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Abstract. We propose rewriting logic as a unifying framework for a
wide range of Petri nets models. We treat in detail place/transition nets
and important extensions of the basic model by individual tokens, test
arcs, and time. Based on the idea that “Petri nets are monoids” suggested
by Meseguer and Montanari we define a rewriting semantics that maps
place/transition nets into rewriting logic specifications. We furthermore
generalize this result to a general form of algebraic net specifications
subsuming also colored Petri nets as a special case. The soundness and
completeness results we state relate the commutative process semantics
of Petri nets proposed by Best and Devillers to the model-theoretic se-
mantics of rewriting logic in the sense of natural isomorphisms between
suitable functors. In addition we show how place/transition nets with
test arcs and timed Petri nets can be equipped with a rewriting seman-
tics and discuss how other extensions can be treated along similar lines.
Beyond the conceptual unification of quite different kinds of Petri nets
within a single framework, the rewriting semantics can provide a guide
for future extensions of Petri nets and help to cope with the growing di-
versity of models in this field. On the practical side, a major application
of the rewriting semantics is its use as a logical and operational repre-
sentation of Petri net models for formal verification and for the efficient
execution and analysis using a rewriting engine such as Maude, which
also allows us to specify different execution and analysis strategies in the
same rewriting logic language by means of reflection.

1 Introduction

This paper attempts to contribute to the general goal of unifying Petri net
models by studying in detail the unification of a wide range of such models
within rewriting logic [48], which is used as a logical and semantic framework.
Specifically, we show how place/transition nets, nets with test arcs, algebraic
net specifications, colored Petri nets, and timed Petri nets can all be naturally
represented within rewriting logic. Our work extends in substantial ways previous
work on the rewriting logic representation of place/transition nets [48], nets with
test arcs [50], algebraic net specifications [69], and timed Petri nets [62].

The representations in question associate a rewrite specification to each net in a
given class of Petri net models in such a way that concurrent computations in the
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original net naturally coincide with concurrent computations in the associated
rewrite specification. That is, we exhibit appropriate bijections between Petri net
computations and rewriting logic computations, viewed as equivalence classes of
proofs, that is, as elements of the free model associated to the corresponding
rewrite specification [48].

Furthermore, for certain classes of nets, namely place/transition nets and a gen-
eral form of algebraic net specifications, which subsume the well-known class of
colored Petri nets, we show that the representation maps into rewriting logic are
functorial; that is, that they map in a functorial way net morphisms to rewrite
specification morphisms. In addition, such functorial representations can be fur-
ther extended to the level of semantic models, yielding semantic equivalence
theorems (in the form of natural isomorphisms of functors) between well-known
semantic models for the given class of Petri nets and the free models of the cor-
responding rewrite theories or, more precisely, models obtained from such free
models by forgetting some structure.

As we further explain in the body of the paper, this work, including the above-
mentioned functorial semantics and the semantic equivalences, generalizes in
some ways, and complements in others, a substantial body of work initiated by
the second author in joint work with Ugo Montanari under the motto “Petri
nets are monoids” [52,45,46,55,21,53,54,56,12,13], in which categorical models
are naturally associated as semantic models to Petri nets, and are shown to
be equivalent to well-known “true concurrency” models. Our work is also re-
lated to linear logic representations of Petri nets [45,46,4,11,10,26]. All this is
not surprising, since, as explained in [48], both the categorical place/transition
net models of [52] and the linear logic representations of place/transition nets
inspired rewriting logic as a generalization of both formalisms. But, as shown
in this paper, the extra algebraic expressiveness of rewriting logic is very useful
to model in a simple and natural way not only place/transition nets, but also
high-level nets, such as algebraic net specifications, colored Petri nets, and timed
Petri nets.

Our proposed unification of Petri net models is not only of conceptual interest.
Given that, under reasonable assumptions, rewrite theories can be executed, the
representation maps that we propose provide a uniform operational semantics
in terms of efficient logical deduction. Furthermore, using a rewriting logic lan-
guage implementation such as Maude [19,18], or the Real-Time Maude tool in
the timed case [61,60], it is possible to use the results of this paper to create
execution environments for different classes of Petri nets. In addition, because
of Maude’s reflective capabilities [17], the Petri nets thus represented cannot
only be executed, but they can also be formally analyzed and model checked
by means of rewriting strategies that explore and analyze at the metalevel the
different rewriting computations of a given rewrite specification.

The general way of representing Petri nets within rewriting logic that we propose
is by no means limited to the net classes explicitly discussed in this paper. We
believe that it can be similarly applied to other important classes of nets that we
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cannot discuss in detail due to space limitations. We briefly address how similar
representations could be defined for other Petri net classes, such as colored Petri
nets based on (higher-order) programming languages [39], nets with macroplaces
[2,3], nets with FIFO places [30,40,29,27], object-oriented variants of Petri nets
[67,44], and object nets [72,73,28,74] where nets are viewed as token objects.

We conclude this introduction with a brief overview of the paper: After intro-
ducing rewriting logic together with the underlying membership equational logic
in the following section, we introduce in Section 3 a category of place/transition
nets together with a functor that associates the process semantics of Best and
Devillers [7] with each place/transition net. We then define the rewriting specifi-
cation associated with a place/transition net and we establish a semantic connec-
tion in terms of a natural isomorphism at the level of symmetric monoidal cate-
gories. We conclude the section on place/transition nets by showing how test arcs
can be incorporated using a slightly richer state space that satisfies certain sym-
metries. In Section 4 we generalize the rewriting semantics for place/transition
nets to algebraic net specifications, which we view as colored net specifications
over membership equational logic. As it is the case for rewriting logic, the con-
cept of colored net specifications is quite general, since it is parameterized over
an underlying logic. However, for the sake of concreteness we only deal with
rewriting logic and colored net specifications over membership equational logic
in this paper. As in the previous section we relate the Best-Devillers process se-
mantics and the model-theoretic semantics obtained via rewriting logic in terms
of a natural isomorphism. In Section 5 we deal with timed Petri nets, an ex-
tension of place/transition nets by a notion of real time. The model we use is
closely related to the model of interval timed colored Petri nets proposed by van
der Aalst [1], but for the purpose of a simpler exposition we deal with the corre-
sponding uncolored model and focus on the essential real-time aspects. Finally,
in Section 6 we conclude by discussing how our approach can be generalized or
extended to the other models of Petri nets like those mentioned before.

2 Preliminaries

A finite multiset over a set S is a function m from S to N such that its support
S(m) = {s ∈ S | m(s) > 0} is finite. We denote by S⊕ the set of finite multisets
over S , by ∅S the empty multiset over S (we usually omit S if it is clear from the
context), and we use the standard definitions of multiset membership ∈, multiset
inclusion �, multiset union ⊕, and multiset difference −. Sometimes we write x
instead of the singleton multiset containing x .

A list of length n over a set S is a function l from the interval [1,n] of N to S .
We denote by L(S ) the set of lists of arbitrary length over S . Concatenation of
lists u and v is written as uv . Sometimes we write x instead of the singleton list
containing x . If x is a variable ranging over elements, we often use the variable
x̄ to range over lists of such elements.
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Often we implicitly lift functions f : X → Y to sets f : P(X ) → P(Y ), finite
multisets f : X ⊕ → Y ⊕, and lists f : L(X ) → L(Y ) in the natural homomorphic
way. Given a finite set S we sometimes assume a canonical enumeration of S , i.e.
a list x̄ of n distinct elements such that S = {x̄1, . . . , x̄n} which is fixed thoughout
the paper. In order to ensure the existence of a canonical enumeration of certain
sets we could assume that all their elements are drawn from a single total order
that we do not make explicit in this paper.

2.1 Membership Equational Logic

Membership equational logic (MEL) [9,51] is a many-sorted logic with subsorts
and overloading of function symbols. It can express partiality very directly by
defining membership in a sort by means of membership equational conditions.
In accordance with the terminology introduced in the references above we refer
to the types of the logic as kinds, and we view the sorts for each kind as unary
predicates. The atomic sentences are equalities M = N for terms M ,N of the
same kind, and memberships M : s for M a term and s a sort, both of the same
kind. Sentences of MEL are universally quantified Horn clauses on the atoms.

Definition 1. A memberhip equational signatureΩ consists of a set of kinds KΩ ,
a set of sorts SΩ , a function πΩ : SΩ → KΩ that associates to each sort its kind,
and a family (OP k̄ ,k

Ω )k̄∈KΩ
∗,k∈KΩ

of operator symbols such that the following

overloading restriction holds: If OP k̄ ,k
Ω ∩OP k̄ ′,k ′

Ω �= ∅ then k̄ = k̄ ′ implies k = k ′.
Instead of o ∈ OP k̄ ,k

Ω we simply write o : k̄ → k . If k̄ is empty we write o : → k ,
and o is called a constant symbol, otherwise o is called a function symbol.

Given membership equational signatures Ω and Ω′ a membership equational
signature morphism H : Ω → Ω′ consists of functions HK : KΩ → KΩ′ , HS :
SΩ → SΩ′ and HOP : OPΩ → OPΩ′ such that (1) HK (πΩ(s)) = πΩ′(HS (s)) for
each sort s ∈ SΩ , and (2) f : k̄ → k inΩ implies HOP (f ) : HK (k̄) → HK (k) inΩ′.
We usually omit the indices of H if there is no danger of confusion. Membership
equational signatures together with their morphisms form a category MESign.

A kinded variable set is a family (Xk )k∈K of pairwise disjoint sets which are also
disjoint from the operator symbols in OPΩ . Given a kinded variable set X , the
kinded set of Ω-terms over X , written TΩ(X ) = (TΩ(X )k )k∈K , is inductively
defined as follows: (1) each variable x ∈ Xk is in TΩ(X )k ; (2) each constant sym-
bol c with c : → k is in TΩ(X )k for k ∈ K ; (3) each function application of the
form f (M̄1, . . . , M̄n) is in TΩ(X )k for f : k̄ → k and M̄1 ∈ TΩ(X )k̄1

, . . . , M̄n ∈
TΩ(X )k̄n

where k̄ = k̄1 . . . k̄n . If X is the empty variable set the terms above are
called ground terms and we write TΩ and TΩ,k instead of TΩ(X ) and TΩ(X )k ,
respectively.

We define atomic Ω-formulae over X as either (1) Ω-memberships over X of
the form M : s for M ∈ TΩ(X )π(s), or (2) Ω-equations over X of the form
M = N for M ,N ∈ TΩ(X )k for some kind k . Furthermore, Ω-conditions over
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X are of the form φ̄1 ∧ . . . ∧ φ̄n , where φ̄1, . . . , φ̄n are atomic formulae over X .
Given an Ω-condition φ̄1 ∧ . . . ∧ φ̄n over X an Ω-axiom can be either (1) a
membership axiom of the form ∀ X . M : s if φ̄1 ∧ . . . ∧ φ̄n , where M : s is
an Ω-membership over X , or (2) an equational axiom of the form ∀ X . M =
N if φ̄1 ∧ . . . ∧ φ̄n , where M = N is an Ω-equation over X . We usually omit
the quantifier if X is empty.

A membership equational theory (MET) T consists of a signature ΩT and a set
of ΩT -axioms ET .

The algebraic semantics of membership equational logic is a standard model-
theoretic one [9,51]. Models of a membership equational theory are suitable al-
gebras satisfying the axioms.

Definition 2. Let Ω be a signature. An Ω-algebra A consists of a kind inter-
pretation [[k ]]A for each k ∈ K , a sort interpretation [[s]]A ⊆ [[k ]]A for each s ∈
π−1(k), an operator interpretation [[ok̄ ,k ]]A for each o : k̄ → k such that [[c]]A ∈
[[k ]]A for c :→ k and [[f ]]A ∈ [[k̄ ]]A → [[k ]]A for f : k̄ → k where [[k̄ ]]A = [[k̄1]]A ×
. . . × [[k̄n ]]A if k̄ = k̄1 . . . k̄n . For better readability we often write [[c]]A and [[f ]]A
instead of [[ck ]]A and [[fk̄ ,k ]]A assuming that the subscripts are clear from the
context. To simplify some constructions we assume in this paper without loss of
generality that [[k ]]A ∩ [[k ′]]A = ∅ for all kinds k �= k ′.

Let A,B be Ω-algebras. A Ω-morphism, written h : A → B , is a kinded function
h = (hk )k∈K such that hk : [[k ]]A → [[k ]]B for all k ∈ K and the following
conditions hold: (1) hk ([[s]]A) ⊆ [[s]]B for s ∈ π−1(k); (2) hk ([[ck ]]A) = [[ck ]]B for
c : → k ; and (3) hk ([[fk̄ ,k ]]A(ā1, . . . , ān)) = [[fk̄ ,k ]]B (hk̄1

(ā1), . . . , hk̄n
(ān)) for f :

k̄ → k with k̄ = k̄1 . . . k̄n and āi ∈ [[k̄i ]]A. Ω-algebras together with Ω-morphisms
constitute a category Mod(Ω).

Definition 3. Let A be an Ω-algebra. An assignment β : X → A is a kinded
function β = (βk )k∈K associating to each x ∈ Xk an element βk (x ) ∈ [[k ]]A.
It is extended to terms over X as follows: (1) βk (c) = [[ck ]]A for c : → k ; and
(2) βk (f (M̄1, . . . , M̄n)) = [[fk̄ ,k ]]A(βk̄1

(M̄1), . . . , βk̄n
(M̄n)) for f : k̄ → k and M̄i ∈

TΩ(X )k̄i
where k̄ = k̄1 . . . k̄n . Instead of βk (M ) for M ∈ TΩ(X )k we also use

the notation β(M ) or [[M ]]A,β .

Let A be an Ω-algebra, let β : X → A be an assignment, and let M ,N ∈
TΩ(X )k . We define validity of formulae starting with atomic formulae: an Ω-
membership M : s over X is valid under β iff [[M ]]A,β ∈ [[s]]A; and an Ω-equation
M = N over X is valid under β iff [[M ]]A,β = [[M ]]A,β . We write A, β |= φ iff an
atomic formula φ is valid under β. Furthermore, an Ω-condition φ̄1 ∧ . . . ∧ φ̄n
over X is valid under β iff A, β |= φ̄i for each i ∈ {1 . . .n}, in which case we also
write A, β |= φ̄1 ∧ . . . ∧ φ̄n . An Ω-axiom ∀ X . φ if φ̄1 ∧ . . . ∧ φ̄n is valid iff for
each assignment β : X → A we have A, β |= φ whenever A, β |= φ̄1 ∧ . . . ∧ φ̄n .
We also write A |= ∀ X . φ if φ̄1 ∧ . . . ∧ φ̄n in this case. Given a set E of
Ω-axioms we write A |= E iff A |= ψ for each ψ ∈ E . Given a MET T we say
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that A is a T -algebra iff A |= ET . We write T |= ψ iff A |= ψ for each T -algebra
A and given a set E of Ω-axioms we write T |= E iff T |= ψ for each ψ ∈ E .
We furthermore say that M and N are E-equivalent iff [[M ]]A,β = [[N ]]A,β for all
Ω-algebras A satisfying A |= E and assignments β : X → A.

