
Higher-Order and Symbolic Computation manuscript No.
(will be inserted by the editor)

Semantics and Pragmatics of Real-Time Maude

Peter CsabaÖlveczky · Jośe Meseguer

Received: date / Accepted: date

Abstract At present, designers of real-time systems face a dilemma between expressive-
ness and automatic verification: if they can specify some aspects of their system in some
automaton-based formalism, then automatic verification is possible; but more complex sys-
tem components may be hard or impossible to express in such decidable formalisms. These
more complex components may still be simulated; but there is then little support for their
formal analysis. The main goal of Real-Time Maude is to provide a way out of this dilemma,
while complementing both decision procedures and simulation tools. Real-Time Maude em-
phasizes ease and generality of specification, including support for distributed real-time
object-based systems. Because of its generality, falling outside of decidable system classes,
the formal analyses supported—including symbolic simulation, breadth-first search for fail-
ures of safety properties, and model checking of time-bounded temporal logic properties—
are in general incomplete (although they are complete for discrete time). These analysis
techniques have been shown useful in finding subtle bugs of complex systems, clearly out-
side the scope of current decision procedures. This paper describes both the semantics of
Real-Time Maude specifications, and of the formal analyses supported by the tool. It also
explains the tool’s pragmatics, both in the use of its features, and in its application to con-
crete examples.

Keywords Rewriting logic · real-time systems· object-oriented specification· formal
analysis· simulation· model checking

Peter CsabäOlveczky
Department of Informatics
University of Oslo
Tel.: +47-22852498
Fax: +47-22852401
E-mail: peterol@ifi.uio.no

Jośe Meseguer
Department of Computer Science
University of Illinois at Urbana-Champaign
Tel.: +1-217-3336733
Fax: +1-217-3339386
E-mail: meseguer@cs.uiuc.edu

2

1 Introduction

At present, designers of real-time systems face a dilemma between expressiveness and au-
tomatic verification. If they can specify some aspects of their system in a more restricted
automaton-based formalism, then automatic verification of system properties may be ob-
tained by specialized model checking decision procedures. But this may be difficult or im-
possible for more complex system components which may be hard or impossible to express
in such decidable formalisms. In that case, simulation offers greater modeling flexibility, but
is typically quite weak in the kinds of formal analyses that can be performed. The main goal
of Real-Time Maude is to provide a way out of this dilemma, while complementing both
decision procedures and simulation tools.

On the one hand, Real-Time Maude can be seen as complementing tools based on timed
and linear hybrid automata, such as UPPAAL [19,5], HyTech [15], and Kronos [32]. While
the restrictive specification formalism of these tools ensures that interesting properties are
decidable, such finite-control automata do not support well the specification of larger sys-
tems with different communication models and advanced object-oriented features. By con-
trast, Real-Time Maude emphasizes ease and generality of specification, including support
for distributed real-time object-based systems. The price to pay for increased expressive-
ness is that many system properties may no longer be decidable. However, this does not
diminish either the need for analyzing such systems, or the possibility of using decision
procedures when applicable. On the other hand, Real-Time Maude can also be seen as com-
plementing traditional testbeds and simulation tools by providing a wide range of formal
analysis techniques and a more abstract specification formalism in which different forms of
communication can be easily modeled and can be both simulated and formally analyzed.
Finally, some tools geared toward modeling and analyzing larger real-time systems, such as,
e.g., IF [6], extend timed automaton techniques with explicit UML-inspired constructions
for modeling objects, communication, and some notion of data types. Real-Time Maude
complements such tools not only by the full generality of the specification language and the
range of analysis techniques, but, most importantly, by its simplicity and clarity: A simple
and intuitive formalism is used to specify both the data types (byequations) and dynamic
and real-time behavior of the system (byrewrite rules). Furthermore, the operational seman-
tics of a Real-Time Maude specification is clear and easy to understand.

A key goal of this work is to document the tool’s theoretical foundations, based on a
simplified semantics of real-time rewrite theories [23,28] made possible by some recent de-
velopments in the foundations of rewriting logic [7]; these simplified theoretical foundations
are explained in Section 3. We also give a precise description of the semantics of Real-Time
Maude specifications and of its symbolic execution and formal analysis commands. Such
semantics is given by means of a family oftheory transformations, that associate to a real-
time rewrite theory and a command a corresponding ordinary rewrite theory (a Maude [9,
10] system module) and a Maude command with the intended semantics (Section 5). Be-
sides thus giving a precise account of the tool’ssemantics, we also explain and illustrate its
pragmaticsin several ways:

1. We discuss differenttime domains(both discrete and continuous) provided by the sys-
tem, which also allows the user to define new such time domains in Maude modules.

2. We then explain the general methods by whichtick rules for advancing time in the
system can be defined.

3

3. We also explain some general techniques to specifyobject-orientedreal-time systems
in Real-Time Maude; such techniques have been developed through a good number of
substantial case studies and have proved very useful in practice.

4. We give an overview of the tool’s language features, commands, and analysis capabili-
ties (Section 4).

5. We illustrate the tool’s use in practice by means of two examples (Section 6).

Real-Time Maude specifications areexecutableformal specifications. Our tool offers
various simulation, search, and model checking techniques which can uncover subtle mis-
takes in a specification. Timedrewriting can simulateoneof the many possible concurrent
behaviors of the system. Timedsearchandtime-bounded linear temporal logic model check-
ing can analyzeall behaviors—relative to a giventime sampling strategyfor dense time as
explained in Section 4.2.1—from a given initial state up to a certain time bound. By restrict-
ing search and model checking to behaviors up to a certain time bound and with a given
time sampling strategy, the set of reachable states is typically restricted to a finite set, which
can be subjected to model checking. Search and model checking are “incomplete” for dense
time, since there is no guarantee that the chosen time sampling strategy covers all interest-
ing behaviors. However, all the large systems we have modeled in Real-Time Maude so far
have had a discrete time domain, and in this case search and model checking can completely
cover all behaviors from the initial state. For further analysis, the user can write his/her own
specific analysis and verification strategies using Real-Time Maude’s reflective capabilities.

The Real-Time Maude tool described in this paper is a mature and quite efficient tool
available free of charge (with sources, a tool manual, examples, case studies, and papers)
from http://www.ifi.uio.no/RealTimeMaude. The tool has been used in a number of
substantial applications, a subset of which is listed in Section 6.4. Real-Time Maude is
based on earlier theoretical work on the rewriting logic specification of real-time and hy-
brid systems [23,28], and has benefited from the extensive experience gained with an earlier
tool prototype [27,23], which was applied to specify and analyze a sophisticated multicast
protocol suite [23,26]. As mentioned above, the current tool has simpler foundations based
on more recent theoretical advances. Furthermore, thanks to the efficient support of breadth-
first search and of on-the-fly LTL model checking in the underlying Maude 2 system [10], on
top of which it is implemented, the current tool supports symbolic simulation, search for vi-
olations of safety properties, and model checking of time-bounded temporal logic properties
with good efficiency.

2 Equational Logic, Rewriting Logic, and Maude

Since Real-Time Maude extends Maude and its underlying rewriting logic formalism, we
first present some background on equational logic, rewriting logic, and Maude.

2.1 Equational and Rewriting Logic

Membership equational logic(MEL) [22] is a typed equational logic in which data are
first classified bykinds and then further classified bysorts, with each kindk having an
associated setSk of sorts, so that a datum having a kind but not a sort is understood as
an error or undefinedelement. Given aMEL signatureΣ , we write TΣ ,k and TΣ (X)k
to denote, respectively, the set of groundΣ -terms of kindk , and ofΣ -terms of kindk over

4

variables inX , whereX = {x1 : k1, . . . ,xn : kn} is a set of kinded variables.Atomic formulas
have either the formt = t ′ (Σ -equation) ort : s (Σ -membership) witht , t ′ ∈ TΣ (X)k and
s ∈ Sk ; andΣ -sentencesare universally quantified Horn clauses on such atomic formulas.
A MEL theory is then a pair(Σ ,E) with E a set ofΣ -sentences. Each such theory has
an initial algebraTΣ/E whose elements are equivalence classes of ground terms modulo
provable equality.

In the general version of rewrite theories overMEL theories defined in [7], arewrite
theory is a tupleR = (Σ ,E ,ϕ,R) consisting of: (i) aMEL theory (Σ ,E); (ii) a func-
tion ϕ:Σ → Pf(N) assigning to each function symbolf :k1 · · ·kn → k in Σ a setϕ(f) ⊆
{1, . . . ,n} of frozen argument positions; (iii) a setR of (universally quantified) labeled con-
ditional rewrite rulesr having the general form

(∀X) r : t−→ t ′ if
∧

i∈I pi = qi ∧
∧

j∈J wj : sj ∧
∧

l∈L tl −→ t ′l

where, for appropriate kindsk andkl , t , t ′ ∈ TΣ (X)k andtl , t
′
l ∈ TΣ (X)kl for l ∈ L.

The functionϕ specifies which arguments of a function symbolf cannot be rewritten,
which are calledfrozen positions. Given a rewrite theoryR = (Σ ,E ,ϕ,R), a sequentof
R is a pair of (universally quantified) terms of the same kindt , t ′, denoted(∀X) t−→ t ′

with X = {x1 : k1, . . . ,xn : kn} a set of kinded variables andt , t ′ ∈ TΣ (X)k for somek . We
say thatR entails the sequent(∀X) t−→ t ′, and writeR ` (∀X) t−→ t ′, if the sequent
(∀X) t−→ t ′ can be obtained by means of the inference rules of reflexivity, transitivity,
congruence, and nested replacement given in [7].

To any rewrite theoryR = (Σ ,E ,ϕ,R) we can associate a Kripke structureK (R,k)LΠ

in a natural way provided we: (i) specify a kindk in Σ so that the set ofstatesis defined as
TΣ/E ,k , and (ii) define a setΠ of (possibly parametric)atomic propositionson those states;
such propositions can be defined equationally in a protecting extension(Σ ∪Π ,E ∪D) ⊇
(Σ ,E), and give rise to alabeling functionLΠ on the set of statesTΣ/E ,k in the obvious
way. Thetransition relationof K (R,k)LΠ

is the one-step rewriting relation ofR, to which
a self-loop is added for each deadlocked state. The semantics of linear-time temporal logic
(LTL) formulas is defined for Kripke structures in the well-known way (e.g., [8,10]). In
particular, for any LTL formulaψ on the atomic propositionsΠ and an initial state[t], we
have a satisfaction relationK (R,k)LΠ

, [t] |= ψ which can be model checked, provided
the number of states reachable from[t] is finite. Maude [10] provides an explicit-state LTL
model checker precisely for this purpose.

2.2 Maude and its Formal Analysis Features

A Maude module specifies a rewrite theory(Σ ,E ∪A,ϕ,R), with E a set of conditional
equations and memberships, andA a set of equational axioms such as associativity, com-
mutativity, and identity, so that equational deduction is performedmodulothe axiomsA.
Intuitively, the theory(Σ ,E ∪A) specifies the system’s state space as an algebraic data type,
and each rewrite ruler in R specifies a (family of)one-step transition(s)from a substitution
instance oft to the corresponding substitution instance oft ′, providedthat the substitution
satisfies the condition of the rule. The rewrite rules are appliedmodulothe equationsE ∪A.1

1 Operationally, a term is reduced to itsE -normal form moduloA before any rewrite rule is applied in
Maude. Under the coherence assumption [31] this is a complete strategy to achieve the effect of rewriting in
E ∪A-equivalence classes.

5

We briefly summarize the syntax of Maude.Functionalmodules andsystemmodules
are, respectively,MEL theories and rewrite theories, and are declared with respective syn-
tax fmod ... endfm andmod ... endm. Object-orientedmodules provide special syntax
to specify concurrent object-oriented systems, but are entirely reducible to system modules;
they are declared with the syntax(omod ... endom).2 Immediately after the module’s key-
word, thenameof the module is given. After this, a list of imported submodules can be
added. One can also declaresorts3, subsorts, andoperators. Operators are introduced with
theop keyword. They can have user-definable syntax, with underbars ‘_’ marking the argu-
ment positions, and are declared with the sorts of their arguments and the sort of their result.
Some operators can have equationalattributes, such asassoc, comm, andid, stating, for ex-
ample, that the operator is associative and commutative and has a certain identity element.
Such attributes are then used by the Maude engine to match termsmodulothe declared ax-
ioms. The operator attributector declares that the operator is aconstructor, as opposed to a
defined function. This attribute does not have any computational effect in Real-Time Maude.
There are three kinds of logical statements:equations, introduced with the keywordseq and,
for conditional equations,ceq; memberships, declaring that a term has a certain sort and in-
troduced with the keywordsmb andcmb; andrewrite rules, introduced with the keywordsrl
andcrl. The mathematical variables in such statements are either explicitly declared with
the keywordsvar andvars, or can be introduced on the fly in a statement without being
declared previously, in which case they must have the formvar:sort . Finally, a comment is
preceded by ‘***’ or ‘ ---’ and lasts until the end of the line.

