
CONTENTS 1

Structured Swinging Types

Peter Padawitz
peter.padawitz@udo.edu

University of Dortmund, Germany
February 18, 2006

Abstract

Swinging types (STs) provide an axiomatic specification formalism for designing and verifying
software in terms of many-sorted logic and canonical models. STs are one-tiered insofar as static
and dynamic, structural and behavioral aspects of a system are treated on the same syntactic and
semantic level. Canonical models interpret relations as least or greatest fixpoints. All reasoning about
a particular ST can be reduced to deductive processes, from built-in simplifications via resolution upon
relations, narrowing upon functions, up to interactive proofs employing induction and coinduction
rules.

In this paper, the different possibilities of building up an ST are clearly separated from each
other. The designer of an ST may choose among six specification patterns when extending a given
ST by new components. Semantically, this leads to stratified models, similar to those known from
the semantics of stratified logic programs.

Predicates (relations interpreted as least fixpoints) and functions are axiomatized by Horn clauses,
copredicates (relations interpreted as greatest fixpoints) are axiomatized by co-Horn clauses. These
notions are generalized in this paper such that quantifiers may now occur at any place and even
negation is permitted in axioms. For ensuring monotonicity and thus the existence of fixpoints, each
relation preceded by a negation symbol must be axiomatized on a lower specification level. Under
this assumption, any ST can be transformed into an equivalent one without negation symbols.

When an ST is developed stepwise, particular attention must be paid to the addition of defined
functions and behavioral equalities in order to guarantee that they are fully compatible with other sig-
nature elements. Here functionality and behavioral consistency are the crucial requirements to an ST.
Moreover strong constructors are introduced as a further means for specifying behavioral equalities,
which are usually axiomatized only in terms of observers. Provided that the ST is behaviorally con-
sistent, behavioral equations whose sides are dominated by strong constructors may be decomposed,
such as structural equations may be splitted if their sides are dominated by (arbitrary) constructors.

Moreover, a simple and intuitive notion of refinement for STs is presented along with a powerful
and completely deductive criterion for refinement correctness. *** sections 8, 9

Contents

1 Introduction 1

2 The syntax of structured STs 4

3 Canonical and continuous models 6

4 The deductive calculus and the initial model 10

5 On behavioral equality, constructors, observers and inference rules 15

6 Horn STs and the reductive calculus 21

7 Monotonicity, consistency and refinement 27

1 Introduction 2

8 A criterion for behavioral consistency 36

9 On strong equality and the specification of partial-recursive functions 40

References 42

1 Introduction

Swinging types (STs) provide an axiomatic specification formalism for designing and verifying software
in terms of many-sorted logic and canonical models. STs are one-tiered insofar as static and dynamic,
structural and behavioral aspects of a system are treated on the same syntactic and semantic level. Since
the canonical models are collections of least and greatest relational fixpoints, all testing or verifying of
the specification can be reduced to deductive processes, from narrowing upon functions, resolution upon
relations via built-in simplifications to interactive inductive or coinductive proofs.

Unstructured swinging types were introduced in [37]. Here we add structure to the development of
STs by providing several specification patterns for building up a swinging type stepwise:

• extension by sorts. Data sets are specified in terms of new sorts, their constructors, structural
equality, inequality and definedness relations.

• extension by local relations. Relations are specified in terms of generalized Horn axioms (that may
involve universal quantifiers in their premises). Local relations are fully compatible with behavioral
equalities.

• extension by transition relations. Relations are specified in terms of generalized Horn axioms.
Transition relations are zigzag compatible with behavioral equalities and thus ensure that the latter
are (greatest) bisimulations.

• extension by defined functions. Total functions are specified in terms of conditional equations.
(Partiality is expressed in terms of sum sorts.)

• extension by behavioral equalities. Behavioral equalities are specified in terms of co-Horn axioms
involving destructors, relational observers and/or strong constructors.

• extension by copredicates. Relations are specified in terms of co-Horn axioms.

Any (finite) number of these “building blocks” forms a (structured) ST. The order in which they are
put together is unconstrained. For instance, axioms for defined functions may refer to already specified
copredicates, axioms for copredicates may use predicates and data sets may be introduced in different
extensions as long as they do not involve mutually-recursive constructors. The above patterns capture
a number of applications that could previously be handled only by different formalisms. For instance,
traditional algebraic specifications are restricted to functions, relational algebra and logic programming
only deal with local relations, and modal and temporal logics are tailored to transition relations.

The above patterns are restricted to the specification of finitely generated types. However, the concept
of a structured ST admits further patterns, in particular those that add coalgebraic, non-finitely-generated
types. As far as the coalgebras are constructor-based, all important proof-theoretical issues, such as
powerful criteria for specifying behavioral equalities and coinductive proof rules, are already covered by
finitely generated STs. The integration of coalgebraic extensions specifying non-finitely-generated types
will be presented in a subsequent paper. The goal of integrating several ways of axiomatizing data types

1 Introduction 3

is also pursued by the specification languages Maude [9], CafeOBJ [10] and, most recently, CoCASL [30].
Maude and CafeOBJ are based upon on equational logic and (associative-commutative) rewriting logic,
CoCASL combines algebraic with coalgebraic specifications and is built upon CASL [6], which is a joint
development of several European universities.

Since STs are many-sorted specifications, the way they are connected by signature morphisms (for
realizing parameterization and refinement) and the way formulas and proofs are translated along the
morphisms is essentially the same as in purely algebraic specification languages. However, signature
morphisms may cross the boundaries between different classes of functions or relations. For instance,
when refinements are specified in terms of morphisms, constructors are often mapped to defined functions
and structural to behavioral equalities.

One of the main benefits one draws from designing a specification as a sequence of ST extensions is
the fact that their canonical models do not only reflect the intended semantics in a quite simple way, but
also provide powerful proof rules and strategies when one reasons about the specification. Many of these
rules were implemented in the proof editor Expander2 [40, 41]. Here the user interacts at three levels
of decreasing control over a proof or a computation. At the high level, analytic and synthetic inference
rules, including induction, coinduction and lemma application, are applied individually and locally to
selected subformulas. At the medium level, rewriting, narrowing and resolution realize the iterated and
exhaustive application of all axioms of the ST. At the low level, built-in Haskell functions simplify or
(partially) evaluate terms and formulas and thus hide from the user most routine steps of the current
proof or computation. The simplifier also handles higher-order functions, higher-order predicates and AC
operators.

STs are located somewhere between purely axiomatic and purely model-based specifications. On the
one hand, designers have rather, though abstract, but individual, canonical models than entire model
classes in mind when they build a system. On the other hand, only axioms as the core of a specification
provide the basis for powerful proof and evaluation rules for reasoning about the models. The deductive
analysis with Expander2 of various swinging types pertaining to quite different application areas provided
the main impetus for the further developments of the ST approach presented in this paper.

[37] provides the model-theoretic and deductive foundations of unstructured STs, in particular the
construction of canonical models as relational fixpoints, the modal-logic issues that come with the inte-
gration of transition relations, criteria for continuity and behavioral consistency, and basic proof rules.

A swinging type starts out from constructors for building up visible as well as hidden data domains.
A visible domain is characterized by the coincidence of its structural with its behavioral equality. Further
predicates (µ-predicates in terms of [37]), copredicates (ν-predicates in terms of [37]) and defined functions
are axiomatized by Horn or co-Horn clauses. In this paper, the notion of a Horn clause is generalized
insofar as its premise may involve universal quantifiers1 (as co-Horn clauses may involve existential
quantifiers in the conclusion). Horn clauses provide the usual syntax for functional-logic programs, SOS
rules as well as labelled transition systems. Copredicates often express behaviorial properties “in the
infinity”, such as safety or invariance conditions on sequences of states. If an ST has hidden sorts, then
at least the associated behavioral equalities come as copredicates.

The unrestricted order in which an ST is built up admits, for instance, the use of predicates or even
copredicates in the axioms for a defined function. Behavioral equalities, which are usually defined in
terms of destructors (functional observers) or relational observers, may now be axiomatized also in terms

1[23, 28, 50] have been investigated similar generalizations.

1 Introduction 4

of strong constructors. Relations are either local or transitional. The axioms for a behavioral equality
∼ that is defined by destructors or local observers express a congruence property of ∼ (compatibility
with the observers), transitional observers make ∼ into a bisimulation (zigzag compatibility with the
observers), and strong constructors enforce a decomposability property of ∼ (inverse compatibility with
the constructors). The most common (strong) constructors are the injections into a sum sort. (Sum
sorts serve as ranges of totalized partial functions.) The most common destructors are the projections
mapping a product sort into its components. In fact, one may be content with these two examples if
there would not be the more interesting recursive data types, which are characterized by constructors or
destructors whose range sort also occurs as an argument.

Section 2 presents the syntax of STs and shows which kind of signature elements and axioms yield the
above-mentioned specification patterns. Section 3 provides the semantics of STs in terms of canonical
models. These models are stratified in accordance with the inductive definition of STs as a sequence of
extensions. Section 3 also defines the logical completion of an ST that removes all negation symbols from
the axioms. Semantically, logical completion preserves canonicity. An ST-model A is continuous if the
step functions induced by the axioms of the ST on A are continuous and thus admit inductive proofs of
properties of A. We extend to structured STs the almost syntactical continuity criterion called image
finiteness, which was introduced in [37].

Section 4 presents the basic (synthetic) proof system for an ST, the deductive calculus, which gener-
alizes the synonymous one introduced for unstructured STs in [37]. Due to the generalization of Horn
clauses to implications with universal quantifiers in the premise, the deductive calculus involves a ∀-
introduction rule with infinitely many premises. This enforces the use of ordinal numbers for measuring
proofs and inducing on proof lengths. The deductive calculus for an ST SP defines the SP -initial model,
which will be shown to be the initial object in the category of reachable SP -models with equality—
provided that SP is functional, i.e. each ground term is structurally SP -equivalent to a unique normal
form (= constructor term).

Section 5 focuses on the possibilities to axiomatize behavioral equalities in terms of observers or (the
new concept of) strong constructors. Moreover, the main inference rules for reasoning about an ST’s
inductive theory (= theory of the initial model) are listed and discussed here. More details on this issue
can be found in [41].

Section 6 shows how the copredicates of an ST are translated into predicates so that the ST is turned
into its Horn version. For ensuring that this transformation preserves canonicity, both the original ST and
its Horn version must be continuous. The Horn version is crucial for strengthening the deductive calculus
to the reductive calculus, which is an analytic proof system with ”oriented” axiom application (rewriting
of functions and resolution of predicates). This calculus had already been used in several papers written
by the author of this one and is generalized here to the extended syntax of Horn clauses, similarly to the
generalization of the deductive calculus. As in its previous versions, it allows us to formulate powerful
criteria for functionality and to show that functional STs can be translated into equivalent completely
relational ones.

Section 7 deals with relations between several STs that are set up by signature morphisms. We present
criteria for monotonicity and (relative) consistency along such morphisms. A refinement notion for STs is
introduced that captures the usual correctness conditions on such a development step in terms of initial
ST-models: (1) the ”implementation” satisfies the ”abstract” axioms; (2) the ”implementation” is sharp
in the sense that it does not add ”unwanted” properties to the ”abstract” requirements. We show that
(2) can be concluded immediately from one of the consistency criteria.

2 The syntax of structured STs 5

Section 8 adapts the criterion for behavioral consistency (= weak congruence property of behavioral
equivalence) given by [37], Thm. 6.5, to the hierarchical notion of an ST introduced in this paper. In
particular, strong constructors are taken into account here.

In Section 9, types with “exceptions” are turned into STs whose behavioral equivalence coincides with
strong equality, and partial-recursive functions built up of regular primitives are expressed in terms of
swinging types.

2 The syntax of structured STs

We assume familiarity with the basic notions of many-sorted logic with equality (cf., e.g., [16, 13, 51]).
Given a term or formula ϕ, var(ϕ) and freevar(ϕ) denote the sets of all resp. free variables of ϕ. ϕ

is ground if var(ϕ) is empty. Given an expression (term, formula, specification, etc.) e and terms or
formulas t1, . . . , tn, u1, . . . , un, e[t1/u1, . . . , tn/un] denotes the expression obtained from e by substituting
ti for ui for all 1 ≤ i ≤ n.

Definition 2.1 (signature, terms, substitutions) A signature Σ = (S, F, LR, TR) consists of a
set S of sorts, S+-sorted sets F of functions2 and LR of local relations and an S × S+-sorted set
TR of transition relations such that for all s ∈ S, LR implicitly includes the structural s-equality
≡s: ss, the structural s-inequality 6≡s: ss and the definedness predicate Defs : s. A relation is
logical if it is not a structural equality.3

Given an S-sorted set X of variables, TΣ(X) denotes the S-sorted sets of Σ-terms whose variables are
taken from X. If X is empty, we write TΣ instead of TΣ(X).

An expression p = r(t1, . . . , tn) is a Σ-atom if r : s1 . . . sn ∈ LR∪TR and for all 1 ≤ i ≤ n, ti ∈ TΣ,si
.

p is logical if r is a logical relation. p and ¬p are called Σ-literals.

An S-sorted function σ : X → TΣ(X) is called a substitution. The domain of σ, dom(σ), is the set
of all variables x with xσ 6= x. Given Y ⊆ X, σY denotes the restriction of σ that is defined by xσY = xσ

for all x ∈ Y and xσY = x for all x ∈ X \ Y . Given a further substitution τ , we write σ =Y τ if σ and τ
agree on all variables of X \ Y .

If σ maps each variable of dom(σ) to a term in some given set T of terms, we write σ : X → T in order
to indicate that σ satisfies σ(dom(X)) ⊆ T . The instance tσ of a term or formula t by σ is obtained
from t by replacing each free occurrence in t of a variable x by xσ. We also use the bracket notation for
substitutions (see above).

Let Σ = (S, F, LR, TR) and Σ′ = (S′, F ′, LR′, TR′) be signatures. A signature morphism σ : Σ→
Σ′ consists of a function σsorts : S → S′ and S+-sorted sets of functions σfuns = {σw : Fw → F ′σ(w)},
σpreds = {σw : LRw → LR′σ(w)} and σtrans = {σw : TRw → TR′σ(w)} such that for all f : w → s ∈ F ,
σ(f) : σ(w)→ σ(s) and for all r : w ∈ LR ∪ TR, σ(r) : σ(w). ❏

Similarly to our transition relations, Dynamic Data Types and Labelled Transition Logic [8, 1] incor-
porate transition systems as relations into specifications and axiomatize them in terms of Horn clauses,
which, by the way, amount to nothing else but SOS (“structural operational semantics”) rules, the classi-
cal syntax of transition system specifications. The logic used for reasoning about dynamic data types is a

2Of course, on this syntactic level, F , LR and TR are just sets of symbols.
3Whether a relation is a local relation, a transition relation or a copredicate depends on the type of axioms that specify

it (cf. Def. 2.3). Structural equalities are the only relations that are not associated with these categories.

2 The syntax of structured STs 6

temporal one. Swinging types go a step further and admit to integrate not only transitions systems, but
also temporal- and modal-logic operators to reason about them. Such operators come as (higher-order)
local relations and are specified by Horn or co-Horn clauses (see below), which are direct translations of
their interpretations in the modal µ-calculus as least resp. greatest fixpoints (cf. [37], Section 2). Maude
[9] and CafeOBJ [10] specify unary relations in terms of membership predicates and transition relations
in terms of rewrite rules and categorical initial models. ??

Definition 2.2 (formulas) Let Σ = (S, F, LR, TR) be a signature. A Σ-formula is a first-order
formula consisting of symbols from Σ and variables from an S-sorted set X of variables. A Σ-formula is
positive if it does not contain implication symbols and all negation symbols are at literal positions.

Let ϕ be a positive Σ-formula. Given a logical Σ-atom p = r(t), p⇐ ϕ is a Horn clause4 for r and
p ⇒ ϕ is a co-Horn clause for r. Given a Σ-atom p = (f(t) ≡ u), p ⇐ ϕ is a Horn clause for f . A
Horn clause p⇐ True is identified with p.

By convention, any structural property of a Σ-formula ϕ—except for the position of the implication
sign in a Horn or co-Horn clause—holds true as well for all formulas that are logically equivalent to vfi
w.r.t. the validity of first-order formulas.

The set of poly-modal formulas is inductively defined as follows:

• An atom r(t) with r ∈ LR is poly-modal.

• If ϕ and ψ are poly-modal, then ¬ϕ and ϕ ∧ ψ are poly-modal.

• If ϕ is poly-modal, then for all atoms δ(t, x) with δ ∈ TR and x ∈ X \ var(t), ∃x : (δ(t, x) ∧ ϕ) is
poly-modal.

The set of weakly modal formulas with output out(ϕ) ⊆ X is inductively defined as follows:

• A poly-modal formula is weakly modal with output ∅.
• An atom δ(t, x) with δ ∈ TR and x ∈ X \ var(t) is weakly modal with output {x}.
• If ϕ and ψ are weakly modal with disjoint outputs Y resp. Z such that Z ∩ freevar(ϕ) = ∅, then
ϕ ∧ ψ is weakly modal with output Y ∪ Z.

• If ϕ is weakly modal with output Y , then for all x ∈ X, ∃x : ϕ is weakly modal with output Y \{x}.
❏

Poly-modal and weakly modal formulas are invariant with respect to the replacement of a variable
valuation by a weakly congruent one (cf. Def. 3.1 and [37], Thm. 3.8).

Substitutions extend to formulas as usual. Let Q ∈ {∀,∃}. Quantified variables are not substituted,
i.e., for all x ∈ X, (Qx : ϕ)σ = Qx : ϕσX\{x}. Moreover, given a set Y = {x1, . . . , xn} of variables, the
formula QY : ϕ stands for Qx1 : · · · : Qxn : ϕ.

Definition 2.3 A swinging type (ST) is ... see [39]

Note that each function symbol, predicate or copredicate of an ST SP is axiomatized either in the
base type or in the extension of SP . The only (non-variable) symbols that do not fall into one of these
categories, but may occur in SP are structural equalities. If the extension contains defined functions (see

4Since ϕ is not confined to finite conjunctions of atoms, our notion of a Horn clause deviates from the classical one. It
also does not coincide with the notion of a hereditary Harrop formula [27]. Premises with universal quantifiers, which do
not occur in classical Horn clauses, are allowed both in Harrop formulas and in our Horn clauses. But Harrop formulas
impose further restrictions on their premises.

3 Canonical and continuous models 7

2.3(2)), conditional equations to axiomatize them are introduced that may modify (semantically) their
leading structural equalities. This impact on structural equalities, which, of course, cannot be avoided in
a hierarchical construction of combined functional and relational specifications, is the reason for excluding
structural equalities from the set of predicates of an ST. Still, structural equalities share with predicates
the property that all axioms with such a relation as the leading one are Horn clauses.

Although Def. 2.3 excludes the specification of alternating fixpoints [31], it is sufficient for axiomatizing
all common modal- or temporal-logic operators in terms of an ST of order 3 (cf. [37], Example 2.7).

3 Canonical and continuous models

Definition 3.1 (semantical notions) see ... [39]

Note that a relation ≈ ⊆ A × B is zigzag compatible with δ : ws iff it is compatible with the “non-
deterministic” function fδ : Aw → ℘(As) that maps a ∈ Aw to the set of all a′ ∈ As with (a, a′) ∈ δA.
Here ≈ is extended to a subset of ℘(As)× ℘(Bs) as follows:

A′ ≈ B′ ⇐⇒

{
∀ a ∈ A′ ∃ b ∈ B′ : a ≈s b,

∀ b ∈ B′ ∃ a ∈ A′ : a ≈s b.

