Computing
Rectangular Dissections

A Case Study in Deriving Functional Programs
from Logical Specifications

March 22, 1996

Peter Padawitz
Fachbereich Informatik
D-44221 Universitat Dortmund, Germany
peter@lsh.informatik.uni-dortmund.de

Abstract

Logical specifications provide an abstract level of programming where programs are given as axioms
defining functions and predicates on constructor-based data types. Axiomatic function definitions are trans-
formed into functional programs, predicate definitions are compiled into logic programs. If functions are to
be implemented as logic programs, they must be flattenedinto predicates. In this paper, we exemplify the
inverse translation: predicates used as multi-valued, nondeterministic, functions are compiled into stream-
generating functions, which enumerate multiple values. Generate-and-test algorithms, usually implemented
as logic programs, can be realized in this way as functional programs. Our case study deals with a con-
figuration problem. Two nondeterministic algorithms that compute rectangular dissections are specified in
the functional-logic language of Ezpander, flattened into Prolog programs, and, alternatively, translated into
ML programs, which produce streams of dissections. Besides the compilation of predicates into stream func-
tions the case study illustrates the use of polymorphic types and higher-order functions for accomplishing
well-structured and reusable software.

Contents

1 Introduction 2
1.1 Multi-valued functions 2
1.2 The stream data type L 4
1.3 OVerview L 6
2 Building and using a specification 6
2.1 A dissection algorithmo 6
2.2 Expander versus Prolog L e 10
2.3 Tests and proofs L 13
2.4 Dimensioning dissections Lo e e 16
3 Deriving functional code 18
3.1 Computing dissections Lo e 18
3.2 Drawing dissections e 21
3.3 Sample dissection streams L 22
4 A shape grammar solution 22
4.1 The specification 23
4.2 The functional program 26
5 Conclusion 28

1 Introduction

1.1 Multi-valued functions

In [Car 93], Carlson presents a program for dissecting rectangles. It is written in a Prolog dialect, called
Grammatica. Besides Prolog constructs Grammatica includes a constraint solver and an evaluator for regular
expressions used to represent nondeterministic functions. We think that - apart from special-purpose constraint
solvers - the logic and functional languages, which are currently in use or under development, are suitable
for both the abstract specification and the efficient implementation of nondeterministic algorithms. A logic
program defining relations without functional dependencies mostly realizes a nondeterministic algorithm or a
multi-valued function. More precisely, suppose a program P defines a relation R with arguments taken from n
data domains Dy,..., D,. R is a subset of the Cartesian product D = Dy x ... x D, and we say that for an
n-tuple d = (dy,...,d,) € D, the atom Rd holds true if d € R, while Rd does not hold if d ¢ R. Pis just a finite

presentation of the possibly infinite set R. The elements of Dy, ..., D, comprise the actual parameters of P.

In functional and imperative programs we distinguish from the beginning between input parameters on the
one hand and output or result parameters on the other hand. This differs from a logic program P. Which sets

among D1, ..., D, are input and which ones are output of P depends on the call of P or the query to R. If, for

instance, R 1s part of a database, D; 1s a set of object identifiers and Ds, ..., D, represent object attributes,
then R(d1,...,dyn) holds true if da, ..., d, denote attribute values of dy. Given a variable z, a typical query to
R has the form

R(dl,...,di_l,l‘,di+1,...,dn). (1)

As acall of P (1) uses Dy, ..., D;_1, Dit1,..., Dy as input domains and D; as an output domain and asks for
d; € D; such that R(dy,...,dy) holds true. Whatever the query means, whatever the actual input and output
parameters of P are, the compiler or interpreter of a logic programming language is a procedure that takes input
and produces output. In contrast to a functional program a logic program P may realize several input-output

modes of the same relation. But each call of P selects one of them.

This view of logic programming motivates the main issue of this paper: a translation of logic into functional
programs. We restrict ourselves to logic programs with fixed input-output modes of the relations they realize.
If the program P implements the relation R, we only admit those queries to R, which use the same domains as
input and output domains, respectively. All admissable queries are of the form (1) with fixed i. The task of P
is to solve (1) in « for all d; € D;,1 < j < n,j # i. Hence the corresponding functional program will include
a procedure for enumerating all solutions of (1). Since there may be infinitely many, we use streams to store
them. Streams are also called lazy lists because they can be used in a program even at places where - at runtime
- most of their elements have not yet been computed. Streams can be used both for don’t-care nondeterminism

(get one solution) and for don’t-know nondeterminism (get allsolutions).

We specify multi-valued functions first in the functional-logic language of our prototyping system Ezpander
(cf. [Pad 94]). The dissection example is used for presenting three ways to evaluate a set F of multi-valued
functions. First, the Expander specification can be excuted directly. Secondly, F' can be flattened into a set of
relations (cf. [BGM 88]) and we come up with a pure logic program written in Prolog (cf. Section 2.2). Thirdly,
we derive a functional program from the specification. As a suitable language for functional programs we use
Standard ML (cf. e.g. [Pau 91]). A little familiarity with Prolog and ML is assumed. Let us start with two

simple examples.

Example 1.1.1 Get an element from a list In Expander a logic program for selecting an element of a list

is given by the axioms of the following Horn clause specification.

GET
preds get 1 2
vars xylL
axioms (1) { get(x::L,x) }
(2) { get(x::L,y) } <== { get(L,y) }
conjects (1) { get([2,4,3,7,9],x) }

preds (functs) precedes the list of relations (functions) to be defined. Each relation or function symbol is
followed by a list of numbers of those axioms, which define the function or relation. Each axiom is a Horn
clause with the implication arrow <== separating its conclusion from its premise. :: is the binary operation,
which appends its first argument to the list given by its second argument.! The conjects part contains sample
queries.? For testing the program for get we ask Expander to solve Conjecture 1 whereafter we obtain the

following output:

M {x=213
2){x=471}

IThe notation of lists and list funcitons is taken over from ML.

?In general, arbitrary Gentzen clauses are allowed here each of which is to be proved or tested by solving its conclusion under
the constraint given by its premise.

3 {x=31%
@DA{x=71%
) {x=91%

The query get([2,4,3,7,9],x) fixes an input-output mode of get. Following the parallel logic language
PARLOG (cf. [Gre 87]) we may denote the mode of get as (L7, z!). 7 stands for input, ! for output parameters.

(L7, 2!) admits only queries of the form get (L,x) where L is a given list and x is a variable to be instantiated.

0

Example 1.1.2 Choose a natural number not less than n

NAT
preds nat 1 2
vars Xy
axioms (1) { nat(x,x) }

(2) { nat(x,y) } <== { nat(s(x),y) }
conjects (1) { nat(5,x) }

s is the unary function mapping a natural number »n to its successor n+1. Conjecture 1 fixes the mode of nat

as (27, y!). Tf requested to solve the formula nat(5,x) Expander responds with the following output:

(1) {x=51%
2) {x=61%
3 {x=71%
(4) {x=81%
) {x=97%
(6) { x=107%

Of course, Expander’s solving procedure is equipped with a maximal number of inference steps that are carried

out for deriving solutions of nat(5,x). The search for solutions finishes as soon as this number is exceeded. []

A functional program derived from a logical specification should compute solutions of each admissable
query. Compilers for logic programs like the Warren machine (cf. [War 83]) achieve this goal by translating the
programs into deterministic assembler code. However, such compilers transform the program independently of
input-output modes and thus do not take into account our assumption that each defined relation has a fixed

input-output mode. Under this assumption we are still faced with two questions:

e Which types are suitable for representing sets of solutions?

e In which order shall solutions be generated?
Ex. 1.1.1 suggests a list representation, but already 1.1.2 shows that list types are not appropriate in general
because the complete solution set of nat(5,x) is infinite. Many applications exclude list representations even

if the solution sets are finite, but very large. Hence ML and other functional languages provide stream types,

which are more suitable for representing both infinite and large finite solution sets.

1.2 The stream data type

Streams are lists whose elements are evaluated only on demand. In ML, we define the type of streams with

elements of type ’a as follows:

infix &

datatype ’a stream = Nil | & of ’a * (unit -> ’a stream)

The type definition determines the objects of the type. A stream is either Nil (the empty stream) or a term of
the form x&s where x 1s an element of type *a and s 1s a function of type unit -> ’a stream. Only the first
element of a nonempty stream is given explicitly. The rest remains unevaluated in s and gets evaluated only if
s is called. Since unit 18 ML’s one-element type, there is only one call of s, namely s(), which returns either

Nil or the second element of the original stream x&s. n elements of x&s are evaluated by the function front:

fun front(s,0) = nil
| front(Nil,n) = nil
| front(x&s,n) = x::front(s(),n-1)

Note the difference beween the empty stream Nil and the empty list, denoted by nil.

