
From grammars and automata
to algebras and coalgebras

Peter Padawitz

Technical University of Dortmund, Germany

April 2, 2013

Abstract. The increasing application of notions and results from cat-
egory theory, especially from algebra and coalgebra, has revealed that
any formal software or hardware model is constructor- or destructor-
based, a white-box or a black-box model. A highly-structured system may
involve both constructor- and destructor-based components. The two
model classes and the respective ways of developing them and reasoning
about them are dual to each other. Roughly said, algebras generalize the
modeling with context-free grammars, word languages and structural in-
duction, while coalgebras generalize the modeling with automata, Kripke
structures, streams, process trees and all other state- or object-oriented
formalisms. We summarize the basic concepts of co/algebra and illus-
trate them at a couple of signatures including those used in language or
compiler construction like regular expressions or acceptors.

1 Introduction

More than forty years of research on formal system modeling led to the dis-
tinction between algebraic models on the one hand and coalgebraic ones on the
other. The former describes a system in terms of the synthesis of its components
by means of object-building operators (constructors). The latter models a sys-
tem in terms of the analysis of its components by means of object-modifying,
-decomposing or -measuring operators (destructors). The traditional presenta-
tion of a class of algebraic models is a context-free grammar that provides a
concrete syntax of a set of constructors, whereas a class of coalgebraic models is
traditionally given by all automata, transition systems or Kripke structures with
the same behavior. Their respective state transition or labeling functions yield a
set of the destructors. But not any member of such a class of models admits the
application of powerful methods to operate on and reason about it. Among the
members of an algebraic class it is the initial one, among those of a coalgebraic
class it is the final one that the modeling should aim at. Initial algebras enable
recursion and induction. Final coalgebras enable corecursion and coinduction.

Twenty years ago algebraic modeling was mainly algebraic specification and
thus initial and free algebras were the main objects of interest [?,18, 15, 10],
although hidden algebra and final semantics approaches [22, 31, 17, 28, 48, 49] al-
ready tended to the coalgebraic view (mostly in terms of greatest quotients of
initial models). But first the dual concepts of category and fixpoint theory paved

2 Peter Padawitz

the way to the principles and methods current algebraic system modeling is based
upon.

Here we use a slim syntax of types and many-sorted signatures, expressive
enough for describing most models one meets in practice, but avoiding new guises
for well-established categorical concepts. For instance and in contrast to previous
hierarchical approaches (including our own), we keep off the explicit distinction
of primitive or base sorts and a fixed base algebra because such entities are al-
ready captured by the constant functors among the types of a signature. Section
2 presents the syntax and semantics of the domains for co/algebraic models of
constructive resp. destructive signatures. Section 3 draws the connection from
signatures to functor co/algebras and provides initial and final model construc-
tions. Roughly said, the latter are least resp. greatest fixpoints of the respective
functor. Section 4 presents fundamental concepts and rules dealing with the ex-
tension, abstraction or restriction of and the logical reasoning about co/algebraic
models. Again we are faced with least and greatest fixpoints, here with the re-
lational ones co/inductive proofs are based upon. Moreover, each element of a
– usually coalgebraic – class of infinite structures can be modeled as the unique
fixpoint of the function derived from a set of guarded equations.

We assume that the reader is somewhat familiar with the notions of a cate-
gory, a functor, a diagram, a co/cone, a co/limit, a natural transformation and
an adjunction. Given a category K, the target object of a colimit resp. source
object of a limit of the empty diagram ∅ → K is called initial resp. final in K.
We remind of the uniqueness of co/limits modulo or up to isomorphism. Hence
initial or final objects are also unique up to isomorphism.

Set denotes the category of sets with functions as morphisms. Given an index
set I,

∏
s∈I Ai and

∐
s∈I Ai denote the product resp. coproduct (= disjoint

union) of sets Ai, i ∈ I. For all n > 1, A1 × . . . × An =
∏
s∈{1,...,n}Ai and

A1 + . . . + An =
∐
s∈{1,...,n}Ai. For all i ∈ I, πi :

∏
s∈I Ai → Ai and ιi : Ai →∐

s∈I Ai denote the i-th projection resp. injection: For all a = (ai)i∈I ∈
∏
s∈I Ai,

i ∈ I and b ∈ Ai, πi(a) = ai and ιi(b) = (b, i). Given functions fi : A → Ai
and gi : Ai → A for all i ∈ I, 〈fi〉i∈I : A →

∏
s∈I Ai and [gi]i∈I :

∐
s∈I Ai → A

denote the product resp. coproduct extension of {fi}i∈I : For all a ∈ A, i ∈ I,
b ∈ Ai and n > 1, 〈fi〉i∈I(a) = (fi(a))i∈I , [gi](b, i) = gi(b),

∏
s∈I fi = 〈fi ◦ πi〉,

f1× . . .×fn =
∏
s∈{1,...,n} fi,

∐
s∈I gi = [ιi◦gi] and g1+ . . .+gn =

∐
s∈{1,...,n} gi.

1 denotes the singleton {∗}. 2 denotes the two-element set {0, 1}. The ele-
ments of 2 are regarded as truth values. Let A be a set. idA : A→ A denotes the
identity on A. A∗ = {a ∈ An | n ∈ N}, Pfin(A) = {f : A → 2 | |f−1(1)| < ω}
and Bfin(A) = {f : A→ N | |f−1(N \ {0})| < ω} denote the sets of finite words,
sets resp. multisets of elements of A.

2 Many-sorted signatures and their algebras

Let S be a set of sorts. An S-sorted or S-indexed set is a family A = {As | s ∈
S} of sets. An S-sorted subset of A, written as B ⊆ A, is an S-sorted set with
A ⊆ B for all s ∈ S. Given S-sorted sets A1, . . . , An, an S-sorted relation

From grammars and automata to algebras and coalgebras 3

r ⊆ A1 × . . . × An is an S-sorted set with rs ⊆ A1,s × . . . × An,s for all s ∈ S.
Given S-sorted sets A,B, an S-sorted function f : A → B is an S-sorted set
such that for all s ∈ S, fs is a function from As to Bs. SetS denotes the category
of S-sorted sets as objects and S-sorted functions as morphisms.

T(S) denotes the inductively defined set of (bounded) types over S:

S ⊆ T(S),
X ∈ Set ⇒ X ∈ T(S),
e1, . . . , en ∈ T(S) ⇒ e1 × . . .× en, e1 + . . .+ en ∈ T(S),
e ∈ T(S) ⇒ word(e), bag(e), set(e) ∈ T(S),
X ∈ Set ∧ e ∈ S ⇒ eX ∈ T(S).

We regard e ∈ T(S) as a finite tree: Each inner node of e is labelled with a
type constructor (×, +, list, bag, set or _X for some X ∈ Set) and each leaf is
labelled with an element of S. A set is a base set of e if it occurs in e.

e ∈ T(S) is polynomial if e does not contain set. PT(S) denotes the set of
polynomial types over S.

The meaning of e ∈ T(S) is a functor Fe : SetS → Set that is inductively
defined as follows (also called predicate lifting; see [25, 26]): Let A,B be S-
sorted sets, h : A → B be an S-sorted function, s ∈ S, X ∈ Set, e, e1, . . . , en ∈
T(S), a1, . . . , an ∈ Fe(A), f ∈ Bfin(Fe(A)), g ∈ Pfin(Fe(A)), b ∈ Fe(B) and
g′ : X → Fe(A).

Fs(A) = As, Fs(h) = hs, FX(A) = X, FX(h) = idX ,
Fe1×...×en(A) = Fe1(A)× . . .× Fen(A), Fe1×...×en(h) = Fe1(h)× . . .× Fen(h),
Fe1+...+en(A) = Fe1(A) + . . .+ Fen(A), Fe1+...+en(h) = Fe1(h) + . . .+ Fen(h),
Fword(e)(A) = Fe(A)∗, Fword(e)(h)(a1, . . . , an) = (Fe(h)(a1), . . . , Fe(h)(an)),
Fbag(e)(A) = Bfin(Fe(A)),
Fbag(e)(h)(f)(b) =

∑
{f(a) | a ∈ Fe(A), Fe(h)(a) = b},

Fset(e)(A) = Pfin(Fe(A)),
Fset(e)(h)(g)(b) =

∨
{g(a) | a ∈ Fe(A), Fe(h)(a) = b},

FeX (A) = Fe(A)X , FeX (h)(g′) = Fe(h) ◦ g′.

We often write Ae for the set Fe(A) and he for the function Fe(h). Each function
E : S → T(S) induces an endofunctor FE : SetS → SetS : For all s ∈ S,
FE(A)(s) = FE(s)(A) and FE(h)(s) = FE(s)(h).

Given S-sorted sets A,B and an S-sorted relation r ∈ A × B, the relation
lifting Rele(r) ⊆ Ae × Be of r is inductively defined as follows (analogously to

4 Peter Padawitz

[25, 26]): Let s ∈ S, e, e1, . . . , en ∈ T(S) and X ∈ Set.

Rels(r) = rs, RelX(r) = 〈idX , idX〉(X),
Rele1×...×en(r) = {((a1, . . . , an), (b1, . . . , bn)) | ∀ 1 ≤ i ≤ n : (ai, bi) ∈ Relei(r)},
Rele1+...+en(r) = {((a, i), (b, i)) | (a, b) ∈ Relei(r), 1 ≤ i ≤ n},
Relword(e)(r) = {(a1 . . . an, b1 . . . bn) | ∀ 1 ≤ i ≤ n : (ai, bi) ∈ Rele(r), n ∈ N},
Relbag(e)(r) = {(f, g) | ∃ p : supp(f) ∼→ supp(g) :

∀ a ∈ supp(f) : f(a) = g(p(a)) ∧ (a, p(a)) ∈ Rele(r)},
Relset(e)(r) = {(C,D) | ∀ c ∈ C ∃ d ∈ D : (c, d) ∈ Rele(r) ∧

∀ d ∈ D ∃ c ∈ C : (c, d) ∈ Rele(r),
ReleX (r) = {(f, g) | ∀ x ∈ X : 〈f, g〉(x) ∈ Rele(r)}.

