
Rewriting Logic Semantics: From Language

Specifications to Formal Analysis Tools

José Meseguer and Grigore Roşu
University of Illinois at Urbana-Champaign, USA

Abstract. Formal semantic definitions of concurrent languages, when
specified in a well-suited semantic framework and supported by generic
and efficient formal tools, can be the basis of powerful software analy-
sis tools. Such tools can be obtained for free from the semantic defini-
tions; in our experience in just the few weeks required to define a lan-
guage’s semantics even for large languages like Java. By combining, yet
distinguishing, both equations and rules, rewriting logic semantic defini-
tions unify both the semantic equations of equational semantics (in their
higher-order denotational version or their first-order algebraic counter-
part) and the semantic rules of SOS. Several limitations of both SOS
and equational semantics are thus overcome within this unified frame-
work. By using a high-performance implementation of rewriting logic
such as Maude, a language’s formal specification can be automatically
transformed into an efficient interpreter. Furthermore, by using Maude’s
breadth first search command, we also obtain for free a semi-decision
procedure for finding failures of safety properties; and by using Maude’s
LTL model checker, we obtain, also for free, a decision procedure for LTL
properties of finite-state programs. These possibilities, and the compet-
itive performance of the analysis tools thus obtained, are illustrated by
means of a concurrent Caml-like language; similar experience with Java
(source and JVM) programs is also summarized.

1 Introduction

Without a precise mathematical semantics compiler writers will often produce
incompatible language implementations; and it will be meaningless to even at-
tempt to formally verify a program. Formal semantics is not only a necessary
prerequisite to any meaningful talk of software correctness, but, as we try to show
in this paper, it can be a key technology to develop powerful software analysis
tools. However, for this to happen in practice we need to have:

– a well-suited semantic framework, and
– a high performance implementation of such a framework.

We argue that rewriting logic is indeed a well-suited and flexible framework
to give formal semantics to programming languages, including concurrent ones.
In fact we show that it unifies two well-known frameworks, namely equational
semantics and structural operational semantics, combining the advantages of
both and overcoming several of their respective limitations.

High performance is crucial to scale up both the execution and the formal
analysis. In this regard, the existence of the Maude 2.0 system [18] implementing

2

rewriting logic and supporting efficient execution as well as breadth-first search
and LTL model checking, allows us to automatically turn a language’s rewriting
logic semantic definition into a quite sophisticated software analysis tool for that
language for free. In particular, we can efficiently interpret programs in that
language, and we can formally analyze programs, including concurrent ones, to
find safety violations and to verify temporal logic properties by model checking.

The fact that rewriting logic specifications provide in practice an easy way to
develop executable formal definitions of languages, which can then be subjected
to different tool-supported formal analyses, is by now well established [82, 7, 83,
77, 73, 44, 79, 15, 64, 80, 26, 25, 37]. However, ascertaining that this approach can
scale up to large conventional languages such as Java and the JVM [26, 25], and
that the generic formal analysis methods associated to semantic definitions can
compete in performance with special-purpose analysis tools developed for indi-
vidual languages, is a more recent development that we have been investigating
with our students and for which we give evidence in this paper.

1.1 Semantics: Equational vs. SOS

Two well-known semantic frameworks for programming languages are: equa-
tional semantics and structural operational semantics (SOS).

In equational semantics, formal definitions take the form of semantic equa-
tions, typically satisfying the Church-Rosser property. Both higher-order (de-
notational semantics) and first-order (algebraic semantics) versions have been
shown to be useful formalisms. There is a vast literature in these two areas that
we do not attempt to survey. However, we can mention some early denotational
semantics papers such as [74, 66] and the survey [55]. Similarly, we can mention
[88, 30, 11] for early algebraic semantics papers, and [29] for a recent textbook.

We use the more neutral term equational semantics to emphasize the fact
that denotational and algebraic semantics have many common features and can
both be viewed as instances of a common equational framework. In fact, there
isn’t a rigid boundary between both approaches, as illustrated, for example, by
the conversion of higher-order semantic equations into first-order ones by means
of explicit substitution calculi or combinators, the common use of initiality in
both initial algebras and in solutions of domain equations, and a continuous
version of algebraic semantics based on continuous algebras.

Strong points of equational semantics include:

– it has a model-theoretic, denotational semantics given by domains in the
higher-order case, and by initial algebras in the first-order case;

– it has also a proof-theoretic, operational semantics given by equational re-
duction with the semantic equations;

– semantic definitions can be easily turned into efficient interpreters, thanks to
efficient higher-order functional languages (ML, Haskell, etc.) and first-order
equational languages (ACL2, OBJ, ASF+SDF, etc.);

– there is good higher-order and first-order theorem proving support.

3

However, equational semantics has the following drawbacks:

– it is well suited for deterministic languages such as conventional sequential
languages or purely functional languages, but is quite poorly suited to define
the semantics of concurrent languages, unless the concurrency is that of a
purely deterministic computation;

– one can indirectly model1 some concurrency aspects with devices such as a
scheduler, or lazy data structures, but a direct comprehensive modeling of
all concurrency aspects remains elusive within an equational framework;

– semantic equations are typically unmodular, i.e., adding new features to a
language often requires extensive redefinition of earlier semantic equations.

In SOS formal definitions take the form of semantic rules. SOS is a proof-
theoretic approach, focusing on giving a detailed step-by-step formal description
of a program’s execution. The semantic rules are used as inference rules to rea-
son about what computation steps are possible. Typically, the rules follow the
syntactic structure of programs, defining the semantics of a language construct
in terms of that of its componenta. The “locus classicus” is Plotkin’s Aarhus
lectures [61]; there is again a vast literature on the topic that we do not attempt
to survey; for a good textbook introduction see [34].

Strong points of SOS include:

– it is an abstract and general formalism, yet quite intuitive, allowing detailed
step-by-step modeling of program execution;

– has a simple proof-theoretic semantics using semantic rules as inference rules;
– is fairly well suited to model concurrent languages, and can also deal well

with the detailed execution of deterministic languages;
– allows mathematical reasoning and proof, by reasoning inductively or coin-

ductively about the inference steps.

However, SOS has the following drawbacks:

– although specific proposals have been made for categorical models for certain
SOS formats, such as, for example, Turi’s functorial SOS [78] and Gadducci
and Montanari’s tile models [28], it seems however fair to say that, so far,
SOS has not commonly agreed upon model-theoretic semantics.

– in its standard formulation it imposes a centralized interleaving semantics
of concurrent computations, which may be unnatural in some cases, for ex-
ample for highly decentralized and asynchronous mobile computations; this
problem is avoided in “reduction semantics,” which is different from SOS
and is in fact a special case of rewriting semantics (see Section 5.2).

– although some tools have been built to execute SOS definitions (see for
example [20]) tool support is considerably less developed than for equational
semantics.

– standard SOS definitions are notoriously unmodular, unless one adopts Mosses’
MSOS framework (see Section 5.3).

1 Two good examples of indirectly modeling concurrency within a purely functional
framework are the ACL2 semantics of the JVM using a scheduler [52], and the use
of lazy data structures in Haskell to analyze cryptographic protocols [2].

4

1.2 Rewriting Logic Unifies SOS and Equational Semantics

For the most part, equational semantics and SOS have lived separate lives. Prag-
matic considerations and differences in taste tend to dictate which framework
is adopted in each particular case. For concurrent languages SOS seems clearly
superior and tends to prevail as the formalism of choice, but for deterministic
languages equational approaches are also widely used. Of course there are also
practical considerations of tool support for both execution and formal reasoning.

This paper addresses three fundamental questions:

1. can the semantic frameworks of SOS and equational semantics be unified in
a mathematically rigorous way?

2. can the advantages of each formalisms be preserved and can their respective
drawbacks be overcome in a suitable unification?

3. is it possible to efficiently execute and analyze programs using semantic
language definitions in such a unified framework with suitable formal tools?

We answer each of the above questions in the affirmative by proposing rewrit-
ing logic [40, 13] as such a unifying semantic framework. Roughly speaking,2 a
rewrite theory is a triple (Σ, E, R), with (Σ, E) an equational theory with sig-
nature of operations and sorts Σ and set of (possibly conditional) equations E,
and with R a set of (possibly conditional) rewrite rules. Therefore, rewriting
logic introduces a key distinction between semantic equations E, and semantic
rules R. Computationally, this is a distinction between deterministic computa-
tions, and concurrent and possibly nondeterministic ones. That is, if (Σ, E, R)
axiomatizes the semantics of a programming language L, then the deterministic
computations in L will be axiomatized by the semantic equations E, whereas
the concurrent computations will be axiomatized by the rewrite rules R. The
semantic unification of SOS and equational semantics is then achieved very nat-
urally, since, roughly speaking, we can obtain SOS and equational semantics as,
respectively, the special cases in which E = ∅ and we have only semantic rules3,
and R = ∅ and we have only semantic equations, respectively.

This unification makes possible something not available in either formalism,
namely mixing semantic equations and semantic rules, using each kind of axiom
for the purposes for which it is best suited: equations for deterministic computa-
tions, and rules for concurrent ones. This distinction between equations and rules
is of more than academic interest. The point is that, since rewriting with rules
R takes place modulo the equations E [40], many states are abstracted together
by the equations E, and only the rules R contribute to the size of the system’s
state space, which can be drastically smaller than if all axioms had been given
as rules, a fact of crucial importance for formal analyses of concurrent programs
based on search and model checking.

2 We postpone the issue of “frozen” arguments, which is treated in Section 2.2.
3 The case of structural axioms is a separate issue that we postpone until Section 2;

also rewrite rules and SOS rules, though closely related, do not correspond identically
to each other, as explained in Section 5.2.

5

This brings us to efficient tool support for both execution and formal anal-
ysis. Rewriting logic has several high-performance implementations [5, 27, 18],
of which the most comprehensive so far, in expressiveness and in range of fea-
tures, is probably the Maude system [18]. Maude can both efficiently execute
a rewriting logic axiomatization of a programming language L, thus providing
an interpreter for L, and also perform breadth-first search to find safety viola-
tions in a concurrent program, and model checking of linear time temporal logic
(LTL) properties for such programs when the set of reachable states is finite. We
illustrate these execution and analysis capabilities in Sections 3–4.

The rest of the paper is organized as follows. Basic concepts on rewriting
logic and membership equational logic are gathered in Section 2. We then illus-
trate our language specification methodology by means of a nontrivial example
– a substantial Caml-like language including functions, assignments, loops, ex-
ceptions, and threads – and briefly discuss another case study on Java semantics
in Section 3. The formal analysis of concurrent programs is illustrated for our
example language in Section 4. We revisit SOS and equational semantics and
discuss the advantages of their unification within rewriting logic in Section 5.
The paper gives some concluding remarks in Section 6.

2 Rewriting Logic Semantics

We explain here the basic concepts of rewriting logic, and how it can be used
to define the semantics of a programming language. Since each rewrite theory
has an underlying equational theory, different variants of equational logic give
rise to corresponding variants of rewriting logic. The more expressive the un-
derlying equational sublanguage, the more expressive will the resulting rewrite
theories be. For this reason, we include below a brief summary of membership
equational logic (mel) [43], an expressive Horn logic with both equations t = t′

and membership predicates t : s which generalizes order-sorted equational logic
and supports sorts, subsorts, partiality, and sorts defined by equational axioms.
Maude 2.0 [18] supports all the logical features of mel and its rewriting logic
super-logic with a syntax almost identical to the mathematical notation.

2.1 Membership Equational Logic
A membership equational logic (mel) [43] signature is a triple (K, Σ, S) (just
Σ in the following), with K a set of kinds, Σ = {Σw,k}(w,k)∈K∗×K a many-
kinded signature and S = {Sk}k∈K a K-kinded family of disjoint sets of sorts.
The kind of a sort s is denoted by [s]. A mel Σ-algebra A contains a set Ak

for each kind k ∈ K, a function Af : Ak1
× · · · × Akn

→ Ak for each operator
f ∈ Σk1···kn,k and a subset As ⊆ Ak for each sort s ∈ Sk, with the mean-
ing that the elements in sorts are well-defined, while elements without a sort
are errors. We write TΣ,k and TΣ(X)k to denote respectively the set of ground
Σ-terms with kind k and of Σ-terms with kind k over variables in X, where
X = {x1 : k1, . . . , xn : kn} is a set of kinded variables. Given a mel signa-
ture Σ, atomic formulae have either the form t = t′ (Σ-equation) or t : s
(Σ-membership) with t, t′ ∈ TΣ(X)k and s ∈ Sk; and Σ-sentences are condi-
tional formulae of the form (∀X) ϕ if

∧
i pi = qi ∧

∧
j wj : sj , where ϕ is

6

either a Σ-equation or a Σ-membership, and all the variables in ϕ, pi, qi, and
wj are in X. A mel theory is a pair (Σ, E) with Σ a mel signature and E a set
of Σ-sentences. We refer to [43] for the detailed presentation of (Σ, E)-algebras,
sound and complete deduction rules, and initial and free algebras. In particular,
given an mel theory (Σ, E), its initial algebra is denoted TΣ/E ; its elements are
E-equivalence classes of ground terms in TΣ . Order-sorted notation s1 < s2 can
be used to abbreviate the conditional membership (∀x : k) x : s2 if x : s1.
Similarly, an operator declaration f : s1 × · · · × sn → s corresponds to declar-
ing f at the kind level and giving the membership axiom (∀x1 : k1, . . . , xn :
kn) f(x1, . . . , xn) : s if

∧
1≤i≤n xi : si. We write (∀x1 : s1, . . . , xn : sn) t = t′ in

place of (∀x1 : k1, . . . , xn : kn) t = t′ if
∧

1≤i≤n xi : si.