Given METs T and T ′, a MET morphism H : T → T ′ is a membership equa-
tional signature morphism H : ΩT → ΩT ′ such that T ′ |= H (ET ), where H is
lifted to terms and axioms in the natural homomorphic way. We say that T is a
subtheory of T ′, written T ↪→ T ′, iff there is a MET morphism J : T ↪→ T ′ that
is an inclusion.

METs together with their morphisms form a category MET, and given a MET
T the class of T -algebras together with their Ω-morphisms constitutes a full
subcategory of Mod(Ω) denoted by Mod(T ). Each MET morphism H : T →
T ′ induces an obvious forgetful functor Mod(H ) : Mod(T ′) → Mod(T ) that
we also write as UH . In fact, we have a contravariant functor Mod : MET →
Catop. Given an inclusion I : T ↪→ T ′ and a T ′-algebra A we also write A|T
instead of UI (A).

METs have initial and free models [9,51]. In fact, given a MET T ′ there exists
an initial T ′-algebra, written I(T ′). More generally, given a MET morphism H :
T → T ′ between METs T and T ′ there exists a free functor FH : Mod(T ) →
Mod(T ′), i.e. a functor that is left adjoint to UH . In the following we write
ηH and εH for unit and counit, respectively, of this adjunction, i.e., we have
natural transformations ηH (A) : A → UH (FH (A)) for T -algebras A and εH (A′) :
FH (UH (A′)) → A′ for T ′-algebras A′.

In contrast to an entirely loose or entirely initial semantics of membership equa-
tional theories, in practice a mixed specification style is used, where certain
subtheories are intended to be equipped with initial interpretations or certain
subtheories are interpreted freely over their parameter specifications. To make
such restrictions on the models explicit in the specification we enrich a member-
ship equational theory by initiality and freeness constraints [23,35], and refer to
these enriched theories as membership equational logic specifications (MES).

From a model-theoretic point of view, constraints are axioms that are treated in
full analogy to membership or equational axioms, i.e., as sentences that have to
be valid in all models. Hence, the models of a MES are algebras which satisfy
all the given initiality and freeness constraints. Given a MES model, a model
of a subspecification is obtained by its associated forgetful functor UK for K
the corresponding subspecification inclusion. In particular, this means that a
model induces a unique interpretation for each subspecification, which is the
justification for the condition on ε below. The notion of constraint we use here
is a special case of the notion proposed in [35], where initiality constraints are
seen as a special case of freeness constraints.

Definition 4. Let J : T ′′ ↪→ T ′ and I : T ′ ↪→ T be MET inclusions. A con-
straint for T can take one of the following two forms: (1) T ′ initial or (2) T ′
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free over T ′′. A membership equational specification (MES) S is a MET TS
together with a set CS of constraints for TS .

Let A be a T -algebra. We define validity of a constraint as follows: (1) the
constraint T ′ initial is valid iff the unique morphism from I(T ′) to A|T ′ is
an isomorphism, and (2) the constraint T ′ free over T ′′ is valid iff εJ (A|T ′) :
FJ (A|T ′′) → A|T ′ is an isomorphism. Given a MES S with an underlying MET
TS , an S-algebra is a TS -algebra A such that each constraint in CS is valid in A.

In complete analogy to METs we define: Given MESs S and S ′, a MES morphism
H : S → S ′ is a morphism H : T → T ′ such that S ′ |= H (CS), i.e. the constraints
H (CS) are valid in all S ′-algebras, where H is lifted to constraints in the natural
way. S is a subspecification of S ′, written S ↪→ S ′, iff there is a MES morphism
J : S ↪→ S ′ that is an inclusion. MESs together with their morphisms form a
category MES and the category of S-algebras Mod(S) is the full subcategory
of Mod(TS) that contains only S-algebras. Each MES morphism H : S → S ′

induces an obvious forgetful functor Mod(H ) : Mod(S ′) → Mod(S) that we
also write as UH . Again, we have a contravariant functor Mod : MES → Catop

that generalizes Mod : MET → Catop. Given an inclusion I : S ′ ↪→ S and an
S-algebra A we also write A|S ′ instead of UI (A).

Furthermore, we introduce interpreted specifications together with a general
notion of morphism that reflects a transformation of the specification as well as
a transformation of the algebras possibly associated with different specifications.

Definition 5. An interpreted MES (S,A) consists of a MES S and a S-algebra
A. The category IMES of interpreted MES is given by the Grothendiek construc-
tion Σ(Mod) where Mod : MES → Catop. Recall that a morphism (H , h) :
(S,A) → (S ′,A′) in Σ(Mod) consists of morphisms H : S → S ′ and h : A →
UH (A′) satisfying the conditions of the Grothendiek construction [71].

Given a MES S, the operational semantics [9], that can be used to efficiently
execute a specification under certain assumptions, is explained using a refinement
of S, namely by viewing ES as composed of a set ES

S of structural axioms and
a set EC

S of computational axioms, i.e., E = ES
S ∪ EC

S . Assuming that the
computational axioms in EC

S satisfy the variable restriction explained below the
equational axioms in EC

S can be seen as reduction rules that operate modulo
the equational theory induced by ES

S . Identifying ES
S -equivalent terms, we write

M ⇒ M ′ to express that M can be reduced to M ′ by applying an equation in EC
S

to a subterm of M . The variable restriction requires that all variables occurring
in the righthand side or in the condition of an equational axiom also appear in
the lefthand side, and for membership axioms that all variables occurring in the
condition also appear in the conclusion. A MET S is said to be executable iff the
variable restriction1 is satisfied for all axioms in EC

S and the following conditions
hold after identifying ES

S -equivalent terms: the equations in EC
S are confluent,

1 In its most recent version Maude imposes an even weaker restriction for executability
due to the admissibility of conditions with matching equations [20].
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equational and membership axioms in EC
S are terminating, equational axioms in

EC
S are sort-decreasing and satisfy the regularity condition. For formal details of

these conditions we refer to [9]. In particular, these conditions imply that each
term M has a unique normal form w.r.t. ⇒ which is denoted by NF(M ).

2.2 Rewriting Logic

In the simplified setting of [48] a rewrite specification R consists of a single-
sorted signature ΩR, a set ER of equations over ΩR, and a set RR of labelled
rewrite rules of the form ∀ X . l : M → N if φ̄1 ∧ . . . ∧ φ̄n , where l is a
label, M and N are ΩR-terms, and φ̄1 ∧ . . . ∧ φ̄n is a ΩR-condition2 over the
variable set X . The rewrite rules in RR are applied modulo the equations ER.
Rewriting logic (RWL) has rules of deduction to infer all rewrites, i.e., those
sentences of the form P : M → N that are valid in a given rewrite specification
[48]. A rewrite P : M → N means that the term M rewrites to the term N
modulo ER, and this rewrite is witnessed by the proof term P . Apart from
general (concurrent) rewrites P : M → N that are generated from identity and
atomic rewrites by parallel and sequential composition, rewriting logic classifies
its most basic rewrites as follows: a one-step (concurrent) rewrite is generated by
parallel composition from identity and atomic rewrites and contains at least one
atomic rewrite, and a one-step sequential rewrite is a one-step rewrite containing
exactly one atomic rewrite.

From a more general point of view, rewriting logic is parameterized by the choice
of its underlying equational logic, which can be single-sorted, many-sorted, order-
sorted and so on. In the design of the Maude language [19,18], membership equa-
tional logic has been chosen as the underlying equational logic. To introduce
rewriting logic over membership equational logic, abbreviated as RWLMEL or
just RWL, we assume an underlying MES SR with a distinguished data sub-
specification SD

R . The data subspecification specifies the static data part of the
system whereas the remaining part of SR specifies the state space by introduc-
ing the rewrite kinds, i.e., kinds whose terms correspond to states and therefore
can be rewritten, together with their algebraic structure, which characterizes the
possibilities of parallel composition. In the context of this paper the state space
is always specified in a purely equational way.

Definition 6. A rewrite specification (RWS) R consists of a MES SR with a
distinguished data subspecification SD

R , a set of labels LR, and a set of rules RR
of the form ∀ X . l : M → N if φ̄1 ∧ . . . ∧ φ̄n where l ∈ LR, φ̄1 ∧ . . . ∧ φ̄n
is a SR-condition over X , and M ,N ∈ TR(X )k in SR for a rewrite kind k .
To simplify the exposition we identify either ER-equivalent or ES

R-equivalent
terms in the context of a RWS R whenever we are concerned with the algebraic
semantics or the operational semantics, respecively.
2 Rewriting logic as presented in [48] admits rewrites in conditions of rules, but we do

not exploit this possibility in the present paper.
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Given two RWSs R and R′, a RWS morphism H : R → R′ consists of a MES
morphism HS : SR → SR′ and a function HL : LR → LR′ such that HS has a
restriction HD : SD

R → SD
R′ to the data subspecification and for each rule r ∈

RR there is a rule in RR′ that is ER′ -equivalent to H (r) up to a renaming of
the variables, where H is lifted to rules in the obvious homomorphic way. RWSs
together with their morphisms form a category that is denoted by RWS.

The algebraic semantics of rewriting logic is defined as follows. A model of a
rewrite specification (RWS) R is a model A of the underlying MES SR together
with an enriched categorical structure for each set [[k ]]A, where k is a rewrite
kind. The interpretation of : → , which can be regarded as a ternary pred-
icate, is given by the arrows of the category. Sequential composition of rewrite
proofs is interpreted by arrow composition, and parallel composition operators
are interpreted by enriching the category with an algebraic structure as it has
been specified for the rewrite kinds in SR. In order to be a model, the category
has to satisfy a number of natural requirements, namely, functoriality w.r.t. the
algebraic structure that is relevant for the rewrite kinds, the equations in SR
that are relevant for the rewrite kinds lifted to arrows, and for each rule in R
the so-called exchange and decomposition laws. For a detailed description of
these requirements we refer to [48]. The models of a RWS we consider in this
paper are freely generated over models of the data subspecification SD

R . In the
important case where SD

R is interpreted initially, we obtain precisely the initial
model described in [48]. A more precise definition of the algebraic semantics of
rewriting logic will be given in Sections 3.2 and 4.4 for the particular forms of
underlying specifications that are relevant for Petri nets.

The operational semantics of RWSs extends the operational semantics of MESs
by applying computational equations EC

R and rewrite rules RR modulo the struc-
tural equations ES

R. In this way we can achieve the effect of rewriting modulo
ER provided that a suitable coherence requirement between equations and rules
is satisfied. In particular, we say that a RWS is weakly executable iff the under-
lying MES is executable, and the equations in EC

R are coherent with the rules in
RR modulo ES

R. Identifying terms that are ES
R-equivalent and identifying proof

terms that are equivalent in the sense of [48], coherence means that if P : M →
N then there is a term N ′ such that NF(P) : NF(M ) → N ′ and N ′ ⇒∗ NF(N )
(this is stronger than coherence in [77] since we take proofs into account). A
RWS is strongly executable iff additionally the variable restriction for rules is
satisfied, i.e., all variables occurring in the righthand side or in the condition
of a rule also appear in the lefthand side. In this case matching is sufficient for
finding instantiations for the variables, whereas in the case of weak executability
a strategy is needed to take care of this.

3 Place/Transition Nets

Place/transition nets (PTNs) are a model of concurreny in which behaviour
is governed by local state changes in a distributed state space. The global dis-
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tributed state of the system is represented by a marking, which assigns a number
of indistinguishable tokens to each place. State changes that may occur in the
system are specified by transitions. Each transition can only affect the part of
the marking that is local to the transition, i.e., present in the places the tran-
sition is connected to. More precisely, a local state change corresponds to the
atomic occurrence of a transition which removes tokens from its input places and
produces tokens on its output places. The number of tokens that are transported
by an arc is specified by its inscription.

As an example consider the PTN modeling an instance of the well-known banker’s
problem depicted in Fig. 1, which models the situation of a bank loaning money
to (in this case two) clients. As usual, places and transitions are drawn as circles
and rectangles, respectively. The flow relation and the weight function are given
by arrows and their inscriptions. An additional initial marking is specified by
place inscriptions. The money available for clients is modeled by the number of
tokens in the place BANK. Furthermore, each client n has an individual credit
limit modeled by a place CLAIM-n. The fact that client n requests and receives
money is modeled by a transition GRANT-n and we assume that after exhausting
the credit limit client n returns all the money via the transiton RETURN-n.

2

3 2

3

2
3

3

3 2

GRANT-1 GRANT-2RETURN-1 RETURN-2

CREDIT-1 CLAIM-1 CLAIM-2

BANK

CREDIT-2

Fig. 1. Banker’s problem with two clients

We now give formal definitions of basic nets and define a PTN as a particular
form of an inscribed net. Instead of just finite nets we admit infinite nets, but we
restrict our attention to nets with transitions that can affect only a finite part
of the marking (locality principle) so that each transition can be represented in
a finitary way.

Definition 7. A net N consists of a set of places PN , a set of transitions TN
disjoint from PN , and a flow relation FN ⊆ (PN × TN ) ∪ (TN × PN ) such that
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•t = {p | p FN t} and t• = {p | p FN t} are finite for each t ∈ TN (local
finiteness). A net is finite iff the sets PN and TN are finite. Given nets N and
N ′, a net morphism H : N → N ′ consists of functions HP : PN → PN ′ and HT :
TN → TN ′ such that HP (•t) = •HT (t) and HP (t•) = HT (t)•. Nets together
with their morphisms form a category Net.

A place/transition net is essentially a net with arcs inscribed by natural numbers.

Definition 8. A place/transition net (PTN) N consists of: (1) a net NN and
(2) an arc inscription WN : FN → N. WN is extended to WN : (PN × TN ) ∪
(TN × PN ) → N in such a way that (x , y) /∈ FN implies WN (x , y) = 0. Given
PTNs N and N ′, a PTN morphism H : N → N ′ is a net morphism H : NN →
NN ′ such that:

1. WN ′(p′, t ′) = WN (p1, t) + . . . + WN (pn , t)
for all p′ ∈ PN ′ , t ′ ∈ TN ′ , t ∈ H −1(t ′),
and {p1, . . . , pn} = H −1(p′) ∩ •t with distinct pi , and

2. WN ′(t ′, p′) = WN (t , p1) + . . . + WN (t , pn)
for all p′ ∈ PN ′ , t ′ ∈ TN ′ , t ∈ H −1(t ′),
and {p1, . . . , pn} = H −1(p′) ∩ t• with distinct pi .

PTNs together with their morphisms form a category PTN. Each net N can be
conceived as a PTN N with NN = N and WN (x , y) = 1 iff x FN y .

The notion of net morphism we use here is more restrictive than the (topological)
net morphisms used in [63] and close to, but slightly stronger than, the (alge-
braic) net morphisms used in [52]. The justification for our definition is that net
morphisms should be morphisms in the sense of [63] and should preserve the
behaviour in the strongest reasonable sense. Given a net morphism H : N →
N ′ the intention is that the behaviour of N is subsumed by the behaviour of
N ′, although N ′ may exhibit a richer behaviour. In this paper we focus on a
description of behaviour by Best-Devillers processes in a way that generalizes
the well-known step semantics. Indeed, not only the interleaving semantics but
also the step semantics and the process semantics can be regarded as labelled
transition systems where the states are markings and the labels are steps or
processes, respectively. In the case of Best-Devillers processes, the labelled tran-
sition system is equipped with additional algebraic structure which will be made
explicit by regarding the transition system as a symmetric monoidal category.