Maude modules areexecutableunder reasonable assumptions. The high performance
Maude engine—which can perform up to millions of rewrites per second—provides the
following analysis commands:

– A rewrite(rew) and a“fair” rewrite (frew) command, which executeonerewrite sequence—
out of possibly many—from a given initial state.

– A searchcommand (search) for analyzingall possible rewrite sequences from a given
initial statet0, by performing abreadth-first searchto check whether terms matching
certain patterns can be reached fromt0. The search does not terminate if the set of states
reachable fromt0 is infinite and the desired state(s) are not reachable fromt0.

– A linear temporal logic model checker[14], comparable to Spin [17] in performance,
which checks whether each rewrite sequence from a given initial statet0 satisfies a
certain linear temporal logic (LTL) formula. LTL model checking will normally not
terminate if the state space reachable fromt0 is infinite.
A propositional LTL formula is constructed by the usual LTL operators (see, e.g., [10,
14] and Section 4.2.2) and a setΠ of user-defined (possibly parametric) atomic propo-
sitions. Such atomic propositions should be defined as terms of the built-in sortProp, in
a module that includes the built-in Maude moduleMODEL-CHECKER. The labeling func-
tion LΠ is defined by equations of the formt |= p = b if C , for a (possibly) paramet-
ric atomic propositionp (i.e., for p a term of sortProp), a termt of the built-in kind
[State], a termb of kind [Bool], and a conditionC . It is sufficient to define when a
predicateholds. For example, ifp were the only proposition, thenLΠ ([u]) = {σ(p) |
σ ground substitution∧ (E ∪A) ` (∀ /0)u |=σ(p) = true} [10].

– Finally, the user may define her own specific execution strategies using Maude’sreflec-
tive capabilities[11,12].

2 In Full Maude, and in its extension Real-Time Maude, module declarations and execution commands
must be enclosed by a pair of parentheses.

3 Kindsare not declared explicitly; the kind to which sorts belongs is written[s].

6

We refer to the Maude manual [10] for a more thorough description of Maude’s analysis
capabilities.

2.2.1 Object-Oriented Specification in Maude

In object-oriented (Full) Maude4 modules one can declareclassesandsubclasses. A class
declaration

class C | att1 : s1, ... , attn : sn .

declares an object classC with attributesatt1 to attn of sortss1 to sn . An objectof classC
in a given state is represented as a term

<O : C | att1 : val1, ...,attn : valn >

of the built-in sortObject, whereO is the object’s name or identifier, and whereval1 to
valn are the current values of the attributesatt1 to attn and have sortss1 to sn . Objects can
interact with each other in a variety of ways, including the sending of messages. A message
is a term of the built-in sortMsg, where the declaration

msg m : p1 . . . pn -> Msg .

defines the name of the message (m) and the sorts of its parameters (p1 . . . pn). In a concur-
rent object-oriented system, the state, which is usually called aconfigurationand is a term
of the built-in sortConfiguration, has typically the structure of amultisetmade up of ob-
jects and messages. Multiset union for configurations is denoted by a juxtaposition operator
(empty syntax) that is declared associative and commutative and having thenone multiset
as its identity element, so that order and parentheses do not matter, and so that rewriting is
multiset rewritingsupported directly in Maude. The dynamic behavior of concurrent object
systems is axiomatized by specifying each of its concurrent transition patterns by a rewrite
rule. For example, the configuration on the left-hand side of the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : y, a3 : z > =>
< O : C | a1 : x + w, a2 : y, a3 : z > m’(y,x) .

contains a messagem, with parametersO andw, and an objectO of classC. The message
m(O,w) does not occur in the right-hand side of this rule, and can be considered to have
beenremovedfrom the state by the rule. Likewise, the messagem’(y,x) only occurs in the
configuration on the right-hand side of the rule, and is thusgeneratedby the rule. The above
rule, therefore, defines a (parameterized family of) transition(s) in which a messagem(O,w)

is read, and consumed, by an objectO of classC, with the effect of altering the attributea1
of the object and of sending a new messagem’(y,x). Attributes, such asa3 in our example,
whose values do not change and do not affect the next state of other attributes need not
be mentioned in a rule. Attributes, likea2, whose values influence the next state of other
attributes or the values in messages, but are themselves unchanged, may be omitted from
right-hand sides of rules. Thus the above rule could also be written

rl [l] : m(O,w) < O : C | a1 : x, a2 : y > =>
< O : C | a1 : x + w > m’(y,x) .

A subclassinherits all the attributes and rules of its superclasses5.

4 Real-Time Maude is built on top of Full Maude [10, Part II], which extends Maude with support for
object-oriented specification and advanced module operations.

5 The attributes and rules of a class cannot be modified by its subclasses, which may of course have
additional attributes and rules.

7

3 Real-Time Rewrite Theories Revisited

In [28] we proposed to specify real-time and hybrid systems in rewriting logic asreal-time
rewrite theories, and defined an extension of the basic model to include the possibility of
definingeagerand lazy rewrite rules. This section first recalls the definition of real-time
rewrite theories, and then explains why the generalization of rewriting logic given in [7] has
made the partition into eager and lazy rules unnecessary.

3.1 Real-Time Rewrite Theories

A real-time rewrite theory is a rewrite theory where some rules, calledtick rules, model time
elapse in a system, while “ordinary” rewrite rules model instantaneous change.

Definition 1 A real-time rewrite theoryRφ ,τ is a tuple(R,φ ,τ), whereR = (Σ ,E ,ϕ,R)
is a (generalized) rewrite theory, such that

– φ is an equational theory morphismφ : TIME → (Σ ,E) from the theoryTIME to
the underlying equational theory ofR, that is,φ interpretsTIME in R; the theory
TIME [28] defines time abstractly as an ordered commutative monoid(Time,0,+,<)
with additional operators such as−. (wherex−. y denotesx−y if y < x , and 0 otherwise)
and≤;

– (Σ ,E) contains a sortSystem (denoting the state of the system), and a specific sort
GlobalSystem with no subsorts or supersorts and with only one operator

{ } : System→GlobalSystem

which satisfies no non-trivial6 equations; furthermore, the sortGlobalSystem does not
appear in the arity of any function symbol inΣ ;

– τ is an assignment of a termτl of sortφ(Time) to every rewrite rule

l : {t}−→{t ′} if cond

involving terms of sortGlobalSystem7; if τl 6= φ(0) we call the rule atick ruleand write

l : {t}
τl−→{t ′} if cond .

The termτl denoting thedurationof the tick rule may contain variables, including vari-
ables that do not occur int , t ′, and/orcond . For example, ifτl is a variablex not oc-
curring in eithert or cond , then time can advance nondeterministically byanyamount
from a substitution instance of{t} where the substitution satisfiescond .

The global state of the system should have the form{u}, in which case the form of the
tick rules ensures that time advances uniformly in all parts of the system. The total time
elapseτ(α) of a rewriteα : {t}−→{t ′} of sort GlobalSystem is the sum of the times
elapsed in each tick rule application [28]. We writeRφ ,τ ` {t}

r−→{t ′} if there is a proof
α : {t}−→{t ′} in Rφ ,τ with τ(α) = r . Furthermore, we writeTimeφ , 0φ , . . . , forφ(Time),
φ(0), etc.

6 By “trivial” equations we mean equations of the formt = t .
7 All rules involving terms of sortGlobalSystem are assumed to have different labels.

8

3.2 Eager and Lazy Rules Revisited

The motivation behind havingeagerandlazyrewrite rules was to modelurgencyby letting
the application of instantaneous eager rules take precedence over the application of lazy
tick rules [28]. This feature was supported in version 1 of Real-Time Maude. The ability to
definefrozenoperators in rewriting logic [7] means that it is no longer necessary to explicitly
define eager and lazy rules. Instead, one may define a frozen operator8

eagerEnabled : s → [Bool] [frozen (1)]

for each sorts that can be rewritten, introduce an equation

eagerEnabled(t) = true if cond

for each “eager” rulet−→ t ′ if cond , and add an equation

eagerEnabled(f (x1, . . . ,xn)) = true if eagerEnabled(xi) = true

for each operatorf and each positioni which is not a frozen position inf . A “lazy” tick rule
should now have the form

l : {t}
τl−→{t ′} if cond ∧ eagerEnabled({t}) 6= true.

This technique makes unnecessary any explicit support for eager and lazy rules at the system
definition level to model urgency. In addition, the lazy/eager feature has not been needed in
any Real-Time Maude application we have developed so far. Real-Time Maude 2 therefore
does not provide explicit support for defining eager and lazy rules.

4 Specification and Execution in Real-Time Maude

This section gives an overview of how to specify real-time rewrite theories in Real-Time
Maude astimed modules, and how to execute such modules in the tool. In particular, Sec-
tion 4.1.5 presents some useful techniques for specifying object-oriented real-time systems
in Real-Time Maude. The manual [24] explains our tool in much more detail.

4.1 Specification in Real-Time Maude 2.1

Real-Time Maude extends Full Maude [10] to support the specification of real-time rewrite
theories astimed modulesandobject-oriented timed modules. Such modules are entered at
the user level by enclosing them in parentheses and including the module body between
the keywordstmod andendtm, and betweentomod andendtom, respectively. To state non-
executable properties, Real-Time Maude allows the user to specify real-time extensions of
abstract Full Maudetheories. Since Real-Time Maude extends Full Maude, we can also
define Full Maude modules in the tool. All the usual operations on modules provided by
Full Maude are supported in Real-Time Maude.

8 By ‘[frozen (1)]’ we mean that the first (and in this case only) argument of the corresponding oper-
ator (eagerEnabled) cannot be rewritten (see Section 2.1). That is, even ift rewrites tou, it is not the case
thateagerEnabled(t) rewrites toeagerEnabled(u).

9

4.1.1 Specifying the Time Domain

The equational theory morphismφ in a real-time rewrite theoryRφ ,τ is not given explicitly
at the specification level. Instead, by default, any timed module automatically imports the
following functional moduleTIME9:

fmod TIME is
sorts Time NzTime . subsort NzTime < Time .
op zero : -> Time .
op _plus_ : Time Time -> Time [assoc comm prec 33 gather (E e)] .
op _monus_ : Time Time -> Time [prec 33 gather (E e)] .
ops _le_ _lt_ _ge_ _gt_ : Time Time -> Bool [prec 37] .
eq zero plus R:Time = R:Time .
eq R:Time le R’:Time = (R:Time lt R’:Time) or (R:Time == R’:Time) .
eq R:Time ge R’:Time = R’:Time le R:Time .
eq R:Time gt R’:Time = R’:Time lt R:Time .

endfm

The morphismφ implicitly mapsTime toTime, 0 tozero, + to_plus_, ≤ to_le_, etc.
Even though Real-Time Maude assumes a fixed syntax for time operations, the tool does not
build in a fixed model of time. In fact, the user has complete freedom to specify the desired
data type of time values—which can be either discrete or dense and need not be linear—by
specifying the data elements of sortTime, and by giving equations interpreting the con-
stantzero and the operators_plus_, _monus_, and_lt_, so that the axioms of the theory
TIME [28] are satisfied. The predefined Real-Time Maude moduleNAT-TIME-DOMAIN de-
fines the time domain to be the natural numbers as follows:

fmod NAT-TIME-DOMAIN is including LTIME . protecting NAT .
subsort Nat < Time . subsort NzNat < NzTime .
vars N N’ : Nat .
eq zero = 0 .
eq N plus N’ = N + N’ .
eq N monus N’ = if N > N’ then sd(N, N’) else 0 fi .
eq N lt N’ = N < N’ .

endfm

To have dense time, the user can import the predefined modulePOSRAT-TIME- DOMAIN,
which defines the nonnegative rationals to be the time domain. The set of predefined mod-
ules in Real-Time Maude also includes a moduleLTIME, which assumes a linear time do-
main and defines the operatorsmax andmin on the time domain, and the modulesTIME-INF,
LTIME-INF, NAT-TIME-DOMAIN- WITH-INF, andPOSRAT-TIME-DOMAIN-WITH-INFwhich ex-
tend the respective time domains with an “infinity” valueINF in a supersortTimeInf of
Time. Detailed specifications for all these time domains can be found in [24, Appendix A].