2.2 Rewrite Theories

A rewriting logic specification or theory is a tuple R = (Σ, E, φ, R), with:

– (Σ, E) a membership equational theory
– φ : Σ −→ IN a mapping assigning to each function symbol f ∈ Σ (with,

say, n arguments) a set φ(f) = {i1, . . . , ik}, 1 ≤ i1 < . . . < ik ≤ n of frozen
argument positions under which it is forbidden to perform any rewrites; and

– R a set of labeled conditional rewrite rules of the general form

r : (∀X) t −→ t′ if (
∧

i

ui = u′
i) ∧ (

∧

j

vj : sj) ∧ (
∧

l

wl −→ w′
l) (♭).

where the variables appearing in all terms are among those in X, terms in each
rewrite or equation have the same kind, and in each membership vj : sj the term
vj has kind [sj]. Intuitively, R specifies a concurrent system, whose states are
elements of the initial algebra TΣ/E specified by (Σ, E), and whose concurrent
transitions are specified by the rules R, subject to the frozenness imposed by φ.

We can illustrate both a simple rewrite theory and the usefulness of frozen
arguments by means of the following Maude module for nondeterministic choice:

mod CHOICE is protecting NAT .
sorts Elt MSet . subsorts Elt < MSet .
ops a b c d e f g : -> Elt .
op __ : MSet MSet -> MSet [assoc comm] .
op card : MSet -> Nat [frozen] .
eq card(X:Elt) = 1 .
eq card(X:Elt M:MSet) = 1 + card(M:MSet) .
rl [choice] : X:MSet Y:MSet => Y:MSet .

endm

In a Maude module,4 introduced with the keyword mod followed by its name,
and ended with the keyword endm, kinds are not declared explicitly; instead,
each connected component of sorts in the subsort inclusion ordering implicitly
determines a kind, which is viewed as the equivalence class of its corresponding
sorts. Here, since the only two sorts declared, namely Elt and MSet, are related
by a subsort inclusion5 we have implicitly declared a new kind, which we can

4 A Maude module specifies a rewrite theory R = (Σ,E, φ, R); however, when R = ∅,
then R becomes a membership equational theory. Maude has an equational sub-
language in which a membership equational theory (Σ, E) can be specified as a
functional module with beginning and ending keywords fmod and endfm.

5 A subsort inclusion is shorthand notation for a corresponding membership axiom.

7

refer to by enclosing either of the sorts in square brackets, that is, by either
[Elt] or [MSet]. There are however two more kinds, namely the kind [Nat]

determined by the sort Nat of natural numbers and its subsorts in the imported
NAT module, and the kind [Bool] associated to the Booleans, which by default
are implicitly imported by any Maude module.

The operators in Σ are declared with op (ops if several operators are declared
simultaneously). Here we have just three such declarations: (i) the constants a

through g of sort Elt, (ii) a multiset union operator declared with infix6 empty
syntax (juxtaposition), and (iii) a multiset cardinality function declared with
prefix notation card. The set E contains those equations and memberships of
the imported modules, the two equations defining the cardinality function, and
the equations of associativity and commutativity for the multiset union operator,
which are not spelled out as the other equations, but are instead specified with
the assoc and comm keywords. Furthermore, as pointed out in Section 2.1, the
subsort inclusion declaration and the operator declarations at the level of sorts
are in fact conditional membership axioms in disguise. The only rule in the set R
is the [choice] rule, which arbitrarily chooses a nonempty sub-multiset of the
given multiset. Maude then uses the assoc and comm declarations to apply the
other equations and the [choice] rule in a built-in way modulo the associativity
and commutativity of multiset union, that is, parentheses are not needed, and
the order of the elements in the multiset is immaterial. It is then intuitively clear
that if we begin with a multiset such as a a b b b c and repeatedly rewrite it
in all possible ways using the [choice] rule, the terminating (deadlock) states
will be the singleton multisets a, b, and c.

The multiset union operator has no special declaration, meaning that none
of its two arguments are frozen, but the cardinality function is declared with the
frozen attribute, meaning that all its arguments (in this case the single argu-
ment of sort MSet) are frozen, that is, φ(card) = {1}. This declaration captures
the intuition that it does not make much sense to rewrite below the cardinality
function card, because then the multiset whose cardinality we wish to determine
would become a moving target. If card had not been declared frozen, then the
rewrites a b c −→ b c −→ c would induce rewrites 3 −→ 2 −→ 1, which seems
bizarre. The point is that we think of the kind [MSet] as the state kind in this
example, whereas [Nat] is the data kind. By declaring card’s single argument
as frozen, we restrict rewrites to the state kind, where they belong.

2.3 Rewriting Logic Deduction

Given R = (Σ, E, φ, R), the sentences that it proves are universally quantified
rewrites of the form, (∀X) t −→ t′, with t, t′ ∈ TΣ,E(X)k, for some kind k, which
are obtained by finite application of the following rules of deduction:

6 In general, prefix, infix, postfix, and general “mixfix” user-definable syntax is sup-
ported. In all cases except for prefix operators, each argument position is declared
with an underbar symbol; for example, the usual infix notation for addition would
be declared + , but here, since we use juxtaposition, no symbol is given between the
two underbars of the multiset union operator.

8

– Reflexivity. For each t ∈ TΣ(X),
(∀X) t −→ t

– Equality.
(∀X) u −→ v E ⊢ (∀X)u = u′ E ⊢ (∀X)v = v′

(∀X) u′ −→ v′

– Congruence. For each f : k1 . . . kn −→ k in Σ, with {1, . . . , n} − φ(f) =
{j1, . . . , jm}, with ti ∈ TΣ(X)ki

, 1 ≤ i ≤ n, and with t′jl
∈ TΣ(X)kjl

,
1 ≤ l ≤ m, (∀X) tj1 −→ t′j1 . . . (∀X) tjm

−→ t′jm

(∀X) f(t1, . . . , tj1 , . . . , tjm
, . . . , tn) −→ f(t1, . . . , t

′
j1

, . . . , t′jm
, . . . , tn)

– Replacement. For each θ : X −→ TΣ(Y) with, say, X = {x1, . . . , xn}, and
θ(xl) = pl, 1 ≤ l ≤ n, and for each rule in R of the form,

q : (∀X) t −→ t′ if (
∧

i

ui = u′
i) ∧ (

∧

j

vj : sj) ∧ (
∧

k

wk −→ w′
k)

with Z = {xj1 , . . . , xjm
} the set of unfrozen variables in t and t′, then,

(
∧

r

(∀Y) pjr
−→ p′jr

)

(
∧

i(∀Y) θ(ui) = θ(u′
i)) ∧ (

∧
j(∀Y) θ(vj) : sj) ∧ (

∧
k(∀Y) θ(wk) −→ θ(w′

k))

(∀Y) θ(t) −→ θ′(t′)

where for x ∈ X−Z, θ′(x) = θ(x), and for xjr
∈ Z, θ′(xjr

) = p′jr
, 1 ≤ r ≤ m.

– Transitivity (∀X) t1 −→ t2 (∀X) t2 −→ t3

(∀X) t1 −→ t3
We can visualize the above inference rules as follows:

Reflexivity

�
�

��

@
@

@@
t

-
�

�
��

@
@

@@
t

Equality
�

�
��

@
@

@@
u

-
�

�
��

@
@

@@
v

‖

�
�

��

@
@

@@
u

′ -

‖

�
�

��

@
@

@@
v

′

Congruence
f

�
��

�
�

A
A

Q
QQ.

�� AA �� AA �� AA �� AA

f

�
��

�
�

A
A

Q
QQ.

�� AA �� AA �� AA �� AA
� ��*� ��3

-

Replacement

�
��

@
@@

t

�� AA �� AA �� AA �� AA
.

�
��

@
@@

t
′

�� AA �� AA �� AA �� AA
.

� ��*� ��3

-

9

Transitivity

�
�

��

@
@

@@
t1

- �
�

��

@
@

@@
t3

�
�

��

@
@

@@
t2

@
@@R �

���

Intuitively, we should think of the above inference rules as different ways of
constructing all the (finitary) concurrent computations of the concurrent system
specified by R. The Reflexivity rule says that for any state t there is an idle
transition in which nothing changes. The Equality rule specifies that the states
are in fact equivalence classes modulo the equations E. The Congruence rule
is a very general form of “sideways parallelism,” so that each operator f can be
seen as a parallel state constructor, allowing its nonfrozen arguments to evolve in
parallel. The Replacement rule supports a different form of parallelism, which
could be called “parallelism under one’s feet,” since besides rewriting an instance
of a rule’s lefthand side to the corresponding righthand side instance, the state
fragments in the substitution of the rule’s variables can also be rewritten, pro-
vided the variables involved are not frozen. Finally, the Transitivity rule allows
us to build longer concurrent computations by composing them sequentially.

For a rewrite theory to be executable, so that the above inference rules can
be efficiently tool supported, some additional requirements should be met. First,
E should decompose as a union E = E0 ∪ A, with A a set of equational axioms
such as associativity, commutativity, identity, for which an effective matching
algorithm modulo A exists, and E0 a set of (ground) confluent and terminating7

for each term t by applying the equations in E0 modulo A to t until termination.
Second, the rules R should be coherent with E0 modulo A [86]; intuitively, this
means that, to get the effect of rewriting in equivalence classes modulo E, we
can always first simplify a term with the equations to its canonical form, and
then rewrite with a rule in R. Finally, the rules in R should be admissible [17],
meaning that in a rule of the form (♭), besides the variables appearing in t there
can be extra variables in t′, provided that they also appear in the condition and
that they can all be incrementally instantiated by either matching a pattern in
a “matching equation” or performing breadth first search in a rewrite condition
(see [17] for a detailed description of admissible equations and rules).

7 The termination condition may be dropped for programming language specifications
in which some equationally defined language constructs may not terminate. Even the
confluence modulo A may be relaxed, by restricting it to terms in some “observable
kinds” of interest. The point is that there may be some “unobservable” kinds for
which several different but semantically equivalent terms can be derived by equa-
tional simplification: all we need in practice is that the operations are confluent for
terms in an observable kind, such as that of values, so that a unique canonical form
is then reached for them if it exists.

10

2.4 Rewriting Logic’s Model Theory and Temporal Logic

Given a rewrite theory R = (Σ, E, φ, R), its R-reachability relation →R (also
called R-rewriting relation, or R-provability relation) is defined proof-theoretically,
for each kind k in Σ and each [t], [t′] ∈ TΣ/E,k, by the equivalence,

[t] →R [t′] ⇔ R ⊢ (∀∅) t −→ t′,

which by the Equality rule is independent of the choice of t, t′. Model-theoretically,
R-reachability can be defined as the family of relations, indexed by the kinds k
in Σ, interpreting the sorts Arrowk in the initial model of a membership equa-
tional theory Reach(R) axiomatizing the reachability models of the rewrite the-
ory R [13]. The initial reachability model is then the initial algebra TReach(R).
In particular, the one-step R-rewrite relations for each kind k are the exten-
sions in TReach(R) of subsorts Arrow1

k < Arrowk. We denote such a relation on
E-equivalence classes of terms with the notation [t] →1

R,k [t′]. Thus, a rewrite

theory R specifies for each kind k a transition system characterized by →1
R,k,

which can be made total by adding idle transitions for deadlock states, denoted
(→1

R,k)•. This is almost a Kripke structure: we still need to specify the state
predicates in a set of predicates Π. This can be done equationally, by choosing a
kind k as the kind of states, and giving equations defining when each predicate
p ∈ Π holds for a state [t] of sort k, thus getting a labeling function LΠ .

This way, we can associate to a rewrite theory R = (Σ, E, φ, R) with a desig-
nated kind k of states and state predicates Π, the Kripke structure (TΣ/E,k, (→1

R,k

)•, LΠ). We can then define the semantics of any temporal logic formula over
predicates Π in the usual way [16], for any desired temporal logic such as LTL,
CTL∗, the modal µ-calculus, and so on (see [44]). Furthermore, if the states
reachable from an initial state form a finite set, then we can model check such
formulas. Maude provides an explicit state LTL model checking for executable
rewrite theories with a performance comparable to that of SPIN [23].

Reachability models for a rewrite theory R are a special case of more general
true concurrency models, in which different concurrent computations from one
state to another correspond to equivalence classes of proofs in rewriting logic.
That is, concurrent computations are placed in bijective correspondence with
proofs in a Curry-Howard like equivalence. The paper [13] shows that initial
models exist for both reachability models and true concurrency models of a
rewrite theory R, and that both kinds of models make the rules of inference
of rewriting logic sound and complete. We denote by TReach(R), resp. TR, the
initial reachability, resp. true-concurrency, model of a rewrite theory R.

2.5 Specifying Concurrency Models and Programming Languages

Because rewriting logic is neutral about concurrency constructs, it is a general
semantic framework for concurrency that can express many concurrency models
such as: equational programming, which is the special case of rewrite theories
whose set of rules is empty and whose equations are Church-Rosser, possibly
modulo some axioms A; lambda calculi and combinatory reduction systems

11

[40, 38, 71, 68]; labeled transition systems [40]; grammars and string-rewriting
systems [40]; Petri nets, including place/transition nets, contextual nets, alge-
braic nets, colored nets, and timed Petri nets [40, 42, 69, 72, 59, 67]; Gamma and
the Chemical Abstract Machine [40]; CCS and LOTOS [47, 39, 14, 22, 82, 81, 83,
79]; the π calculus [84, 68, 77]; concurrent objects and actors [40, 41, 75, 76]; the
UNITY language [40]; concurrent graph rewriting [42]; dataflow [42]; neural net-
works [42]; real-time systems, including timed automata, timed transition sys-
tems, hybrid automata, and timed Petri nets [59, 58]; and the tile logic [28] model
of synchronized concurrent computation [48, 12].

Since the above are typically executable, rewriting logic is a flexible oper-
ational semantic framework to specify such models. What is not immediately
apparent is that it is also a flexible mathematical semantic framework for concur-
rency models. Well-known models of concurrency are isomorphic to the initial
model TR of the rewrite theory R axiomatizing that particular model, or at
least closely related to such an initial model: [38] shows that for rewrite theories
R = (Σ, ∅, φ, R) with the rules R left-linear, TR is isomorphic to a model based
on residuals and permutation equivalence proposed by Boudol [6], and also that
for R a rewrite theory of an orthogonal combinatory reduction system, including
the λ-calculus, a quotient of TR is isomorphic to a well-known model of parallel
reductions; [72] shows that for R a rewrite theory of a place/transition net, TR
is isomorphic to the Best-Devillers net process model [4] and then generalizes
this isomorphism to one between TR and a Best-Devillers-like model for the
rewrite theory of an algebraic net; [14, 22] show that for R axiomatizing CCS,
a truly concurrent semantics causal model based on proved transition systems
is isomorphic to a quotient of TR; [49] shows that for R axiomatizing a concur-
rent object-oriented system satisfying reasonable requirements, a subcategory
of TR is isomorphic to a partial order of events model which, for asynchronous
object systems corresponding to actors, coincides with the finitary part of the
Baker-Hewitt partial order of events model [1].

