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Abstract: This paper tries to explain why and how category theory
is useful in computing science, by giving guidelines for applying seven
basic categorical concepts: category, functor, natural transformation,
limit, adjoint, colimit and comma category. Some examples, intuition,
and references are given for each concept, but completeness is not at-
tempted. Some additional categorical concepts and some suggestions for
further research are also mentioned. The paper concludes with some
philosophical discussion.

0 Introduction

This paper tries to explain why category theory is useful in computing science. The
basic answer is that computing science is a young field that is growing rapidly, is
poorly organised, and needs all the help it can get, and that category theory can
provide help with at least the following;:

e Formulating definitions and theories. In computing science, it is often more
difficult to formulate concepts and results than to give a proof. The seven
guidelines of this paper can help with formulation; the guidelines can also be
used to measure the elegance and coherence of existing formulations.

e Carrying out proofs. Once basic concepts have been correctly formulated in a
categorical language, it often seems that proofs “just happen”: at each step,
there is a “natural” thing to try, and it works. Diagram chasing (see Section
1.2) provides many examples of this. It could almost be said that the purpose
of category theory is to reduce all proofs to such simple calculations.

e Discovering and exploiting relations with other fields. Sufficiently abstract
formulations can reveal surprising connections. For example, an analogy be-
tween Petri nets and the A-calculus might suggest looking for a closed category
structure on the category of Petri nets [52].

e Dealing with abstraction and representation independence. In computing sci-
ence, more abstract viewpoints are often more useful, because of the need to
achieve independence from the often overwhelmingly complex details of how
things are represented or implemented. A corollary of the first guideline (given
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in Section 1) is that two objects are “abstractly the same” iff they are isomor-
phic; see Section 1.1. Moreover, universal constructions (i.e., adjoints) define
their results uniquely up to isomorphism, i.e., “abstractly” in just this sense.

e Formulating conjectures and research directions. Connections with other fields
can suggest new questions in your own field. Also the seven guidelines can help
to guide research. For example, if you have found an interesting functor, then
you might be well advised to investigate its adjoints.

e Unification. Computing science is very fragmented, with many differenct sub-
disciplines having many different schools within them. Hence, we badly need
the kind of conceptual unification that category theory can provide.

Category theory can also be abused, and in several different styles. One style of
abuse is specious generality, in which some theory or example is generalised in a way
that does not actually include any new examples of genuine interest. A related style
of abuse is categorical overkill, in which the language of category theory is used
to describe phenomena that do not actually require such an elaborate treatment
or terminology. An example is to describe a Galois connection in the language of
adjoint functors.

Category theory has been called “abstract nonsense” by both its friends and its
detractors. Perhaps what this phrase suggests to both is that category theory has
relatively more form than content, compared to other areas of mathematics. Its
friends claim this as a virtue, in contrast to the excessive concreteness and repre-
sentation dependence of set theoretic foundations, and the relatively poor guidance
for discovering elegant and coherent theories that they provide. Section 9 discusses
this further.

Category theory can also be used in quite concrete ways, because categories
are after all just another algebraic structure, generalising both monoids and partial
orders (see also Example 1.4 below).

This paper presents seven guidelines for using category theory, each with some
general discussion and specific examples. There is no claim to originality, because
I believe the underlying intuitions are shared by essentially all workers in category
theory, although they have been perhaps understandably reluctant to place such
dogmatic assertions in textbooks or other written documents?. The guidelines are
necessarily imprecise, and will seem exaggerated if taken too literally, because they
are not objective facts, but rather heuristics for applying certain mathematical con-
cepts. In particular, they may seem difficult to apply, or even impossible, in some
situations, and they may need refinement in others. As a reminder that they should
not be taken too dogmatically, I will call them dogmas.

No attempt is made to be exhaustive. In particular, the technical definitions are
omitted, because our purpose is to provide intuition, and the definitions can be found
in any textbook. Thus, if you are a newcomer to category theory, you will need to use
some text in connection with this paper. Unfortunately, no existing text is ideal for
computing scientists, but perhaps that by Goldblatt [36] comes closest. The classic
text by Mac Lane [47] is warmly recommended for those with sufficient mathematics
background, and Herrlich and Strecker’s book [39] is admirably thorough; see also
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[2] and [45]. The paper [22] gives a relatively concrete and self-contained account of
some basic category theory for computing scientists, using theories, equations, and
unification as motivation, and many examples from that paper are used here.