4.1.2 Tick Rules

A timed module automatically imports the moduleTIMED-PRELUDE which contains the dec-
larations

sorts System GlobalSystem .

op {_} : System -> GlobalSystem [ctor] .

A conditional tick rulel : {t}
τl−→{t ′} if cond is written with syntax

9 The operator attributesprec andgather deal with parsing; their meaning is explained in [10].

10

crl [l] : {t} => {t ′} in time τl if cond .

and with similar syntax for unconditional rules.
We do not require time to advance beyond any time bound, or the specification to be

“non-Zeno.” However, it seems sensible to require that if time can advance byr plus r ′

time units from a state{t} in one application of a tick rule, then it should also be possible to
advance time byr time units from the same state using the same tick rule. Tick rules should
(in particular for dense time) typically have one of the forms

crl [l] : {t} => {t ′} in time x if cond /\ x le u /\ cond ′ [nonexec] . (†),
crl [l] : {t} => {t ′} in time x if cond /\ x lt u /\ cond ′ [nonexec] . (‡),
crl [l] : {t} => {t ′} in time x if cond [nonexec] . (∗), or
rl [l] : {t} => {t ′} in time x [nonexec] . (§),

wherex is a variable of sortTime (or of a subsort ofTime) which does not occur in{t}
and which is not initialized in the condition. The termu denotes the maximum amount by
which time can advance in one tick step. Each variable inu should either occur int or
be instantiated incond by matching equations(see [10]). The (possibly empty) conditions
cond and cond ′ should not further constrainx (except possibly by adding the condition
x =/= zero). Tick rules in which the duration term contains a variable that does not occur
in the rule’s lefthand side and is not initialized by matching equations in the rule’s condition
are calledtime-nondeterministic. All other tick rules are calledtime-deterministicand can
be used e.g. in discrete time domains.

Real-Time Maude assumes that tick rule applications in which time advances byzero do
not change the state of the system. A tick rule isadmissibleif its zero-time applications do
not change the state, and it is either a time-deterministic tick rule or a time-nondeterministic
tick rule of any of the above forms—possibly withle and lt replaced by<= and < (in
which casele and<=, andlt and<, should be equivalent on the time domain). The exe-
cution of admissible tick rules is supported by the Real-Time Maude tool. However, time-
nondeterministic tick rules are not directly executable by the underlying Maude engine,
since many choices are possible for instantiating the time variablex (that is why they are
specified with thenonexec attribute, which tells Maude that these rules are not intended to
be executed before they have been treated by Real-Time Maude). Real-Time Maude exe-
cutes such rules using atime sampling strategy(see Sections 4.2.1 and 5.2) specified by the
user.

4.1.3 Defining Initial States

For the purpose of conveniently defining initial states, Real-Time Maude allows the user to
introduce operators of sortGlobalSystem. Each ground term of sortGlobalSystem must
reduce to a term of the form{t} using the equations in the specification. The constant
initState on page 30 is an example of an operator of sortGlobalSystem which reduces to
a term of the desired form.

4.1.4 Timed Object-Oriented Modules

Maude’s object model can be extended to the real-time setting by just adding a subsort
declaration

subsort Configuration < System .

11

whereConfiguration is the sort whose elements are multisets of messages and objects.
Timed object-oriented modules extend both object-oriented and timed modules to provide
support for object-oriented real-time systems. In contrast to untimed object-oriented sys-
tems, functions such asδ and mte (described below), and the tick rules, will manipu-
late the global configuration. It is therefore useful to have a richer sort structure for con-
figurations. Timed object-oriented modules include subsorts for nonempty configurations
(NEConfiguration), configurations without messages (ObjectConfiguration) or without
objects (MsgConfiguration), etc. Real-Time Maude automatically adds the subsort decla-
ration Configuration < System to timed object-oriented modules. Section 6.2 gives an
example of a timed object-oriented module.

4.1.5 Useful Techniques for Object-Oriented Specification in Real-Time Maude

In this section we present some techniques for specifying object-oriented systems in Real-
Time Maude that have proved useful in all our larger case studies. These specification tech-
niques provide a more elegant and natural way of specifying object-oriented systems than
those given in [28]. This improvement is due to the possibility of havingfrozenoperators in
version 2 of Maude (and in Real-Time Maude).

In larger object-oriented systems it is usually the case that an unbounded number of
objects could be affected by the elapse of time and/or could affect the maximum time elapse
in a tick step. For such systems, we have found it useful to have functions

op δ : Configuration Time -> Configuration [frozen (1)] .

and

op mte : Configuration -> TimeInf [frozen (1)] .

to define, respectively, the effect of passage of time on a configuration, and themaximum
time elapse possible from a configuration, and to let these functions distribute over the ele-
ments in a configuration according to the following equations:

vars NeC NeC’ : NEConfiguration . var R : Time .

eq δ(none, R) = none .

eq δ(NeC NeC’, R) = δ(NeC, R) δ(NeC’, R) .

eq mte(none) = INF .

eq mte(NeC NeC’) = min(mte(NeC), mte(NeC’)) .

The functionsδ andmte must then be defined onindividual objects and messages, as ex-
emplified in Section 6.2.10

The tick rule(s)—there is usually just one tick rule—then typically have the form

crl [tick] :

{SYSTEM:Configuration}

=>

{δ(SYSTEM:Configuration, R:Time)} in time R:Time

if R:Time <= mte(SYSTEM:Configuration) [nonexec] .

The instantaneousrewrite rules, i.e., all rules except the tick rule(s), are defined exactly as
in untimed rewriting logic.

10 The functionsδ andmte arenotpredefined in Real-Time Maude. They must be declared and defined by
the user.

12

4.2 Formal Analysis in Real-Time Maude

Our tool translates a timed module into an untimed module which can be executed in Maude.
However, the following reasons indicate that it is useful to go beyond Maude’s standard
rewriting, search, and model checking capabilities to execute and analyze timed modules:

– Tick rules are typically time-nondeterministic and cannot be executed directly in Maude.
– It is often more natural to measure and control the rewriting by the total duration of a

computation than by the number of rewrites performed.
– Search and temporal logic properties often involve the duration of a computation (e.g.,

is a certain state always reached within timer? is there a potential deadlock in the time
interval[r ,r ′)?).

– One natural way of reducing the reachable state space from an infinite set to a finite
set for model checking purposes is to consider only all behaviorsup to a certain time
boundr .

In Section 4.2.1 we describe the tool’stime sampling strategies, which guide the appli-
cation of time-nondeterministic tick rules. Section 4.2.2 gives an overview of the analysis
commands available in Real-Time Maude. These commands are timed versions of Maude’s
rewriting, search, and model checking commands. To achieve high performance, our tool
executes Real-Time Maude commands by transforming a timed module and command into
an ordinary Maude module and command which is then executed in Maude as explained in
Section 5.

4.2.1 Time Sampling Strategies

The issue of treating admissible time-nondeterministic tick rules is closely related to the
treatment of dense time. The decidable timed automaton formalism [3] “discretizes” dense
time by defining “clock regions,” so that all states in the same clock region are bisimilar and
satisfy the same properties [3]. The clock region construction is possible due to the restric-
tions in the timed automaton formalism, but in general it cannot be employed in the more
complex systems expressible in Real-Time Maude. Our tool instead deals with admissible
time-nondeterministic tick rules by offering a choice of different “time sampling” strategies,
so that instead of covering the whole time domain, onlysomemoments are visited.

The Real-Time Maude command

(set tick def r .)

for r a ground term of sortTime in the “current” module, sets the time sampling strategy to
thedefaultmode, which means that each application of a time-nondeterministic tick rule will
try to advance time byr time units. (If the tick rule has the form(†), then the time advance
is the minimum ofu andr .) The command(set tick max .) can be used when all time-
nondeterministic tick rules have the form(†) to set a time sampling strategy which advances
time by the largest possible amount, namelyu. The command(set tick max def r .)

sets the time sampling strategy to advance time by the maximum possible time elapseu

in rules of the form(†) (unlessu equalsINF), and tries to advance time byr time units
in tick rules having other forms. The time sampling strategy stays unchanged until another
strategy is selected by the user. Initially it is set todeterministic(det) mode, in which case
it is assumed that all tick rules are time-deterministic.

All applications of time-nondeterministic tick rules—be it for rewriting, search, or model
checking—are performed using the current time sampling strategy. This means that some

13

behaviors in the system, namely those obtained by applying the tick rules differently, are
not analyzed. The results of Real-Time Maude analysis should be understood as being in
general incomplete: counterexamples are true counterexamples, but (except for the case of
discrete time when all states are visited) satisfaction of a property only shows that it holds for
the states visited. We are currently working on identifying classes of real-time systems and
system properties for which a given time sampling strategy actually preserves the relevant
system properties and therefore provides a complete method of analysis.

4.2.2 Real-Time Maude Analysis

Thetimed rewritecommand

(trew [n] in mod : t0 in time <= r .)

simulates (at mostn rewrite steps of)onebehavior of the system, specified by the timed
modulemod , from initial statet0 (of sort GlobalSystem) up to a total duration less than
or equal to theTime valuer . The time bound can also have the formsin time < r and
with no time limit. Thetimed fair rewrite(tfrew) command applies the rules in a position-
fair and rule-fair way. The ’[n]’ and ’in mod :’ parts of the command are optional. Real-
Time Maude’stracing facilities allow us to trace the steps in a timed rewrite sequence
(see [24] for details).

The timed searchcommand can be used to analyze not justonebehavior, but to ana-
lyze all behaviors from a given initial state, relative to the chosen time sampling strategy.
This command extends Maude’s search command to search for states which match asearch
patternand which are reachable in a given time interval. The syntax variations of the timed
search command are:

(tsearch t0 arrow pattern with no time limit .)

(tsearch t0 arrow pattern in time ∼ r .)

(tsearch t0 arrow pattern in time-interval between ∼′ r and ∼′′ r ′ .)

wheret0 is a ground term of sortGlobalSystem, pattern is eithert or has the formt such

that cond for a ground irreducible11 termt of sortGlobalSystem and a semantic condition
cond on the variables occurring int , ∼ is either<, <=, >, or >=, ∼′ is either>= or >, ∼′′ is
either<= or<, andr andr ′ are ground terms of sortTime. Thearrow is the same as in Maude,
where=>1, =>*, and=>+ search for states reachable fromt0 in, respectively, one, zero or
more, and one or more rewrite steps. The arrow=>! is used to search for “deadlocked”
states, i.e., states which cannot be further rewritten. The timed search command can be
parameterized by the number of solutions sought and/or by the module to be analyzed.

Real-Time Maude also has commands which search for theearliesttime and thelatest
time at which a state satisfying the desiredpattern can be reached. These commands are
written with syntax

(find earliest t0 =>* pattern .)

(find latest t0 =>* pattern timeBound .)

11 A term t is ground irreducibleif and only if for all ground substitutionsσ such that, for each variable
x , the ground termσ(x) is irreducible (using the equations in the specification), then the termσ(t) is itself
irreducible.

14

We can also analyze allbehaviorsof a system from a given initial state, relative to the
chosen time sampling strategy, using Real-Time Maude’stime-bounded explicit-state lin-
ear temporal logic model checker. Such model checking extends Maude’s high performance
model checker [14] by analyzing the rewrite sequences only up to a given time bound. Tem-
poral formulas are formed exactly as in Maude, that is, as terms of sortFormula constructed
by user-defined atomic propositions and operators such as/\ (conjunction),\/ (disjunc-
tion), -> (implication),~ (negation),[] (“always”), <> (“eventually”), U (“until”), => (“al-
ways implies”), etc. Atomic propositions, possibly parameterized, are terms of sortProp

and their semantics is defined by stating for which states a property holds. Propositions may
beclocked, in that they also take the elapsed time into account. That is, whether a clocked
proposition holds for a certain state depends not only on the state, but also on the total du-
ration of the rewrite sequence leading up to the state. The propositionclockEqualsTime

on page 27 shows an example of a clocked proposition. A module defining the propositions
should import the predefined moduleTIMED-MODEL-CHECKER and the timed module to be
analyzed. A formula represents an untimed linear temporal logic formula; it isnot a for-
mula inmetric temporal logicor some other real-time temporal logic [4]. The syntax of the
time-bounded model checking command is

(mc t0 |=t formula in time <= r .)

or with time bounds of the form< r or with no time limit. The model checker in gen-
eral cannotprovea formula correct in the presence of time-nondeterministic tick rules, since
it then only analyzes a subset of all possible behaviors. However, if the tool finds a coun-
terexample, it is a valid counterexample which proves that the formula does not hold.Time-
boundedmodel checking is guaranteed to terminate for discrete time domains when the
instantaneous rules terminate.