The delayed evaluation of streams is taken into account by stream operators such as the concatenation % of
two streams, the filter of a substream and several map functions, which apply a function f to all elements of a

list or stream and produce streams of f-images:

fun Nil % s = s
| (x&s) % s’ =x & (£n()=>s() % s°)

fun MapL(f)(nil) = Nil
| MapL(f)(x::L) = £(x) & (fn()=>MapL(£)(L))

fun MapS(f)(Nil) = Nil
| MapS(f)(x&s) = £(x) % (fn()=>MapS(£)(s()))

fun MapLS(f)(nil) = Nil
| MapLS(f)(x::L) = £(x) % (£n()=>MapLS(£) (L))

Nil
let fun s1() = Filter(p)(s())
in if p(x) then x&sl else si() end

fun Filter(p)(Nil)
| Filter(p) (x&s)

Example 1.2.1 Get an element from a list Using the above stream type, GET (cf. Ex. 1.1.1) is transformed
into the following ML function:

fun get(nil) = Nil
| get(x::L) = x & (fn()=>get(L))

An expression of the form fn()=>e is an object of type unit -> ’a stream. fn()=>e denotes the function
whose call (fn()=>e) () leads to the evaluation of e. Given a list L, the call front(get(L),n) computes the
first n elements of the stream get(L). For instance, the ML system evaluates front(get[2,4,3,7,9],4) to
[2,4,3,7].]

Example 1.2.2 Choose a natural number not less than n Using the stream type, NAT (cf. Ex. 1.1.2) is

transformed into the following ML function:

fun nat(x) = x & (fn() => nat(x+1))

Given a natural number x, the call front(nat(x),n) computes the first n elements of the stream nat(x). For
instance, the ML system evaluates front(nat(5),6) to [6,6,7,8,9,10].]

1.3 Overview

In the following chapter, we specify a new dissection algorithm in terms of an Expander specification DISSECT
(Section 2.1). As mentioned above, Expander provides an integrated functional-logic language. For comparing
such a language with logic languages we translate the specification DISSECT into Prolog and use common tricks
for transforming functional into as logic programs (Section 2.2). Tests and proofs of the algorithm are carried
out directly on the specification level (Section 2.3). The three ways of dimensioning dissections discussed in [Car
93] define several instances of the constraint C' referred to in DISSECT and lead to the extension DISSECT_E
of DISSECT (Section 2.4). In Section 3.1, we derive an ML program from DISSECT_E and apply the above-
sketched schema of building streams of function values. Section 3.2 augments the ML program with a compiler
of dissection streams into PostScript code so that one can visualize the computed streams. Section 3.3 provides

test results.

In Chapter 4 we review the dissection algorithm given in [Car 93], which involves more nondeterminism
than ours. Presented as a finite automaton over a suitable state space, it can be optimized to a great extent.
Nevertheless, Carlson’s algorithm remains ambiguous in the sense that many dissections are computed several
times. Qur algorithm works bottom-up by merging points and thus constructing the rectangles of a dissection.
Carlson’s algorithm works top-down insofar as a given plane is decomposed stepwise into increasingly smaller
rectangles. Consequently, our algorithm is fast for dissections consisting of small rectangles, while Carlson’s is

more efficient if all dissections consist of a few big rectangles.

Both algorithms are developed from an Expander specification down to a functional ML program using the

stream data type defined in Section 1.2.

2 Building and using a specification

2.1 A dissection algorithm

Our algorithm for computing rectangle dissections is derived from the functional program for building list

partitions given in [BW 88], p. 135. As an Expander specification (cf. Section 1) this program reads as follows.

Example 2.1.1 Compute all partitions of a list into sublists

PARTITION
preds part 1 2 3
vars xyLLP
axioms (1) { part([x],[[x1]1) }
(2) { part(x::y::L,[x]::P) } <== { part(y::L,P) }
(3) { part(x::y::L,(x::L°)::P) } <== { part(y::L,L°::P) }
conjects (1) { part([1,2,3,4]1,P) }

The first argument of part is the list L. that shall be splitted into sublists. The second argument yields a
partition of .. We fix the mode of part as (L7, P!). Axiom 1 defines part in the case where L consists of a
single element. Then the only partition of L. has L. as its single element. Axioms 2 and 3 deal with lists starting
with two elements. Here L stands for the rest of the list. Both axioms render part a nondeterministic function

(cf. Section 1). They remove the first element x from the list x::y::L, compute a partition P (resp. L’::P) of the

remaining list y::I. and extend P (L’::P) to a partition of x::y::L. by appending the sublist [x] ([x::L.]) to P. If

asked to solve Conjecture 1, Expander produces the following output:

(1) { P =10[[1,2,3,411 }

(2) { P =10[[1,2,31,0[41] }

(3) {P=10[[1,2]1,[3,411 }

(4) { P =1[[1,2],0[3],04]1] }
() { p=1[[1],[2,3,4]1]1 }

(6) { P =[[11,[2,3]1,[41] }
(ry { P = [[11,[21,[3,41] }
(8) { P =10[I11,I21,[31,[41]1 %

Dissections of a rectangle R are represented as partitions of the list of all points (#,y) covered by R. The
following function interval returns all points of the two-dimensional interval between the least point (21, y1)

and the greatest point (22, y2) of R.

interval(x1,y1)(x2,y2) = ite(gt(yl,y2),nil,row(xl,x2,y1)@interval(x1,s(y1))(x2,y2))
row(x1,x2,y) = ite(gt(x1,x2),nil,(x1,y)::row(s(x1),x2,y))

Expander partially evaluates standard functions and predicates such as ite (if-then-else), gt (greater-than) and
the list concatenation @ (cf. [Pad 94], Section 4). s is the successor function for natural numbers.

A point list L represents a rectangle if L comprises the entire interval I between the least and the greatest
point of L. It is sufficient to check whether I is a subset of L.

rectangle(L) = Sub(interval(minpoint (L)) (maxpoint(L)),L)

minpoint([x]) = x

minpoint ((x1,y1)::y::L) = (min(x1,x2),min(yl,y2)) <== minpoint(y::L) = (x2,y2)
maxpoint([x]) = x
maxpoint ((x1,y1)::y::L) = (max(x1,x2),max(yl,y2)) <== maxpoint(y::L) = (x2,y2)

Sub (set containment) is a standard Boolean function of Expander. minpoint and maxpoint are defined recur-
sively on nonempty point lists. Most programming languages do not provide set operations like Sub. Hence we

replace the above definition of rectangle by an equivalent one, which does not use Sub:

rectangle(L) = eq(length(L), ((x2-x1)+1)*((y2-y1)+1))
<== { minpoint(L) = (x1,yl), maxpoint(L) = (x2,y2) }

A naive generate-and-test program that computes all dissections of a rectangle R would first apply the
partition function part of Ex. 2.1.1 to the point list L representing R and then check whether all point lists of each
generated partition P of L yield rectangles. If so, P is a dissection into rectangles, otherwise P were discarded.
However, this program were only a precise requirement specification of the problem. A design specification
should not only state the problem, but also follow a well-chosen algorithmic paradigm that guides the designer
in deriving (efficient) functional code. Programs cannot be constructed automatically from specifications that
do not say anything about how the specified functions obtain their results or how relational queries get their
solutions. Since Expander involves only a few compilation techniques, Expander specifications cannot have
the most efficient runtime behaviour. Nevertheless, Expander may serve as a prototyping tool for trying out

algorithms by testing them, proving their correctness and relating them to subsequent implementations.

Why would the above-sketched naive generate-and-test program be a bad design? Because only a few
partitions of a point list would pass the rectangle test. A better design goal is a program that produces (almost)
only partitions that pass the test successfully. Of course, this goal cannot be achieved to its full extent. Often
the test candidate must be built up completely before the test can be performed. Even in these cases, however,
there should be a sort of pre-test, which allows us to recognize and eliminate non-rectangle partitions in an

early stage of their construction.

So the crucial question is: How can the definition of part (cf. 2.1.1) be modified such that this function

produces only rectangle dissections?

rectangles(P) = forall(rectangle)(P)
forall(C)(nil) = true
forall(C)(x::L) = C(x) and forall(cC) (L)

Both for gaining more general results from this case study and for keeping to the original problems of [Car
93] we add to rectangles a variable constraint parameter C' and the condition that all admissable partitions
have the same given length n. For this purpose part is augmented by the parameters C' and n. We assume

that C' holds true for all singleton lists and n > 1. Hence Axiom 1 of PARTITION is changed into:

partC(n,C, [x], [[x]])

upb

Iwb

Figure 1.

Partitions of the list x::y::L should be constructed from partitions of the sublist y::L (cf. 2.1.1). If one starts
out from the point list returned by a call of interval, then x and y::L. are located in the interval such as the
square x and the gray plane are located in the grid of Fig. 1. By induction hypothesis, a recursive call of partC

will return a partition P of y::I. that pertains to one of the cases of Fig. 2.

upb upb

Iwb Iwb
Case 1 Case 2

Figure 2.

