures ?
functors
cofunctions $f: s \rightarrow s_{1}+\cdots+s_{n} \quad g: s \rightarrow 1+s_{1} \times \cdots \times s_{n}$ corelations
coterms ? coequations ? co-Horn clauses! modal formulas ?
What distinguishes algebras from coalgebras?
chains of specifications are interpreted as a sequence of initial and final models

initial	final
data defined by constructors	states defined by destructors
functions defined by recursion	functions defined by corecursion
relations defined by Horn clauses	relations defined by co-Horn clauses
relations defined by co-Horn clauses	relations defined by Horn clauses
abstraction defined by a least congruence on an initial model (variety)	abstraction defined by a greatest congruence on an initial model (covariety)
restriction defined by a least invariant on an final model	restriction defined by a greatest invariant on a final model
supertyping by adding "constructors"	subtyping by adding "destructors"

$>$ Dualities admit the proof of model properties without referring to particular representations.
> proof rules that exploit initial/final semantics induction coinduction narrowing (rewriting upon axioms + instantiation) simplification (built-in rewriting)

Let S be a set of sorts and $S_{0} \subseteq S$. The set $\mathbb{T}\left(S_{0}, S\right)$ of types over $\left(S_{0}, S\right)$ is the least set of expressions generated by the following rules:

The set $\mathbb{F}\left(S_{0}, S\right)$ of function types over S_{0} and S consists of all expressions $s \rightarrow s^{\prime}$ such that $s, s^{\prime} \in \mathbb{T}\left(S_{0}, S\right)$.

Signatures

A signature $\Sigma=(S, F, R, B)$ consists of a finite set S of sorts,
a finite $\mathbb{F}\left(S_{0}, S\right)$-sorted set F of functions,
a finite $\mathbb{T}\left(S_{0}, S\right)$-sorted set R of relations
and an S_{0}-sorted set B
where $S_{0} \subseteq S$ is called the set of primitive sorts of Σ.
Given $f: s \rightarrow s^{\prime} \in F, d o m_{f}={ }_{\text {def }} s$ and $r a n_{f}={ }_{\text {def }} s^{\prime}$.
$f: s \rightarrow s^{\prime}$ is an s^{\prime}-constructor if $s^{\prime} \in S$.
$f: s \rightarrow s^{\prime}$ is an s-destructor if $s \in S$.
For all $s \in S$,
R implicitly includes the s-equality $\equiv_{s}: s \times s$ and the s-universe all $_{s}: s$.

The $\mathbb{F}\left(S_{0}, S\right)$-sorted set T_{Σ} of Σ-terms is the least set of expressions t generated by the following rules:
functions of Σ and identities

$$
\overline{f: s \rightarrow s^{\prime}} \quad f: s \rightarrow s^{\prime} \in F \quad \overline{i d_{s}: s \rightarrow s} \quad s \in \mathbb{T}\left(S_{0}, S\right)
$$

Σ-projections and -injections

$$
\overline{\pi_{i}: \prod_{i \in I} s_{i} \rightarrow s_{i}} \overline{\iota_{i}: s_{i} \rightarrow \coprod_{i \in I} s_{i}} \quad\left\{s_{i}\right\}_{i \in I} \subseteq \mathbb{T}\left(S_{0}, S\right) \quad I \neq \emptyset
$$

Σ-applications and -abstractions

$$
\overline{\operatorname{appl}_{a}:\left(s_{x} \rightarrow s\right) \rightarrow s} a \in B_{s_{x}} \quad \frac{t=\left\{t_{a}: s \rightarrow s^{\prime} \mid a \in B_{s_{x}}\right\}}{\lambda x . t: s \rightarrow\left(s_{x} \rightarrow s^{\prime}\right)} \quad s_{x} \in \mathbb{T}\left(S_{0}, S_{0}\right)
$$

composition with functions of Σ

$$
\begin{aligned}
& \frac{t: s \rightarrow s^{\prime}}{f \circ t: s \rightarrow s^{\prime \prime}} f: s^{\prime} \rightarrow s^{\prime \prime} \in F \cup \Sigma \iota \cup \Sigma \alpha \quad t \neq i d_{s} \\
& \frac{t: s \rightarrow s^{\prime}}{t \circ f: s^{\prime \prime} \rightarrow s^{\prime}} \quad f: s^{\prime \prime} \rightarrow s \in F \cup \Sigma \pi \cup \Sigma \beta \quad t \neq i d_{s}
\end{aligned}
$$

where $\Sigma \pi, \Sigma \beta, \Sigma \iota$ and $\Sigma \alpha$ are the sets of Σ-projections, -applications, -injections and -abstractions, respectively tupling and selection

$$
\frac{\left\{t_{i}: s \rightarrow s_{i}\right\}_{i \in I}}{\operatorname{tup}\left(t_{i}\right)_{i \in I}: s \rightarrow \prod_{i \in I} s_{i}} \quad \frac{\left\{t_{i}: s_{i} \rightarrow s\right\}_{i \in I}}{\operatorname{sel}\left(t_{i}\right)_{i \in I}: \coprod_{i \in I} s_{i} \rightarrow s} \quad I \neq \emptyset
$$

product and sum
$\frac{\left\{t_{i}: s_{i} \rightarrow s_{i}^{\prime}\right\}_{i \in I}}{\prod_{i \in I} t_{i}: \prod_{i \in I} s_{i} \rightarrow \prod_{i \in I} s_{i}^{\prime}} \quad \frac{\left\{t_{i}: s_{i} \rightarrow s_{i}^{\prime}\right\}_{i \in I}}{\coprod_{i \in I} t_{i}: \coprod_{i \in I} s_{i} \rightarrow s_{i}^{\prime}} \quad I \neq \emptyset$

function lifting

$$
\frac{t: s \rightarrow s^{\prime}}{\left(s_{0} \rightarrow t\right):\left(s_{0} \rightarrow s\right) \rightarrow\left(s_{0} \rightarrow s^{\prime}\right)} \quad s_{0} \in \mathbb{T}\left(S_{0}, S_{0}\right)
$$