The set of states reachable from an initial state in a timed module may well be finite,
in which case search and model checking should terminate. However, the internal repre-
sentation of a timed module described in Section 5 adds a clock component to each state,
which makes the reachable “clocked state” space infinite, unless the specification is ter-
minating. Real-Time Maude therefore also providesuntimed search(syntax(utsearch t0
arrow pattern .)) anduntimed model checking(syntax(mc t0 |=u formula .)) where the
internal representation used for the execution does not add a clock, and therefore preserves
the finiteness of the reachable state space.

Real-Time Maude also has commands for checking “until” properties (syntax(check t0
|= pattern1 until pattern2 timeBound .)) and “until/stable” properties (syntax(check
t0 |= pattern1 untilStable pattern2 timeBound .)). While the properties that can be
expressed by these commands are a restricted (but often useful) subset of those expressible
in temporal logic, thecheck commands are implemented using breadth-first search tech-
niques, and can therefore sometimes decide properties—without restricting the duration of
the behaviors—for which temporal logic model checking does not terminate.

Finally, the user can define his/her own specific analysis and verification strategies using
Real-Time Maude’s reflective capabilities to further analyze a timed module. The predefined
moduleTIMED-META-LEVEL extends Maude’sMETA-LEVEL module with the functionality
needed to execute timed modules and can be used for these purposes.

4.3 Expressiveness and Limitations of Real-Time Maude

As mentioned in the introduction, our tool emphasizes ease and generality of specification,
so that large and complex systems involving, e.g., different data types and forms of commu-

15

nication, can be modeled without having to resort to tricky encodings or imposing limitations
on the system to be modeled. To support this claim, we showed in [28] that a wide range of
models of real-time and hybrid systems, including timed [3] and hybrid automata [2], timed
Petri nets [1], and timed and phase transition systems [21], can all be naturally expressed as
real-time rewrite theories. In addition, Real-Time Maude supports the definition of any com-
putable data type, as well as advanced object-oriented specification features such as multiple
inheritance and creation/deletion of objects and messages. Real-Time Maude does not come
with built-in communication primitives; instead, the user can define her own form(s) of com-
munication at the desired level of abstraction, without having to encode them using a given
set of basic primitives. This has allowed us to model unicast message passing with different
transmission times (see, e.g., Section 6.2) and more advanced communication forms such
as multicast (with appropriate transmission times) through links [29] and geographically
bounded broadcast in wireless sensor network systems [30]. In terms of expressiveness,
Real-Time Maude stands in stark contrast not only to the timed and hybrid automata, but
also to other formalisms and tools, such as the real-time models mentioned above, network
simulation tools, and the IF toolset [6]. Despite this flexibility, our formalism—consisting
of equations and term rewrite rules—is simple and intuitive and has a well-defined and easy
to understand semantics [28].

Given the expressiveness of Real-Time Maude, it is no surprise that most system proper-
ties are in general undecidable. This is different from, e.g., timed automata, whose formalism
is restricted so that crucial properties remain decidable. Nevertheless, for discrete time—
all our larger Real-Time Maude applications have had discrete time domain—Real-Time
Maude search and LTL model checking can often be used to analyze all possible behav-
iors up to a given duration from a given initial state, thus becoming decision procedures. For
dense time, however, our tool only offers a set of time sampling strategies, and, as mentioned
in Section 4.2.1, there is no guarantee that Real-Time Maude search and model checking are
“complete” in these cases. Such analyses cannot be used to prove that some property holds
for all behaviors. They should instead be seen as analyzing a number of behaviors for the
purpose of finding errors or to strengthen our confidence in the specification.

We can summarize the differences between Real-Time Maude and well-known timed
automaton-based tools, such as UPPAAL [19,5] and Kronos [32], as follows: Many large
and complex systems can be naturally modeled in Real-Time Maude but not in UPPAAL or
Kronos. This applies to the Real-Time Maude applications listed in Section 6.4, but also
to the smaller examples in Sections 6.2 and 6.3. In Section 6.2, there is no bound on the
number of messages that can appear in the state, so this simple system cannot be modeled
by a timed or a hybrid automaton. The example in Section 6.3 can be modeled by a hybrid
automaton, but due to the uninitialized “stopwatch,” it cannot be modeled within thedecid-
able fragments of hybrid automata [16]. However,whentimed automaton-based tools can
be applied, they provide the following advantages over Real-Time Maude:

– Model checking12 of timed automata is guaranteed to terminate, while the corresponding
Maude analysis may fail to do so.

– UPPAAL, in particular, is a very efficient model checking tool for timed automata, where
sets of clock valuations are represented symbolically. Real-Time Maude, which is not
optimized for the special case of timed automata, uses explicit-state search and model
checking.

12 UPPAAL’s query language is only a limited subset of (untimed) CTL [5] while Real-Time Maude al-
lows us to define any propositional linear temporal logic formula. Kronos’ query language istimed CTL
(TCTL) [4].

16

– Model checking of timed automata is complete also for dense time.

5 Semantics of Real-Time Maude’s Analysis Commands

Real-Time Maude is designed to take maximum advantage of the high performance of the
Maude engine. Most Real-Time Maude analysis commands are therefore executed by first
transforming the current timed module into a Maude module, followed by the execution of
a corresponding Maude command (at the Maudemeta-level). The actual transformation of a
timed module depends on the Real-Time Maude command to execute. This section defines
the semantics of Real-Time Maude’s analysis commands in two ways by providing:

– an “abstract” semantics, which specifies requirements for each command; and
– a concrete “Maude semantics,” which defines the semantics of a Real-Time Maude com-

mand as the theory transformation and Maude command used to execute it.

In what follows we show how the concrete semantics satisfies the abstract one. The concrete
“Maude semantics” adopts areductionisticapproach based on semantics-preserving theory
transformations. As explained in Section 5.1, any real-time rewrite theory can be trans-
formed into a semantically equivalent ordinary rewrite theory. This fact is systematically
exploited in our concrete “Maude semantics,” to internally transform real-time commands
into ordinary Maude commands. The subtle point, however, is that, as we explain for each
command, the Real-Time Maude module and command must be transformedtogetherinto a
corresponding Maude module and command. This is because the command itself places ad-
ditional constraints, due to, e.g., the specified time bound or the time sampling strategy, that
must be reflected in the transformed theory. For example, the transformed tick rule should
not tick the time beyond the time bound specified in the command.

Section 5.1 describes the “default” transformation of a real-time rewrite theory into an
ordinary rewrite theory, and therefore of Real-Time Maude modules into Maude modules.
Section 5.2 gives the semantics of the time sampling strategies. Sections 5.4 to 5.6 present
the semantics of, respectively, the timed rewrite commands, timed search and related com-
mands, and time-bounded linear temporal logic model checking. Section 5.7 treats Real-
Time Maude’suntimedanalysis commands.

5.1 The Clocked Transformation

Definition 2 Theclocked transformation, which maps a real-time rewrite theoryRφ ,τ with
R = (Σ ,E ,ϕ,R) to an ordinary rewrite theory(Rφ ,τ)C = (ΣC ,EC ,ϕC ,RC), adds the
declarations

sorts ClockedSystem .

subsort GlobalSystem < ClockedSystem .

op _in time_ : GlobalSystem Timeφ -> ClockedSystem [ctor] .

eq (CLS:ClockedSystem in time R:Timeφ) in time R’:Timeφ =

CLS:ClockedSystem in time (R:Timeφ +φ R’:Timeφ) .

to (Σ ,E ,ϕ), and definesRC to be the union of the instantaneous rules inR and a rule

l : {t}−→{t ′} in time τl if cond

for each corresponding tick rulel : {t}
τl−→{t ′} if cond in R.

17

This clocked transformation adds a clock component to each state and resembles the
transformation()C described in [28], but is simpler, since it is essentially the identity. It is
worth noticing that the reachable state space from a state{t} in (Rφ ,τ)C is normally infinite,
even when the reachable state space from{t} is finite in Rφ ,τ . The arguments in [28] can
easily be adapted to show:

Fact 1 For all termst , t ′ of sortGlobalSystem and all termsr 6= 0φ , r ′ of sortTimeφ in
Rφ ,τ ,

• Rφ ,τ ` t
r−→ t ′ ⇐⇒ (Rφ ,τ)C ` t−→ t ′ in time r

⇐⇒ (Rφ ,τ)C ` t in time r ′−→ t ′ in time r ′+φ r , and

• Rφ ,τ ` t
0φ−→ t ′ ⇐⇒ (Rφ ,τ)C ` t in time r ′−→ t ′ in time r ′.

In addition,Rφ ,τ ` t
0φ−→ t ′ ⇐⇒ (Rφ ,τ)C ` t−→ t ′ holds whenRφ ,τ contains only admis-

sible tick rules. Moreover, these equivalences hold forn-step rewrites for alln.

In Real-Time Maude, thanks to its syntax, this transformation is performed by importing
the moduleTIMED-PRELUDE, which contains the above declarations (withTime for Timeφ ,
etc.), and byleaving the rest of the specification unchanged. Real-Time Maude internally
stores a timed module by means of its clocked representation. All Full Maude commands
extend to Real-Time Maude and execute this clocked representation of the current timed
module. Fact 1 justifies this choice of execution.

5.2 Time Sampling Strategies

Definition 3 The settss(Rφ ,τ) of time sampling strategiesassociated with the real-time
rewrite theoryRφ ,τ with R = (Σ ,E ,ϕ,R) is defined by

tss(Rφ ,τ) = {def (r) | r ∈ TΣ ,Timeφ
}∪{max}∪{maxDef (r) | r ∈ TΣ ,Timeφ

}∪{det}.

In Real-Time Maude, these time sampling strategies are “set” with the respective com-
mands(set tick def r .), (set tick max .), (set tick max def r .), and
(set tick det .).

Definition 4 For eachs ∈ tss(Rφ ,τ), the mapping which takes the real-time rewrite theory
Rφ ,τ to the real-time rewrite theoryRs

φ ,τ , in which the admissible time-nondeterministic
tick rules are applied according to the time sampling strategys, is defined as follows:

– R
def (r)
φ ,τ equalsRφ ,τ , with the admissible time-nondeterministic tick rules of the forms

(†), (‡), (∗), and(§) in Section 4.1.2 replaced by, respectively, the following tick rules13:
– l : {t}

x−→{t ′} if cond ∧ x := if (u ≤φ r) then u else r fi ∧ x ≤φ u ∧ cond ′

– l : {t}
x−→{t ′} if x := r ∧ cond ∧ x <φ u ∧ cond ′

– l : {t}
x−→{t ′} if x := r ∧ cond

– l : {t}
x−→{t ′} if x := r

13 The Real-Time Maude tool assumes the modified tick rules to be executable, and therefore “removes”
their nonexec attributes. The syntaxv := w is that of Maude for “matching equations” [10], where the
ground-irreducible patternv (in the above rulesv is just the variablex) is matched against the result of
evaluatingw .

18

If the time domain is linear, so thatφ can be extended to the theoryLTIME [28], the
first of the above rules can be given in the simpler form

l : {t}
x−→{t ′} if cond ∧ x := minφ (u,r) ∧ cond ′.

– Rmax
φ ,τ is Rφ ,τ with each rule of the form(†) replaced by the rule

l : {t}
x−→{t ′} if cond ∧ x := u ∧ cond ′

(and with the other tick rules left unchanged). Notice that the condition does not hold if
u evaluates to the infinity value.

– R
maxDef (r)
φ ,τ equalsRdef (r)

φ ,τ with each(†)-rule replaced by the rule

l : {t}
x−→{t ′} if cond ∧ x := if u : Timeφ then u else r fi ∧ x ≤φ u ∧ cond ′.

– Rdet
φ ,τ = Rφ ,τ .

Real-Time Maude implements these transformations, withle for ≤φ , etc. We do not
assume that the time domain is linear. By thecurrent time sampling strategy we mean the
time sampling strategy defined by thelast set tick command given, and we assume that
any time value used in the lastset tick command is a time value in the “current” module.