Definition 9. Let N be a PTN. A marking is a multiset of places. A (concur-
rent) step is a nonempty finite multiset of transitions. The set of markings and
the set of steps are denoted by MN and ST N , respectively. We define preset
and postset functions ∂0, ∂1 : TN → MN by ∂0(t)(p) = W (p, t) and ∂1(t)(p) =
W (t , p), respectively. The (concurrent) step semantics of a place/transition net
N is given by the labelled transition system which has MN as its set of states,
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ST N as its set of labels and a transition relation → ⊆ MN × ST N × MN
defined by m1

e−→ m2 iff there is a marking m such that, for all p ∈ PN ,

m1(p) = m(p) + ∂0(e)(p) and
m2(p) = m(p) + ∂1(e)(p) .

Writing the occurrence rule in the way given above makes it evident that the
occurrence of an action replaces its preset by its postset, whereas the remainder
of the marking, here denoted by m, is not involved in this process. This is an
important fact that will be made formally explicit in the process semantics that
we review subsequently in a somewhat informal style. For details we refer to [21]
and [7].

Definition 10. An occurrence net N is a net such that FN is acyclic and |•t |,
|t•| ≤ 1 for each t ∈ TN . Given an occurrence net N , FN induces a partial order
(<) = FN

+ on PN ∪ TN and its minimal and maximal elements are denoted by
Max (N ) and Min(N ), respectively.

Let N be a PTN. Then a finite process P of N with origin marking m1 and
destination marking m2 consists of a finite occurrence net NP and a PTN mor-
phism LP : NP → N (where NP is viewed as a PTN) such that LP(Min(NP)) =
m1 and LP(Max (NP)) = m2. Given finite processes P and P ′ the parallel com-
position of P and P ′ is defined as the disjoint union of the underlying nets and
label functions. Given processes P and P ′ such that the destination of P is equal
to the origin of P ′, a sequential composition of P and P ′ is obtained by disjoint
union (as above) pairwise identifying maximal places of P with minimal places
of P ′, where every two places to be identified must have the same label. Notice
that in general the result of sequential composition is not unique [21].

Intuitively, a process of a PTN is generated by “temporal unfolding” starting
from a marking that becomes the origin of the process. Observe that for a given
finite process P of N , not only Min(P) and Max (P) but each snapshot (S-
cut in the sense of [8]) of P corresponds to a marking of N by virtue of LP .
The ambiguity of the result of sequential composition is caused by a snapshot
corresponding to a marking with several identical tokens in some place, say p.
Consider a transition in N that removes one token from p. A single firing of
this transition gives rise to two different processes, since identical tokens are
represented by different places in the process net. An obvious solution to avoid
this ambiguity is to restrict our attention to safe processes, i.e., processes that
take place in the safe part of the state space where such situations do not occur.
A marking m is said to be a safe marking iff all markings m ′ reachable from m
in the step semantics satisfy m ′(p) ≤ 1 for all p ∈ P . A process is said to be safe
iff its origin is safe. Safe processes coincide with the classical notion of processes
if we consider 1-safe PTNs which are equivalent to contact-free elementary net
systems [8,63]. Our definition of safe processes is restrictive enough to ensure that
the class of safe finite processes is always closed under sequential composition,
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a property that is not shared by the subclass of finite processes with the weaker
property that all markings m corresponding to snapshots (S-cuts) satisfy m(p) ≤
1 for each p ∈ P .

Definition 11. A (strict) monoidal category (MC) C is a category equipped
with a monoidal operation ⊗C and an identity object idC such that ⊗C

is an associative bifunctor with left and right identity idC. A monidal category
morphism h : C → C′ is a functor that preserves ⊗ and id , i.e., h(u ⊗C v) =
h(u) ⊗C′ h(v) and h(idC) = idC′ . If in addition ⊗C is commutative, then
we say that C is a (strictly) symmetric (strict) monoidal category (SMC). The
category of SMCs is denoted by SMC.

A variation of an SMC is a partial SMC C where ⊗C is a partial functor and
each equation in the definition of SMCs is only required to be satisfied iff both
sides are defined. The category of partial SMCs is denoted by PSMC. Clearly,
SMC is a subcategory of PSMC.

Definition 12. The safe process semantics SP(N ) of a PTN N is given by a
partial SMC that has safe markings as objects and safe processes as arrows.
Arrow composition is given by sequential composition, the partial monoidal op-
eration is given by parallel composition, and the identity for an object m is given
by the finite process without transitions with origin m and destination m. SP
can be extended to a functor SP : SPTN → PSMC, where SPTN is the sub-
category of PTN obtained by restricting morphisms to safe PTN morphisms.
Here, a PTN morphism H : N → N ′ is safe iff it maps each safe marking in N
to a safe marking in N ′. Now SP lifts each safe PTN morphism H : N → N ′ to
a functor SP(H ) : SP(N ) → SP(N ′) defined in the obvious way.

If we restrict our attention to safe markings there is a close correspondence be-
tween the step semantics and the process semantics: Each step sequence, i.e.,
each computation w.r.t. the step semantics, generates a unique process, and a
process determines a set of step sequences that contains the original one. As a
consequence processes are more abstract than step sequences. A similar corre-
spondence exists for the interleaving semantics, i.e., if we restrict steps to single
transitions. Both correspondences are investigated in [7]. On the other hand, the
authors of [7] observe that step sequences and processes become incomparable
when we admit markings that are not safe, which means that the natural view
of processes as an abstraction of step sequences does not hold anymore. In order
to recover this correspondence a more abstract notion of process is needed, and
in fact Best-Devillers processes [7], which became also known as commutative
processes [52,21], provide such a notion. In contrast to processes which adhere
to the individual token philosophy,3 Best-Devillers processes share with step se-
quences the collective token philosophy, meaning that identical tokens on a place
3 A functorial semantics following the individual token philosophy has recently been

given in [14] by using pre-nets, a refinement of PTNs.
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in the system are not distinguished in the process. This allows us to define an
operation of sequential composition that has a unique result whenever sequen-
tial composition is possible. The following definition of Best-Devillers processes
is equivalent to the definition given in [7], except for the fact that [7] does not
make explicit the algebraic and categorical structure.

Definition 13. Let P and P ′ be finite processes and let p1, p2 ∈ PP with
LP(p1) = LP(p2). We define a predicate swap(P,P ′, p1, p2) which holds iff PP′ =
PP , TP′ = TP , LP′ = LP and:

1. t FP′ p ⇔ t FP p,
2. p FP′ t ⇔ p FP t if p �= p1 and p �= p2,
3. p1 FP′ t ⇔ p2 FP t ,
4. p2 FP′ t ⇔ p1 FP t .

We define an equivalence on finite processes as the smallest equivalence rela-
tion that contains (P,P ′) if there are p1, p2 ∈ PP such that LP(p1) = LP(p2)
and swap(P,P ′, p1, p2) holds. The equivalence classes are called Best-Devillers
processes.

The notions of origin, destination, parallel and sequential composition of pro-
cesses are lifted to Best-Devillers processes in the obvious way. At this level the
result of sequential composition becomes unique, since all potentially different
results obtained by composing two processes fall into the same equivalence class.

Definition 14. The Best-Devillers process semantics BDP(N ) of a PTN N
is given by an SMC that has markings as objects and Best-Devillers processes
as arrows. Arrow composition is given by sequential composition, the monoidal
operation is given by parallel composition, and the identity for an object m
is given by the Best-Devillers process without transitions with origin m and
destination m. BDP can be extended to a functor BDP : PTN → SMC that
sends each PTN morphism H : N → N ′ to a functor BDP(H ) : BDP(N ) →
BDP(N ′).

The above definition is also equivalent to the one given in [21], although we define
Best-Devillers processes as a quotient of (classical) processes as in [7] rather than
as a quotient of concatenable processes as in [21]. Concatenable processes are a
slight refinement of finite (classical) processes: a concatenable process is a finite
process together with a total ordering of {p ∈ Min(N ) | L(p) = p′} for each
place p′ in the origin and a total ordering of {p ∈ Max (N ) | L(p) = p′} for
each place p′ in the destination. Using this refined notion of process the obvious
definition of sequential composition, where places are only identified if they have
the same position in this order, yields a unique result, which allows us to view
the class of concatenable processes as a category.

Since a safe process is only equivalent to itself, it corresponds to a Best-Devillers
process given by a singleton equivalence class. Hence each safe process can be
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regarded as a Best-Devillers process giving rise to an injection ι(N ) : SP(N ) →
BDP(N ). Actually we can state the following stronger

Remark 1. SP : SPTN → PSMC is a subfunctor of BDP : SPTN →
PSMC (the obvious restriction of BDP : PTN → SMC) as witnessed by ι :
SP → BDP which is in fact a natural transformation.

We take this remark as a justification for focusing primarily on the Best-Devillers
processes in the following, keeping in mind that classical safe processes form an
important subcategory. In the context of nets with individual tokens we shall
give some additional arguments for the relevance of this subcategory.

3.1 Rewriting Semantics: An Example

Rewriting logic can provide a direct semantics of PTNs following the motto
“Petri nets are monoids” advocated in [52]. In fact, the categorical semantics
presented in that work and also the relation between PTNs and linear logic
explained in [46] inspired the development of rewriting logic.

The PTN of the banker’s problem can be represented by the following RWS
given in Maude syntax [19,18], which consists of a MES specification and a set
of rewrite rules. As usual in Maude, the rewrite kind [Marking] is implicitly
introduced by introducing a sort Marking of this kind.4

sort Marking .

op empty : -> Marking .
op __ : Marking Marking -> Marking [assoc comm id: empty] .

ops BANK CREDIT-1 CREDIT-2 CLAIM-1 CLAIM-2 : -> Marking .

rl [GRANT-1] : BANK CLAIM-1 => CREDIT-1 .

rl [RETURN-1] : CREDIT-1 CREDIT-1 CREDIT-1 =>
BANK BANK BANK CLAIM-1 CLAIM-1 CLAIM-1 .

rl [GRANT-2] : BANK CLAIM-2 => CREDIT-2 .

rl [RETURN-2] : CREDIT-2 CREDIT-2 =>
BANK BANK CLAIM-2 CLAIM-2 .

Here we have applied the translation of PTNs into rewriting logic suggested in
[48], which is closely related to the translation of PTNs into linear logic [46]. A
4 In fact, here and in the rest of the paper Marking and [Marking] can be identified,

since the latter does not contain any additional (error) elements (cf. [9,51]).



Rewriting Logic as a Unifying Framework for Petri Nets 265

marking is represented as an element of the finite multiset sort Marking. The
constant empty represents the empty marking and __ is the corresponding multi-
set union operator. Associativity, commutativity and identity laws are specified
as structural equations by the operator attributes in square brackets. For each
place p there is a constant p, called token constructor, representing a single token
residing in that place. In fact, under the initial semantics Marking is a multiset
sort over tokens generated by these token constructors. For each transition t
there is a rule, called transition rule, labelled by t and stating that its preset
marking may be replaced by its postset marking.

As clearly demonstrated by the use of rewrite rules in the above RWS, there is
an important difference between the reduction rules induced by computational
equations of a MES and the rewrite rules of a RWS: The relation induced by
one-step rewrites is in general neither terminating nor confluent, although there
may be situations where this is the case. Only terminating systems where for
each initial state there is a unique final state can be described by terminating
and confluent rewrite rules. Hence this generalization is a practical necessity to
represent general system models. For instance, the PTN model of the banker’s
problem has not only infinite executions but also finite ones due to the possibility
of deadlock. Therefore, the transition system is neither terminating nor confluent
in this case.

In order to control the execution of a RWS the user can specify a strategy which
successively selects rewrite rules and initiates rewriting steps. For instance, in
the case of the banker’s example it is possible to define an execution strategy
that avoids states which are necessarily leading to a deadlock such that the
banker stays always in the “safe” part of the state space. In applications such
as net execution and analysis the choice of a strategy will be guided by the
need to explore the behaviour of the system under certain conditions. Strategies
are well-supported by the Maude engine via reflection [19,18], i.e. the capability
to represent rewrite specifications as objects and control their execution at the
meta-level, which makes Maude a suitable tool not only for executing place-
transition nets but also for analyzing such nets using strategies for (partial)
state-space exploration and model checking.

3.2 Rewriting Semantics in the General Case

The rewriting semantics that has been explained in terms of the banker’s example
in the previous section can be conceived as a functor from the category PTN of
place/transitions nets to the category SMRWS of symmetric monoidal RWSs
(SMRWSs) that will be introduced next. The characteristic feature of SMRWSs
is that their underlying specification has a single rewrite kind [Marking] that is
specified to be a free commutative monoid over a set of constants. The definition
of SMRWSs given below is quite restrictive, but is sufficient for the rewriting
semantics of PTNs. In Section 4.4 SMRWSs will be generalized to provide a
rewriting semantics for nets with individual tokens.
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Definition 15. A RWS R is a symmetric monoidal RWS (SMRWS) iff the
following conditions are satisfied:

1. SD
R is empty.

2. SR contains precisely the following:
(a) a kind [Marking] together with operator symbols

empty : → [Marking], : [Marking] [Marking] → [Marking];

(b) any number of operator symbols of the general form

p : → [Marking];

(c) the parallel composition axioms

∀ u, v ,w : [Marking] . u (v w) = (u v) w ,
∀ u, v : [Marking] . u v = v u,
∀ u : [Marking] . empty u = u.

3. Rules in RR do not have conditions and do not contain any variables.

Given two SMRWSs R and R′, a SMRWS morphism H : R → R′ is a RWS
morphism that preserves [Marking], empty and . SMRWSs together with their
morphisms form a subcategory of RWS denoted SMRWS.

In order to obtain a precise definition of the initial model-theoretic semantics
I(R) of a SMRWS R, it is convenient to define the model-theoretic semantics of
R by means of a MES E(R) which has a standard model-theoretic semantics in
terms of E(R)-algebras. Having done that, we then define I(R) as I(E(R)), i.e.,
as the initial model of E(R).