A Σ-structure A interprets 1 by the set {()}, a product sort s1 × · · · × sn by the Cartesian product
As1 × . . . × Asn and a sum sort qi∈Iwi by {κi(a) | a ∈ Awi , i ∈ I}. Projections and injections are
interpreted accordingly: For all 1 ≤ i ≤ n and a = (a1, . . . , an) ∈ As1...sn , πA

i (a) =def ai. For all i ∈ I
and a ∈ Asi

, κA
i (a) =def κi(a). Hence κA

i is injective and for all i, j ∈ I, i 6= j implies that κA
i (Asi

) and
κA

j (Asj
) are disjoint.

< (see Section 2) yields an ordering <A between elements of different carriers of A: for all s < s′,
a ∈ As and a′ ∈ As′ ,

a <A a′ ⇐⇒def there are injections c1, . . . , cn such that c1(. . . (cn(a)) . . .) = a′.

Note that for all a′ ∈ As′ there is at most one a ∈ As such that a <A a′. Hence the following interpretation
of f+ : s′ → 1 + s′′ in A is well-defined: for all a′ ∈ As′ ,

fA
+ (a′) =def

{
() if for all a ∈ As, a 6<A a′,

(fA(a)) if a <A a′.

Analogously, the interpretation of r : s in A determines an interpretation of r+ : s′ in A:

rA
+ =def {a′ ∈ As′ | ∃ a ∈ rA : a <A a′}.

Proposition 3.2 Let σ : Σ→ Σ′ be a signature morphism, A be a Σ′-structure and ϕ be a Σ-formula.
A|σ satisfies ϕ iff A satisfies σ(ϕ). Aσ satisfies ϕ iff for all τ : X → TΣ, A satisfies σ(ϕτ). ❏

We are not interested in all models of a swinging type, but only in canonical ones where the interpre-
tation of relations by least or greatest fixpoints of a step function:

Definition 3.3 see ... [39]

Definition and Theorem 3.4 (continuity, fixpoints) see ... [39]

3 Canonical and continuous models 8

Definition 3.5 (continuous and canonical models) Let SP = (Σ, AX) be a swinging type
with base type baseSP = (baseΣ, baseAX) and extension (Σ′, AX ′), B be a reachable Σ-structure with
equality and inequality and Φ be the SP -step function on A = B|baseΣ.

B is a continuous SP -model if SP is the empty ST or A is a continuous baseSP -model and Φ is
upward resp. downward continuous (in case 2.3(1/3/4) resp. (5/6)). B is a canonical SP -model if SP
is the empty ST or the following conditions hold true:

➢ A is a canonical baseSP -model.

➢ In case 2.3(1/3/4), for all predicates r ∈ Σ′, rB = rlfp(Φ).

➢ In case 2.3(2), B satisfies AX ′.

➢ In case 2.3(5/6), for all copredicates r ∈ Σ′, rB = rgfp(Φ).

A formula satisfied by all canonical SP -models is an inductive theorem of SP . Given a parame-
terized swinging type PSP , an inductive theorem of PSP is an inductive theorem of all actualizations
of PSP . ❏

Proposition 3.6 Let SP = (Σ, AX) be a swinging type with base type baseSP = (baseΣ, baseAX)
and extension (Σ′, AX ′) and B be a continuous and canonical SP -model. Then by Theorem 3.4 (Kleene),
the following conditions hold true:

➢ In case 2.3(1/3/4), for all predicates r ∈ Σ′, rB = ∪i∈Nr
Φi(⊥).

➢ In case 2.3(5/6), for all copredicates r ∈ Σ′, rB = ∩i∈Nr
Φi(>). ❏

Canonicity is sufficient for turning an ST SP into its logical completion where all relations of SP have
complements and thus negation symbols can be removed from the axioms:

Definition 3.7 Let Σ = (S, F, LR, TR) be a signature. The signature

compl(Σ) = (S, F, LR ∪ {r : w | r : w ∈ LR ∪ TR}, TR)

is called the logical completion of Σ.5 Let ϕ be a Σ-formula. The compl(Σ)-formula pos(ϕ) is obtained
from ϕ by first transforming ϕ into an equivalent positive formula ϕ′ and then replacing each literal ¬r(t)
of ϕ with r(t). The compl(Σ)-formula neg(ϕ) is obtained from ϕ′ by dualizing quantifiers, conjunctions
and disjunctions and replacing each atom r(t) of ϕ′ with r(t) and each literal ¬r(t) of ϕ′ with r(t).

Let CL be a set of (co-)Horn clauses, CLP be the set consisting of all clauses of CL for predicates
and

pos(CL) = {p⇐ pos(ϕ) | p⇐ ϕ ∈ CL} ∪ {p⇒ pos(ϕ) | p⇒ ϕ ∈ CL}.

The set

compl(CL) = pos(CL) ∪ {r(t)⇒ False | r(t) ∈ CLP} ∪ {r(t)⇒ neg(ϕ) | r(t)⇐ ϕ ∈ CLP}
∪ {r(t) | r(t)⇒ False ∈ CL} ∪ {r(t)⇐ neg(ϕ) | r(t)⇒ ϕ ∈ CL}

of (co-)Horn clauses is called the logical completion of CL.

Given a swinging type SP = (Σ, AX), the ST compl(SP) = (compl(Σ), compl(AX)) is called the
logical completion of SP . ❏

Example 3.8 The following parameterized swinging type specifies the set of all finite sequences. For
the parameter type ENTRY, see Example ??.

5The actual name for r depends on r (cf. Example 3.8).

3 Canonical and continuous models 9

LIST = ENTRY then

vissorts list = list(entry)
constructs [] :→ list

: : entry × list→ list

local preds ∈ : entry × list
sorted : list
exists, forall : (entry → bool)× list

vars x, y : entry L, L′ : list g : entry → bool

Horn axioms x ∈ y : L ⇐ x ≡ y ∨ x ∈ L (1)
sorted([]) (2)
sorted(x : []) (3)
sorted(x : y : L) ⇐ x ≤ y ∧ sorted(y : L) (4)
exists(g, x : L) ⇐ g(x) ≡ true ∨ exists(g, L) (5)
forall(g, []) (6)
forall(g, x : L) ⇐ g(x) ≡ true ∧ forall(g, L) (7)

The complement of {(1), . . . , (7)} reads as follows:

x /∈ y : L ⇒ x 6≡ y ∧ x /∈ L
unsorted([]) ⇒ False

unsorted(x : []) ⇒ False

unsorted(x : y : L) ⇒ x 6≤ y ∨ unsorted(y : L)

notExists(g, x : L) ⇒ g(x) 6≡ true ∧ notExists(g, L)

notForall(g, []) ⇒ False

notForall(g, x : L) ⇒ g(x) 6≡ true ∨ notForall(g, L)

The use of compl(SP) in proofs about SP may be regarded as a way of simulating default logics [44]
with swinging types.

Theorem 3.9 (logical completion preserves canonicity) Let SP = (Σ, AX) be a swinging type, A
be a canonical SP -model and B be the compl(Σ)-structure that is defined by B|Σ = A|Σ and rB = Aw \rA

for each logical predicate or copredicate r : w ∈ Σ. B is a canonical compl(SP)-model.

Proof. Let baseSP = (baseΣ, baseAX) be the base type of SP and A be a canonical SP -model A. We
show the existence of B by induction on the structure of SP (cf. Def. 2.3). Since A|baseΣ is a canonical
baseSP -model, the induction hypothesis implies that B|baseΣ is a canonical compl(baseSP)-model. In
case 2.3(2), the proof is complete because then SP adds neither predicates nor copredicates to baseSP .

Let case 2.3(1/3/4) hold true, P = Σ \ baseΣ, (Σ′, AX ′) be the extension of SP , compl(baseSP) =
(Σ0, AX0), compl0(SP) = (Σ0 ∪ Σ′, AX0 ∪ pos(AX ′)), Φ be the compl0(SP)-step function on B|baseΣ

and Ψ be the compl(SP)-step function on B|Σ0 . Since B|baseΣ is a canonical compl(baseSP)-model, B
is a canonical compl(SP)-model if for all r ∈ P ,

rB = rlfp(Φ) (1)

and
rB = rgfp(Ψ). (2)

So let r : w ∈ P and cl1 = (r(t1)⇐ ϕ1), . . . , cln = (r(tn)⇐ ϕn) be the axioms of SP for r. Then

r(t1)⇐ pos(ϕ1), . . . , r(tn)⇐ pos(ϕn) are the axioms of compl0(SP) for r (3)

4 The deductive calculus and the initial model 10

and
r(t1)⇒ neg(ϕ1), . . . , r(tn)⇒ neg(ϕn) are the axioms of compl(SP) for r. (4)

By (3), Φ coincides with the SP -step function Θ on A|baseΣ and thus rB = rA = rlfp(Θ) = rlfp(Φ) because
B|Σ = A|Σ and A|Σ is a canonical SP -model. Hence (1) holds true.

The axioms of compl0(SP) for r can be combined into a single Horn clause r(x) ⇐ ϕ where x ∈
X \ ∪n

i=1freevar(cli) and

ϕ =
n∨

i=1

∃freevar(cli) : (x ≡ ti ∧ pos(ϕi)).

Since B is a fixpoint of Φ, B satisfies r(x)⇔ ϕ and thus r(x)⇔ ψ where

ψ =
n∧

i=1

∀freevar(cli) : (x 6≡ ti ∨ neg(ϕi)).

By (4), r(x) ⇒ ψ is the single co-Horn clause the axioms of compl(SP) for r can be combined into.
Hence B satisfies the axioms of compl(SP) for r and thus is a fixpoint of Ψ. Since gfp(Ψ) is the greatest
one, rB ⊆ rgfp(Ψ). Hence by the definition of rB , (2) holds true if rgfp(Ψ) ⊆ Aw \ rA. Since rA = rlfp(Φ),
this inclusion reduces to rgfp(Ψ) ⊆ Aw \ rlfp(Φ) and thus, by Theorem 3.4 (Knaster-Tarski), to:

∪C∈C{rC | rC ⊆ rΨ(C)} ⊆ ∪D∈D {Aw \ rD | rΦ(D) ⊆ rD} (5)

where C is the class of compl(Σ)-structures C with C|Σ0 = B|Σ0 and D is the class of all Σ0-structures
D with D|baseΣ = B|baseΣ. (5) reduces to:

∀ C ∈ C ∀ t ∈ rC : (rC ⊆ rΨ(C) ⇒ ∃ D ∈ D : (t 6∈ rD ∧ rΦ(D) ⊆ rD)). (6)

So let C ∈ C and t ∈ rC such that rC ⊆ rΨ(C). We define D ∈ D by D|baseΣ = C|baseΣ and qD = Av \ qC

for all q : v ∈ P . Then t ∈ rC implies t 6∈ rD. Moreover, for all u ∈ Aw,

u ∈ rΦ(D) ⇐⇒ D |=[u/x] ϕ ⇐⇒ D 6|=[u/x] ¬ϕ ⇐⇒ C 6|=[u/x] ψ ⇐⇒ u 6∈ rΨ(C)

(∗)⇐⇒ u 6∈ rC ⇐⇒ u ∈ rD
(7)

where (∗) follows from rC ⊆ rΨ(C). (7) implies rΦ(D) ⊆ rD. Hence (6) holds true and we conclude that,
in case 2.3(1/3/4), B is a canonical compl(SP)-model.

The proof for case 2.3(5/6) proceeds analogously if one dualizes the arguments of the proof for case
2.3(1/3/4). ❏

4 The deductive calculus and the initial model

Given a swinging type SP , canonical SP -models can be derived from an extension DTh(SP). The
extension uses two additional concepts. The first one is the notion of an deductive set [2], which allows
us to define derived as well as refuted formulas and thus least as well as greatest relational fixpoints. The
second concept is the measurement of proof sizes in terms of ordinal numbers. Both the cut calculus given
below and the reductive calculus (Def. 6.4) contain a rule with (countably) infinitely many premises (∀-
introduction). In order to relate both calculi to each other we must induce on the respective proof sizes.
The involvement of ∀-introduction forces us to use transfinite induction for this purpose: A property P
holds true for all ordinal numbers if for all ordinals b, if P holds true for all ordinals a < b, then P

4 The deductive calculus and the initial model 11

holds true for b. The correctness of transfinite induction is easily deduced from the fact that the ordinal
numbers form a well-ordered set (see [48], §13). Ordinal numbers are sets and the well-order (<) is set
inclusion. A successor ordinal has an immediate predecessor w.r.t. <, while a limit ordinal is the union of
all its predecessors. Ordinal numbers for measuring proofs via inference systems involving ∀-introduction
rules have already been used in, e.g., [48], §20, and [43], Sect. 1.3.

Definition 4.1 (deductive calculus) Let SP = (Σ, AX) be an ST with base type baseSP and
extension (Σ′, AX ′). The cut calculus for SP consists of the following rules for deriving (sets of)
Σ-formulas.6

base
True
ϕ
⇓ for all ϕ ∈ DTh(baseSP) ∪AX ′

instantiation
ϕ

ϕ[t/x]
⇓ for all t ∈ TΣ,sort(x) and x ∈ var(ϕ)

cut
{ϕ⇒ (ψ ∨ γ), (γ ∧ ϕ′)⇒ ψ′}

(ϕ ∧ ϕ′)⇒ (ψ ∨ ψ′)
⇓

∧-introduction
{ϕ,ψ}
ϕ ∧ ψ

⇓

∨-introduction
ϕ

ϕ ∨ ψ
⇓

∃-introduction
ϕ[t/x]
∃xϕ

⇓ for all t ∈ TΣ,sort(x) and x ∈ var(ϕ)

∀-introduction
{ϕ[t/x] | t ∈ TΣ,sort(x)}

∀x : ϕ
⇓ for all x ∈ var(ϕ)

A set F of Σ-formulas is SP -deductive if for each rule of the cut calculus for SP , the conclusion
belongs to F whenever the premises belong to F . In case 2.3(1/2/3/4), DTh(SP) denotes the intersection
of all SP -deductive sets containing True. In case 2.3(5/6), DTh(SP) denotes the union of all SP -
deductive sets that do not contain False. Elements of DTh(SP) are called the deductive theorems of
SP .

The structural SP -equivalence ≡SP consists of all (t, u) ∈ T 2
Σ such that t ≡ u ∈ DTh(SP).7 The

behavioral SP -equivalence ∼SP consists of all (t, u) ∈ T 2
Σ such that t ∼ u ∈ DTh(SP).

Let a be an ordinal number. The deductive inference relation `a
SP is inductively defined as

follows:

• For all ϕ ∈ DTh(baseSP) ∪AX ′, `a
SP ϕ.

• Let ϕ1, . . . , ϕn be the premises and ϕ be the conclusion of the instantiation, cut, ∧-introduction,
∨-introduction or ∃-introduction rule. If `ai

SP ϕi and ai < a for all 1 ≤ i ≤ n, then `a
SP ϕ.

• If x ∈ var(ϕ) and for all t ∈ TΣ,sort(x), `at

SP ϕ[t/x] and at < a, then `a
SP ∀x : ϕ.

The proof length of ϕ in the cut calculus for SP is the least ordinal number a such that `a
SP ϕ. ❏

Proposition 4.2 For all s ∈ S and t, u ∈ NFΣ,s, t 6= u implies t 6≡s u ∈ DTh(SP). ❏

Definition 4.3 (initial model) Let SP = (Σ, AX) be an ST with base type baseSP = (baseΣ, baseAX)
and extension (Σ′, AX ′).

6Arrows attached to a rule indicate the direction of consequence, here with respect to validity in Σ-structures.
7By Def. 2.3, ≡SP is a Σ-congruence.

4 The deductive calculus and the initial model 12

Let Σ′ = (S, F, LR, TR). The initial SP -model Ini(SP) is the reachable Σ-structure A that is
inductively defined as follows: If SP is the empty ST, then A is the empty Σ-structure. Otherwise
A|baseΣ = Ini(baseSP),

➢ for all s ∈ S, As = TΣ,s/≡SP ,

➢ for all f : w → s ∈ F and t ∈ TΣ,w, fA([t]) = [f(t)],

➢ for all r : w ∈ LR ∪ TR, rA = {[t] ∈ Aw | r(t) ∈ DTh(SP)}. ❏

Proposition 4.4 Ini(SP) is a Σ-structure with equality.

Proof. Let t, u ∈ TΣ. Then [t] ≡Ini(SP) [u] iff t ≡ u ∈ DTh(SP) iff t ≡SP iff [t] = [u]. ❏

Proposition 4.5 For all Σ-formulas ϕ, Ini(SP) |= ϕ iff ϕ ∈ DTh(SP).

Proof. If ϕ is atomic, then the statement holds true by the definition of Ini(SP). Otherwise proceed
by induction on the structure of ϕ. ❏

Lemma 4.6 For all predicates r : w ∈ Σ, rIni(SP) is the least relation on TΣ,w/≡SP that satisfies the
axioms of SP for r.

Proof. Let A = Ini(SP). By a simple inductive argument, it is sufficient to consider case 2.3(1/3/4)
and to show the statement for all predicates r : w ∈ Σ′. Let Φ be the SP -step function on A|baseΣ and
B = lfp(Φ). Since B is a fixpoint of Φ, B satisfies AX ′. Since B is reachable and thus all rules of the
cut calculus for SP are sound w.r.t. validity in B, the Σ-formulas ϕ with B |= ϕ form an SP -deductive
set F that contains True. Since DTh(SP) is the intersection of all SP -deductive sets containing True,
we conclude that for all predicates r : w ∈ Σ and t ∈ TΣ,w,

t ∈ rA ⇐⇒ r(t) ∈ DTh(SP) =⇒ r(t) ∈ F ⇐⇒ B |= r(t) ⇐⇒ t ∈ rB .

Hence rA ⊆ rB . On the other hand, B is the least fixpoint of Φ and thus rB ⊆ rA provided that A is
also a fixpoint of Φ. This holds true if A satisfies AX ′.

So let p ⇐ G be a Horn clause of AX ′ and σ : X → TΣ such that A satisfies Gσ. By Prop. 4.5,
Gσ ∈ DTh(SP). Since DTh(SP) is the intersection of all SP -deductive sets containing True, Gσ ∈ F
for all SP -deductive sets F that contain True. Moreover, p⇐ G ∈ AX ′ implies pσ ⇐ Gσ ∈ F and thus,
by applying the modus ponens, pσ ∈ F . Hence pσ ∈ DTh(SP) and thus by Prop. 4.5, A |= pσ. ❏

Lemma 4.7 For all copredicates r : w ∈ Σ, rIni(SP) is the greatest relation on TΣ,w/≡SP that satisfies
the axioms of SP for r.

Proof. Let A = Ini(SP). By a simple inductive argument, it is sufficient to consider case 2.3(5/6)
and to show the statement for all copredicates r : w ∈ Σ′. Let Φ be the SP -step function on A|baseΣ and
B = gfp(Φ). Since B is a fixpoint of Φ, B satisfies AX ′. Since B is reachable and thus all rules of the
cut calculus for SP are sound w.r.t. validity in B, the Σ-formulas ϕ with B |= ϕ form an SP -deductive
set F that does not contain False. Since DTh(SP) is the union of all SP -deductive sets not containing
False, we conclude that for all copredicates r : w ∈ Σ and t ∈ TΣ,w,

t ∈ rB ⇐⇒ B |= r(t) ⇐⇒ r(t) ∈ F =⇒ r(t) ∈ DTh(SP) ⇐⇒ t ∈ rA.

Hence rB ⊆ rA. On the other hand, B is the greatest fixpoint of Φ and thus rA ⊆ rB provided that A is
also a fixpoint of Φ. This holds true if A satisfies AX ′.