Since we want to come up with rectangle dissections only, Axiom 2 of PARTITION:

part(x::y::L,[x]::P) <== part(y::L,P)

must be restricted to Case 2. If the singleton [x] were added to P also in Case 1, the dark gray non-rectangle
would become an element of the partition of the entire interval x::y::L.. Hence Axioms 2 and 3 of PARTITION

are changed as follows:

partC(n,C,x::y::L,P) <== { partC(n,C,y::L,Q), glue(n,C,x,Q,P) }
glue(n,C,x,Q,P) <== { rectangles(Q) = true, glueAux(n,C,x,Q,P) }
glue(n,C,x,Q,P) <== { rectangles(Q) = false, search(nonRect}(C,x),nil,x,Q,P) }
nonRect(C, (x,y))(z::L) = C((x,y)::z::L) and eq((s(x),y),z)

partC calls the predicate glue, which first checks whether all elements of Q are rectangles.

upb

Iwb
Figure 3. The partition nonRect

First, suppose that not all elements of QQ are rectangles. Then we are faced with Case 1 above and the
predicate search is called. There is a single admissable partition nonRect of x::y::L., which can be constructed
from Q (cf. Fig. 3). For building nonRect we have to search for the dark gray plane of Fig. 2. If x = (y,7),
this plane is represented by the point list T of Q whose head element is given by (y+1,z). In contrast to the
one-dimensional case (cf. Axiom 3 of PARTTTION), L is not necessarily the head of Q. The search predicate

used above 1s specified nondeterministically as follows:

search(C,Q1,x,L::Q2,(x::L)::(Q10Q2)) <== C(L) = true
search(C,Q1,x,L::Q2,P) <== search(C,L::Q1,x,Q2,P)

search returns a partition as a term of the form (x::L)::(Q1@Q2) only if I satisfies the constraint parameter

C.

upb

Iwb
Figure 4.

Second, suppose that all elements of Q are rectangles. Then we are faced with Case 2 of Fig. 2. The predicate
gluehux is called, which asks whether Q has still less than n elements. If so, [x]::Q is returned as an admissable

partition of x::y::L (cf. Fig. 4).

glueAux(n,C,x,Q,[x]::Q) <== 1length(Q) < n

upb upb

Iwb Iwb
rectA rectR

Figure 5. The partitions rectA and rectR

There are two further admissable partitions of x::y::L. that can be constructed from Q, say rectA and rectR
(cf. Fig. 5). Each of them is an extension of a rectangle dissection of y::L. rectA is obtained by adding x to the
rectangle A above x. rectR results from merging x with the rectangle R right to x. rectR is admissable only if
the rectangle right to x covers a single horizontal line. Hence rectR consists of rectangles, while in rectA, the
rectangle above x becomes a non-rectangle when x is added to it. Using the above-defined predicate search we
look for A and R. Tf x = (y,z), A is the first rectangle of Q whose low-right corner is given by (y,z+1), while R
is the first line of Q whose leftmost point is given by (y+1,2).

glueAux(n,C,x,Q,P) <== search(rectAR(C,x),nil,x,Q,P)

rectAR(C, (x,y))(z::L) = C((x,y)::z::L) and (eq((x,s(y)),lowRightCorner(L)) or
(line(L) and eq((s(x),y),z)))

lowRightCorner(L) = (x1,y2) <== { last(L) = (x1,y1), hd(L) = (x2,y2) }

line(L) = eq(yl,y2) <== { last(L) = (x1,y1), hd(L) = (x2,y2) }

last([x]) = x

last(x::y::L) = last(y::L)

hd(x::L) = x

2.2 Expander versus Prolog

All functions and relations explained in the previous section are combined into the following Expander specifi-

cation:

DISSECT
functs interval 1 row 2 rectangle 3 minpoint 4 5 maxpoint 6 7
rectangles 8 forall 9 10 nonRect 19 rectAR 20 incrX 21
incrY 22 lowRightCorner 23 1line 24 hd 25 1last 26 27
preds partC 11 12 glue 13 14 gluelux 15 16 search 17 18
vars xyx1ylx2y2knCLPQQ1Q2
axioms
(1) { interval(x1l,y1,x2,y2)
= ite(gt(y1,y2),nil,row(x1,x2,yl)0@interval(x1,s(yl),x2,y2)) }
(2) { row(x1,x2,y) = ite(gt(x1,x2),nil, (x1,y): :row(s(x1),x2,y)) }
(3) { rectangle(L) = eq(length(L), ((x2-x1)+1)*((y2-y1)+1)) }
<== { minpoint(L) = (x1,y1), maxpoint(L) = (x2,y2) }
(4) { minpoint([x]) = x }

10

(5) { minpoint((x1,y1)::y::L) = (min(x1,x2),min(yl,y2)) }
<== { minpoint(y::L) = (x2,y2) }

(6) { maxpoint([x]) = x }

(7) { maxpoint((x1,y1)::y::L) = (max(x1,x2),max(yl,y2)) }
<== { maxpoint(y::L) = (x2,y2) }

(8) { rectangles(P) = forall(rectangle)(P) }

(9) { forall(C)(nil) = true }

(10) { forall(C)(x::L) = C(x) and forall(C)(L) }

(11) { partC(n,C,[x],[[x]1]1) }

(12) { partC(n,C,x::y::L,P) } <== { partC(n,C,y::L,Q), glue(n,C,x,Q,P) }

(13) { glue(n,C,x,Q,P) } <== { rectangles(Q) = true, gluehdux(n,C,x,Q,P) }

(14) { glue(n,C,x,Q,P) } <== { rectangles(Q) = false,
search(nonRect(C,x),nil,x,qQ,P) }

(158) { gluehAux(n,C,x,Q,[x]::Q) } <== { length(Q) < n }

(16) { gluehAux(n,C,x,Q,P) } <== { search(rectAR(C,x),nil,x,Q,P) }

(17) { search(C,Q1,x,L::Q2,(x::L)::(Q1eQ2)) } <== { ¢(L) = true }

(18) { search(c,Q1,x,L::Q2,P) } <== { search(C,L::Q1,x,Q2,P) }

(19) { nonRect(C,x)(L) = C(x::L) and eq(incrX(x),hd(L)) }

(20) { rectAR(C,x)(L) = C(x::L) and (eq(incrY(x),lowRightCorner(L)) or

(1ine(L) and eq(incrX(x),hd(L)))) }

(21) { incrX(x,y) = (s(x),y) 2}

(22) { incr¥(x,y) = (x,s(y)) }

(23) { lowRightCorner(L) = (x1,y2) } <== { last(L) = (x1,y1), hd(L) = (x2,y2) }

(24) { line(L) = eq(yl,y2) } <== { last(L) = (x1,y1), hd(L) = (x2,y2) }

(25) { hd(x::L) = x }

(26) { last([x]) = x }

(27) { last(x::y::L) = last(y::L) }

Axioms 11 to 18 specify our dissection algorithm. The axioms for partC and glue are unambiguous in the
sense that at most one of them is applicable to a given atomic formula. Nevertheless, these relations cannot be
defined as functions because they depend on the relations glueAux and search whose axioms are ambiguous.
Hence partC and glue, which use glueAux and search, are also multi-valued functions. All other operators of

DISSECT are deterministic and are thus defined as single-valued functions.

Even that cannot be maintained if we translate DISSECT into a pure logic program where all functions
must be flattened into relations. A function f with n arguments becomes a relation R with n + 1 parameters
such that for all suitable values ay,... an, f(a1,...,a,) = b holds true iff R(a,...,a,,b) is valid. A Boolean
function f such as rectangle, rectangles, forall, nonRect, rectAR, line or lowRightCorner can be

translated into a relation R more directly:

flat,...,an) =true < Ray,...,an).

How do we translate an equation f(ay,...,a,) = false? We may use Prolog’s definition of negation, apply

the cut operator !:

not(R) :- R, !, fail.
not(_).

11

and express f(ai,...,a,) = false as not(R(a1,...,a,)). If f(ay,...,a,) occurs in a conditional Boolean

expression as in the equation ¢t = ite(f(a1,...,an), u,v), it is compiled as follows:

t :- R(al,...,an), !, u.

t - v.

A further adaption to Prolog concerns higher-order functions. The full polymorphism of a higher-order
function f like forall (cf. DISSECT) cannot be maintained in the logic program. The Prolog definition of f
is restricted to the actual function parameters occurring in the program. For instance, Axiom 8 of DISSECT is

translated as follows:

rectangles(P) :- forall(rectangle,P).
forall(_,[1).
forall(C,[X|L]) :- wvalid(C,X), forall(C,L).

Here rectangle is just a constant and not a predicate defined in the program. We must define the predicate

valid such that the actual constant parameter rectangle is related back to the predicate rectangle:
valid(rectangle,L) :- rectangle(L).
The other actual parameters of valid are handled analogously:

valid(nonRect(C,X),L) :- valid(C,[XIL]), incrX(X,I), hd(L,I).
valid(rectAR(C,X),L) :- valid(C,[X|L]), incrY(X,I), lowRightCorner(L,I).
valid(rectAR(C,X),L) :- valid(C,[XIL]), line(L), incrX(X,I), hd(L,I).