Definition 16. The membership equational presentation of a SMRWS R is a
MES E(R) that extends SR, the underlying MES of R, by the following:

1. a new kind [RawProc] together with new operator symbols called proof con-
structors

id : [Marking] → [RawProc],

: [RawProc] [RawProc] → [RawProc],

; : [RawProc] [RawProc] → [RawProc];

2. a new operator symbol called atomic proof constructor

t :→ [RawProc]

for each rule t : M → N in RR;
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3. a kind [Proc] with a sort Proc and an operator symbol

: → : [RawProc] [Marking] [Marking] → [Proc];

4. a membership axiom

t : M → N

for each rule t : M → N in RR, where we introduce the notation

P : M → N as a shorthand for (P : M → N ) : Proc;

5. membership axioms corresponding to the standard inference rules of rewrit-
ing logic, namely:
(a) identity:

id(u) : u → u

(b) composition:

α;β : u1 → u3 if α : u1 → u2 ∧ β : u2 → u3

(c) compatibility of parallel composition:

α1 α2 : u1 u2 → u ′
1 u ′

2 if α1 : u1 → u ′
1 ∧ α2 : u2 → u ′

2

6. equational axioms corresponding to the standard rewriting logic axioms,
namely:
(a) identity:

id(u);α = α if α : u → u ′

α; id(u ′) = α if α : u → u ′

(b) associativity:

α; (β; γ) = (α;β); γ
if α : u1 → u2 ∧ β : u2 → u3 ∧ γ : u3 → u4

(c) functoriality of the parallel composition operator:

id(u1) id(u2) = id(u1 u2)
(α1;β1)(α2;β2) = (α1 α2); (β1 β2)

if α1 : u1 → v1 ∧ β1 : v1 → w1 ∧
α2 : u2 → v2 ∧ β2 : v2 → w2

(d) inherited equations for the parallel composition operator:

α1 (α2 α3) = (α1 α2) α3

if α1 : u1 → u ′
1 ∧ α2 : u2 → u ′

2 ∧ α3 : u3 → u ′
3

α1 α2 = α2 α1

if α1 : u1 → u ′
1 ∧ α2 : u2 → u ′

2

id(empty) α = α if α : u → u ′
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For better readability we leave universal quantifiers implicit: u, u ′, v ,w , ui , u ′
i , vi ,

wi are distinct variables of kind [Marking] and α, β, γ, αi , βi , γi are distinct
variables of kind [RawProc].

E can be extended to a functor E : SMRWS → MES in the obvious way. Fur-
thermore, composing E : SMRWS → MES with the functor Mod : MES →
Catop we obtain Mod ◦ E : SMRWS → Catop which is also denoted Mod :
SMRWS → Catop. As usual we write UH for Mod(H ) given a SMRWS mor-
phism H .

In this paper we are not interested in the entire algebraic structure of SM-
RWS models. Instead, our first goal is to relate two different semantics of PTNs,
namely, the Best-Devillers process semantics and the rewriting semantics of Def-
inition 14, in terms of SMCs. In other words, the category SMC will serve as a
common basis and suitable level of abstraction to compare different descriptions.
Below, the initial models of SMRWSs, that are defined in terms of a functor I,
will be uniformly mapped into the same domain via a forgetful functor V.

Definition 17. Let Σ(Mod) be the Grothendiek construction for the functor
Mod : SMRWS → Catop and let π1 : Σ(Mod) → SMRWS be the obvious
projection functor that sends (R,A) to R. Given a SMRWS R we define I(R) as
I(E(R)) and ΣI(R) as (R, I(R)). Given a SMRWS morphism H : R → R′ we
define ΣI(H ) as the morphism (H , I(H )) : (R, I(R)) → (R′, I(R′)) with I(H )
the unique morphism I(H ) : I(R) → UH (I(R′)) guaranteed by the fact that
I(R) and UH (I(R′)) are objects in Mod(R) with the former being initial. In
this way we have defined a functor ΣI : SMRWS → Σ(Mod) that is left adjoint
to π1.

Let V : Σ(Mod) → SMC be the forgetful functor which sends (R, Â) to the
SMC defined as follows: The sets of objects and arrows are [[[Marking]]]Â and
[[Proc]]Â, respectively. Arrow composition is [[ ; ]]Â and identities are [[id]]Â(m)
for m ∈ [[[Marking]]]Â. The monoidal operation and its identity are given by
[[ ]]Â and [[empty]]Â, respectively. Given a morphism (H , h) : (R, Â) → (R′, Â′)
in Σ(Mod) we define V(H , h) as the SMC morphism given by the obvious
restriction of h.

The rewriting semantics of PTNs is then defined as follows:

Definition 18. Given a PTN N the rewriting semantics of N is the smallest
SMRWS R(N ) such that:

1. SR(N ) contains a token constructor

p : → [Marking]

for each place p ∈ PN ;
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2. R(N ) has a label t and a rule called a transition rule, namely,

t : p1 . . . p1︸ ︷︷ ︸
W (p1,t)

. . . pm . . . pm︸ ︷︷ ︸
W (pm ,t)

→ p1 . . . p1︸ ︷︷ ︸
W (t,p1)

. . . pm . . . pm︸ ︷︷ ︸
W (t,pm)

for each transition t ∈ TN assuming PN = {p1, . . . , pm} with distinct pi .

R can be extended to a functor R : PTN → SMRWS that maps each PTN
morphism H : N → N ′ to the unique SMRWS morphism G : R(N ) → R(N ′)
with GL(t) = H (t) for each t ∈ TN and GS(p) = H (p) for each p ∈ PN .

The main result in this section states that for a PTN N the Best-Devillers
process semantics BDP(N ) coincides with the initial semantics of R(N ) in the
strongest possible categorical sense of a natural isomorphism.

In fact, this theorem is closely related to and can be proved using a result in [21]
(Theorem 27), which states that the monoidal category CP(N ) of concatenable
processes and a monoidal category P(N ) defined by an inductive equational
definition are isomorphic. Both CP(N ) and P(N ) are not symmetric, but they
still enjoy certain symmetries. For an exact definition of CP(N ) and P(N ) we
refer to [21].

The difference between Theorem 27 in [21] and Theorem 1 below is that: (1)
Theorem 1 is about Best-Devillers processes which are more abstract than con-
catenable processes, (2) it uses rewriting logic instead of giving a direct inductive
equational definition, and (3) it states a natural isomorphism instead of just an
isomorphism, that is, we use not only categories in the small, but we also aim
at a systematic categorical treatment in the large.

Theorem 1. There is a natural isomorphism τ̂ : BDP → V ◦ ΣI ◦ R between
the functors BDP : PTN → SMC and V ◦ ΣI ◦ R : PTN → SMC (with R :
PTN → SMRWS and V ◦ ΣI : SMRWS → SMC).

In particular, the previous theorem entails that for each individual PTN we
have precisely characterized Best-Devillers processes in rewriting logic via R as
stated by the corollary below. As a byproduct we have obtained a corresponding
characterization in membership equational logic via E.

Corollary 1. The rewrite specification R(N ) provides a sound and complete
axiomatization of the Best-Devillers processes of the PTN N .

Again, this is closely related to Corollary 33 in [21], which states that the pre-
sentation of an SMC denoted by T (N ) provides a complete and sound axiom-
atization of Best-Devillers processes. Similar to the category P(N ) mentioned
before, T (N ) is given by a direct inductive equational definition, whereas here
we use the SMRWS R(N ) to express the same category. In other words we use
rewriting logic to equip the presentation of T (N ) itself with a first-class formal
status.
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3.3 Petri Nets with Test Arcs

In this section we illustrate how the techniques for giving a rewriting logic se-
mantics to place/transition nets can be extended to deal with the important
class of place/transition nets with test arcs [16,58,78,15]. Petri nets have been
equipped with test arcs (also called read arcs, or positive contexts in contextual
nets [58]) to naturally model cases where a certain resource may be read without
being consumed by a transition, such as in a database system where multiple
users are allowed to simultaneously read the same piece of data. In contrast to
ordinary arcs, several test arcs are allowed to access the same token in the same
concurrent step, but a token accessed by a test arc may not be accessed by an
ordinary arc in the same step.5 Test arcs cannot change the marking of a place.

Formally, a place/transition net with test arcs N is a place/transition net to-
gether with a set of test arcs TAN ⊆ PN × TN . We define the context function
∂TA : T⊕

N → M on finite multisets e of transitions by ∂TA(e)(p) = 1 if there is a
transition t ∈ e with (p, t) ∈ TAN , and by ∂TA(e)(p) = 0 otherwise. The step se-
mantics of a place/transition net with test arcs is defined as for place/transition
nets (see Section 3) with the modification that for m1

e→ m2 to hold we require
additionally that, for each place p ∈ PN , ∂TA(e)(p) ≤ m(p).

We propose a rewriting semantics for a place/transition net with test arcs, de-
fined in terms of a rewrite specification R(N ) similar to the one in Definition 18,
but specifying tokens by means of a kind [Place] and two operators [ ], 〈 〉 :
[Place] → [Marking] so that a token residing at place p is represented by the
term [p]. An occurrence of [p] may not be shared by more than one rewrite at
the same time; to allow simultaneous rewrites with read-only access to a token
at place p, we consider a token [p] to be equivalent to an arbitrary number of
read-only tokens of the form 〈p〉. This can be accomplished, using a technique
described in [50], by adding to our specification R(N ) an operator { | } :
[Marking] [Nat] → [Marking] and two “copying” axioms6

[p] = {p | 0} and {p | n} = {p | n + 1} 〈p〉,

where p and n are variables ranging, respectively, over [Place] and [Nat].

A transition t which consumes the tokens a1, . . . , an , produces the tokens b1, . . . ,
bm , and “reads” the tokens c1, . . . , ck , is modeled by a rewrite rule

t : [a1] . . . [an] 〈c1〉 . . . 〈ck 〉 −→ [b1] . . . [bm] 〈c1〉 . . . 〈ck 〉.

The database example in Figure 2, taken from [16], where multiple users may

5 This last restriction is omitted in some definitions of Petri nets with test arcs (see
e.g. [78]).

6 The counting of the read-only copies and their read-only use guarantee that all the
copies must have been “folded back together” in order for the original token to be
engaged in a transition that consumes the token.
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DataRead

ReadReq

DATA UPDATE

UpdReq

UpdDone

READ

Fig. 2. Small database example using test arcs.

read some data simultaneously, but where only one at a time is allowed to update
the data, is, therefore, modeled in rewriting logic by the following rules:

READ : [ReadReq] 〈Data〉 −→ [DataRead] 〈Data〉
UPDATE : [UpdReq] [Data] −→ [UpdDone] [Data].

Let R(N ) be the rewrite specification representing a place/transition net with
test arcs N as explained above, and for any marking m in N , let m� denote the
term of kind [Marking] which contains exactly m(p) occurrences of the term
[p] for each place p in N . Then, there is a step m1

e→ m2 in N iff there is
a one-step concurrent rewrite α : m�

1 −→ m�
2 in R(N ), where, in addition, the

step e can be extracted from the proof α. Furthermore, as in Definition 17 we
can define a functor that associates with R(N ) a symmetric monoidal category
determined by the initial semantics. This provides a categorical semantics for
all the concurrent computations of the net N that is closely related to the one
recently proposed by Bruni and Sassone in [15].

4 High-Level Petri Nets

We use the term high-level Petri nets to refer to a range of extensions of PTNs by
individual tokens, a line of research that has been initiated by the introduction
of predicate/transition nets in [33,34,32]. High-level Petri nets make use of an
underlying formalism, such as first-order logic in the case of predicate/transition
nets, to describe the information that is associated with each token and its trans-
formation. Colored nets7 introduced in [38] are another quite general model of
this kind with a more set-theoretic flavour. They generalize PTNs in such a
way that tokens can be arbitrary set-theoretic objects. Quite different from,
but closely related to, colored nets are high-level Petri nets that use an alge-
braic specification language as an underlying formalism [75,6,76,66,64,65,22,5].
In this paper we subsume such approaches under the general notion of algebraic

7 In fact, the nets introduced in [38] are called colored Petri nets (CPNs), but this
name has later been used for the more syntactic version introduced in [39], which is
also the sense for which we would like to reserve this term (see below).
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net specifications, parameterized over an underlying equational specification lan-
guage. The main feature that algebraic net specifications have in common with
predicate/transition nets is that an algebraic net specification does not necessar-
ily specify a single colored net, but instead denotes a class of colored nets that
satisfy the specification. In the following we first define colored nets, and then
we introduce algebraic net specifications over MEL, a straightforward general-
ization of algebraic net specifications over many-sorted equational-logic (MSA).
Both, algebraic net specifications and rewriting logic are specification formalisms
that admit a variety of models. From an even more general point of view that
is only briefly sketched in this paper, one can define colored net specifications
parameterized over an underlying logic. In fact, predicate/transition nets can
essentially be regarded as colored net specifications over first-order logic. From
this more general point of view we restrict our attention in this paper to the par-
ticular class of colored net specifications over MEL, that we also call algebraic
net specifications (over MEL), to establish a systematic connection to rewriting
logic (over MEL). Later, in Section 6, we will discuss how other high-level Petri
net extensions can be covered as generalizations or variants of our approach.

4.1 Colored Nets and Colored Net Specifications

Algebraic net specifications will be introduced later as a formal specification lan-
guage for colored nets. In the following we define the most general set-theoretic
version of colored nets [38]. We also give a suitable notion of colored net mor-
phism and we use CN to abbreviate the resulting category of colored nets.

Colored nets are nets with places, transitions, and arcs inscribed with additional
information given by functions C and W . The color set C (p) of a place p is the
set of possible objects p can carry. The color set C (t) of a transition t can be
seen as a set of modes in which t may occur. The arc inscription W defines a
multiset of objects (“colored” tokens) that are transported by an arc when the
associated transition occurs. In fact, this multiset may depend on the mode in
which the transition occurs, which is why W (p, t) and W (t , p) take the form of
functions in the definition below.

Definition 19. A colored net (CN) N consists of:

1. a finite net NN ;
2. a set of color sets CSN ;
3. a color function CN : PN ∪ TN → CSN ; and
4. an arc inscription WN on FN such that

WN (p, t) : CN (t) → CN (p)⊕
, and WN (t , p) : CN (t) → CN (p)⊕

.

WN is extended to a function on (PN × TN ) ∪ (TN × PN ) in such a way that
(p, t) /∈ FN implies WN (p, t)(b) = ∅ and (t , p) /∈ FN implies WN (t , p)(b) = ∅
for each b ∈ CN (t).
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Let N and N ′ be CNs. A CN morphism H : N → N ′ consists of a net morphism
HN : NN → NN ′ , and functions Hx : CN (x ) → CN ′(HN (x )) for each x ∈ PN ∪
TN such that:

1. WN ′(p′, t ′)(Ht(b)) = Hp1(WN (p1, t)(b)) ⊕ . . . ⊕ Hpn (WN (pn , t)(b))
for all p′ ∈ PN ′ , t ′ ∈ TN ′ , t ∈ H −1

N (t ′), b ∈ C (t),
and {p1, . . . , pn} = H −1

N (p′) ∩ •t with distinct pi ;
2. WN ′(t ′, p′)(Ht(b)) = Hp1(WN (t , p1)(b)) ⊕ . . . ⊕ Hpn (WN (t , pn)(b))

for all p′ ∈ PN ′ , t ′ ∈ TN ′ , t ∈ H −1
N (t ′), b ∈ C (t),

and {p1, . . . , pn} = H −1
N (p′) ∩ t• with distinct pi .

CNs together with their morphisms form a category denoted by CN.

CNs generalize PTNs. The two dual objects of generalization are places and
transitions. PTNs arise as the special case in which C (x ) is a singleton set for
each x ∈ P ∪T . This gives rise to an obvious inclusion functor ι : PTN → CN.

Although CNs can be seen as a generalization of PTNs, there is a more funda-
mental justification for introducing CNs, namely, that a CN is just a convenient
abbreviation for a typically rather complex PTN [39,32]. Indeed, this connection
can be exploited to lift low-level concepts such as markings, safe processes, and
Best-Devillers processes to the higher level. This is achieved by the following
flattening functor ( )� : CN → PTN which associates to each CN the PTN
obtained by “spatial unfolding.” We call this operation flattening to clearly dis-
tinguish it from “temporal unfolding” which generates the processes of a PTN
as we defined them earlier.