collection building

$$
\begin{gathered}
\frac{\left\{t_{i}: s \rightarrow s^{\prime}\right\}_{i=1}^{n}}{\operatorname{list}_{n}\left(t_{1}, \ldots, t_{n}\right): s \rightarrow \operatorname{list(s^{\prime })}} \frac{\left\{t_{i}: s \rightarrow s^{\prime}\right\}_{i=1}^{n}}{\operatorname{bag}_{n}\left(t_{1}, \ldots, t_{n}\right): s \rightarrow \operatorname{bag}\left(s^{\prime}\right)}
\end{gathered} \quad n>0
$$

collection lifting

$$
\begin{gathered}
\frac{t: s \rightarrow s^{\prime}}{\operatorname{list}(t): \operatorname{list}(s) \rightarrow \operatorname{list}\left(s^{\prime}\right)} \frac{t: s \rightarrow s^{\prime}}{\operatorname{bag}(t): \operatorname{bag}(s) \rightarrow \operatorname{bag}\left(s^{\prime}\right)} \\
\frac{t: s \rightarrow s^{\prime}}{\operatorname{set}(t): \operatorname{set}(s) \rightarrow \operatorname{set}\left(s^{\prime}\right)}
\end{gathered}
$$

$\prod_{i \in I} t_{i}=\operatorname{tup}\left(t_{i} \circ \pi_{i}\right)_{i \in I} \quad \coprod_{i \in I} t_{i}=\operatorname{tsel}\left(\iota_{i} \circ t_{i}\right)_{i \in I}$
$t: d o m \rightarrow s$ is a Σ-generator if $\operatorname{dom} \in \mathbb{T}\left(S_{0}, S_{0}\right)$ and either $s \in \mathbb{T}\left(S_{0}, S_{0}\right)$ and $t=i d_{s}$ or $s \in S \backslash S_{0}$ and all function symbols of t are constructors, injections or abstractions.
$t: s \rightarrow r a n$ is a Σ-observer if $\operatorname{ran} \in \mathbb{T}\left(S_{0}, S_{0}\right)$ and either $s \in \mathbb{T}\left(S_{0}, S_{0}\right)$ and $t=i d_{s}$ or $s \in S \backslash S_{0}$ and function symbols of t are destructors, projections or applications.

Formulas are (representations of) relations

The $\mathbb{T}\left(S_{0}, S\right)$-sorted set F_{Σ} of Σ-formulas is the least set of expressions φ generated by the following rules:
relations of Σ, tautology and contradiction

$$
\overline{r: s} \quad r: s \in R \quad \overline{\text { True }: s} \quad \overline{\text { False }: s} \quad s \in \mathbb{T}\left(S_{0}, S\right)
$$

Σ-atoms and negation

$$
\frac{t: s \rightarrow s^{\prime}}{r \circ t: s} \quad r: s^{\prime} \in R, t \neq i d_{s} \quad \frac{\varphi: s}{\neg \varphi: s}
$$

conjunction and disjunction
$\frac{\left\{\varphi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J}}{\bigwedge_{j \in J} \varphi_{j}: \prod_{i \in \cup\left\{I_{j} \mid j \in J\right\}} s_{i}} \quad \frac{\left\{\varphi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J}}{\bigvee_{j \in J} \varphi_{j}: \prod_{i \in \cup\left\{I_{j} \mid j \in J\right\}} s_{i}} \quad J \neq \emptyset, \forall j \in J: I_{j} \neq \emptyset$

quantification

$\frac{\varphi: \prod_{i \in I} s_{i}}{\forall k \varphi: \prod_{i \in I \backslash\{k\}} s_{i}} \quad \frac{\varphi: \prod_{i \in I} s_{i}}{\exists k \varphi: \prod_{i \in I \backslash\{k\}} s_{i}} \quad k \in I, I \neq \emptyset$

$$
\begin{aligned}
& \text { False }=\neg \text { True } \bigvee_{j \in J} \varphi_{j}=\neg\left(\bigwedge_{j \in J} \neg \varphi_{j}\right) \quad \varphi \Rightarrow \psi=\neg \varphi \vee \psi \\
& \varphi \Leftrightarrow \psi=(\varphi \Rightarrow \psi) \wedge(\psi \Rightarrow \varphi) \quad \exists k \varphi=\neg \forall k \neg \varphi
\end{aligned}
$$

Let $p: s$ be a Σ-atom and $\varphi: s$ be a Σ-formula.
$p \Leftarrow \varphi$ is a Horn clause over Σ.
$p \Rightarrow \varphi$ is called a co-Horn clause over Σ.
If $p=r \circ t$ for some logical $r \in R$, then $p \Leftarrow \varphi$ resp. $p \Rightarrow \varphi$ is a Horn resp. co-Horn clause for r. If $p=f \circ t \equiv u$ for some $f \in F$, then $p \Leftarrow \varphi$ is a Horn clause for f.

A Σ-formula φ is normalized if φ consists of literals, quantifiers and conjunction or disjunction symbols.

Given $R_{1} \subseteq R$, a normalized Σ-formula φ is R_{1}-positive if all negative literals of φ are ($R \backslash R_{1}$)-literals.

A Horn clause $p \Leftarrow \varphi$ or co-Horn clause $p \Rightarrow \varphi$ is R_{1}-positive if φ is R_{1}-positive.
Given $S_{1} \subseteq S$, a Σ-formula φ is S_{1}-restricted if
for all subformulas $\forall k \psi$ of φ such that $s_{k} \in S_{1}, \neg$ all $_{s_{k}} \circ \pi_{k}$ is a summand of ψ, and for all subformulas $\exists k \psi$ of φ such that $s_{k} \in S_{1}$, all $_{s_{k}} \circ \pi_{k}$ is a factor of ψ.

A Horn clause $p \Leftarrow \varphi$ or co-Horn clause $p \Rightarrow \varphi$ is S_{1}-restricted if φ is S_{1}-restricted.

Signature morphism

Let $\Sigma=(S, F, R, B)$ and $\Sigma^{\prime}=\left(S^{\prime}, F^{\prime}, R^{\prime}, B^{\prime}\right)$ be signatures with primitive sort sets S_{0} and S_{0}^{\prime}, respectively.

A signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ consists of a function from $\mathbb{T}\left(S_{0}, S\right)$ to $\mathbb{T}\left(S_{0}^{\prime}, S^{\prime}\right)$, an $\mathbb{F}\left(S_{0}, S\right)$-sorted function $\left\{\sigma_{s}: F_{s} \rightarrow F_{\Sigma, \sigma(s)}\right\}_{s \in \mathbb{F}\left(S_{0}, S\right)}$ and a $\mathbb{T}\left(S_{0}, S\right)$-sorted function $\left\{\sigma_{s}: R_{s} \rightarrow T_{\Sigma, \sigma(s)}\right\}_{s \in \mathbb{T}\left(S_{0}, S\right)}$.

Swinging type

Given a signature Σ and a set $A X$ of Σ-formulas, called axioms, the pair $S P=(\Sigma, A X)$ is a specification.

A specification $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ is a swinging type (ST) with base type $S P=(\Sigma, A X)$ and primitive subtype $S P_{0}=\left(\Sigma_{0}, A X_{0}\right)$ if $S P_{0}$ and $S P$ are swinging types and $S P^{\prime}=S P=S P_{0}=(\emptyset, \emptyset)$ or one of the following conditions holds true.

Let $\Sigma_{0}=\left(S_{0}, F_{0}, R_{0}, B_{0}\right), \Sigma=(S, F, R, B), \Sigma^{\prime}=\left(S^{\prime}, F^{\prime}, R^{\prime}, B^{\prime}\right)$ and $S_{1}=S \backslash S_{0}$.
(1) Data. $S P=S P_{0}$ and $A X^{\prime}=A X$.
$\Sigma^{\prime} \backslash \Sigma$ consists of a set $S_{\text {new }}$ of sorts and a set of constructors $c: s \rightarrow s^{\prime}$ such that $s^{\prime} \in S_{\text {new }}$ and $s \in \mathbb{T}\left(S, S^{\prime}\right)^{<2} . A X^{\prime}=A X$.
(2) States. $S P=S P_{0}$ and $A X^{\prime}=A X$.
$\Sigma^{\prime} \backslash \Sigma$ consists of of a set $S_{\text {new }}$ of sorts and a set of destructors $d: s \rightarrow s^{\prime}$ such that $s \in S_{\text {new }}$ and $s^{\prime} \in \mathbb{T}\left(S, S^{\prime}\right)^{<2}$.
(3) Recursion. SP satisfies (1).
$\Sigma^{\prime} \backslash \Sigma$ is a set of functions $f: s \rightarrow s^{\prime}$ such that $s \in S_{1}$.
For all $s \in S_{1}$, let $F(s)=\left\{f \in F^{\prime} \backslash F \mid \operatorname{dom}_{f}=s\right\}$.
$A X^{\prime} \backslash A X$ consists of an equation

$$
f \circ c \equiv t_{f, c} \odot\left(\operatorname{dom}_{c} \triangleleft T\right)
$$

for each $f \in \Sigma^{\prime} \backslash \Sigma$, each dom_{f}-constructor c and some Σ-term

$$
t_{f, c}: \operatorname{dom}_{c}\left[\left(\prod_{f \in F(s)} \operatorname{ran}_{f}\right) / s \mid s \in S_{1}\right] \rightarrow \operatorname{ran}_{f}
$$

where $T_{s}= \begin{cases}i d_{s} & \text { if } s \in S_{0} \\ \operatorname{tup}(F(s)) & \text { if } s \in S_{1}\end{cases}$
(4) Corecursion. $S P$ satisfies (2).
$\Sigma^{\prime} \backslash \Sigma$ is a set of functions $f: s \rightarrow s^{\prime}$ such that $s^{\prime} \in S_{1}$.
For all $s \in S_{1}$, let $F(s)=\left\{f \in F^{\prime} \backslash F \mid \operatorname{ran}_{f}=s\right\}$.
$A X^{\prime} \backslash A X$ consists of an equation

$$
d \circ f \equiv\left(\operatorname{ran}_{d} \triangleleft T\right) \odot t_{f, d}
$$

for each $f \in \Sigma^{\prime} \backslash \Sigma$, each $r a n_{f}$-destructor d and some Σ-term

$$
t_{f, d}: \operatorname{dom}_{f} \rightarrow \operatorname{ran}_{d}\left[\left(\coprod_{f \in F(s)} \operatorname{dom}_{f}\right) / s \mid s \in S_{1}\right]
$$