1 Categories

The first dogma is as follows:

To each species of mathematical structure, there corresponds a category
whose objects have that structure, and whose morphisms preserve it.

It is part of this guideline that in order to understand a structure, it is necessary
to understand the morphisms that preserve it. Indeed, category theorists have
argued that morphisms are more important than objects, because they reveal what
the structure really is. Moreover, the category concept can be defined using only
morphisms. Perhaps the bias of modern Western languages and cultures towards
objects rather than relationships accounts for this (see [50, 64] for some related
discussion). By way of notation, we use “;” for composition, and 14 for the identity
morphism at an object A. Now some examples:

1.1 Sets. If we take sets to be objects, then their morphisms are clearly going
to be functions. A set morphism, however, is not just a set of ordered pairs,
because it must also specify particular source and target sets. This is con-
sistent with practice in computation theory which assigns types to functions.
The set theoretic representation of functions is an artifact of the set theoretic
foundations of mathematics, and like all such representations, has accidental
properties beyond those of the concept it is intended to capture. One of those
properties is that any two sets of ordered pairs can be composed to yield a
third. The category Set of sets embodies a contrary point of view, that each
function has a domain in which its arguments are meaningful, a codomain in
which its results are meaningful, and composition of functions is only allowed
when meaningful in this sense. (See [36] for related discussions.)

1.2 Relations. Just as with functions, it seems desirable to take the view that the
composition of relations is only meaningful when the domains match. Thus,
we may define a relation from a set Aj to a set Ay to be a triple (Ag, R, A1)
with R C Ay x Aj, and then allow its composition with (B, S, B1) to be
defined iff A; = By. This gives rise to a category that we denote Rel, of which
Set can be considered a subcategory.

1.3 Graphs. A graph G consists of a set F of edges, a set N of nodes, and
two functions 0y,01: E — N which give the source and target of each
edge, respectively. Because the major components of graphs are sets, the
major components of their morphisms should be corresponding functions that
preserve the additional structure. Thus a morphism from G = (E, N, 9y, 0;)
to G' = (E',N', 9}, 01) consists of two functions, f: E — E' and g: N — N’,
such that the following diagram commutes in Set for ¢ = 0, 1:



1.4

1.5

1.6

E N
f g
E' N’

0;
To show that we have a category Graph of graphs, we must show that a compo-
sition of two such morphisms is another, and that a pair of identity functions
satisfies the diagrams and also serves as an identity for composition.

Paths in a Graph. Given a graph G, each path in G has a source and a
target node in G, and two paths, p and p’, can be composed to form another
path p;p’ iff the source of p’ equals the target of p. Clearly this composition
is associative when defined, and each node can be given an “identity path”
having no edges. This category is denoted Pa(G). (Details may be found in
[47], [34], [19], and many other places.)

Automata. An automaton consists of an input set X, a state set S, an output
set Y, a transition function f: X x § — S, an initial state so € S, and an
output function g: S — Y. What does it mean to preserve all this structure?
Because the major components of automata are sets, the major components of
their morphisms should be corresponding functions that preserve the structure.
Thus a morphism from A = (X,S,Y, s, f,g9) to A" = (X', S, Y, s(, f',9)
should consist of three functions, h: X — X', i: S — S, and j: Y — Y/,
such that the following diagrams commute in Set:

g
. S XxS S S Y
/
{*} i hxi i i J
Xﬁ‘
Sl X’XSI Sl Sl Yl
f! q

where {*} denotes an arbitrary one point set (with point *). It must be shown
that a composition of two such morphisms is another, and that a triple of iden-
tities satisfies the diagrams and serves as an identity for composition. These
checks show that we have a category Aut of automata, and their simplicity
increases our confidence in the correctness of the definitions [18].

Types. Types are used to classify “things,” and according to the first dogma,
they should form a category having types as objects; of course, depending on
what is being classified, different categories will arise.