So let p ⇒ G be a co-Horn clause of AX ′ and σ : X → TΣ such that A satisfies pσ. By Prop. 4.5,
pσ ∈ DTh(SP). Since DTh(SP) is the union of all SP -deductive sets not containing False, pσ ∈ F for

4 The deductive calculus and the initial model 13

some SP -deductive set F that does not contain False. Moreover, p ⇒ G ∈ AX ′ implies pσ ⇒ Gσ ∈ F
and thus, by applying the modus ponens, Gσ ∈ F . Hence Gσ ∈ DTh(SP) and thus by Prop. 4.5,
A |= Gσ. ❏

Lemma 4.8 Let case 2.3(2) be valid. Then Ini(SP) satisfies AX ′.

Proof. Let p ⇐ G be a Horn clause of AX ′ and σ : X → TΣ such that Ini(SP) satisfies Gσ. By
Prop. 4.5, Gσ ∈ DTh(SP). Since DTh(SP) is the intersection of all SP -deductive sets containing True,
Gσ ∈ F for all SP -deductive sets F containing True. Moreover, p ⇐ G ∈ AX ′ implies pσ ⇐ Gσ ∈ F
and thus, by applying the modus ponens, pσ ∈ F . Hence pσ ∈ DTh(SP) and thus by Prop. 4.5,
Ini(SP) |= pσ. ❏

Lemma 4.9 Let B be a reachable SP -model. Then for all predicates and structural equalities r : w ∈ Σ
and t ∈ TΣ,w, r(t) ∈ DTh(SP) implies B |= r(t).

Proof. Let A = Ini(SP). By a simple inductive argument, it is sufficient to consider case 2.3(1/2/3/4)
and to show the statement for all predicates and structural equalities r : w ∈ Σ′. Let Φ be the SP -step
function on A|baseΣ. Since B be a reachable SP -model and thus all rules of the cut calculus for SP
are sound w.r.t. validity in B, the Σ-formulas ϕ with B |= ϕ form an SP -deductive set F that contains
True. Since DTh(SP) is the intersection of all SP -deductive sets containing True, we conclude that for
all predicates and structural equalities r : w ∈ Σ and t ∈ TΣ,w, r(t) ∈ DTh(SP) implies r(t) ∈ F and
thus B |= r(t). ❏

Lemma 4.10 Let B be a reachable SP -model. Then for all copredicates r : w ∈ Σ and t ∈ TΣ,w,
B |= r(t) implies r(t) ∈ DTh(SP).

Proof. Let A = Ini(SP). By a simple inductive argument, it is sufficient to consider case 2.3(5/6)
and to show the statement for all copredicates r : w ∈ Σ′. Let Φ be the SP -step function on A|baseΣ.
Since B be a reachable SP -model and thus all rules of the cut calculus for SP are sound w.r.t. validity
in B, the Σ-formulas ϕ with B |= ϕ form an SP -deductive set F that does not contain False. Since
DTh(SP) is the union of all SP -deductive sets containing True, we conclude that for all copredicates
r : w ∈ Σ and t ∈ TΣ,w, r(t) ∈ F implies r(t) ∈ DTh(SP). Hence B |= r(t) implies r(t) ∈ DTh(SP). ❏

Definition 4.11 (completeness, consistency, functionality) Let SP = (Σ, AX) be an ST. A
Σ-term has a normal form u if t ≡SP u and u ∈ NFΣ. SP is complete if each ground Σ-term there
has a normal form. SP is consistent if all structurally SP -equivalent normal forms are equal. SP is
functional if SP is complete and consistent. In this case, for all t ∈ TΣ, nf(t) denotes the unique normal
form of t. SP is behaviorally consistent if ∼SP is a weak Σ-congruence. ❏

Proposition 4.12 SP is complete iff for all t ∈ TΣ, Def (t) ∈ DTh(SP). ❏

Functionality implies that the initial SP -model interprets structural equalities and inequalities as
complements of each other:

Lemma 4.13 Let SP be complete. SP is consistent iff for all t, u ∈ TΣ,

t 6≡ u ∈ DTh(SP) ⇐⇒ t ≡ u 6∈ DTh(SP). (1)

Proof. Suppose that (1) holds true. Let s ∈ S and t, u ∈ NFΣ,s such that t 6= u. By Prop. 4.2,
t 6≡s u ∈ DTh(SP). By (1), t ≡ u 6∈ DTh(SP). Hence SP is consistent.

Suppose that SP is consistent. Let t, u ∈ TΣ such that t ≡ u 6∈ DTh(SP). Since SP is functional,
this is equivalent to: nf (t) 6= nf (u). By Prop. 4.2, nf (t) 6≡ nf (u) ∈ DTh(SP). Hence t 6≡ u ∈ DTh(SP).

4 The deductive calculus and the initial model 14

Conversely, let A = Ini(SP), s ∈ S and t, u ∈ TΣ,s such that t 6≡ u ∈ DTh(SP). Then [t] 6≡A [u].
By Lemma 4.6, 6≡A

s is the least relation on A2
s that satisfies the inequality axioms of SP . Suppose that

the complement ≡A of ≡ w.r.t. A also satisfies the inequality axioms of SP . Then [t] 6≡A [u] implies
[t]≡A[u]. Hence ([t], [u]) 6∈≡A and thus t ≡ u 6∈ DTh(SP). Hence it remains to show that ≡A satisfies
the inequality axioms of SP .

≡A satisfies I1 (cf. Def. 2.3): Let f : w → s be a constructor and t ∈ TΣ,w such that fA([t]) ≡A fA([u]).
By Prop. 4.4, fA([t]) = fA([u]), i.e. [f(t)] = [f(u)] and thus f(t) ≡ f(u) ∈ DTh(SP). Hence f(nf (t)) ≡
f(nf (u)) ∈ DTh(SP). Since both sides of the last equation are normal forms and SP is consistent, they
are equal. Hence nf (t) = nf (u) and we proceed backwards: nf (t) = nf (u) implies t ≡ u ∈ DTh(SP) and
thus [t] = [u]. By Prop. 4.4, [t] ≡A [u].

≡A satisfies I2 (cf. Def. 2.3): Let f : v → s and g : w → s′ be different constructors, t ∈ TΣ,v and
u ∈ TΣ,w such that fA([t]) ≡A gA([u]). By Prop. 4.4, fA([t]) = gA([u]), i.e. [f(t)] = [g(u)] and thus
f(t) ≡ g(u) ∈ DTh(SP). Hence f(nf (t)) ≡ g(nf (u)) ∈ DTh(SP). Since both sides of the last equation
are normal forms and SP is consistent, they are equal, which contradicts f 6= g. ❏

Corollary 4.14 Suppose that SP is functional or does not contain strong constructors. For all hidden
sorts s ∈ Σ, ≡SP,s⊆∼SP,s.

Proof. Let A = Ini(SP). By a simple inductive argument, it is sufficient to consider case 2.3(5) and
to show the statement for all hidden sorts s ∈ Σ′. It is easy to see that ≡ solves all axioms of type C5,
B1, B2 and B3 (cf. Def. 2.3) in ∼ with respect to A. We show that the same holds true for all axioms of
type B4 if SP is functional.

Let s ∈ Σ′ be a hidden sort, f : w → s ∈ Σ′ be a strong s-constructor and t = (t1, . . . , tn), u =
(u1, . . . , un) ∈ TΣ,w. Then

A |= f(t) ≡ f(u) 4.5⇐⇒ f(t) ≡ f(u) ∈ DTh(SP) 4.13⇐⇒ f(t) 6≡ f(u) 6∈ DTh(SP)
4.5⇐⇒ A 6|= f(t) 6≡ f(u) I1=⇒ ∀ 1 ≤ i ≤ n : A 6|= f(ti) 6≡ f(ui)
4.5⇐⇒ ∀ 1 ≤ i ≤ n : f(ti) 6≡ f(ui) 6∈ DTh(SP) 4.13⇐⇒ ∀ 1 ≤ i ≤ n : f(ti) ≡ f(ui) ∈ DTh(SP)
4.5⇐⇒ ∀ 1 ≤ i ≤ n : A |= f(ti) ≡ f(ui).

Let g : v → s ∈ Σ′ be a strong s-constructor with g 6= f and u ∈ TΣ,v,

A |= f(t) ≡ g(u) 4.5⇐⇒ f(t) ≡ g(u) ∈ DTh(SP) 4.13⇐⇒ f(t) 6≡ g(u) 6∈ DTh(SP)
4.5⇐⇒ A 6|= f(t) 6≡ g(u) I2=⇒ A 6|= True.

Hence for all hidden sorts s ∈ Σ′, ≡A
s is a relation on TΣ,ss/≡SP that satisfies the axioms of SP for

∼s. Since by Lemma 4.7, ∼A
s is the greatest relation with this property, we conclude ≡SP,s⊆∼SP,s. ❏

Theorem 4.15 Let SP = (Σ, AX) be a functional ST with base type baseSP = (baseΣ, baseAX).
Ini(SP) is a canonical SP -model that is initial in RModEq(SP).

Proof. Let A = Ini(SP). By Prop. 4.4, A is a structure with equality. By Prop. 4.12, A is reachable.
By Lemma 4.13, A is a structure with inequality. By induction hypothesis, A|baseΣ is a canonical baseSP -
model. Hence 3.5(1) holds true. Let case 2.3(1/3/4) be valid. By Lemma 4.6, 3.5(2) holds true. Let case
2.3(2) be valid. By Lemma 4.8, 3.5(3) holds true. Let case 2.3(5/6) be valid. By Lemma 4.7, 3.5(4) holds
true. This completes the proof that A is a canonical SP -model. It remains to show that A is initial in
RModEq(SP).

5 On behavioral equality, constructors, observers and inference rules 15

Let B be a reachable SP -model with equality. Define a mapping h : A → B by h([t]) = tB for all
t ∈ TΣ. By Lemma 4.9, t ≡ u ∈ DTh(SP) implies B |= t ≡ u and thus tB = uB because B is a structure
with equality. Hence h is well-defined.

h is a Σ-homomorphism: Let f : w → s ∈ Σ and t ∈ TΣ,w. Then

h(fA([t])) = h([f(t)]) = f(t)B = fB(tB) = fB(h([t])). (1)

Let r : w ∈ Σ be a predicate and b ∈ h(rA). Then h([t]) = b for some [t] ∈ rA. Hence r(t) ∈ DTh(SP).
By Lemma 4.9, B |= r(t), i.e. b = h([t]) = tB ∈ rB . Let r : w ∈ Σ be a copredicate and [t] ∈ h−1(rB).
Then tB = h([t]) ∈ rB and thus B |= r(t). By Lemma 4.10, r(t) ∈ DTh(SP), i.e. [t] ∈ rA.

The uniqueness of h follows from the uniqueness of the initial homomorphism evalB : TΣ → B that
maps t ∈ TΣ to tB (induction on t): Let nat : TΣ → A be the natural homomorphism sending terms
to their SP -equivalence classes. Given a homomorphism h′ : A → B, both h′ ◦ nat and h ◦ nat are
homomorphisms. Hence the uniqueness of evalB implies h′ ◦ nat = evalB = h ◦ nat and thus h′ = h

because nat is surjective. ❏

Criteria for completeness and consisteny and conditions under which deductive theorems can be proved
by term rewriting are presented in Section 6.

5 On behavioral equality, constructors, observers and inference
rules

Behaviorally consistent swinging types satisfy a “Hennessy-Milner property”:

Theorem 5.1 ([37], Thm. 3.8) Let SP = (Σ, AX) be a behaviorally consistent ST, A be the initial
SP -model and ϕ be a weakly modal formula with output Y and b, c : X → A. Then b ∼SP c and A |=b ϕ

imply A |=c′ ϕ for some c′ with b ∼SP c′ =Y c. In particular, b ∼SP c iff for all poly-modal formulas ϕ,
A |=b ϕ iff A |=c ϕ.

Proof. By assumption, ∼A=∼SP is a weak congruence on A. Hence the statement follows from [37],
Theorem 3.8 (2). ❏

By Def. 3.1, behavioral consistency of SP does not require that behavioral SP -equivalence is com-
patible with structural SP -equivalence. If this were the case, we would obtain

∼SP ⊆ ∼SP ◦ ≡SP ◦ ∼SP ⊆ ≡SP .

By Corollary 4.14, the inverse inclusion ≡SP⊆∼SP holds true if SP is functional. Hence, in this case, the
compatibility of behavioral with structural equivalence would imply that both relations coincide, which
is not intended, unless all constructors are strong (see Lemma 5.5).

Definition 5.2 SP is head complete if each ground Σ-term of hidden sort is SP -equivalent to a
Σ-term whose leftmost symbol is a strong constructor (cf. Def. 2.3). ❏

Lemma 5.3 Let SP = (Σ, AX) be a functional and head complete ST. Then B4 (cf. Def. 2.3) is
equivalent to: for all strong constructors f : w → s,

x ∼s y ⇒ (x ≡s f(x′) ⇒ ∃ y′(y ≡s f(y′) ∧ x′ ∼w y′)),

x ∼s y ⇒ (y ≡s f(y′) ⇒ ∃ x′(x ≡s f(x′) ∧ x′ ∼w y′)).
(1)

5 On behavioral equality, constructors, observers and inference rules 16

Proof. “⇒”: Let t ∼SP u. Since SP is head complete, there are strong constructors f, g and term
tuples t′, u′ such that t ≡SP f(t′) and u ≡SP g(u′). Since SP is functional, ≡SP solves the behavior
axioms of SP in ∼. Hence f(t′) ∼SP g(u′) because ∼SP is symmetric, transitive and, by Corollary 4.14,
includes ≡SP . B4 implies f = g and thus t′ ∼SP u′.

“⇐”: Let f(t) ∼SP f(u). By (1), there is u′ such that f(u) ≡SP f(u′) and t ∼SP u′. Since SP is
functional, u ≡SP u′. Hence t ∼SP u because ∼SP is an equivalence relation that includes ≡SP . Let
f(t) ∼SP g(u). By (1), there is u′ such that g(u) ≡SP f(u′). This contradicts the completeness and
consistency of SP . ❏

Lemma 5.4 Let SP = (Σ, AX) be a functional and head complete ST, t be a strong normal form,
σ : X → NFΣ and u ∈ NFΣ such that tσ ∼SP u. Then u = tτ and σ ∼SP τ for some τ : X → NFΣ. In
particular, if t is a ground term, then t ∼SP u implies t = u.

Proof. Let tσ ∼SP u. By repeated applications of Lemma 5.3, there is ϑ : X → TΣ such that u ≡SP tϑ

and σ ∼SP ϑ. Since SP is complete, ϑ ≡SP τ for some τ : X → NFΣ. Hence u ≡SP tτ and σ ∼SP τ .
Since u and tτ are normal forms and SP is consistent, both terms are equal. ❏

Lemma 5.5 Let SP = (Σ, AX) be a functional and head complete ST and s be a hidden sort of Σ
such that all s-constructors of Σ are strong constructors. Then ≡SP,s=∼SP,s.

Proof. Let t, t′ ∈ TΣ,s such that t ∼SP t′. Since SP is complete, there are u, u′ ∈ NFΣ,s such that
t ≡SP u and t′ ≡SP u′. Hence u ∼SP u′ because ∼SP is symmetric, transitive and, by Corollary 4.14,
includes ≡SP . Since u and u′ are ground strong normal forms, Lemma 5.4 implies u = u′ and thus
t ≡SP t′. ❏

If all s-constructors are strong constructors, observers are superfluous because they do not affect
behavioral equivalence: Let SP and SP ′ be functional STs with the same signature such that all s-
constructors are strong constructors and SP differs from SP ′ only with respect to the symbols declared as
observers. Then both specifications have the same structural equivalence and thus, under the assumptions
of Lemma 5.5, they also have the same behavioral equivalence.

Strong s-constructors induce a destructor

ds : s→
∐

f :w→s is a strong constructor

w

specified by an axiom ds(f(x)) ≡ κf (x) for each strong s-constructor f . ds is the identity if s is a sum
sort and thus all strong s-constructors are injections.

Since behavioral equivalence is a transitive relation that includes structural equivalence,

x ∼s y ⇒ ds(x) ∼ ds(y). (2)

is equivalent to:
x ∼s y ⇒ (ds(x) ≡ x′ ⇒ ∃ y′(ds(y) ≡ y′ ∧ x′ ∼ y′)),
x ∼s y ⇒ (ds(y) ≡ y′ ⇒ ∃ x′(ds(x) ≡ x′ ∧ x′ ∼ y′)).

(3)

(3) is equivalent to the conjunction of (4) over all strong s-constructors f : w → s:

x ∼s y ⇒ (ds(x) ≡ κf (x′) ⇒ ∃ y′(ds(y) ≡ κf (y′) ∧ x′ ∼ y′)),
x ∼s y ⇒ (ds(y) ≡ κf (y′) ⇒ ∃ x′(ds(x) ≡ κf (x′) ∧ x′ ∼ y′)).

(5)

Since (4) is equivalent to (1), we conclude that (1) is equivalent to (2).

5 On behavioral equality, constructors, observers and inference rules 17

Let SP be behaviorally consistent. Then the following inference rules for decomposing resp. removing
“behavioral equations” are sound:

strong constructor elimination
f(t1, . . . , tn) ∼ f(u1, . . . , un)
t1 ∼ u1 ∧ · · · ∧ tn ∼ un

m if f is a strong constructor

strong constructor clash
f(t) ∼ g(u)

False
m if f and g are different strong constructors

Strong constructor elimination and clash are the behavioral-equality counterparts of constructor elimi-
nation and clash that allow us to remove constructors or equations whenever SP is functional (cf. [37],
Section 4). The ⇑-direction of strong constructor elimination immediately follows from behavioral con-
sistency. The ⇓-direction of strong constructor elimination, called inverse compatibility of ∼ with f ,
and the ⇓-direction of behavioral clash coincide with B4 (cf. Def. 2.3).

Note the similarity between B3 and (1). These pairs of formulas express that behavioral equality is
zigzag compatible with δ and λ(x, x′).x ≡ f(x′), respectively. Moreover, the equivalence between (1)
and B4 reveals a duality between compatibility and zigzag compatibility like the one between category-
theoretic notions of congruence (= compatibility) and bisimulation (= zigzag compatibility) (cf. [46, 18]):
Behavioral equivalence is compatible with f : w → s iff it is zigzag compatible with λ(x, x′).f(x) ≡ x′,
and, by Lemma 5.3, it is inverse compatible with a strong constructor f : w → s iff it is zigzag compatible
with λ(x, x′).x′ ≡ f(x).

Fig. 1 associates the symbols of a swinging type with their compatibility properties. Those of the
equivalence relations can be summarized as follows: structural equivalence is

➢ compatible with functions and relations,

➢ inverse compatible with constructors,

while behavioral equivalence is

➢ compatible with functions and local relations,

➢ zigzag compatible with transition relations,

➢ inverse compatible with strong constructors.

Coinductivity, functionality and continuity remain criteria for behavioral consistency. In particular,
the behavior axioms for strong constructors entail that these functions build up only strong normal
forms. These are required at certain places in coinductive axioms. Section 7 provides the details about
coinductivity and its consequences if the respective ST has strong constructors. For examples with strong
constructors and coinductive axioms, see [37], Sections 1.1, 1.2.1, 4.2, 4.5.