where $T_{s}= \begin{cases}i d_{s} & \text { if } s \in S_{0} \\ \operatorname{sel}(F(s)) & \text { if } s \in S_{1}\end{cases}$
(5) Least relations. $\Sigma^{\prime} \backslash \Sigma$ is a set R_{1} of logical relations.
$A X^{\prime} \backslash A X$ consists of R_{1}-positive Horn clauses for R_{1}.
(6) Greatest relations. $\Sigma^{\prime} \backslash \Sigma$ is a set R_{1} of logical relations.
$A X^{\prime} \backslash A X$ consists of R_{1}-positive co-Horn clauses for R_{1}.
(7) Visible abstraction. $S P$ is visible.
$R \subseteq \Sigma_{0} \cup$ equals where equals $=\left\{\equiv_{s} \mid s \in S \backslash S_{0}\right\}$.
$\Sigma^{\prime} \backslash \Sigma$ is a set R_{1} of logical relations.
$A X^{\prime} \backslash A X$ consists of ($R_{1} \cup$ equals $)$-positive Horn clauses for $R_{1} \cup$ equals and includes CONH.
(8) Hidden abstraction. $S P$ is visible.
$R \subseteq \Sigma_{0} \cup$ equals where equals $=\left\{\equiv_{s} \mid s \in S \backslash S_{0}\right\}$.
$\Sigma^{\prime} \backslash \Sigma$ is a set R_{1} of logical relations.
$A X^{\prime} \backslash A X$ consists of ($R_{1} \cup$ equals)-positive co-Horn clauses for $R_{1} \cup$ equals and includes CONC.
(9) Hidden restriction. $S P$ is hidden.
$R \subseteq \Sigma_{0} \cup$ univs where univs $=\left\{\right.$ all $\left._{s} \mid s \in S \backslash S_{0}\right\}$.
$\Sigma^{\prime} \backslash \Sigma$ is a set R_{1} of logical relations.
$A X^{\prime} \backslash A X$ consists of $\left(R_{1} \cup\right.$ univs $)$-positive and S_{1}-restricted co-Horn clauses for $R_{1} \cup$ univs and includes INVC.
(10) Visible restriction. $S P$ is hidden.
$R \subseteq \Sigma_{0} \cup$ univs where univs $=\left\{\right.$ all $\left._{s} \mid s \in S \backslash S_{0}\right\}$.
$\Sigma^{\prime} \backslash \Sigma$ is a set R_{1} of of logical relations.
$A X^{\prime} \backslash A X$ consists of $\left(R_{1} \cup\right.$ univs $)$-positive and S_{1}-restricted Horn clauses for $R_{1} \cup$ univs and includes INVH.
(11) Supertyping. $S P$ is visible.
$\Sigma^{\prime} \backslash \Sigma$ consists of constructors $c: d o m \rightarrow \operatorname{ran}$ and logical relations $r: s$ such that ran $\in S \backslash S_{0}$ and dom, $s \in \mathbb{T}\left(S_{0}, S\right)$.
R and $A X^{\prime} \backslash A X$ satisfy the conditions of (7) or (8).
(12) Subtyping. $S P$ is hidden.
$\Sigma^{\prime} \backslash \Sigma$ consists of destructors $d: d o m \rightarrow$ ran and logical relations $r: s$ such that $d o m \in S^{\prime \prime} \backslash S_{0}$ and ran, $s \in \mathbb{T}\left(S_{0}, S\right)$.
R and $A X^{\prime} \backslash A X$ satisfy the conditions of (9) or (10).
In cases (1), (3), (7) and (10), $S P^{\prime}$ is visible.
In cases (2), (4), (8) and (9), $S P^{\prime}$ is hidden.
In cases (5) and (6), $S P^{\prime}$ is visible resp. hidden if $S P$ is visible resp. hidden. In cases (11) and (12), $S P^{\prime}$ is visible resp. hidden if $A X^{\prime} \backslash A X$ consists of Horn resp. co-Horn clauses.

In cases (3) to (12), $S P_{0}$ is also the primitive subtype of $S P$.

Structures and the interpretation of terms and formulas

Let $\Sigma=(S, F, R, C)$ be a signature with primitive set of sorts S_{0}.
A Σ-structure A consists of an S-sorted set, for all $f: s \rightarrow s^{\prime} \in F$, a function $f^{A}: A_{s} \rightarrow A_{s^{\prime}}$, and for all $r: s \in R$, a relation $r^{A} \subseteq A_{s}$, such that for all $s \in S_{0}$, $A_{s}=B_{s}$.
$\operatorname{Mod}(\Sigma)$ denotes the category of Σ-structures and Σ-homomorphisms.
$\operatorname{Mod}_{E U}(\Sigma)$ denotes the full subcategory of $\operatorname{Mod}(\Sigma)$ whose objects are Σ-structures with equality and universe.

Given $S_{1} \subseteq S$ and an S_{1}-sorted set $B, \operatorname{Mod}(\mathbb{B}, \Sigma)$ denotes the subcategory of Σ-structures A over B, i.e. for all $s \in S_{0}, A_{s}=B_{s}$. The morphisms of this category are restricted to the Σ-homomorphisms h with $h_{s}=i d_{s}^{B}$ for all $s \in S_{0}$.

The interpretation of a Σ-term $t: s \rightarrow s^{\prime}$ in A is a function $t^{A}: A_{s} \rightarrow A_{s^{\prime}}$.
The interpretation of a Σ-formula $\varphi: s$ in A is a subset of A_{s} that is inductively defined as follows:

- For all $t: s \rightarrow s^{\prime} \in T_{\Sigma} \backslash\left\{i d_{s}\right\}$ and $r: s^{\prime} \in R,(r \circ t)^{A}=\left(t^{A}\right)^{-1}\left(r^{A}\right)$.
- For all $s \in \mathbb{T}\left(S_{0}, S\right)$, True $e_{s}^{A}=A_{s}$ and False $e_{s}^{A}=\emptyset$.
- For all $\varphi: s \in F_{\Sigma},(\neg \varphi)^{A}=A_{s} \backslash \varphi^{A}$.
- For all $\left\{\varphi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J} \subseteq F_{\Sigma},\left(\bigwedge_{j \in J} \varphi_{j}\right)^{A}=\bigcap_{j \in J} \pi_{I_{j}}^{-1}\left(\varphi_{j}^{A}\right)$. ${ }^{1}$
- For all $\varphi: \prod_{i \in I} s_{i} \in F_{\Sigma}$ and $k \in I,(\forall k \varphi)^{A}=\bigcap_{b \in s_{k}^{A}}\left(\varphi^{A} \div{ }_{k} b\right)$.

[^0]$a \in A_{s}$ satisfies $\varphi: s$ if $a \in \varphi^{A} . A$ satisfies $\varphi: s$ if $\varphi^{A}=A_{s}$.
Let $S P=(\Sigma, A X)$ be a specification. A is an $S P$-model if A satisfies $A X$. $\operatorname{Mod}(\mathrm{SP})$ denotes the category of $S P$-models and Σ-homomorphisms.
Let $\Sigma=(S, F, R, C), \Sigma=\left(S^{\prime}, F^{\prime}, R^{\prime}, C^{\prime}\right)$ be signatures, S_{0} be the set of primitive sorts of Σ and A be a Σ^{\prime}-structure.
Given a signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, the σ-reduct of $A,\left.A\right|_{\sigma}$, is the Σ-structure defined by $\left(\left.A\right|_{\sigma}\right)_{s}=A_{\sigma(s)}$ for all $s \in \mathbb{T}\left(S_{0}, S\right)$ and $f^{\left.A\right|_{\sigma}}=\sigma(f)^{A}$ for all $F \cup R$.