A simple example is finite product types, which are conveniently represented
by natural numbers, with morphisms that describe what might be called “reg-
ister transfer operations” among tuples of “registers”. Thus, n € w indicates
an n-tuple (t1, ..., t,) of data items in n “registers,” and a morphism f: m — n
is a function {1,...,n} — {1,...,m} indicating that the content of register f(7)
should be transferred to register 7, for ¢ = 1,...,n. In fact, if we identify the



number n with the set {1,...,n} (and 0 with @), then this category is the op-
posite of a subcategory of Set; let us denote it A/. A variant of N has as its
objects the finite subsets of a fixed countable set X, and as morphisms again
the opposites of functions among these, so that we get another opposite of
a subcategory of Set, denoted say X. Here, the “registers” are denoted by
“variable symbols” from X, rather than by natural numbers. Going a little
further, we can assign sorts from a set S to the symbols in X, and require that
the morphisms preserve these sorts. Let us denote this category Xg.

1.7 Substitutions. Two key attributes of a substitution are the set of variables
into which it substitutes, and the set of variables that occur in what it substi-
tutes. Thus, substitutions have natural source and target objects, each a set
of variables, as in Example 1.6 above. Clearly there are identity substitutions
for each set of variables (substituting each variable for itself), and the com-
position of substitutions is associative when defined. Thus, we get a category
with substitutions as morphisms.

1.8 Theories. In his 1963 thesis [49], F.W. Lawvere developed a very elegant
approach to universal algebra, in which an algebraic theory is defined to be a
category T whose morphisms correspond to equivalence classes of terms, and
whose objects indicate the variables involved in these terms, as in Example 1.6
above. In this approach, theories are closed under finite products (as defined in
Example 4.1 below). Although Lawvere’s original development was unsorted,
it easily extends to the many-sorted case, and in many other ways, including
the so-called “sketches” studied by Ehresmann, Gray, Barr, Wells, and others;
for example, see [3]. Of course, all the theories of a given kind form a category.

1.1 Isomorphism

One very simple, but still significant, fruit of category theory is a general definition
of isomorphism, suitable for any species of structure at all: a morphism f: A — B is
an isomorphism in a category C iff there is another morphism g: B — A in C such
that g;f = 14 and f;¢g = 1p. In this case, the objects A and B are isomorphic.
It is a well established principle in abstract algebra, and now in other fields as well,
that isomorphic objects are abstractly the same, or more precisely:

Two objects have the same structure iff they are isomorphic, and an
“abstract object” is an isomorphism class of objects.

This demi-dogma can be seen as a corollary of the first dogma. It provides an
immediate check on whether or not some structure has been correctly formalised:
unless it is satisfied, the objects, or the morphisms, or both, are wrong. This
principle is so pervasive that isomorphic objects are often considered the same,
and “the X7 is used instead of “an X” when X is actually only defined up to
isomorphism. In computing science, this principle guided the successful search for
the right definition of “abstract data type” in [33].

1.2 Diagram Chasing

A useful way to get an overview of a problem, theorem, or proof, is to draw one
or more diagrams that show the main objects and morphisms involved. A diagram



commutes iff whenever p and p’ are paths with the same source and target, then
the compositions of the morphisms along these two paths are equal. The fact that
pasting two commutative diagrams together along a common edge yields another
commutative diagram provides a basis for a purely diagrammatic style of reasoning
about equality of compositions. Because it is valid for diagrams in any category
whatever, this proof style is very widely applicable; for example, it applies to sub-
stitutions (as in Example 1.5). Moreover, it has been extended with conventions for
pushouts, for uniqueness of morphisms, and for certain other common situations.
Often proofs are suggested just by drawing diagrams for what is known and what
is to be proved. A simple illustration from Example 1.3 is to prove that a composi-
tion of two graph morphisms is another graph morphism; all we have to do is paste
together the corresponding diagrams for the two morphisms.

2 Functors
The second dogma says:

To any natural construction on structures of one species, yielding struc-
tures of another species, there corresponds a functor from the category
of the first species to the category of the second.

It is part of this dogma that a construction is not merely a function from objects
of one species to objects of another species, but must also preserve the essential
relationships among objects, including their structure preserving morphisms, and
compositions and identities for these morphisms. This provides a test for whether
or not the construction has been properly formalised. Of course, functoriality does
not guarantee correct formulation, but it can be surprisingly helpful in practice.
Now some examples:

2.1 Free Monoids. It is quite common in computing science to construct the
free monoid X* over a set X. It consists of all finite strings z; ...z, from
X, including the empty string A. This construction gives a functor from the
category of sets to the category of monoids, with a function f: X — Y induc-
ing f*: X* — Y* by sending A to A, and sending z; ...z, to f(z1)... f(zn).
This functor is called the “polymorphic list type constructor” in functional
programming.