Strong constructor elimination and clash are the “behavioral versions” of constructor elimination
and clash, which are indispensible simplification rules in almost every computation or proof based on a
constructor-based specification: Let SP be a functional ST and f, g be different constructors of SP .

elimination of f
f(t1, . . . , tn) ≡ f(u1, . . . , un)
t1 ≡ u1 ∧ · · · ∧ tn ≡ un

m f(t1, . . . , tn) 6≡ f(u1, . . . , un)
t1 6≡ u1 ∨ · · · ∨ tn 6≡ un

m

clash of f and g
f(t) ≡ g(u)

False
m f(t) 6≡ g(u)

True
m

Constructor elimination and clash belong to the class of simplification rules, which transform
formulas into equivalent ones (indicated by the m arrow) by (partially) evaluating logical operators and

5 On behavioral equality, constructors, observers and inference rules 18

constructors
strong

constructors
are

structural
equivalence

behavioral
equivalence

is a
subset

of

destructors
+ observers

is (zigzag)
compatible

with

is
compatible

with

is inverse
compatible

with
is inverse

compatible
with

if SP is
functional

if SP is
behaviorally

consistentis
compatible

with

other
symbols

is
compatible

with

is (zigzag)
compatible

with

Figure 1. Compatibilities of functions and relations.

certain standard relations or functions. The equivalence between the antecedent and the succedent of a
simplification rule holds at least with respect to the initial model.

Constructor elimination and clash reduce the number or size of equations or inequations, i.e. partially
evaluate equality resp. inequality relations. Other relations are evaluated by narrowing, i.e. applying
all axioms for the relations in parallel.

Let p be a predicate, q be a copredicate and f be a defined function of SP and t be a tuple of Σ-
terms. For its more efficient use, the premise resp. conclusion of a Horn resp. co-Horn clause is divided
into a guard γ and a “real” premise resp. conclusion. Semantically, γ ⇒ (p(u) ⇐= ϕ) coincides with
p(u)⇐= (γ ∧ ϕ) and γ ⇒ (q(u) =⇒ ϕ) with q(u) =⇒ (γ ⇒ ϕ).

narrowing on p
p(t)∨k

i=1 ∃Zi : (ϕiσi ∧ ~x = ~xσi)
⇑

where γ1 ⇒ (p(u1) ⇐= ϕ1), . . . , γn ⇒ (p(un) ⇐= ϕn) are the (Horn) axioms
for p,

(∗) ~x is a list of the variables of t,
for all 1 ≤ i ≤ k, tσi = uiσi, γiσi ` True and Zi = var(ui, ϕi),
for all k < i ≤ n, t is not unifiable with ui.

narrowing upon q
q(t)∧k

i=1 ∀Zi : (~x = ~xσi ⇒ ϕiσi)
⇑

where γ1 ⇒ (q(u1) =⇒ ϕ1), . . . , γn ⇒ (q(un) =⇒ ϕn) are the (co-Horn) axioms
for q and (∗) holds true.

narrowing upon f
ϕ(f(t))∨k

i=1 ∃Zi : (ϕ(viσi) ∧ ϕiσi ∧ ~x = ~xσi) ∨∨l
i=k+1(ϕ(f(tσi)) ∧ ~x = ~xσi)

⇑

5 On behavioral equality, constructors, observers and inference rules 19

where γ1 ⇒ (f(u1) = v1) ⇐= ϕ1, . . . , γn ⇒ (f(un) = vn) ⇐= ϕn are the
(Horn) axioms for f ,

(∗) ~x is a list of the variables of t,
for all 1 ≤ i ≤ k, tσi = uiσi, γiσi ` True and Zi = var(ui, ϕi),
for all k < i ≤ l, σi is a partial unifier of t and ui,
for all l < i ≤ n, t is not partially unifiable with ui.

If SP is functional, structural equalities and inequalities can be removed by the above clash rules.
The same condition ensures that the following rules are sound with respect to the initial model:

elimination of p
p(t)
False

m

where t ∈ NFΣ(X) and for all axioms p(u)⇐ ϕ of SP , t and u are not unifiable

elimination of q
q(t)
True

m

where t ∈ NFΣ(X) and for all axioms q(u)⇒ ϕ of SP , t and u are not unifiable

Neither the constructor rules nor unfolding removes equations or inequations with a variable on one
side. Simplification rules doing this job are the following ones:

elimination/introduction of x
∀x : ((x ≡ t ∧ ϕ(x))⇒ ψ(x))

ϕ(t)⇒ ψ(t)
m ∀x : (ϕ(x)⇒ (x ≡ t ∧ ψ(x)))

ϕ(t)⇒ ψ(t)
m

∃x : (x ≡ t ∧ ϕ(x))
ϕ(t)

m ∀x : (x 6≡ t ∨ ϕ(x))
ϕ(t)

m if x 6∈ var(t)

Instead of generating a complete case analysis and applying all axioms for a relation or function in
parallel, axioms that would introduce unsolvable equations need not be applied. The implementation
of narrowing in the interactive theorem prover Expander2 [40] take this into account by restricting the
above narrowing rules to those summands resp. factors of the rule succedent that are not “syntactically”
unsolvable in the initial model. This holds true, for instance, if SP is functional and the leading symbols
of t resp. ti (see above) are different constructors). More general unsolvability checks require subproofs:
a formula is unsolvable if it can be transformed into False via constructor rules, narrowing, variable
elimination and other simplifications. For increasing the efficiency of narrowing, its actual implementation
in Expander2 also employs guarded and needed narrowing (see [41, 40]).

If SP is functional, the above rules provide a solution complete calculus, more precisely: for all atoms
p and σ : X → TΣ such that Ini(SP) satisfies pσ, σ can be derived from p by the above rules (cf., e.g.,
[32], Chapter 8; [33], Cor. 7.3; [34], Section 8).

The full completeness of the above rules (not only for deriving solutions) is not achieved whenever
a function or relation r of SP has axioms with “recursive calls”. Then unfolding may not be able to
remove all occurrences of r from a given formula. This is the point where induction rules (Noetherian
induction, fixpoint induction and coinduction) may be needed. Unfortunately, induction rules are not
equivalence transformations. One may be forced to generalize a conjecture to be proved by (co)induction
before submitting it to the rule. Fixpoint induction and coinduction are dual to each other. Fixpoint
induction removes (an occurrence of) a defined function or predicate r, coinduction removes a copredicate
q. The atom where r resp. q occurs must be the premise resp. conclusion of an implication: Let p, f, q be
as above and AXr be the axioms of SP for r.

6 Horn STs and the reductive calculus 20

fixpoint induction on p
r(x)⇒ ψ(x)∧

ϕ∈AXp
ϕ[ψ(t)/p(t) | p(t) occurs in ϕ]

⇑

fixpoint induction on f
f(x) ≡ y ⇒ ψ(x, y)∧

ϕ∈flat(AXf) ϕ[ψ(t, u)/(f(t) ≡ u) | f(t) ≡ u occurs in ϕ]
⇑8

coinduction on q
ψ(x)⇒ q(x)∧

ϕ∈AXq
ϕ[ψ(t)/q(t) | q(t) occurs in ϕ]

⇑

The soundness of fixpoint induction on predicates and coinduction follows directly from the interpretation
of predicates resp. copredicates as the least resp. greatest solutions of their axioms. By Theorem 6.11,
fixpoint induction on (a defined function) f is sound if SP is functional. Here the rule antecedent may
in fact read as f(x) ≡ y ⇔ ψ(x, y) because the functionality of SP implies that ψ is the unique solution
of AXf .

More details on rules and strategies for reasoning about STs can be found in [41].

While the correctness of unfolding follows from the interpretation of (co)predicates as fixpoints, the
soundness of fixpoint induction and coinduction depends on the interpretation as least resp. greatest
fixpoints. As mentioned above, induction rules are indispensable if the proof requires the (partial)
evaluation of a function or relation that has axioms with “recursive calls”. On the other hand, the
fixpoints are unique if the axioms do not involve recursive calls. Hence, roughly said, no recursion means
no induction means least fixpoint = greatest fixpoint means ... almost automatic proofs!

While a formula r(x)⇒ ϕ(x) amenable to fixpoint induction requires that the predicate r satisfies ϕ,
a formula ϕ(x)⇒ q(x) to be transformed by coinduction tells us that the copredicate q holds true for all
objects that satisfy ϕ. Hence the expansion of ϕ(x)⇒ q(x) is an evaluation of (instance of) q rather than
a proof. If q were a predicate, then the expansion of ϕ(x) ⇒ q(x) usually starts with evaluation steps,
i.e. unfoldings of q. The same applies to an expansion of q(x)⇒ ϕ(x) if q is a copredicate, although this
expansion amounts to a proof (of validity of ϕ four q).

Hence the four conjecture schemata are not only expandable by pairwise dual rules, the expansions
also aim at dual goals: proofs versus evaluations (or solutions). The symmetries are illustrated in Fig. 2
where narrowing stands for unfoldings together with simplifications that are indispensible for achieving
a solved formula, i.e. True, False or a set of (in)equations that represents a solution of the conjecture.

Narrowing and fixpoint induction/coinduction complement each other concerning the way axioms are
related to conjectures: In the first case, axioms are applied to conjectures, and the proof proceeds by
transforming the modified conjectures. In the second case, conjectures are applied to axioms and the
proof proceeds by transforming the modified axioms.

6 Horn STs and the reductive calculus

Under certain assumptions (see Theorem 6.3), an ST can be turned into a Horn ST by translating co-Horn
axioms into equivalent Horn clauses:

Definition 6.1 Let SP = (Σ, AX) be a swinging type with base type baseSP = (baseΣ, baseAX)
and extension (Σ′, AX ′) such that case 2.3(5/6) holds true. Let

Horn(Σ) = baseΣ ∪ {nat, 0 :→ nat, suc : nat→ nat} ∪ {rloop : nat× w | r : w ∈ Σ′},
8flat(AXf) is the set of flattened axioms for f (see Theorem 6.11).

6 Horn STs and the reductive calculus 21

φ(x) ==> p(x)

φ(x) ==> q(x)

p(x) ==> φ(x)

q(x) ==> φ(x)

True / False /
solved formula

axioms(p)[φ/p]

axioms(q)[φ/q]

fixpoint induction

coinduction

narrowing

predicate predicate

copredicatecopredicate

proof

proof

evaluation

evaluation

narrowing

narrowing

narrowing

Figure 2. Four types of conjectures and how they are proved/disproved/solved

n, x ∈ X \ freevar(AX ′) and Horn(AX) consist of baseAX and all Horn clauses

r(x) ⇐ ∀n : rloop(n, x)

rloop(0, x)

rloop(suc(n), x) ⇐
∧

cl=(r(t)⇒ϕ)∈AX′ ∀freevar(cl) : (x 6≡ t ∨ ϕ)[qloop(n, u)/q(u) | q(u) ∈ ϕ, q ∈ Σ′]

such that r ∈ Σ′. The Horn swinging type

Horn(SP) = (Horn(Σ),Horn(AX))

with base type baseSP is called the Horn version of SP . The Horn version of the empty ST is the
empty ST. ❏

Example 6.2 The following parameterized ST specifies countable sets of finite and infinite sequences
(cf. [38], Section 4.2). For the parameter ENTRY, see Example ??.

COLIST = ENTRY then

vissorts bool nat

hidsorts colist = colist(entry)
constructs 0 :→ nat

suc : nat→ nat

true, false :→ bool

nil :→ colist

& : entry × colist→ colist

blink :→ colist(nat)

6 Horn STs and the reductive calculus 22

nats : nat→ colist

@ : colist× colist→ colist

destructs ht : colist→ 1 + (entry × colist)
local preds exists : (entry → bool)× colist
copreds forall : (entry → bool)× colist

fair : (entry → bool)× colist
vars n : nat x : entry s, s′, t : colist g : entry → bool

Horn axioms ht(nil) ≡ ()
ht(x&s) ≡ (x, s)
ht(blink) ≡ (0, suc(0)&blink)
ht(nats(n)) ≡ (n, nats(suc(n)))
ht(s@s′) ≡ ht(s′) ⇐ ht(s) ≡ ()
ht(s@s′) ≡ (x, t@s′) ⇐ ht(s) ≡ (x, t)
exists(g, s) ⇐ ht(s) ≡ (x, t) ∧ g(x) ≡ true
exists(g, s) ⇐ ht(s) ≡ (x, t) ∧ exists(g, t)

co-Horn axioms forall(g, s) ⇒ ht(s) 6≡ (x, t) ∨ (g(x) ≡ true ∧ forall(g, t))
fair(g, s) ⇒ ht(s) 6≡ (x, t) ∨ (exists(g, s) ∧ fair(g, t))

The Horn version of COLIST reads as follows:

HCOLIST = ENTRY then

vissorts bool nat

hidsorts colist = colist(entry)
constructs 0 :→ nat

suc : nat→ nat

true, false :→ bool

nil :→ colist

& : entry × colist→ colist

blink :→ colist(nat)
nats : nat→ colist

@ : colist× colist→ colist

destructs ht : colist→ 1 + (entry × colist)
local preds exists, forall : (entry → bool)× colist

fair : (entry → bool)× colist
vars n : nat x : entry s, s′, t : colist g : entry → bool

Horn axioms ht(nil) ≡ ()
ht(x&s) ≡ (x, s)
ht(blink) ≡ (0, suc(0)&blink)
ht(nats(n)) ≡ (n, nats(suc(n)))
ht(s@s′) ≡ ht(s′) ⇐ ht(s) ≡ ()
ht(s@s′) ≡ (x, t@s′) ⇐ ht(s) ≡ (x, t)
exists(g, s) ⇐ ht(s) ≡ (x, t) ∧ g(x) ≡ true
exists(g, s) ⇐ ht(s) ≡ (x, t) ∧ exists(g, t)
forall(g, s) ⇐ ∀n : forallloop(n, g, s)
forallloop(0, g, s)
forallloop(suc(n), g, s) ⇐ ∀x, t : (ht(s) 6≡ (x, t) ∨ (g(x) ≡ true ∧ forallloop(n, g, t)))

6 Horn STs and the reductive calculus 23

fair(g, s) ⇐ ∀n : fairloop(n, g, s)
fairloop(0, g, s)
fairloop(suc(n), g, s) ⇐ ∀x, t : (ht(s) 6≡ (x, t) ∨ (exists(g, s) ∧ fair(g, t)))

Theorem 6.3 (elimination of copredicates preserves canonicity) Given the assumptions of
Def. 6.1, suppose that the SP -step function Φ on A|baseΣ is downward continuous and the Horn(SP)-
step function Ψ on A|baseΣ is upward continuous. A Σ-structure A is a canonical SP -model iff there is
a canonical Horn(SP)-model B with B|baseΣ = A|baseΣ.

Proof. “⇒”: Let A be a canonical SP -model. A Horn(Σ)-structure B is defined as follows: B|baseΣ =
A|Σ, Bnat = N, 0B = 0, for all n ∈ N, sucB(n) = n+ 1, and for all copredicates r ∈ Σ′,

rB
loop = {(i, a) | a ∈ rΦ

i(>), i ∈ N} and rB = {a | ∀ i ∈ N : (i, a) ∈ rB
loop}.

By induction on i, one shows that for all i ∈ N and a ∈ A,

a ∈ rΦ
i(>) ⇐⇒ (i, a) ∈ rΨ

i+1(⊥)
loop . (1)

Hence by Prop. 3.6,

rA = rgfp(Φ) = ∩i∈Nr
Φi(>) = {a | ∀ i ∈ N : a ∈ rΦi(>)} = rB ,

(i, a) ∈ rB
loop ⇐⇒ a ∈ ∪i∈Nr

Φi(>) ⇐⇒ (i, a) ∈ ∪i∈Nr
Ψi(⊥)
loop ⇐⇒ (i, a) ∈ rlfp(Ψ)

loop

and thus

a ∈ rB ⇐⇒ ∀ i ∈ N : (i, a) ∈ rB
loop ⇐⇒ ∀ i ∈ N : (i, a) ∈ rlfp(Ψ)

loop ⇐⇒ a ∈ rlfp(Ψ).

We conclude that B is a canonical Horn(SP)-model with B|Σ = A|Σ.

“⇐”: Let B be a canonical Horn(SP)-model B with B|Σ = A|Σ. Let r be a copredicate of Σ′. By
(1) and Prop. 3.6,

a ∈ rB ⇐⇒ a ∈ rlfp(Ψ)
loop ⇐⇒ ∀ i ∈ N : (i, a) ∈ rlfp(Ψ)

loop ⇐⇒ ∀ i ∈ N : (i, a) ∈ ∪i∈Nr
Ψi(⊥)
loop

⇐⇒ ∀ i ∈ N : (i, a) ∈ rΨ
i+1(⊥)

loop ⇐⇒ ∀ i ∈ N : a ∈ rΦi+1(>) ⇐⇒ a ∈ ∩i∈Nr
Φi(>) ⇐⇒ a ∈ rgfp(Φ).

Since B|Σ = A|Σ, we conclude that A is a canonical SP -model. ❏

The reductive calculus presented in this section provides the basis for criteria on the axioms of a
swinging type that ensure its functionality. The reductive calculus makes use of the fact that any ST can
be transformed into a semantically equivalent Horn ST (Theorem 6.3). By Prop. 4.12 and Lemma 4.13,
the functionality of a swinging type does not depend on its copredicates. Hence functionality carries over
from the Horn version to the original ST.

A fresh variable of a Horn clause ϕ = (f(t){≡ u} ⇐ ϑ) is a free variable of ϕ that occurs in u or ϑ,
but not in t. fresh(ϕ) denotes the set of fresh variables of ϕ.

Definition 6.4 (reductive calculus) Let SP = (Σ, AX) be a swinging type with base type baseSP
and extension (Σ′, AX ′). The reductive calculus for SP consists of the following rules for reducing
(sets of) Σ-formulas. Let τ : X → TΣ(X) and p be a Σ-atom.

base
ϕ

True
⇑ for all ϕ ∈ RTh(baseSP)

rewriting
p[tτ/x]

p[uτ/x] ∧ ϑτ
⇑

for all x ∈ var(p), ϕ = (t ≡ u⇐ ϑ) ∈ Horn(AX ′)

and fresh(ϕ)τ ⊆ NFΣ

6 Horn STs and the reductive calculus 24

resolution
r(tτ)
ϑτ

⇑ for all r 6= ≡, ϕ = (r(t)⇐ ϑ) ∈ Horn(AX ′) and fresh(ϕ)τ ⊆ NFΣ

reflection
t ≡ t
True

⇑

∨-elimination
ϕ ∨ ψ
ϕ
⇑

∃-elimination
∃xϕ
ϕ[t/x]

⇑ for all t ∈ TΣ,sort(x) and x ∈ var(ϕ)

∧-elimination
ϕ ∧ ψ
{ϕ,ψ}

⇑

∀-elimination
∀x : ϕ

{ϕ[t/x] | t ∈ TΣ,sort(x)}
⇑ for all x ∈ var(ϕ)

A set F of Σ-formulas is SP -reductive if for each rule of the reductive calculus for SP , the premise
belongs to F whenever the conclusions belong to F . RTh(SP) denotes the intersection of all SP -reductive
sets containing True. Elements of RTh(SP) are called the reductive theorems of SP .

Let a be an ordinal number. The reductive inference relation `r,a
SP is inductively defined as

follows:

• For all ϕ ∈ RTh(baseSP), `r,a
SP ϕ.

• Let ϕ1, . . . , ϕn be the conclusions and ϕ be the premise of the rewriting, resolution, reflection,
∧-elimination or ∀-elimination rule. If `r,ai

SP ϕi and ai < a for all 1 ≤ i ≤ n, then `r,a
SP ϕ.

• If x ∈ var(ϕ) and for all t ∈ NFΣ,sort(x), `r,at

SP ϕ[t/x] and at < a, then `r,a
SP ∀x : ϕ.

The proof length of ϕ in the reductive calculus for SP is the least ordinal number a such that `r,a
SP ϕ.