Definition 20. Given a CN N , we define the flattening N � of N as the unique
PTN that satisfies:

1. PN � = {(p, c) | p ∈ PN , c ∈ CN (p)};
2. TN � = {(t , b) | t ∈ TN , b ∈ CN (t)};
3. WN �((p, c), (t , b)) = WN (p, t)(b)(c); and
4. WN �((t , b), (p, c)) = WN (t , p)(b)(c)

for p ∈ PN , c ∈ CN (p), t ∈ TN , b ∈ CN (t).

Flattening is extended to a functor ( )� : CN → PTN as follows: Given a CN
morphism H : N → N ′, the PTN morphism H � : N � → N ′� is given by

1. H �((p, c)) = (HN (p),Hp(c)),
2. H �((t , b)) = (HN (t),Ht(b))

for p ∈ PN , c ∈ CN (p), t ∈ TN , and b ∈ CN (t).

It is important to point out that although we have defined the notion of a col-
ored net, we have not yet introduced a notion of finite specification of colored
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nets. This is unsatisfactory if we want to reason about colored net specifica-
tions instead of just reasoning about colored nets. It is also unsatisfactory if we
want to apply tools for execution, analysis and verification of colored nets, since
such tools rely on a finitary, formal specification. Although a formal inscription
language can be obtained by a formalization of set theory, such an enterprise is
cumbersome and is of little help when we are interested in effective net execution
and analysis. Also, the direct use of formalized set theory for specification and
verification purposes is not very convenient and could be compared with the use
of a low-level programming language.

Colored Petri nets, a more syntactic, finitary version of colored nets based on
an underlying programming language, are proposed in [39]. A remarkable point
is that this definition leaves open the particular choice of the underlying pro-
gramming language. We use CPNL to abbreviate the class of colored Petri nets
over a programming language L. A quite well known instance of this definition
is CPNML, the class supported by the execution and analysis tool Design/CPN
[39] that employs the functional programming language ML. Appart from their
operational flavor, the essential characteristic of colored Petri nets is that each
colored Petri net denotes a single well-defined colored net in the above sense. A
more logic-oriented view of colored nets (which emphasizes classes of models) is
given by colored net specifications that are introduced subsequently.

As a useful concept, we informally introduce colored net specifications (CNS)
which capture the essential idea shared by predicate/transition nets and alge-
braic net specifications, namely, that they denote an entire class of colored nets
instead of just a single one. In fact, there is a general concept of CNSs that
is parameterized by an underlying logic. A logic has a deductive system and a
model-theoretic semantics, a concept that can be formalized by general logics
[47] which contain institutions [35] as the model-theoretic component. We denote
by CNSL the class of colored net specifications over the underlying logic L. Pos-
sible candidates for L include equational logics such as many-sorted equational
logic (MSA), order-sorted equational logic (OSA), or membership equational
logic (MEL). We refer to CNSs over such equational logics also as algebraic net
specifications (ANS), and we denote by ANSL the class of algebraic net spec-
ifications over L. Obviously, there are other possible choices for the underlying
logic, such as full first-order logic (as in predicate/transition nets), a version of
higher-order logic, or a higher-order algebraic specification language (as in [37]).

4.2 Algebraic Net Specifications

In the following we use the term algebraic net specification (ANS) to specifically
refer to ANSs over MEL, since MEL is sufficiently expressive to cover other
commonly used algebraic specification languages such as MSA and OSA [51].
The use of MEL is particularly attractive, because it is weak enough to admit
initial models. Indeed, under the initial semantics (which can be internally spec-
ified using constraints in the data subspecification) an ANS denotes a unique



Rewriting Logic as a Unifying Framework for Petri Nets 275

CN. Another benefit of the use of membership equational logic is that, under
the restrictions mentioned in Section 2.1, it comes with a natural operational
semantics (which is actually implemented in the Maude engine) so that it can
be used directly as a programming language or, more generally, as a metalan-
guage to specify the logical and operational semantics of other specification or
programming languages. As a consequence, colored Petri nets in CPNL which
use L as a programming language can be seen as a special case of algebraic net
specifications in ANSMEL if the semantics of L can be specified in MEL.

Due to the fact that MEL generalizes MSA in an obvious way, ANSs over MEL
are a straightforward generalization of ANSs over MSA, i.e., many-sorted alge-
braic net specifications. Disregarding the issue of the underlying specification
language, the definition we give below is equivalent to the one in [41,43], gener-
alizing [64] by so-called flexible arcs, which transport variable multisets of tokens
in the sense that the number of tokens transported by an arc is not fixed but
can depend on the mode in which the associated transition occurs. Later, in
Section 4.3 we will illustrate by means of an example how an executable subset
of the specification language can be used to obtain executable specifications of
net models.

An ANS presupposes an underlying specification that has a multiset kind for
each place domain. Hence we introduce a generic notion of multiset specification
first.

Definition 21. A MES of finite multisets over a kind k consists of:

1. a MET having kinds k and [FMSk] with operator symbols

emptyk : [FMSk],

single : k → [FMSk],

: [FMSk] [FMSk] → [FMSk];

equational axioms

∀ a, b, c : [FMSk] . a (b c) = (a b) c,
∀ a, b : [FMSk] . a b = b a,
∀ a : [FMSk] . emptyk a = a;

2. and a constraint stating that this theory is free over k .

To simplify notation we write M instead of single(M ). To further simplify
the exposition we assume without loss of generality that [[[FMSk]]] = [[k ]]⊕, i.e.,
[FMSk] is interpreted in the standard way, and the operator symbols are inter-
preted accordingly.

The subsequent definition of algebraic net specifications should be regarded as
an instance of CNSs over a logic L choosing MEL for L. In fact, the only require-
ments that L has to meet is that it has a notion of type and that it is expressive
enough to axiomatize multisets.
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Definition 22. An algebraic net specification (ANS) N consists of:

1. a MES SN ;
2. a finite net NN ;
3. a place declaration, i.e., a function DN : PN → KSN assigning a kind DN (p)

to each place p ∈ PN such that SN includes a MES of finite multisets over
DN (p);

4. a variable declaration, i.e., a function VN on TN associating to each transi-
tion t ∈ TN a kinded variable set VN (t);

5. an arc inscription, i.e., a function WN on FN such that for p ∈ PN , t ∈ TN ,
(a) (p, t) ∈ FN implies WN (p, t) ∈ TSN (VN (t))[FMSDN (p)] and
(b) (t , p) ∈ FN implies WN (t , p) ∈ TSN (VN (t))[FMSDN (p)];

6. a guard definition, i.e., a function GN on TN with GN (t) being an SN -
condition over VN (t).

WN is extended to a function on (PN ×TN )∪ (TN ×PN ) such that (p, t) /∈ FN
implies WN (p, t) = emptyDN (p) and (t , p) /∈ FN implies WN (t , p) = emptyDN (p)
for p ∈ PN and t ∈ TN .

Let N and N ′ be ANSs. An ANS morphism H : N → N ′ consists of a MES
morphism HS : SN → SN ′ of the underlying MESs, a net morphism HN : NN →
NN ′ , and a function H t

V : VN (t) → VN ′(t) for each t ∈ TN such that x ∈
VN (t)k implies H t

V (x ) ∈ VN ′(t)HS(k) for k ∈ KSN and the following conditions
are satisfied:

1. HS(DN (p)) = DN ′(HN (p)) for each p ∈ PN ;
2. SN ′ |= ∀ VN ′(t) . H t

S(GN (t)) ⇒ GN ′(HN (t)) for each t ∈ TN ;
3. SN ′ |= ∀ VN ′(t) . H t

S(GN (t)) ⇒
WN ′(p′, t ′) = H t

S(WN (p1, t)) . . .H t
S(WN (pn , t))

for all p′ ∈ PN ′ , t ′ ∈ TN ′ , t ∈ H −1
N (t ′),

and {p1, . . . , pn} = H −1
N (p′) ∩ •t with distinct pi ;

4. SN ′ |= ∀ VN ′(t) . H t
S(GN (t)) ⇒

WN ′(t ′, p′) = H t
S(WN (t , p1)) . . .H t

S(WN (t , pn))
for all p′ ∈ PN ′ , t ′ ∈ TN ′ , t ∈ H −1

N (t ′),
and {p1, . . . , pn} = H −1

N (p′) ∩ t• with distinct pi ;

where H t
S : TSN (VN (t)) → TSN′ (VN ′(t)) is the common extension of HS and

H t
V to terms. We assume for the above definition that validity |= has been

extended to first-order formulae in the standard way.

ANSs together with their morphisms form a category ANS.

A typical ANS admits several colored nets as models. Since we want to state
our results for an arbitrary but fixed model we also consider interpreted ANSs,
i.e., ANSs together with distinguished data models. We furthermore equip inter-
preted ANS with a notion of morphism that allows us to express simultaneous
transformations at the level of the ANSs and at the level of the data models.
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Definition 23. An interpreted ANS IN = (N ,A) consists of an ANS N and
a SN -algebra A. An interpreted ANS morphism (H , h) : (N ,A) → (N ′,A′)
consists of an ANS morphism H : N → N ′ and an interpreted MES morphism
(HS , h) : (SN ,A) → (SN ′ ,A′). Interpreted ANSs together with their morphisms
form a category IANS.

Interpreted ANSs are considerably richer than CNs, since they contain their
specification together with a model equipped with a corresponding algebraic
structure. In this sense they are similar to concrete predicate/transition nets
[33,34,32] and algebraic high-level nets [25]. In fact, interpreted ANS, concrete
predicate/transition nets [31] and algebraic-high-level nets [25] can be regarded
as instances of a general notion of interpreted CNSs.8 The transition from inter-
preted ANSs to CNs can be described by a forgetful functor as follows.

Definition 24. Given an interpreted ANS (N ,A), the CN semantics of (N ,A)
is given by the CN CN(N ,A) defined as follows:

1. the underlying net NCN(N ,A) is precisely NN ;
2. the color function CCN(N ,A) is defined by

CCN(N ,A)(p) = [[DN (p)]]A for p ∈ PN and
CCN(N ,A)(t) = BN ,A(t) for t ∈ TN ,
where BN ,A(t) is the set of valid bindings of t ∈ TN , i.e.,
the set of assignments β : VN (t) → A satisfying GN (t);

3. the set of color sets CSCN(N ,A) is the smallest set that
contains all CCN(N ,A)(x ) for x ∈ PN ∪ TN ; and

4. the arc inscription WCN(N ,A) is defined by
WCN(N ,A)(p, t)(β) = [[WN (p, t)]]A,β and
WCN(N ,A)(t , p)(β) = [[WN (t , p)]]A,β

for p ∈ PN , t ∈ TN and assignments β : VN (t) → A.

CN is extended to a functor CN : IANS → CN that maps each morphism
(H , h) : (N ,A) → (N ′,A′) to the morphism G : CN(N ,A) → CN(N ′,A′)
satisfying GN = HN and Gx = hDN (x) for x ∈ PN ∪ TN .

We lift the flattening functor ( )� : CN → PTN to interpreted ANS, denoting
also by ( )� : IANS → PTN the composition ( )� ◦ CN. Using flattening we
furthermore lift BDP : PTN → SMC by defining BDP : IANS → SMC as
BDP ◦ ( )�.

4.3 A Case Study

In the following we generalize the rewriting semantics from PTNs to ANSs.
Before dealing with the general case we try to convey the main ideas using
8 To be precise, arc inscriptions have to be restricted, since flexible arcs are not avail-

able in predicate/transition nets and algebraic high-level nets.
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a distributed network algorithm as a running example, and we show how the
rewriting semantics is obtained in this particular but typical case.

An algorithm which admits a very natural presentation as an algebraic net spec-
ification is the well-known echo algorithm, also called PIF algorithm (where PIF
stands for propagation of information with feedback). The algebraic net model
we use here has been developed and verified in [42].

Given a network of agents with bidirectional channels the echo problem can
be informally described as follows. A distinguished agent initiates the transmis-
sion of a piece of information which should be propagated (possibly using other
agents) to all agents participating in the network. After that the initiator should
receive feedback about the succesful completion of this task, i.e., that each agent
has received the information transmitted.

A possible solution to this problem is modeled by the algebraic net specification
described below. To focus on the algorithm itself, the model abstracts from the
concrete information that is transmitted. This information can be easily added
by refining the messages without major changes to the algorithm.

We assume that the agents can be distinguished in terms of their identifiers,
which are modeled by a sort Id. The network of agents is represented as a
directed multigraph, i.e., as a finite multiset of (directed) channels, where each
channel is a pair of agent identifiers. In the specification fragment below, Pair
is the sort of pairs of identifiers and FMS-Pair is the sort of finite multisets over
such pairs. Finite multisets are equationally axiomatized as discussed before. The
obvious initiality and freeness constraints for Id, FMS-Id, Pair, and FMS-Pair
can be specified using (parameterized) functional modules in Maude [19,18], but
for the sake of brevity we omit the details here.

sort Id FMS-Id
Pair FMS-Pair .

op (_,_) : Id Id -> Pair .

op empty-Id : -> FMS-Id .
op single : Id -> FMS-Id .
op __ : FMS-Id FMS-Id -> FMS-Id

[assoc comm id: empty-Id] .

op empty-Pair : -> FMS-Pair .
op single : Pair -> FMS-Pair .
op __ : FMS-Pair FMS-Pair -> FMS-Pair

[assoc comm id: empty-Pair] .

var x y x’ y’ : Id .
var fmsp fmsp’ : FMS-Pair .
var p p’ : Pair .
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To work with a concrete example we assume agent identifiers and a network
as specified below. Actually, the algorithm is parametric in the choice of agent
identifiers and in the network topology, the only assumptions being that there is
a distinguished initiator and that the network is a strongly connected network
with bidirectional channels. Again this parameterization could be made explicit
in Maude by viewing the entire specification as a parameterized module which
can be instantiated, for instance, by the following choices for Id and network.9

ops i a b c d e : -> Id .

op sym : Id Id -> FMS-Pair .
eq sym(x,y) = ((x,y) (y,x)) .

op network : -> FMS-Pair .
eq network = (sym(i,a) sym(i,b) sym(e,b) sym(e,d)

sym(c,d) sym(c,i) sym(c,a) sym(a,b)) .

Now we equationally specify three auxiliary functions operating on finite mul-
tisets of pairs. The first one _-_ removes one occurrence of a given pair from a
multiset of pairs. The other functions out and in will be used with network as
a first argument: out(network,x) denotes the multiset of messages to be sent
to neighours of x and, correspondingly, in(network,x) denotes the multiset of
messages to be received from neighbours of x.

op _-_ : FMS-Pair Pair -> FMS-Pair .
eq empty-Pair - p = empty-Pair .
eq (p fmsp) - p = fmsp .
ceq (p’ fmsp) - p = (p’ (fmsp - p)) if p =/= p’ .

op in : FMS-Pair Id -> FMS-Pair .
eq in(empty-Pair,y’) = empty-Pair .
eq in(((x,y) fmsp),y) = ((x,y) in(fmsp,y)) .
ceq in(((x,y) fmsp),y’) = in(fmsp,y’) if y =/= y’ .

op out : FMS-Pair Id -> FMS-Pair .
eq out(empty-Pair,x’) = empty-Pair .
eq out(((x,y) fmsp),x) = ((x,y) out(fmsp,x)) .
ceq out(((x,y) fmsp),x’) = out(fmsp,x’) if x =/= x’ .