We often write re for the relation Rele(r).
A signature Σ = (S, F, P) consists of a finite set S (of sorts), a finite T(S)2-

sorted set F of function symbols and a finite T(S)-sorted set P of predicate
symbols. f ∈ F(e,e′) is written as f : e→ e′ ∈ F . dom(f) = e is the domain of
f , ran(f) = e′ is the range of f . p ∈ Pe is written as p : e ∈ P . f : e→ e′ is an
e′-constructor if e′ ∈ S. f is an e-destructor if e ∈ S. Σ is constructive resp.
destructive if F consists of constructors resp. destructors. Σ is polynomial if
for all f : e → e′ ∈ F , e′ is polynomial. A set is a base set of Σ if it occurs in
the domain or range of a function or predicate symbol.

Example 2.1 Here are some constructive signatures without predicate sym-
bols. Let X and Y be sets.

1. Nat (natural numbers) S = {nat}, F = {0 : 1→ nat, succ : nat→ nat}.
2. Reg(X) (regular expressions over X) S = {reg},

F = { ∅, ε : 1→ reg, _ : X → reg,
|, _ ·_ : reg × reg → reg, star : reg → reg }.

3. List(X) (finite sequences of elements of X) S = {list},
F = {nil : 1→ list, cons : X × list→ list}.

4. Tree(X,Y) (finitely branching trees of finite depth with node labels from X
and edge labels from Y) S = {tree, trees},

F = { join : X × trees→ tree, nil : 1→ trees,
cons : Y × tree× trees→ trees }.

5. BagTree(X,Y) (finitely branching unordered trees of finite depth with node
labels from X and edge labels from Y)
S = {tree}, F = {join : X × bag(Y × tree)→ tree}.

6. FDTree(X,Y) (finitely or infinitely branching trees of finite depth with node
labels from X and edge labels from Y)
S = {tree}, F = {join : X × ((Y × tree)N + word(Y × tree))→ tree}. o

Example 2.2 Here are some destructive signatures without predicate sym-
bols. Let X and Y be sets.

1. coNat (natural numbers with infinity) S = {nat},
F = {pred : nat→ 1 + nat}.

From grammars and automata to algebras and coalgebras 5

2. coList(X) (finite or infinite sequences of elements of X; coList(1) ' coNat)
S = {list}, F = {split : list→ 1 + (X × list)}.

3. DetAut(X,Y) (deterministic Moore automata with input set X and output
set Y) S = {state}, F = {δ : state→ stateX , β : state→ Y }.

4. NDAut(X,Y) (non-deterministic Moore automata; image finite labelled tran-
sition systems) S = {state}, F = {δ : state→ set(state)X , β : state→ Y }.

5. coTree(X,Y) (finitely or infinitely branching trees of finite or infinite depth
with node labels from X and edge labels from Y) S = {tree, trees},

F = { root : tree→ X, subtrees : tree→ trees,
split : trees→ 1 + (Y × tree× trees) }.

6. FBTree(X,Y) (finitely branching trees of finite or infinite depth with node
labels from X and edge labels from Y) S = {tree},
F = {root : tree→ X, subtrees : tree→ word(Y × tree)}. o

Let Σ = (S, F, P) be a signature. A Σ-algebra A consists of an S-sorted
set, the carrier of A, also denoted by A, for each f : e → e′ ∈ F , a function
fA : Ae → Ae′ , and for each p : e ∈ P , a relation pA ⊆ Ae.

Let A and B be Σ-algebras, h : A → B be an S-sorted function and
f : e → e′ ∈ F . h is compatible with f if he′ ◦ fA = fB ◦ he. h is a Σ-
homomorphism if for all f ∈ F , h is compatible with f and for all p : e ∈ P ,
he(pA) ⊆ pB . h is predicate preserving if the converse holds true as well, i.e.,
for all p : e ∈ P , pB ⊆ he(pA). A Σ-isomorphism is a bijective and predi-
cate preserving Σ-homomorphism. AlgΣ denotes the category of Σ-algebras and
Σ-homomorphisms.

A signature Σ′ = (S′, F ′, P ′) is a subsignature of Σ if S′ ⊆ S, F ′ ⊆ F and
P ′ ⊆ P . Let A be a Σ-algebra and h : A→ B be a Σ-homomorphism. The Σ′-
reducts A|Σ′ and h|Σ of A resp. h are the Σ′-algebra resp. Σ′-homomorphism
defined as follows:
• For all s ∈ S′, (A|Σ′)s = As and (h|Σ′)s = hs.
• For all f ∈ F ′ ∪ P ′, fA|Σ′ = fA.

Σ′-reducts yield the reduct functor or forgetful functor _|Σ′ from AlgΣ to
AlgΣ′ .

A constructive signature Σ = (S, F, P) admits terms if for all f ∈ F there
are e1, . . . , en ∈ S ∪ Set with dom(f) = e1 × . . . × en. If Σ admits terms, then
the Σ-algebra TΣ of (ground) Σ-terms is defined inductively as follows:
• For all s ∈ S, f : e→ s ∈ F and t ∈ TΣ,e, fTΣ (t) = ft ∈ TΣ,s.

If a Σ-term is regarded as a tree, each inner node is labelled with some f ∈ F ,
while each leaf is labelled with an element of a base set of Σ. The interpretation
of P in TΣ is not fixed. Any such interpretation would be an S-sorted set of
term relations, usually called a Herbrand structure. Constructive signatures that
admit terms can be presented as context-free grammars:

A context-free grammar G = (S,Z,BS,R) consists of finite sets S of
sorts (also called nonterminals), Z of terminals, BS of base sets and R ⊆

6 Peter Padawitz

S × (S ∪ Z ∪BS)∗ of rules. The constructive signature Σ(G) = (S, F, ∅) with

F = {fr : e1 × . . .× en → s | r = (s, w0e1w1 . . . enwn) ∈ R,
w0, . . . , wn ∈ Z∗, e1, . . . , en ∈ S ∪BS

}

is called the abstract syntax of G (see [?], Section 3.1; [46], Section 3). Σ(G)-
terms are usually called syntax trees of G.

Example 2.3 The regular expressions over X form the reg-carrier of the
Reg(X)-algebra TReg(X) of Reg(X)-terms.

The usual interpretation of regular expressions over X as languages (= sets
of words) over X yields the Reg(X)-algebra Lang: Langreg = P(X∗). For all
x ∈ X and L,L′ ∈ P(X∗),

∅Lang = ∅, εLang = {ε}, _Lang(x) = {x},
L|LangL′ = L ∪ L′, L ·Lang L′ = {vw | v ∈ L, w ∈ L′},
starLang(L) = {w1 . . . wn | n ∈ N, ∀ 1 ≤ i ≤ n : wi ∈ L}.

The Reg(X)-Algebra Bool interprets the regular operators as Boolean func-
tions: Boolreg = 2. For all x ∈ X and b, b′ ∈ 2,

∅Bool = 0, εBool = 1, _Bool(x) = 0,
b|Boolb′ = b ∨ b′, b ·Bool b′ = b ∧ b′, starBool(b) = 1. o

Let Σ = (S, F, P) be a signature and A be a Σ-algebra. An S-sorted subset
inv of A is a Σ-invariant or -subalgebra of A if inv is compatible with all
f : e → e′ ∈ F , i.e. fA(inve) ⊆ inve′ . inc : inv → A denotes the injective S-
sorted inclusion function that maps a to a. inv can be extended to aΣ-algebra:
For all f : e→ e′ ∈ F , f inv = fA ◦ ince, and for all r : e ∈ R, rinv = rA ∩ inve.
Given an S-sorted subset B of A, the least Σ-invariant including B is denoted
by 〈B〉.

An S-sorted relation ∼⊆ A2 is a Σ-congruence if ∼ is compatible with
all f : e→ e′ ∈ F , i.e. (fA× fA)(∼e) ⊆∼e′ . ∼eq denotes the equivalence closure
of ∼. A∼ denotes the Σ-algebra that agrees with A except for the interpretation
of all r : e ∈ R: rA∼ = {b ∈ Ae | ∃ a ∈ rA : a ∼eq b}. A/∼ denotes the S-sorted
quotient set {[a]∼ | a ∈ A} where [a]∼ = {b ∈ A | a ∼eq b}. nat∼ : A → A/∼
denotes the surjective S-sorted natural function that maps a ∈ A to [a]∼.
A/∼ can be extended to a Σ-algebra: For all f : e → e′ ∈ F , fA/∼ ◦ nat∼,e =
nat∼,e′ ◦ fA. For all r : e ∈ R, rA/∼ = {nat∼,e(a) | a ∈ rA∼}.

Let h : A → B be an S-sorted function. The S-sorted subset img(h) =
{h(a) | a ∈ A} of B is called the image of h. The S-sorted relation ker(h) =
{(a, b ∈ A2) | h(a) = h(b)} is called the kernel of h.

Proposition 2.4 (1) inc and nat∼ are Σ-homomorphisms. h : A → B is
surjective iff img(h) = B. h is injective iff ker(h) = 〈idA, idA〉(A).

(2) A is aΣ-algebra and h is aΣ-homomorphism iff ker(h) is aΣ-congruence.
B is a Σ-algebra and h is a Σ-homomorphism iff img(h) is a Σ-invariant. o

Homomorphism Theorem 2.5 h is a Σ-homomorphism iff there is a
unique surjective Σ-homomorphism h′ : A→ img(h) with inc◦h′ = h iff there is

From grammars and automata to algebras and coalgebras 7

a unique injective Σ-homomorphism h′ : A/ker(h)→ B with h′ ◦ natker(h) = h.
o

Example 2.6 Given a behavior function f : X∗ → Y , the minimal realiza-
tion of f coincides with the invariant 〈f〉 of the following DetAut(X,Y)-algebra
MinAut : MinAutstate = (X∗ → Y) and for all f : X∗ → Y and x ∈ X,
δMinAut(f)(x) = λw.f(xw) and βMinAut(f) = f(ε).