All the above remarks apply also to the specification of programming lan-
guages, which often implement specific concurrency models. In particular, both
an operational semantics and a denotational semantics are provided for a lan-
guage when it is specified as a rewrite theory. How is this generally done? We
can define the semantics of a concurrent programming language, say L, by spec-
ifying a rewrite theory, say RL = (ΣL, EL, φL, RL), where ΣL is L’s syntax and
the auxiliary operators (store, environment, etc.), EL specifies the semantics
of all the deterministic features of L and of the auxiliary semantic operations,
the frozenness information φL specifies what arguments can be rewritten with
rules for each operator, and the rewrite rules RL specify the semantics of all the
concurrent features of L. Section 3 does exactly this.

3 Specifying Deterministic and Concurrent Features

In this section we illustrate the rewriting logic semantics techniques advocated in
this paper on a nontrivial Caml-like programming language. We show how sev-
eral important programming language features, such as arithmetic and boolean

12

expressions, conditional statements, high-order functions, lists, let bindings, re-
cursion with let rec, side effects via variable assignments, blocks and loops,
exceptions, and concurrency via threads and synchronization, can be succinctly,
modularly and efficiently defined in rewriting logic. What we present in this
section should be regarded as one possible way to define this language, a way
which is by no means unique or optimal. The various features are shown in the
following diagram:

LANGUAGE

ASSIGNMENT BLOCK FUNCTION

LET LETREC

ARITHMETIC−EXP

GENERIC−EXP

BOOLEAN−EXP THREAD

IDINT

IF LIST LOOP EXCEPTION

BINDING

INT is a Maude builtin module defining arbitrary precision integers; ID defines
identifiers as well as comma-separated lists of identifiers; GENERIC-EXP defines a
special sort for expressions as well as comma-separated lists of such expressions;
ARITHMETIC-EXP adds arithmetic operators, such as addition, multiplication,
etc., and BOOLEAN-EXP adds boolean expressions; the latter are further used to
define conditionals, loops and lists (lists contain an empty list check); BINDINGS
defines bindings as special lists of pairs “identifier = expression”, which are fur-
ther needed to define both LET and LETREC; ASSIGNMENT defines variable assign-
ments; BLOCK defines blocks enclosed with curly brackets “{” and “}” containing
sequences of expressions separated by semicolon “;” (blocks are used for their
side effects); FUNCTION defines high order functions, in a Caml style; EXCEPTION
defines exceptions using try ... catch ... and throw ... keywords, where
the “catch” part is supposed to evaluate to a function of one argument, to which
a value can be “thrown” from the “try” part; THREAD defines new threads which
can be created and destroyed dynamically; finally, LANGUAGE creates the desired
programming language by putting all the features together. Each of the above
has a syntactic and a semantic part, each specified as a Maude module. The
entire Maude specification has less than 400 lines of code.

3.1 Defining the Syntax and Desugaring

Here we show how to define the syntax of a programming language in Maude, to-
gether with several simple desugaring translations that will later simplify the se-
mantic definitions, such as translations of “for” loops into “while” loops. We first
define identifiers, which add to Maude’s builtin quoted identifiers (QID) several
common (unquoted) one-character identifiers, together with comma-separated
lists of identifiers that will be needed later:

13

fmod ID is protecting QID .
sorts Id IdList . subsorts Qid < Id < IdList .
ops a b c d e f g h i j k l m n o p q r s t u v x y z w : -> Id .
op nil : -> IdList .
op _,_ : IdList IdList -> IdList [assoc id: nil prec 1] .

endfm

The attribute “prec 1” assigns a precedence to the comma operator, to
avoid using unnecessary parentheses: the lower the precedence of an operator the
tighter the binding. We next define generic expressions, including for now integers
and white-space-separated sequences of “names”, where a name is either an
identifier or the special symbol “()”. Sequences of names and comma-separated
lists of expressions will be needed later to define lists and bindings and function
declarations, respectively. The attribute “gather(E e)” states that the name
sequencing operator is left associative and the “ditto” attribute states that the
current operation inherits all the attributes of an operation with the same name
and kind arrity previously defined (in our case the comma operator in ID):

fmod GENERIC-EXP-SYNTAX is protecting ID . protecting INT .
sorts Unit Name NameSeq Exp ExpList .
subsorts Unit Id < Name < NameSeq < Exp < ExpList .
subsort Int < Exp . subsort IdList < ExpList .
op ‘(‘) : -> Unit .
op __ : NameSeq NameSeq -> NameSeq [gather(E e) prec 1] .
op _,_ : ExpList ExpList -> ExpList [ditto] .

endfm

The rest of the syntax adds new expressions to the language modularly. The
next four modules add arithmetic, boolean, conditional and list expressions. Note
that in the LIST module, the list constructor takes a comma-separated list of
expressions and returns an expression:

fmod ARITHMETIC-EXP-SYNTAX is extending GENERIC-EXP-SYNTAX .
ops _+_ _-_ _*_ : Exp Exp -> Exp [ditto] .
ops _/_ _%_ : Exp Exp -> Exp [prec 31] .

endfm

fmod BOOLEAN-EXP-SYNTAX is extending GENERIC-EXP-SYNTAX .
ops _==_ _<=_ _>=_ _<_ _>_ _and_ _or_ : Exp Exp -> Exp .
op not_ : Exp -> Exp .

endfm

fmod IF-SYNTAX is extending GENERIC-EXP-SYNTAX .
op if_then_else_ : Exp Exp Exp -> Exp .

endfm

fmod LIST-SYNTAX is extending GENERIC-EXP-SYNTAX .
op list : ExpList -> Exp .
ops car cdr null? : Exp -> Exp .
op cons : Exp Exp -> Exp .

endfm

We next define functions. Like in Caml, we want to define functions using a
syntax like “fun x y z -> x + y * z”. However, “fun x y z -> ...” is syn-
tactic sugar for “fun x -> fun y -> fun z -> ...”, so to keep the semantics
simple later we prefer to consider this uncurrying transformation as part of the
syntax. Function application simply extends the name sequencing operator:

fmod FUNCTION-SYNTAX is extending GENERIC-EXP-SYNTAX .
op fun_->_ : NameSeq Exp -> Exp .
op __ : Exp Exp -> Exp [ditto] .
var Zs : NameSeq . var Z : Name . var E : Exp .
eq fun Zs Z -> E = fun Zs -> fun Z -> E .

endfm

14

Bindings of names to values are crucial in any functional programming lan-
guage. Like in Caml, in our language bindings are “and”-separated pairs of equal-
ities. However, note that “f x y z = ...” is just syntactic sugar for “f = fun

x y z -> ...”. Since the semantics of bindings will involve allocation of new
memory locations for the bound identifiers, it will be very helpful to know up-
front the number and the list of identifiers. Two equations take care of this:

fmod BINDING-SYNTAX is extending FUNCTION-SYNTAX .
sorts Binding Bindings . subsort Binding < Bindings .
op _and_ : Bindings Bindings -> Bindings [assoc prec 100] .
op ‘(_,_,_‘) : Nat IdList ExpList -> Bindings .
op _=_ : NameSeq Exp -> Binding .
var Zs : NameSeq . var Z : Name . var X : Id . var E : Exp .
vars N N’ : Nat . vars Xl Xl’ : IdList . vars El El’ : ExpList .
eq (Zs Z = E) = (Zs = fun Z -> E) .
eq (X = E) = (1, X, E) .
eq (N, Xl, El) and (N’, Xl’, El’) = (N + N’, (Xl,Xl’), (El,El’)) .

endfm

We can now define the two major binding language constructors, namely “let”
and “let rec”, the later typically being used to define recursive functions:

fmod LET-SYNTAX is extending BINDING-SYNTAX .
op let_in_ : Bindings Exp -> Exp .

endfm

fmod LETREC-SYNTAX is extending BINDING-SYNTAX .
op let rec_in_ : Bindings Exp -> Exp .

endfm

We next add several imperative features, such as variable assignment, blocks
and loops. The variable assignment assumes the identifier already allocated at
some location, and just changes the value stored at that location. Both “for”
and “while” loops are allowed, but the former ones are immediately desugared:

fmod ASSIGNMENT-SYNTAX is extending GENERIC-EXP-SYNTAX .
op _:=_ : Name Exp -> Exp .

endfm

fmod BLOCK-SYNTAX is extending GENERIC-EXP-SYNTAX .
sort ExpBlock . subsort Exp < ExpBlock .
op _;_ : ExpBlock ExpBlock -> ExpBlock [assoc prec 100] .
op {_} : ExpBlock -> Exp .

endfm

fmod LOOP-SYNTAX is extending BLOCK-SYNTAX .
op while__ : Exp Exp -> Exp .
op for(_;_;_)_ : Exp Exp Exp Exp -> Exp .
vars Start Cond Step Body : Exp .
eq for(Start ; Cond ; Step) Body = {Start ; while Cond {Body ; Step}} .

endfm

We next add syntax for two important features, exceptions and threads:

fmod EXCEPTION-SYNTAX is extending GENERIC-EXP-SYNTAX .
op try_catch_ : Exp Exp -> Exp .
op throw_ : Exp -> Exp .

endfm

fmod THREAD-SYNTAX is extending GENERIC-EXP-SYNTAX .
ops spawn_ lock acquire_ release_ : Exp -> Exp .

endfm

15

We can now put all the syntax together, noticing that the syntax modules of
most of the features above are independent from each other, so one can easily
reuse them to build other languages, using Maude 2.01’s renaming facility to
adapt each module to the concrete syntax of the chosen language:

fmod LANGUAGE-SYNTAX is extending ARITHMETIC-EXP-SYNTAX . extending BOOLEAN-EXP-SYNTAX .
extending IF-SYNTAX . extending FUNCTION-SYNTAX . extending LIST-SYNTAX .
extending LET-SYNTAX . extending LETREC-SYNTAX . extending ASSIGNMENT-SYNTAX .
extending LOOP-SYNTAX . extending EXCEPTION-SYNTAX . extending THREAD-SYNTAX .

endfm

One can now parse programs using Maude’s “parse” command. For example,
the following program recursively calculating the product of elements in a list,
will correctly parse as “Exp”. Note that this program uses an exception to im-
mediately return 0 whenever a 0 is encountered in the input list.

parse
let p l = try let rec a l = if null?(l) then 1

else if car(l) == 0 then throw 0
else car(l) * (a cdr(l))

in a l catch fun x -> x
in p list(1,2,3,4,5,6,7,8,9,0,10,11,12,13,14,15,16,17,18,19,20)

.

3.2 Defining the State Infrastructure

Before defining the semantics of a programming language, one needs to define the
notion of programming language state. There are different possibilities to design
the state needed to give semantics to a language, depending on its complexity
and one’s taste. However, any language worth its salt supports identifiers that are
bound to values; since our language has side effects (due to variable assignments),
we need to split the mapping of identifiers to values into a map of identifiers to
locations, called an environment, and a map of locations to values, called a store.

Let us first define locations. A location is essentially an integer; to keep it
distinct from other integers, we wrap it with the constructor “loc”. An auxiliary
operation creating a given number of locations starting with a given one will be
very useful when defining bindings and functions, so we provide it here.

fmod LOCATION is protecting INT .
sorts Location LocationList . subsort Location < LocationList .
op loc : Nat -> Location .
op nil : -> LocationList .
op _,_ : LocationList LocationList -> LocationList [assoc id: nil] .
op locs : Nat Nat -> LocationList .
eq locs(N:Nat,0) = nil .
eq locs(N:Nat,#:Nat) = loc(N:Nat), locs(N:Nat + 1, #:Nat - 1) .

endfm

An elegant and efficient way to define a mapping in Maude is as a set of pairs
formed with an associative (A) and commutative (C) union operator || with
identity (I) empty. Then environments can be defined as below. Note the use of
ACI matching to evaluate or update an environment at an identifier, so that one
does not need to traverse the entire set in order to find the desired element:

fmod ENVIRONMENT is protecting ID . protecting LOCATION .
sort Env .
op empty : -> Env .
op [_,_] : Id Location -> Env .
op _||_ : Env Env -> Env [assoc comm id: empty] .