2.2 Behaviours. Given an automaton A = (X, S,Y, f, g), its behaviour is a func-
tion b: X* — Y, from the monoid X* of all strings over X, to Y, defined
by b(u) = g(f(u)), where f is defined by f(A) = 5o and f(uz) = f(z, f(u)),
for x € X and w € X*. This construction should be functorial. For this,
we need a category of behaviours. The obvious choice is to let its objects be
pairs (X, b: X* — Y) and to let its morphisms from (X, b: X* — Y) to
(X', b X™ = Y') be pairs (h,j) where h: X — X" and j: Y — Y’, such
that the diagram
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h* J
XI* Yl
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commutes in Set. Denote this category Beh and define B: Aut — Beh by
B(X,S)Y, f,q) = g; f and B(h,i,j) = (h,7). That this is a functor helps to
confirm the elegance and coherence of the previous definitions. See [18].

Models. In the Lawvere approach to universal algebra [49], an algebra is a
functor from a theory T to Set. Here, “construction” takes the meaning of
“interpretation”: the abstract structure in T is interpreted (i.e., constructed)
concretely in Set, i.e., these functors must preserve finite products. More gen-
erally, if T is some kind of theory, then “models” of T are functors M : T — Set
that preserve the structure of these theories, e.g., finite products. More gen-
erally, we can take models of T in a suitable category C with finite products,
as finite product preserving functors. For example, many sorted algebras arise
as functors from a theory over the type system Xg; Example 1.5 can be seen
as an example of this, by taking S to have three elements.

Forget It. If all widgets are whatsits, then there is a “forgetful functor”
from the category of widgets to the category of whatsits. For example, every
group is a monoid by forgetting its inverse operation, and every monoid is a
semigroup by forgetting its identity. Notice that a ring (with identity) is a
monoid in two different ways, one for its additive structure and one for its
multiplicative structure.

Categories. Of course, the (small) categories also form a category, with
functors as morphisms. It is denoted Cat.

Diagrams and the Path Category Construction. The construction in
Example 1.4 of the category Pa(G) of all paths in a graph G gives rise to
a functor Pa: Graph — Cat from graphs to categories. Then a diagram in
a category C, with shape a graph G, is a functor D: Pa(G) — C. It is
conventional to write just D: G — C, and even to call D a “functor,” because
D: Pa(G) — C is in fact fully determined by its restriction to G, which is a
graph morphism; see Example 6.2 below.

Programs and Program Schemes. A non-deterministic flow diagram pro-
gram P with parallel assignments, go-to’s, and arbitrary built-in data struc-
tures, including arbitrary functions and tests, can be seen as a functor from
a graph G (the program’s “shape”) into the category Rel whose objects are
sets and whose morphisms are relations. An edge e: n — n' in G corresponds
to a program statement, and the relation P(e): P(n) — P(n') gives its se-
mantics. For example, the test “if X > 2” on natural numbers corresponds
to the partial identity function w — w defined iff X > 2, and the assignment
“X := X — 17 corresponds to the partial function w — w sending X to X — 1
when X > 0. The semantics of P with input node n and output node n' is
then given by the formula



P(n,n') =U{P(p) |p: n = n' € Pa(G)}.

This approach originated in Burstall [5]. Techniques that allow programs to
have syntaz as well as semantics are described in [19]3: A program scheme is
a functor P: G — T into a theory T “enriched” with a partial order structure
on its morphism sets T(A, B) (the reader familiar with 2-categories should
note that this makes T a 2-category). A semantics for statements then arises
by giving a functor A: T — Rel, that is, an interpretation for T, also called
a T-algebra. The semantics of a program is then computed by the above
formula for the composition P; A: G — Rel. There seems to be much more
research that could be done in this area. For example, [29] gives an inductive
proof principle for collections of mutually recursive procedures, and it would
be interesting to consider other program constructions in a similar setting.

2.8 Theory Interpretations. Extending the discussion in Example 2.3, an “in-

terpretation” of a theory T' in a theory T” should be a functor F': T — T’
which preserves theory structure (e.g., types and finite products). Such func-
tors are the same thing as theory morphisms. In particular, interpretations
of program schemes, which of course are programs, will arise in this way.