Congruences and invariants

Let $S P=(\Sigma, A X)$ be a specification, $\Sigma=(S, F, R)$, A be a Σ-structure, \sim be an S-sorted binary relation on A and inv be an S-sorted subset of A.
\sim is \sum-congruent if for all $f: s \rightarrow s^{\prime} \in F$ and $a, b \in A_{s}$,

$$
a \sim_{s} b \text { implies } f^{A}(a) \sim_{s^{\prime}} f^{A}(b)
$$

\sim extends to a Σ-structure:

- For all $f: s \rightarrow s^{\prime} \in F, a \sim_{s} b$ implies $f^{\sim}(a, b)=\left(f^{A}(a), f^{A}(b)\right)$,
- for all $r: s \in R, r^{\sim}=\left(r^{A} \times r^{A}\right) \cap \sim_{s}$.
\sim is R-compatible if for all $r: s \in R$ and $a, b \in A_{s}, a \in r^{A}$ and $a \sim b$ imply $b \in r^{A}$.

Given a Σ-congruent and R-compatible equivalence relation \sim on A, the \sim-quotient of $A, A / \sim$, is the Σ-structure that is defined as follows:

- For all $s \in S,(A / \sim)_{s}=\left\{[a] \mid a \in A_{s}\right\}$,
- for all $f: s \rightarrow s^{\prime} \in F$ and $a \in A_{s}, f^{A \nsim}([a])=f^{A}(a)$,
- for all $r \in R, r^{A ん}=\left\{[a] \mid a \in r^{A}\right\}$,
$i n v$ is a \sum-invariant if for all $f: s \rightarrow s^{\prime} \in F$ and $a \in A_{s}$,

$$
a \in i n v_{s} \text { implies } f^{A}(a) \in i n v_{s^{\prime}} .
$$

inv extends to a Σ-structure:

- For all $f: s \rightarrow s^{\prime} \in F$ and $a \in i n v_{s}, f^{i n v}(a)=f^{A}(a)$,
- for all $r: s \in R, r^{i n v}=r^{A} \cap i n v_{s}$.

The initial model

Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$ such that $S P$ satisfies (1).
Given an $S P$-model A, a poly $\left(\Sigma^{\prime}\right)$-structure Ini with equality and universe is defined as follows:
For all $s \in S^{\prime}$, let $G e n(s)$ be the set of all Σ^{\prime}-generators $t: d o m \rightarrow s$.

- Ini $\left.\right|_{\Sigma}=A$.
- For all $s \in S_{n e w}, I n i_{s}=\coprod_{t \in G e n(s)} d o m_{t}^{A}$.
- For all $s \in S_{\text {new }}, s$-constructors c and $a \in I n i_{\text {dom }_{c}}$,

$$
\begin{aligned}
& \left((b, c \odot t) \quad \text { if } d o m_{c}=s^{\prime} \in S^{\prime}\right. \\
& \text { and } a=(b, t) \in \text { Ini }_{s^{\prime}}=I n i_{\text {dom }_{c}} \text {, } \\
& \text { if } \operatorname{dom}_{c}=\prod_{i \in I} s_{i} \\
& \text { and } a=\left(a_{i}, t_{i}\right)_{i \in I} \in \prod_{i \in I} \text { Ini }_{s_{i}}=\text { Ini }_{\text {dom }_{c}} \text {, } \\
& \text { if } d o m_{c}=\coprod_{i \in I} s_{i} \\
& \text { and } a=((a, t), k) \in \coprod_{i \in I} \text { Ini }_{s_{i}}=\text { Ini }_{\text {dom }_{c}} \text {, } \\
& \text { if } d o m_{c}=\left(s_{0} \rightarrow s^{\prime}\right) \\
& \text { and } a=\lambda x .\left(a_{x}, t_{x}\right) \in\left[A_{s_{0}} \rightarrow \operatorname{Ini}_{s^{\prime}}\right]=\operatorname{Ini} i_{d o m_{c}} \text {, } \\
& \left(\left[a_{1}, \ldots, a_{n}\right]\right. \text {, } \\
& \left.c \odot \operatorname{list}_{n}\left(t_{1}, \ldots, t_{n}\right)\right) \text { if } \operatorname{dom}_{c}=\operatorname{list}\left(s^{\prime}\right) \\
& \text { and } a=\left[\left(a_{1}, t_{1}\right), \ldots,\left(a_{n}, t_{n}\right)\right] \in \operatorname{Ini}_{s^{\prime}}^{+}=\operatorname{Ini}_{\text {dom }_{c}} \text {. }
\end{aligned}
$$

Let \sim be the least interpretation of \equiv in Ini| $\left.\right|_{\text {poly }}$ that satisfies CONH. Then Ini/ \sim is initial in $\operatorname{Mod}_{E U}\left(A, S P^{\prime}\right)$.

An element of the initial model for constructors $c_{i}: s_{i, 1} \times \ldots \times s_{i, n_{i}} \rightarrow s_{i}$ (left) versus an element of the final model for destructors $d_{i}: s_{i} \rightarrow s_{i, 1}+\cdots+s_{i, n_{i}}$ (right).

The final model

Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$ such that $S P$ satisfies (2).
Given an $S P$-model A, a poly $\left(\Sigma^{\prime}\right)$-structure Fin with equality and universe is defined as follows:
For all $s \in S^{\prime}$, let $\operatorname{Obs}(s)$ be the set of all Σ^{\prime}-observers $t: s \rightarrow r a n$.

- $\left.\operatorname{Fin}\right|_{\Sigma}=A$.
- For all $s \in S_{\text {new }}$,

$$
\text { Fin }_{s}=\left\{a \in \prod_{t \in \operatorname{Obs}(s)} \operatorname{ran}_{t}^{A} \left\lvert\,\left\{\begin{array}{l}
\forall \text { destructors } d: s \rightarrow \coprod_{i \in I} s_{i} \exists k \in I \\
\forall\left(t_{i}: s_{i} \rightarrow s_{i}^{\prime}\right)_{i \in I} \in \prod_{i \in I} D\left(s_{i}\right) \\
\exists b \in A_{s_{k}^{\prime}}: a_{\left(\amalg_{i \in I} t_{i} \odot d\right.}=(b, k), \\
\forall \text { destructors }: s \rightarrow \operatorname{list}\left(s^{\prime}\right) \exists n \in \mathbb{N} \\
\forall t: s^{\prime} \rightarrow s^{\prime \prime} \in D\left(s^{\prime}\right) \\
\exists a_{1}, \ldots, a_{n} \in A_{s^{\prime \prime}}: a_{l i s t(t) \odot d}=\left[a_{1}, \ldots, a_{n}\right]
\end{array}\right\}\right.\right\} .
$$