Let Y = 2. Then behaviors f : X∗ → Y coincide with languages over X, i.e.
subsets L of X∗, and 〈L〉 is DetAut(X, 2)-isomorphic to the minimal acceptor
of L with {L ⊆ X∗ | ε ∈ L} as the set of final states. Hence the state-carrier of
MinAut agrees with the reg-carrier of Lang (see Ex. 2.3). TReg(X) also provides
acceptors of regular languages, i.e., T = TReg(X) is a DetAut(X, 2)-algebra. Its
transition function δT : T → TX is called a derivative function. It has been
shown that for all regular expressions R, 〈R〉 ⊆ TReg(X) has only finitely many
states ([14], Thm. 4.3 (a); [42], Section 5; [27], Lemma 8). If combined with
coinductive proofs of state equivalence (see Section 4), the stepwise construction
of the least invariant 〈R〉 of TReg(X) can be lifted to a stepwise construction of the
least invariant 〈L(R)〉 of MinAut = Lang (= minimal acceptor of L(R)), thus
avoiding the traditional detour via powerset automata and their minimization
(see [45], Section 4).

Let X = 1. Then MinAut is DetAut(1, Y)-isomorphic to the algebra of
streams over Y : MinAutstate = Y 1∗ ∼= Y N. For all s ∈ Y N, β(s) = s(0)
and δ(s)(∗) = λn.s(n+ 1).

Let X = 2. Then MinAut represents the set of infinite binary trees with
node labels from Y : MinAutstate = X2∗ . For all t ∈ X2∗ and b ∈ 2, β(t) = s(ε),
δ(t)(b) = λw.t(bw). o

3 Σ-algebras and F -algebras

Let K be a category and F be an endofunctor on K.
An F -algebra or F -dynamics is a K-morphism α : F (A) → A. AlgF de-

notes the category whose objects are the F -algebras and whose morphisms from
α : F (A) → A to β : F (B) → B are the K-morphisms h : A → B with
h ◦ α = β ◦ F (h). Hence α is initial in AlgF if for all F -algebras β there is
unique AlgF -morphism h from α to β. h is defined by recursion and called a
catamorphism.

An F -coalgebra or F -codynamics is a K-morphism α : A→ F (A). coAlgF
denotes the category whose objects are the F -coalgebras and whose morphisms
from α : A → F (A) to β : B → F (B) are the K-morphisms h : A → B with
F (h) ◦ α = β ◦ h. Hence α is final in coAlgF if for all F -coalgebras β there
is unique coAlgF -morphism h from β to α. h is defined by corecursion and
called an anamorphism.

Theorem 3.1 ([29], Lemma 2.2; [11], Prop. 5.12; [8], Section 2; [41], Thm.
9.1) Initial F -algebras and final F -coalgebras are isomorphisms in K. o

8 Peter Padawitz

In other words, the object A of an initial F -algebra α : F (A) → A or a
final F -coalgebra α : A → F (A) is a fixpoint of F , i.e., A solves the equation
F (A) = A.

Let Σ = (S, F, P) be a signature. Σ induces an endofunctor HΣ on SetS

(notation follows [2]): For all S-sorted sets and functions A and s ∈ S,

HΣ(A)s =
{∐

f :e→s∈F Ae if Σ is constructive,∏
f :s→e∈F Ae if Σ is destructive.

Example 3.2 (see Exs. 2.1 and 2.2) Let A be an S-sorted set.

HNat(A)nat = HcoNat(A)nat = 1 +Anat,
HList(X)(A)list = HcoList(X)(A)list = 1 + (X ×Alist),
HReg(X)(A)reg = 1 + 1 +X +A2

reg +A2
reg +Areg,

HDetAut(X,Y)(A)state = AXstate × Y,
HNDAut(X,Y)(A)state = Pfin(Astate)X × Y,
HTree(X,Y)(A)tree = HcoTree(X,Y)(A)tree = X ×Atrees,
HTree(X,Y)(A)trees = HcoTree(X,Y)(A)trees = 1 + (X ×Atree ×Atrees),
HBagTree(X,Y)(A)tree = Y × Bfin(X ×Atree),
HFDTree(X,Y)(A)tree = Y × ((X ×Atree)N + (X ×Atree)∗),
HFBTree(X,Y)(A)tree = Y × (X ×Atree)∗. o

Given a constructive signature Σ, an HΣ-algebra HΣ(A) α→ A is an S-
sorted function and uniquely corresponds to a Σ-algebra A: For all s ∈ S and
f : e→ s ∈ F ,

HΣ(A)s
αs = [fA]f :e→s∈F

> As

Ae

ιf =

∧

fA = αs ◦ ιf

>

Given a destructive signature Σ, an HΣ-coalgebra A
α→ HΣ(A) is an S-

sorted function and uniquely corresponds to a Σ-algebra A: For all s ∈ S and
f : s→ e ∈ F ,

As
αs = 〈fA〉f :s→e∈F

> HΣ(A)s

Ae

= πf

∨
fA = πf ◦ αs

>

αs combines all s-constructors resp. -destructors into a single one.

From grammars and automata to algebras and coalgebras 9

An ascending ω-chain is a diagram sending the index category {n → n +
1 | n ∈ N} to K. K is ω-cocomplete if the empty diagram and all ascending
ω-chains have colimits. A descending ω-chain is a diagram sending the index
category {n← n+ 1 | n ∈ N} to K. K is ω-complete if the empty diagram and
all descending ω-chains have limits.

Let K and L be ω-cocomplete. A functor F : K → L is ω-cocontinuous
if for all ascending ω-chains D and colimits {µn : D(n) → C | n ∈ N} of D,
{F (µn) | n ∈ N} is a colimit of F ◦ D.

Let K and L be ω-complete. A functor F : K → L is ω-continuous if for all
descending ω-chains D and limits {νn : C → D(n) | n ∈ N} of D, {F (νn) | n ∈ N}
is a limit of F ◦ D.

Theorem 3.3 ([8], Section 2; [30], Thm. 2.1) (1) Let K be ω-cocomplete,
F : K → K be an ω-cocontinuous functor, I be initial in K, ini be the unique
K-morphism from I to F (I) and A be the target of the colimit of the ascending
ω-chain D defined as follows:

n→ n+ 1 7→ Fn(I)
Fn(ini)→ Fn+1(I).

Since F is ω-cocontinuous, F (A) is the target of the colimit of F ◦ D. Hence
there is a unique K-morphism ini′(F) : F (A) → A, which can be shown to be
an initial F -algebra.

(2) Let K be ω-complete, F : K → K be an ω-continuous functor, T be final
in K, fin be the unique K-morphism from F (T) to T and A be the source of the
limit of the descending ω-chain D defined as follows:

n← n+ 1 7→ Fn(T)
Fn(fin)← Fn+1(T).

Since F is ω-continuous, F (A) is the source of the limit of F ◦ D. Hence there
is a unique K-morphism fin ′ : A → F (A), which can be shown to be a final
F -coalgebra. o

Theorem 3.4 (folklore) SetS is ω-complete and ω-cocomplete. o

For defining data types of trees with infinite outdegree we need the gener-
alization of Thm. 3.3 (1) from ω to greater ordinals λ. F : K → K is called
λ-cocontinuous if F preserves colimits of ascending λ-chains, i.e., diagrams
sending the index category {n→ n+ 1 | n < λ} of ordinals to K.

Thms. 3.3 and 3.1 tell us that the ascending chain D = {Fn(I)}n<ω converges
in ω steps, i.e. F (colim(D)) ∼= colim(D). For λ > ω, we extend D to {Fn(I)}n≤λ
where for all limit ordinals n ≤ λ, Fn(I) =def colim({F i(I)}i<n). Fλ(I) is the
initial F -algebra (This was originally shown by [1]; see also [2], Thm. 3.19, or
[5], Cor. 4.1.5). By [5], Thm. 4.1.12, all signatures Σ with constructors of infinite
arity less than λ, HΣ is λ-cocontinuous.

Given index sets I and J , a functor F : SetI → SetJ is permutative if for
all A ∈ SetI and j ∈ J there is i ∈ I such that F (A)j = Ai.

Theorem 3.5 For all polynomial types e over S, Fe : Set → Set is ω-
continuous.

10 Peter Padawitz

Let e be a type over S, κ be the cardinality of the greatest base set occurring
in e as an exponent and λ be the first regular cardinal number > κ. FE is
λ-cocontinuous.

Proof. By [9], Thms. 1 and 4, or [12], Prop. 2.2 (1) and (2), permutative
and constant functors are ω-continuous and -cocontinuous, ω-continuous or λ-
cocontinuous functors are closed under coproducts, ω-continuous functors are
closed under products (and thus under exponentiation; see [41], Thm. 10.1)
and λ-cocontinuous functors are closed under finite products. By [12], Prop.
2.2 (3), ω-continuous or λ-cocontinuous functors are closed under quotients
modulo finite equivalence relations. Since for all sets A, A∗ ∼=

∐
n∈N A

n and
Bfin(A) ∼=

∐
n∈N A

n/∼n where a ∼n b iff a is a permutation of b, _∗ and Bfin

are ω-continuous and -cocontinuous. By [5], Ex. 2.2.13, Pfin is ω-cocontinuous.
For a proof of the fact that Pfin is not ω-continuous, see [5], Ex. 2.3.11. Analo-
gously to [5], Thm. 4.1.12, one may show that λ-cocontinuous functors are closed
under exponentiation by exponents with a cardinality less than λ. Finally, ω-
continuous or λ-cocontinuous functors are closed under sequential composition.
Putting all this together, we conclude that for all e ∈ PT(S), Fe : SetS → Set is
ω-continuous, and for all e ∈ T(S), Fe is λ-cocontinuous. o

Define E(Σ) : S → T(S) as follows: For all s ∈ S,

E(Σ)(s) =


dom(f1) + . . .+ dom(fn) if {f1, . . . , fn} = {f ∈ F | ran(f) = s}

and Σ is constructive,
ran(f1)× . . .× ran(fn) if {f1, . . . , fn} = {f ∈ F | dom(f) = s}

and Σ is destructive.