2.9 Polymorphic Type Constructors. If we think of the types of a functional
programming language as forming a category 7T, with objects like Int and
Bool, then polymorphic type constructors, like 1ist, are endofunctors on T,
that is, functors 7 — T; some others would be set and list x list, the
latter sending a type « to the type list(a) x list(«).

3 Naturality
The third dogma says:

To each natural translation from a construction F: A — B to a con-
struction G: A — B there corresponds a natural transformation
F=G.

Although this looks like a mere definition of the phrase “natural translation,” it can
nevertheless be very useful in practice. It is also interesting that this concept was
the historical origin of category theory, since Eilenberg and Mac Lane [11] used it
to formalise the notion of an equivalence of homology theories, and then found that
for this definition to make sense, they had to define functors, and for functors to
make sense, they had to define categories. (This history also explains why homology
theory so often appears in categorical texts, and hence why so many of them are
ill-suited for computing scientists.) Now some examples:

3.1 Homomorphisms. As already indicated, in the Lawvere approach to univer-
sal algebra, algebras are functors, and so we should expect homomorphisms
to be natural transformations; and indeed, they are.

3.2 Natural Equivalence. A natural transformation n: F = G is a natural
equivalence iff each n4: F(A) — G(A) is an isomorphism. This is the nat-
ural notion of isomorphism for functors, and is equivalent to the existence of

80nly the original 1972 conference version contains this definition.



v: G = F such that v;n = 1p and n; v = 1. This is also exactly the concept
that motivated Eilenberg and Mac Lane, and in the context of Example 3.1,
it specialises to isomorphism of algebras.

3.3 Data Refinement. A graph with its nodes labelled by types and its edges
labelled by function symbols can be seen as an impoverished Lawvere theory
that has no equations and no function symbols with more than one argument.
However, such theories still admit algebras, which are functors into Set, and
homomorphisms, which of course are natural transformations. These algebras
can be viewed as data representations for the basic data types and functions
of a programming language, and their homomorphisms can be viewed as data
refinements. Considered in connection with the basic program construction
operations of a language, this can lead to some general techniques for devel-
oping correct programs [40]. It would be interesting to extend this to more
general variants of Lawvere theories (such as many-sorted theories or sketches),
and to the more general data representations studied in the abstract data type
literature (e.g., [33, 9]).

3.4 Program Homomorphisms. Because Example 2.7 defines programs as
functors, we expect program homomorphisms to be natural transformations
between programs. Indeed, Burstall [5] shows that a weak form of Milner’s
program simulations [53] arises in just this way. In [19], this is generalised to
programs that may have different shapes, and to maps from edges to paths, by
defining a homomorphism from Py: Gy — C to P;: G; — C to consist of a
functor F': Gy — Pa(G1) and a natural transformation n: Py — F; P;. Some
theory and applications for this are also given in [19], including techniques for
proving correctness, termination, and equivalence, by unfolding programs into
equivalent infinite trees.

3.5 Polymorphic Functions. If polymorphic type constructors are functors (as
in Example 2.8), then polymorphic functions should be natural transforma-
tions; and indeed, they are. Examples include

append : 1list list -> list
and
reverse : 1list -> list
3.6 Functor Categories. Let A and B be categories. Then there is a category,
denoted Cat|A, B], whose objects are the functors from A to B, and whose

morphisms are natural transformations. In particular, if T is a theory, then
the T-algebras are a subcategory of Cat[T, Set].

4 Limits
The fourth dogma says:

A diagram D in a category C can be seen as a system of constraints,
and then o limit of D represents all possible solutions of the system.



In particular, if the diagram represents some physical (or conceptual) system, then
the limit provides an object which (together with its projection morphisms) rep-
resents all possible behaviours of the system that are consistent with the given
constraints. This intuition goes back to some work on General System Theory from
1969-74, [16, 27], and has many applications in computing science:

4.1

4.2

4.3

4.4

Products. An early achievement of category theory was to give a precise
definition for the notion of “product,” which was previously known in many
special cases, but only understood vaguely as a general concept. The definition
is due to Mac Lane [46].