- For all $s \in S_{\text {new }}, s$-destructors d and $a \in \operatorname{Fin}_{s}$,

$$
d^{F i n}(a)= \begin{cases}\left(a_{t \odot d}\right)_{t \in O b s\left(s^{\prime}\right)} \in \text { Fin }_{s^{\prime}}=\text { Fin }_{\text {ran }_{d}} & \text { if } \text { ran }_{d}=s^{\prime} \in S^{\prime}, \\ \left(\left(a_{t \odot \pi_{i} \odot d}\right)_{t \in O b s\left(s_{i}\right)}\right)_{i \in I} \in \prod_{i \in I} \text { Fin }_{s_{i}}=\text { Fin }_{\text {ran }_{d}} & \text { if } \text { ran }_{d}=\prod_{i \in I} s_{i}, \\ \left(a_{\left(\amalg_{i \in I} t_{i}\right) \odot d}\right)_{\left(t_{i}\right)_{i \in I} \in \prod_{i \in I} \text { Obs }\left(s_{i}\right)} \in \coprod_{i \in I} \text { Fin }_{s_{i}}=\text { Fin }_{\text {ran }_{d}} & \text { if } \text { ran }_{d}=\coprod_{i \in I} s_{i} \\ \lambda x .\left(a_{t \odot a p p l y_{x} \odot d}\right)_{t \in O b s\left(s^{\prime}\right)} \in\left[A_{s_{0}} \rightarrow \text { Fin }_{s^{\prime}}\right]=\text { Fin }_{\text {ran }_{d}} & \text { if } \text { ran }_{d}=\left(s_{0} \rightarrow s^{\prime}\right), \\ \left(a_{l i s t(t) \odot d}\right)_{t \in O b s\left(s^{\prime}\right)} \in \text { Fin }_{s^{\prime}}^{+}=\text {Fin }_{\text {ran }_{d}} & \text { if ran } \\ \text { ran } & \text { list }\left(s^{\prime}\right) .\end{cases}
$$

Let \sim be the greatest interpretation of \equiv in $\left.F i n\right|_{\text {poly }}$ that satisfies CONC. Then $F i n / \sim$ is final in $\operatorname{Mod}_{E U}\left(A, S P^{\prime}\right)$.

Axiomatizing relations

Let $\Sigma=(S, F, R, C)$ be a signature, $A X$ be a finite set of either only Horn or only co-Horn clauses over Σ, A be a Σ-structure with equality and $r: s_{x} \in R$.
(1) Let $A X_{r}=\left\{\left(r\left(t_{i}\right) \Leftarrow \varphi_{i}\right): s_{i}\right\}_{i=1}^{n}$ be the set of Horn clauses for r among the clauses of $A X$. The Σ-formula

$$
\varphi_{r}(A X) \quad=_{\operatorname{def}} \quad r(x) \Leftarrow \bigvee_{i=1}^{n} \exists i\left(x \equiv t_{i}(i) \wedge \varphi_{i}\right): s_{x}
$$

is called the $A X$-definition of r.
(2) Let $A X_{r}=\left\{\left(r\left(t_{i}\right) \Rightarrow \varphi_{i}\right): s_{i}\right\}_{i=1}^{n}$ be the set of co-Horn clauses for r among the clauses of $A X$. The Σ-formula

$$
\varphi_{r}(A X) \quad=_{\operatorname{def}} \quad r(x) \Rightarrow \bigwedge_{i=1}^{n} \forall i\left(\neg x \equiv t_{i}(i) \vee \varphi_{i}\right): s_{x}
$$

is called the $A X$-definition of r.
A satisfies $A X_{r}$ iff A satisfies $\varphi_{r}(A X)$.

μ - and ν-extensions

Let $\Sigma=(S, F, R, C), \Sigma^{\prime}=\left(S, F, R^{\prime}, C\right)$ and $S P=(\Sigma, A X)$ and $S P^{\prime}=\left(\Sigma^{\prime}, A X \uplus\right.$ $A X_{1}$) be specifications such that $R \subseteq R^{\prime}$ and $A X_{1}$ consists of
(1) R_{1}-positive Horn clauses for $R_{1}={ }_{\text {def }}\left(R^{\prime} \backslash R\right) \cup\left\{\equiv_{s} \mid s \in S_{1}\right\}$ or
(2) R_{1}-positive co-Horn clauses for $R_{1}={ }_{\operatorname{def}}\left(R^{\prime} \backslash R\right) \cup\left\{a l l_{s} \mid s \in S_{1}\right\}$
where S_{1} is the set of non-primitive sorts of $\Sigma . R_{1}$ is called the set of relations defined by $S P^{\prime}$.

In case (1), $S P^{\prime}$ is a μ-extension of $S P$.
In case (2), $S P^{\prime}$ is a ν-extension of $S P$.
The signature morphism $\sigma: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ that is the identity on Σ and maps $r \in R_{1}$ to the $A X_{1}$-definition of r is called the relation transformer of $S P^{\prime}$.

Relation transformer are monotone functions on $\operatorname{Mod}\left(A, \Sigma^{\prime}\right)$

For all $B, C \in \operatorname{Mod}\left(A, \Sigma^{\prime}\right)$,

$$
B \leq C \quad \Longleftrightarrow \quad \forall r \in R_{1}: r^{B} \subseteq r^{C}
$$