Obviously, the endofunctor FE(Σ) agrees with HΣ . Hence by Thm. 3.5, if Σ is
constructive, then there is an initial Σ-algebra, if Σ is destructive and poly-
nomial, then there is a final Σ-algebra, and both algebras are represented by
co/limits of ascending resp. descending ω-chains:

Theorem 3.6 Let Σ be a constructive signature. By Thm. 3.3 (1), the initial
Σ-algebra A is a colimit of a chain of S-sorted sets. Hence the carriers of A look
as follows: Let I be the S-sorted set with Is = ∅ for all s ∈ S, ini be the
unique S-sorted function from I to HΣ(I) and ∼s be the equivalence closure of
{(a,Hn

Σ(ini)(a)) | a ∈ Hn
Σ(I)s, n ∈ N}. For all s ∈ S,

As = (
∐
n∈N

Hn
Σ(I)s)/∼s .

Let B be a Σ-algebra, β0 be the unique S-sorted function from I to B and
for all n ∈ N and s ∈ S, βn+1,s = [fB ◦ Fe(βn,s)]f :e→s∈F : Hn+1

Σ (I)s → Bs.
The unique Σ-homomorphism foldB : A → B is the unique S-sorted function
satisfying foldB ◦ nat∼ = [βn]n∈N. o

Theorem 3.7 If Σ admits terms, then TΣ is an initial Σ-algebra and for
all Σ-algebras A, foldA : TΣ → A agrees with term evaluation in A: For all
f : e→ s ∈ F and t ∈ TΣ,e, foldA(ft) = fA(foldAe (t)). o

Let G = (S,Z,BS, P) be a context-free grammar (see Section 2) and Y =
∪X∈BSX. The following Σ(G)-algebra is called the word algebra of G: For all

From grammars and automata to algebras and coalgebras 11

s ∈ S, Word(G)s = Z∗. For all w0, . . . , wn ∈ Z∗, e1, . . . , en ∈ S ∪BS,
r = (s, w0s1w1 . . . snwn) ∈ R and v ∈ Fe1×...×en(Word(G)) ⊆ (Z ∪ Y)n,
f

Word(G)
r (v) = w0v1w1 . . . vnwn. The language L(G) of G is the S-sorted
image of TΣ(G) under term evaluation in Word(G): For all s ∈ S, L(G)s =
{foldWord(G)(t) | t ∈ TΣ(G),s}. L(G) is also characterized as the least solution
of the set E(G) of equations between the left- and right-hand sides of the rules
of G (with the non-terminals regarded as variables). If G is not left-recursive,
then the solution is unique [40]. This provides a simple method of proving that
a given language L agrees with L(G): Just show that L solves E(G).

Each parser for G can be presented as a function parseG : (Z ∪ Y)∗ →
M(TΣ(G)) where M is a monadic functor that embeds TΣ(G) into a larger set of
possible results, including syntax errors and/or sets of syntax trees for realizing
non-deterministic parsing [40]. The parser is correct if parseG ◦ foldWord(G) =
ηTΣ(G) (where η is the unit of M) and if all words of (Z ∪Y)∗ \L(G) are mapped
to error messages.

The most fascinating advantage of algebraic compiler construction is the fact
that the same generic compiler can be used for translating L(G) into an arbi-
trary target language formulated as a Σ(G)-algebra A. The respective instance
compileAG : (Z ∪ Y)∗ → M(A) agrees with the composition M(foldA) ◦ parseG.
More efficiently than by first constructing a syntax tree and then evaluating it in
A, compileAG can be implemented as a slight modification of parseG. Whenever
the parser performs a reduction step w.r.t. a rule r of G by building the syntax
tree fr(t1, . . . , tn) from already constructed trees t1, . . . , tn, the compiler derived
from parseG applies the interpretation fr in A to already computed elements
a1, . . . , an of A and thus returns the target object fAr (a1, . . . , an) instead of the
tree fr(t1, . . . , tn). Syntax trees need not be constructed at all!

Expressing the target language of a compiler for G as a Σ(G)-algebra Target
also provides a method for proving that the compiler is correct w.r.t. the seman-
tics Sem(G) and Sem(Target) of G resp. Target . The correctness amounts to
the commutativity of the following diagram:

TΣ(G)

foldTarget

> Target

(1)

Sem(G)

foldSem(G)

∨ encode
> Sem(Target)

execute

∨

Of course, Sem(G) has to be a Σ(G)-algebra. Sem(Target), however, usually
refers to a signature different from Σ(G). But the interpretations of the con-
structors of Σ(G) in Target can often be transferred easily to Sem(Target) such
that the interpreter execute becomes a Σ(G)-homomorphism: For all p ∈ P ,
f
Sem(Target)
r ◦ execute = execute ◦ fTarget

r is a definition of fSem(Target)
r iff the

kernel of execute is compatible with fTarget
r . Finally, we need a homomorphism

encode that mirrors the (term) compiler foldTarget on the semantical level. Fi-

12 Peter Padawitz

nally, if all four functions of (1) are Σ(G)-homomorphisms, then the initiality of
TΣ(G) in AlgΣ(G) implies that the diagram commutes!

Algebraic approaches to formal languages and compiler design are not new.
They have been applied sucessfully to various programming languages (see, e.g.,
[?,46, 33, 13, 47, 32, 37]). Hence it is quite surprising that they are more or less
ignored in the currently hot area of document definition and query languages
(XML and all that) – although structured data play a prominent rôle in such
languages. Instead of associating these data with adequate co/algebraic types,
XML theoreticians boil everything down to regular expressions, words and word
recognizing automata.

Example 3.8 (cf. Exs. 2.1 and 2.4) N is an initial Nat-algebra: 0N = 0 and
for all n ∈ N, succN(n) = n+ 1.

TReg(X) is an initial Reg(X)-algebra. Hence TReg(X),reg is the set of regular
expressions over X. For all such expressions R, foldLang(R) is the language of
R and foldBool(R) checks it for inclusion of the empty word.

For Σ ∈ {List(X),Tree(X,Y),BagTree(X,Y),FDTree(X,Y)}, the elements
of the list- resp. tree-carrier of an initial Σ-algebra can be represented by the
sequences resp. trees that Ex. 2.1 associates with Σ. o

We proceed with to the destructor analogue of Thm. 3.6:
Theorem 3.9 Let Σ be a polynomial destructive signature. By Thm. 3.3

(2), the final Σ-algebra A is a limit of a chain of S-sorted sets. Hence the carriers
of A look as follows: Let T be the S-sorted set with Ts = 1 for all s ∈ S and fin
be the unique S-sorted function from HΣ(T) to T . For all s ∈ S,

As = {a ∈
∏
n∈N

Hn
Σ(T)s | ∀ n ∈ N : an = Hn

Σ(fin)(an+1)}.

Let B be a Σ-algebra, β0 be the unique S-sorted function from B to T and
for all n ∈ N and s ∈ S, βn+1,s = 〈Fe(βn,s) ◦ fA〉f :s→e∈F : As → Hn+1

Σ (T)s.
The unique Σ-homomorphism unfoldB : B → A is the unique S-sorted function
satisfying inc ◦ unfoldB = 〈βn〉n∈N. o

Example 3.10 (cf. Exs. 2.2 and 2.6) A = N ∪ {∞} is a final coNat-algebra:
For all n ∈ A,

predA(n) =

∗ if n = 0,
n− 1 if n > 0,
∞ if n =∞.

MinAut is a final DetAut(X,Y)-algebra, in particular, the DetAut(1, Y)-
algebra of streams over Y is a final DetAut(1, Y)-algebra.

Since T = TReg(X) and Lang are DetAut(X, 2)-algebras, foldLang : T →
Lang is a DetAut(X, 2)-homomorphism (see [40], Section 12) and Lang is a
final DetAut(X, 2)-algebra, foldLang coincides with unfoldT . This fact allows us
to build a generic parser for all regular languages upon δT and βT and to extend
it to a generic parser for all context-free languages by simply incorporating the
respective grammar rules (see [40], Sections 12 and 14).

From grammars and automata to algebras and coalgebras 13

For Σ ∈ {coList(X), coTree(X,Y),FBTree(X,Y)}, the elements of the list-
resp. tree-carrier of a final Σ-algebra can be represented by the sequences resp.
trees that Ex. 2.2 associates with Σ. o

The construction of coNat , coList and coTree from Nat , List resp. Tree is
not accidental. Let Σ = (S, F, P) be a constructive signature and A be a Σ-
algebra. Σ induces a destructive signature CoΣ: Since for all s ∈ S, HΣ(A)s =∐
f :e→s∈F Ae, and since by Thm. 3.1, the initial HΣ-algebra [fA]f :e→s∈F is an

isomorphism, ini−1 is both a HΣ-algebra and a HCoΣ-coalgebra where

CoΣ = (S, {ds : s→
∐

f :e→s∈F

e | s ∈ S}, R).

The final CoΣ-algebra is a completion of the initial Σ-algebra (cf. [12], Thm.
3.2; [3], Prop. IV.2). Its carriers consist of finitely branching trees such that each
node is labelled with a base set or a constructor of Σ (cf. [?], Section 4; [7],
Section II.2):

Let BS be the set of base sets of Σ. The (BS∪S)-sorted set CTΣ of Σ-trees
consists of all partial functions t : N∗ → F ∪ (∪BS) such that for all B ∈ BS,
CTΣ,B = B and for all s ∈ S, t ∈ CTΣ,s iff for all w ∈ N∗,
• t(ε) ∈ F ∧ ran(t(ε)) = s,
• if dom(t(w)) = e1 × . . . × en → s′ ∈ F , then for all 0 ≤ i < n, t(wi) ∈ ei+1

or t(wi) ∈ F and ran(t(wi)) = ei+1.
CTΣ is both a Σ- and a CoΣ-algebra: For all f : e → s ∈ F , t ∈ CTΣ,e) and
w ∈ N∗,

fCTΣ (t)(w) =
{
f if w = ε,
πi(t)(v) if ∃ i ∈ N, v ∈ N∗ : w = iv.