The SP -rewrite relation is the binary relation on Σ-terms and -formulas that is defined as follows:

t −→SP t′ ⇐⇒def

{
∃ ϕ = (l ≡ r ⇐ ϑ) ∈ AX, σ : X → TΣ : lσ = t,

rσ = t′, f resh(ϕ)σ ⊆ NFΣ, ϑσ ∈ RTh(SP).

ϕ(t) −→SP ϕ(t′) ⇐⇒def t −→SP t′.

ψ is an SP -reduct of ϕ if ϕ ∗−→SP ψ. ϕ ∈ RTh(SP) is SP -convergent if all SP -reducts of ϕ are
reductive theorems of SP . ϕ is SP -reduced if ϕ is the only SP -reduct of ϕ. Two terms are SP -joinable
if they have a common SP -reduct. SP is confluent if for all ground terms t, each two SP -reducts of t
are SP -joinable. SP is strongly complete if each ground Σ-term has an SP -reduct in NFΣ. ❏

RTh(SP) is nonempty, the least SP -reductive set and the set of all ϕ such that `r,a
SP ϕ for some

ordinal number a.

Lemma 6.5 Let SP = (Σ, AX) be an ST. For all t, u ∈ TΣ,

• t ∗−→SP u implies (t ≡ u) ∈ RTh(SP),

• ϕ(t) ∗−→SP ϕ(u) ∈ RTh(SP) implies ϕ(t) ∈ RTh(SP),

• (t ≡ u) ∈ RTh(SP) iff t and u are SP -joinable,

• RTh(SP) ⊆ DTh(SP),

• if ϕ ∈ RTh(SP) and ϕ ∗−→SP ψ, then ψ ∈ DTh(SP).

6 Horn STs and the reductive calculus 25

Proof. It is easy to see that DTh(SP) is SP -reductive. Hence RTh(SP) is a subset of DTh(SP). The
other properties can be shown by induction on the length of ϕ(t) ∗−→SP ϕ(u). ❏

Lemma 6.6 An ST SP is confluent iff all closed reductive theorems of SP are SP -convergent.

Proof. “⇐”: Let u, u′ be SP -reducts of a ground term t. Since t ∗−→SP u and (u ≡ u) ∈ RTh(SP),
Lemma 6.5 implies (t ≡ u) ∈ RTh(SP). Hence (u′ ≡ u) ∈ RTh(SP) because t ∗−→SP u′ and reductive
theorems are convergent. By Lemma 6.5, u and u′ are joinable.

“⇒”: We show that the set F of SP -convergent formulas is SP -reductive. Then we can conclude that
F contains RTh(SP) and the proof is complete. Let (Σ, AX) be the Horn version of SP .

Let p[tσ/x] and p[uσ/x] ∧ ϑσ be the premise resp. conclusion of a rewriting rule instance such that
p[uσ/x]∧ ϑσ ∈ F and p[tσ/x] ∗−→SP r(v) for some predicate r and ground term v. Then p[tσ/x] = r(t′),
p[uσ/x] = r(u′), t′ ∗−→SP v and t′ −→SP u′ for some ground terms t′, u′. Since SP is confluent, u′ and
v have a common SP -reduct, say v′. Since r(u′) ∈ F , r(v′) ∈ RTh(SP) and thus r(v) ∈ RTh(SP) by
Lemma 6.5. Therefore, the premise p[tσ/x] = r(t′) of the rewriting rule instance is in F .

Let r(tσ) and ϑσ be the premise resp. conclusion of a resolution rule instance such that ϑσ ∈ F

and r(tσ) ∗−→SP r(u) for some u. Then tσ = (t1, . . . , tn), u = (u1, . . . , un) for some t1, . . . , tn and
u1, . . . , un such that for all 1 ≤ i ≤ n, tiσ

∗−→SP ui. Since r(t) ⇐ ϑ is an axiom, t is a normal form.
Hence there are a linear term tuple v = (v1, . . . , vn), a variable renaming ρ and a substitution τ such
that vρ = t, vτ = u and for all x ∈ var(v), xρσ ∗−→SP xτ . Let x, y ∈ X such that xρ = yρ. Then
xτ

∗←−SP xρσ = yρσ
∗−→SP yτ implies xτ ∗−→SP xρτ ′

∗←−SP yτ for some τ ′ : X → TΣ because SP
is confluent. Hence for all x ∈ X, xρσ ∗−→SP xτ

∗−→SP xρτ ′, and thus var(t) = var(vρ) ⊆ var(ρ(X))
implies xσ ∗−→SP xτ ′ for all x ∈ var(t). Define σ′ by xσ′ = xτ ′ if x ∈ var(t) and xσ′ = xσ otherwise.
Then ϑσ

∗−→SP ϑσ′ and thus ϑσ′ ∈ RTh(SP) because ϑσ is SP -convergent. Hence r(tσ′) ∈ RTh(SP).
Since u = vτ

∗−→SP vρτ ′ = tτ ′ = tσ′, Lemma 6.5 implies r(u) ∈ RTh(SP). Therefore, the premise r(tσ)
of the resolution rule instance is in F .

Let t ≡ t be the premise of a reflection rule instance and t
∗−→SP u. Since u ≡ u ∈ RTh(SP) and

u ≡ t
∗−→SP u ≡ u, Lemma 6.5 implies u ≡ t ∈ RTh(SP). Therefore, the premise t ≡ t of the reflection

rule instance is in F .

It is easy to see that the premise of each ∧- or ∀-elimination rule instance is in F whenever the
conclusion is in F . ❏

Definition 6.7 (reductive model) Let SP = (Σ, AX) be an ST with base type baseSP =
(baseΣ, baseAX) and extension (Σ′, AX ′).

Let Σ′ = (S, F, LR, TR). The reductive SP -model Red(SP) is the reachable Σ-structure A that
is inductively defined as follows: If SP is the empty ST, then A is the empty Σ-structure. Otherwise
A|baseΣ = Ini(baseSP),

➢ for all s ∈ S, As = TΣ,s/≡SP ,

➢ for all f : w → s ∈ F and t ∈ TΣ,w, fA([t]) = [f(t)],

➢ for all r : w ∈ LR ∪ TR, rA = {[t] ∈ Aw | r(t) ∈ RTh(SP)}. ❏

Theorem 6.8 (Church-Rosser Theorem) Let SP = (Σ, AX) be a complete Horn ST. SP is
confluent iff for all closed and positive deductive theorems of SP are reductive theorems of SP .

6 Horn STs and the reductive calculus 26

Proof. Suppose that SP is functional. We show that Red(SP) satisfies AX. Let (p⇐ ϑ) ∈ AX and
σ : X → TΣ such that ϑσ is a reductive theorem of SP . Since SP is complete, there is τ : X → NFΣ

such that for all x ∈ X, xσ ≡SP xτ and thus xσ ∗−→SP xτ because SP is confluent and normal forms
are SP -reduced. Hence by Lemma 6.6, ϑσ ∈ RTh(SP) implies ϑτ ∈ RTh(SP). It remains to show that
pτ and thus pσ are reductive theorems of SP .

Let (p⇐ ϑ) ∈ AX. If p = (t ≡ u), then ϑτ ∈ RTh(SP) implies (ϑτ ∧ uτ ≡ uτ) ∈ RTh(SP) and thus
pτ ∈ RTh(SP). If p = r(t), then ϑτ ∈ RTh(SP) implies pτ ∈ RTh(SP).

Let (p ⇐ ϑ) ∈ EQΣ. If (p ⇐ ϑ) = (x ≡ x), then pτ ∈ RTh(SP). If (p ⇐ ϑ) = (y ≡ x ⇐ x ≡ y),
then by Lemma 6.5, ϑτ ∈ RTh(SP) implies that xτ and yτ are SP -joinable. Hence by Lemma 6.5,
pτ ∈ RTh(SP). If (p ⇐ ϑ) = (f(x1, . . . , xn) ≡ f(y1, . . . , yn) ⇐ ∧n

i=1xi ≡ yi), then by Lemma 6.5,
ϑτ ∈ RTh(SP) implies that xiτ and yiτ have a common SP -reduct, say ti. Hence f(t1, . . . , tn) is a
common SP -reduct of f(x1, . . . , xn)τ and f(y1, . . . , yn) and thus by Lemma 6.5, pτ ∈ RTh(SP). If
(p ⇐ ϑ) = (r(x1, . . . , xn) ⇐ r(y1, . . . , yn) ∧ ∧n

i=1xi ≡ yi), then by Lemma 6.5, ϑτ ∈ RTh(SP) implies
that xiτ and yiτ have a common SP -reduct, say ti. Hence by Lemma 6.6, r(y1, . . . , yn)τ ∈ RTh(SP)
implies r(t1, . . . , tn)τ ∈ RTh(SP), and thus by Lemma 6.5, pτ ∈ RTh(SP).

We have shown that Red(SP) satisfies AX. Hence by Thm. 4.15, for all predicates r ∈ Σ, rIni(SP) is
a subset of rRed(SP). We conclude that all closed and positive deductive theorems of SP are reductive
theorems of SP . Conversely, suppose that the latter holds true. By Lemma 6.6, SP is confluent if
all reductive theorems of SP are SP -convergent. Let ϕ ∈ RTh(SP) and ϕ

∗−→SP ψ. By Lemma 6.5,
ψ ∈ DTh(SP). W.l.o.g. ψ is closed. Hence by assumption, ψ ∈ RTh(SP). ❏

Corollary 6.9 A strongly complete ST is consistent iff it is confluent.

Proof. Suppose that SP is a strongly complete ST.

“⇐”: Let t, t′ be two SP -equivalent ground normal forms. By Thm. 6.8, t ≡ t′ ∈ RTh(SP) and thus
by Lemma 6.5, t and t′ are joinable. But normal forms are joinable only if they are equal.

“⇒”: Let u, u′ be SP -reducts of a ground term t. Since SP is strongly complete, there are normal
forms v, v′ such that u ∗−→SP v and u′

∗−→SP v′. By Lemma 6.5, u and u′ and thus v and v′ are
SP -equivalent. Since SP is consistent, v and v′ are equal and thus a common reduct of t. ❏

Theorem 6.8 also implies that a functional ST SP can be transformed into an equivalent relational
one by turning each defined function into its graph or input-output relation. For this purpose, each axiom
of Horn(SP) is transformed into an equivalent Horn clause cl such that all equations t ≡ u of cl are flat,
i.e., either root(t) is a defined function and all other symbols of t or u are constructors or variables or
u ≡ t is flat. A first-order formula ϕ is flattened by repeatedly applying the following rules to it:9 Let x
be a variable that does not occur in the rule antecedents.

p[t/x] ⇐ ϕ

p ⇐ t ≡ x ∧ ϕ
p ⇐ ϕ[t/x] ∧ ψ

p ⇐ ϕ ∧ t ≡ x ∧ ψ

The flattened formula flat(ϕ) is then turned into its relational version by replacing each flat equation
f(t) ≡ u or u ≡ f(t) with the logical atom rf (t, u). If f is of type w → s, then the predicate rf is of type
ws and called the graph of f .

Definition 6.10 Given a set F of formulas, let flat(F) = {flat(ϕ) | ϕ ∈ F}. Moreover, rel(Σ) is
obtained from Σ by replacing each defined function f : w → s ∈ Σ by the graph rf : ws of f . rel(F) is
obtained from F by replacing each equation f(t) ≡ u of F with defined function f by the atom rf (t, u).

9A corresponding algorithm has been implemented in Expander2 [40].

7 Monotonicity, consistency and refinement 27

Let SP = (Σ, AX) be a swinging type with base type baseSP and extension (Σ′, AX ′). The ST
flat(SP) = (Σ, baseAX ∪ flat(AX ′)) is called the flat version of SP . The ST rel(SP) = (baseΣ ∪
rel(Σ′), baseAX ∪ rel(flat(AX ′))) is called the relational version of SP . ❏

Theorem 6.11 (equivalence of a functional ST and its relational version) Let SP be a
functional ST. Then rel(SP) is functional and for all first-order formulas ϕ,

Ini(SP) |= ϕ ⇐⇒ Ini(rel(SP)) |= rel(flat(ϕ)). (1)

Proof. Let SP = (Σ, AX) and rel(SP) = (Σ′, AX ′). Since relational specifications are functional,
rel(SP) is functional. (1) holds true if for all ground Σ-atoms p,

Her(SP) |= p ⇐⇒ Her(rel(SP)) |= rel(flat(p)). (2)

By Thm. 6.8, (2) holds true if for all defined functions f ∈ Σ′, predicates and copredicates p ∈ Σ′ and
t, u ∈ NFΣ,

f(t) ≡ u ∈ RTh(SP) ⇐⇒ rf (t, u) ∈ RTh(rel(SP)), (3)

t ≡ u ∈ RTh(SP) ⇐⇒ t ≡ u ∈ RTh(rel(SP)), (4)

p(t) ∈ RTh(SP) ⇐⇒ p(t) ∈ RTh(rel(SP)). (5)

(3), (4) and (5) can be shown by induction on proof lengths in the reductive calculus for SP and rel(SP),
respectively, along the lines of the proof of [37], Thm. 4.13. ❏

Corollary 6.12 Let SP be a functional specification and ≈ be a binary relation on TΣ that includes
≡SP ◦ ≈ ◦ ≡SP . Given a defined function f ∈ Σ, ≈ is compatible with f iff ≈ is zigzag compatible with
the graph rf of f .

Proof. Let f : w → s and t, t′ ∈ TΣ,w such that t ≈ t′ and ≈ is zigzag compatible with rf . By
Thm. 6.11, Ini(SP) |= f(nf (t)) ≡ nf (f(t)) implies Ini(rel(SP)) |= rf (nf (t),nf (f(t))). Since ≈ includes
≡SP ◦ ≈ ◦ ≡SP , t ≈ t′ implies nf (t) ≈ nf (t′). Since ≈ is zigzag compatible with rf , there is u ∈ NFΣ

such that nf (f(t)) ≈ u and Ini(rel(SP)) |= rf (nf (t′), u). Hence by Thm. 6.11, Ini(SP) |= f(nf (t′)) ≡ u
and thus f(t′) ≡SP u. Since ≈ includes ≡SP ◦ ≈ ◦ ≡SP , we conclude f(t) ≈ f(t′). Hence ≈ is compatible
with f . The converse can be shown in a similar way. ❏

7 Monotonicity, consistency and refinement

Definition 7.1 Let SP = (Σ, AX) and SP ′ = (Σ′, AX ′) be swinging types and σ : Σ→ Σ′ be a signature
morphism.

Let r : w be a predicate or a structural equality of Σ. SP ′ is r-monotone w.r.t. (SP, σ) if for all
t ∈ TΣ,w, Ini(SP) |= r(t) implies Ini(SP ′)|σ |= r(t) (cf. Def. 3.1). SP ′ is r-consistent w.r.t. (SP, σ)
if, conversely, for all t ∈ TΣ,w, Ini(SP ′)|σ |= r(t) implies Ini(SP) |= r(t).

Let r : w be a copredicate of Σ. SP ′ is r-monotone w.r.t. (SP, σ) if for all t ∈ TΣ,w, Ini(SP ′)|σ |=
r(t) implies Ini(SP) |= r(t). SP ′ is r-consistent w.r.t. (SP, σ) if, conversely, for all t ∈ TΣ,w,
Ini(SP) |= r(t) implies Ini(SP ′)|σ |= r(t).

SP ′ is monotone resp. consistent w.r.t. (SP, σ) if for all relations r ∈ Σ, SP ′ is r-monotone resp.
r-consistent w.r.t. (SP, σ).

7 Monotonicity, consistency and refinement 28

If σ is an inclusion, i.e., Σ ⊆ Σ′, we write SP instead of (SP, σ). ❏

Definition 7.2 Given a signature Σ, a Horn clause

f(t){≡ u} ⇐ δ ∧
n∧

i=1

ti ≡ ui (i)

is deterministic up to δ if var(u) ⊆ Vn and for all 1 ≤ i ≤ n, ui ∈ NFΣ(X) and var(ti) ⊆ Vi−1 where
V0 =def var(t) and Vi =def Vi−1] var(ui). ❏

Theorem 7.3 Let SP = (Σ, AX) and SP ′ = (Σ′, AX ′) be swinging types, σ : Σ→ Σ′ be a signature
morphism, A = Ini(SP) and B = Ini(SP ′)σ.

(1) Suppose that B satisfies AX. Then SP ′ is monotone w.r.t. (SP, σ).

(2) Suppose that B satisfies AX. SP ′ is consistent w.r.t. (SP, σ) iff there is a Σ-homomorphism from
B to A.

(3) Suppose that B satisfies AX. For all predicates and copredicates r ∈ Σ such that the complement
r w.r.t. A is also a predicate resp. copredicate of SP and σ(r) is the complement of σ(r) w.r.t.
Ini(SP ′), SP ′ is r-consistent w.r.t. (SP, σ).

(4) Suppose that SP is functional, B satisfies AX and for all structural equalities ≡ ∈ Σ, σ(≡) is the
complement of σ(≡) w.r.t. Ini(SP ′). Then for all structural equalities, structural inequalities and
definedness predicates r ∈ Σ, SP ′ is r-consistent w.r.t. (SP, σ).

(5) Let SP and SP ′ be Horn. SP ′ is consistent w.r.t. (SP, σ) if SP ′ is strongly complete and confluent,
AX ′ \ σ(AX) consists of axioms for Σ′ \ σ(Σ),

(5.1) σ(NFΣ) = NFΣ′ or

(5.2) σ(NFΣ) ⊆ NFΣ′ , SP is complete, SP ′ is monotone w.r.t. (SP, σ) and each axiom of AX is
deterministic up to some δ such that

freevar(δ) ⊆ Vn ∪
⋃
s∈Σ

{Xs | σ(NFΣ,s) = NFΣ′,σ(s)} (ii)

(cf. Def. 7.2).

Proof. (1) By assumption B ∈ RModEq(SP). Hence by (the proof of) Theorem 4.15, the mapping
h : A → B that sends [t] to tB for all t ∈ TΣ is a Σ-homomorphism. Let r ∈ Σ be a predicate and
A |= r(t), i.e. [t] ∈ rA. Since h is homomorphic, tB = h([t]) ∈ h(rA) ⊆ rB and thus B |= r(t). Let
≡ ∈ Σ be a structural equality and A |= t ≡ u, i.e. [t] = [u]. Then tB = h([t]) = h([u]) = uB and thus
B |= t ≡ u. Let r ∈ Σ be a copredicate and B |= r(t), i.e. h([t]) = tB ∈ rB . Since h is homomorphic,
[t] ∈ rA and thus A |= r(t). We conclude that for all relations r ∈ Σ, SP ′ is r-monotone w.r.t. (SP, σ).

(2) “⇐”: Let h : A → B be the initial Σ-homomorphism from A to B (see (1)). Given a Σ-
homomorphism g : B → A, g ◦ h is also homomorphic and thus equal to idA because, by the initiality of
A, there is only one Σ-homomorphism from A to A. Hence for all t ∈ TΣ, g(tB) = g(h([t])) = [t]. Let r ∈ Σ
be a predicate and B |= r(t), i.e. tB ∈ rB . Since g is homomorphic, [t] = g(tB) ∈ rA and thus A |= r(t).
Let ≡ ∈ Σ be a structural equality and B |= t ≡ u, i.e. tB = uB . Then [t] = g(tB) = g(uB) = [u] and
thus A |= t ≡ u. Let r ∈ Σ be a copredicate and A |= r(t), i.e. g(tB) = [t] ∈ rA. Since g is homomorphic,
tB ∈ rB and thus B |= r(t). We conclude that for all relations r ∈ Σ, SP ′ is r-consistent w.r.t. (SP, σ).