For all $r: s \in R_{1}$ and $\mathcal{B} \subseteq \operatorname{Mod}\left(A, \Sigma^{\prime}\right)$,
$r^{\perp}=\emptyset, r^{\top}=A_{s}, r^{\lfloor\mathcal{B}}=\bigcup_{B \in \mathcal{B}} r^{B}$ and $r^{\sqcap \mathcal{B}}=\bigcap_{B \in \mathcal{B}} r^{B}$.
Let R_{1} be an S-sorted set of binary relations $r_{s}: s \times s$. For all $B, C \in \operatorname{Mod}\left(A, \Sigma^{\prime}\right)$, $B \cdot C \in \operatorname{Mod}\left(A, \Sigma^{\prime}\right)$ is defined as follows: For all $r \in R_{1}, r^{B \cdot C}=r^{B} \cdot r^{C}$.
$\sigma: \operatorname{Mod}\left(A, \Sigma^{\prime}\right) \rightarrow \operatorname{Mod}\left(A, \Sigma^{\prime}\right)$ maps B to $\left.B\right|_{\sigma}$.
$B \in \operatorname{Mod}\left(A, \Sigma^{\prime}\right)$ is σ-closed if $\sigma(B) \leq B$.
$B \in \operatorname{Mod}\left(A, \Sigma^{\prime}\right)$ is σ-dense if $B \leq \sigma(B)$.
σ is monotone if for all $B, C \in \operatorname{Mod}\left(A, \Sigma^{\prime}\right), B \leq C$ implies $\sigma(B) \leq \sigma(C)$.
σ is continuous if for all increasing chains $B_{0} \leq B_{1} \leq B_{2} \leq \ldots$ of elements of $\operatorname{Mod}\left(A, \Sigma^{\prime}\right), \sigma\left(\sqcup_{i \in \mathbb{N}} a_{i}\right) \leq \sqcup_{i \in \mathbb{N}} \sigma\left(a_{i}\right)$.
σ is cocontinuous if for all decreasing chains $B_{0} \geq B_{1} \geq B_{2} \geq \ldots$ of elements of $\operatorname{Mod}\left(A, \Sigma^{\prime}\right), \sqcap_{i \in \mathbb{N}} \sigma\left(a_{i}\right) \leq \sigma\left(\Pi_{i \in \mathbb{N}} a_{i}\right)$.

- If $S P^{\prime}$ is a μ-extension of $S P$, then

$$
B \in \operatorname{Mod}\left(A, \Sigma^{\prime}\right) \models A X_{1} \quad \text { iff } \quad B \models \bigwedge_{r \in R_{1}}(r \Leftarrow \sigma(r)) \quad \text { iff } B \text { is } \sigma \text {-closed. }
$$

- If $S P^{\prime}$ is a ν-extension of $S P$, then

$$
B \in \operatorname{Mod}\left(A, \Sigma^{\prime}\right) \models A X_{1} \quad \text { iff } \quad B \models \bigwedge_{r \in R_{1}}(r \Rightarrow \sigma(r)) \quad \text { iff } B \text { is } \sigma \text {-dense. }
$$

- If $S P^{\prime}$ is a μ - or ν-extension of $S P$, then
$B \in \operatorname{Mod}\left(A, \Sigma^{\prime}\right) \models A X_{1} \quad$ iff $\quad B \models \bigwedge_{r \in R_{1}}(r \Leftrightarrow \sigma(r)) \quad$ iff B is a fixpoint of σ.
- $B \in \operatorname{Mod}\left(A, \Sigma^{\prime}\right)$ is a fixpoint of σ iff for all Σ^{\prime}-formulas $\psi, B \models \psi \Leftrightarrow \sigma(\psi)$.

(Iterative/circular/strong) induction and coinduction

Let $S P=(\Sigma, A X)$,
$S P_{1}=\left(\Sigma_{1}, A X \uplus A X_{1}\right)$ and $S P_{2}=\left(\Sigma_{2}, A X \uplus A X_{2}\right)$ be specifications such that both $S P_{1}$ and $S P_{2}$ are either μ - or ν-extensions of $S P$ and the set R_{1} of relations defined by $S P_{1}$ is contained in the set of relations defined by $S P_{2}$.

For $i=1,2$, let σ_{i} be the relation transformer of $S P_{i}$.
Let $\tau: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ be a signature morphism that is the identity on Σ.
Induction. Suppose that $l f p\left(\sigma_{1}\right) \leq l f p\left(\sigma_{2}\right)$.

$$
\operatorname{lfp}\left(\sigma_{1}\right) \models \bigwedge_{r \in R_{1}}(r \Rightarrow \tau(r)) \quad \text { if } \quad \exists n>0: \operatorname{lfp}\left(\sigma_{1}\right) \models \bigwedge_{r \in R_{1}}\left(\tau\left(\sigma_{2}^{n}(r)\right) \Rightarrow \tau(r)\right)
$$

Coinduction. Suppose that $g f p\left(\sigma_{2}\right) \leq g f p\left(\sigma_{1}\right)$.

$$
g f p\left(\sigma_{1}\right) \models \bigwedge_{r \in R_{1}}(\tau(r) \Rightarrow r) \quad \text { if } \quad \exists n>0: g f p\left(\sigma_{1}\right) \models \bigwedge_{r \in R_{1}}\left(\tau(r) \Rightarrow \tau\left(\sigma_{2}^{n}(r)\right)\right) .
$$

Abstraction and restriction

Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$ and primitive subtype $S P_{0}=\left(\Sigma_{0}, A X_{0}\right), \sigma$ be the relation transformer of $S P^{\prime}$ and A be an $S P_{0^{-}}$ model.

Suppose that $S P^{\prime}$ satisfies (7). Let Ini be initial in $\operatorname{Mod}_{E U}(A, S P)$. If σ is continuous, then $l f p(\sigma) / \equiv^{l f p}(\sigma)$ is initial in $\operatorname{Mod}_{E U}\left(A, S P^{\prime}\right)$.

Suppose that $S P^{\prime}$ satisfies (8). Let Ini be initial in $\operatorname{Mod}_{E U}(A, S P)$. If σ is cocontinuous, then $g f p(\sigma) / \equiv^{g f p(\sigma)}$ is final in $\operatorname{RMod}_{E U}\left(A, S P^{\prime}\right)$.

Suppose that $S P^{\prime}$ satisfies (9). Let Fin be final in $\operatorname{Mod}_{E U}(A, S P)$. If σ is continuous, then $\operatorname{all}^{g f p(\sigma)}$ is final in $\operatorname{Mod}_{E U}\left(A, S P^{\prime}\right)$.
Suppose that $S P^{\prime}$ satisfies (10). Let Fin be final in $\operatorname{Mod}_{E U}(A, S P)$.
If σ is cocontinuous, then all ${ }^{l f p(\sigma)}$ is initial in $\operatorname{OMod}_{E U}\left(A, S P^{\prime}\right)$.