By introducing cuts for conditionals as proposed above the rest of DISSECT can be translated schematically

into Prolog clauses:

interval((_,Y1),(_,¥2),[0) :- Y1 > Y2, !.
interval((X1,Y1),(X2,Y2),I) :- row(X1,X2,Y1,R), Y is Yi+1,
interval((X1,Y),(X2,Y2),J), append(R,J,I).
row(X1,X2,_,[1) :- X1 > X2, !.
row(X1,X2,Y,[(X1,Y)IR]) :- X is X1+1, row(X,X2,Y,R).
rectangle([]).
rectangle(L) :- minpoint(L,(X1,Y1)), maxpoint(L, (X2,Y2)),
A is ((X2-X1)+1)*((Y2-Y1)+1), length(L,A).
minpoint ([(X1,Y1)],(X1,Y1)) :- !.
minpoint ([(X1,Y1)[L],(X,Y)) :- minpoint(L, (X2,Y2)),
min(X1,X2,X), min(Y1,Y2,Y).
maxpoint ([(X1,Y1)],(X1,Y1)) - !.
maxpoint ([(X1,Y1)[L],(X,Y)) :- maxpoint(L, (X2,Y2)),
max(X1,X2,X), max(Y1,Y2,Y).
min(X,Y,X) (- X =< Y, !.
min(_,Y,Y).
max(X,Y,X) (- X >=Y, !.
max(_,Y,Y).

partC(_,_,[X1,[[X1]).

12

partC(N,C, [XIL],P) :- partC(N,C,L,Q), glue(N,C,X,Q,P).
glue(N,C,X,Q,P) :- rectangles(Q), !, glueAux(N,C,X,Q,P).
glue(_,C,X,Q,P) :- search(nonRect(C,X),[]1,X,Q,P).
glueAux(N,_,X,Q,[[X]11Q]) :- length(Q,A), A < N.

gluedux(_,C,X,Q,P) :- search(rectAR(C,X),[]1,X,Q,P).
search(C,Q1,X, [L1Q2], [[XILI|P]) :- valid(C,[XIL]), append(Q1,Q2,P).
search(cC,Q1,X,[L[Q2],P) :- search(C,[L|Q1],X,Q2,P).

incrX((X,Y),(X1,Y)) :— X1 is X+1.

incrY((X,Y),(X,Y1)) :— Y1 is Y+1.
lowRightCorner(L, (X,Y)) :- last(L,(X,_)), hd(L,(_,Y)).
line(L) :- last(L,(_,Y)), hd(L,(_,¥)).

hd([X]_1,X).

last([X],X) :- !'.

last([_IL],X) :- last(L,X).

2.3 Tests and proofs

Conjecture 1 of the following extension of PARTITION and DISSECT (cf. 2.1.1 and 2.2) provides a test case,
while Conjectures 2 and 3 state the correctness of partC and part, respectively. Two auxiliary functions occur
in these conjectures: flatten concatenates the elements of a list of lists into a single list. isPart0f(P,L)

checks whether the flattened version of P has the same elements as L.

DISSECTcheck
base PARTITION DISSECT
functs isPartOf 1 flatten 2 3 >> 4

vars IP

axioms

(1) { isPart0f(P,L) = eq(set(flatten(P)),set(L)) }

(2) { flatten(nil) = nil }

(3) { flatten(L::P) = Leflatten(P) }

(4) { (x::L,P) >> (L,P’) = true }

theorems

(1) { x::L = [x]eL }

(2) { x::(LeL’) = (x::L)eL’ }

conjects

(1) { I = interval(1,1)(3,3), partC(5,fn(L)(leq(length(L),2)),I,P),

b = leq(length(P),5) and rectangles(P) and isPartOf(P,I) }

(2) { leq(length(P),n) and rectangles(P) and isPartOf(P,I) = true }
<== { partC(n,C,L,P) }

(3) { L = flatten(P) } <== { part(L,P) }

set is a standard function, which makes a list into a set. Consequently, the equation set(L1) = set(Lz) holds

true iff Ly and Lo have the same elements. £n(L) (e) denotes the function defined by the A-expression AL.e.

Here 1s part of the Expander output that results from requesting a solution of Conjecture 1:

initial conclusion:
(1) { I = interval(1,1)(3,3), partC(5,fn(L)(leq(length(L),2)),I,P),

13

b = leq(length(P),5) and (rectangles(P) and isPartOf(P,I)) }

conclusion:

(1) {1 =[(1,1),(2,1),(3,1),(1,2),(2,2),(3,2),(1,3),(2,3),(3,3)]1,
P = [[(1,1)],0(2,1),(3,1)],[(1,2),(1,3)],[(2,2),(3,2)]1,[(2,3),(3,3)]1],
b = true }

) { ...}

3 { ...}

@ { ...}

;) { ...}

solved goals: 1

narrowed goals have been deleted

The conclusion implies the initial conclusion from which it 1s derived by backward resolution and paramodulation
(cf. [Pad 95]). Each conclusion and each premise (see below) is a goal set, i.e. a digjunction of goals where a
goal is a conjunction (written as a numbered set) of atomic formulas. Goal 1 of the above conclusion represents

a solution. Further solutions are derivable from Goals 2 to 5.

Expander does not only support tests of a specification. Conjectures usually represent correctness conditions
on functions or relations. While the above solution of Conjecture 1 only implies that the first partition gen-
erated by partC fulfils all requirements, Conjecture 2 means that all partitions produced by partC satisfy the
requirements. Expander provides inference rules for constructing proofs of such correctness conditions. Instead
of presenting the long verification of partC (Conjecture 2), we restrict ourselves to the correctness of part
(Conjecture 3). Since the fundamental algorithmic idea of part is also involved in partC, Conjecture 3 captures

a basic aspect of Conjecture 2.

Using Expander, a proof of a Gentzen clause gs <= hs such as Conjectures 2 and 3 1s carried out interactively.

One starts with singleton lists front = [¢gs] and rear = [hs] and extends them stepwise into lists
front = [g¢s,gs1,...,9sk] and rear = [hs, hsy,... hs,],

consisting of successively inferred goal sets. front is a backward proof of the clause gs < gsi consisting of
backward resolution and paramodulation steps (see above). rear is a forward proof of hs, < hs consisting
of forward resolution and paramodulation steps (cf. [Pad 95]). The proof of gs <= hs is complete if there are
k,n > 1 such that hs, subsumes gsi. This syntactical condition implies that gsp <= hsy is inductively valid (cf.
[Pad 94], Section 3.5). From the validity of ¢gs <= gsi, gsk < hs, and hs, < hs one concludes that the original

conjecture ¢gs <= hs holds true.

The (inductive) proof of Conjecture 3 uses Theorems 1 and 2 and the Boolean function >> as lemmas and

the induction ordering, respectively:

initial conclusion:

(1) { L = flatten(P) }
initial premise:

(1) { part(L,P) }

atom 1 in premise goal 1 replaced with axiom PARTITION1
atom 1 in premise goal 1 replaced with axiom PARTITION2
atom 1 in premise goal 1 replaced with axiom PARTITION3

premise:
(1) {L=x::(y::L1), P = (x::L°)::P1, part(y::L1,L°::P1) }
(2) {L=x::(y::L1), P = ([x])::P1, part(y::L1,P1) }

14

3){L=1>[x], p=[[x]]732

atom 3 in premise goal 1 replaced with conjecture 3
premise:
(1) { (L,P)>>(y::L1,L?::P1) = false, L = x::(y::L1), P = (x::L°)::P1, part(y::L1,L°::P1) }
(2) { y::L1 = flatten(L’::P1), L = x::(y::L1), P = (x::L°)::P1 }
(3) {L=x::(y::L1), P = ([x])::P1, part(y::L1,P1) }
(4) {L=10[x], p=[[x]] 2}

term at position 1 1 in premise goal 1 replaced with axiom DISSECTcheck4
premise:

(1) { y::L1 = flatten(L’::P1), L = x::(y::L1), P = (x::L°)::P1 }

(2) {L=x::(y::L1), P = ([x])::P1, part(y::L1,P1) }

3){L=10«A, p=[[x11}

w

atom 3 in premise goal 2 replaced with conjecture
premise:
(1) { y::L1 = flatten(L’::P1), L = x::(y::L1), P = (x::L°)::P1 }
(2) { (L,P)>>(y::L1,P1) = false, L = x::(y::L1), P = ([x])::P1, part(y::L1,P1) }
(3) { y::L1 = flatten(P1), L = x::(y::L1), P = ([x])::P1 }
(4) {L=10[x], p=[[x]] 2}

term at position 1 1 in premise goal 2 replaced with axiom DISSECTcheck4
premise:
(1) {y::11
(2) { y::L1 = flatten(P1), L = x::(y::L1), P
3){L=10«A, p=[[x11}

flatten(L’::P1), L = x::(y::L1), P = (x::L°)::P1 }
([x1)::P1 %}

term at position 2 2 2 replaced with equation 1 in premise goal 1

premise:
(1) { y::L1 = flatten(L’::P1), x::flatten(L’::P1) = L, P = (x::L°)::P1 }
(2) { y::L1 = flatten(P1), L = x::(y::L1), P = ([x])::P1 }