“⇒”: Define a mapping g : B → A by g(tB) = [t] for all t ∈ TΣ. Since B is reachable, the domain of
g covers B. g is well-defined: Let tB = uB . Then B |= t ≡ u. Since SP ′ is ≡-consistent w.r.t. (SP, σ),

7 Monotonicity, consistency and refinement 29

A |= t ≡ u, i.e. [t] = [u]. The initial Σ-homomorphism h : A → B sends [t] to tB (see the proof of (1)).
Hence g ◦ h = idA and thus g ◦ h is homomorphic. Moreover, h is a surjective homomorphism. Hence
simple “diagram chasing” shows that g is also homomorphic.

(3) Let r : w ∈ Σ be a predicate and A 6|= r(t). Then A |= r(t). By assumption, r is also a predicate.
Since B satisfies AX and, by Lemma 4.6, rA is the least relation on TΣ,w/≡SP that satisfies the axioms
of SP for r, B |= r(t) and thus by assumption,

Ini(SP ′) |= σ(r(t)) = σ(r)(σ(t)) = σ(r)(σ(t)).

Hence Ini(SP ′) 6|= σ(r)(σ(t)) = σ(r(t)), i.e. B 6|= r(t). Hence SP ′ is r-consistent w.r.t. (SP, σ).

Let r : w ∈ Σ be a copredicate and B 6|= r(t). Then Ini(SP ′) 6|= σ(r(t)) = σ(r)(σ(t)) and thus by
assumption,

Ini(SP ′) |= σ(r)(σ(t)) = σ(r)(σ(t)) = σ(r(t)).

Hence B |= r(t). By assumption, r is also a copredicate. Since B satisfies AX and, by Lemma 4.7, rA

is the greatest relation on TΣ,w/≡SP that satisfies the axioms of SP for r, A |= r(t) and thus A 6|= r(t).
Hence SP ′ is r-monotone w.r.t. (SP, σ).

(4) Suppose that SP is functional. Let ≡: ss ∈ Σ be a structural equality and A 6|= t ≡ u. By
Prop. 4.5, t ≡ u 6∈ DTh(SP). Since SP is functional, Lemma 4.13 implies t 6≡ u ∈ DTh(SP) and thus
A |= t 6≡ u, again by Prop. 4.5. Since B satisfies AX and, by Lemma 4.6, 6≡A is the least relation on
TΣ,ss/≡SP that satisfies the axioms of SP for 6≡, B |= t 6≡ u and thus by assumption,

Ini(SP ′) |= σ(t 6≡ u) = σ(t)σ(6≡)σ(u) = σ(t)σ(≡)σ(u).

Hence Ini(SP ′) 6|= σ(t)σ(≡)σ(u) = σ(t ≡ u)), i.e. B 6|= t ≡ u. Hence SP ′ is ≡-consistent w.r.t. (SP, σ).

Let 6≡: ss ∈ Σ be a structural inequality. By assumption, there is a structural equality ≡: ss ∈ Σ such
that σ(≡) = σ(≡) and by Lemma 4.13, for all t, u ∈ TΣ, t ≡ u 6∈ DTh(SP) iff t 6≡ u ∈ DTh(SP), and
thus 6≡ is the complement of ≡ w.r.t. A. Hence

σ(6≡) = σ(≡) = σ(≡) = σ(6≡)

and thus
σ(6≡) = σ(6≡) = σ(6≡).

Hence by (3), SP ′ is 6≡-consistent w.r.t. (SP, σ).

Let Def : s ∈ Σ be a definedness predicate and t ∈ TΣ,s. Since SP is functional, Prop. 4.12 implies
Def (t) ∈ DTh(SP) and thus A |= Def (t). Hence SP ′ is Def -consistent w.r.t. (SP, σ).

(5) Suppose that the conditions of (3) hold true. By Cor. 6.9, SP ′ is functional. Let p be a ground
Σ-atom such that B |= p. Then Ini(SP ′) |= σ(p) and thus σ(p) ∈ DTh(SP ′). Since SP ′ is functional
and confluent, Thm. 6.8 implies σ(p) ∈ RTh(SP ′). Let F be the set of SP ′-convergent formulas ϕ such
that ϕ is σ(SP)-convergent or contains a symbol of Σ′ \ σ(Σ).

We claim that F is SP ′-reductive. W.l.o.g. let r(tτ) and Gτ be the premise resp. conclusion of a
resolution rule instance such that Gτ ∈ F (cf. Def. 6.4). If r(tτ) contains a symbol of Σ′ \ σ(Σ), then
Gτ ∈ F immediately implies r(tτ) ∈ F . Otherwise r(tτ) is a σ(Σ)-atom. Since all axioms of SP ′ \σ(SP)
are axioms for symbols of SP ′ \ σ(SP), the applied axiom ϕ = (r(t) ⇐ G) ∈ AX ′ is in σ(AX). Hence
all variables of ϕ have their sorts in σ(Σ).

7 Monotonicity, consistency and refinement 30

Suppose that (5.1) holds true. Then f resh(ϕ)τ ⊆ NFΣ′ is a set of σ(Σ)-normal forms.

Suppose that (5.2) holds true. Since ϕ ∈ σ(AX), there is a ψ ∈ AX such that ϕ = σ(ψ) and ψ has
the form (i). Let H be the premise of ψ and 1 ≤ i ≤ n. Since σ(H)τ = Gτ is SP ′-convergent, Lemma
6.5 implies that σ(ti)τ and σ(ui)τ are SP ′-joinable. Since var(ui) ⊆ f resh(ψ) and f resh(ϕ)τ ⊆ NFΣ′ ,
σ(ui)τ is a normal form. Hence σ(ti)τ

∗−→SP ′ σ(ui)τ . We show

Viτ ⊆ Tσ(Σ) (iii)

by induction on i. If i = 0, then (iii) holds true because V0 = var(t) and r(tτ) is a σ(Σ)-atom. Let i > 0.
Since ti ∈ Tσ(Σ)(X) and var(ti) ∈ Vi−1, the induction hypothesis implies σ(ti)τ ∈ Tσ(Σ). Since SP is
complete, σ(NFΣ) ⊆ NFΣ′ and σ(ti)τ ∈ Tσ(Σ), there is a Σ′-normal form v ∈ Tσ(Σ) such that σ(ti)τ and
v are σ(SP)-equivalent. Since σ(ti)τ

∗−→SP ′ σ(ui)τ , Lemma 6.5 implies that σ(ti)τ and σ(ui)τ are SP ′-
equivalent. Hence σ(ui)τ ≡SP ′ v because SP ′ is monotone w.r.t. (SP, σ) and thus σ(SP)-equivalence is a
subrelation of SP ′-equivalence. Since σ(ui)τ and v are Σ′-normal forms and SP ′ is consistent, both terms
are equal. Hence σ(ui)τ ∈ Tσ(Σ) and thus var(ui)τ ⊆ Tσ(Σ). Hence (iii) follows from Vi = Vi−1 ∪ var(ui).
In particular, (iii) holds true for i = n. Since f resh(ϕ) = f resh(ψ) ⊆ freevar(δ)∪Vn, 7.3(ii) implies that
f resh(ϕ)τ ⊆ NFΣ′ is a set of σ(Σ)-normal forms.

Hence in both cases, ϕ ∈ σ(AX) and f resh(ϕ)τ ⊆ NFσ(Σ). Since RTh(σ(SP)) is σ(SP)-reductive
and Gτ is σ(SP)-convergent, we conclude that r(tτ) is also σ(SP)-convergent, i.e., r(tτ) ∈ F . Therefore,
F is SP ′-reductive.

Since RTh(SP ′) is the least SP ′-reductive set, F contains RTh(SP ′). Hence σ(p) ∈ RTh(SP ′) implies
σ(p) ∈ F . Since σ(p) does not contain a symbol of Σ′\σ(Σ), σ(p) is σ(SP)-convergent and thus a reductive
theorem of σ(SP). Hence p is a reductive theorem of SP . By Lemma 6.5, p ∈ DTh(SP) and thus A |= p.
We conclude that SP ′ is consistent w.r.t. (SP, σ). ❏

Condition 7.3(5.1) implies that for all sorts of the subtype SP of SP ′, all s-constructors of SP ′ are
already in SP , while 7.3(5.2) admits additional s-constructors in Σ′ \ Σ. In both cases, the crucial
requirement of 7.3(5) is the confluence of SP ′. This property is usually reduced to syntactic conditions
on the axioms of AX ′ such as the following ones:

Theorem 7.4 ([35], Thm. 10.46) Let SP = (Σ, AX) and SP ′ = (Σ′, AX ′) be Horn swinging types
such that SP ⊆ SP ′, SP is confluent, all SP ′-reduced terms are normal forms, there is a reduction
ordering > for SP ′10, for all sorts s ∈ Σ, NFΣ,s = NFΣ′,s, AX ′ \AX consists of axioms for Σ′ \Σ. SP ′

is confluent if for all conditional equations ϕ,ψ ∈ SP ′ \ SP , ϕ = ψ and ϕ is deterministic or Ini(SP)
satisfies all overlays11 induced by ϕ and ψ. ❏

For a full proof of Theorem 7.4, consult [42], Satz 5.2.8.

Refinement or abstract implementation notions have a long tradition in data type theory (cf., e.g.,
[11]). All of them use more or less implicit operators that transform models of the implementing—
concrete—specification, say SP , into models of the implemented—abstract—specification, say SP ′. While
the original approaches focused on particular implementations, i.e., particular models of SP such as the
initial or final one (cf. [19, 17, 16, 12]), later refinement notions take into the account the entire class
of SP -models (cf. [49, 47, 24, 4]). In addition to the requirement that certain operators transform SP -
models into SP ′-models, [12] and [24] also demand the converse: distinct data of a structure to be refined
must not be identified in the implementing structure.

10Cf. [35], Def. 10.38.
11Cf. [35], Def. 10.40.

7 Monotonicity, consistency and refinement 31

Which are the operators supposed to transform an SP -model A into an SP ′-model B? Intuitively, A
implements B if B can be constructed from A by

• translating the symbols of SP ′ to symbols of SP along a signature morphism rep,

• restricting the set of concrete data of A to the rep-images of abstract data of B,

• identifying concrete data with respect to the kernel of an abstraction function from the concrete
to the abstract data.

[49, 24, 4] pay particular attention to the identification step and consider congruences induced by behav-
ioral or contextual equivalence relations. Consequently, domains of the abstract specifications are often
refined to hidden sorts. Since the identification step is supposed to hide implementation details, this is
quite natural, although swinging types cope with visible as well as hidden sorts. Hence they allow us
to design in the same framework both behavioral refinements and initially-algebraic implementations as
proposed in, e.g., [12]. However, we always base refinements on representation functions, in contrast to
the (bisimulation) relations that establish Jacobs’ behavioral refinements of coalgebras [20, 21].

Definition 7.5 Let SP = (Σ, AX) and SP ′ = (Σ′, AX ′) be swinging types and rep : Σ → Σ′ be a
signature morphism, called representation morphism. SP ′ refines or implements SP along rep if
Ini(SP ′)rep is an SP -model and SP ′ is consistent w.r.t. (SP, rep). ❏

By [37], Lemma 3.5, SP ′ is consistent w.r.t. (SP, rep) iff there is Σ-homomorphism abs : Ini(SP ′)rep →
Ini(SP), which yields the above-mentioned abstraction function. Hence Def. 7.5 reflects the three steps of
a refinement: translating Ini(SP ′) via rep results in Ini(SP ′)|rep, restricting Ini(SP ′)|rep to Σ leads
to Ini(SP ′)rep, and identifying data of Ini(SP ′)rep means to apply the abstraction homomorphism.

The condition that the “concrete” specification SP ′ is consistent w.r.t. the “abstract” specification
SP has also been called RI-correctness12 (cf. [12]). In terms of Def. 7.5, RI-correctness says that SP ′ is
≡-consistent w.r.t. (SP, rep). Intuitively, RI-correctness ensures that the implementing specification SP ′

identifies two data only if they are equal w.r.t. SP . While this occurs as a general refinement condition
only in [12, 24], all formal approaches agree about the requirement that an implementation is correct
only if it satisfies the “abstract” axioms. [12] enforces this condition by factoring the implementation
model through SP -equivalence. The resulting quotient is isomorphic to the final model of SP iff SP ′

is RI-correct. Therefore, [12] avoids the proof of axiom validity, but at the expense of including the
implementation of equality predicates into the refinement approach. Moreover, as a consistency condi-
tion, RI-correctness usually resists a mechanical proof unless it can be reduced to a tractable criterion.
Fortunately, Theorem 7.3(4) allows us to reduce RI-correctness to the functionality of the “abstract”
specification SP :

Corollary 7.6 Let SP = (Σ, AX) and SP ′ = (Σ′, AX ′) be swinging types and rep : Σ→ Σ′ be a sig-
nature morphism such that SP is functional, the only relations of Σ are structural equalities, inequalities
and definedness predicates and for all structural equalities ≡ ∈ Σ, σ(≡) is the complement of σ(≡) w.r.t.
Ini(SP ′).

SP ′ refines SP along rep if Ini(SP ′)rep is an SP -model.

Proof. The statement follows immediately from Theorem 7.3(4). ❏

Example 7.7 (MAP refines STACK) This example is a popular benchmark for refinement ap-
proaches (cf., e.g., [17], Sect. 4.4; [49]; [33], Ex. 7.20; [24], Sect. 4.1; [21], Sect. 4.3). Stacks are imple-

12“RI” refers to the restriction step (R) and the identification step (I) of a refinement.

7 Monotonicity, consistency and refinement 32

mented as pairs consisting of a finite array (= map with finite domain) and a top pointer. Formally, the
refinement SP ′ of STACK reads as follows (cf. Ex. ??):

SP ′ = ENTRY and NAT then

vissorts nat+ entry

hidsorts map map× nat
constructs κ1 : nat→ nat+ entry

κ2 : entry → nat+ entry

new :→ map

upd : nat× entry ×map→ map

strong constructs (,) : map× nat→ map× nat
destructs get : map× nat→ nat+ entry

top : map× nat→ nat+ entry

pop : map× nat→ map× nat
defuncts pred : nat→ nat

empty :→ map× nat
push : entry × (map× nat)→ map× nat

local preds 6∼: (map× nat)× (map× nat)
vars i, j : nat x : entry f : map s, s′ : map× nat
Horn axioms pred(0) ≡ 0

pred(i+ 1) ≡ i
get(new, i) ≡ κ1(i)
get(upd(i, x, f), i) ≡ κ2(x)
get(upd(i, x, f), j) ≡ get(f, j) ⇐ i 6≡ j
empty ≡ (new, 0)
push(x, (f, i)) ≡ (upd(i+ 1, x, f), i+ 1)
top((f, i)) ≡ get(f, i)
pop((f, i)) ≡ (f, pred(i))
s 6∼ s′ ⇐ top(s) 6≡ top(s′)
s 6∼ s′ ⇐ pop(s) 6∼ pop(s′)

SP and SP ′ are functional because both types are complete, terminating and weakly orthogonal (see
[35]). We prove that SP ′ refines SP along the signature morphism rep that maps the sorts 1 and
stack to nat, resp. map × nat, the 1-constant () to the nat-term κ1(0), the structural stack-equality
and -inequality to behavioral map× nat-equality resp. its complement and all other symbols of STACK
to themselves. Moreover, the constructors empty and push of STACK become defined functions. top

and pop remain defined functions, but serve as destructors in the implementation. Since constructors
are turned into non-constructors, we cannot apply Thm. 7.3(5) for proving that SP ′ is consistent w.r.t.
(STACK, rep). Corollary 7.6, however, allows us to conclude that SP ′ refines STACK along rep if the
following rep-images of STACK-axioms are inductive theorems of SP ′:

top(empty) ≡ κ1(0) (1)
top(push(x, s)) ≡ κ2(x) (2)
pop(empty) ∼ empty (3)
pop(push(x, s)) ∼ s (4)
empty 6∼ push(x, s) (5)
push(x, s) 6∼ empty (6)

7 Monotonicity, consistency and refinement 33

push(x, s) 6∼ push(y, s′) ⇐ x 6≡ y (7)
push(x, s) 6∼ push(y, s′) ⇐ s 6∼ s′ (8)

In addition, STACK implicitly includes the equality axioms for ≡stack and thus their rep-images must
also be inductive theorems of SP ′. Since these formulas describe the congruence property of behavioral
map× nat-equality, we may conclude their validity from the behavioral consistency of SP ′. Indeed, the
criteria for behavioral consistency given by Theorem 8.5 hold true both for SP and SP ′: It is easy to
show that both types are head complete. They are image finite and thus, by Theorem ?? continuous.
Finally, SP and SP ′ are coinductive.

We present top-down proofs of (1)-(8) using the inference rules discussed in Section 5.

Proof of (1):
top(empty) ≡ κ1(0)

narrowing on empty
` top((new, 0)) ≡ κ1(0)

narrowing on top
` get(new, 0) ≡ κ1(0)

narrowing on get
` κ1(0) ≡ κ1(0)

simplification
` True

Proof of (2):
top(push(x, s)) ≡ κ2(x)

narrowing on push
` ∃f, i : top((upd(i+ 1, x, f), i+ 1)) ≡ κ2(x) ∧ s ≡ (f, i)

narrowing on top
` ∃f, i : get(upd(i+ 1, x, f), i+ 1) ≡ κ2(x) ∧ s ≡ (f, i)

narrowing on get
` ∃f, i : κ2(x) ≡ κ2(x) ∧ s ≡ (f, i)

simplification` ∃f, i : s ≡ (f, i)
completeness of SP ′

` True

Proof of (3):
pop(empty) ∼ empty

narrowing on empty
` pop((new, 0)) ∼ empty

narrowing on pop
` (new, pred(0)) ∼ empty

narrowing on pred
` (new, 0) ∼ empty

narrowing on empty
` (new, 0) ∼ (new, 0)

simplification
` True

7 Monotonicity, consistency and refinement 34

Proof of (4):
pop(push(x, s)) ∼ s

narrowing on push
` ∃f, i : pop((upd(i+ 1, x, f), i+ 1)) ∼ s ∧ s ≡ (f, i)

narrowing on pop
` ∃f, i : (upd(i+ 1, x, f), pred(i+ 1)) ∼ s ∧ s ≡ (f, i)

narrowing on pred
` ∃f, i : (upd(i+ 1, x, f), i) ∼ s ∧ s ≡ (f, i)

application of lemma (9) (see below)
` ∃f, i : (f, i) ∼ (f, i) ∧ i+ 1 > i ∧ s ≡ (f, i)

simplification
` ∃f, i : i+ 1 > i ∧ s ≡ (f, i)

application of the lemma i+ 1 > i

` ∃f, i : s ≡ (f, i)
completeness of SP ′

` True

Proof of (5):
empty 6∼ push(x, s)

narrowing on 6∼
` top(empty) 6≡ top(push(x, s)) ∨ pop(empty) 6∼ pop(push(x, s))

summand removal
` top(empty) 6≡ top(push(x, s))

application of (1), (2) and equality axioms
` κ1(0) 6≡ κ2(x)

narrowing on 6≡
` True

Proof of (6): Analogously.