Supertyping and subtyping I

Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$ and primitive subtype $S P_{0}$ and A be an $S P_{0}$-model.
(1) Suppose that $S P^{\prime}$ satisfies (11). Let Ini and $I n i^{\prime}$ be initial in $\operatorname{Mod}_{E U}(A, S P)$ resp. $\operatorname{Mod}_{E U}\left(A, S P^{\prime}\right)$.
The unique Σ-homomorphism $h:\left.\operatorname{Ini} \rightarrow I n i^{\prime}\right|_{\Sigma}$ is an isomorphism iff h can be extended to a Σ^{\prime}-homomorphism in which case Ini is initial in $\operatorname{Mod}_{E U}\left(A, S P^{\prime}\right)$.
(2) Suppose that $S P^{\prime}$ satisfies (12). Let Fin and $F i n^{\prime}$ be final in $\operatorname{Mod}_{E U}(A, S P)$ resp. $\operatorname{Mod}_{E U}\left(A, S P^{\prime}\right)$.
The unique Σ-homomorphism $h:\left.F i n^{\prime}\right|_{\Sigma} \rightarrow$ Fin is an isomorphism iff h can be extended to a Σ^{\prime}-homomorphism in which case F in is final in $\operatorname{Mod}_{E U}\left(A, S P^{\prime}\right)$.

Reachability and observability

Let $\Sigma_{0}=\left(S_{0}, F_{0}, R_{0}, B_{0}\right)$ and $\Sigma=(S, F, R, B)$ be signatures such that $\Sigma_{0} \subseteq \Sigma$, $S_{1}=S \backslash S_{0}$ and $A \in \operatorname{Mod}(\Sigma)$.

The reachability invariant of A is the S-sorted set that is defined as follows:
reach $_{s}^{A}={ }_{\operatorname{def}} \begin{cases}A_{s} & \text { if } s \in S_{0} \\ \left\{a \in A_{s} \mid \exists t: \operatorname{dom} \rightarrow s \in G e n_{\Sigma}, b \in A_{\text {dom }}: t^{A}(b)=a\right\} & \text { if } s \in S_{1}\end{cases}$
A is reachable if reach $^{A}=A$.
The observability congruence of A is the S-sorted set that is defined as follows:

$$
o b s_{s}^{A}={ }_{\text {def }} \begin{cases}\Delta_{s}^{A} & \text { if } s \in S_{0} \\ \left\{(a, b) \in A_{s}^{2} \mid \forall t: s \rightarrow \operatorname{ran} \in O b s_{\Sigma}: t^{A}(a)=t^{A}(b)\right\} & \text { if } s \in S_{1}\end{cases}
$$

A is observable if $o b s^{A}=\Delta^{A}$.

Consistency and completeness

Let $\Sigma=(S, F, R, B)$ be a signature, $A \in \operatorname{Mod}(\Sigma), S_{0} \subseteq S$ and $S_{1}=S \backslash S_{0}$.
A set C of constructors of F is consistent for A if for all $s \in S_{1}, f: d o m \rightarrow s, g: d o m^{\prime} \rightarrow s \in C, a \in A_{d o m}$ and $b \in A_{d o m^{\prime}}$, $f^{A}(a)=g^{A}(b)$ implies $f=g$ and $a=b$.
A set D of destructors of F is complete for A if for all $s \in S_{1}$ and $a, b \in A_{s}, a \neq b$ implies $f^{A}(a) \neq f^{A}(b)$ for some $f \in D$.

Supertyping and subtyping II

Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$ and primitive subtype $S P_{0}=\left(\Sigma_{0}, A X_{0}\right), \Sigma^{\prime}=\left(S^{\prime}, F^{\prime}, R^{\prime}, B^{\prime}\right), \Sigma=(S, F, R, B)$, $\Sigma_{0}=\left(S_{0}, F_{0}, R_{0}, B_{0}\right)$ and A be an $S P_{0}$-model.
(1) Suppose that $S P$ satisfies (1) and $S P=S P^{\prime}$ or $S P^{\prime}$ satisfies (11).

Let Ini and $I n i^{\prime}$ be initial in $\operatorname{Mod}_{E U}(A, S P)$ resp. $\operatorname{Mod}_{E U}\left(A, S P^{\prime}\right)$.
If $\left.I n i \cong I n i^{\prime}\right|_{\Sigma}$, then $F \backslash F_{0}$ is a consistent for $I n i^{\prime}$.
(2) Suppose that $S P$ satisfies (2) and $S P=S P^{\prime}$ or $S P^{\prime}$ satisfies (12).

Let Fin and $F i n^{\prime}$ be final in $\operatorname{Mod}_{E U}(A, S P)$ resp. $\operatorname{Mod}_{E U}\left(A, S P^{\prime}\right)$.
If If $\left.F i n \cong F i n^{\prime}\right|_{\Sigma}$, then $F \backslash F_{0}$ is complete for $F i n^{\prime}$.

Perfect model of a swinging type

Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$ and primitive subtype $S P_{0}$.

If $S P^{\prime}=S P=S P_{0}=(\emptyset, \emptyset)$, then $\operatorname{Per}(S P)$ is the empty Σ-structure. Otherwise

- $S P$ is visible $\Longrightarrow \operatorname{Per}\left(S P^{\prime}\right)$ is initial $\operatorname{Mod}_{E U}\left(\operatorname{Per}\left(S P_{0}\right), S P^{\prime}\right)$
- $S P$ is hidden $\Longrightarrow \operatorname{Per}\left(S P^{\prime}\right)$ is final of $\operatorname{Mod}_{E U}\left(\operatorname{Per}\left(S P_{0}\right), S P^{\prime}\right)$
- $(5) \Longrightarrow \operatorname{Per}\left(S P^{\prime}\right)$ is the least fixpoint of the relation transformer of $S P^{\prime}$
- $(6) \Longrightarrow \operatorname{Per}\left(S P^{\prime}\right)$ is the greatest fixpoint of the relation transformer of $S P^{\prime}$

[^0]: ${ }^{1} \pi_{I_{j}}$ maps from $\prod_{\cup\left\{i \in I_{j} \mid j \in J\right\}} s_{i}^{A}$ to $\prod_{i \in I_{j}} s_{i}^{A}$.