For all s ∈ S and t ∈ CTΣ,s,

dCTΣs (t) = ((λw.t(0w), . . . , λw.t((|dom(t(ε))| − 1)w)), t(ε)) ∈
∐

f :e→s∈F

CTΣ,e.

Moreover, CTΣ is an ω-complete partially ordered S-sorted set – provided that
Σ is pointed, i.e., for all s ∈ S there is B ∈ BS such that Σ contains a
function symbol ⊥s : B → s. A Σ-algebra A is ω-continuous if its carriers are
complete partial orders and if for all f ∈ F , fA is ω-continuous. ωAlgΣ denotes
the subcategory of AlgΣ that consists of all ω-continuous Σ-algebras as objects
and all ω-continuous Σ-homomorphisms between them.

Theorem 3.11 CTΣ is a final CoΣ-algebra. If Σ is pointed, then CTΣ is
initial in ωAlgΣ .

Proof. Initiality follows from [?], Thm. 4.15, [12], Thm. 3.2, or [3], Prop. IV.2.
Let A be a CoΣ-algebra. An S-sorted function h = unfoldA : A → CTΣ

is defined as follows: For all s ∈ S, a ∈ As, i ∈ N and w ∈ N∗, dAs (a) =
((a1, . . . , an), f) implies

h(a)(ε) = f,

h(a)(iw) =
{
h(ai)(w) if 0 ≤ i < |dom(f)|,
undefined otherwise,

14 Peter Padawitz

in short: h(a) = f(h(a1), . . . , h(an)). Let s ∈ S, a ∈ As and dAs (a) = ((a1, . . . , an), f).
Then

dCTΣs (h(a)) = dCTΣs (f(h(a1), . . . , h(an)))
= ((h(a1), . . . , h(an)), f) = h((a1, . . . , an), f) = h(dAs (a)).

Hence h is a coΣ-homomorphism. Conversely, let h′ : A → CTΣ be a coΣ-
homomorphism. Then

dCTΣs (h′(a)) = h′(dAs (a)) = h′((a1, . . . , an), f) = ((h′(a1), . . . , h′(an)), f)
= dCTΣs (f(h′(a1), . . . , h′(an)))

and thus h′(a) = f(h′(a1), . . . , h′(an)) because dCTΣs is injective. We conclude
that h′ agrees with h. o

Another class of polynomial destructive signatures is obtained by dualizing
constructive signatures that admit terms. A destructive signature Σ = (S, F, P)
admits coterms if for all f ∈ F there are e1, . . . , en ∈ S ∪ Set with ran(f) =
e1 + . . . + en. If Σ admits terms, then the Σ-algebra coTΣ of Σ-coterms is
defined as follows:
• For all s ∈ S, coTΣ,s is the greatest set of finitely branching trees t of finite

or infinite depth such that for all f : s→ e1 + . . .+ en ∈ F , n ∈ N, a unique
arc a labelled with a pair (f, i), 1 ≤ i ≤ n, emanates from the (unlabelled)
root of t and either ei ∈ S and the target of a is in coTΣ,ei or ei is a base
set and the target of a is a leaf labelled with an element of ei.
• For all f : s→ e1 + . . .+ en ∈ F and t ∈ coTΣ,s, f coTΣ (t) is the tree where

the edge emanating from the root of t and labelled with (f, i) for some i
points to.

Again, the interpretation of R in TΣ is not fixed.
Theorem 3.12 If Σ admits coterms, then coTΣ is an final Σ-algebra and for

all Σ-algebras A, unfoldA : A → coTΣ agrees with coterm evaluation in A:
Let s ∈ S, a ∈ As, f : s→ e ∈ F and fA(a) = (bf , if). {(f, if) | f : s→ e ∈ F}
is the set of labels of the arcs emanating from the root of unfoldA(a) and for all
f : s→ e ∈ F , the outarc labelled with (f, i) points to unfoldA(bf). o

Example 3.13 (cf. Exs. 2.2 and 3.10) Since DetAut(1,N) admits coterms (if
stateX is replaced by state), coTDetAut(1,N) is a final DetAut(1,N)-algebra. For
instance, the stream [1, 2, 3, . . .] is represented in coTDetAut(1,N) as the following
infinite tree:

1

δ
β

2

δ
β

3

δ
β

We omitted the number component of the edge labels because it is always 1. o
Of course, the construction of a destructive signature from a constructive one

can be reversed: Let Σ = (S, F, P) be a destructive signature. Then

CoΣ = (S, {cs :
∏

f :s→e∈F

e→ s | s ∈ S}, R)

From grammars and automata to algebras and coalgebras 15

is a constructive signature.
It remains to supply a construction for final Σ-algebras for non-polynomial

destructive signatures where the range of some destructor involves the finite-set
constructor set.

Given an S-sorted set M , a signature Σ is M-bounded if for all Σ-algebras
A, s ∈ S and a ∈ As, |〈a〉s| ≤ |Ms|.

Example 3.14 (cf. Ex. 2.2) By [41], Ex. 6.8.2, or [20], Lemma 4.2,
HDetAut(X,Y) is X∗-bounded: For all DetAut(X,Y)-algebras A and a ∈ Astate,

〈st〉 = {δA∗(a)(w), w ∈ X∗}

where δA∗(a)(ε) = st and δA∗(a)(xw) = δA∗(δA(a)(x))(w) for all x ∈ X and
w ∈ X∗. Hence |〈st〉| ≤ |X∗|. o

Example 3.15 (cf. Ex. 2.2) HNDAut(X,Y) is (X∗ × N)-bounded: For all
NDAut-algebras A and a ∈ Astate, 〈st〉 = ∪{δA∗(a)(w), w ∈ X∗} where
a ∈ Astate, δA∗(a)(ε) = {st} and δA∗(a)(xw) = ∪{δA∗(st′)(w) | st′ ∈ δA(a)(x)}
for all x ∈ X and w ∈ X∗. Since for all a ∈ Astate and x ∈ X, |δA(a)(x)| ∈ N,
|〈st〉| ≤ |X∗×N|. If X = 1, then X∗×N ∼= N and thus HNDAut(1,Y) is N-bounded
(see [41], Ex. 6.8.1; [20], Section 5.1). o

Theorem 3.16 ([41], Thm. 10.6; [20], Cor. 4.9 and Section 5.1) All signatures
are bounded. o

A destructive signature Σ = (S, F, P) is Moore-like if there is an S-sorted
set M such that for all f : s → e ∈ F , e = sMs or e is a base set. Then M is
called the output of Σ.

Lemma 3.17 Let Σ = (S, F, P) be a Moore-like signature with output M .
Σ is polynomial and thus by Thm. 3.8, AlgΣ has a final object A. If |S| = 1,
then Σ agrees with DetAut(M,Y) and thus A ∼= MinAut (see Exs. 2.6 and 3.9).
Otherwise A can be constructed as a straightforward extension of MinAut to
several sorts: For all s ∈ S, As = (M∗s →

∏
g:s→Z∈F Z), and for all f : s→ sMs ,

g : s→ Z ∈ F and h ∈ As, fA(h) = λx.λw.h(xw) and gA(h) = πg(h(ε)).
A can be visualized as the S-sorted set of trees such that for all s ∈ S and

h ∈ As, the root r of h has |Ms| outarcs, for all g : s → Z ∈ F , r is labelled
with gA(h), and for all f : s→ sMs and m ∈Ms, fA(h)(m) = λw.h(mw) is the
subtree of h where the m-th outarc of r points to. o

Theorem 3.18 Let M be an S-sorted set, Σ = (S, F, P) be a destructive
signature and F ′ = {fs : s → sMs | s ∈ S} ∪ {f ′ : s → Me | f : s → e ∈ F}.
Of course, Σ′ = (S, F ′, R) is Moore-like. Let τ : HΣ′ → HΣ be the function
defined as follows: For all S-sorted sets A, f : s → e ∈ F and a ∈ HΣ′(M)s,
πf (τA,s(a)) = Fe(πfs(a))(πf ′(a)). τ is a surjective natural transformation.

Proof. The theorem is an adaption of [20], Thm. 4.7 (i)⇒(iv), and the defi-
nitions in its proof to our many-sorted syntax. o

Lemma 3.19 Let Σ = (S, F, P) and Σ′ = (S, F ′, R) be destructive signa-
tures, τ : HΣ′ → HΣ be a surjective natural transformation and A be final in
AlgΣ′ . The following Σ-algebra B is weakly final (i.e., Σ-homomorphisms into
B need not be unique): For all s ∈ S, Bs = As, and for all f : s → e ∈ F ,
fB = πf ◦ τA,s ◦ 〈g1, . . . , gn〉 where {g1, . . . , gn} = {gA | g : s → e ∈ F ′}. B/∼

16 Peter Padawitz

final in AlgΣ where ∼ is the greatest Σ-congruence on B, i.e. the union of all
Σ-congruences on B.

Proof. The lemma is an adaption of [20], Lemma 2.3 (iv), and the definitions
in its proof to our many-sorted syntax. o

Given an arbitrary destructive signature Σ, the previous results lead to a
construction of the final Σ-algebra – provided that the bound is known:

Theorem 3.20 Let M be an S-sorted set, Σ = (S, F, P) be a destruc-
tive signature and the Σ-algebra C be defined as follows: For all s ∈ S, Cs =
(M∗s →

∏
f :s→e∈F Me), and for all f : s → e ∈ F and h ∈ Cs, fC(h) =

Fe(λx.λw.h(xw))(πf (h(ε))). C/∼ is final in AlgΣ where ∼ is the greatest Σ-
congruence on C.