Product Types. Given types T} and T5, their “parallel composition” is their
product in the category 7 of types. Thus, a morphism f: Ty xTy — T takes
two “inputs” in parallel, of types 17 and 75, and returns one output, of type
T. Tt is usual to assume that a category of types used in defining some kind
of theory has finite products, including an empty product (the product of no
factors, i.e., a final object), usually denoted 1. Both A/ and X are subcategories
of Set’?, and products in them are disjoint unions in Set.

Theories. A generalised Lawvere theory T: 7 — A over a type system
T (assumed to have finite products) is a finite product preserving functor that
is surjective on objects, from 7T to a category A with finite products. Except
for “degenerate” cases, a theory T: T — A is bijective on objects, and we
can assume that |7| = |A| and that 7 is a subcategory of A; hence, we may
identify T and A.

A morphism of theories over T is a finite product preserving functor which
also preserves 7. An algebra of a theory T: T — Ais a finite product preserv-
ing functor to Set (or more generally, to a category C with finite products). Of
course, homomorphisms of T-algebras are natural transformations, giving a
category of T-algebras. When 7 = N, we get the classical unsorted general
algebras, in Lawvere form. When 7 = X, with X S-sorted, we get S-sorted
general algebras. [22] also discusses congruences and quotients of generalised
Lawvere theories.

Equations and unification. We can think of a pair f,g: T — T’ of mor-
phisms in a theory as an equation. Then, by the fourth dogma, the most
general solution of this equation is given by the equaliser of f and g, if it
exists. For the classical case of unsorted, anarchic (i.e., obeying no laws) theo-
ries, the morphisms are terms, and equalisers give most general unifiers. More
general kinds of unification arise by going to more general kinds of theories;
for example, imposing associative and commutative laws on some operations
in the theory leads to so-called AC-unification. For some theories, only weak
equalisers can be found; these weaken the “there exists a unique morphism”
requirement to mere existence. In fact, weak equalisers formalise the classi-
cal definition of unifiers; nonetheless, the stronger condition is often satisfied
in practice. Generalising again, a system of constraints is a diagram in a
theory, and its most general solution is given by its limit, if it exists.

There are many examples of this situation: solving systems of linear equa-
tions; polymorphic type inference; unification in the sense of “unification gram-
mars” in linguistics; solving Scott domain equations; and least fixpoints. All
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these examples (and some others) are discussed in more detail in [22], as are
some techniques for proving that unifiers exist. Another example is the justi-
fication of the formula in Example 2.7 for the semantics of a program.

5 Adjoints

The fifth dogma says:

To any canonical construction from one species of structure to another
corresponds an adjunction between the corresponding categories.

Although this can be seen as just a definition of “canonical construction,” it can
be very useful in practice. The essence of an adjoint is the universal property that
is satisfied by its value objects. This property says that there is a unique mor-
phism satisfying certain conditions. It is worth noting that any two (right, or left)
adjoints to a given functor are naturally equivalent, i.e., adjointness determines a
construction uniquely up to isomorphism. Now some examples:

5.1

5.2

9.3

5.4

9.5

Products and Sums. Many of the constructions described above are intu-
itively canonical, and hence are adjoints. For example, binary products in a
category C give a functor IT: CxC — C, which is left adjoint to A : C — CxC,
the “diagonal” functor, sending an object C in C to the pair (C, C'), and send-
ing a morphismc¢: C'— C’inC to (¢,¢): (C,C) — (C',C") in CxC. Moreover,
C has coproducts (also called “sums”) iff A has a right adjoint. This beauti-
fully simple way to formalise two mathematical concepts of basic importance
is due to Mac Lane [46], and extends to general limits and colimits.

Freebies. Another beautifully simple formalisation gives a general definition
of “free” constructions: they are the left adjoints of forgetful functors. For
example, the path category functor Pa: Graph — Cat of Example 2.6 is left
adjoint to the forgetful functor Cat — Graph, and thus may be said to give the
free category over a graph.

Minimal Realisation. An automaton (X, S,Y, f, g) is reachable iff its func-
tion f: X* — S is surjective. Let A denote the subcategory of Aut whose
objects are reachable and whose morphisms (i, 7, k) have ¢ surjective. Then
the restriction B: A — Beh of B: Aut — Beh to A has a right adjoint
which gives the minimal realisation of a behaviour [18]. Because right adjoints
are uniquely determined, this provides a convenient abstract characterisation
of minimal realisation. Moreover, this characterisation extends to, and even
suggests, more general minimal realisation situations, e.g., see [17].