3){L=1>[x], p=[[x]]732

term at position 2 2 2 replaced with equation 1 in premise goal 2

premise:
(1) { y::L1 = flatten(L’::P1), x::flatten(L’::P1) = L, P = (x::L°)::P1 }
(2) { y::L1 = flatten(P1), x::flatten(P1) = L, P = ([x])::P1 }

3){L=1>[x], p=[[x]]732

term at position 2 1 2 in premise goal 1 replaced with axiom DISSECTcheck3
premise:
(1) { x::(L’eflatten(P1)) = L, y::L1 = flatten(L’::P1), P = (x::L°)::P1 }
(2) { y::L1 = flatten(P1), x::flatten(P1) = L, P = ([x])::P1 }
3) {L=1>0[x2, P=[[xI]}

term at position 1 1 in premise goal 1 replaced with theorem 2

premise:

15

(1) { (x::L’)eflatten(P1l) = L, y::L1 = flatten(L’::P1), P = (x::L°)::P1 }
(2) { y::L1 = flatten(P1), x::flatten(P1) = L, P = ([x])::P1 }
3){L=1[x], P=[[x]]1%}

term at position 2 1 in premise goal 2 replaced with theorem 1

premise:
(1) { (x::L’)eflatten(P1l) = L, y::L1 = flatten(L’::P1), P = (x::L°)::P1 }
(2) { ([x])eflatten(P1) = L, y::L1 = flatten(P1), P = ([x])::P1}
3) {L=1>0[x2, P=[[xI]}

term at position 1 2 in conclusion goal 1 replaced with axiom DISSECTcheck2
term at position 1 2 in conclusion goal 1 replaced with axiom DISSECTcheck3
conclusion:

(1) { P = L1::P1, Lieflatten(P1) = L }

(2) { P = nil, L =nil }

term at position 2 1 2 in conclusion goal 1 replaced with axiom DISSECTcheck2
term at position 2 1 2 in conclusion goal 1 replaced with axiom DISSECTcheck3
conclusion:

(1) { P = L1::P1, Lieflatten(P1) = L }

(2) { L1e(L20flatten(P1)) = L, P = L1::(L2::P1) }

(3) {pP=1[L]11%

(4) { P = nil, L = nil }

term at position 2 2 1 replaced with equation 1 in premise goal 3

premise:
(1) { (x::L’)eflatten(P1l) = L, y::L1 = flatten(L’::P1), P = (x::L°)::P1 }
(2) { ([x])eflatten(P1) = L, y::L1 = flatten(P1), P = ([x])::P1}
(3 {L=1[0x1, [LI=P1}

conjecture 3 has been proved

2.4 Dimensioning dissections

[Car 93] handles three ways of dimensioning dissections: dimensioning by area, dimensioning by brick size
and dimensioning by proportion. In all three cases the generated dissections consist of the same number n of
rectangles. For dimensioning by area, n must divide z*y and the quotient a is the area covered by each rectangle
of the dissection. For dimensioning by brick size, a is passed as a parameter, n is defined as [(2 * y)/a] and
each rectangle of the dissection covers at most a points.®. In both cases the desired relationship between n and

a is achieved by setting the constraint C' on each generated point list L to: length(L) < a (cf. 2.1).

Although glueAux takes n only as an upper bound (cf. Axiom 15 of DISSECT), all dissections returned by
partC consist of exactly & = n rectangles. Others would lead to a contradiction: If k < n, then, in the case of

dimensioning by area, a = (2 x y)/n would entail

exy<ksxa=kx((xxy)/n)<nx*x((x+xy)/n) =1xx*y,

3For the sake of simplicity and since we restrict ourselves to integer arithmetic, these definitions differ slightly from [Car93]

16

and, in the case of dimensioning by brick size, n = [(z * y)/a] would imply
zxy+r<kxa+r<nxa=[(exy)/alxa<z*rxy+r

for some r < a.

For dimensioning by proportion, both n and a length-to-height ratio p for each rectangle are passed as
parameters. The constraint C' on generated point lists is set to true because each dissection can be checked for

admissability only after its construction has been completed.

DISSECT_E
base DISSECT
functs makeRect 1 1leqArea 2 proportioned 3
preds areaDissect 4 brickDissect 5 propDissect 6

vars afplhlI

axioms
(1) { makeRect(L) = rect(x1l,yl,x2-x1,y2-y1) }
<== { (s(x1),s(y1)) = minpoint(L), (x2,y2) = maxpoint(L) }
(2) { leqArea(a) (L) = leq(length(L),a) }
(3) { proportioned(p) (L) = eq(p*1l,h) or eq(p*h,1) }
<== { makeRect(L) = rect(x,y,1,h)) }
(4) { areaDissect(x,y,n,P) }
<== { I = interval(l,1)(x,y), a = (x*y)/n, partC(n,leqhrea(a),I,P) }
(5) { brickDissect(x,y,a,P) }
<== { I = interval(1,1)(x,y), n = (x*y)//a, partC(n,leqhrea(a),I,P) }
(8) { propDissect(x,y,n,p,P) }

<== { I = interval(l,1)(x,y), partC(n,fn(L)(true),I,P),
length(P) = n, forall(proportioned(p))(P) = true }

// denotes division followed by the ceiling operator [—]. makeRect transforms a point list L into a term of
the form rect(z,y,l,h) where (2 + 1,y + 1) is the least point, [is the length and & is the height of the rectangle
represented by L. DISSECT_E is translated as follows into an extension of the Prolog program given in Section
2.2:

makeRect (L,rect(X,Y,Length,Height)) :- minpoint(L,(X1,Y1)),
maxpoint (L, (X2,Y2)),
X is X1-1, Y is Yi-1,
Length is X2-X, Height is Y2-Y.

areaDissect(X,Y,N,P) :- interval((1,1),(X,Y),I), A is (X*Y)//N, partC(N,leq(4),I,P).
brickDissect(X,Y,A,P) :—- interval((1,1),(X,Y),I), D is X#*Y, divC(D,A,N),
partC(N,leq(A),I,P).
divCc(X,Y,Q) :- R is X mod Y, R =0, !, Q is X//Y.
divC(X,Y,Q) :- Q is (X//Y)+1.
propDissect(X,Y,N,A,P) :- interval((1,1),(X,Y),I), partC(N,true,I,P),
length(P,N), forall(proportioned(4),P).

valid(true,_).

valid(leq(A),L) :- length(L,Length), Length =< A.
valid(proportioned(A),L) :- makeRect(L,rect(X,Y,Length,Height)),

17

(Height is AxLength; Length is A#Height).

Again we had to replace actual function parameters (true, leq(A) and proportioned(4)) of a higher-order

function (valid) by homonymous constants. When the above program is combined with the one given in Section

2.2, the clauses for valid must be grouped together. Otherwise Prolog treats them as separate definitions.

3 Deriving functional code

3.1 Computing dissections

The deterministic parts of our dissection algorithm, i.e. Axioms 1 to 10 and 19 to 27 of DISSECT (cf. 2.2), are

turned directly into ML function definitions. In particular, the premises of Axioms 3, 5, 7, 23 and 24 become

conditional expressions or local definitions.

fun interval(x1l,yl,x2,y2) = if y1 > y2 then nil

and

fun

and

and

fun

and

fun

and

and

and

and

and

and

row(x1,x2,y)

rectangle(L)

else row(x1,x2,yl)@interval(xl,y1+1,x2,y2)

if x1 > x2 then nil else (x1,y)::row(xi+1,x2,y)

let val (x1,y1) = minpoint(L)
val (x2,y2) = maxpoint(L)
in length(L) = ((x2-x1)+1)*((y2-y1)+1) end

minpoint[x] = x

minpoint ((x1,y1)::L)

let val (x2,y2) = minpoint(L)
in (min(x1,x2),min(y1,y2)) end

maxpoint[x] = x

maxpoint ((x1,y1)::L)

let val (x2,y2) = maxpoint(L)
in (max(x1,x2),max(y1,y2)) end

rectangles(P) = forall(rectangle)(P)

forall _

(nil) = true

forall(C)(x::L) = C(x) andalso forall(C)(L)

nonRect(C,x) (L) = C(x::L) andalso incrX(x) = hd(L)
rectAR(C,x) (L) = C(x::L) andalso (incrY(x) = lowRightCorner(L) orelse
(line(L) andalso incrX(x) = hd(L)))