This concludes the MES. We are now ready to define the ANS on top of it.
Its inscribed net is depicted in Fig. 3. In the center we have a message pool
MESSAGES modeling messages in transit. The net elements at the top model the
9 If we were interested in (abstract) formal verification rather than (concrete) exe-

cution we would leave open the interpretation of Id and network and in this way
obtain an ANS admitting a rich variety of quite different models.
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activity of the initiating agent i, which is initially in a state QUIET, whereas
the net elements at the bottom model the activities of all the remaining agents
which are initially UNINFORMED. More precisely, the activities of initiators and
non-initiators are the following:

– After the initiator i sends out a message to all its neighbours (transition
ISEND) it will remain in the WAITING state until it receives an acknowl-
edgement message from all its neighbours. If this happens, it will go into
the TERMINATED state (transition IRECEIVE), i.e., the initiator has locally
detected that all agents have received a message.

– After a non-initiator x receives a message from an agent y, it sends messages
to all its neighbours except for y (transition SEND), and goes into a PENDING
state, where it remembers that it is pending after receiving a message from
y. As soon it receives acknowledgement messages from all neigbours except
for y it goes into the ACCEPTED state (transition RECEIVE).

x x x

x
a c
e

b

d (x,y)

x

x

i

(x,y)

(x,y)

(y,x)

Pair

Id
Id

Id Pair Id

Id

in(network,x)out(network,x)

out(network,x) in(network,x)
- (y,x)- (x,y)

Fig. 3. Echo Algorithm

The initial marking specificaton m0 for our concrete choice of the network is
given by the terms inside places. It is

m0(QUIET) = i

m0(WAITING) = empty-Id

m0(TERMINATED) = empty-Id

m0(UNINFORMED) = a b c d e

m0(PENDING) = empty-Pair

m0(ACCEPTED) = empty-Id

In Section 3 we have already discussed a rewriting semantics for the PTN of
the banker’s problem. Using the echo algorithm we will demonstrate how the
rewriting semantics generalizes to ANSs. It is worth mentioning that our seman-
tics is designed to cope with flexible arcs as the ones connected with the place
MESSAGES in the echo algorithm.
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The rewriting semantics associated to a RWS extends but does not modify the
underlying MES of the net, the advantage being that properties established for
the equational logic specification are preserved and their proofs remain valid.

As in the PTN case we represent a marking as an element of the kind [Marking],
which is equipped with a monoidal structure via the operations empty and .
For each place p we have a token constructor, also written as p, representing
the fact that a single token resides in place p. A difference with respect to the
PTN rewriting semantics is that tokens carry data, which is reflected in the fact
that token constructors are functions instead of being constants. For instance, a
token MESSAGES(msg) represents a token carrying the data msg residing in the
place MESSAGES. So the token constructor can be seen as a function tagging a
data object with information about the place in which it is currently located.

sort Marking .

op empty : -> Marking .
op __ : Marking Marking -> Marking

[assoc comm id: empty] .

ops MESSAGES PENDING : Pair -> Marking .
ops QUIET WAITING TERMINATED UNINFORMED ACCEPTED : Id -> Marking .

When formulating the transition rule for ISEND we are faced with the problem of
how to translate the flexible arc between ISEND and MESSAGES appropriately. Of
course we would like to express that the multiset out(network, x) is added to the
place MESSAGES, but this presupposes an interpretation of places as containers of
objects which is different from our current one, where tokens are tagged objects
“mixed up in a soup together with other tokens.”

An elegant solution is the linear extension of MESSAGES to multisets. For this
purpose we generalize the token constructor MESSAGES which has been declared
above to

op MESSAGES : FMS-Pair -> Marking .

and we add two equations expressing linearity of MESSAGES, which will also be
called place linearity equations:

seq MESSAGES(empty-Pair) = empty .
seq MESSAGES(fmsp fmsp’) = MESSAGES(fmsp) MESSAGES(fmsp’) .

The place linearity equations express the equivalence of different ways of look-
ing at the same marking of an ANS. So, as indicated by the keyword seq, from
a high-level specification point of view it is reasonable to assign them to the
class of structural equations expressing symmetries of the state representation.
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For reasons of uniformity we generalize the remaining token constructors corre-
spondingly and we impose corresponding place linearity equations that we omit
here.

Now the translation of transitions into rewrite rules can be done in full analogy
with the rewriting semantics for PTN. Each transition is represented as a rewrite
rule, also called a transition rule, replacing its preset marking by its postset
marking. If the transition has a guard, then that guard becomes a condition of
the rewrite rule. In this way we obtain the following rules:

rl [ISEND]: QUIET(x) =>
WAITING(x) MESSAGES(out(network,x))) .

rl [IRECEIVE]: WAITING(x) MESSAGES(in(network,x)) =>
TERMINATED(x) .

rl [SEND]: UNINFORMED(x) MESSAGES((y,x)) =>
PENDING((x,y)) MESSAGES(out(network,x)-(x,y)) .

rl [RECEIVE]: PENDING((x,y)) MESSAGES(in(network,x)-(y,x)) =>
ACCEPTED(x) MESSAGES((x,y)) .

According to our initial explanation a place can be seen as the tag of an object
which indicates the place the token resides in. This is what we call the tagged-
object view. The place linearity equations suggest a complementary view which is
encountered more often in the context of Petri nets: a place is simply a container
of objects. We call this the place-as-container view. The place linearity equations
express our intention to consider both views as equivalent.

4.4 Rewriting Semantics in the General Case

Generalizing the above example, we now define for an arbitrary ANS its associ-
ated rewriting semantics. We also show in which sense the rewriting semantics
is equivalent to the Best-Devillers process semantics of ANSs, which we have
defined by lifting the Best-Devillers process semantics of PTNs to ANSs via the
flattening construction. First we generalize symmetric monoidal RWSs (SMR-
WSs) to extended symmetric monoidal RWSs (ESMRWSs), which will serve as a
suitable domain for the rewriting semantics. Notice that in ESMRWSs the data
subspecification is not required to be empty. A second difference w.r.t. SMRWSs
is that token constructors are extended to multisets and place linearity equations
are added.

Definition 25. A RWS R is an extended symmetric monoidal RWS (ESMRWS)
iff the the following conditions are satisfied:

1. SR extends SD
R precisely by:
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(a) a new kind [Marking] and new operator symbols

empty : [Marking], : [Marking] [Marking] → [Marking];

(b) any number of new operator symbols of the general form

p : [FMSk] → [Marking],

where k is a kind in SD
R such that

SD
R includes a MES of finite multisets over k ;

(c) the axioms for parallel composition

∀ u, v ,w : [Marking] . u (v w) = (u v) w ,
∀ u, v : [Marking] . u v = v u,
∀ u : [Marking] . empty u = u; and

(d) the place linearity equations

p(emptyk ) = empty,

∀ a, b : [FMSk] . p(a b) = p(a) p(b)

for each operator p : [FMSk] → [Marking] introduced above.
2. Rules in RR contain only variables with kinds in SD

R and have SD
R -conditions.

Given two ESMRWSs R and R′, an ESMRWS morphism H : R → R′ is a RWS
morphism that preserves [Marking], empty and . ESMRWSs together with
their morphisms form a subcategory of RWS that is denoted by ESMRWS.

Definition 26. The membership equational presentation of an ESMRWS R is a
MES E(R) that extends SR, the underlying MES of R, as explained in Definition
16, but modifying items 2 and 4 we have:

2. a new operator symbol called atomic proof constructor

t : k̄ → [RawProc],

4. a membership axiom

∀ X . t(x̄ ) : M → N if φ̄1 ∧ . . . ∧ φ̄n

for each rule ∀ X . t : M → N if φ̄1 ∧ . . . ∧ φ̄n in RR, assuming that x̄ : k̄ is
a canonical enumeration of the variables X .

As in Definition 16, E can be extended to a functor E : ESMRWS → MES in
the obvious way.
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Definition 27. An interpreted ESMRWS (R,A) consists of an ESMRWS R
and a SD

R -model A. An interpreted ESMRWS morphism (H , h) : (R,A) →
(R′,A′) consists of an ESMRWS morphism H : R → R′ and an interpreted
MES morphism (HD , h) : (SD

R ,A) → (SD
R′ ,A′). Interpreted ESMRWSs together

with their morphisms form a category IESMRWS.

Definition 28. For an interpreted ESMRWS (R,A) we define Mod(R,A) as
the subcategory of Mod(R) (i.e. Mod(E(R))), with objects being R-algebras
(i.e. E(R)-algebras) Â satisfying Â|SD

R = A. In fact, this gives rise to a functor
Mod : IESMRWS → Catop, and again we write UH for Mod(H ) given a
ESMRWS morphism H .

Lemma 1 (Protection Lemma).

Let (R,A) be an interpreted ESMRWS and consider the obvious inclusion K :
SD

R ↪→ E(R). Then ηK (A) : A → UK (FK (A)) is an isomorphism.

To simplify the exposition assume that the free functor FK has been defined in
such a way that ηK (A) becomes the identity and therefore UK (FK (A)) = A for
all (R,A) and K as above. The protection lemma ensures that this is possible
without loss of generality.

Mod(R)

Mod(R′)

UK

UK ′

UH

FK

FK ′

E(R)SD
R

K

K ′
E(H )

SD
R E(R′)

UHD

Mod(SD
R )

Mod(SD
R )

E(HD)

Fig. 4. Morphisms in Definition 29

Definition 29. Let Σ(Mod) be the Grothendiek construction for the functor
Mod : IESMRWS → Catop and let π1 : Σ(Mod) → IESMRWS be the
obvious projection functor that sends ((R,A), Â) to (R,A). Furthermore, let
(R,A) and (R′,A′) be interpreted ESMRWSs and let K : SD

R ↪→ E(R) and K ′ :
SD

R′ ↪→ E(R′) be the obvious inclusions (cf. Fig. 4). We then define F(R,A)
as FK (A) and ΣF(R,A) as ((R,A),F(R,A)). Given an interpreted ESMRWS
morphism (H , h) : (R,A) → (R′,A′) with H : R → R′ and h : A → UHD (A′) we
define ΣF(H , h) as the morphism ((H , h),F(H ) ◦ FK (h)) : ((R,A),FK (A)) →
((R′,A′),FK ′(A′)) where FK (h) : FK (A) → FK (UHD (A′)) and F(H ) is the
unique morphism F(H ) : FK (UHD (A′)) → UH (FK ′(A′)) guranteed by the fact
that FK (UHD (A′)) and UH (FK ′(A′)) are objects in Mod(R,UHD (A′)), since
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using Lemma 1 we find UK (FK (UHD (A′))) = UHD (A′) and UK (UH (FK ′(A′)))
= UHD (UK ′(FK ′(A′))) = UHD (A′), and by the fact that FK (UHD (A′)) is initial.
In this way we have defined a functor ΣF : IESMRWS → Σ(Mod) that is left
adjoint to π1.

Furthermore, let V : Σ(Mod) → SMC be the forgetful functor, which sends
((R,A), Â) to a SMC, defined as in Def. 17.

Definition 30. Given an ANS N , the rewriting semantics of N is the smallest
ESMRWS R(N ) with an underlying data specification SD

R(N ) = SN such that:

1. SR(N ) contains a token constructor

p : [FMSDN (p)] → [Marking]

for each place p ∈ PN ; and
2. R(N ) has a label t and a rule called transition rule, namely,

∀ VN (t) . t : (p1(WN (p1, t)) . . . pm(WN (pm , t))) →
(p1(WN (t , p1)) . . . pm(WN (t , pm))) if GN (t)

for each transition t ∈ TN , assuming PN = {p1, . . . , pm} with distinct pi .

R can be extended to a functor R : ANS → ESMRWS that maps each ANS
morphism H : N → N ′ to the unique ESMRWS morphism G : R(N ) → R(N ′)
with GS(p) = HN (p) for each p ∈ PN and GL(t) = HN (t) for each t ∈ TN .

The functor R : ANS → ESMRWS is naturally extended to a functor R :
IANS → IESMRWS sending each interpreted ANS (N ,A) to the interpreted
ESMRWS (R(N ),A). Furthermore, R sends each interpreted ANS morphism
(H , h) : (N ,A) → (N ′,A′) to the interpreted ESMRWS morphism (R(H ), h) :
R(N ,A) → R(N ′,A′).

Definition 31. Given an interpreted ESMRWS (R,A) we define the flattening
of (R,A) as the smallest SMRWS (R,A)� satisfying the following conditions:

1. For each operator p : [FMSk] → [Marking] in SR and for each a ∈ [[k ]]A
there is a constant pa : → [Marking] in S(R,A)� .

2. For each rule ∀ X . t : M → N if φ̄1 ∧ . . . ∧ φ̄n in RR and for each
assignment β : X → A with A, β |= φ̄1 ∧ . . . ∧ φ̄n we define functions σ and
σp for each operator p as above by

σ(empty) = empty, σ(p(M )) = σp([[M ]]A,β)), σ(M N ) = σ(M ) σ(N ),
σp([[ ]]([[single]](a1), . . . , [[single]](am))) = pa1 . . . pam
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([[ ]] is naturally extended to an arbitrary number of arguments)
and we have a rule

tβ(x̄) : σ(M ) → σ(N )

to R(R,A)� , assuming that x̄ : k̄ is a canonical enumeration of X .

( )� is extended to a functor ( )� : IESMRWS → SMRWS as follows: ( )�

sends each interpreted ESMRWS morphism (H , h) : (R,A) → (R′,A′) with H :
R → R′ and h : A → UHD (A′) to a SMRWS morphism (H , h)� : (R,A)� →
(R′,A′)� defined such that (H , h)�(pa) = HS(p)h(a) and (H , h)�(t ā) = HL(t)h(ā)

for ā = β(x̄ ) and all p, t , a, β, x̄ as above.

The theorem and the corollary below are stated in complete analogy to the
corresponding results for PTNs. Indeed the former results can be seen as special
cases of the latter via an inclusion ι : PTN → ANS which is the counterpart of
ι : PTN → CN on the specification level. However, for the proof we exploit the
opposite direction, namely that Theorem 2 can be reduced to Theorem 1 via the
flattening constructions introduced earlier. This can be done by a combination
of commutative diagrams using the following two lemmas.

The first lemma essentially states that the rewriting semantics is compatible
with flattening. Notice the overloading of R and ( )�.

Lemma 2. There is a natural isomorphism σ : ( )� ◦ R → R ◦ ( )� between the
functors ( )� ◦ R : IANS → SMRWS (with R : IANS → IESMRWS and
( )� : IESMRWS → SMRWS) and R ◦ ( )� : IANS → SMRWS (with ( )� :
IANS → PTN and R : PTN → SMRWS).

The second lemma expresses that flattening preserves models at the level of
abstraction given by SMCs.