The set of rewrites using a particular time sampling strategy is a subset of all possible
rewrites:

Fact 2 For eachs ∈ tss(Rφ ,τ), Rs
φ ,τ ` t

r−→ t ′ impliesRφ ,τ ` t
r−→ t ′ for all termst , t ′ of

sortGlobalSystem, and all ground termsr of sortTimeφ . Furthermore, this property holds
for all n-step rewrites.

5.3 Tick Rules withzero Time Advance

Real-Time Maude does not apply a tick rule when time would advance by an amount equal
to zero. This is a pragmatic choice based on the fact that advancing time byzero using
admissible tick rules does not change the state, but leads to unnecessary looping during
executions. We denote byRnz

φ ,τ the real-time rewrite theory obtained fromRφ ,τ by adding
the conditionτl 6= 0φ to each tick rule. We writeRs,nz

φ ,τ for (Rs
φ ,τ)

nz .

Fact 3 Rnz
φ ,τ ` t

r−→ t ′ impliesRφ ,τ ` t
r−→ t ′. The implication extends to rewrites of length

n for anyn, and is an equivalence for specificationsRφ ,τ with only admissible tick rules.

5.4 Timed Rewriting

The timed rewrite command

(trew [n] in Rφ ,τ : t with no time limit .),

for t a term of sortGlobalSystem, returns a termt ′ such that

– Rφ ,τ ` t−→ t ′ is a rewrite in at mostn steps, and
– t ′ cannot be further rewritten inRs,nz

φ ,τ (for s the current time sampling strategy) unless
t−→ t ′ is a rewrite in exactlyn steps.

19

This command is executed at the Maude meta-level by (a call to a built-in function
equivalent to) executing the Maude command

rewrite [n] in (Rs,nz
φ ,τ)C : t .

for s the current time sampling strategy. The correctness of executing the timed command
in this way follows from the fact that if the result is a termt ′ in time r , then(Rs,nz

φ ,τ)C `
t−→ t ′ in time r , and we have(Rs,nz

φ ,τ)C ` t−→ t ′ in time r =⇒ Rs,nz
φ ,τ ` t

r−→ t ′

=⇒ Rφ ,τ ` t
r−→ t ′. All implications preserve the number of rewrite steps. Finally, it also

follows from Fact 1 thatt ′ cannot be rewritten further inRs,nz
φ ,τ if t ′ in time r cannot be

rewritten in(Rs,nz
φ ,τ)C . The correctness argument is analogous if the result of the rewrite

command is aGlobalSystem termt ′.
Let ∼ stand for either<= or <, and let<=φ and<φ stand for≤φ and<φ . The time-

bounded rewrite command

(trew [n] in Rφ ,τ : t in time ∼ r .),

again fort a term of sortGlobalSystem, returns a termt ′ such that

– Rφ ,τ ` t
r ′−→ t ′, for r ′ ∼φ r , is a rewrite in at mostn steps, and

– either t
r ′−→ t ′ is an n-step rewrite, or there is not ′′ such thatRs,nz

φ ,τ ` t ′
r ′′−→ t ′′ for

r ′+φ r ′′ ∼φ r .

To execute time-bounded rewrite commands we use a different transformation of a real-
time rewrite theory which ensures that the clocks associated to the states never go beyond
the time limit.

Definition 5 Let Rφ ,τ be a real-time rewrite theory withR = (Σ ,E ,ϕ,R), and letr ∈
TΣ ,Timeφ

. The mapping which takesRφ ,τ to the rewrite theory(Rφ ,τ)≤r =(ΣB ,EB ,ϕB ,R≤r)
is defined as follows:

– ΣB = ΣC ∪{[] : ClockedSystem→ ClockedSystem}14,
– EB = EC ,
– ϕB extendsϕ so thatϕB ([]) = /0, and
– R≤r is the union of the instantaneous rules inRφ ,τ and a rule

l : [{t} in time y]−→[{t ′} in time τl +φ y] if cond ∧ τl +φ y ≤φ r

for each tick rulel : {t}
τl−→{t ′} if cond in Rφ ,τ , wherey is a variable of sortTimeφ

which does not occur in the original tick rule.

Fact 4

– For all r ′,r ′′ with r ′′+φ r ′ ≤φ r , we have thatRφ ,τ ` t
r ′−→ t ′ if and only if(Rφ ,τ)≤r `

[t in time r ′′]−→[t ′ in time r ′′ +φ r ′]. In addition, the number of rewrite steps
are the same in both sides of the equivalence.

– (Rφ ,τ)≤r ` [t in time r ′]−→ t ′′ and r ′ ≤φ r implies thatt ′′ is a term of the form
[t ′ in time r ′′] with r ′′ ≤φ r . That is, it is not possible to rewrite beyond the time
limit.

14 The operator[] is calledglobal in the current implementation of the tool.

20

Real-Time Maude executes the time-bounded rewrite command

(trew [n] in Rφ ,τ : t in time <= r .)

by executing the commandrewrite [n] in (Rs,nz
φ ,τ)≤r : [t in time 0φ] . in Maude.

For the correctness argument, it follows from Fact 4 that the result is[t ′ in time r ′]
for somer ′ ≤φ r since 0φ ≤φ r . By the first part of that fact, it follows that (sincer ′ =

0φ +φ r ′) Rs,nz
φ ,τ ` t

r ′−→ t ′, which impliesRφ ,τ ` t
r ′−→ t ′. Finally, it also follows from Fact 4

that there is no nontrivial rewritet ′
r ′′−→ t ′′ with r ′+φ r ′′ ≤φ r in Rs,nz

φ ,τ if [t ′ in time r ′]

cannot be further rewritten in(Rs,nz
φ ,τ)≤r .

The execution of a timed rewrite command with a time bound of the form< r is entirely
analogous, with each occurrence of the symbol≤ replaced by the symbol<.

5.5 Timed Search

The timed search command

(tsearch [n] in Rφ ,τ : t0 =>* t such that cond

in time-interval between ∼ r and ∼′ r ′ .)

should return at mostn substitutionsσ satisfyingcond such thatRφ ,τ ` t0
r ′′−→σ(t) for

r ′′ ∼φ r andr ′′ ∼′
φ

r ′. It is executed as the Maude command

search [n] in (Rs,nz
φ ,τ)∼

′r ′ :

[t0 in time 0φ] =>* [t in time TIME-ELAPSED]

such that cond /\ TIME-ELAPSED ∼φ r .

for s the current time sampling strategy, andTIME-ELAPSED a variable of sortTimeφ which
does not occur int (otherwise a variableTIME-ELAPSED#1 is used).

For correctness, ifσ is a solution, then(Rs,nz
φ ,τ)∼

′r ′ ` [t0 in time 0φ]−→
[σ(t) in time σ(TIME-ELAPSED)]. By Fact 4,σ(TIME-ELAPSED)∼′

φ
r and

Rs,nz
φ ,τ ` t0

σ(TIME-ELAPSED)−→ σ(t), and thereforeRφ ,τ ` t0
σ(TIME-ELAPSED)−→ σ(t). Finally,

thesuch that condition implies thatσ(TIME-ELAPSED)∼φ r .
Real-Time Maude allows the termt in the search pattern to have the formt ′ in time t ′′,

which is useful for searching for states matching patterns such ast(x) in time x . Such
patterns are treated by replacingTIME-ELAPSED with t ′′.

Since all the facts used in the argumentation preserve the number of rewrite steps, the
same translation can be used with the arrows=>1 and=>+ instead of=>*.

It is worth remarking that

– the search will return (at most)n substitutions on the domainvars(t)∪{TIME-ELAPSED},
which do not necessarily correspond ton distinctsubstitutions when restricted tovars(t);

– the search will terminate if the time domain is discrete (or the time sampling strategys

makesRs,nz
φ ,τ “non-Zeno”), and the instantaneous rules terminate;

– solutionsσ with Rφ ,τ ` t0
r ′′−→σ(t) can be missed because it may be thatRs,nz

φ ,τ 6 `

t0
r ′′−→σ(t).

The time-bounded search command for deadlocks

21

(tsearch [n] in Rφ ,τ : t0 =>! t such that cond

in time-interval between ∼ r and ∼′ r ′ .)

searches for substitutionsσ satisfyingcond such thatRφ ,τ ` t0
r ′′−→σ(t) for r ′′ ∼φ r and

r ′′∼′
φ
r ′, and such thatσ(t) cannot be further rewritten inRs,nz

φ ,τ . The translation(Rs,nz
φ ,τ)∼

′r ′

cannot be used since it would give deadlocks at all states which cannot be further rewritten
within the time bound.

The following translation is used instead for searching for deadlocks. It adds a self-loop
whenever a tick rule could advance the total time elapse of a computation beyond the time
limit.

Definition 6 Let Rφ ,τ be a real-time rewrite theory withR = (Σ ,E ,ϕ,R), and letr ∈
TΣ ,Timeφ

. The mapping which takesRφ ,τ to the rewrite theory(Rφ ,τ)≤̂r is defined by

(Rφ ,τ)≤̂r = (ΣB ,EB ,ϕB ,R≤̂r), whereR≤̂r is the union of the instantaneous rules inRφ ,τ

and a rule

l : [{t} in time y]−→ if (τl +φ y ≤φ r) then [{t ′} in time τl +φ y]

else [{t} in time y] fi if cond

for each tick rulel : {t}
τl−→{t ′} if cond in Rφ ,τ , wherey is a variable of sortTimeφ which

does not occur in the original tick rule.

The transformation(Rφ ,τ)<̂r is defined in the same way.

Since(Rφ ,τ)≤̂r only modifies(Rφ ,τ)≤r by adding trivial rewrites, most of Fact 4 also

holds in (Rφ ,τ)≤̂r . Moreover, since the instantaneous rules are unchanged, and since for
each tick rule which can be applied inRφ ,τ , the corresponding rule can be applied to a

corresponding state in(Rφ ,τ)≤̂r , it follows that a term can be rewritten inRφ ,τ if and only

if it can be rewritten in(Rφ ,τ)≤̂r :

Fact 5

– For all r ′,r ′′ with r ′′+φ r ′≤φ r it is the case thatRφ ,τ ` t
r ′−→ t ′ if and only if(Rφ ,τ)≤̂r `

[t in time r ′′]−→[t ′ in time r ′′ +φ r ′]. In addition, the number of rewrite steps
can be preserved by the translation.

– (Rφ ,τ)≤̂r ` [t in time r ′]−→ t ′′ andr ′ ≤φ r imply thatt ′′ is (equivalent to) a term
of the form[t ′ in time r ′′] with r ′′ ≤φ r . That is, it is not possible to rewrite beyond
the time limit.

– If Rφ ,τ ` t
r ′−→ t ′ is a one-step rewrite, andr ′′ ≤φ r and¬(r ′′+φ r ′ ≤φ r), then there is

a one-step “identity” rewrite(Rφ ,τ)≤̂r ` [t in time r ′′]−→ [t in time r ′′].

The above timed search command for deadlocks is interpreted by the Maude command

search [n] in (Rs,nz
φ ,τ)∼̂′r ′ :

[t0 in time 0φ] =>! [t in time TIME-ELAPSED]

such that cond /\ TIME-ELAPSED ∼φ r .

To see that each solutionσ is really a deadlock inRs,nz
φ ,τ , assume thatRs,nz

φ ,τ `σ(t) r−→ t ′

in one step. It follows from Fact 5 that, depending on whetherr ′′ +φ r ′ ≤φ r , the term
[σ(t) in time r ′′] rewrites either to[t ′ in time r ′′+φ r ′] or to[σ(t) in time r ′′] in

one step in(Rs,nz
φ ,τ)∼̂′r ′ .

22

It is worth noticing that a deadlock inRs,nz
φ ,τ does not necessarily correspond to a dead-

lock in Rφ ,τ , and that a deadlock inRφ ,τ may not necessarily be reached inRs,nz
φ ,τ .

For search commands with simpler time bounds, a command(tsearch t0 arrow t

such that cond in time ∼ r .) is equivalent to(tsearch t0 arrow t such that

cond in time-interval between >= 0φ and ∼ r .) for∼ either<= or <. If ∼ is either
>= or >, the above search command is interpreted by the Maude command

search [n] in (Rs,nz
φ ,τ)C : t0 arrow t in time TIME-ELAPSED

such that cond /\ TIME-ELAPSED ∼φ r .

A timed search command with bound ‘with no time limit’ is the same as the correspond-
ing search command with time bound>= 0φ .