Proof of (7):
push(x, s) 6∼ push(y, s′) ⇐ x 6≡ y

narrowing on 6∼
` top(push(x, s)) 6≡ top(push(y, s′)) ∨ pop(push(x, s)) 6∼ pop(push(y, s′)) ⇐ x 6≡ y

summand removal
` top(push(x, s)) 6≡ top(push(y, s′)) ⇐ x 6≡ y

application of (2) and equality axioms
` κ2(x) 6≡ κ2(y) ⇐ x 6≡ y

narrowing on 6≡
` x 6≡ y ⇐ x 6≡ y

simplification
` True

Proof of (8):
push(x, s) 6∼ push(y, s′) ⇐ s 6∼ s′

7 Monotonicity, consistency and refinement 35

narrowing on 6∼
` top(push(x, s)) 6≡ top(push(y, s′)) ∨ pop(push(x, s)) 6∼ pop(push(y, s′)) ⇐ s 6∼ s′

summand removal
` pop(push(x, s)) 6∼ pop(push(y, s′)) ⇐ s 6∼ s′

application of (4) and compatibility of 6∼ with ∼ (part of the behavioral consistency of SP ′)
` s 6∼ s′ ⇐ s 6∼ s′

simplification
` True

The proof of (4) uses the following lemma that characterizes behavioral stack equivalence in terms of
a constructor property:

(upd(i, x, f), j) ∼ (f, j) ⇐ i > j. (9)

Proof of (9):
(upd(i, x, f), j) ∼ (f, j) ⇐ i > j

introduction of variables
` s ∼ t ⇐ s ≡ (upd(i, x, f), j) ∧ t ≡ (f, j) ∧ i > j

coinduction on ∼
` s ≡ (upd(i, x, f), j) ∧ t ≡ (f, j) ∧ i > j

⇒ ∃i′, x′, f ′, j′ : (top(s) ≡ top(t) ∧ pop(s) ≡ (upd(i′, x′, f ′), j′)
∧ pop(t) ≡ (f ′, j′) ∧ i′ > j′)

elimination of variables
` ∃i′, x′, f ′, j′ : (top((upd(i, x, f), j)) ≡ top((f, j))

∧ pop((upd(i, x, f), j)) ≡ (upd(i′, x′, f ′), j′)
∧ pop((f, j)) ≡ (f ′, j′) ∧ i′ > j′) ⇐ i > j

narrowing on top and pop
` ∃i′, x′, f ′, j′ : (get(upd(i, x, f), j) ≡ get(f, j)

∧ (upd(i, x, f), pred(j)) ≡ (upd(i′, x′, f ′), j′)
∧ (f, pred(j)) ≡ (f ′, j′) ∧ i′ > j′) ⇐ i > j

elimination of variables
` (get(upd(i, x, f), j) ≡ get(f, j)
∧ (upd(i, x, f), pred(j)) ≡ (upd(i, x, f), pred(j))
∧ (f, pred(j)) ≡ (f, pred(j)) ∧ i > pred(j)) ⇐ i > j

simplification
` (get(upd(i, x, f), j) ≡ get(f, j) ∧ i > pred(j)) ⇐ i > j

narrowing on get
` (i 6≡ j ∧ i > pred(j)) ⇐ i > j (A)

application of (A)
` i > j ⇐ i > j

simplification
` True ❏

At first sight, implementing visible sorts by hidden ones seems to contradict the goal of a refinement to
make data visible instead of hiding them. But a closer look reveals that a visible type with a structural
equality relation is actually more abstract than a corresponding hidden type whose equality does not
draw on the abstract structure of normal form representations. Apart from a rather few data types

8 A criterion for behavioral consistency 36

where all relevant information about an object is encoded in a normal form, specifications deal with
objects that cannot be identified unambiguously from their symbolic representations. Normal forms are
pure abstract syntax. They often abstract from the “real” identity of an object that can only be concluded
from its behavior in response to applying observers. From this point of view, a refinement of a visible
type interprets abstract data within a given environment where constructors still serve the purpose of
building up data representations, but these do not define the objects uniquely. Hence it is quite natural
to implement a visible type by a hidden one.

Given a swinging type SP , SP -equivalence is always included in behavioral SP -equivalence. Hence
the final SP -model can be represented as a quotient the initial one. This fact suggests the attempt to
axiomatize the factorization and to add the axioms to those of SP such that the initial model of the
extended specification agrees with the final model of SP . Data type theorists have pursued this goal for
quite a long time. The problem is that the additional axioms are of a completely different kind than
the axioms of SP . While the latter represent functional-logic programs for functions or predicates, the
additional axioms equate different normal forms with each other. For instance, in the previous example,
SP might be extended by the equations

(upd(i, x, f), j) ≡ (f, j) ⇐ i > j

upd(i, x, upd(i, y, f)) ≡ upd(i, x, f)
upd(i, x, upd(j, y, f)) ≡ upd(j, y, upd(i, x, f)) ⇐ i 6≡ j

in order to obtain a specification whose equivalence coincides with behavioral SP -equivalence. Besides the
problem of finding appropriate constructor axioms that capture a behavioral equivalence relation, such
axioms make almost all manageable proof methods inapplicable. For example, easily checkable syntactic
criteria for functionality do not hold any more so that powerful automatable proof rules are no longer
sound. Constructor axioms induce non-trivial critical clauses that must be checked for subjoinability in
order to ensure functionality (cf. [35]). One gets entangled in additional verification problems that are
far from the original goals that led one to applying deductive methods at all. One of the most important
benefits from presenting data types as swinging types is the fact that these additional verification problems
simply disappear.

8 A criterion for behavioral consistency

[37], Thm. 6.5, is adapted to the new definition of swinging types (see Def. 2.3).

Definition 8.1 (defining formulas) An atom δ(t, a, u) is defining if either δ is a transition relation
or δ(t, u) = r(t) and r is a local relation or δ(t, u) = (f(t) ≡ u) and f is a defined function. δ(t, u)
is observing if δ, r or f , respectively, is an observer and thus t may be written as (t, a) where t is a
hidden-sorted term and a is—possibly empty—term tuple. A non-observing formula is a conjunction
of defining atoms that are not observing. ❏

Definition 8.2 (coinductive specification) Let SP = (Σ, AX) be a swinging type and visSP be
the greatest visible subtype of SP (cf. Def. 2.3).

A Horn clause p ⇐ ϕ is coinductive if either p = δ(t, u) is non-observing, t is strongly normal (cf.
Def. 2.3) and ϕ does not contain observers or p = δ(t, a, u) is observing,

ϕ = G ∧ δ1(t1, a1, u1) ∧G1 ∧ · · · ∧ δn(tn, an, un) ∧Gn

8 A criterion for behavioral consistency 37

and the following conditions hold true: Let V0 = var(t, a,G) and for all 1 ≤ i ≤ n, Vi = Vi−1 ∪
var(ai, ui, Gi).

(1) t is strongly normal or t = c(t′) for a constructor c and a strong normal form t′, a is strongly
normal, u is normal, G is weakly modal (see Def. 2.2) and non-observing, var(u) ⊆ Vn and out(G)∩
var(t, a) = ∅.

(2) For all 1 ≤ i ≤ n, δi(ti, ai, ui) is observing, (ti, ai) is normal, ui is strongly normal, Gi is weakly
modal and non-observing, var(ti) ⊆ Vi−1, (var(ui)∪out(Gi))∩(Vi−1∪var(ai, ui)) = ∅ and var(ai) ⊆
var(a) ∪ visvar(ai) where, for any term t, visvar(t) is the set of visibly-sorted variables of t.

A co-Horn clause r(t)⇒ ϕ is coinductive if t is strongly normal. SP is coinductive if all axioms ϕ
of SP \ visSP are coinductive. ❏

The BH and RG congruence criteria [5, 45] capture simple classes of both coinductive and functional
specifications. Their correctness can be derived from Thm. 8.5.

Definition 8.3 Let SP = (Σ, AX) be a swinging type. The constructor closure ≈⊆ T 2
Σ of ∼SP is

defined inductively as follows:

• ∼SP ⊆ ≈,

• for all t, t′ ∈ TΣ, constructors c : w → s and u, u′ ∈ TΣ,w,

t ≡SP c(u) ∧ u ≈ u′ ∧ c(u′) ≡SP t′ implies t ≈ t′. ❏

It is easy to see that the composition ≡SP ◦ ≈ ◦ ≡SP of relations is a subrelation of ≈. Moreover,
the property of behavioral equivalence stated by Lemma 5.4 holds true for the constructor closure of
behavioral equivalence as well:

Lemma 8.4 Let SP be functional and head complete, t be a strong normal form, σ : X → NFΣ and
u ∈ NFΣ such that tσ ≈ u. Then u = tτ and σ ≈ τ for some τ : X → NFΣ.

Proof by induction on the size of t. Let tσ ≈ u. If tσ ∼SP u, then by Lemma 5.4, tτ = u and σ ≈ τ

for some τ : X → NFΣ. Otherwise tσ ≡SP c(v), v ≈ v′ and c(v′) ≡SP u for some constructor c and
v, v′ ∈ TΣ. If t is a variable, then define τ : X → NFΣ by tτ = u and τ =X\{t} σ. Hence tσ ≈ u implies
σ ≈ τ . If t is not a variable, then there is t′ ∈ NFΣ(X) such that t = c(t′) and t′σ ≡SP v because SP
is consistent. Since SP is functional, there are u′, v′′ ∈ NFΣ such that v′′ ≡SP v′ ≡SP u′ and c(u′) = u.
Hence t′σ ≡SP v ≈ v′ ≡SP v′′ and thus t′σ ≈ v′′. By induction hypothesis, t′τ = v′′ and σ ≈ τ for some
τ : X → NFΣ. Hence tτ = c(t′τ) = c(v′′) ≡SP c(u′) = u and thus tτ = u because v′′ and u′ are normal
forms and SP is consistent. ❏

Theorem 8.5 (criteria for behavioral consistency) A coinductive, functional, head complete and
continuous specification SP is behaviorally consistent.

Proof. Let SP = (Σ, AX) and visSP = (visΣ, visAX) be the greatest visible subtype of SP (cf. Def.
2.3). By [37], Lemma 3.6, ∼SP is zigzag compatible with all structural equalities of Σ and compatible
with all behavioral equalities of Σ and with all symbols of visΣ that are not structural equalities. By
Def. 8.2, the following two parts of SP can be separated from the rest:

• The non-observer level SP1 = (Σ1, AX1) consists of all defined functions and predicates of SP
that are not observers and their axioms.

• The observer level consists of all observers of SP and their axioms.

8 A criterion for behavioral consistency 38

Let ≈ be the constructor closure of ∼SP . By definition, ≈ is compatible with the constructors of Σ.
By Corollary 4.14, ≡SP is a subset of ∼SP and thus of ≈.

For all visible sorts s, ≈s is a subrelation of ≡SP : Let s be a visible sort and t ≈s t
′. We prove t ≡SP t′

by induction on the size of t, t′. If t ∼s t
′, then t ≡SP t′. Otherwise t ≡SP c(u), u ≈ u′ and t′ ≡SP c(u′)

for a constructor c and term tuples u, u′. By induction hypothesis, u ≡SP u′. Hence t ≡SP t′.

We conclude that for all visible sorts s, ≈s=≡SP,s. Hence ≈ is compatible with visΣ and thus with
Σ1 if

≈ is (zigzag) compatible with all symbols of Σ1 \ visΣ. (1)

Let us show (1). Since ≡SP ◦ ≈ ◦ ≡SP is a subrelation of ≈, Cor. 6.12 implies that (1) is equivalent
to (2): for all non-observing ground rΣ1-atoms δ(t, u) there is u′ ∈ TΣ ∪ {ε} such that

Ini(SP1) |= δ(t, u) ∧ t ≈ t′ implies Ini(SP1) |= δ(t′, u′) ∧ u ≈ u′. (2)

By Prop. 3.6, (2) follows from a corresponding property of an approximation of Ini(SP1): for all non-
observing ground Σ1-atoms δ(t, u) specified on the non-observer level and i ∈ N there is u′ ∈ NFΣ ∪ {ε}
such that

Φi(∅) |= δ(t, u) ∧ t ≈ t′ implies Φi(∅) |= δ(t′, u′) ∧ u ≈ u′ (3)

where Φ is the (AX1 \ visAX)-consequence operator on Ini(SP1)|visΣ.

We prove (3) by induction on i. Since for all predicates r ∈ rΣ1, r∅ = ∅, (3) holds true for i = 0. Let
i > 0. By induction hypothesis, (3) is valid for i− 1 and thus

≈ is a behavioral Σ1-congruence on Φi−1(∅). (4)

Let Φi(∅) |= δ(t, u) and t ≈ t′. By the definition of Φ and since SP1 is coinductive, there are an
axiom δ(t0, u0) ⇐ ϕ on the non-observer level and σ : X → NFΣ such that t0 is strongly normal,
(t0, u0)σ = (t, u) and Φi−1(∅) |= ϕσ. Hence t0σ = t ≈ t′ and thus Lemma 8.4 implies t0τ = t′ and σ ≈ τ
for some τ : X → NFΣ. By Def. 2.3(c), ϕ is weakly modal with output Y such that var(t0) ∩ Y = ∅.
Since σ ≈ τ , (4) and [37], Thm. 3.8(2), imply Φi−1(∅) |= ϕτ ′ for some τ ′ ≈ τ with τ ′ =Y τ . Hence
Φi(∅) |= δ(t0, u0)τ ′ and u = u0σ ≈ u0τ ≈ u0τ

′. Since var(t0) ∩ Y = ∅, t0τ ′ = t0τ = t′. Hence
Φi(∅) |= δ(t′, u′) for u′ = u0τ

′ ≈ u.

This completes the proof of (1). Next we show that ∼SP is compatible with all constructors of Σ.

Suppose that ≈ satisfies all behavior axioms for Σ (cf. Def. 2.3). Since behavioral SP -equivalence is
the greatest relation satisfying the behavior axioms and ∼SP is a subrelation of ≈, ≈ agrees with ∼SP .
Hence ∼SP is compatible with all constructors of Σ because ≈ has this property by definition.

Since for all visible sorts s, ≈s is a subrelation of ≡SP , it remains to show that ≈ solves the behavior
axioms for all hidden sorts of Σ. We start with B4 (cf. Def. 1.3). By Lemma 5.3, we have to show that
for all t, t′ ∈ TΣ,s, strong constructors c and u, u′ ∈ T ∗Σ,

(i) t ≈ t′ ∧ t ≡SP c(u) implies ∃ u′ : (t′ ≡SP c(u′) ∧ u ≈ u′)),
(ii) t ≈ t′ ∧ t′ ≡SP c(u′) implies ∃ u : (t ≡SP c(u) ∧ u ≈ u′)).

We show (i). (ii) can be proved analogously. So let t ≈ t′ and t ≡SP c(u). Since SP is functional, we
may assume that t, t′, u are normal forms. Moreover, c(u) ≈ t′ because ≡SP ◦ ≈ is a subrelation of ≈.
Hence by Lemma 8.4, t′ = c(u′) and u ≈ u′ for some u′ ∈ NFΣ ∪ {ε}.

8 A criterion for behavioral consistency 39

Since ≡SP ◦ ≈ ◦ ≡SP is a subrelation of ≈, ≈ satisfies the remaining behavior axioms if for all
observing ground atoms δ(t, a, u),

t ≈ t′ ∧ Ini(SP) |= δ(t, a, u) implies ∃ u′ : (Ini(SP) |= δ(t′, a, u′) ∧ u ≈ u′). (5)

Since SP is functional and δ is compatible with SP -equivalence, Prop. 4.5 and Thm. 6.8 imply that (5)
is equivalent to (6): for all ground normal forms t, a, u and observing atoms δ(t, a, u),

t ≈ t′ ∧ δ(t, a, u) ∈ RTh(SP) implies ∃ u′ ∈ NFΣ ∪ {ε} : (δ(t′, a, u′) ∈ RTh(SP) ∧ u ≈ u′). (6)

It remains to show (6). First note that by (1) and [37], Thm. 3.8(2), for all weakly modal Σ1-formulas
ϕ and σ, τ : X → NFΣ,

σ ≈ τ ∧ ϕσ ∈ RTh(SP) implies ∃ τ ′ : X → NFΣ : ϕτ ′ ∈ RTh(SP) ∧ σ ≈ τ ′ =out(ϕ) τ. (7)

Let t ≈ t′ and δ(t, a, u) ∈ RTh(SP). We show the conclusion of (6) by induction on the proof length
of δ(t, a, u) in the reductive calculus for SP . Since SP is coinductive, there are a formula

ϕ = G0 ∧ δ1(t1, a1, u1) ∧G1 ∧ · · · ∧ δn(tn, an, un) ∧Gn

and an axiom δ(t0, a0, u0) ⇐ ϕ on the 2nd hidden level such that Def. 8.2(1) and (2) hold true for
t0, a0, u0, G0 instead of t, a, u,G. Moreover, there is σ : X → NFΣ such that (t0, a0, u0)σ = (t, a, u),
G0 ∈ RTh(SP) and for all 1 ≤ i ≤ n, the proof length of δi(ti, ai, ui)σ is smaller than the one of
δ(t, a, u). By the definition of ≈, we have one of two cases:

(A) t ∼SP t′,

(B) t ≡SP d(v), v ≈ v′ and d(v′) ≡SP t′ for some constructor d and ground terms v and v′.

Case A. δ(t, a, u) ∈ RTh(SP) implies Ini(SP) |= δ(t, a, u). Suppose that δ(t, a, u) = (f(t, a) ≡ u)
for some functional destructor f : w → s. Hence f(t, a) ∼SP f(t′, a) because ∼SP satisfies the behavior
axioms. We conclude Ini(SP) |= (f(t′, a) ≡ u′) = δ(t′, a, u′) for u′ = f(t′, a) ∼SP f(t, a) = u. If δ
is a relational destructor, then Ini(SP) |= δ(t′, a, u) because ∼SP satisfies the behavior axioms. Hence
Ini(SP) |= δ(t′, a, u′) for u′ = u. If δ is a transition relation, then Ini(SP) |= δ(t′, a, u′) for some
u′ ∼SP u because ∼SP satisfies the behavior axioms.

Hence in all three subcases, Ini(SP) |= δ(t′, a, u′) for some u′ ∼SP u. Since ∼SP is a subset of ≈, we
conclude u′ ≈ u.

Case B. By Def. 8.2(1), there are two subcases: (B1) t0 is strongly normal, (B2) t0 = c(t′0) for a
constructor c and a strong normal form t′0. In case B1, (t0, a0)σ = (t, a) ≈ (t′, a) and Lemma 8.4 implies
(t0, a0)τ = (t′, a) and σ ≈ τ for some τ : X → NFΣ. In case B2, c(t′0σ) = t0σ = t ≡SP d(v) and thus
c = d and t′0σ ≡SP v because SP is consistent. Hence (t′0, a0)σ ≡SP (v, a) ≈ (v′, a). Since ≡SP ◦ ≈ is a
subrelation of ≈, Lemma 8.4 implies (t′0, a0)τ = (v′, a) and σ ≈ τ for some τ : X → NFΣ.

We construct a substitution τ ′ : X → NFΣ with

(a) t0τ = t0τ
′

and prove by induction on i that for all 0 ≤ i ≤ n,

(b) aiσ = aiτ
′,

(c) δi(ti, ai, ui)τ ′ ∈ RTh(SP) if i > 0,

8 A criterion for behavioral consistency 40

(d) Giτ
′ ∈ RTh(SP),

(e) xσ ≈ xτ ′ for all x ∈ Vi.

Define xτ ′ = xτ for all x ∈ var(t0, a0). Then (a) holds true. Since a0τ = a = a0σ, (b) holds true
for i = 0. By (7), σ ≈ τ and G0 ∈ RTh(SP) imply G0τ

′′ ∈ RTh(SP) for some τ ′′ : X → NFΣ with
σ ≈ τ ′′ =out(G0) τ . Define xτ ′ = xτ ′′ for all x ∈ var(G0) \ var(t0, a0). Since out(G0) ∩ var(t0, a0) = ∅,
we have xτ ′′ = xτ = xτ ′ for all x ∈ var(G0)∩ var(t0, a0). Hence G0τ

′′ ∈ RTh(SP) implies (d) for i = 0.
Moreover, for all x ∈ var(G0) \ var(t0, a0), xσ ≈ xτ ′′ = xτ ′. Hence V0 = var(t0, a0, G0), (a) and (b) for
i = 0 imply (e) for i = 0.