(x+1,y)
(x,y+1)
lowRightCorner(L) = let val (x,_) = last(L)

incrX(x,y)

incrY(x,y)

val (_,y) = hd(L) in (x,y) end
line(L) = let val (x,_) = last(L)
val (y,_) = hd(L) in x = y end
last[x] = x

last(x::L) = last(L)

Tt remains to translate the relations partC, glue, glueAux and search (cf. 2.1). Each of them is used with

a fixed input-output mode. The last argument takes the values of the associated multi-valued function. Hence

18

we proceed as in Examples 1.5 and 1.6 and store these values into streams.* We recapitulate Axioms 11 to 18

of DISSECT, which define the above relations (cf. 2.1):

(11) { partC(n,C,[x],[[x]1])

(12) { partC(n,C,x::y::L,P) } <== { partC(n,C,y::L,Q), glue(n,C,x,Q,P) }

(13) { glue(n,C,x,Q,P) } <== { rectangles(Q) = true, gluehux(n,C,x,Q,P) }

(14) { glue(n,C,x,Q,P) } <== { rectangles(Q) = false,
search(nonRect(C,x),nil,x,qQ,P) }

(18) { gluehAux(n,C,x,Q,[x]1::Q) } <== { length(Q) < n }

(16) { gluehAux(n,C,x,Q,P) } <== { search(rectAR(C,x),nil,x,Q,P) }

(17) { search(C,Q1,x,L::Q2,(x::L)::(Q1eQ2)) } <== { C¢(L) = true 7}

(18) { search(c,Q1,x,L::Q2,P) } <== { search(C,L::Q1,x,Q2,P) }

When compiling multi-valued functions, i.e. relations with a fixed input-output mode, into single-valued
stream functions, we distinguish between linear and nonlinear nondeterminism. The above definition of partC
is nonlinearly nondeterministic because an expansion of Axiom 12 iteratively splits into several branches, one for
each value of Q that is produced by a recursive call of partC and then passed over to glue. Such an “expansion
tree” must be linearized by an equivalent stream function. Hence we need the higher-order function Maps (cf.
Section 1.2), which first applies a multi-valued function to stream elements and then concatenates the elements
of the resulting stream of streams into a single stream. With the help of MapS Axioms 11 and 12 are translated

into the following function definition:

fun partC(n,C,[x]) = [[x]] & (£n()=>Nil)
| partC(n,C,x::L) = MapS(glue(n,C,x))(partC(n,C,L))

Each recursive call of partC generates a stream each of whose elements is mapped by glue(n,C,x) to a

substream. MapS ”flattens” all substreams into a single stream.

The definitions of glue and glueAux and search, given by Axioms 13 to 18, are linearly nondeterministic
because each of them involves only one recursive call of a multi-valued function. Here we distinguish between
ambiguously defined functions like glueAux and search (cf. Axioms 15 to 18) and wunambiguously defined

functions like glue (cf. Axioms 13 and 14). The latter can be translated easily with the help of a conditional:

and glue(n,C,x)(Q) = if rectangles(Q) then gluehAux(n,C,x,Q)

else search(1l, nonRect(C,x),nil,x,Q)

Ambiguous definitions, on the other hand, include several axioms that pertain to the same function call.
Expressed in terms of the underlying inference mechanism, the same call resolves upon several axioms. Ambigu-
ous definitions are the main feature of a logic language for implementing nondeterminism. They provide the
choice points where the above-mentioned expansion tree branches out and leads to several values of the same
call. In a functional language an ambiguous definition must be splitted into disjoint cases such that, for each
argument, the stream of all corresponding values is returned even if they are distributed over several axioms of

the specification.

and gluehAux(n,C,x,Q) = if length(Q) < n
then ([x]::Q)&(fn()=>search(2,rectAR(C,x),nil,x,Q))
else search(2,rectAR(C,x),nil,x,Q)

4[L.LPP93] and [Pad93] present another case study where programming with streams plays a crucial role.

19

and search(2,C,Q1,x,L::Q2) = if C(L)
then ((x::L)::(Q1eQ2))&(fn()=>search(1,C,L::Q1,x,Q2))
else search(2,C,L::Q1,x,Q2)
| search(1,C,Q1,x,L::Q2) = if C(L) then ((x::L)::(Q1@Q2))&(fn()=>Nil)
else search(1,C,L::Q1,x,Q2)

| search _ = Nil

The first parameter of search indicates how many values the respective call of this function has to deliver.

DISSECT_E (cf. 2.4) also falls into a deterministic part (Axioms 1 to 3), which can be translated directly
into ML function definitions, and multi-valued function definitions (Axioms 4 to 6), which must be simulated

by stream functions. Expander’s standard constructor rect corresponds to an ML datatype:
datatype Rect = rect of int*int*int*int
Axioms 1 to 3 are compiled as follows:

fun makeRect(L) = let val (x1,y1) = minpoint(L)
val (x2,y2)
val (x,y) = (x1-1,y1-1)
in rect(x,y,x2-x,y2-y) end
fun legArea(a)(L) = length(L) <= a
fun proportioned(p)(L) = let val rect(x,y,l,h) = makeRect(L)

maxpoint (L)

in p*1l = h orelse p*h = 1 end

With the help of the stream function Filter (cf. 1.2) the translation of Axioms 4 to 6 is straightforward:

fun areaDissect(x,y,n) = let val I = interval(i,1,x,y)

val a = (x*y) div n
val s = partC(n,leqArea(a),I)

in (s,x+1,y+1) end

fun brickDissect(x,y,a) = let val I = interval(1,1,x,y)

val n = ceiling(real(x*y)/real(a))
val s = partC(n,leqArea(a),I)
in (s,x+1,y+1) end

fun propDissect(x,y,n,p) = let val I = interval(l,1,x,y)
partC(n,fn(L)=>true,I)
fun C(P) = length(P)=n andalso
forall(proportioned(p)) (P)
val s = Filter(C)(s)
in (s,x+1,y+1) end

val s

Since we need to know the size (z + 1,y + 1) of the plane to be dissected when printing a dissection,
areaDissect, brickDissect and propDissect return this value in addition to the stream expression s. The
elements of s are not yet constructed when one of the above functions is called. Dissections are computed only
when the procedure next is called, which shifts the stream pointer s_ptr to further elements of s. The structure

of next is as follows. More details are given in Section 3.2.

20

val s_ptr = ref(Nil:(int*int) list list stream)
val dissSize = ref(0,0)
val boxPos = ref(0,0)
val file = ref(std_out)
fun next(0) = finish()
| next(n) = case !s_ptr of Nil => finish()
| P&s => ... s_ptr:= s(); next(n-1) end
and finish() = (file:= open_out"DISSECT.eps";...;close_out(!file))

3.2 Drawing dissections

Expander provides a simple ASCII output of rectangle dissections. This may be sufficient for testing and
verifying the specification. For running the functional program a nicer output is desirable. To this end we

define a simple compiler of dissection streams into PostScript code:

val maxlen = 35 and space = 15
fun start(h,code) = "%!'PS-Adobe-3.0 EPSF-3.0\n""
"%%BoundingBox: 5 5 500 "°
makestring(h*space+5)~"\n""
"2 setlinewidth 1 setlinejoin\n""
makestring(space) " "“makestring(space) " translate\n""

code”'"showpage"

fun draw(nil) = ""
| draw(rect(x,y,1,h)::rs) = let val numbers = fold(widen) [x,y,1,h]""
in "0.7 setgray '"“numbers”'"rectfill\n""
"0 setgray '"“numbers”'rectstroke\n""

draw(rs) end

and widen(x:int,str) = if x >= O then makestring(x*space)™" "“str

else "-""makestring(~x*space)”'" "“str

fun translate(l,h,x) = let val (1,h) = if x+1+1 <= maxlen then (1,0) else (1-x,h)

in widen(l,widen(h,"translate\n")) end

All these functions compute PostScript code, which is assembled as soon as the stream pointer s_ptr is
shifted by calling next (cf. 3.1). For this purpose next is equipped with suitable calls of start, draw and

translate

val code = ref""

fun init(s) = let val (s,x,y) = s

in s_ptr:= s; dissSize:= (x,y); boxPos:= (x,y); code:= "" end

finish()

case !s_ptr of Nil => finish()

| P&s => let val (1,h)

val (x,y) = !'boxPos
val (x1,y1) = (x+1,y+h)
val rs = map(makeRect) (P)

fun next(0)

| next(n)

!dissSize

21

in code:= !'code~draw(rs) translate(l,h,x);
boxPos:= (if x1+1 <= maxlen then (x1,y)
else (1,y1));
s_ptr:= s(); next(n-1) end
and finish() = (file:= open_out"DISSECT.eps";
output (!file,start (#2(!boxPos), !code));close_out(!file))