5.6 Time-Bounded Temporal Logic Model Checking

What is the meaning of the time-bounded liveness property “theclock value will always
reach the value24 within time24” in the following specification?

(tmod CLOCK is protecting POSRAT-TIME-DOMAIN .

op clock : Time -> System [ctor] .

vars R R’ : Time .

rl [tick] : {clock(R)} => {clock(R + R’)} in time R’ [nonexec] .

endtm)

Real-Time Maude doesnot assume that time24 must be “visited” when model checking a
property “within time24.” Such an assumption would make the above property hold within
time 24 but not within time25, and an ordinary simulation would not necessarily reach the
desired state, which is counterintuitive if we have proved that the desired state is always
reached within time24. Instead, time-bounded linear temporal logic formulas will be inter-
preted over all possible paths, “chopped off” at the time limit:

Definition 7 Given a real-time rewrite theoryRφ ,τ , a termt0 of sortGlobalSystem, and a
ground termr of sortTimeφ , the setPaths(Rφ ,τ)≤r

t0
is the set ofall infinite sequences

π = ([t0 in time r0]−→ [t1 in time r1]−→ ·· · −→ [ti in time ri]−→ ·· ·)

of (Rφ ,τ)C -states, withr0 = 0φ , such that either

– for all i , ri ≤φ r andRφ ,τ ` ti
r ′−→ ti+1 is a one-step sequential rewrite forri +φ r ′ =

ri+1, or
– there exists ak such that

– either there is a one-step rewriteRφ ,τ ` tk
r ′−→ t ′ with rk ≤φ r and

rk +φ r ′ 6≤φ r , or
– there is no one-step rewrite fromtk in Rτ,φ ,

andRφ ,τ ` ti
r ′−→ ti+1 is a one-step sequential rewrite withri +φ r ′ = ri+1 for all i < k ;

andrj = rk andtj = tk for all j > k .

We denote byπ(i) thei th element of pathπ.

23

That is, we add a self-loop for each deadlocked state reachable within timer , as well as
for each state whichcould tick beyond timer in one step, even when it couldalso rewrite
to something else within the time limit.

The temporal logic properties are given as ordinary LTL formulas over a set of atomic
propositions. We find it useful to allow bothstate propositions, which are defined on terms
of sortGlobalSystem, andclocked propositions, which can also take the time stamps into
account. To allow clocked propositions, propositions are defined w.r.t. theclockedrepresen-
tation (Rφ ,τ)C of a real-time rewrite theoryRφ ,τ . The satisfaction of astateproposition
ρ ∈ Π is independent of the time stamps, so the labeling functionLΠ is extended to a la-
beling LC

Π
which is the “smallest” function satisfyingLΠ ([t]) ⊆ LC

Π
([t]) andLΠ ([t ′]) ⊆

LC
Π

([t ′ in time r]) for all t , t ′, andr .
In Real-Time Maude, we declare the atomic (state and clocked) propositionsΠ (as terms

of sortProp), and define their semanticsLΠ , in a module which imports the module to be an-
alyzed (represented by its clocked version) and the predefined moduleTIMED-MODEL-CHECKER.
The latter extends Maude’sMODEL-CHECKER module with the subsort declaration

subsort ClockedSystem < State .

Real-Time Maude transforms a moduleMLΠ
definingΠ andLΠ into a moduleMLC

Π

defining

the labeling functionLC
Π

by adding the conditional equation

ceq GS:GlobalSystem in time R:Time |= P:Prop = true

if GS:GlobalSystem |= P:Prop .

The definition of the satisfaction relation of time-bounded temporal logic is given as follows:

Definition 8 Given a real-time rewrite theoryRφ ,τ , a protecting extensionLΠ of (Rφ ,τ)C

defining the atomic state and clocked propositionsΠ , an initial statet0 of sortGlobalSystem,
a Timeφ valuer , and an LTL formulaΦ , we define the time-bounded satisfaction relation
|=≤r by

Rφ ,τ ,LΠ , t0 |=≤r Φ if and only if π,LC
Π |= Φ for all pathsπ ∈ Paths(Rτ,φ)≤r

t0
,

where|= is the usual definition of temporal satisfaction on infinite paths.

A time-bounded property which holds when a time sampling strategy is taken into ac-
count does not necessarily hold in the original theory. But a counterexample to a time-
bounded formula when the time sampling strategy is taken into account, is also a valid
counterexample in the original system if the time sampling strategy is different fromdet

and all time-nondeterministic tick rules have the form(†):

Fact 6 LetRφ ,τ be an admissible real-time rewrite theory where each time-nondeterministic
tick rule has the form(†) with u a term of sortTimeφ . Then, for anyTimeφ value r ,
termt of sortGlobalSystem, ands ∈ tss(Rφ ,τ) with s 6= det , we havePaths(Rs,nz

φ ,τ)≤r
t ⊆

Paths(Rφ ,τ)≤r
t .

Corollary 1 For Rφ ,τ , s, r , andt as in Fact 6,

Rs,nz
φ ,τ ,LΠ , t 6|=≤r Φ implies Rφ ,τ ,LΠ , t 6|=≤r Φ .

24

Let Rφ ,τ be the current module,LΠ a protecting extension of(Rφ ,τ)C which defines

the propositionsΠ , and lets be the current time sampling strategy. Furthermore, letLĈ
Π

be

the protecting extension of(Rφ ,τ)≤̂r which extendsLC
Π

by adding the equation

[x in time y] |= P = true if x in time y |= P

for variablesx ,y , andP . The time-bounded model checking command

(mc t0 |=t Φ in time <= r .)

is interpreted by checking the ordinary LTL satisfaction

K ((Rs,nz
φ ,τ)≤̂r ,[ClockedSystem])

LĈ
Π

, [[t0 in time 0φ]] |= Φ

using Maude’s model checker. The correctness of this choice is given by the following fact:

Fact 7

Rφ ,τ ,LΠ , t0 |=≤r Φ if and only if

K ((Rφ ,τ)≤̂r ,[ClockedSystem])
LĈ

Π

, [[t0 in time 0φ]] |= Φ .

The validity of this fact is based on the following observations:

– For each path[t0 in time r0]−→ [t1 in time r1]−→ ·· · in Paths(Rφ ,τ)≤r
t0

there is
a corresponding path[[t0 in time r0]]−→ [[t1 in time r1]]−→ ·· · in

K ((Rφ ,τ)≤̂r ,[ClockedSystem])
LĈ

Π

, and vice versa.

– LC
Π

([t in time r]) = LĈ
Π

([[t in time r]]) for all termst andr .

The case where the time bound in a model checking command has the form< r is
treated in an entirely similar way. The case with boundno time limit is model checked
by checking whether theLC

Π
-propertyΦ holds in the rewrite theory(Rs,nz

φ ,τ)C .

5.7 Untimed Search and Model Checking

Real-Time Maude also provides commands foruntimedsearch and temporal logic model
checking, which are particularly useful when the reachable state space from a term{t} is
finite in Rφ ,τ but is infinite in(Rφ ,τ)C due to the time stamps. The untimed commands use
the transformation which takes a real-time rewrite theoryRφ ,τ = (Σ ,E ,ϕ,R) to the rewrite
theory (Rφ ,τ)U = (Σ ,E ,ϕ,RU), whereRU is the union of the instantaneous rules inR

and a rulel : {t}−→{t ′} if cond for each tick rule of the forml : {t}
τl−→{t ′} if cond in

R. Since(Rφ ,τ)U just ignores the durations of tick rules, it follows that the one-step rewrite
relations in(Rφ ,τ)U and inRφ ,τ are the same.

Real-Time Maude’s untimed search command, with syntax(utsearch [n] t0 arrow

pattern .), and the untimed model checking command, with syntax(mc t0 |=u Φ .), are
executed by the corresponding commands in Maude on the rewrite theory(Rs,nz

φ ,τ)U for s

the current time sampling strategy. The formulaΦ should not contain clocked propositions.

25

5.8 Other Analysis Commands

The execution of(find earliest t0 =>* t such that cond .) in a moduleRφ ,τ , relative
to a chosen time sampling strategys, uses Maude’s search capabilities to return a termσ(t)
in time r , such thatRs,nz

φ ,τ ` t0
r−→σ(t) for σ satisfyingcond , and such that there is no

σ ′ satisfyingcond and r ′ with r ′ <φ r and Rs,nz
φ ,τ ` t0

r ′−→σ ′(t). The execution of this
command may loop if there is no such matchσ .

The(find latest t0 =>* t such that cond timeBound .) command (wheretime-
Bound is either with no time limit, in time < r , or in time <= r for some time
value r) analyzes all behaviors inRs,nz

φ ,τ and finds the longest time needed, in the worst
case, to reach at-state fromt0. That is, fortimeBound of the form<= r , the command
looks for a(Rφ ,τ)C -termσ(t) in time r ′, with σ satisfyingcond , such that

– for eachπ ∈ Paths(Rs,nz
φ ,τ)≤r

t0
there existσ ′ (satisfyingcond), i , andr ′′ such thatπ(i)

equals[σ ′(t) in time r ′′];
– there exists a (worst) pathπ ∈ Paths(Rs,nz

φ ,τ)≤r
t0

and a numberi such thatπ(i) equals
[σ(t) in time r ′] and such that there are nok < i , σ ′ satisfyingcond , andr ′′ with
π(k) = [σ ′(t) in time r ′′]; and

– for each pathπ ∈ Paths(Rs,nz
φ ,τ)≤r

t0
, if π(i) equals[σ ′(t) in time r ′′] for somei , σ ′

satisfyingcond , andr ′′ with r ′′ <φ r ′, then there exists ak < i such thatπ(k) = [σ ′′(t)
in time r ′′′] for someσ ′′ satisfyingcond andr ′′′.

The cases withtimeBound of the forms< r andwith no time limit are defined in a
similar way.

For thecheck commands, letpi be a patternti such that condi , for i ∈ {1,2}, where
ti is a ground irreducible term of sortGlobalSystem or sortClockedSystem. We can view
eachpi as a proposition and can define the labeling functionL{p1,p2} on (Rφ ,τ)C -states by
pi ∈ L{p1,p2}([t]) if and only if there exist at ′ ∈ [t] and a substitutionσ satisfyingcondi

such thatt ′ = σ(pi). The command(check t0 |= p1 until p2 in time <= r .) checks the
until property

Rs,nz
φ ,τ ,L{p1,p2}, t0 |=≤r p1 Up2,

and the command(check t0 |= p1 untilStable p2 in time <= r .) checks whether the
propertyp2 is in addition stable, i.e., it checks the “until/stable” temporal property

Rs,nz
φ ,τ ,L{p1,p2}, t0 |=≤r (p1Up2)/\ (p2=>[]p2).

The treatment of time bounds of the forms< r andwith no time limit is analogous.
Notice that thefind latest command implicitly contains a check of the liveness property
<> pattern.

Thefind latest andcheck commands are implemented by breadth-first search strate-
gies, and can therefore sometimes decide properties for which the temporal logic model
checker fails. In addition, the user does not need to explicitly define temporal logic proposi-
tions for these commands. On the minus side, performance may be affected by the fact that
these commands do not use Maude’s efficient search or model checking facilities.

6 Using Real-Time Maude

In this section we first illustrate specification and analysis in Real-Time Maude with a very
simple example (Section 6.1), followed by a more interesting example illustrating object-

26

oriented specification (Section 6.2) and by a smallhybrid system example (Section 6.3).
Finally, Section 6.4 mentions some larger Real-Time Maude applications.

6.1 A Clock Example

The following timed module models a “clock” which may be running (in which case the
system is in state{clock(r)} for r the time shown by the clock) or which may have stopped
(in which case the system is in state{stopped-clock(r)} for r the clock value when it
stopped). When the clock shows24 it must be reset to0 immediately:

(tmod DENSE-CLOCK is protecting POSRAT-TIME-DOMAIN .

ops clock stopped-clock : Time -> System [ctor] .

vars R R’ : Time .

crl [tickWhenRunning] : {clock(R)} => {clock(R + R’)} in time R’

if R’ <= 24 - R [nonexec] .

rl [tickWhenStopped] :

{stopped-clock(R)} => {stopped-clock(R)} in time R’ [nonexec] .

rl [reset] : clock(24) => clock(0) .

rl [batteryDies] : clock(R) => stopped-clock(R) .

endtm)

The two tick rules model the effect of time elapse on a system by increasing the clock
value of a running clock according to the time elapsed, and by leaving a stopped clock un-
changed. Time may elapse byanyamount of time less than24 - r from a state{clock(r)},
and by any amount of time from a state{stopped-clock(r)}. To execute the specifica-
tion we should first specify a time sampling strategy, for example by giving the command
(set tick def 1 .). The command15

(trew {clock(0)} in time <= 99 .)