Syntax and Semantics. One of the more spectacular adjoints is that be-
tween syntax and semantics for algebraic theories, again due to Lawvere in his
thesis; see [49].

Cartesian Closed Categories. A Cartesian closed category has binary
products, and a right adjoint to each functor sending A to Ax B. It is re-
markable that this concept turns out to be essentially the (typed) A-calculus;
see [45]. This connection has been used, for example, as a basis for the ef-
ficient compilation of higher order functional languages [8]. An advantage is
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5.4

that optimisation techniques can be proved correct by using purely equational
reasoning.

Kleisli Categories. Another way to generalise Lawvere theories is to view
an arbitrary adjunction as a kind of theory. So-called monads (also called
triples) are an abstraction of the necessary structure, and the Kleisli cat-
egory over a monad gives the category of free algebras [47]. Again, there
are surprisingly many examples. The paper [22] shows how a Kleisli category
generates a generalised Lawvere theory, and then shows that many different
problems of unification (that is, of solving systems of equations) can be natu-
rally formulated as finding equalisers in Kleisli categories. Examples include
unification in order sorted and continuous theories. Moggi [55] uses Kleisli cat-
egories to get an abstract notion of “computation” which gives rise to many
interesting generalisations of the A-calculus.

6 Colimits

The sixth dogma says:

Given a species of structure, say widgets, then the result of interconnect-
ing a system of widgets to form a super-widget corresponds to taking the
colimit of the diagram of widgets in which the morphisms show how
they are interconnected.

At least for me, this intuition arose in the context of General Systems Theory [16, 27].
It may be interesting to note that the duality between the categorical definitions
of limits and colimits suggests a similar duality between the intuitive notions of
solution and interconnection. Now some examples:

6.1

6.2

Putting Theories together to make Specifications. Complexity is a fun-
damental problem in programming methodology: large programs, and their
large specifications, are very difficult to produce, to understand, to get right,
and to modify. A basic strategy for defeating complexity is to break large
systems into smaller pieces that can be understood separately, and that when
put back together give the original system. If successful, this in effect “takes
the logarithm” of the complexity. In the semantics of Clear [6, 7], specifi-
cations are represented by theories, in essentially the same sense as Lawvere
(but many-sorted, and with signatures), and specifications are put together by
colimits in the category of such theories. More specifically, the application of a
generic theory to an actual is computed by a pushout. OBJ [13, 28, 14], Eqlog
[30], and FOOPS [31] extend this notion of generic module to functional, logic
(i.e., relational), and object oriented programming, and in their combinations.
It has even been applied to Ada [21, 63].

Graph Rewriting. Another important problem in computing science is to
find models of computation that are suitable for massively parallel machines.
A successful model should be abstract enough to avoid the implementation
details of particular machines, and yet concrete enough to serve as an interme-
diate target language for compilers. Graph rewriting provides one promising
area within which to search for such models [43, 32, 15, 41], and colimits seem
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6.3

6.4

6.5

to be quite useful here [10, 58, 44]. Graph rewriting is also important for the
unification grammars that are now popular in linguistics [60, 22]. There seem
to be many opportunities for further research in these areas.

Initiality. The simplest possible diagram is the empty diagram. Its colimit
is an initial object, which is more simply explained as an object that has a
unique morphism to any object. Like any adjoint, it is determined uniquely
up to isomorphism, so any two initial objects in a category are isomorphic (of
course, this can also be shown directly); hence, initiality gives a convenient way
to define entities “abstractly”. It is also worth mentioning that universality
can be reduced to initiality (in a comma category), and hence so can colimits.

Initial Model Semantics. It seems remarkable that initiality is so very use-
ful in computing science. Beginning with the formalisation of abstract syntax
as an initial algebra [20], initiality has been applied to an increasing range
of fundamental concepts, including induction and recursion [35, 51|, abstract
data types [33], domain equations (see below), computability [51], and model
theoretic semantics for functional [13], logic (i.e., relational), combined func-
tional and relational, and constraint logic [30] programming languages. The
latter is interesting because it involves initiality in a category of model exten-
sions, i.e., of morphisms, rather than just models. In general, this research can
be seen as formalising, generalising, and smoothing out the classical Herbrand
Universe construction [38], and it seems likely that much more interesting work
can be done along these lines.