3.3 Sample dissection streams

S o
EERE ===
TenEne Eids
| mESELE
MM
EHiEem o
TE|TESEE
HHE IEI=AE
HEE
THDED WA

Figure 6. init (areaDissect(6,4,6)); next(40); init(areaDissect(6,7,7)); next(40);

HEEHE @EEE
stunnss HEEDREHE

Figure 7. init (brickDissect(3,3,2)); next(20); init(propDissect(3,4,6,2)); next(20);

4 A shape grammar solution

The dissection algorithm partC presented in 2.1 can be regarded as a specialization of part (cf. 2.1.1) to 2-
dimensional intervals. The core of the algorithm is given by Axioms 11 to 18 of the specification DISSECT
(cf. 2.2). Since the basic algorithmic idea of partC is already involved in part, we could make plausible
the correctness of partC by presenting a correctness proof of part (cf. 2.3). Furthermore, the translation of
DISSECT into functional code was easy because only Axioms 11 and 12 define a nonlinearly nondeterministic
function, while the rest of DISSECT specifies deterministic or linearly nondeterministic functions (cf. 3.1). The
performance of the program is quite good, although its execution time increases with the size of the plane to
be dissected and the number of admissable dissections. Large unevaluated stream expressions lead to a space
problem. Although much effort is currently invested into efficient compilers for functional languages, the storage
management does not yet solve all the space problems caused by the free use of functional types. So far the

only way to achieve greater efficiency is to think about alternative algorithms.

22

4.1 The specification

To this end we review Carlson’s paper [Car 93] that initiated our treatment of the whole subject. His dissection
algorithm 1s based on a shape grammar, which defines transitions between particular dissection states. When
implementing the rules in his logic language Grammatica (cf. 1.1) Carlson seems to accept a number of ambi-
guities as to which rules are applicable to which rectangles of a given dissection. Moreover, dissections seem
to be regarded as sets rather than lists of rectangles because two of the grammar rules transform several, not

necessarily adjacent, rectangles simultaneously.

R

Figure 8. The structure of a dissection state

A closer look at the grammar reveals that certain ambiguities can be avoided if a dissection state is not
defined as the set D of all rectangles comprising a dissection, but as a triple (R, A, I) of disjoint rectangle sets.
R consists of all rectangles adjacent to the bottom line of the plane to be dissected, A consists of all rectangles
adjacent to at the left line (except those of R) and I consists of the rest, i.e. all inner rectangles: T = D—(RUA)

(cf. Fig. 8). Based on these dissection states the grammar reads as in Fig. 9.

split
A 1 A I
——
verticall
R Y R
split
A 1 A I
—
horizontally
R R
join
A I A I
—
horizontally
R R
join
A I A I
B
vertically
R R

Figure 9. A shape grammar for generating dissections

The gray rectangle denotes the head element r of R. split vertically divides r into two rectangles 71 and r,,
which become the first two elements of R. split horizontally divides r into two rectangles r1 and ry such that ry
becomes the head element of R and ry becomes the head element of A. join horizontally merges r with a part
of the second element 7’ of R such that the rest of ' becomes a new element of I. join vertically merges the r

with a part of the head element a of A such that the rest of a becomes a further element of 1.

23

split split
E— —_—
horizontally vertically

split l vertically

split join
-— -—
horizontally vertically

join l horizontally

u

Figure 10. A derivation of a dissection

Example 4.1.1 The transition sequence of Fig. 10 leads to a solution of the query brickDissect(3,3,2,P) (cf.
2.4). Starting out from the initial state, given by a one-element dissection, the final state, given by a five-element

dissection, 1s obtained after six rule applications. []

Note that the shape grammar of Fig. 9 is ambiguous: the same dissection may be obtained from different
transition sequences. Hence, in contrast to the dissection algorithm of 2.1, identical dissections may occur in
the set of dissections derived by the grammar. Termination is obvious for the algorithm of Section 2.1. The
new algorithm terminates because each grammar rule decreases the state (R, A, I) it is applied to with respect

to the following well-founded ordering >>. Let a be the area of the original plane.

(R,AT) >> (RVA T <=4ey (a—length(I),a —length(RQA)) > (a — length(I'),a — length(R'@A")).

Split steps increase R or A, but leave I unchanged. A join step decreases R or A and increases I by one
element. Completeness in the sense that all dissections of a given rectangle are computed is also obvious for the
algorithm of Section 2.1. 7, the head element of R (see above), has one of the neighbourhoods of Fig. 11. The

—|—|H iw

Case 1 Case 2 Case 3 Case 4

Figure 11.

last step of a derivation into a state of Case 1 or 2 (Case 3 or 4) is a split (join) step. Hence the preceding state
is greater w.r.t. >>. Since >> has not only a lower, but also an upper bound, namely (a, a), we conclude by

induction hypothesis that all dissections of a given plane are derivable with the grammar of Fig. 9.

In contrast to the rectangles of R or A an inner rectangle ¢ is never changed once it has been generated.
Hence i can be checked for a given constraint C' immediately after ¢ has been created. The number of possible
split rule applications to a state (R, A, I) depends on the area of the head element r of R. If r covers more than
two points, then (R, A, T) has at least two split rule redices. However, each state admits at most one join rule
application. For applying join horizontally the height of the second element of R must exceed the height of r.
For applying join vertically the length of the head element of A must exceed the length of ». Look at the two

join rules and you will see that their applicability conditions cannot hold simultaneously. Hence we specify the

24

split rules as a relation on states and the join rules as a function from states to states.

split((r::R,A,I), (rect(0,0,1’,h)::rect(1l’,0,s(s(1))-1’,h)::R,A,I))
<== { r = rect(0,0,s(s(1)),h), 1’ isIn (1,s(1)) }

split((r::R,A,I), (rect(0,0,1,h’)::R,rect(0,h’,1,s(s(h))-h’)::4,I))
<== { r = rect(0,0,1,s(s(h))), h’ isIn (1,s(h)) }

x isIn (x,z)

x isIn (y,z) <== { y < z, x isIn (s(y),z) %}

join(rect(0,0,1,h)::rect(x,0,1’,h’)::R,A,I)
= (rect(0,0,1+1’,h)::R,A,rect(x,h,1’,h’-h)::I) <== h’ > h

join(rect(0,0,1,h)::R,rect(0,y,1’,h?)::4,I)
= (rect(0,0,1,h+h’)::R,A,rect(1l,y,1°-1,h’)::I) <== 1’ > 1

In other words, split and join define the transition steps of a finite automaton with an initial state of the

form (R, A, I) = ([r], nil, nil). The following relation trans computes the transitive closure of split and join:

trans(C,(R,A,I),0,0,(R,A,I)) <== forall(C)(R@A) = true

trans(C,statel,s(k),1l,state2) <== {split(statel,state), trans(C,state,k,l,state2)}

trans(C,statel,k,s(1),state2) <== {join(statel) = state, state = (R,A,inner::I),
C(inner) = true, trans(C,state,k,l,state2)}

trans(C,statel,k,n,state2) is valid if successive split and join steps lead from state! to state2. Each inner
rectangle created by a join step is checked for satisfying the constraint parameter C'. The step is completed
only if C' holds true. Since inner rectangles are never changed once they have been generated, trans checks
them immediately after their creation. The admissability of the rectangles of R and A, however, can only be

decided at the end of a transition sequence.

k and [are the numbers of split and join steps, respectively, that build up a transition sequence. The number
of split steps to decompose a plane of size x y into a dissection D consisting of n rectangles is exactly n — 1.
The number of join steps is at least n — (z + y — 1)® and at most n — 2. These bounds follow from the fact
that, for the final state (R, A, I) with RQAQT = D, length(I) = length(D) — length(RQA) coincides with the
number of join steps to build D, R may have at least one and at most x elements, A may have at least one and

at most y — 1 elements and thus

n—(zx+y—1)<length(D) —length(RQA) < n — 2.

Hence we set k = n — 1 and and choose [among (n + 1) — (z + y),...,n — 2 when applying trans to an

initial state ([r], nil, nil) (see above):

dissect(C,x,y,n,state) <== { r = rect(0,0,x,y), 1 isIn ((n+1)-(x+y),n-2),
trans(C, ([r],nil,nil),n-1,1,state) }

forall(C)(nil) = true
forall(C)(x::L) = C(x) and forall(cC) (L)

547 denotes natural number substraction.

25

dissect(C,z,y,n,(R,A,I)) holds true if RQAQT is a dissection of rect(0,0,z,y) into n rectangles, which satisfy

C'. The three ways of dimensioning dissections treated in Section 2.4 are turned into calls of dissect:

areaDissect(x,y,n,states) <== { a = (x*y)/n, dissect(eqArea(a),x,y,n,states) }
eqhrea(a) (rect(x,y,1,h)) = eq(l*h,a)

brickDissect(x,y,a,states) <== { n = (x*y)//a, dissect(leqArea(a),x,y,n,states) }
legArea(a)(rect(x,y,1,h)) = leq(l*h,a)

propDissect(x,y,n,p,states) <== dissect(proportioned(p),x,y,n,states)
proportioned(p) (rect(x,y,1,h)) = eq(p*1l,h) or eq(p*h,l)

The translation of the above specification into Prolog is quite similar to the translation of DISSECT_E (cf.
Sections 2.2 and 2.4). Details are left to the reader.