Proof. Let F ′ = {f ′ : s → Me | f : s → e ∈ F} and Σ′ = (S, F ′ ∪ {fs :
s → sMs | s ∈ S}, P). By Thm. 3.18, τ : HΣ′ → HΣ with πf (τA,s(a)) =
Fe(πfs(a))(πf ′(a)) for all A ∈ SetS , f : s → e ∈ F and a ∈ HΣ′(A)s is a sur-
jective natural transformation. Since Σ′ is Moore-like, Lemma 3.17 implies that
the following Σ′-algebra A is final: For all s ∈ S, As = (M∗s →

∏
f ′:s→Z∈F ′ Z =∏

f :s→e∈F Me), and for all h ∈ As and f ′ : s→ Z ∈ F ′, fAs (h) = λm.λw.h(mw)
and f ′A(h) = πf ′(h(ε)). By Lemma 3.19, the following Σ-algebra B is weakly fi-
nal: For all s ∈ S, Bs = As, and for all f : s→ e ∈ F , fB = πf ◦τA,s◦〈g1, . . . , gn〉
where {g1, . . . , gn} = {gA | g : s → e ∈ F ′}. Hence for all f : s → e ∈ F and
h ∈ Bs,

fB(h) = πf (τA,s(〈g1, . . . , gn〉(h))) = πf (τA,s(g1(h), . . . , gn(h)))
= Fe(πfs(g1(h), . . . , gn(h)))(πf ′(g1(h), . . . , gn(h))) = Fe(fAs (h))(f ′A(h))
= Fe(λx.λw.h(xw))(πf ′(h(ε))) = Fe(λx.λw.h(xw))(πf (h(ε))) = fC(h).

We conclude that C = B is weakly final. Hence by Lemma MOOREFIN, C/∼ =
B/∼ is final in AlgΣ . o

Example 3.21 LetM = Mstate = X∗×N, Z1 = Fset(state)X (M) = Pfin(M)X

and Z2 = FY (M) = Y . By Ex. 3.15,HNDAut(X,Y) isM -bounded. Hence by Thm.
3.20, the following NDAut(X,Y)-algebra C is weakly final: Cstate = (M∗ →
Z1 × Z2) and for all h ∈ Cstate and x ∈ X, h(ε) = (g, y) implies

δC(h)(x) = Fset(state)X (λm.λw.h(mw))(πδ(h(ε)))(x)
= Fset(state)X (λm.λw.h(mw))(g)(x) = Fset(state)(λm.λw.h(mw))(g(x))
= {Fstate(λm.λw.h(mw))(m) | m ∈ g(x)}
= {λm.λw.h(mw))(m) | m ∈ g(x)} = {λw.h(mw) | m ∈ g(x)},

βC(h) = FY (λx.λw.h(xw))(πβ(h(ε))) = FY (λx.λw.h(xw))(y) = idY (y) = y.

Moroever, C/∼ is a final Σ-algebra where ∼ is the greatest Σ-congruence on C,
i.e. the union of all binary relations on C such that for all h, h′ ∈ Cstate,

h ∼ h′ implies δC(h) ∼set(state)X δC(h′) ∧ βC(h) ∼Y βC(h′),

i.e., for all x ∈ X, h ∼ h′, h(ε) = (g, y) and h′(ε) = (g′, y′) imply

∀ m ∈ g(x) ∃n ∈ g′(x) : λw.h(mw) ∼ λw.h′(nw) ∧
∀ n ∈ g′(x) ∃m ∈ g(x) : λw.h(mw) ∼ λw.h′(nw) ∧ y = y′.

From grammars and automata to algebras and coalgebras 17

Let Σ′ = ({state}, {δ : state → Z1, β : state → Z2, f : state → stateM}, ∅).
By the proof of Thm. 3.20, C is constructed from the Σ′-algebra A such that
Astate = Cstate and for all h ∈ Astate, fAstate(h) = λm.λw.h(mw) and 〈δA, βA〉(h)
= h(ε) ∈ Z1 × Z2. Since Σ′ is Moore-like, Lemma 3.17 implies that Cstate can
be visualized as the set of trees h such that the root r of h has |M | outarcs, r is
labelled with h(ε) and for all m ∈ M , λw.h(mw) is the subtree of h where the
m-th outarc of r points to. See [21], Section 5, for a description of C/∼ in the
case X = Y = 1. o

4 Co/induction, abstraction, restriction, extension and
co/recursion

After having shown in the previous sections how to build the domains of many-
sorted initial or final models, let us turn to their analysis (by co/induction),
the definition of functions on their domains (by co/recursion), their extension
by further constructors resp. destructors, the factoring (abstraction) of initial
models and the restriction of final one.

The dual operations of the last two, i.e., restriction of an initial model or
abstraction of a final model, are impossible because an initial Σ-algebra has no
Σ-invariants besides itself and a final Σ-algebra has no congruences besides the
diagonal ([44], Thm. 4.3):

Lemma 4.1 (see Section 2) Let Σ be a constructive signature. (1) For all
Σ-algebras A, img(foldA) is the least Σ-invariant of A. (2) If A is initial, then
A is the only Σ-invariant of A.

Let Σ be a destructive signature. (3) For all Σ-algebras A, ker(unfoldA) is
the greatest Σ-congruence on A. (4) If A is final, then 〈idA, idA〉(A) is the only
Σ-congruence on A.

Proof of (2) and (4). Let Σ be constructive, A be initial and inv be a Σ-
invariant of A. Then inc ◦ fold inv = idA. Hence inc ◦ fold inv and thus inc are
surjective. We conclude that inv and A are Σ-isomorphic.

Let Σ be destructive, A be final and ∼ be a Σ-congruence on A. Then
unfoldA/∼ ◦ nat∼ = idA. Hence unfoldA/∼ ◦ nat∼ and thus nat∼ are injective.
We conclude that A and A/∼ are Σ-isomorphic. o

By Lemma 4.1 (2) and (4), algebraic co/induction is sound:
Algebraic Induction. Let Σ = (S, F, P) be a constructive signature, A be

an initial Σ-algebra and R ⊆ A. R = A iff inv ⊆ R for some Σ-invariant inv of
A. o

Algebraic Coinduction. Let Σ = (S, F, P) be a destructive signature, A
be a final Σ-algebra and R ⊆ A2. R ⊆ 〈idA, idA〉(A) iff R ⊆∼ for some Σ-
congruence ∼ on A. o

In practice, an inductive proof of R = A starts with inv := R and stepwise
decreases inv as long as inv is not an invariant. In terms of the formula ϕ that
represents inv, each modification of inv is a conjunctive extension – usually
called a generalization – of ϕ. The goal R = A means that A satisfies ϕ.

18 Peter Padawitz

Dually, a coinductive proof of R = 〈idA, idA〉(A) starts with ∼:= R and
stepwise increases ∼ as long as ∼ is not a congruence. In terms of the formula
ϕ that represents ∼, each modification of ∼ is a disjunctive extension of ϕ. The
goal R = 〈idA, idA〉(A) means that A satisfies the equations given by ϕ.

Example 4.2 (see Exs. 2.6 and 3.10) Let A be a DetAut(X, 2)-algebra.
∼⊆ A2 is a DetAut(X, 2)-congruence iff for all a, b ∈ Astate and x ∈ X, a ∼ b
implies δA(a)(x) ∼ δA(b)(x) and βA(a)(x) = βA(b)(x). Since the algebra T =
TReg(X) of regular expressions and the algebra Lang of languages over X is a
final DetAut(X, 2)-algebra, Lang is final and unfoldT agrees with foldLang, two
regular expressions R,R′ have the same language (= image under foldLang) iff
for some w ∈ X∗, the regular expressions δT∗(R)(w) and δT∗(R′)(w) (see Ex.
3.14) have the same language (since, e.g., they are rewritable into each other by
applying basic properties of regular operators). It is easy to see how this way of
proving language equality can also be used for constructing the minimal acceptor
〈L〉 of the language L of a regular expression. o

Algebraic co/induction is a special case of predicate co/induction that applies
to arbitrary Σ-algebra A and least resp. greatest interpretations of predicates
of Σ in A. For ensuring that such interpretations exist, the predicates must be
axiomatized in terms of co/Horn clauses [34, 35, 38, 39]:

Let Σ = (S, F, P) be a signature and A be a Σ-algebra. A Σ-formula ϕ
is a well-typed first-order formula built up from logical operators, symbols of
F ∪ R, liftings thereof (see Section 2) and elements of a fixed T(S)-sorted set
Var of variables. The interpretation ϕA of ϕ in A is the set of T(S)-sorted
valuations f : Var → A that satisfy ϕ. The interpretation tA : AVar → A of a
term t occurring in ϕ is the T(S)-sorted function that takes a valuation f and
evaluates t in A under f . (For lack of space, we omit formal definitions here.) A
Σ-formula ϕ ⇐ ψ resp. ϕ ⇒ ψ is a Σ-Horn clause resp. Σ-co-Horn clause
if ϕ is an atom(ic formula) and ψ is negation-free.