16

op _[_<-_] : Env IdList LocationList -> Env .
vars Env : Env . vars L L’ : Location . var Xl : IdList . var Ll : LocationList .
eq Env[nil <- nil] = Env .
eq ([X:Id,L] || Env)[X:Id,Xl <- L’,Ll] = ([X:Id,L’] || Env)[Xl <- Ll] .
eq Env[X:Id,Xl <- L,Ll] = (Env || [X:Id,L])[Xl <- Ll] [owise] .

endfm

Values and stores can be defined in a similar way. Since we want our modules to
be as independent as possible, to be reused for defining other languages, we prefer
to not state at this moment the particular values that our language handles, such
as integers, booleans, functions (i.e., closures), etc.. Instead, we define the values
when they are first needed within the semantics. However, since lists of values
are frequently used for various reasons, we believe that many languages need
them so we introduce them as part of the VALUE module:

fmod VALUE is sorts Value ValueList . subsort Value < ValueList .
op noValue : -> Value .
op nil : -> ValueList .
op _,_ : ValueList ValueList -> ValueList [assoc id: nil] .
op [_] : ValueList -> Value .

endfm

fmod STORE is protecting LOCATION . protecting VALUE .
sort Store .
op empty : -> Store .
op [_,_] : Location Value -> Store .
op _||_ : Store Store -> Store [assoc comm id: empty] .
op _[_<-_] : Store LocationList ValueList -> Store .
var L : Location . var M : Store . vars V V’ : Value .
var Ll : LocationList . var Vl : ValueList .
eq M[nil <- nil] = M .
eq ([L,V] || M)[L,Ll <- V’,Vl] = ([L,V’] || M)[Ll <- Vl] .
eq M[L,Ll <- V’,Vl] = (M || [L,V’])[Ll <- Vl] [owise] .

endfm

Since our language has complex control-context constructs, such as exceptions
and threads, we follow a continuation passing style (CPS) definitional methodol-
ogy (see [62] for a discussion on several independent discoveries of continuations).
The use of continuations seems to be novel in the context of semantic language
definitions based on algebraic specification techniques. We have found contin-
uations to be very useful in several of our programming language definitions,
not only because they allow us to easily and naturally handle complex control-
related constructs, but especially because they lead to an increased efficiency in
simulations and formal analysis, sometimes more than an order of magnitude
faster than using other techniques. Like for values, at this moment we prefer to
avoid defining any particular continuation items; we only define the “stop” con-
tinuation, which will stop the computation, together with the essential operator
stacking continuation items on top of an existing continuation:

fmod CONTINUATION is sorts Continuation ContinuationItem .
op stop : -> Continuation .
op _->_ : ContinuationItem Continuation -> Continuation .

endfm

We are now ready to put all the state infrastructure together and to define the
state of a program in our language. A key decision in our definitional methodol-
ogy is to consider states as sets of state attributes, which can be further nested
at any degree required by the particular language definition. This way, the se-
mantic equations and rules will be local, and will only have to mention those

17

state attributes that are needed to define the semantics of a specific feature,
thus increasing the clarity, modularity and efficiency of language definitions.
The following specifies several state attributes, which are so common in mod-
ern languages that we define them as part of the generic state module. Other
attributes will be defined later, as needed by specific language features.

fmod STATE is sorts StateAttribute LState . subsort StateAttribute < LState .
extending ENVIRONMENT . extending STORE . extending CONTINUATION .
op empty : -> LState .
op _||_ : LState LState -> LState [assoc comm id: empty] .
op k : Continuation -> StateAttribute .
op n : Nat -> StateAttribute .
op m : Store -> StateAttribute .
op t : LState -> StateAttribute .
op e : Env -> StateAttribute .
op x : Continuation -> StateAttribute .

endfm

“k” wraps a continuation, “n” keeps the current free memory location, “m” the
store, or “memory”, “t” the state of a thread, “e” the execution environment
of a thread, so it will be part of the state of a thread, and “x” a continuation of
exceptions that will also be part of a thread’s state. A typical state of a program
in our language will have the following structure,

t(k(...) || e(...) || x(...) || ...) || ... || t(k(...) || e(...) || x(...) || ...) ||
...
n(N) ||
m(...) ||
...

where the local states of one or more threads are wrapped as global state at-
tributes using constructors t(...), where N is a number for the next free loca-
tion, and m(...) keeps the store. Other state attributes can be added as needed,
both inside threads and at the top level. Indeed, we will add top state attributes
storing the locks that are taken by threads, and thread local attributes stat-
ing how many times each lock is taken by that thread. An important aspect
of our semantic definitions, facilitated by Maude’s ACI-matching capabilities, is
that programming language features will be defined modularly, by referring to
only those attributes that are needed. As we can see below, most of the semantic
axioms refer to only one continuation! This way, one can add new features requir-
ing new state attributes, without having to change the already existing semantic
definitions. Moreover, equations and/or rules can be applied concurrently, thus
increasing the efficiency of our interpreters and tools.

3.3 Defining the Semantics

The general intuition underlying CPS language definitions is that control-contexts
become data-contexts, so they are manipulated like any other piece of data. Each
continuation contains a sequence of execution obligations, which are stacked and
processed accordingly. At each moment there is exactly one expression to be pro-
cessed, namely the topmost expression in the stack. The following module gives
CPS-semantics to generic expressions, that is, integers, identifiers, and lists of
expressions. Integer values and several continuation items are needed:

18

mod GENERIC-EXP-SEMANTICS is protecting GENERIC-EXP-SYNTAX . extending STATE .
op int : Int -> Value .
op _->_ : ExpList Continuation -> Continuation .
op _->_ : ValueList Continuation -> Continuation .
op _->_ : Env Continuation -> Continuation .
var I : Int . var K : Continuation . var X : Id . vars Env Env’ : Env .
var L : Location . var V : Value . var Vl : ValueList .
var M : Store . var E : Exp . var El : ExpList . var R : LState .
eq k(I -> K) = k(int(I) -> K) .
eq k(() -> K) = k((nil).ValueList -> K) .
rl t(k(X -> K) || e([X,L] || Env) || R) || m([L,V] || M) =>

t(k(V -> K) || e([X,L] || Env) || R) || m([L,V] || M) .
ceq k((E,El) -> K) = k(E -> El -> K) if El =/= nil .
eq k(V -> El -> K) = k(El -> V -> K) .
eq k(Vl -> V -> K) = k(V,Vl -> K) .
eq k(V -> Env -> K) || e(Env’) = k(V -> K) || e(Env) .

endm

The definitions above deserve some discussion. A continuation of the form “E
-> K” should be read and thought of as one “containing E followed by the rest
of the computation/continuation K”, and one of the form “V -> K” as one which
“calculated V as the result of the previous expression at the top, but still has to
process the computation/continuation K”. Thus the first two equations above are
clear. Similarly, a continuation “Env -> K” states that the current environment
should be set to Env; this is needed in order to recover environments after pro-
cessing bindings or function invocations. In fact, environments only need to be
restored after a value is calculated in the modified environment; the last equa-
tion does exactly that. The other three equations process a list of expressions
incrementally, returning a continuation containing a list of values at the top;
note that, again, exactly one expression is processed at each moment.

The trickiest axiom in the above module is the rewriting rule, fetching the
value associated to an identifier. It heavily exploits ACI matching and can in-
tuitively be read as follows: if there is any thread whose continuation contains
an identifier X at the top, whose environment maps X to a location L, and whose
rest of resources R are not important, if V is the value associated to L in the
store (note that the store is not part of any thread, because it is shared by all of
them) then simply return V, the value associate to X, on top of the continuation;
the rest of the computation K will know what to do with V. It is very important
to note that this must be a rule! This is because the variable X may be shared by
several threads, some of them potentially writing it via a variable assignment, so
a variable read reflects a concurrent aspect of our programming language, whose
behavior may depend upon the behavior of other threads.

The CPS semantics of arithmetic and boolean operators is straightforward:
first place the operation to be performed in the continuation, then the expressions
involved as a list in the desired order of evaluation (they can have side effects);
after they are evaluated to a corresponding list of values, replace them by the
result of the corresponding arithmetic or boolean operator. Note that a new type
of value is needed for booleans:

fmod ARITHMETIC-EXP-SEMANTICS is extending ARITHMETIC-EXP-SYNTAX .
extending GENERIC-EXP-SEMANTICS .
ops + - * / % : -> ContinuationItem .
vars E E’ : Exp . vars I I’ : Int . var K : Continuation .

19

eq k(E + E’ -> K) = k((E,E’) -> + -> K) .
eq k((int(I), int(I’)) -> + -> K) = k(int(I + I’) -> K) .

*** -, *, /, % are defined similarly
endfm
fmod BOOLEAN-EXP-SEMANTICS is protecting BOOLEAN-EXP-SYNTAX .

extending ARITHMETIC-EXP-SEMANTICS .
op bool : Bool -> Value .
ops == >= <= > < and or not : -> ContinuationItem .
vars E E’ : Exp . var K : Continuation . vars I I’ : Int . vars B B’ : Bool .
eq k((E > E’) -> K) = k((E,E’) -> > -> K) .
eq k((int(I),int(I’)) -> > -> K) = k(bool(I > I’) -> K) .

*** ==, >=, <=, < are defined similarly
eq k((E and E’) -> K) = k((E,E’) -> and -> K) .
eq k((bool(B),bool(B’)) -> and -> K) = k(bool(B and B’) -> K) .

*** ‘or’ and ‘not’ are defined similarly
endfm

The CPS semantics of conditionals “if BE then E else E’”is immediate: freeze
E and E’ in the current continuation K and then place BE on top and let it evalu-
ate to a boolean value; then, depending upon the boolean value, unfreeze either
E or E’ and continue the computation. Note that a Maude “runtime error”, i.e.,
a non-reducible term acting as a “core dump”, will be obtained if BE does not
evaluate to a boolean value. In fact, our programming language can be seen as a
dynamically typed language; as shown in the lecture notes in [63], it is actually
not hard to define static type checkers, but we do not discuss this aspect here:

fmod IF-SEMANTICS is protecting IF-SYNTAX . extending BOOLEAN-EXP-SEMANTICS .
op if : Exp Exp -> ContinuationItem .
vars BE E E’ : Exp . var K : Continuation . var B : Bool .
eq k((if BE then E else E’) -> K) = k(BE -> if(E,E’) -> K) .
eq k(bool(B) -> if(E,E’) -> K) = k(if B then E else E’ fi -> K) .

endfm

Following the same CPS intuitions, the semantics of lists follows easily:

fmod LIST-SEMANTICS is protecting LIST-SYNTAX .
extending BOOLEAN-EXP-SEMANTICS .
ops list car cdr cons null? : -> ContinuationItem .
var E E’ : Exp . var El : ExpList . var K : Continuation .
var V : Value . var Vl : ValueList . var Env : Env .
eq k(list(El) -> K) = k(El -> list -> K) . eq k(Vl -> list -> K) = k([Vl] -> K) .
eq k(car(E) -> K) = k(E -> car -> K) . eq k([V,Vl] -> car -> K) = k(V -> K) .

*** ‘cdr’, ‘cons’ and ‘null’ are defined similarly
endfm

Due to the simplifying rule in FUNCTION-SYNTAX, we only need to worry about
giving semantics to functions of one argument, which can be either an identifier
or “()”. Since our language is statically scoped, we need to introduce a new value
for closures, freezing the declaration environment of a function (1st equation).
Function applications are defined as usual, by first evaluating the two expressions
involved, the first being expected to evaluate to a closure, and then applying the
first value to the second (a new continuation item, “apply” is needed). Two
cases are distinguished here, when the argument of the function is the unit “()”
or when it is an identifier X. In both cases the current environment is stored in
the continuation, to be recovered later (after the evaluation of the body of the
function) via the last equation in GENERIC-EXP-SEMANTICS, and the body of the
function is evaluated in its declaration environment, that is frozen in the closure.
When the function has an argument, a new location also needs to be created.

fmod FUNCTION-SEMANTICS is protecting FUNCTION-SYNTAX . extending GENERIC-EXP-SEMANTICS .
op cl : Name Exp Env -> Value .

20

op apply : -> ContinuationItem .
var A : Name . vars F E : Exp . var K : Continuation . vars Env Env’ : Env .
var X : Id . var N : Nat . var R : LState . var V : Value . var M : Store .
eq k((fun A -> E) -> K) || e(Env) = k(cl(A,E,Env) -> K) || e(Env) .
eq k(F E -> K) = k(F,E -> apply -> K) .
eq k((cl((),E,Env), nil) -> apply -> K) || e(Env’) = k(E -> Env’ -> K) || e(Env) .
eq t(k((cl(X,E,Env), V) -> apply -> K) || e(Env’) || R) || n(N) || m(M) =

t(k(E -> Env’ -> K) || e(Env[X <- loc(N)]) || R) || n(N + 1) || m(M[loc(N) <- V]) .
endfm

LET and LETREC create new memory locations and change the execution environ-
ment. With the provided infrastructure, they are however quite easy to define.
Note first that the desugaring translation in the module BINDING-SYNTAX reduces
any list of bindings to a triple (#,Xl,El), where # is the number of bindings, Xl
is the list of identifiers to be bound, and El is the list of corresponding binding
expressions. If let (#,Xl,El) in E is the current expression at the top of the
continuation of a thread whose current environment is Env and whose rest of
resources is R, and if N is the next available location (this is a global counter),
then the CPS semantics works intuitively as follows: (1) freeze the current envi-
ronment in the continuation, to be restored after the evaluation of E; (2) place E

in the continuation; (3) generate # fresh locations and place in the continuation
data-structure the information that these locations will be assigned to the iden-
tifiers in Xl at the appropriate moment, using an appropriate continuation item;
(4) place the expressions El on top of the continuation; (5) once El is evaluated
to a list of values Vl, they are stored at the new locations and the environment
of the thread is modified accordingly, preparing for the evaluation of E; (6) af-
ter E is evaluated, the original environment will be restored, thanks to (1) and
the last equation in GENERIC-EXP-SEMANTICS. All these technical steps can be
compactly expressed with only two equations, again relying heavily on the ACI
matching capabilities of Maude. Note that, despite their heavy use of memory,
these equations do not need to be rules, because they can be executed deter-
ministically regardless of the behavior of other threads. The fact that threads
“compete” on the counter for the next available location N is immaterial, because
there is no program whose behavior is influenced by which thread grabs N first.

fmod LET-SEMANTICS is protecting LET-SYNTAX . extending GENERIC-EXP-SEMANTICS .
op ‘(_,_‘) : IdList LocationList -> ContinuationItem .
vars # N : Nat . var Xl : IdList . var El : ExpList . var E : Exp .
var K : Continuation . var Env : Env . var R : LState . var M : Store .
var Ll : LocationList . var Vl : ValueList .
eq t(k(let (#,Xl,El) in E -> K) || e(Env) || R) || n(N) =

t(k(El -> (Xl,locs(N,#)) -> E -> Env -> K) || e(Env) || R) || n(N + #) .
eq t(k(Vl -> (Xl,Ll) -> K) || e(Env) || R) || m(M) =

t(k(K) || e(Env[Xl <- Ll]) || R) || m(M[Ll <- Vl]) .
endfm

The let rec construct gives a statically scoped language an enormous power
by allowing one to define recursive functions. Semantically, the crucial difference
between let and let rec is that the latter evaluates the bindings expressions El
in the modified environment rather than in the original environment. Therefore,
one first creates the new environment by mapping Xl to # fresh locations, then
evaluates El, then stores their values at the new locations, then evaluates E and
then restores the environment. This way, functions declared with let rec see
each other’s names in their closures, so they can call each other:

21

fmod LETREC-SEMANTICS is protecting LETREC-SYNTAX . extending GENERIC-EXP-SEMANTICS .
op _->_ : LocationList Continuation -> Continuation .
vars # N : Nat . var Xl : IdList . var El : ExpList . var E : Exp .
var K : Continuation . var Env : Env . var R : LState . var M : Store .
var Ll : LocationList . var Vl : ValueList .
eq t(k(let rec (#,Xl,El) in E -> K) || e(Env) || R) || n(N) =

t(k(El -> locs(N,#) -> E -> Env -> K) || e(Env[Xl <- locs(N,#)]) || R) || n(N + #) .
eq t(k(Vl -> Ll -> K) || R) || m(M) = t(k(K) || R) || m(M[Ll <- Vl]) .

endfm

So far, none of the language constructs had side effects. Variable assignments,
X := E, evaluate E and store its value at the existing location of X. Therefore, X
is expected to have been previously bound, otherwise a “runtime error” will be
reported. It is very important that the actual writing of the value is performed
using a rewriting rule, not an equation! This is because variable writing is a
concurrent action, potentially influencing the execution of other threads that
may read that variable. To distinguish this concurrent value writing from the
value writing that occurred as part of the semantics of let rec, defined using the
last equation in the module LETREC-SEMANTICS, we use a different continuation
constructor for placing a location on a continuation (“L => K”):

mod ASSIGNMENT-SEMANTICS is extending ASSIGNMENT-SYNTAX .
extending GENERIC-EXP-SEMANTICS .
var X : Name . var E : Exp . var Env : Env . var K : Continuation .
var L : Location . var V : Value . var M : Store . var R : LState .
op _=>_ : Location Continuation -> Continuation .
eq k((X := E) -> K) || e([X,L] || Env) = k(E -> L => noValue -> K) || e([X,L] || Env) .
rl t(k(V -> L => K) || R) || m(M) => t(k(K) || R) || m(M[L <- V]) .

endm

Blocks are quite straightforward: the semicolon-separated expressions are evalu-
ated in order and the result of the evaluation of the block is the value of the last
expression; the values of the other expressions except the last one are ignored.
Therefore, the expressions in a block are used for their side effects:

fmod BLOCK-SEMANTICS is extending BLOCK-SYNTAX . extending GENERIC-EXP-SEMANTICS .
op ignore : -> ContinuationItem .
var E : Exp . var Eb : ExpBlock . var K : Continuation . var V : Value .
eq k({E} -> K) = k(E -> K) .
eq k({E ; Eb} -> K) = k(E -> ignore -> {Eb} -> K) .
eq k(V -> ignore -> K) = k(K) .

endfm

There is nothing special in the CPS semantics of loops: the body of the loop
followed by its condition are placed on top of the continuation at each iteration,
and the loop is terminated when the condition becomes false. The evaluation of
loops returns no value, so loops are also used just for their side effects:

fmod LOOP-SEMANTICS is extending LOOP-SYNTAX . extending BOOLEAN-EXP-SEMANTICS .
op while(_,_) : Exp Exp -> ContinuationItem .
vars BE E : Exp . var Vl : ValueList . var K : Continuation .
eq k((while BE E) -> K) = k(BE -> while(BE,E) -> K) .
eq k((Vl,bool(true)) -> while(BE,E) -> K) = k((E,BE) -> while(BE,E) -> K) .
eq k((Vl,bool(false)) -> while(BE,E) -> K) = k(noValue -> K) .

endfm

We next define the semantics of exceptions. Whenever an expression of the form
try E catch E’ is encountered, E’ is first evaluated. Then E is evaluated; if
throw(E’’) is encountered during the evaluation of E, then the entire control
context within E is immediately discarded and the value of E’’ is passed to

22

E’, which was previously supposed to evaluate to a function; if no exception
is thrown during the evaluation of E, then E’ is discarded and the value of E
is returned as the value of try E catch E’. An interesting technicality here
is that the above mechanism can be elegantly implemented by maintaining an
additional continuation within each thread, wrapped within “x(...)”, freezing
and stacking the control contexts, i.e., the continuations, at the times when the
try E catch E’ expressions are encountered (note that these can be nested):

fmod EXCEPTION-SEMANTICS is protecting EXCEPTION-SYNTAX . extending FUNCTION-SEMANTICS .
op try : Exp -> ContinuationItem .
op popx : -> Continuation .
op ‘(_,_‘) : Value Continuation -> ContinuationItem .
op throw : -> ContinuationItem .
vars E E’ : Exp . vars K K’ EX : Continuation . vars V V’ : Value .
eq k(try E catch E’ -> K) = k(E’ -> try(E) -> K) .
eq k(V’ -> try(E) -> K) || x(EX) = k(E -> popx) || x((V’,K) -> EX) .
eq k(V -> popx) || x((V’,K) -> EX) = k(V -> K) || x(EX) .
eq k(throw(E) -> K) = k(E -> throw -> K) .
eq k(V -> throw -> K’) || x((V’,K) -> EX) = k((V’,V) -> apply -> K) || x(EX) .

endfm

The only feature left to define is threads. In what follows we assume that one
already has a definition for sets of integers with membership, INT-SET, and one
for sets of pairs of integers, COUNTER-SET. Both of these are trivial to define, so we
do not discuss them here. The former will be used to store all the synchronization
objects, or locks, that are already acquired, and the latter to store how many
times a thread has acquired a lock, so that it knows how many times it needs to
release it. These are wrapped as program state attributes:

mod THREAD-SEMANTICS is protecting THREAD-SYNTAX . extending GENERIC-EXP-SEMANTICS .
protecting INT-SET . protecting COUNTER-SET .
op c : CounterSet -> StateAttribute .
op b : IntSet -> StateAttribute .

A new type of value is needed, namely one for locks. A lock is just an integer,
which is wrapped with lockv to keep it distinct from other integer values:

op lockv : Int -> Value .

Newly created threads are executed for their side effects. At the end of their
execution, threads release their locks and kill themselves. Therefore, we introduce
a new continuation, die, to distinguish the termination of a thread from the
termination of the main program. The creation of a new thread is a no value
operation. The new thread inherits the execution environment from its parent:

op die : -> Continuation .
ops lock acquire release : -> ContinuationItem .
var E : Exp . var K : Continuation . var Env : Env . var R : LState . var I : Int .
var V : Value . var Cs : CounterSet . var Is : IntSet . var N : Nat . var Nz : NzNat .
eq t(k(spawn(E) -> K) || e(Env) || R) = t(k(noValue -> K) || e(Env) || R) ||

t(k(E -> die) || e(Env) || x(stop) || c(empty)) .
eq t(k(V -> die) || c([I,N] || Cs) || R) || b(I || Is) =

t(k(V -> die) || c(Cs) || R) || b(Is) .
eq t(k(V -> die) || c(empty) || R) = empty .

Locks are values which can be handled like any other values in the language. In
particular, they can be passed to and returned as results of functions; lock(E)
evaluates E to an integer value I and then generates the value lockv(I):

eq k(lock(E) -> K) = k(E -> lock -> K) .
eq k(int(I) -> lock -> K) = k(lockv(I) -> K) .

23

Acquiring a lock needs to distinguish two cases. If the current thread already
has the lock, reflected in the fact that it has a counter associated to that lock,
then it just needs to increment that counter. This operation is not influenced by,
and does not influence, the execution of other threads, so it can be defined using
an ordinary equation. The other case, when a thread wants to acquire a lock
which it does not hold already, needs to be a rewriting rule for obvious reasons:
the execution of other threads may be influenced, so the global behavior of the
program may be influenced. Once the new lock is taken, a thread local counter
is created and initialized to 0, and the lock is declared “busy” in b(...). This
rule is conditional, in that the lock can be acquired only if it is not busy:

eq k(acquire(E) -> K) = k(E -> acquire -> K) .
eq k(lockv(I) -> acquire -> K) || c([I, N] || Cs) =

k(noValue -> K) || c([I, N + 1] || Cs) .
crl t(k(lockv(I) -> acquire -> K) || c(Cs) || R) || b(Is) =>

t(k(noValue -> K) || c([I, 0] || Cs) || R) || b(I || Is) if not(I in Is) .

Dually, releasing a lock also involves two cases. However, both of these can
be safely defined with equations, because threads do not need to compete on
releasing locks:

eq k(release(E) -> K) = k(E -> release -> K) .
eq k(lockv(I) -> release -> K) || c([I, Nz] || Cs) =

k(noValue -> K) || c([I, Nz - 1] || Cs) .
eq t(k(lockv(I) -> release -> K) || c([I, 0] || Cs) || R) || b(I || Is) =

t(k(noValue -> K) || c(Cs) || R) || b(Is) .
endm

All the features of our programming language have been given CPS rewriting
logic semantics, so we can now put all the semantic specifications together and
complete the definition of our language:

fmod LANGUAGE-SEMANTICS is extending ARITHMETIC-EXP-SEMANTICS .
extending BOOLEAN-EXP-SEMANTICS . extending IF-SEMANTICS .
extending LET-SEMANTICS . extending LETREC-SEMANTICS .
extending FUNCTION-SEMANTICS . extending LIST-SEMANTICS .
extending ASSIGNMENT-SEMANTICS .
extending BLOCK-SEMANTICS . extending LOOP-SEMANTICS .
extending EXCEPTION-SEMANTICS . extending THREAD-SEMANTICS .
op eval : Exp -> [Value] .
op [_] : LState -> [Value] [strat(1 0)] .
var E : Exp . vars R S : LState . var V : Value .
eq eval(E) = [t(k(E -> stop) || e(empty) || x(stop) || c(empty)) ||

n(0) || m(empty) || b(empty)] .
eq [t(k(V -> stop) || R) || S] = V .

endfm

The main operator that enables all the semantic definitions above is eval, which
may or may not return a proper value. As the definition of the auxiliary operator
[] shows, eval returns a proper value if and only if the original thread (the only
one whose continuation is built on top of stop) evaluates to a proper value V.
The definition of eval above also shows the various state attributes involved, as
well as their nesting and grouping: the thread state attribute, t(...), includes a
continuation (k), an environment (e), an exception continuation (x), and a lock
counter set (c); the other global state attributes, laying at the same top level as
the thread attributes, are a counter for the next free location (n), a “memory”
wrapping a mapping from locations to values (m), and a set of “busy” locks (b).

24

3.4 Getting an Interpreter for Free

Since Maude can efficiently execute rewriting logic specifications, an immediate
benefit of defining the semantics of a programming language in rewriting logic
is that we obtain an interpreter for that language with no extra effort. All what
we have to do is to “rewrite” terms of the form eval(E), which should reduce
to values. For example, the evaluation of the following factorial program

rew eval(
let rec f n =
if n == 0 then 1 else n * f(n - 1)

in f 100
) .

takes 5151 rewrites and terminates in 64ms8. with the following result:
result Value: int(9332621544394415268169923885626670049071596826438162146859296389521759
9993229915608941463976156518286253697920827223758251185210916864000000000000000000000000)

The following recursive program calculating the product of elements in a list
is indeed evaluated to int(0) (in 716 rewrites). This program is “inefficient”
because the product function returns normally from its recursive calls when a 0
is encountered, which can be quite time consuming in many situations:

rew eval(
let rec p l =
if null?(l) then 1 else if car(l) == 0 then 0 else car(l) * (p cdr(l))

in p list(1,2,3,4,5,6,7,8,9,0,10,11,12,13,14,15,16,17,18,19,20)
) .

Since our language has exceptions, a better version of the same program (reduc-
ing in 675 rewrites) is one which throws an exception when a 0 is encountered,
thus exiting all the recursive calls at once:

rew eval(
let p l = try let rec a l =

if null?(l) then 1
else if car(l) == 0 then throw 0 else car(l) * (a cdr(l))

in a l
catch fun x -> x

in p list(1,2,3,4,5,6,7,8,9,0,10,11,12,13,14,15,16,17,18,19,20)
) .

To illustrate the imperative features of our language, let us consider Collatz’
conjecture, stating that the procedure, dividing n by 2 if it is even and multi-
plying it by 3 and adding 1 if it is odd, eventually reaches 1 for any n). For our
particular n below, it takes 73284 rewrites in 0.3s to evaluate to int(813):

rew eval(
let n = 21342423543653426527423676545 and c = 0
in {while n > 1 {

if 2 * (n / 2) == n then n := n / 2 else n := 3 * n + 1 ;
c := c + 1

} ;
c }

) .

Let us next illustrate some concurrent aspects of our language. The following
program spawns a thread that assigns 1 to a and then recursively increments a
counter c until a becomes indeed 1. Any possible value for the counter can be
obtained, depending upon when the spawned thread is scheduled for execution:
8 All the performance results in this paper were measured on a 2.4GHz PC.

25

rew eval(
let a = 0 and c = 0 in {
spawn(a := 1) ;
let rec f() = if a == 1 then c else {c := c + 1 ; f()} in f()

}
) .

We are currently letting Maude schedule the execution of threads based on its
internal default scheduler for applications of rewrite rules, which in the example
above leads to an answer int(0). Note, however, that one can also use Maude’s
fair rewrite command frew instead of rew, or one can even define one’s own
scheduler using Maude’s meta-level capabilities. Even though we will not discuss
thread scheduling aspects in this paper, in the next section we will show how one
can use Maude’s search capability to find executions leading to other possible
results for the program above, for example int(10).

An inherent problem in multithreaded languages is that several threads may
access the same location at the same time, and if at least one of these accesses
is a write this can lead to dataraces. The following program contains a datarace:

rew eval(
let x = 0 in {
spawn(x := x + 1) ;
spawn(x := x + 1) ;
x

}
) .