Lemma 3. There is a natural isomorphism ρ : V ◦ ΣF → V ◦ ΣI ◦ ( )� between
the functors V ◦ ΣF : IESMRWS → SMC and V ◦ ΣI ◦ ( )� : IESMRWS →
SMC (with ( )� : IESMRWS → SMRWS and V ◦ ΣI : SMRWS → SMC).

Now the main result follows from Lemma 2, Lemma 3 and Theorem 1:

Theorem 2. There is a natural isomorphism τ̃ : BDP → V ◦ ΣF ◦ R between
the functors BDP : IANS → SMC and V ◦ ΣF ◦ R : IANS → SMC (with
R : IANS → IESMRWS and V ◦ ΣF : IESMRWS → SMC).

Proof By composition of natural isomorphisms (see Fig. 5). �
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Fig. 5. Proof of Theorem 2

In analogy to Corollary 1 we obtain:

Corollary 2. The interpreted RWS R(N ,A) provides a sound and complete
axiomatization of the Best-Devillers processes of the interpreted ANS (N ,A).

Remember that the models we consider here do not only contain Best-Devillers
processes. They also contain safe processes as an important special case. Safe
processes are not only a special case of the classical notion of process in Petri
net theory, but they seem to be sufficient in practice as witnessed by [65], which
presents a methodology for modeling and verification of distributed algorithms
based on a version of ANSs that only admits safe processes.

Another related issue, namely the gap between the individual token philosophy
and the collective token philosophy which clearly exists at the level of PTNs
seems to become less relevant at the level of CNs, because of the increase of
expressivity. We argue that interpreting CNs under the collective token philos-
ophy is not only simpler and less dependent on the structure of the state space
but also sufficient in principle, since by a suitable transformation of the CN we
can equip tokens with unique identities in such a way that each original process
corresponds to a safe process of the resulting CN.10 As we discussed earlier, in-
dividual and collective token philosophies coincide for safe processes. Non-safe
10 One policy to maintain unique identities is to encode the local history, i.e. the in-

formation about all events in the past cone of a token, in the identity of the token
itself, and to ensure locally that the identities of the tokens produced by a transition
are distinct. Of course, it is easy to imagine interesting classes of nets, e.g. object-
oriented versions of high-level nets, where tokens are already equipped with unique
identities so that this transformation is not needed at all.
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processes of the resulting CN are not considered any more. In this sense, the
individual token philosophy can be seen as a special case of the collective token
philosophy. Beyond that it may well be adequate for certain applications to mix
the individual and the collective token views in the same system model, and
indeed this is possible with the approach that we propose, namely by adopting
the collective token semantics as a framework semantics and equipping tokens
with additional identity attributes whenever needed for modeling purposes. In-
deed this view reveals that individual and collective tokens semantics are just
two extreme levels of abstraction and there are many intermediate levels that
can be covered in this way. A good example of a very similar experience giving
support to this point of view is the work [57] on a partial order semantics for
object-oriented systems that, although typical of the individual token philoso-
phy, is shown to be isomorphic to the rewriting semantics typical of the collective
token philosophy, thanks to the unique identities of objects and messages.

4.5 Execution of Algebraic Net Specifications

First of all we lift the notion of executability from rewriting logic to net spec-
ifications. We say that a net specification is weakly/strongly executable iff its
rewriting semantics is weakly/strongly executable. To actually execute a specifi-
cation it is necessary to have an implementation of a matching algorithm for all
combinations of structural equations used in the specification. A typical rewrite
engine such as Maude supports matching modulo all combinations of the laws of
associativity, commutativity and identity (ACU) [19,18]. Since the place linear-
ity equations belong to a class of equations that are typically not supported by
standard rewrite engines we distinguish in the following between direct execu-
tion using ACUL-matching (L stands for linearity) and an alternative approach,
namely execution via ACU-matching, which makes use of a simple semantics-
preserving translation that can achieve executability without structural linearity
equations.

Direct Execution via ACUL-Matching. It is easy to verify that the under-
lying MES in our example is already in executable form when the place linearity
equations are seen as structural equations. Still the rewriting specification is not
coherent and, as a consequence, the net specification is not executable as given.

A subterm of the form in(network,x) which occurs in the lefthand side of
the rewrite axiom IRECEIVE can be reduced using the equations for in, so that
the rewrite axiom is not applicable anymore. An obvious solution is to replace
the arc inscription in(network,x) of the transition IRECEIVE by a variable
fmsmsg and to add the guard fmsmsg == in(network,x) to this transition. A
corresponding modification of the net specification has to be carried out for the
transition RECEIVE. In the rewriting semantics these changes are reflected by the
modified rewrite rules given below.
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var fmsmsg : FMS-Message .

crl [IRECEIVE]: WAITING(x) MESSAGES(fmsmsg) =>
TERMINATED(x)

if fmsmsg == in(network,x) .

crl [RECEIVE]: PENDING((x,y)) MESSAGES(fmsmsg) =>
ACCEPTED(x) MESSAGES((x,y))

if fmsmsg == in(network,x)-(y,x) .

After this simple semantics-preserving transformation the rewrite specification
is indeed coherent and therefore strongly executable. To execute the RWS it
is sufficient to use rewriting modulo associativity, commutativity, identity and
linearity for the representation of markings.

Execution Using ACU-Matching. We show in the following that, given
an executable ANS such as the one we have just obtained, there is an alter-
native approach to net execution by regarding the place linearity equations as
computational equations instead of as structural equations. Of course, from the
viewpoint of the abstract algebraic semantics nothing will change. An immedi-
ate consequence is, however, that the net specification can be executed using a
standard rewriting engine such as Maude, without the need for a new matching
algorithm.

The first step is to regard the place linearity equations as reduction rules, i.e.,

eq MESSAGES(empty-Pair) = empty .
ceq MESSAGES(fmsp fmsp’) = (MESSAGES(fmsp) MESSAGES(fmsp’))

if fmsp =/= empty-Pair and fmsp’ =/= empty-Pair .

After applying this modification to all place linearity equations the reduction
rules are terminating (the condition avoids potential non-terminating computa-
tions) and confluent, yielding an executable equational part of the specification.

However, as a consequence of the use of place-linearity equations as reduction
rules instead of as structural equations, the rewrite specification is not coherent
anymore, because of the rules for IRECEIVE and RECEIVE and the new equa-
tions above. Again, we can carry out a simple semantics-preserving translation
by introducing a variable mmsg ranging over markings containing only tokens on
MESSAGES and satisfying the equality condition mmsg == MESSAGES(fmsmsg).
By introducing the inverse inv-MESSAGES of MESSAGES this condition becomes
inv-MESSAGES(mmsg) == fmsmsg. Therefore, inv-MESSAGES(mmsg) gives us ac-
cess to the flexible arc inscription fmsmsg. As a result we replace these two rules
by the following, which make the specification coherent and, hence, strongly
executable:
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sorts empty MESSAGES-Marking Marking .
subsorts empty < MESSAGES-Marking < Marking .

vars mmsg,mmsg’ : MESSAGES-Marking .

op empty : -> empty .
op __ : Marking Marking -> Marking

[assoc comm id: empty] .
op __ : MESSAGES-Marking MESSAGES-Marking -> MESSAGES-Marking

[assoc comm id: empty] .
op __ : empty empty -> empty

[assoc comm id: empty] .

op MESSAGES : FMS-Pair -> MESSAGES-Marking .

op inv-MESSAGES : MESSAGES-Marking -> FMS-Pair .
eq inv-MESSAGES(empty) = empty-Pair .
eq inv-MESSAGES(MESSAGES(fmsp)) = fmsp .
ceq inv-MESSAGES(mmsg mmsg’) =

(inv-MESSAGES(mmsg) inv-MESSAGES(mmsg’))
if mmsg =/= empty and mmsg’ =/= empty .

crl [IRECEIVE]: WAITING(x) mmsg =>
TERMINATED(x)

if inv-MESSAGES(mmsg) == in(network,x) .

crl [RECEIVE]: PENDING((x,y)) mmsg =>
ACCEPTED(x) MESSAGES((x,y))

if inv-MESSAGES(mmsg) == in(network,x)-(y,x) .

It should be clear from this example how the general translation works. It takes
the form of a conservative theory transformation from the original RWS of an
ANS executable by ACUL matching to a logically equivalent RWS executable
by ACU matching. The transformation can be applied to any executable ANS
satisfying the mild condition that flexible arcs are inscribed by variables, as it is
the case in the executable version of the echo algorithm.11

Even though the resulting RWS is strongly executable, a strategy to execute the
specification or to partially explore the state space can be useful, because of the
highly nondeterminstic nature of the algorithm. A strategy of this kind can be
seen as restricting the possible rewrites leading to a subcategory of the original
category of all rewrites. If the RWS is only weakly executable, as in the example
discussed in [69], the strategy can play an additional role, namely to find suitable
instantiations for the variables that cannot be determined by matching.
11 A more general transformation is possible if we use conditions with matching equa-

tions, a feature supported by the most recent version of Maude [20].
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5 Timed Petri Nets

This section illustrates how an important class of timed Petri nets can be given
a rewriting logic semantics. Petri nets have been extended to model real-time
systems in different ways (see e. g. [1,59,36]). Three of the most frequently used
time extensions are the following [59], from which other timed versions of Petri
nets can be obtained either as special cases or by combining the extensions:

1. Each transition t has an associated time interval [lt , ut ]. A transition fires as
soon as it can, but the resulting tokens are delayed, that is, when a transition
t fires, the resulting tokens are produced after some time delay r ∈ [lt , ut ].

2. Each place p has a duration dp . A token at place p cannot participate in a
transition until it has been at p for at least time dp .

3. Each transition t is associated with a time interval [lt , ut ], and the transition
t cannot fire before it has been continuously enabled for at least time lt .
Also, the transition t cannot have been enabled continuously for more than
time ut without being taken.

We will not treat the third case in this paper. We will instead cover the first
two cases as special cases of the interval timed colored Petri net (ITCPN) model
proposed by van der Aalst [1]. ITCPNs appear in the context of colored nets,
but to simplify the exposition and focus on real-time features, we abstract from
the colors of the tokens and instead have atomic tokens (with timestamps).

5.1 Interval Timed Petri Nets

We define a new model called interval timed Petri nets (ITPNs). Our model is
similar to the interval timed colored Petri net model proposed in [1], but with
two differences: (1) ITPNs ignore the coloring of the tokens, and (2) ITPNs have
a notion of concurrent firing of multisets of transitions.

An ITPN is a PTN where the outgoing arcs are inscribed by time intervals
denoting the range of possible firing delays of the produced tokens. The set TI
of all time intervals, in a time domain Time, is the set TI = { [r1, r2] | r1, r2 ∈
Time ∧ r1 ≤ r2}.

Definition 1. An interval timed Petri net (ITPN) N is a PTN together with a
delay inscription DN : FN ∩(TN ×PN ) → TI ⊕ verifying |DN (t , p)| = WN (t , p).
The preset function ∂0 : TN → P⊕

N is defined, as for PTNs, by ∂0(t)(p) =
WN (p, t), and the postset function ∂∗

1 : TN → (PN ×TI )⊕, where each resulting
token is equipped with its delay interval, is defined by ∂∗

1 (t)(p, ∆) = DN (t , p)(∆).

The ITPN in Fig. 6 models a setting where each process performs transition a,
followed by transition b within time 5 to 10, again followed by transition a time
4 to 8 thereafter, and so on. Furthermore, each process forks when performing
transition a (this is modeled by having two arcs from a to q).
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p q

a
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[5,10]

[5,10]

[4,8]

Fig. 6. An interval timed Petri net.

In the ITPN model, as in the ITCPN model, we attach a timestamp to each
token. This timestamp indicates the time when a token becomes available. The
enabling time of a transition is the maximum timestamp of the tokens to be con-
sumed. Transitions are eager to fire (i.e., they fire as soon as possible), therefore
the transition with the smallest enabling time will fire first. Firing is an atomic
action, producing tokens with a timestamp equal to the firing time plus some
firing delay specified by the delay inscription.

In the following, let N be an ITPN. The set of markings MN = (PN ×Time)⊕ is
the set of all finite multisets of pairs (p, r) representing the presence of a token at
place p with timestamp r . The function places : MN → P⊕

N which removes the
timestamps from a marking is defined by places(m)(p) = Σ(p,r)∈S(m) m(p, r).
The function max : (MN − {∅}) → Time which finds the maximal timestamp
in a non-empty marking is given by max (m) = max{r ∈ Time | ∃p . (p, r) ∈
m}. The earliest enabling time of any transition in a marking is given by a func-
tion EET : MN → Time ∪ {∞} defined by EET (m) = min{max (m ′) | ∃t ∈
TN ,m ′ ∈ MN . m ′ � m ∧ places(m ′) = ∂0(t)} with min(∅) = ∞. The function
+̂ : (PN ×TI )⊕ ×Time → (PN ×TI )⊕ adds a delay to all the intervals in a mul-
tiset and is defined by (m+̂r)(p, [r1 + r , r2 + r ]) = Σ(p,[r1,r2])∈S(m) m(p, [r1, r2]),
and (m+̂r)(p, [r ′, r ′′]) = 0 if r ′ < r . Finally, to relate multisets of tokens with
timestamps with multisets of tokens with time intervals, we define the special-
ization relation � ⊆ (PN × Time)⊕ × (PN × TI )⊕, where m � m ′ holds if and
only if each token in m corresponds to one token in m ′, such that they are in
the same place and the timestamp of the token in m is in the interval of the
corresponding token in m ′. That is, m �m ′ if and only if either (m = ∅∧m ′ = ∅)
or ∃(p, r) ∈ m, (p, [r1, r2]) ∈ m ′ . r1 ≤ r ≤ r2 ∧ (m − (p, r))� (m ′ − (p, [r1, r2])).

An ITPN makes computational progress by applying transitions, thereby con-
suming and producing multisets of timestamped tokens. A nonempty finite mul-
tiset of transitions firing at the same time constitutes a (concurrent) step. The
(concurrent) step semantics of an ITPN N is given by the labelled transition
system which has MN as states, ST N = T⊕

N −{∅} as steps, and where the tran-
sition relation → ⊆ MN × ST N × MN is defined inductively by the following
rules:
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places(m) = ∂0(t) max (m) = EET (m) m ′ � ∂∗
1 (t)+̂EET (m)

m t→ m ′

m e→ m ′ m ′′ ∈ MN EET (m ⊕ m ′′) = EET (m)

(m ⊕ m ′′) e→ (m ′ ⊕ m ′′)

m1
e1→ m ′

1 m2
e2→ m ′

2 EET (m1 ⊕ m2) = EET (m1) = EET (m2)

(m1 ⊕ m2)
e1⊕e2→ (m ′

1 ⊕ m ′
2)

.

A step sequence in N is a (finite or infinite) sequence

ς : m0
e1→ m1

e2→ m2
e3→ · · · ,

where each step ei represents the simultaneous firing of its transitions at time
EET (mi−1). The set of all step sequences of an ITPN N is denoted C∞

N .