Let Σ = (S, F, P) be a signature, Σ′ = (S, F, ∅), C be a Σ′-algebra and
AlgΣ,C be the category of all Σ-algebras A with A|Σ′ = C. AlgΣ,C is a complete
lattice: For all A,B ∈ AlgΣ,C , A ≤ B ⇔ ∀ p ∈ P : pA ⊆ pB . For all A ⊆ AlgΣ,C
and p : e ∈ P , p⊥ = ∅, p> = Ae, pt(A) =

⋃
A∈A r

A and pu(A) =
⋂
A∈A r

A.
Let Φ : AlgΣ,C → AlgΣ,C be a monotone function. A ∈ AlgΣ,C is Φ-closed
if Φ(A) ≤ A. A is Φ-dense if A ≤ Φ(A). The well-known fixpoint theorem of
Knaster and Tarski provides fixpoints of Φ:

Theorem 4.3 lfp(Φ) = u{A ∈ AlgΣ,C | A is Φ-dense} is the least and
gfp(Φ) = t{A ∈ AlgΣ,C | A is Φ-closed} is the greatest fixpoint of Φ. o

Obviously, for all negation-free formulas ϕ and A,B ∈ AlgΣ,C , A ≤ B implies
ϕA ⊆ ϕB . A set AX of Σ-formulas that consists of only Horn clauses or only
co-Horn clauses induces a monotone function Φ : AlgΣ,C → AlgΣ,C : For all
A ∈ AlgΣ,C and p : e ∈ P , pΦ(A) = {(tA(f) | f ∈ ϕA, r(t) ⇐ ϕ ∈ AX} if AX
consists of Horn clauses and pΦ(A) = Ae \ {(tA(f) | f ∈ AVar \ ϕA, p(t)⇒ ϕ ∈
AX} if AX consists of co-Horn clauses. Hence by Thm. 4.3, Φ has a least fixpoint
lfp(Σ,C,AX) = lfp(Φ) and a greatest fixpoint gfp(Σ,C,AX) = gfp(Φ). In other
words, lfp and gfp are the least resp. greatest A ∈ AlgΣ,C that satisfy AX, or,

From grammars and automata to algebras and coalgebras 19

if we regard the predicate symbols in AX as variables, then {plfp | p ∈ P} is
the least and {pgfp | p ∈ P} is the greatest solution of AX in P . This implies
immediately that predicate co/induction is sound:

Predicate Induction Let AX be a set of Horn clauses. lfp = lfp(Σ,C,AX)
satisfies p(x)⇒ ψ(x) iff there is a formula ψ′(x) such that for all p(t)⇐ ϕ ∈ AX,
lfp satisfies p(t) ⇐ ϕ′ where ϕ′ is obtained from ϕ by replacing all occurrences
of atoms p(u) with ψ(u) ∧ ψ′(u). o

Predicate Coinduction LetAX be a set of co-Horn clauses. gfp = gfp(Σ,C,AX)
satisfies p(x)⇐ ψ(x) iff there is a formula ψ′(x) such that for all p(t)⇒ ϕ ∈ AX,
gfp satisfies r(t)⇒ ϕ′ where ϕ′ is obtained from ϕ by replacing all occurrences
of atoms p(u) with ψ(u) ∨ ψ′(u). o

AlgΣ,AX denotes the category of all Σ-algebras that satisfy AX. Co/Horn
clause syntax admits four ways of axiomatizing invariants resp. congruences and
thus restricting resp. factoring initial or final models: Let Σ = (S, F, P) be a
signature and Σ′ = (S, F, ∅).

Theorem 4.4 (abstractions) [36] For all s ∈ S, let r : s × s ∈ P and C be
initial in AlgΣ′ .

(1) Suppose that AX is a set of Horn clauses such that for all A ∈ AlgΣ,AX ,
rA is a Σ-congruence. Let lfp = lfp(Σ,C,AX). If AX meets certain syntactical
restrictions, then the quotient of lfp by rlfp is initial in the category K of all
algebras of AlgΣ,C that satisfy AX and interpret r : s× s as 〈id, id〉(Cs).

(2) Suppose that AX is a set of co-Horn clauses such that for all A ∈
AlgΣ,AX , rA is a Σ-congruence. Let gfp = gfp(Σ,C,AX). If AX meets certain
syntactical restrictions, then the quotient of gfp by rgfp is final in the category of
all F -reachable algebras of K (see below). rgfp coincides with the final semantics
[28, 48, 49] deal with. o

Theorem 4.5 (restrictions) [36] For all s ∈ S, let r : s ∈ P and C be final
in AlgΣ′ .

(1) Suppose that AX is a set of co-Horn clauses such that for all A ∈
AlgΣ,AX , rA is a Σ-invariant. Let gfp = gfp(Σ,C,AX). If AX meets certain
syntactical restrictions, then rgfp is final in the category K of all algebras of
AlgΣ,C that satisfy AX and interpret r : s as Cs.

(2) Suppose that AX is a set of Horn clauses such that for all A ∈ AlgΣ,AX ,
rA is a Σ-invariant. Let lfp = lfp(Σ,C,AX). If AX meets certain syntactical
restrictions, then rlfp is initial in the category of all F -observable algebras of K
(see below). o

Given a signature Σ = (S, F, P) and a set AX of Σ-formulas, AlgΣ,AX
denotes the full subcategory of AlgΣ whose objects satisfy (all formulas of)
AX. Let Σ′ = (S′, F ′, P ′) be a subsignature of Σ, AX be a set Σ-formulas,
AX ′ ⊆ AX be a set Σ′-formulas, A be a Σ-algebra and B = A|Σ′ .

Let Σ be constructive and µΣ and µΣ′ be initial in AlgΣ,AX resp. AlgΣ′,AX′ .
A is F ′-reachable or -generated if foldB : µΣ′ → B is surjective. A is F ′-
consistent if foldB is injective. (Σ,AX) is a conservative extension of (Σ′, AX ′)
if µΣ is F ′-reachable and F ′-consistent, i.e. if µΣ|Σ′ and µΣ′ are isomorphic.

20 Peter Padawitz

Let Σ be destructive and νΣ′ and νΣ be final in AlgΣ,AX resp. AlgΣ′,AX′ .
A is F ′-observable or -cogenerated if unfoldB : B → νΣ′ is injective. A is
F ′-complete if unfoldB is surjective. (Σ,AX) is a conservative extension
of (Σ′, AX ′) if νΣ is F ′-observable and F ′-complete, i.e. νΣ|Σ′ and νΣ′ are
isomorphic.

Proposition 4.6 [36] Let Σ be constructive. If A is initial in AlgΣ,AX ,
then A is F ′-reachable iff img(foldB) is a Σ-invariant. If µΣ′ can be extended
to an algebra of (Σ,AX)-algebra, then (Σ,AX) is a conservative extension of
(Σ′, AX ′).

Let Σ be destructive. If A is final in AlgΣ,AX , then A is F ′-observable iff
ker(unfoldB) is a Σ-congruence. If νΣ′ can be extended to a (Σ,AX)-algebra,
then (Σ,AX) is a conservative extension of (Σ′, AX ′). o

Conservative extensions add constructors or destructors to a signature with-
out changing the carrier of the initial resp. final model. Each other functions
can be axiomatized in terms of co/recursive equations, which means that there
is a Σ-algebra A such that f agrees with foldA resp. unfoldA. By Prop. 2.4 (2),
this holds true iff f is simply an S-sorted function whose kernel resp. image is
compatible with F . (The use Prop. 2.4 (2) for co/recursive definitions on initial
resp. final co/algebras was first suggested by [16], Thm. 4.2 resp. 5.2.) However,
as constructors and destructors usually are not (components of) S-sorted func-
tions, the domain or range of f is seldom a single sort s ∈ S, but a composed
type e ∈ T(S). Hence we follow [23] and start out from a category K and an
adjunction between K and SetS such that f can be described as a K-morphism,
while foldA resp. unfoldA comes up as the unique SetS-extension of f that the
adjunction generates:

Let Σ = (S, F, P) be a constructive signature, K =
∏
s∈S Ks be a product

category and (L : SetS → K, G : K → SetS , η, ε) be an adjunction. A K-
morphism f : L(µΣ) → B is Σ-recursive if the kernel of the SetS-extension
f# : µΣ → G(B) of f is compatible with F .

Let Σ = (S, F, P) be a destructive signature, K =
∏
s∈S Ks be a product

category and (L : K → SetS , G : SetS → K, η, ε) be an adjunction. A K-
morphism f : A→ G(νΣ) is Σ-corecursive if the image of the SetS-extension
f∗ : L(A)→ νΣ of f is compatible with F .

Example 4.7 The factorial function fact : N→ N is usually axiomatized by
the following equations involving the constructors 0 : 1→ nat and succ : nat→
nat of Nat (see Ex. 2.1):

fact(0) = 1, fact(n+ 1) = fact(n) ∗ (n+ 1).

Since by Ex. 3.8, N is an initial Nat-algebra, we may show that fact is Nat-
recursive. This cannot be concluded from the above equations because the vari-
able n occurs at a non-argument position. Hence we add the identity on N and
show that the desired property for fact and id simultaneously. The corresponding
equations read as follows:

〈fact , id〉(0) = (1, 0), 〈fact , id〉(n+ 1) = (fact(n) ∗ (id(n) + 1), id(n) + 1).

From grammars and automata to algebras and coalgebras 21

We choose the product adjunction

((_,_) : Set→ Set2,× : Set2 → Set, λA.〈idA, idA〉, (π1, π2)).

The latter equations imply that the kernel of the Set-extension (fact , id)# =
〈fact , id〉 : N → N2 of (fact , id) : (N,N) → (N,N) is compatible with 0 and
succ. Hence (fact , id) is Nat-recursive and by Prop. 2.4 (2), 〈fact , id〉 is a Nat-
homomorphism, in particular, N2 is a Nat-algebra: 0N2

= (1, 0) and succN2
=

λ(m,n).(m ∗ (n+ 1), n+ 1). Hence foldN2
= (fact , id)#. o

Example 4.8 The streams 01 = [0, 1, 0, 1, . . .] and 10 = [1, 0, 1, 0, . . .] can
be axiomatized by the following equations involving the destructors δ : state→
state and β : state→ 2 of DetAut(1, 2) (see Ex. 2.2):

〈δ, β〉(01) = (10, 0), 〈δ, β〉(10) = (01, 1) (1)

Since by Ex. 3.10, 2N is a final DetAut(1, 2)-algebra, we may show that (01, 10)
is DetAut(1, 2)-corecursive. We choose the coproduct adjunction

(+ : Set2 → Set, (_,_) : Set→ Set2, (ι1, ι2), λA.[idA, idA]).