Maude’s default scheduler happens to schedule the two spawned threads above
such that no datarace occurs, the reported answer being int(2). However, under
different thread interleavings the reported value of x can also be 0 or even 1. The
latter reflects the datarace phenomenon: both threads read the value of x before
any of them writes it, and then they both write the incremented value. Using
search, we show in the next section that both int(0) and int(1) can be valid
results of the program above. Thread synchronization mechanisms are necessary
in order to avoid dataraces. We use locks for synchronization in our language. For
example, the following program is datarace free, because each thread acquires
the lock lock(1) before accessing its critical region. Note, however, that the
final result of this program is still non-deterministic (can be either 2 or -1):

rew eval(
let a = 1 and b = 1 and x = 0 and l = lock(1) in {
spawn {acquire l ; x := x + 1 ; release l ; a := 0} ;
spawn {acquire l ; x := x + 1 ; release l ; b := 0} ;
if (a == 0) and (b == 0) then x else -1

}
) .

3.5 Specifying Java and the JVM

The language presented above was selected and designed to be as simple as pos-
sible, yet including a substantial range of features, such as high-order and imper-
ative features, static scoping, recursion, exceptions and concurrency. However,
we are actively using the rewriting logic semantics approach to formally define
different programming paradigms and large fragments of several languages, in-
cluding Scheme, OCaml, ML, Pascal, Java, and JVM, several of them covered
in a programming language design course at UIUC [63].

26

Java has been recently defined at UIUC by Feng Chen in about three weeks, us-
ing a CPS semantics as above, with 600 equations and 15 rewrite rules. Azadeh
Farzan has developed a more direct rewriting logic specification for the JVM, not
based on continuations, specifying about 150 out of 250 bytecode instructions
with around 300 equations and 40 rewrite rules. The continuations-based style
used in this paper should be regarded as just a definitional methodology, which
may not be appropriate for some languages, especially for lower level ones. Both
the Java and the JVM specifications include multithreading, inheritance, poly-
morphism, object references, and dynamic object allocation. We do not support
native methods nor many of the Java built-in libraries at present. The definition
of Java follows closely the style used to define our sample language above, with
states consisting of multisets of potentially nested state attributes. A new type
of value is introduced for objects, wrapping also the name of the class that the
object is an instance of, which is necessary in order to have access to that object’s
methods. The essential difference in the definitional styles of Java and the JVM
is that the latter follows the object paradigm of Maude [41], considering objects
also as part of the state multiset structure; and method calls are translated into
messages that objects can send to each other, by placing them into the multiset
state as well. Rewrites (with rewrite rules and equations) in this multiset model
the changes in the state of the JVM.

4 Formal Analysis of Concurrent Programs

Specifying formally the rewriting logic semantics of a programming language in
Maude, besides providing an increased understanding of all the details underlying
a language design, also yields a prototype interpreter for free. Furthermore, a
solid foundational framework for program analysis is obtained. It is conceptually
meaningless to speak about rigorous verification of programs without a formal
definition of the semantics of that language. Once a definition of a language is
given in Maude, thanks to generic analysis tools for rewriting logic specifications
that are efficiently implemented and currently provided as part of the Maude
system, we additionally get the following important analysis tools also for free:

1. a semi-decision procedure to find failures of safety properties in a (possibly
infinite-state) concurrent program using Maude’s search command;

2. an LTL model checker for finite-state programs or program abstractions;
3. a theorem prover (Maude’s ITP [19]) that can be used to semi-automatically

prove programs correct.

We only focus on the first two items in this paper, because they are entirely auto-
matic (except of course for the need to equationally define the atomic predicates
of interest in temporal logic formulas).

4.1 Search

We have seen several examples where concurrent programs can have quite non-
deterministic behaviors due to many possible thread interleavings, some of them
leading to undesired behaviors, e.g., dataraces, due to lack of synchronization.

27

Using Maude’s search command, one can search a potentially infinite state
space for behaviors of interest. Since such a search is performed in a breadth-
first manner, if any safety violation exists then it will eventually be found, i.e.,
this is a semi-decision procedure for finding such errors. For example, the fol-
lowing two-threaded program which evaluates to 0 in Maude under its default
scheduling, can be shown to evaluate to any possible integer value. It takes 11ms
to find an interleaving that leads to int(10), after exploring 108 states:

search [1] eval(let a = 0 and c = 0 in {
spawn(a := 1) ;
let rec f() = if a == 1 then c else {c := c + 1 ; f()} in f()

}) =>* int(10) .

One can show that the poorly synchronized program in Section 3.4 has a datarace,
search [1] eval(let x = 0 in {

spawn(x := x + 1) ;
spawn(x := x + 1) ;
x

}) =>+ int(1) .

and also that the properly synchronized version of it is datarace free:
search [1] eval(let a = 1 and b = 1 and x = 0 and l = lock(1) in {

spawn {acquire l ; x := x + 1 ; release l ; a := 0} ;
spawn {acquire l ; x := x + 1 ; release l ; b := 0} ;
if (a == 0) and (b == 0) then x else -1

}) =>+ int(1) .

The above returns “No solution”, after exploring all 90 possible states in 23ms.
If one wants to see the state space generated by the previous search command,
one can type the command “show search graph”. An interesting example show-
ing that dataraces can be arbitrarily dangerous was proposed by J. Moore [53],
where two threads performing the assignment “c := c + c” for some shared
variable c, can lead to any possible integer value for c. The following shows how
one can test whether the value 25 can be reached. It takes Maude about 1s to
explore 4696 states and find a possible interleaving leading to the final result 25:

search [1] eval(let rec c = 1 and f() = {c := c + c ; f()} in {
spawn f() ;
spawn f() ;
c

}) =>! int(25) .

4.2 Model Checking

When the state space of a concurrent program is finite, one can exhaustively
analyze all its possible executions and check them against temporal logic prop-
erties. Currently, Maude provides a builtin explicit-state model checker for linear
temporal logic (LTL) comparable in speed to SPIN [23], which can be easily used
to model check programs once a programming language semantics is defined as
a rewriting logic specification. The module MODEL-CHECKER, part of Maude’s dis-
tribution, exports sorts State, Prop, and a binary “satisfaction” operator |=

: State Prop -> Bool. In order to define temporal properties to model-check,
the user has to first define state predicates using the satisfaction operation.

To exemplify this analysis technique, we next consider the classical dining philoso-
phers problem. The property of interest in this example is that the program ter-
minates, so we only need one state predicate, terminates, which holds whenever
a proper value is obtained as a result of the execution of the program (note that
eval may not always return a proper value; its result was the kind [Value]):

28

fmod CHECK is extending MODEL-CHECKER . extending LANGUAGE-SEMANTICS .
subsort Value < State .
op terminates : -> Prop .
eq V:Value |= terminates = true .

endfm

We can model check a five dining philosophers program as follows:

red modelCheck(eval(let n = 5 and i = 1 and
f x = { acquire lock(x) ; acquire lock(x + 1) ;

--- eat
release lock(x + 1) ; release lock(x) }

in { while i < n
{ spawn(f i) ; i := i + 1 } ;

acquire lock(n) ; acquire lock(1) ;
--- eat
release lock(1) ; release lock(n) }), <> terminates) .

Maude’s model checker detects the deadlock and returns a counterexample trace
in about 0.5s. If one fixes this program to avoid deadlocks, for example as follows:

red modelCheck(eval(let n = 5 and i = 1 and
f x = if x % 2 == 1

then { acquire lock(x); acquire lock(x + 1);
--- eat
release lock(x + 1); release lock(x) }

else { acquire lock(x + 1); acquire lock(x);
--- eat
release lock(x); release lock(x + 1) }

in { while i < n
{ spawn(f i) ; i := i + 1 } ;

if n % 2 == 1
then { acquire lock(n); acquire lock(1);

--- eat
release lock(1); release lock(n) }

else { acquire lock(1); acquire lock(n);
--- eat
release lock(n); release lock(1) } }), <> terminates) .

then the model-checker analyzes the entire state space and returns true, meaning
that the program will terminate for any possible thread interleaving.

4.3 Formal Analysis of Java Multithreaded Programs

In joint work with Azadeh Farzan and Feng Cheng, we are using Maude to
develop JavaFAN (Java Formal ANalyzer) [26, 25], a tool in which Java and
JVM code can be executed and formally analyzed. JavaFAN is based on Maude
rewriting logic specifications of Java and JVM (see Section 3.5). Since JavaFAN
is intended to be a Java analysis tool rather than a programming language design
platform, we have put a special emphasis on its efficiency. When several ways
to give semantics to a feature were possible, we have selected the one which
performed better on our benchmarks, instead of the mathematically simplest
one. In this section we discuss JavaFAN and some of the experiments that we
performed with it. They support the claim that the rewriting logic approach to
formal semantics of programming languages presented in this paper is not only
a clean theoretical model unifying SOS and equational semantics, but also a
potentially powerful practical framework for developing software analysis tools.

Figure 1 presents the architecture of JavaFAN. The user interface module
hides Maude behind a user-friendly environment. It also plays the role of a

29

Java
Program

Java
Bytecode

Maude
Spec.

Maude
Spec.

Maude

: Input / Output: Module: Data

JavaFAN
Java

Analyzer

JVM
Analyzer

Interface
User

: Module Invocation: Outside Tool

Formatted
Output

Output
Formatter

Java Program \
Java Bytecode Semantics

Java

JVM
Semantics

Analysis
Results

Property
to Analyze

Fig. 1. Architecture of JavaFAN.

dispatcher, sending the Java source or the bytecode to Java or JVM analyzers,
respectively. The analyzers wrap the input programs into Maude modules and
invoke Maude, which analyzes the code based on the formal specifications of
the Java language and of the JVM. The output formatter collects the output of
Maude, transforms it into a user-readable format, and sends it to the user.

We next discuss some of the examples analyzed with JavaFAN and com-
parisons to other similar tools. The Remote Agent (RA) is a spacecraft con-
troller, part NASA’s Deep Space 1 shuttle, that deadlocked 96 million miles
from Earth due to a datarace. This example has been extensively studied in [31,
32]. JavaFAN’s search found the deadlock in 0.1 seconds at the source code level
and in 0.3 seconds at the bytecode level, while the tool in [60] finds it in more
than 2 seconds. Another comparison with [60] was done on a 2 stage pipeline
code, each stage executing as a separate thread, against a property taken from
[60]. JavaFAN model checks the property in 17 minutes, while the tool in [60],
without partial order reduction optimizations9, does it in more than 100 min-
utes. JavaFAN can detect the deadlock for up to 9 philosophers. Other Java
model checkers, with support for heuristics and abstraction techniques such as
Java PathFinder (JPF) [87, 10, 33], can do larger numbers. If the deadlock po-
tential is removed, like in Section 4.2, thus diminishing the role of heuristics,
then JavaFAN can prove the program deadlock-free for up to 7 philosophers,
while JPF cannot deal with 4 philosophers (on the same program). All these
examples as well as the JavaFAN system are available on the web [24].

4.4 Performance of the Formal Analysis Tools

There are two reasons for the efficiency of the formal analysis tools for languages
whose rewriting logic semantics is given in Maude, and in particular for which
JavaFAN compares favorably with more conventional Java analysis tools:
1. The high performance of Maude for execution, search, and model checking;
2. The optimized equational and rule definitions.

Maude’s rewriting engine is highly optimized and can perform millions of rewrite
steps per second, while its model checker is comparable in speed with SPIN
[23]. In addition to these, we have used performance-enhancing specification
techniques, including: expressing as equations the semantics of all determinis-
tic computations, and as rules only concurrent computations (since rewriting

9 JavaFAN is currently just a brute force, unoptimized explicit state model checker.

30

happens modulo equations, only rules contribute to state space size); favoring
unconditional equations and rules over less efficient conditional versions; and
using a continuation passing style in semantic equations.

5 SOS and Equational Semantics Revisited

Now that rewriting logic semantics has been explained and has been illustrated
in detail, we take a second look at how equational semantics and SOS are unified
within rewriting logic semantics. We also explain how their respective limitations
are overcome within this broader semantic framework.

5.1 Unification of Equational Semantics

If R is empty in a rewrite theory R = (Σ, E, φ, R), then φ is irrelevant and R be-
comes an equational theory, and the initial model TReach(R) becomes in essence
the initial algebra TΣ/E . Therefore, equational logic is a sublogic of rewriting
logic, and initial algebra semantics is a special case of rewriting logic’s initial
model semantics. That is, equational semantics is a special case of rewriting
logic semantics, namely the case when R = ∅. Higher-order semantic equations
can be integrated in two alternative ways. On the one hand, we can make ev-
erything first-order by means of an explicit substitution calculus or the use of
combinators. On the other hand, we can embed higher-order semantic equations
within a higher-order version of rewriting logic such as Stehr’s open calculus of
constructions (OCC) [70]. Either way, since OCC and many other higher-order
calculi can be faithfully represented in first-order rewriting logic [71, 70], it is
possible to execute such definitions in a rewriting logic language such as Maude.

Integrating equational semantics within rewriting logic makes the limitations
in handling concurrency mentioned in Section 1.1 disappear, since all determin-
istic computations of a language can still be specified by equations, but the
means missing in equational semantics to properly handle concurrency are now
provided by rewrite rules. Furthermore, the extension from equational logic to
rewriting logic is conservative and all the good proof- and model-theoretic prop-
erties are preserved in the extension. This leaves us with the pending issue of
modularity, which is discussed in Section 5.3.

5.2 Unification of SOS and Reduction Semantics

SOS can also be integrated within rewriting logic. This has been understood
from the early stages of rewriting logic [40, 47, 39], and has led to several imple-
mentations of SOS definitions [8, 80]. Intuitively, an SOS rule of the form,

P1 −→ P ′
1 . . . Pn −→ P ′

n

Q −→ Q′

corresponds to a rewrite rule with rewrites in its condition. There is however an
important difference between the meaning of a transition P −→ Q in SOS and a
sequent P −→ Q in rewriting logic. In SOS a transition P −→ Q is always a one-
step transition. Instead, because of Reflexivity and Transitivity, a rewriting

31

logic sequent P −→ Q may involve many rewrite steps; furthermore, because of
the Congruence, such steps may correspond to rewriting subterms.