Result ClockedSystem : {stopped-clock(24)} in time 99

then simulates one behavior of the system up to total duration99. The command

(tsearch [1] {clock(0)} =>* {clock(X:Time)} such that X:Time > 24

in time <= 99 .)

No solution

checks whether some state{clock(r)}, with r > 24, can be reached from state{clock(0)}
in time less than or equal to99. Not surprisingly, theearliesttime the clock can show10 is
after time10 has elapsed in the system:

(find earliest {clock(0)} =>* {clock(10)} .)

Result: {clock(10)} in time 10

A correspondingfind latest search for state{clock(10)} will find that there are paths
in which the desired state is never encountered:

15 For each command we also present—in italics—the result of executing the command in Real-Time
Maude.

27

(find latest {clock(0)} =>* {clock(10)} in time <= 24 .)

Result: there is a path in which the pattern is not reachable

in time <= 24

Since the reachable state space is finite when we take the time sampling into account, we
can check whether a state{clock(r)}, with r > 24, can be reached from state{clock(0)}
by giving theuntimedsearch command

(utsearch {clock(0)} =>* {clock(X:Time)} such that X:Time > 24 .)

No solution

The command

(utsearch [1] {clock(0)} =>! G:GlobalSystem .)

No solution

shows that there is no deadlock reachable from{clock(0)}. Finally, the command

(utsearch [1] {clock(0)} =>* {clock(1/2)} .)

No solution

will not find the sought-after state, since it is not reachable with the current time sampling
strategy.

We are now ready for some temporal logic model checking. The following module de-
fines thestatepropositionsclock-dead (which holds for all stopped clocks) andclock-is(r)
(which holds if arunning clock showsr), and theclockedpropositionclockEqualsTime
(which holds if the running clock shows the time elapsed in the system):

(tmod MODEL-CHECK-DENSE-CLOCK is including TIMED-MODEL-CHECKER .

protecting DENSE-CLOCK .

ops clock-dead clockEqualsTime : -> Prop [ctor] .

op clock-is : Time -> Prop [ctor] .

vars R R’ : Time .

eq {stopped-clock(R)} |= clock-dead = true .

eq {clock(R)} |= clock-is(R’) = (R == R’) .

eq {clock(R)} in time R’ |= clockEqualsTime = (R == R’) .

endtm)

The model checking command16

(mc clock(0) |=u [] ~ clock-is(25) .)

Result Bool : true

checks whether the clock is always different from25 in each computation (relative to the
chosen time sampling strategy). The command

16 Recall that ‘|=u’ stands foruntimedmodel checking, where the total duration is not taken into account
in the analysis.

28

(mc {clock(0)} |=t clockEqualsTime U (clock-is(24) \/ clock-dead)

in time <= 1000 .)

Result Bool : true

checks whether the clock always shows the correct time, when started from{clock(0)},
until it shows24 or is stopped. (Since this latter property involves clocked propositions, we
must use thetimedmodel checking command.)

Finally, Real-Time Maude’s model checker provides a counterexample if the tempo-
ral logic property does not hold. For example, it is not always the case that starting from
{clock(0)} one will always reach a state where the clock shows3:

(mc clock(0) |=u <> clock-is(3) .)

Result ModelCheckResult :

counterexample({{clock(0)}, ’tickWhenRunning}

{{clock(1)}, ’tickWhenRunning}

{{clock(2)}, ’batteryDies} ,

{{stopped-clock(2)}, ’tickWhenStopped})

In this counterexample, the clock ticks (using ruletickWhenRunning) to {clock(2)}, when
the rulebatteryDies is applied, leading to the state{stopped-clock(2)}, from which the
system will self-loop forever using ruletickWhenStopped.

6.2 An Object-Based Network Protocol Example

We illustrate real-time object-oriented specification with a protocol for computinground
trip times(i.e., the time it takes for a message to travel from an initiator node to a responder
node, and back) between pairs of nodes in a network. The setting is simplified to illustrate
key features of object-oriented real-time specifications—such as timers and the functions
delta andmte—without drowning the reader in details. A Real-Time Maude specification
of a “real” protocol for estimating round trip times is given as part of the specification of the
AER/NCA protocol suite [29].

The setting is simple: each node is interested in finding the round trip time to exactly
one other node. Communication is modeled very generally by “ordinary” message passing,
where it may take a messageanyamount of time to travel from one node to another.

The protocol is equally simple: An initiator objecto has a local clock and starts a run of
the protocol by sending anrttReq message to its neighboro′ with its current time stampr
(rulestartSession). When the neighboro′ receives therttReq message, it replies with an
rttResp message, to which it attaches the received time stampr (rulerttResponse). When
the initiator nodeo reads therttResp with its original time stampr , the rtt value is just its
current clock value minus the original time stampr (ruletreatRttResp).

One problem with this version of the protocol is that it may happen that the response
message is not received within reasonable time. In such cases it is appropriate to assume that
there is a problem with the message delivery. Therefore, only round trip times less than a
time valueMAX-DELAY are considered (ruleignoreOldResp ignores responses which are too
old). If the initiator does not receive a response in time less thanMAX-DELAY, it has to initiate
another round of the protocol exactly timeMAX-DELAY after its first attempt (ruletryAgain).

29

The process is repeated until an rtt value less thanMAX-DELAY is found. A findRtt(o)

message “kicks off” a run of the protocol for objecto.
In the following specification, eachNode object uses atimer attribute to ensure that a

new attempt is initiated at everyMAX-DELAY time units, until an rtt value is found. If the
timer has valuer , it must “ring” in time r from the current time. The timer is turned off
when its value isINF. The classNode has the attributesnbr, which denotes the node whose
rtt value it is interested in, and aclock attribute denoting the value of its local clock. The
rtt attribute stores the rtt to its preferred neighbor:

(tomod RTT is protecting NAT-TIME-DOMAIN-WITH-INF .
op MAX-DELAY : -> Time . eq MAX-DELAY = 4 .

class Node | clock : Time, rtt : TimeInf,
nbr : Oid, timer : TimeInf .

msgs rttReq rttResp : Oid Oid Time -> Msg .
msg findRtt : Oid -> Msg . --- start a run

vars O O’ : Oid . vars R R’ : Time . var TI : TimeInf .

--- start a session, and set timer:
rl [startSession] :

findRtt(O) < O : Node | clock : R, nbr : O’ > =>
< O : Node | timer : MAX-DELAY > rttReq(O’, O, R) .

--- respond to request:
rl [rttResponse] :

rttReq(O, O’, R) < O : Node | > =>
< O : Node | > rttResp(O’, O, R) .

--- received resp within time MAX-DELAY;
--- record rtt value and turn off timer:
crl [treatRttResp] :

rttResp(O, O’, R) < O : Node | clock : R’ > =>
< O : Node | rtt : (R’ monus R), timer : INF >

if (R’ monus R) < MAX-DELAY .

--- ignore and discard too old message:
crl [ignoreOldResp] :

rttResp(O, O’, R) < O : Node | clock : R’ > => < O : Node | >
if (R’ monus R) >= MAX-DELAY .

--- start new round and reset timer when timer expires:
rl [tryAgain] :

< O : Node | timer : 0, clock : R, nbr : O’ > =>
< O : Node | timer : MAX-DELAY > rttReq(O’, O, R) .

--- tick rule should not advance time beyond expiration of a timer:
crl [tick] :

{C:Configuration} => {delta(C:Configuration, R)} in time R
if R <= mte(C:Configuration) [nonexec] .

--- the functions mte and delta:
op delta : Configuration Time -> Configuration [frozen (1)] .
eq delta(none, R) = none .
eq delta(NEC:NEConfiguration NEC’:NEConfiguration, R) =

delta(NEC:NEConfiguration, R) delta(NEC’:NEConfiguration, R) .
eq delta(< O : Node | clock : R, timer : TI >, R’) =

< O : Node | clock : R + R’, timer : TI monus R’ > .

30

eq delta(M:Msg, R) = M:Msg .

op mte : Configuration -> TimeInf [frozen (1)] .
eq mte(none) = INF .
eq mte(NEC:NEConfiguration NEC’:NEConfiguration) =

min(mte(NEC:NEConfiguration), mte(NEC’:NEConfiguration)) .
eq mte(< O : Node | timer : TI >) = TI .
eq mte(M:Msg) = INF .

endtom)

This use of timers, clocks, and the functionsmte and delta is fairly typical for object-
oriented real-time specifications. Notice that the tick rule may advance time when the con-
figuration contains messages. The following timed module defines an initial state with three
nodesn1, n2, andn3:

(tomod RTT-I is including RTT .
ops n1 n2 n3 : -> Oid .
op initState : -> GlobalSystem .
eq initState =

{findRtt(n1) findRtt(n2) findRtt(n3)
< n1 : Node | clock : 0, timer : INF, nbr : n2, rtt : INF >
< n2 : Node | clock : 0, timer : INF, nbr : n3, rtt : INF >
< n3 : Node | clock : 0, timer : INF, nbr : n1, rtt : INF >} .

endtom)

The reachable state space frominitState is infinite, since the time stamps and clock values
may grow beyond any bound and the state may contain any number of old messages. Search
and model checking should be time-bounded to ensure termination. We set the time sampling
strategy with the command(set tick def 1 .) to cover the discrete time domain.

The command

(tsearch [1]

initState =>* {C:Configuration

< O:Oid : Node | rtt : X:Time,

ATTS:AttributeSet >}

such that X:Time >= 4

in time <= 10 .)

No solution

checks whether a state with an undesiredrtt value≥ 4 can be reached within time10. The
command

(tsearch [1]

initState =>* {C:Configuration

< n1 : Node | rtt : 2, ATTS:AttributeSet >

< n2 : Node | rtt : 3, ATTS’:AttributeSet >}

in time <= 5 .)

Solution 1

ATTS’:AttributeSet <- clock : 3, nbr : n3, timer : INF ;

ATTS:AttributeSet <- clock : 3, nbr : n2, timer : INF ;

C:Configuration <-

findRtt(n3)

< n3 : Node | clock : 3, nbr : n1, rtt : INF, timer : INF > ;

TIME_ELAPSED:Time <- 3

31

checks whether a state withrtt values2 and3 can be reached.
We illustrate temporal logic model checking by proving that there are nosuperfluous

messages being sent around in the system after anrtt value has been found. That is, if
an objecto has found anrtt value, then there is norttReq(o′, o, r) or rttResp(o, o′,r)
message withr +MAX-DELAY> c, for c the value ofo’s clock. The following module defines
the propositionsuperfluousMsg:

(tomod MC-RTT is including TIMED-MODEL-CHECKER . protecting RTT-I .

op superfluousMsg : -> Prop [ctor] .

vars REST : Configuration . vars O O’ : Oid . vars R R’ R’’ : Time .

ceq {REST < O : Node | rtt : R, clock : R’ > rttReq(O’, O, R’’)}

|= superfluousMsg = true if R’’ + MAX-DELAY > R’ .

ceq {REST < O : Node | rtt : R, clock : R’ > rttResp(O, O’, R’’)}

|= superfluousMsg = true if R’’ + MAX-DELAY > R’ .

endtom)

The command

(mc initState |=t [] ~ superfluousMsg in time <= 10 .)

Result Bool : true

proves that there are no superfluous messages in the system within time10. More interesting
temporal properties about similar specifications are given in [24]; examples of sophisticated
Real-Time Maude model checking are provided in [29].

6.2.1 Modeling Different Message Transmission Delays

In the above model, the transmission of a message can takeany amount of time≥ 0. The
equation

eq mte(M:Msg) = INF .

implies that time progress is not impeded by the presence of messages in the configuration,
thus allowing a message to remain “forever” in the configuration without being read. As for
the lower bound, we see that, e.g., anrttReq message created in the rulesstartSession

andtryAgain can be read in the rulerttResponse without the tick rule having been applied
in-between.

In this section we show how to modify the moduleRTT to model the settings where:

1. it takes a messageat leasttimeMIN-TRANS-TIME to travel from its source to its destina-
tion; and

2. it takes a messageexactlytimeMIN-TRANS-TIME to travel from source to destination.

In addition, we will briefly indicate how to model message transmission times in more detail
by considering the physical properties of thelinks through which the messages travel.