4.2 The functional program

The main relation partC of our dissection algorithm is nonlinearly nondeterministic (cf. 3.1). The same holds
true for trans and thus for dissect. However, in contrast to the axioms for partC (cf. 2.1), the three axioms
of trans (cf. 4.1) yield an ambiguous definition, like the axioms for glueAux and search (cf. 3.1). Hence the
definition of trans must be splitted into disjoint cases such that, for each argument of trans, the stream of all
corresponding values is returned even if they are distributed over several axioms of the specification. Besides

trans we introduce two auxiliary functions splitAndTrans and joinAndTrans:

exception Join

fun trans(C,0,0)(R,A,I)
| trans(C,k,1) (state)

if forall(C)(R@A) then (R,A,I) & (fn()=>Nil) else Nil
splitAndTrans(C,k,1,state) %
(fn()=>joinAndTrans(C,k,1,state) handle Join => Nil)

and splitAndTrans(_,0,_,_) = Nil
| splitAndTrans(C,k,1,state) = MapS(trans(C,k-1,1))(splitV(state) % (fn()=>splitH(state)))

and joinAndTrans(_,_,0,_) = Nil
| joinAndTrans(C,k,1l,state) = let val state = join(state)
val (_,_,inner::_) = state
in if C(inner) then trans(C,k,1-1)(state) else Nil end

splitAndTrans and joinAndTrans compute streams of states, starting with the successor state of a split or
join step, respectively. joinAndTrans returns the empty stream Nil if the inner rectangle created by the join
step does not satisfy the constraint C. join calls the partial function joinV, which raises the exception Join
if it 1s applied to an undefined state, i.e. a state that does not satisfy the premise of one the axioms defining

join (cf. 4.1). The exception is handled in the definition of trans by delivering the empty stream.

and join(state as (rect(0,0,1,h)::rect(x,0,1’,h’)::R,A,I))
= if h’ > h then (rect(0,0,1+1’,h)::R,A,rect(x,h,1’,h’~-h)::I) else joinV(state)
| join(state) = joinV(state)

and joinV(rect(0,0,1,h)::R,rect(0,y,1’,h’)::4,I)

= if 1° > 1 then (rect(0,0,1,h+h’)::R,A,rect(l,y,1°-1,h’)::I) else raise Join

[joinV _ = raise Join

26

The two axioms for split (cf. 4.1) become definitions of two functions splitV and splitH, respectively:

and splitV(rect(0,0,1,h)::R,A,I)
= let fun £(1’) = (rect(0,0,1’,h)::rect(1’,0,1-1’,h)::R,A,I)
in if 1 < 2 then Nil else MapL(f)(interval(1,1-1)) end

and splitH(rect(0,0,1,h)::R,A,I)
= let fun f(h’) = (rect(0,0,1,h’)::R,rect(0,h’,1,h-h’)::4,I)
in if h < 2 then Nil else MapL(f)(interval(l,h-1)) end

and interval(x,y) = if x > y then nil else x::interval(x+1,y)

The main relation dissect transforms an initial state into admissable final states (cf. 4.1) and is thus

transformed into a function that maps an initial state to the stream of all final states:

fun dissect(C,x,y,n) = let val r = rect(0,0,x,y)
fun f(1) = trans(C,n-1,1)([r],nil,nil)
fun sub(x,y) = if x < y then 0 else x-y
in (MapLS(f) o interval)(sub(n+1,x+y),n-2) end

The stream functions MapL and MapLS are defined in Section 1.2. In 3.1, areaDissect, brickDissect and
propDissect generate streams of type (int x int)listlist. Here the computed streams consist of states, which

have the type Rectlist * Rectlist x Rectlist:

fun areaDissect(x,y,n) = let val a = (x*y) div n

val s dissect(eqArea(a),x,y,n)
in (s,x+1,y+1) end

and eqArea(a)(rect(_,_,1,h)) = 1#h = a

fun brickDissect(x,y,a) = let val n = ceiling(real(x*y)/real(a))
val s = dissect(leqArea(a),x,y,n)
in (s,x+1,y+1) end
and leqArea(a)(rect(_,_,1,h)) = 1*h <= a

and propDissect(x,y,n,p) = let val s = dissect(proportioned(p),x,y,n)
in (s,x+1,y+1) end

and proportioned(p)(rect(_,_,1,h)) = p*l = h orelse p*h =1

Analogously to 3.1, areaDissect, brickDissect and propDissect return the size (x4 1,y+ 1) of the plane
to be dissected in addition to the state stream s. The procedure next of 3.2 must be adapted to the fact that

the above functions compute state streams instead of streams of point list partitions.

fun next(0) = finish()
| next(n) = case !s_ptr of Nil => finish()
| (R,A,I)&s => let
in code:= !'code draw(ROAQI) translate(l,h,x);

. end

27

5 Conclusion

This paper presented a case study of transforming logical design specifications with functions and relations into
pure functional code. Since such specifications have a precise mathematical semantics, the specified algorithms
can already be tested and verified on a rather abstract level (cf. Section 2.3). For compiling them into a pure
logic language like Prolog, all functions must be flattened into relations (cf. Section 2.2). The translation
into pure functional code works the other way around: relations used as multi-valued functions are compiled
into single-valued functions, which enumerate all values pertaining to the same argument and store them into

streams.

The case study deals with two configuration algorithms for generating rectangle dissections, which satisfy
various constraints. The first algorithm constructs partitions of the point list representing the plane to be
dissected. Tt branches out whenever a point is to be added to a recursively obtained partition of a sublist.
Hence it works bottom-up insofar as dissections are built up point by point. This procedure ensures that
each dissection is built up only once. The second algorithm starts out from a shape grammar, which defines
transitions between states consisting of three lists of rectangles. The transitions decompose the plane to be
dissected stepwise so that this algorithm works top-down. Since the underlying shape grammar is ambiguous,

the same dissections may be built up several times.

Hence both algorithms follow quite different, almost complementary, design principles. The first is fast
for dissections consisting of small rectangles, the second is more efficient if all dissections consist of a few
big rectangles. Moreover, the translation into functional code raises different problems, which led us to general
distinctions between linear and nonlinear nondeterminism and between ambiguous and unambiguous (axiomatic)
function definitions (cf. Sections 3.1 and 4.2). While linear as well as nonlinear nondeterminism can be put
rather schematically into functional code with the help of map functions on streams, the axioms of an ambiguous
function definition have to be modified and rearranged in special ways in order to establish complete functional

case analyses.

Future research should aim at general classifications of multi-valued function definitions and transformation
rules, which admit a more schematic - maybe automatic - translation of logical specifications into stream-based
functional programs. Configuration problems, which involve varying constraint parameters, make up a broad

area of nontrivial applications for testing the power and the limits of such “logic-to-function” compilers.

Acknowledgement

I am grateful to Mihaly Lenart for drawing my attention to the field of configuration problems and shape
grammars. Thanks to Michael Rexhauser and Cornelius Rolf for developing and testing Prolog implementations

of both dissection algorithms.

References

[BGM 88] P.G. Bosco, E. Giovannetti, C. Moiso, Narrowing vs. SLD-Resolution, Theoretical Computer Science
59 (1988) 3-23

[BW 88] R. Bird, Ph. Wadler, Introduction to Functional Programming, Prentice-Hall 1988

[Car 93] C. Carlson, Describing Spaces of Rectangular Dissections via Grammatical Programming, Proc. bth

Int. Conf. CAAD Futures, North-Holland (1993) 143-158

[Gre 87] S. Gregory, Parallel Logic Programming in PARLOG, Addison-Wesley 1987

28

[LPP 93] M. Lenart, P. Padawitz, A. Pasztor, Automating Creative Design, Proc. AAAT 1993 Spring Sympo-
sium on AT and Creativity, Stanford University (1993) 67-71

[Pad 93] P. Padawitz, Building Shelf Systems: A Case Study in Structured ML Programming, Report No. 460,
FB Informatik, Universitat Dortmund 1993

[Pad 94] P. Padawitz, Expander: A System for Testing and Verifying Functional-Logic Programs, Report No.
522, FB Informatik, Universitat Dortmund 1994

[Pad 95] P. Padawitz, Inductive Theorem Proving for Design Specifications, Report No. 533/1994, FB Infor-
matik, Universitat Dortmund 1994, to appear in J. Symbolic Computation

[Pau 91] L.C. Paulson, ML for the Working Programmer, Cambridge Unversity Press 1991

[War 83] D.H.D. Warren, An Abstract Prolog Instruction Set, Technical Note 309, SRI International 1983

29