The above equations imply that the image of the Set-extension (01, 10)∗ =
[01, 10] : 2 → 2N of (01, 10) : (1, 1) → (2N, 2N) is compatible with δ and β.
Hence (01, 10) is DetAut(1, 2)-corecursive and by Prop. 2.4 (2), [01, 10] is a
DetAut(1, 2)-homomorphism, in particular, 2 is a DetAut(1, 2)-algebra: δ2(0) =
1, δ2(1) = 0 and β2 = id2. Hence unfold2 = (01, 10)∗.

Since for all sets 2, DetAut(1, 2) admits coterms, DetAut(1, 2) induces the
constructive signature CoDetAut(1, 2) = ({state}, {cons : 2× state→ state}, ∅)
that admits terms (see Section 3). It does not matter that initial CoDetAut(1, 2)-
algebras are empty. Here we only use the syntax of CoDetAut(1, 2): The streams
01 and 10 can be axiomatized by equations involving cons:

01 = cons(0, 10), 10 = cons(1, 01). (2)

The definition of 01 and 10 derived from (1) provides a solution of (2) where 01
and 10 are regarded as variables. Conversely, each solution (a, b) of (2) has the
unique Set-extension [a, b], which is a DetAut(1, 2)-homomorphism into a final
DetAut(1, 2)-algebra and thus unique. Hence (2) has a unique solution! o

The last observation can be generalized to the following result obtained in
several ways and on many levels of abstraction (see, e.g., [?], Thm. 5.2; [4], Thm.
3.3): Given a constructive signature Σ that admits terms, ideal or guarded Σ-
equations like (2) have unique solutions in CTΣ (see Section 3). Via this result,
coalgebra has even found its way into functional programming (see, e.g. [43, 24]).

References

1. J. Adámek, Free algebras and automata realizations in the language of categories,
Commentat. Math Univers. Carolinae 15 (1974) 589-602

22 Peter Padawitz

2. J. Adámek, Introduction to Coalgebra, Theory and Applications of Categories 14
(2005) 157-199

3. J. Adámek, Final coalgebras are ideal completions of initial algebras, Journal of
Logic and Computation 12 (2002) 217-242

4. P. Aczel, J. Adámek, J. Velebil, A Coalgebraic View of Infinite Trees and Iteration,
Proc. Coalgebraic Methods in Computer Science, Elsevier ENTCS 44 (2001) 1-26

5. J. Adámek, S. Milius, L.S. Moss, Initial algebras and terminal coalgebras: a survey,
draft of Feb. 7, 2011, TU Braunschweig

6. J. Adámek, H.–E. Porst, From varieties of algebras to covarieties of coalgebras,
Proc. Coalgebraic Methods in Computer Science, Elsevier ENTCS 44 (2001) 27–46

7. J. Adámek, H.–E. Porst, On Tree Coalgebras and Coalgebra Presentations, The-
oretical Computer Science 311 (2004) 257-283

8. M.A. Arbib, Free dynamics and algebraic semantics, Proc. Fundamentals of Com-
putation Theory, Springer LNCS 56 (1977) 212-227

9. M.A. Arbib, E.G. Manes, Parametrized Data Types Do Not Need Highly Con-
strained Parameters, Information and Control 52 (1982) 139-158

10. E. Astesiano, H.-J. Kreowski, B. Krieg-Brückner, eds., Algebraic Foundations of
Systems Specification, IFIP State-of-the-Art Report, Springer 1999

11. M. Barr, Coequalizers and Free Triples, Math. Zeitschrift 116 (1970) 307-322
12. M. Barr, Terminal coalgebras in well-founded set theory, Theoretical Computer

Science 114 (1993) 299-315
13. M.G.J. van den Brand, J. Heering, P. Klint, P.A. Olivier, Compiling Rewrite

Systems: The ASF+SDF Compiler, ACM TOPLAS 24 (2002)
14. J.A. Brzozowski, Derivatives of regular expressions, Journal ACM 11 (1964)

481–494
15. H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1, Springer 1985
16. J. Gibbons, G. Hutton, Th. Altenkirch, When is a function a fold or an unfold?,

Proc. Coalgebraic Methods in Computer Science, Elsevier ENTCS 44 (2001) 146-
159

17. J. Goguen, G. Malcolm, A Hidden Agenda, Theoretical Computer Science 245
(2000) 55-101

18. J.A. Goguen, J.W. Thatcher, E.G. Wagner, An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract Data Types, in: R. Yeh,
ed., Current Trends in Programming Methodology 4, Prentice-Hall (1978) 80-149

19. J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright, Initial Algebra Semantics
and Continuous Algebras, J. ACM 24 (1977) 68-95

20. H.P. Gumm, T. Schröder, Coalgebras of bounded type, Math. Structures in Com-
puter Science 12 (2002),565-578

21. H.P. Gumm, Universelle Coalgebra, in: Th. Ihringer, Allgemeine Algebra, Helder-
mann Verlag 2003

22. J. Guttag, E. Horowitz, D.R. Musser, Abstract Data Types and Software Valida-
tion, Communications of the ACM 21 (1978) 1048-1064

23. R. Hinze, Adjoint Folds and Unfolds, Proc. Mathematics of Program Construction
2010, Springer LNCS 6120, 195–228,

24. R. Hinze, Reasoning about Codata, Proc. CEFP 2009, Springer LNCS 6299 (2010)
42-93

25. B. Jacobs, Invariants, Bisimulations and the Correctness of Coalgebraic Refine-
ments, Proc. Algebraic Methodology and Software Technology, Springer LNCS
1349 (1997) 276-291

26. B. Jacobs, Introduction to Coalgebra, Radboud University Nijmegen 2005

From grammars and automata to algebras and coalgebras 23

27. B. Jacobs, A Bialgebraic Review of Deterministic Automata, Regular Expressions
and Languages, in: K. Futatsugi et al. (eds.), Goguen Festschrift, Springer LNCS
4060 (2006) 375–404

28. S. Kamin, Final Data Type Specifications: A New Data Type Specification Method,
ACM TOPLAS 5 (1983) 97-123

29. J. Lambek, A fixpoint theorem for complete categories, Math. Zeitschrift 103
(1968) 151-161

30. D.J. Lehmann, M.B. Smyth, Algebraic Specification of Data Types: A Synthetic
Approach, Math. Systems Theory 14 (1981) 97-139

31. J. Meseguer, J.A. Goguen, Initiality, Induction and Computability, in: M. Nivat,
J. Reynolds, eds., Algebraic Methods in Semantics, Cambridge University Press
(1985) 459-541

32. J. Meseguer, G. Rosu, The Rewriting Logic Semantics Project, Theoretical Com-
puter Science 373 (2007)

33. E.A. van der Meulen, Deriving incremental implementations from algebraic spec-
ifications, Proc. 2nd AMAST, Springer (1992) 277-286

34. P. Padawitz, Proof in Flat Specifications, in: E. Astesiano, H.-J. Kreowski, B.
Krieg-Brückner, eds., Algebraic Foundations of Systems Specification, IFIP State-
of-the-Art Report, Springer (1999) 321-384

35. P. Padawitz, Swinging Types = Functions + Relations + Transition Systems,
Theoretical Computer Science 243 (2000) 93-165

36. P. Padawitz, Dialgebraic Specification and Modeling, slides, TU Dortmund 2011,
fldit-www.cs.tu-dortmund.de/∼peter/DialgSlides.pdf

37. P. Padawitz, Algebraic compilers and their implementation in Haskell, Sierra
Nevada IFIP WG 1.3 meeting (January 14-18th, 2008)

38. P. Padawitz, Algebraic Model Checking, in: F. Drewes, A. Habel, B. Hoff-
mann, D. Plump, eds., Manipulation of Graphs, Algebras and Pictures, Elec-
tronic Communications of the EASST 26 (2010); extended slides: fldit-www.cs.tu-
dortmund.de/∼peter/CTL.pdf

39. P. Padawitz, Expander2 as a Prover and Rewriter, fldit-www.cs.tu-dortmund.de/
∼peter/Prover.pdf

40. P. Padawitz, Übersetzerbau, course notes, TU Dortmund 2010, fldit-www.cs.tu-
dortmund.de/∼peter/CbauFolien.pdf

41. J.J.M.M. Rutten, Universal Coalgebra: A Theory of Systems, Theoretical Com-
puter Science 249 (2000) 3-80

42. J.J.M.M. Rutten, Automata and coinduction (an exercise in coalgebra), Proc.
CONCUR ’98, Springer LNCS 1466 (1998) 194–218

43. J.J.M.M. Rutten, Behavioural differential equations: a coinductive calculus of
streams, automata, and power series, Theoretical Computer Science 308 (2003)
1-53

44. J.J.M.M. Rutten, D. Turi, Initial Algebra and Final Coalgebra Semantics for Con-
currency, Report CS-R9409, CWI, Amsterdam 1994

45. K. Sen, G. Rosu, Generating Optimal Monitors for Extended Regular Expressions,
Proc. Runtime Verification 2003, Elsevier ENTCS 89 (2003) 226-245

46. J.W. Thatcher, E.G. Wagner, J.B. Wright, More on Advice on Structuring Com-
pilers and Proving Them Correct, Theoretical Computer Science 15 (1981) 223-249

47. E. Visser, Program Transformation with Stratego/XT: Rules, Strategies, Tools,
and Systems, in: C. Lengauer et al., eds., Domain-Specific Program Generation,
Springer LNCS 3016 (2004)

48. M. Wand, Final algebra semantics and data type extension, J. Comp. Syst. Sci.
19 (1979) 27-44

24 Peter Padawitz

49. M. Wirsing, Algebraic Specification, in: J. van Leeuwen, ed., Handbook of Theo-
retical Computer Science, Elsevier (1990) 675-788