Timed Petri nets of type (1) described above, where transitions have durations,
can be seen as a special case of ITPNs as follows. A transition t with time
interval [lt , ut ] which consumes the tokens m and produces the tokens m ′ can
be simulated in an ITPN by adding a new place pt , and having a transition t1
which consumes the tokens m and produces one token at place pt in some time
in the interval [lt , ut ], and another transition t2 which consumes one token from
pt and produces the tokens m ′ in zero time. Timed Petri nets of type (2), where
each place has a duration dp , corresponds to the special case of ITPNs where
each token produced at place p has firing delay dp .

5.2 Representing ITPNs in Rewriting Logic

Representing Real-Time Theories in Rewriting Logic. We have proposed
in [62] a framework for modeling real-time and hybrid systems in rewriting logic
by means of real-time rewrite theories, and have shown that a number of well-
known models of real-time and hybrid systems can naturally be specified as such
theories. Essentially, a real-time rewrite theory should include a sort Time and
an operator { } which encloses the global state of the system and is used to ensure
that time advances uniformly in all parts of a system. In addition to ordinary
rewrite rules modeling instantaneous change in a system, a real-time rewrite
theory may contain tick rules of the form l : {t} τl−→ {t ′} if C , which model
time elapse in a system, and where the term τl of sort Time denotes the duration
of the rule. The total time elapse τ(α) of a rewrite proof α : {u} −→ {u ′} is
defined as the sum of the time elapsed in each tick rule application in α. Even
though it is useful to highlight the real-time aspects of a system using real-
time rewrite theories, we have shown that, by adding an explicit clock, such
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theories are reducible to ordinary rewrite theories in a way that preserves all
their expected properties.

In real-time systems, some actions are eager, that is, their application should take
precedence over the application of time-advancing tick rules. We divide the rules
of a real-time rewrite theory into eager and lazy rules, and define the admissible
rewrites [62] to be the subset of all rewrites satisfying the additional requirement
that a lazy rule may only be applied when no eager rule is applicable. The Real-
Time Maude language and tool [60,61] supports the specification and analysis
of real-time rewrite theories, including the possibility to define eager and lazy
rules.

Specifying ITPNs as Real-Time Rewrite Theories. The rewriting logic
semantics of interval timed Petri nets is based on the rewriting logic semantics
of untimed place/transition nets given in Section 3.2. For the sake of simplicity
of the rewriting logic representation of ITPNs, we choose not to carry the times-
tamps in the tokens at all times. Instead, a term [p] of sort VisibleMarking
represents a occurrence of a token at place p that is “visible”, i.e., available for
consumption. A token that will be visible at place p in time r is represented by
the term dly(p, r), which has the sort DelayedMarking whenever r �= 0.12 A
token with delay 0 is visible, i.e., dly(p, 0)= [p]. The sort Marking is a super-
sort of the sorts VisibleMarking and DelayedMarking, and denotes multisets
of these two forms of tokens, where multiset union is represented by juxtapo-
sition. The function mte takes a term of sort DelayedMarking and returns the
time that can elapse until the next delayed token becomes visible. The function
delta models the effect of the passage of time on delayed tokens by decreasing
their delays according to the time elapsed.

The rewriting logic semantics of an ITPN N with PN = {p1, . . . , pn} is given
by a real-time rewrite specification R(N ), where the underlying MES contains
an axiomatization of the sort Time of the time domain [62], a sort TimeInf for
the time domain extended with ∞, together with the functions +, ≤, min, and
−̇ (“monus”), and the following declarations and axioms:

sorts Place EmptyMarking VisibleMarking DelayedMarking Marking System .
subsorts EmptyMarking < VisibleMarking DelayedMarking < Marking .

ops p1 . . . pn : -> Place .
op [_] : Place -> VisibleMarking .
op dly : Place Time -> Marking .
op empty : -> EmptyMarking .
op __ : Marking Marking -> Marking [assoc comm id: empty] .
op __ : DelayedMarking DelayedMarking -> DelayedMarking

[assoc comm id: empty] .

12 We will see later that no interesting information about time is lost by this simplifi-
cation, since the time when a firing of a transition occurs can always be extracted
from the proof term.
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op __ : VisibleMarking VisibleMarking -> VisibleMarking
[assoc comm id: empty] .

op __ : EmptyMarking EmptyMarking -> EmptyMarking
[assoc comm id: empty] .

op {_} : Marking -> System .
op delta : DelayedMarking Time -> Marking .
op mte : DelayedMarking -> TimeInf .

vars DM DM’ : DelayedMarking . var VM : VisibleMarking .
var P : Place . vars X Y : Time .
cmb dly(P, X) : DelayedMarking if X =/= 0 .
eq dly(P, 0) = [P] .
eq delta(empty, X) = empty .
eq delta(dly(P, X), Y) = dly(P, X −̇ Y) .
ceq delta(DM DM’, X) = delta(DM, X) delta(DM’, X)

if DM =/= empty and DT’ =/= empty .
eq mte(empty) = ∞ .
ceq mte(dly(P, X)) = X if X =/= 0 .
ceq mte(DM DM’) = min(mte(DM), mte(DM’))

if DM =/= empty and DM’ =/= empty .

The rewrite semantics of an ITPN N is a real-time rewrite theory R(N ) whose
signature Ω and axioms E define the sort Marking and the functions delta and
mte. The set of rules of R(N ) consists of a lazy tick rule modeling time elapse
and, for each transition t in TN , an eager rule

t :

W (p1,t)
︷ ︸︸ ︷
[p1] . . . [p1] . . .

W (pn ,t)
︷ ︸︸ ︷
[pn] . . . [pn] −→

dly(p1, x1,1) . . . dly(p1, x1,W (t,p1))
︸ ︷︷ ︸

W (t,p1)

. . . dly(pn , xn,1) . . . dly(pn , xn,W (t,pn))
︸ ︷︷ ︸

W (t,pn)

if (l1,1 ≤ x1,1 ≤ u1,1) ∧ . . . ∧ (l1,W (t,p1) ≤ x1,W (t,p1) ≤ u1,W (t,p1)) ∧ . . .
∧(ln,1 ≤ xn,1 ≤ un,1) ∧ . . . ∧ (ln,W (t,pn) ≤ xn,W (t,pn) ≤ un,W (t,pn))

where PN = {p1, . . . , pn}, with pi distinct, D(t , pi) is the multiset {[li,1, ui,1], . . .,
[li,W (t,pi ), ui,W (t,pi )]} for each pi ∈ PN , and the xi,j ’s are distinct variables of
sort Time. The following lazy tick rule advances time until the first delayed
token becomes visible:

tick : {VM DM} mte(DM)−→ {VM delta(DM, mte(DM)} if mte(DM) �= ∞.

For example, the translation of the ITPN in Fig. 6 contains the above tick rule
and the following two instantaneous eager rules:

a : [p] −→ dly(q,X) dly(q,Y) if (5 ≤ X ≤ 10) ∧ (5 ≤ Y ≤ 10)
b : [q] −→ dly(p,X) if 4 ≤ X ≤ 8.

The tick rule only needs to compute the time until the next delayed token be-
comes visible and advances time by that amount. After such a tick, the tick rule
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is again enabled but, due to its being lazy, it will not be applied if the new vis-
ible token(s) enable some transition(s) (whose firing in turn could immediately
trigger further instantaneous transitions).

Since a step m e→ m ′ of an ITPN does not depend on the firing delays of the
individual transitions taken in the step, two one-step rewrites {α} : u −→ v
and {β} : u −→ v should be considered equal — in the sense that we add the
equivalence t(r1, . . . , rn) = t(r ′

1, . . . , r
′
n), for each t ∈ TN , as a further equality

identifying rewrite proofs — if the multisets of rule labels in α and β are the
same. A timed computation in R(N ) is a finite or infinite sequence

ς̃ : u0
γ1;δ1−→ u1

γ2;δ2−→ u2
γ3;δ3−→ · · ·

with admissible rewrite proofs γi ; δi : ui−1 −→ ui in R(N ), such that each γi
corresponds either to the identity proof or to a sequence of tick applications,
each δi corresponds to a one-step concurrent rewrite using instantaneous rules,
and u0 is a term {w0} with w0 a term of sort Marking. The set of timed compu-
tations in R(N ) is denoted C(R(N )). It follows from the factorization property
of proofs in rewriting logic [48] that each non-identity admissible ground rewrite
α : {w} −→ {w ′} in R(N ), is equivalent to a rewrite γ; δ, such that γ can be re-
arranged as a finite timed computation, and δ corresponds to the identity proof
or to a sequence of tick applications. Furthermore, each (infinite) computation of
R(N ), consisting of admissible rewrites involving ground terms of sort System,
which contains an infinite number of applications of instantaneous rules, can be
rearranged as a timed computation.

The fact that ITPNs are faithfully represented in their rewriting logic semantics
is made precise in the theorem below, which can be used as the basis of a method
to execute and analyze ITPNs in a tool such as Real-Time Maude [60,61].

Theorem 3. Let N be an ITPN. Then, there is a bijective function (̃ ) : C∞
N →

C(R(N )) taking a step sequence of the form ς to an timed computation of the
form ς̃ (see above for ς and ς̃) such that:

– Each ui is a term equivalent to a term of the form {wi}, which consists of
mi(p, r) occurrences of the term dly(p, r−̇τ(γ1; δ1; . . . ; γi ; δi)), for all p and
r (recall that dly(p, 0) is equivalent to [p]).

– The transitions fire at the same time in ς and ς̃, that is, τ(γ1; δ1; . . . ; γi+1) =
EET (mi).

– The transitions taken (concurrently) in each step are the same. That is,
each δi is equivalent to a proof term of the form {εi}, where εi is a term
containing, for each t ∈ TN , exactly ei(t) occurrences of proof terms of the
form t(r1, . . . , rn).

6 Conclusions

In this paper we have explained in detail how rewriting logic can be used as a
semantic framework in which a wide range of Petri net models can be naturally
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unified. Specifically, we have explored how place/transition nets, nets with test
arcs, algebraic net specifications, colored Petri nets, and timed Petri nets can all
be naturally expressed in rewriting logic, and how well-known semantic models
often coincide with (in the sense of being naturally isomorphic to) the natural
semantic models associated to the rewriting logic representations of the given
nets. Space limitations do not allow us to explain in detail how other classes
of Petri nets could similarly be treated. However, we sketch below a number of
extensions of the ideas presented here that could deal with some of these.

A question that deserves some discussion is how colored Petri nets based on
higher-order programming languages such as ML can be formally represented
and, furthermore, how can they be related to the approach to ANSs presented
in this paper. One possible answer is to translate each colored Petri net over a
possibly higher-order language L into an ANS with an initial semantics. This
reduces the problem to finding a translation of L into membership equational
logic. The main problem with embedding a higher-order language into a first-
order framework is the treatment of bound variables and there are different
solutions. Recently, we have developped CINNI [68,70], a new calculus of names
and explicit substitutions, to solve this problem in a systematic way, and we
have applied it to obtain executable embeddings of languages such as the lambda
calculus and Abadi and Cardelli’s object calculus into membership equational
logic.

The step from higher-order programming languages to higher-order specification
languages can be regarded in some instances as a move from typed lambda
calculi to higher-order logics. The use of a specification language with higher-
order capabilities seems to be not only attractive for enhancing the modeling
and abstraction capabilities, but it can also provide a framework for extensions
of algebraic specifications by initiality and freeness constraints [35] or first-order
axioms such as those used in [65]. Recent experience with representing an entire
family of pure type systems in rewriting logic [70] indicates that, using rewriting
logic as a metalanguage, typed lambda calculi and higher-order logics can be
naturally expressed. By viewing membership equational logic as a sublogic of a
higher-order logic the approach presented in this paper, including the important
aspect of executability, naturally extends to the higher-order case.

Apart from generalizations of the underlying specification or programming lan-
guage, there is another potential source of Petri net generalizations, namely, the
structure of the state space. Instead of considering a flat state space as in ordi-
nary Petri nets we could choose a hierarchical one, or we could consider exten-
sions such as macroplaces [2,3] that can be seen as combining several places into
a single one from the viewpoint of certain transitions. Also, we could consider
different kinds of places. For instance, we could distinguish ordinary high-level
places that carry a multiset of tokens from places that are organized as a queue
or as a stack. The former idea has been studied in the literature in terms of
FIFO-nets [30,40,29,27]. Rewriting logic seems to be a suitable formalism to
represent and unify such variations of Petri nets, since the state space can be
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specified by an equational theory that is entirely user-definable. A related ap-
proach that allows some freedom in the choice of the state space algebra and
specializes to different low-level and high-level Petri net classes is presented in
[24]. The approach of rewriting logic has the advantage of being more general, in
the sense that it goes beyond Petri-net-like models and hence provides a bridge
to formalisms that are quite different from ordinary Petri nets.

Yet another interesting generalization of Petri nets are different variants of ob-
ject Petri nets [72,73,28,74], where tokens can themselves be nets with their
own dynamic behaviour. A quite different line of research is the integration of
object-oriented techniques with Petri nets. As a result there are a number of
variants of object-oriented Petri nets [67,44], where the tokens are objects ac-
cording to standard object-oriented terminology. As a unifying generalization of
both approaches we propose a notion of active token nets. In contrast to object
Petri nets, tokens can not only be nets but arbitrary objects with an internal
dynamic behaviour. In constrast to object-oriented approaches to Petri nets, ac-
tive tokens are not static but dynamic entities. In particular, they can evolve
concurrently with the overall system behaviour, and they can also interact or
communicate with each other. It might appear that the complexity of such mod-
els is beyond the scope of a rigorous formal treatment. However, a closer look
reveals that the approach to Petri nets via rewriting logic is closer to the ideas
described above than it might appear at the first sight. In fact, our approach
can be easily generalized to active token nets by essentially replacing the under-
lying MES of a net by a RWS. So far we have employed rewrite rules only to
represent transitions of the net. In order to describe tokens with internal activity
we could use rewrite rules that transform individual tokens. To capture group
activity such as interaction (which corresponds to synchronous communication)
and asynchronous communication we have to add rewrite rules that operate on
a group of tokens. One possible realization is to view tokens as objects in the
sense of the rewriting logic approach to concurrent object-oriented programming
[49], where rewrite rules operate on a multiset of objects that are interrelated by
object references. As we have already pointed out, recent work on partial-order
semantics for object-oriented systems specified in rewriting logic in this manner
[57] is in fact very close to the safe process semantics of high-level Petri nets.

In our view, the unification of Petri net models within the rewriting logic logical
framework is useful not only for conceptual reasons, but also for purposes of
execution, formal analysis, and formal reasoning about Petri net specifications.
Using the reflective and metalanguage capabilities of Maude, it is possible to
build execution environments for Petri net specifications where the language de-
scription provided by the user and the user interaction could all take place at the
Petri net level with which the user is familiar. Similarly, the Real-Time Maude
tool [61] could offer corresponding capabilities for executing and analyzing timed
Petri net models.

Acknowledgements. Support by DARPA through Rome Laboratories Contract
F30602-C-0312 and NASA through Contract NAS2-98073, by Office of Naval Research



Rewriting Logic as a Unifying Framework for Petri Nets 299

Contract N00014-99-C-0198, and by National Science Foundation Grant CCR-9900334
is gratefully acknowledged. Part of this work is based on earlier work conducted by
the first author at University of Hamburg, Germany and in the scope of the European
Community project MATCH (CHRX-CT94-0452). Furthermore, we would like to thank
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