Since the conditions in a conditional rewrite rule may involve many rewrite
steps, whereas the transitions in the condition of an SOS rule are one-step tran-
sitions, in order to faithfully represent an SOS rule we have somehow to “dumb
down” the rewriting logic inference system. Of course we do not want to actually
change rewriting logic’s inference rules: we just want to get the effect of such a
change, so that in fact only the Replacement rule is used. This can be achieved
by representing an SOS specification as a suitable rewrite theory that, due to its
construction, precludes the application of the other inference rules in the logic.
We explain how this can be done for an SOS specification consisting of unlabeled
SOS rules of the general form described above. We can think of such an SOS
specification as a pair S = (Σ, R), where Σ is a many-sorted signature, and
the rules R are of the general form described above, where the P s and Qs are
Σ-terms having the same sort whenever they appear in the same transition. The
SOS rules are then applied to substitution instances of the patterns appearing in
each rule in the usual SOS way. The corresponding rewrite theory representing
S is denoted Ŝ and is Ŝ = (Σ̂, OP, φ, R̂), where:

– Σ̂ is the mel signature obtained from Σ by:
• adding a kind [s] for each sort s in Σ, so that the set of sorts for kind

[s] is the singleton set {s}
• adding for each f : s1 . . . sn −→ s in Σ an operator f : [s1] . . . [sn] −→ [s]
• adding for each kind [s] two operators [] : [s] −→ [s] and 〈 〉 : [s] −→ [s].

– OP is the set of axioms associating to each operator f : s1 . . . sn −→ s in Σ
the membership ∀(x1 : s1, . . . , xn : sn) f(x1, . . . , xn) : s, so that terms of the

old sorts in Σ remain well-sorted in Σ̂
– φ declares all arguments in all operators in Σ̂ frozen, and
– R̂ has for each SOS rule in R a corresponding rewrite rule

[Q] −→ 〈Q′〉 if [P1] −→ 〈P ′
1〉 ∧ . . . ∧ [Pn] −→ 〈P ′

n〉,

The key result is then the following lemma, that we state without proof:

Lemma 1. For any ground Σ-terms t, t′ of the same sort, we have

S ⊢SOS t −→ t′ ⇔ Ŝ ⊢RWL [t] −→ 〈t′〉

where ⊢SOS and ⊢RWL denote the SOS and rewriting logic inference systems.

In general, SOS rules may have labels, decorations, and side conditions. In
fact, there are many SOS rule variants and formats. For example, additional
semantic information about stores or environments can be used to decorate an
SOS rule. Therefore, showing in detail how SOS rules in each particular variant
or format can be faithfully represented by corresponding rewrite rules would be
a tedious business. Fortunately, Peter Mosses, in his modular structural opera-
tional semantics (MSOS) [56, 57, 54], has managed to neatly pack all the various
pieces of semantic information usually scattered throughout a standard SOS rule
inside rule labels, where now labels have a record structure whose fields corre-
spond to the different semantic components (the store, the environment, action

32

traces for processes, and so on) before and after the transition thus labeled is
taken. The paper [46] defines a faithful representation of an MSOS specification
S as a corresponding rewrite theory τ (S), provided the MSOS rules in S are
in a suitable normal form. Such MSOS rules do in fact have labels that include
any desired semantic information, and can have equational side conditions. A se-
mantic equivalence result similar to the above lemma holds between transitions
in S and one-step rewrites in τ (S) [46]. This shows the MSOS specifications are
faithfully represented by their rewriting logic translations.

A different approach also subsumed by rewriting logic semantics is sometimes
described as reduction semantics. It goes back to Berry and Boudol’s Chemical
Abstract Machine (Cham) [3], and has been adopted to give semantics to dif-
ferent concurrent calculi and programming languages (see [3, 50] for two early
references). Since the 1990 San Miniato Workshop on Concurrency, where both
the Cham and rewriting logic were presented [21], it has been clearly understood
that these are two closely related formalisms, so that each Cham can be naturally
seen as a rewrite theory (see [40] Section 5.3.3, and [3]). In essence, a reduction
semantics, either of the Cham type or with a different choice of basic primitives,
can be naturally seen as a special type of rewrite theory R = (Σ, A, φ, R), where
A consists of structural axioms, e.g., associativity and commutativity of multiset
union for the Cham10, and R is typically a set of unconditional rewrite rules. The
frozenness information φ is specified by giving explicit inference rules, stating
which kind of congruence is permitted for each operator for rewriting purposes.

Limitations of SOS similar to those pointed out in Section 1.1 were also
clearly perceived by Berry and Boudol, so that the Cham is proposed not as
a variant of SOS, but as an alternative semantic framework (see [3], Section
2.3). Indeed, an important theme is overcoming the rigidity of syntax, forcing
traditional SOS to express communication in a centralized, interleaving way,
whereas the use of associativity and commutativity and the locality of rewrite
rules allows a more natural expression of local concurrent interactions. On this
point rewriting logic semantics and reduction semantics are in full agreement.
Four further advantages added by rewriting logic semantics to overcome other
limitations of SOS mentioned in Section 1.1 are: (i) the existence of a model-
theoretic semantics having initial models, that smoothly integrates the model
theory of algebraic semantics as a special case and serves as a basis for inductive
and temporal logic reasoning; (ii) the more general use of equations not only
as structural axioms A (e.g., AC of multiset union for the Cham) but also as
semantic equations E0 that are Church-Rosser modulo A, so that in general
we have E = E0 ∪ A; (iii) allowing conditional rewrite rules which permits a
natural integration of SOS within rewriting logic; and (iv) the existence of high-
performance implementations supporting both execution and formal analysis.
This brings us to the last limitation mentioned in Section 1.1 for both equational
semantics and SOS, namely modularity.
10 As pointed out in [40], the Cham’s heating and cooling rules and the airlock rule

could also be seen as equations and could be made part of the set A.

33

5.3 Modularity

Both equational semantics and SOS are notoriously unmodular. That is, when a
new kind of feature is added to the existing formal specification of a language’s
semantics, it is often necessary to introduce extensive redefinitions in the earlier
specification. One would of course like to be able to define the semantics of each
feature in a modular way once and for all, but this is easier said than done.

Rewriting logic as such does not solve the modularity problem. After all,
equational definitions remain untouched when embedded in rewriting logic, and
SOS definitions, except for the technicality of restricting rewrites to one step in
conditions, are represented by quite similar conditional rewrite rules. Therefore,
if the specifications were unmodular beforehand, it is unreasonable to expect that
they will magically become modular when viewed as rewrite theories. Something
else is needed, namely a modular specification methodology.

In this regard, the already mentioned work of Mosses on MSOS [56, 57, 54] is
very relevant and important, because it has given a simple and elegant solution
to the SOS modularity problem. Stimulated by Mosses’ work, the first author,
in joint work with Christiano Braga, has investigated a methodology to make
rewriting logic definitions of programming languages modular. The results of this
research are reported in [46], and case studies showing the usefulness of these
modularity techniques for specific language extensions are presented in [9]. In
particular, since equational logic is a sublogic of rewriting logic, the modular
methodology proposed in [46] specializes in a straightforward way to a new
modular specification methodology for algebraic semantics. The two key ideas
in [46] are the systematic use of ACI matching to make semantic definitions
impervious to the later addition of new semantic entities, and the systematic
use of abstract interfaces to hide the internal representations of semantic entities
(for example a store) so that such internal representations can be changed in a
language extension without a need to redefine the earlier semantic rules.

This methodology has influenced the specification style used in Section 3,
even though the methodology in [46] is not followed literally. One limitation
mentioned in [46] is the somewhat rigid style imposed by assuming configura-
tions consisting of a program text and a record of semantic entities, which forces
an interleaving semantics alien in spirit to rewriting logic’s true concurrency se-
mantics. One can therefore regard the specification style illustrated in Section 3
as a snapshot of our current steps towards a truly concurrent modular specifi-
cation methodology, a topic that we hope to develop fully in the near future.

6 Concluding Remarks

We have introduced rewriting logic, have explained its proof theory and its model
theoretic semantics, and have shown how it unifies both equational semantics
and SOS within a common semantic framework. We have also explained how
reduction semantics can be regarded as a special case of rewriting logic semantics.
Furthermore, we have shown how rewriting logic semantic definitions written in
a language like Maude can be used to get efficient program analysis tools, and

34

have illustrated this by means of a substantial Caml-like language specification.
The unification of equational semantics and SOS achieved this way combines the
best features of these approaches and has the following advantages:

– a rewrite theory R has an initial model semantics given by TR, and a proof-
theoretic operational semantics given by rewrite proofs; furthermore, by the
Completeness Theorem both semantics agree

– the initial model TR provides the mathematical basis for formal reasoning
and theorem proving in first- and higher-order inductive theorem proving
and in temporal logic deduction

– rewriting logic provides a crucial distinction between semantic equations
E and semantic rules R, that is, a distinction between deterministic and
concurrent computation not available in either equational semantics or SOS

– such a distinction is key not only conceptually, but also for efficiency reasons
of drastically collapsing the state space

– rewriting logic has a true concurrency semantics, more natural than an in-
terleaving semantics when defining concurrent languages with features such
as distribution, asynchrony, and mobility

– when specified in languages like Maude, semantic definitions can be turned
into efficient interpreters and program analysis tools for free

– when developed according to appropriate methodological principles, rewrit-
ing logic semantic definitions become modular and are easily extensible with-
out any need for changes in earlier semantic rules.

An important aspect of the rewriting logic semantics we propose is the flexi-
bility of choosing the desired level of abstraction at will when giving semantic
definitions. Such a level of abstraction may be different for different modeling
and analysis purposes, and can be easily changed as explained below. The point
is that in a rewrite theory (Σ, E, φ, R), rewriting with the rules R happens mod-
ulo the equations in E. Therefore, the more semantic definitions we express as
equations the more abstract our semantics becomes. Abstraction has important
advantages for making search and model checking efficient, but changes what is
observable in the model. In this sense, the Caml-like language specification in
Section 3 is quite abstract; in fact, it has only three rewrite rules, with all other
axioms given as equations. It is indeed possible to observe all global memory
changes, since these are all expressed with rules, but some other aspects of the
computation may not be observable at this level of abstraction. For example,
nonterminating local sequential computations, such as a nonterminating func-
tion call or while loop, will remain within the same equivalence class. This may
even lead to starvation of other threads in an interpreter execution. Generally
speaking, when observing a program’s computation in a more fine-grained way
becomes important, this can be easily done by transforming some equations into
rules. For example, one may wish to specify all potentially nonterminating con-
structs with rules. The most fine-grained way possible is of course to transform
all equations (except for structural axioms such as ACI) into rules. These trans-
formations are easy to achieve, since they amount to very simple changes in
the specification. In fact, one may wish to use different variants of a language’s

35

specification, with certain semantic definitions specified as equations in one vari-
ant and as rules in another, because each variant may provide the best level of
abstraction for a different set of purposes. The moral of the story is precisely
that rewriting logic’s distinction between equations and rules provides a useful
”abstraction knob” by which we can fine tune a language’s specification to best
handle specific formal analysis purposes. There are a number of open research
directions suggested by these ideas:

– for model checking scalability purposes it will be important to add techniques
such as partial order reduction and predicate abstraction;

– besides search and model checking, using rewriting logic semantic defini-
tions as a basis for theorem proving of program properties is also a direc-
tion that should be vigorously pursued; this semantics-based method is well-
understood for equational semantics [29] and has been used quite successfully
by other researchers in the analysis of Java programs using both PVS [36]
and ACL2 language specifications [51]; in the context of Maude, its ITP tool
[19] has been already used to certify state estimation programs automatically
synthesized from formal specifications [65, 64] and also to verify sequential
programs based on a language’s semantic definition [45].

– rewriting is a simple and general model of computation, and rewriting-based
semantic definitions already run quite fast on a language like Maude which
is itself a semi-compiled interpreter; this suggests that, given an appropriate
compilation technology for rewriting, one could directly compile program-
ming languages into a rewriting abstract machine; a key issue in this regard
is compiling conditional equations into unconditional ones [35, 85];

– more experience is also needed in specifying different programming languages
as rewrite theories; besides the work in the JavaFAN project, other language
specification projects are currently underway at UIUC and at UFF Brazil,
including Scheme, ML, OCaml, Haskell, and Pascal;

– more research is also needed on modularity issues; a key question is how to
generalize to a true concurrency setting the modular methodology developed
in [46]; an important goal would the development of a modular library of
rewriting logic definitions of programming language features that could be
used to easily define the semantics of a language by putting together different
modules in the library.

There is, finally, what we perceive as a promising new direction in teaching pro-
gramming languages, namely the development of courses and teaching material
that use executable rewriting logic specifications as a key way to explain the pre-
cise meaning of each programming language feature. This can allow students to
experiment with programming language concepts by developing executable for-
mal specifications for them. We have already taught several graduate course at
UIUC along these lines with very encouraging results, including a programming
language design course and a formal verification course [63, 45].

Acknowledgments. This research has been supported by ONR Grant N00014-
02-1-0715 and NSF Grant CCR-0234524. We thank the IJCAR 2004 organizers

36

for giving us the opportunity of presenting these ideas in an ideal forum. Several
of the ideas presented in this work have been developed in joint work with
students and colleagues; in particular: (1) the work on Maude is joint work of
the first author with all the members of the Maude team at SRI, UIUC, and the
Universities of Madrid, Málaga, and Oslo; (2) the work on Java and the JVM
is joint work of both authors with Azadeh Farzan and Feng Cheng at UIUC;
and (3) ideas on modular rewriting logic definitions have been developed in joint
work of the first author with Christiano Braga at UFF Brazil. We thank Feng
Chen for help with some of the examples in this paper, to Marcelo D’Amorim
for help with editing, and to Mark-Oliver Stehr, Salvador Lucas and Santiago
Escobar for their helpful comments on a draft version of this paper.

References

1. H. Baker and C. Hewitt. Laws for communicating parallel processes. In Proceedings
of the 1977 IFIP Congress, pages 987–992. IFIP Press, 1977.