Let i > 0. Suppose that (b)-(e) hold true for i−1. Since var(ai) ⊆ var(a0)∪visvar(ai) and a0σ = a0τ
′,

we have xσ = xτ ′ for all x ∈ var(ai) \ visvar(ai). Define xτ ′ = xσ for all x ∈ visvar(ai) \ Vi−1. Hence
(e) for i− 1 implies xσ ≈ xτ ′ and thus xσ ≡SP xτ ′ for all x ∈ visvar(ai). We conclude xσ = xτ ′ for all
x ∈ visvar(ai) because xσ and xτ ′ are normal and SP is consistent. Hence for all x ∈ var(ai), xσ = xτ ′,
and thus (b) holds true.

Since var(ti) ⊆ Vi−1 and ti is normal, (e) for i−1 implies tiσ ≈ tiτ ′. Since δi(ti, ai, ui)σ has a smaller
proof length than the one of δ(t, a, u), the induction hypothesis (6) implies δi(tiτ ′, aiσ, u

′) ∈ RTh(SP)
and uiσ ≈ u′ for some u′ ∈ NFΣ. Since ui is strongly normal, u′ is normal and uiσ ≈ u′, Lemma 8.4
implies uiϑ = u′ and σ ≈ ϑ for some ϑ : X → NFΣ. Define xτ ′ = xϑ for all x ∈ var(ui)\ (Vi−1∪var(ai)).
Since (Vi−1∪var(ai))∩var(ui) = ∅, uiθ = u′ implies uiτ

′ = u′. Hence by (b), δi(tiτ ′, aiσ, u
′) ∈ RTh(SP)

implies (c).

Define η : X → NFΣ by xη = xτ ′ for all x ∈ Vi−1 ∪ var(ai, ui) and xη = xσ otherwise. By (e) for
i − 1, xσ ≈ xτ ′ = xη for all x ∈ Vi−1. By (b), xσ = xτ ′ = xη for all x ∈ var(ai). Since xσ ≈ xϑ =
xτ ′ = xη for all x ∈ var(ui) \ (Vi−1 ∪ var(ai)), we conclude σ ≈ η. Hence by (7), Giσ ∈ RTh(SP)
implies Giτ

′′ ∈ RTh(SP) for some τ ′′ : X → NFΣ with σ ≈ τ ′′ =out(Gi) η. Define xτ ′ = xτ ′′ for all
x ∈ var(Gi) \ (Vi−1 ∪ var(ai, ui)). Since out(Gi) ∩ (Vi−1 ∪ var(ai, ui)) = ∅, we have xτ ′′ = xη = xτ ′

for all x ∈ var(Gi) ∩ (Vi−1 ∪ var(ai, ui)). Hence Giτ
′′ ∈ RTh(SP) implies (d). Moreover, for all

x ∈ var(Gi)\(Vi−1∪var(ai, ui)), xσ ≈ xτ ′′ = xτ ′, and for all x ∈ var(ui)\(Vi−1∪var(ai)), xσ ≈ xϑ = xτ ′.
Hence Vi = Vi−1 ∪ var(ai, ui, Gi), (e) for i− 1 and (b) imply (e).

(c) for all 0 ≤ i ≤ n and (d) for all 1 ≤ i ≤ n imply ϕτ ′ ∈ RTh(SP). Hence δ(t0, a0, u0)τ ′ ∈ RTh(SP).
In case B1 (see above), (a) and (b) for i = 0 imply (t0, a0)τ ′ = (t0τ, a0σ) = (t′, a). In case B2 (see above),
(a) and (b) for i = 0 imply (t0, a0)τ ′ = (t0τ, a0σ) = (c(t′0τ), a0σ) = (c(v′), a) = (d(v′), a) ≡SP (t′, a).
Hence, in both subcases, δ(t0, a0, u0)τ ′ ∈ RTh(SP) implies δ(t′, a, u0τ

′) ∈ RTh(SP).

Since var(u0) ⊆ Vn, (e) for i = n implies xσ ≈ xτ ′ for all x ∈ var(u0). Since u0 is normal, (1) implies
u0σ ≈ u0τ

′. Therefore, the conclusion of (6) holds true for u′ = u0τ
′.

This finishes case B of the proof of (6) from which we have already concluded that ∼SP is compatible
with the constructors of Σ. Since ∼SP is (zigzag) compatible with Σ1 and all behavioral equalities and
since Ini(SP) satisfies the behavior axioms for Σ, it remains to show the following properties whose proof
is part of the proof of [37], Thm. 6.5:

(8) For all functional destructors f : sw → s′, t ∈ TΣ,s and a ∼SP a′ ∈ TΣ,w, f(t, a) ∼SP f(t, a′).

(9) For all relational destructors r : sw and t ∈ TΣ,s, Ini(SP) |= r(t, a) ∧ a ∼SP a′ implies Ini(SP) |=
r(t, a′).

(10) For all transition relations δ : sws′ and t ∈ TΣ,s,
Ini(SP) |= δ(t, a, u) ∧ a ∼SP a′ implies Ini(SP) |= δ(t, a′, u′) ∧ u ∼SP u′ for some u′.

9 On strong equality and the specification of partial-recursive functions 41

(11) ∼SP is (zigzag) compatible with all symbols of SP \ visSP that belong neither to the observer nor
to the non-observer level of SP . ❏

9 On strong equality and the specification of partial-recursive
functions

Definedness predicates or membership predicates in the sense of [26] are well-known from partial data
type approaches (cf., e.g., [7, 14, 22]). They are unary and split a carrier set into “defined” values
on the one hand and “undefined”, “error” or “exception” values on the other hand. A better way for
handling partial types is the use of sum types. Totalizing a partial function within a single range causes
an enormous specification overhead when several function definitions must be extended to the undefined
arguments. This is avoided by introducing a sum supersort whose subsorts keep defined and undefined
values separately from each other.

Term models and their proof rules adopt a constructive view of data types that actually enforces the
totalization. Non-totalizable functions that arise as solutions of “non-terminating” recursive equations
have values as well, e.g. in a hidden sort of infinite computation sequences. “Real” partiality is not in
accordance with design specifications. Even the most abstract specification should be complete in the
sense that each ground term has a normal form and thus represents something.

Two objects are called strongly equal if they are (structurally) equivalent or both undefined. For
weak equality only one object needs to be undefined. Objects that are strongly equal and defined are
called existentially equal. Since existential equality does not say anything about undefinedness and
weak equality is not compatible with definedness predicates, strong equality is the only equivalence that
captures the meaning of definedness and preserves validity. For achieving the latter, the equivalence needs
to be a congruence, i.e., compatible with all functions and predicates that may have undefined arguments.
It has been shown elsewhere that a function or predicate f is compatible with strong equality if f is strict
or, more generally, regular. Regularity admits “error recovery”, i.e., f may map an argument tuple t
with an undefined i-th component () to a defined value. But then all tuples t′ differing from t only in the
i− th component must be mapped to the same value, i.e., the respective Herbrand model satisfies

f(x1, . . . , xi−1, (), xi, . . . , xn) ≡ y ∧ y 6≡ () ⇒ f(x1, . . . , xi−1, x, xi, . . . , xn) ≡ y.

Typical regular functions are Boolean operators and conditionals. For a predicate r, the condition reads
as follows:

r(x1, . . . , xi−1, (), xi, . . . , xn) ⇒ r(x1, . . . , xi−1, x, xi, . . . , xn) ≡ y.

The question arises whether strong equality is a particular behavioral equality, induced by particular
observers. If so, we need not establish special criteria ensuring that a function or predicate f is compatible
with strong equality, but only demand that the axioms for f are coinductive (see [37]). In fact, a
functional specification SP = (Σ, AX) with definedness predicates can be extended in a such way that
strong equality is a behavioral one, induced by a destructor that identifies all exceptions, but leaves the
defined values unchanged (up to renaming).

Let S′ ⊆ S be a set of visible sorts such that each S′-sorted normal form denotes either a “defined ele-
ment” or an “exception”. Suppose that the distinction originates from a set EC of exception constructors,
definedness predicates Def : s, s ∈ S, and the following axioms for Def :

Def (c(x1, . . . , xn)) ⇐ Def (xi1) ∧ · · · ∧Def (xik
) for all c : s1 . . . sn → s ∈ Σ \ EC

9 On strong equality and the specification of partial-recursive functions 42

where xi1 , . . . , xik
are the S′-sorted variables among x1, . . . , xn. Note that these axioms imply the strict-

ness of c because Ini(SP) satisfies the inverse implication

Def (c(x1, . . . , xn)) ⇒ Def (xi1) ∧ · · · ∧Def (xik
).

All s ∈ S′ are regarded as hidden sorts, and for each sort s ∈ S, we augment Σ with a destructor
copys : s→ 1 + s that is supposed to map each “defined” element (= normal form over Σ \ EC) t to its
copy in NFΣ,1+s and each “exception” to (). This is accomplished by providing, for each c : s1 . . . sn →
s ∈ Σ \ EC, a defined function evalc : s1 . . . sn → 1 + s, specified by the axiom evalc(x) ≡ (c(x)). In
contrast to c, evalc or, more precisely, evalc,+ (cf. Section 2) propagates exceptions. The axioms for copys

read as follows:

copys(c(x)) ≡ () for all constructors c : w → s ∈ EC,
copys(c(x1, . . . , xn)) ≡ evalc,+(copys1(x1), . . . , copysn

(xn)) for all constructors c : s1 . . . sn → s ∈ Σ \ EC
if s ∈ S′,

copys(x) ≡ (x) if s 6∈ S′.

As part of SP , strong equality can be specified as a ν-predicate by the following co-Horn axioms:

x ∼s y ⇒ (Def (x) ⇒ x ≡ y),
x ∼s y ⇒ (Def (y) ⇒ x ≡ y) for all s ∈ S′.

As part of the described extension of SP , strong equality is the greatest solution of the behavior axioms:

x ∼s y ⇒ copys(x) ≡ copys(y) for all s ∈ S′.

Hence Theorem 8.5 ensures that strong equality is a weak congruence provided that SP satisfies the
assumptions of the theorem.

Let us close this section on partiality with a schema for specifying an arbitrary partial-recursive
function f : w → s. Suppose that f is presented by a set of recursive equations or, more generally, by
a set AXf of Horn clauses of the form f(t) ≡ u ⇐ ϕ. The usual model of f is the supremum ti∈Nfi of
approximations fi of f . These can be specified in terms of the exception monad [29], as abstractions of
a defined function f ′ : nat× w → 1 + s with the following Horn axioms:

f ′(0, x) ≡ (),
f ′(suc(i), t) ≡ x1 ← f ′(i, t1); . . . ;xn ← f ′(i, tn); (u[xi/f(ti) | 1 ≤ i ≤ n]) ⇐ ϕ[xi/f(ti) | 1 ≤ i ≤ n]

for all (f(t) ≡ u⇐ ϕ) ∈ AXf where f(t1), . . . , f(tn) are the subterms of u or ϕ with leading function f .
f itself is specified in a further extension:

spec(f) = specification of f ′ then

defuncts f : w → s

vars i : nat x : w y : s
Horn axioms f(x) ≡ y ⇐ f ′(i, x) ≡ (y)

f(x) ≡ () ⇐ ∀i : f ′(i, x) ≡ ()

With the help of consistency criteria like Thm. 7.3(5) it is easy to show that spec(f) is consistent with
respect to the specification of f ′ provided that all functions and predicates occurring in AXf except f
are regular.

REFERENCES 43

References

[1] E. Astesiano, M. Broy, G. Reggio, Algebraic Specification of Concurrent Systems, in [3]

[2] P. Aczel, An Introduction to Inductive Definitions, in: J. Barwise, ed., Handbook of Mathematical
Logic, North-Holland (1977) 739-781

[3] E. Astesiano, H.-J. Kreowski, B. Krieg-Brückner, eds., Algebraic Foundations of Systems Specifica-
tion, IFIP State-of-the-Art Report, Springer 1999

[4] M. Bidoit, R. Hennicker, Proving the Correctness of Behavioural Implementations, Proc. AMAST
’95, Springer LNCS 936 (1995) 152-168

[5] M. Bidoit, R. Hennicker, Observer Complete Definitions are Behaviourally Coherent, Report, Uni-
versity of Munich (1999)

[6] M. Bidoit, P.D. Mosses, CASL User Manual, Springer LNCS 2900 (2004)

[7] M. Broy, M. Wirsing, Partial Abstract Types, Acta Informatica 18 (1982) 47-64

[8] G. Costa, G. Reggio, Specification of Abstract Dynamic Data Types: A Temporal Logic Approach,
Theoretical Computer Science 173 (1997) 513-554

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart̂ı-Oliet, J. Meseguer, J.F. Quesada, A Maude
Tutorial, SRI International 2000, http://maude.csl.sri.com

[10] R. Diaconescu, K. Futatsugi, CafeOBJ Report, World Scientific 1998

[11] H. Ehrig, H.J. Kreowski, Refinement and Implementation, in [3]

[12] H. Ehrig, H.-J. Kreowski, B. Mahr, P. Padawitz, Algebraic Implementation of Abstract Data Types,
Theoretical Computer Science 20 (1982) 209-263

[13] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1, Springer 1985

[14] J.A. Goguen, Stretching First Order Equational Logic: Proofs with Partiality, Subtypes and Retracts,
UCSD Report, San Diego 1997, www-cse.ucsd.edu/users/goguen/ps/ftp97.ps.gz

[15] J.A. Goguen, R. Diaconescu, An Oxford Survey of Order Sorted Algebra, Mathematical Structures
in Computer Science 4 (1994) 363-392

[16] J.A. Goguen, J.W. Thatcher, E.G. Wagner, An Initial Algebra Approach to the Specification, Cor-
rectness and Implementation of Abstract Data Types, in: R. Yeh, ed., Current Trends in Program-
ming Methodology 4, Prentice-Hall (1978) 80-149

[17] J. Guttag, E. Horowitz, D.R. Musser Abstract Data Types and Software Validation, Report ISI/RR-
76-48, University of Southern California 1976

[18] R. Hennicker, A. Kurz, (Ω,Ξ)-Logic: On the Algebraic Extension of Coalgebraic Specifications,
Proc. CMCS ’99, Elsevier ENTCS 19 (1999) 195-211

[19] C.A.R. Hoare, Proof of Correctness of Data Representations, Acta Informatica 1 (1972) 271-281

[20] B. Jacobs, Invariants, Bisimulations and the Correctness of of Coalgebraic Refinements, Proc.
AMAST ’97, Springer LNCS 1349 (1997) 267-291

[21] B. Jacobs, Behaviour-Refinement of Coalgebraic Specifications with Coinductive Correctness Proofs,
Proc. TAPSOFT ’97, Springer LNCS 1214 (1997) 787-802

REFERENCES 44

[22] U. Kühler, C.-P. Wirth, Conditional Equational Specifications of Data Types with Partial Operations
for Inductive Theorem Proving, Proc. RTA ’97, Springer LNCS 1232 (1997) 38-52

[23] B. Mahr, J.A. Makowsky, Characterizing Specification Languages Which Admit Initial Semantics,
Theoretical Computer Science 31 (1984) 49-59

[24] G. Malcolm, J.A. Goguen, Proving Correctness of Refinement and Implementation, Technical Mono-
graph PRG-114, Oxford University Computing Lab 1994

[25] E.G. Manes, M.A. Arbib, Algebraic Approaches to Program Semantics, Springer 1986

[26] J. Meseguer, Membership Algebra as a Logical Framework for Equational Specification, Proc. WADT
’97, Springer LNCS 1376 (1998) 18-61

[27] D. Miller, G. Nadathur, F. Pfenning, A. Scedrov, Uniform Proofs as a Foundation for Logic Pro-
gramming, Annals of Pure and Applied Logic 51 (1991) 125-157

[28] B. Möller, A. Tarlecki, M. Wirsing, Algebraic Specifications of Reachable Higher-Order Algebras,
Proc. 5th ADT Workshop, Springer LNCS 332 (1988) 154-169

[29] E. Moggi, Notions of Computation and Monads, Information and Computation 93 (1991) 55-92

[30] Till Mossakowski, Horst Reichel, Markus Roggenbach, Lutz Schröder, Algebraic-coalgebraic specifi-
cation in CoCASL, Proc. WADT 2002, Springer LNCS 2755 (2003) 376-392

[31] M. Müller-Olm, D. Schmidt, B. Steffen, Model Checking: A Tutorial Introduction, Proc. SAS ’99,
Springer LNCS 1694 (1999) 330-394

[32] P. Padawitz, Computing in Horn Clause Theories, Springer 1988

[33] P. Padawitz, Deduction and Declarative Programming, Cambridge University Press 1992

[34] P. Padawitz, Inductive Theorem Proving for Design Specifications, J. Symbolic Computation 21
(1996) 41-99

[35] P. Padawitz, Proof in Flat Specifications, in [3]

[36] P. Padawitz, Towards the One-Tiered Design of Data Types and Transition Systems, Proc. WADT
’97, Springer LNCS 1376 (1998) 365-380

[37] P. Padawitz, Swinging Types = Functions + Relations + Transition Systems, Theoretical Computer
Science 243 (2000) 93-165

[38] P. Padawitz, Swinging Types At Work, Report, University of Dortmund,
ls5-www.cs.uni-dortmund.de/∼peter/BehExa.ps.gz

[39] P. Padawitz, Dialgebraic Specification and Modeling, Report, University of Dortmund,
ls5-www.cs.uni-dortmund.de/∼peter/Dialg.ps

[40] P. Padawitz, Expander2: A Formal Methods Presenter and Animator,
ls5-www.cs.uni-dortmund.de/∼peter/Expander2/Expander2.html

[41] P. Padawitz, Expander2: Towards a Workbench for Interactive Formal Reasoning,
ls5-www.cs.uni-dortmund.de/∼peter/Expander2/Chiemsee.ps

[42] P. Padawitz, Formale Methoden des Systementwurfs, Course Notes, University of Dortmund 2002,
ls5-www.cs.uni-dortmund.de/∼peter/TdP96.ps.gz

[43] W. Pohlers, Subsystems of set Theory and Second Order Number Theory, in: S.R. Buss, ed., Hand-
book of Proof Theory, Elsevier (1998) 209-335

REFERENCES 45

[44] R. Reiter, A Logic for Default Reasoning, Aritificial Intelligence 13 (1980) 81-132

[45] G. Roşu, J.A. Goguen, Circular Coinduction, UCSD Report, San Diego 2000, www-
cse.ucsd.edu/users/goguen/ps/ccoind.ps.gz

[46] J.J.M.M. Rutten, Universal Coalgebra: A Theory of Systems, Report CS-R9652, CWI, SMC Ams-
terdam 1996

[47] D. Sannella, A. Tarlecki, Toward Formal Development of Programs from Algebraic Specifications:
Implementations Revisited, Acta Informatica 25 (1988) 233-281

[48] K. Schütte, Proof Theory, Springer 1977

[49] M. Wand, Specifications, Models, and Implementations of Data Abstractions, Theoretical Computer
Science 20 (1982) 3-32

[50] W. Wechler, Universal Algebra for Computer Scientists, Springer 1992

[51] M. Wirsing, Algebraic Specification, in: J. van Leeuwen, ed., Handbook of Theoretical Computer
Science, Elsevier (1990) 675-788

	Introduction
	The syntax of structured STs
	Canonical and continuous models
	The deductive calculus and the initial model
	On behavioral equality, constructors, observers and inference rules
	Horn STs and the reductive calculus
	Monotonicity, consistency and refinement
	A criterion for behavioral consistency
	On strong equality and the specification of partial-recursive functions
	References