To model “delay” in message transmission, we add a delay operatordly of a supersort
DlyMsg. The meaning ofdly(m,r) is that the messagem will be “ripe” in time r . That is, it
will becomem in time r . It is obvious that we wantdly(m,0) = m, so the delay operator
is declared to haveright identity0:

sort DlyMsg . subsorts Msg < DlyMsg < NEConfiguration .

op dly : Msg Time -> DlyMsg [ctor right id: 0] .

32

To send a messagem which will take at least timeMIN-TRANS-TIME to reach its destina-
tion, the messagedly(m, MIN-TRANS-TIME) should be sent. For example, theright-hand
side of the rulestryAgain andstartSession should in this case be

< O : Node | timer : MAX-DELAY >

dly(rttReq(O’, O, R), MIN-TRANS-TIME) .

The left-handsides of the message-consuming rules should not change: only ripe messages
should be read. The equation defining the functiondelta on single messages must be re-
placed by the equation

eq delta(dly(M:Msg, R), R’) = dly(M:Msg, R monus R’) .

(This equation also applies to ripe messages, sincem = dly(m, 0) follows fromdly being
declared to have right identity0.) This technique modelsminimumtransmission delay in
message passing communication.

To model setting (i), where themaximumpossible message transmission is unbounded,
we use the equation

eq mte(DM:DlyMsg) = INF .

For setting (ii), where theexactmessage transmission time equals the smallest possible
transmission time, we replace the above equation formte by

eq mte(dly(M:Msg, R)) = R .

so that themte of a ripe message is0 (again, due to the right identity ofdly). With the last
equation, time cannot advance when a ripe message is present in the configuration, forcing
ripe messages to be treated without delay.

The manual [24] presents these versions—as well as more sophisticated ones—of our
RTT example in detail.

Links. An alternative way of modeling communication is to use explicitlink objects, inside
which packets travel from source to destination. Such a more detailed model of links—
where the delay of a packet is given as a function of the propagation delay and the speed of
the link, the delays of the other packets in the link, and the size of the packet—was needed
in the AER/NCA case study, and is described in [29, Section 4.6.1].

6.3 A Hybrid System Example: A Thermostat

We finish our collection of examples with a smallhybrid system example: A thermostat
works by turning on and off a heater in order to maintain a temperature between 62 and 74
degrees. When the heater is turned off, the temperature decreases byone degreeper time
unit, and when the heater is turned on the temperature increases bytwo degreesper time
unit.17 In addition, the thermostat is equipped with a “stopwatch” which keeps track of the
total time that the heater has been turnedon, so that the local energy company can charge
the correct amount to the user.

Assuming that the time and temperature domains can be modeled by the nonnegative ra-
tional numbers, a Real-Time Maude specification of the thermostat can be given as follows,
wherel,x,d denotes the state of the system, withx the current temperature,l the current
control state (eitheron or off), andd the total duration that the heater has been on.

17 For simplicity, we use linear functions to describe temperature increases or decreases. More complex
dynamics can also be modeled in Real-Time Maude by defining the necessary functions.

33

(tmod THERMOSTAT is

protecting POSRAT-TIME-DOMAIN . --- Dense time domain

sort ThermoState .

ops on off : -> ThermoState [ctor] .

op _‘,_‘,_ : ThermoState PosRat PosRat -> System [ctor] .

vars R R’ R’’ : Time .

rl [turn-on] : off, 62, R => on, 62, R .

rl [turn-off] : on, 74, R => off, 74, R .

crl [tick-on] :

{on, R, R’} => {on, R + (2 * R’’), R’ + R’’} in time R’’

if R’’ <= ((74 - R) / 2) [nonexec] .

crl [tick-off] :

{off, R, R’} => {off, R - R’’, R’} in time R’’

if R’’ <= (R - 62) [nonexec] .

endtm)

This system, with its uninitialized “stopwatch,” cannot be expressed by timed automata or
by decidable classes of hybrid automata [16].

6.4 Some Real-Time Maude Applications

Real-Time Maude is particularly suitable for specifying distributed systems in an object-
oriented style. All our larger Real-Time Maude applications have, as mentioned above, been
so specified. They include the formal specification and analysis of:

– The new and sophisticated AER/NCA suite of protocols [18] that intend to achieve re-
liable, scalable, and TCP-friendly multicast in active networks. Real-Time Maude anal-
ysis uncovered subtle design errors which could not be found by traditional testing by
the protocol developers, while independently finding all bugs discovered by such test-
ing [29].

– The NORM multicast protocol developed by the Internet Engineering Task Force [20].
– A series of new scheduling algorithms, with advanced capacity sharing facilities, for

real-time systems [25].
– Advanced wireless sensor network protocols [30].

In addition, we showed in [28] that real-time rewrite theories can be seen as a semantic
framework in which a wide range of models of real-time and hybrid systems can be nat-
urally represented. Therefore, Real-Time Maude has the potential to serve as an execution
and analysis environment for other real-time formalisms not having tools of their own. Thus
far, an execution environment for a real-time extension of the Actor model has been devel-
oped [13].

34

7 Concluding Remarks

We have presented Real-Time Maude, have described and illustrated its features, and have
documented the tool’s semantic foundations. Perhaps the most important lesson learned is
that formal specification and analysis of real-time systems—including distributed object-
based systems with real-time features—can be supported with good expressiveness and with
reasonable efficiency in important application areas outside the scope of current decision
procedures. What seems desirable for system design purposes is to have aspectrumof anal-
ysis methods that spans automated verification on one side and simulation and testbeds on
the other. We view Real-Time Maude as addressing the middle area of this spectrum, and
providing a good semantic basis for integrating other methods on the spectrum’s edges in
the future.

Several research directions should be investigated in the near future:

1. the current incomplete analyses due to choices in the time sampling strategies should
be made complete by identifying useful system classes for which such strategies are
complete, and by developing new abstraction techniques;

2. the use of Real-Time Maude specifications to generate code meeting desired real-time
requirements should be investigated; and

3. symbolic reasoning and deductive techniques complementing the current analysis capa-
bilities should be developed.

Of course, all these future developments should be driven by new applications and case stud-
ies. We hope that the current tool will stimulate users to contribute their ideas and experience
in advancing the research areas mentioned above and many others.

Acknowledgments: We are grateful to Narciso Martı́-Oliet, Miguel Palomino, Carolyn Talcott, Alberto

Verdejo, and the anonymous referees for many helpful comments on earlier versions of this paper. Partial

support of this research by ONR Grant N00014-02-1-0715, by NSF Grant CCR-0234524, and by The Nor-

wegian Research Council is gratefully acknowledged.

References

1. W. M. P. van der Aalst. Interval timed coloured Petri nets and their analysis. In M. Ajmone Marsan,
editor,Application and Theory of Petri Nets 1993, volume 691 ofLecture Notes in Computer Science,
pages 453–472. Springer, 1993.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid systems.Theoretical Computer Science, 138:3–34,
1995.

3. R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer Science, 126(2):183–235,
1994.

4. R. Alur and T.A. Henzinger. Logics and models of real time: A survey. In J.W. de Bakker, K. Huizing,
W.-P. de Roever, and G. Rozenberg, editors,Real Time: Theory in Practice, volume 600 ofLecture Notes
in Computer Science, pages 74–106. Springer, 1992.

5. G. Behrmann, A. David, and K. G. Larsen. A tutorial onUPPAAL. In M. Bernardo and F. Corradini,
editors,Proc. Formal Methods for the Design of Real-Time Systems (SFM-RT 2004), volume 3185 of
Lecture Notes in Computer Science, pages 200–236. Springer, 2004. See also UPPAAL home page at
http://www.uppaal.com.

6. M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. Tools and applications II: The IF toolset. In
M. Bernardo and F. Corradini, editors,Proc. Formal Methods for the Design of Real-Time Systems (SFM-
RT 2004), volume 3185 ofLecture Notes in Computer Science, pages 237–267. Springer, 2004.

35

7. R. Bruni and J. Meseguer. Generalized rewrite theories. In J. C. M. Baeten, J. K. Lenstra, J. Parrow,
and G. J. Woeginger, editors,Proc. 30th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2003), volume 2719 ofLecture Notes in Computer Science, pages 252–266. Springer,
2003.

8. E. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, 1999.
9. M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. F. Quesada. Maude: Speci-

fication and programming in rewriting logic.Theoretical Computer Science, 285:187–243, 2002.
10. M. Clavel, F. D́uran, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott.Maude Manual

(Version 2.1.1), April 2005. http://maude.cs.uiuc.edu.
11. M. Clavel and J. Meseguer. Axiomatizing reflective logics and languages. In G. Kiczales, editor,Reflec-

tion’96, pages 263–288, 1996.http://jerry.cs.uiuc.edu/reflection/.
12. M. Clavel and J. Meseguer. Reflection in conditional rewriting logic.Theoretical Computer Science,

285(2):245–288, 2002.
13. H. Ding, C. Zheng, G. Agha, and L. Sha. Automated verification of the dependability of object-oriented

real-time systems. InProc. 9th IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS’03). IEEE Computer Society Press, 2003.

14. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. In F. Gadducci and
U. Montanari, editors,Fourth International Workshop on Rewriting Logic and its Applications, vol-
ume 71 ofElectronic Notes in Theoretical Computer Science. Elsevier, 2002.

15. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid systems.Software
Tools for Technology Transfer, 1:110–122, 1997.

16. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid automata?Journal
of Computer and System Sciences, 57:94–124, 1998.

17. G. J. Holzmann. The model checker SPIN.IEEE Trans. on Software Engineering, 23(5):279–295, 1997.
18. S. Kasera, S. Bhattacharyya, M. Keaton, D. Kiwior, J. Kurose, D. Towsley, and S. Zabele. Scalable fair

reliable multicast using active services.IEEE Network Magazine (Special Issue on Multicast), 14(1):48–
57, 2000.

19. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Int. Journal on Software Tools for
Technology Transfer, 1(1–2):134–152, October 1997.

20. E. Lien. Formal modelling and analysis of the NORM multicast protocol using Real-Time Maude.
Master’s thesis, Department of Linguistics, University of Oslo, 2004.

21. Z. Manna and A. Pnueli. Models for reactivity.Acta Informatica, 30:609–678, 1993.
22. J. Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-

Presicce, editor,Proc. WADT’97, volume 1376 ofLecture Notes in Computer Science, pages 18–61.
Springer, 1998.

23. P. C.Ölveczky. Specification and Analysis of Real-Time and Hybrid Systems in Rewriting Logic. PhD
thesis, University of Bergen, 2000. Available athttp://maude.cs.uiuc.edu/papers.

24. P. C.Ölveczky.Real-Time Maude 2.1 Manual, 2004.http://www.ifi.uio.no/RealTimeMaude/.
25. P. C.Ölveczky and M. Caccamo. Formal simulation and analysis of the CASH scheduling algorithm

in Real-Time Maude. In L. Baresi and R. Heckel, editors,Fundamental Approaches to Software En-
gineering (FASE’06), volume 3922 ofLecture Notes in Computer Science, pages 357–372. Springer,
2006.

26. P. C.Ölveczky, M. Keaton, J. Meseguer, C. Talcott, and S. Zabele. Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. In H. Hussmann, editor,Fundamental
Approaches to Software Engineering (FASE 2001), volume 2029 ofLecture Notes in Computer Science,
pages 333–347. Springer, 2001.

27. P. C.Ölveczky and J. Meseguer. Real-Time Maude: A tool for simulating and analyzing real-time
and hybrid systems. In K. Futatsugi, editor,Third International Workshop on Rewriting Logic and its
Applications, volume 36 ofElectronic Notes in Theoretical Computer Science. Elsevier, 2000.http:
//www.elsevier.nl/locate/entcs/volume36.html.

28. P. C.Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in rewriting logic.Theo-
retical Computer Science, 285:359–405, 2002.

29. P. C.Ölveczky, J. Meseguer, and C. L. Talcott. Specification and analysis of the AER/NCA active
network protocol suite in Real-Time Maude.Formal Methods in System Design, 2006. To appear.

30. P. C.Ölveczky and S. Thorvaldsen. Formal modeling and analysis of wireless sensor network algorithms
in Real-Time Maude. In20th International Parallel and Distributed Processing Symposium (IPDPS
2006). IEEE Computer Society Press, 2006.

31. P. Viry. Equational rules for rewriting logic.Theoretical Computer Science, 285:487–517, 2002.
32. S. Yovine. Kronos: A verification tool for real-time systems.Software Tools for Technology Transfer,

1(1–2):123–133, 1997.