2. D. Basin and G. Denker. Maude versus Haskell: an experimental comparison in
security protocol analysis. In Proc. 3rd. WRLA. ENTCS, Elsevier, 2000.

3. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96(1):217–248, 1992.

4. E. Best and R. Devillers. Sequential and concurrent behavior in Petri net theory.
Theoretical Computer Science, 55:87–136, 1989.

5. P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a rewrit-
ing logic point of view. Theoretical Computer Science, 285:155–185, 2002.

6. G. Boudol. Computational semantics of term rewriting systems. In Algebraic
Methods in Semantics, pages 169–236. Cambridge University Press, 1985.

7. C. Braga. Rewriting Logic as a Semantic Framework for Modular Structural Op-
erational Semantics. PhD thesis, Departamento de Informática, Pontificia Univer-
sidade Católica de Rio de Janeiro, Brasil, 2001.

8. C. Braga, E. H. Haeusler, J. Meseguer, and P. D. Mosses. Mapping modular SOS
to rewriting logic. In 12th International Workshop, LOPSTR 2002, Madrid, Spain,
volume 2664 of LNCS, pages 262–277, 2002.

9. C. Braga and J. Meseguer. Modular rewriting semantics in practice. in Proc.
WRLA’04, ENTCS.

10. G. Brat, K. Havelund, S. Park, and W. Visser. Model checking programs. In
ASE’00, pages 3 – 12, 2000.

11. M. Broy, M. Wirsing, and P. Pepper. On the algebraic definition of programming
languages. ACM Trans. on Prog. Lang. and Systems, 9(1):54–99, Jan. 1987.

12. R. Bruni. Tile Logic for Synchronized Rewriting of Concurrent Systems. PhD
thesis, Dipartimento di Informatica, Università di Pisa, 1999. Technical Report
TD-1/99. http://www.di.unipi.it/phd/tesi/tesi_1999/TD-1-99.ps.gz.

13. R. Bruni and J. Meseguer. Generalized rewrite theories. In Proceedings of ICALP
2003, 30th International Colloquium on Automata, Languages and Programming,
volume 2719 of LNCS, pages 252–266, 2003.

14. G. Carabetta, P. Degano, and F. Gadducci. CCS semantics via proved transition
systems and rewriting logic. In Proceedings of WRLA’98, September 1–4, 1998,
volume 15 of ENTCS, pages 253–272. Elsevier, 1998. http://www.elsevier.nl/

locate/entcs/volume15.html.

37

15. F. Chen, G. Roşu, and R. P. Venkatesan. Rule-based analysis of dimensional safety.
In Rewriting Techniques and Applications (RTA’03), volume 2706 of LNCS, pages
197–207, 2003.

16. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2001.
17. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-

sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

18. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual. June 2003, http://maude.cs.uiuc.edu.

19. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In CAFE: An Industrial-Strength Algebraic Formal
Method. Elsevier, 2000. http://maude.cs.uiuc.edu.

20. D. Clément, J. Despeyroux, L. Hascoet, and G. Kahn. Natural semantics on the
computer. In Proceedings, France-Japan AI and CS Symposium, pages 49–89.
ICOT, 1986. Also, Information Processing Society of Japan, Technical Memoran-
dum PL-86-6.

21. R. De Nicola and U. Montanari (editors). Selected papers of the 2nd workshop
on concurrency and compositionality, March 1990. Theoretical Computer Science,
96(1), 1992.

22. P. Degano, F. Gadducci, and C. Priami. A causal semantics for CCS via rewriting
logic. Theoretical Computer Science, 275(1-2):259–282, 2002.

23. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker.
In Proc. 4th. WRLA. ENTCS, Elsevier, 2002.

24. A. Farzan, F. Chen, J. Meseguer, and G. Roşu. JavaFAN. http://fsl.cs.uiuc.

edu/javafan.
25. A. Farzan, F. Cheng, J. Meseguer, and G. Roşu. Formal analysis of Java programs

in JavaFAN. To appear in Proc. CAV’04, Springer LNCS, 2004.
26. A. Farzan, J. Meseguer, and G. Roşu. Formal JVM code analysis in JavaFAN. To

appear in Proc. AMAST’04, Springer LNCS, 2004.
27. K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST

Series, 1998.
28. F. Gadducci and U. Montanari. The tile model. In G. Plotkin, C. Stirling and M.

Tofte, eds., Proof, Language and Interaction: Essays in Honour of Robin Milner,
MIT Press, 133–166, 2000.

29. J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT
Press, 1996.

30. J. A. Goguen and K. Parsaye-Ghomi. Algebraic denotational semantics using
parameterized abstract modules. In Formalizing Programming Concepts, pages
292–309. Springer-Verlag, 1981. LNCS, Volume 107.

31. K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and J. White.
Formal analysis of the remote agent before and after flight. In the 5th NASA
Langley Formal Methods Workshop, 2000.

32. K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space Craft Controller
using SPIN. IEEE Transactions on Software Engineering, 27(8):749–765, Aug.
2001. Previous version appeared in Proceedings of the 4th SPIN workshop, 1998.

33. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. Software Tools for Technology Transfer, 2(4):366 – 381, Apr. 2000.

34. M. Hennessy. The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. John Willey & Sons, 1990.

35. C. Hintermeier. How to transform canonical decreasing ctrss into equivalent canon-
ical trss. In 4th International CTRS Workshop, volume 968 of LNCS, 1995.

38

36. B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and
perspective. Technical Report NIII-R0318, Computing Science Institute, Univer-
sity of Nijmegen, 2000.

37. E. B. Johnsen, O. Owe, and E. W. Axelsen. A runtime environment for concurrent
objects with asynchronous method calls. In Proc. 5th. Intl. Workshop on Rewriting
Logic and its Applications. ENTCS, Elsevier, 2004.

38. C. Laneve and U. Montanari. Axiomatizing permutation equivalence. Mathematical
Structures in Computer Science, 6:219–249, 1996.

39. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In Handbook of Philosophical Logic, 2nd. Edition, pages 1–87. Kluwer Aca-
demic Publishers, 2002. First published as SRI Tech. Report SRI-CSL-93-05, Au-
gust 1993.

40. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

41. J. Meseguer. A logical theory of concurrent objects and its realization in the Maude
language. In Research Directions in Concurrent Object-Oriented Programming,
pages 314–390. The MIT Press, 1993.

42. J. Meseguer. Rewriting logic as a semantic framework for concurrency: A progress
report. In CONCUR’96: Concurrency Theory, 7th International Conference, Pisa,
Italy, August 26–29, 1996, Proceedings, volume 1119 of LNCS, pages 331–372.
Springer-Verlag, 1996.

43. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Proc. WADT’97, pages 18–61. Springer LNCS 1376, 1998.

44. J. Meseguer. Software specification and verification in rewriting logic. In Models,
Algebras, and Logic of Engineering Software, NATO Advanced Study Institute, July
30 – August 11, 2002, pages 133–193. IOS Press, 2003.

45. J. Meseguer. Lecture notes on program verification. CS 376, University of Illinois,
http://http://www-courses.cs.uiuc.edu/~cs376/, Fall 2003.

46. J. Meseguer and C. Braga. Modular rewriting semantics of programming languages.
To appear in Proc. AMAST’04, Springer LNCS, 2004.

47. J. Meseguer, K. Futatsugi, and T. Winkler. Using rewriting logic to specify, pro-
gram, integrate, and reuse open concurrent systems of cooperating agents. In
Proceedings of the 1992 International Symposium on New Models for Software Ar-
chitecture, November 1992, pages 61–106, 1992.

48. J. Meseguer and U. Montanari. Mapping tile logic into rewriting logic. In Recent
Trends in Algebraic Development Techniques, WADT’97, June 3–7, 1997, volume
1376 of LNCS, pages 62–91. Springer-Verlag, 1998.

49. J. Meseguer and C. L. Talcott. A partial order event model for concurrent ob-
jects. In CONCUR’99, August 24–27, 1999, volume 1664 of LNCS, pages 415–430.
Springer-Verlag, 1999.

50. R. Milner. Functions as processes. Mathematical Structures in Computer Science,
2(2):119–141, 1992.

51. J. Moore. Inductive assertions and operational semantics. In Proceedings CHARME
2003, volume 2860, pages 289–303. Springer LNCS, 2003.

52. J. Moore, R. Krug, H. Liu, and G. Porter. Formal models of Java at the JVM level
– a survey from the ACL2 perspective. In Proc. Workshop on Formal Techniques
for Java Programs, in association with ECOOP 2001, 2002.

53. J. S. Moore. http://www.cs.utexas.edu/users/xli/prob/p4/p4.html.
54. P. D. Mosses. Modular structural operational semantics. Manuscript, September

2003, to appear in J. Logic and Algebraic Programming.

39

55. P. D. Mosses. Denotational semantics. In Handbook of Theoretical Computer
Science, Vol. B. North-Holland, 1990.

56. P. D. Mosses. Foundations of modular SOS. In Proceedings of MFCS’99, 24th In-
ternational Symposium on Mathematical Foundations of Computer Science, pages
70–80. Springer LNCS 1672, 1999.

57. P. D. Mosses. Pragmatics of modular SOS. In Proceedings of AMAST’02 Intl.
Conf, pages 21–40. Springer LNCS 2422, 2002.

58. P. C. Ölveczky. Specification and Analysis of Real-Time and Hybrid Systems in
Rewriting Logic. PhD thesis, University of Bergen, Norway, 2000. http://maude.
csl.sri.com/papers.

59. P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science, 285:359–405, 2002.

60. D. Y. W. Park, U. Stern, J. U. Sakkebaek, and D. L. Dill. Java model checking.
In ASE’01, pages 253 – 256, 2000.

61. G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Computer Science Dept., Aarhus University, 1981.

62. J. C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation,
6(3–4):233–247, 1993.

63. G. Roşu. Lecture notes on program language design. CS 322, University of Illinois
at Urbana-Champaign, Fall 2003.

64. G. Roşu, R. P. Venkatesan, J. Whittle, and L. Leustean. Certifying optimality
of state estimation programs. In Computer Aided Verification (CAV’03), pages
301–314. Springer, 2003. LNCS 2725.

65. G. Roşu and J. Whittle. Towards certifying domain-specific properties of syn-
thesized code. In Proceedings, International Conference on Automated Software
Engineering (ASE’02). IEEE, 2002. Edinburgh, Scotland.

66. D. Scott. Outline of a mathematical theory of computation. In Proceedings, Fourth
Annual Princeton Conference on Information Sciences and Systems, pages 169–
176. Princeton University, 1970.

67. L. J. Steggles. Rewriting logic and Elan: Prototyping tools for Petri nets with
time. In Applications and Theory of Petri Nets 2001, 22nd CATPN 2001, June
25–29, 2001, volume 2075 of LNCS, pages 363–381. Springer-Verlag, 2001.

68. M.-O. Stehr. CINNI — A generic calculus of explicit substitutions and its appli-
cation to λ-, ς- and π-calculi. In Proc. 3rd. Intl. Workshop on Rewriting Logic and
its Applications. ENTCS, Elsevier, 2000.

69. M.-O. Stehr. A rewriting semantics for algebraic nets. In Petri Nets for System
Engineering — A Guide to Modeling, Verification, and Applications. Springer-
Verlag, 2001.

70. M.-O. Stehr. Programming, Specification, and Interactive Theorem Proving —
Towards a Unified Language based on Equational Logic, Rewriting Logic, and Type
Theory. Doctoral Thesis, Universität Hamburg, Fachbereich Informatik, Germany,
2002. http://www.sub.uni-hamburg.de/disse/810/.

71. M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic: Specifying
typed higher-order languages in a first-order logical framework. To appear in
Springer LNCS Vol. 2635, 2004.

72. M.-O. Stehr, J. Meseguer, and P. Ölveczky. Rewriting logic as a unifying framework
for Petri nets. In Unifying Petri Nets, pages 250–303. Springer LNCS 2128, 2001.

73. M.-O. Stehr and C. Talcott. Plan in Maude: Specifying an active network pro-
gramming language. In Proc. 4th. WRLA. ENTCS, Elsevier, 2002.

74. C. Strachey. Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation, 13:11–49, 2000.

40

75. C. L. Talcott. Interaction semantics for components of distributed systems. In
Proceedings of FMOODS’96, pages 154–169. Chapman & Hall, 1997.

76. C. L. Talcott. Actor theories in rewriting logic. Theoretical Computer Science,
285, 2002.

77. P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of asynchronous
Pi-Calculus semantics and may testing in Maude 2.0. In Proc. 4th. WRLA. ENTCS,
Elsevier, 2002.

78. D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis,
Free University, Amsterdam, 1996.

79. A. Verdejo. Maude como marco semántico ejecutable. PhD thesis, Facultad de
Informática, Universidad Complutense, Madrid, Spain, 2003.

80. A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in
Maude. Manuscript, Dto. Sistemas Informáticos y Programación, Universidad
Complutense, Madrid, August 2003.

81. A. Verdejo and N. Mart́ı-Oliet. Executing E-LOTOS processes in Maude. In
INT 2000, Extended Abstracts, pages 49–53, Mar. 2000. Technical report 2000/04,
Technische Universitat Berlin.

82. A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude. In Formal Meth-
ods For Distributed System Development. FORTE/PSTV 2000 IFIP TC6 WG6.
October 10–13, 2000, volume 183 of IFIP, pages 351–366, 2000.

83. A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In Proc. 4th.
WRLA. ENTCS, Elsevier, 2002.

84. P. Viry. Input/output for ELAN. In Proceedings of WRLA’96, September 3–6,
1996, volume 4 of ENTCS, pages 51–64. Elsevier, Sept. 1996.

85. P. Viry. Elimination of conditions. Journal of Symbolic Computation, 28(3):381–
401, 1999.

86. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285:487–517, 2002.

87. W. Visser, K. Havelund, G. Brat, and S. Park. Java PathFinder - second generation
of a Java model checker. In Proceedings of Post-CAV Workshop on Advances in
Verification, 2000.

88. M. Wand. First-order identities as a defining language. Acta Informatica, 14:337–
357, 1980.