Solving Domain Equations. Scott [59] presents an “inverse limit” construc-
tion for solving domain equations, and records some suggestions by Lawvere
that clarify this construction by viewing it as a colimit in an associated cate-
gory of retracts. These ideas are taken further in [61], which also generalises
from partial orders to categories and shows that least fixpoints are initial al-
gebras, among other things. A key construction is the colimit of an infinite
sequence of morphisms, generalising the traditional construction | |,c, ™ (L)
of a least fixpoint.

7 Comma Categories

The seventh dogma says:

Given a species of structure C, then a species of structure obtained by
“decorating” or “enriching” that of C corresponds to ¢ comma cate-
gory under C (or under a functor from C).

It seems more difficult to be precise about this intuition than the others, but hope-
fully some examples will help to clarify things. The following are just a few of the
many examples that can be found in computing science:

7.1

Graphs. Many categories of graph are comma categories. For example, if 2x
denotes the functor Set — Set sending S to S x S, then the category Graph
of Example 1.3 is the comma category (Set | 2x).
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7.2

7.3

Labelled Graphs. Given some category G of graphs and a forgetful functor
U: G — Set, say giving the node set of graphs in G, and given a set L to
be used for node labels, then the comma category (U | L) is the category of
graphs from G with nodes labelled by L. In the same way, we can decorate
edges of graphs, or branches of trees.

Theories. If FPCat is the category of categories with finite products, with
finite product preserving functors as morphisms, and if 7 is a type system (i.e.,
an object in FPCat), then the category of theories over T is (T | FPCat).

Comma categories are another basic construction that first appeared in Lawvere’s
thesis. They tend to arise when morphisms are used as objects. Viewing a category
as a comma category also makes available some general results to prove the existence
of limits and colimits [25].

8 Further Topics

Although they are particularly fundamental, the seven dogmas given above far from
exhaust the richness of category theory. This section mentions some further cate-
gorical constructions, about each of which one might express surprise at how many
examples there are in computing science.

8.1

8.2

8.3

8.5

2-Categories. Sometimes morphisms not only have their usual composition,
identity, source and target, but also serve as objects for some other, higher-
level, morphisms. This leads to 2-categories, of which the category Cat of cat-
egories is the canonical example, with natural transformations as morphisms
of its morphisms. This concept was mentioned in Example 2.7, and is also
used in [24], [26], [40], [56], among other places, and is mentioned in [61].

Monoidal Categories. There are many cases where a category has a natural
notion of multiplication that is not the usual Cartesian product but neverthe-
less enjoys many of the same properties. The category of Petri nets studied
in [52] has already been mentioned, and a variety of recent work suggests that
monoidal categories may be broadly useful in understanding the relationships
among the various theories of concurrency, e.g., see [12].

Indexed Categories. A strict indexed category is just a functor B? — Cat.
The papers [62] and [23] give many examples of indexed categories in comput-
ing science, and [62] gives some general theorems, including simple sufficient
conditions for completeness of the associated “Grothendieck” category. Moggi
[56] applies indexed categories to programming languages, and in particular
shows how to get a kind of higher order module facility for languages like ML.
(Non-strict indexed categories are significantly more complex, and have been
used in foundational studies [57].)

Topoi. A profound generalisation of the idea that a theory is a category
appears in the fopos notion developed by Lawvere, Tierney, and others. In
a sense, this notion captures the essence of set theory. It also has surprising
relationships to algebraic geometry, computing science, and intuitionistic logic
(36, 2, 42].
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9 Discussion

The traditional view of foundations requires giving a system of axioms, preferably
first order, that assert the existence of certain primitive objects with certain prop-
erties, and of certain primitive constructions on objects, such that all objects of
interest can be constructed, and all their relevant properties derived, within the
system. The axioms should be as self-evident, as few in number, and as simple, as
possible, in order to nurture belief in their consistency, and to make them as easy
to use as possible. This approach is inspired by the classical Greek account of plane
geometry.

The best known foundation for mathematics is set theory, which has been very
successful at constructing the objects of greatest interest in mathematics. It has,
however, failed to provide a commonly agreed upon set of simple, self-evident axioms.
For example, classical formulations of set theory (such as Zermello-Frankel) have
been under vigorous attack by intuitionists for nearly eighty years. More recently,
there has been debate about whether the Generalised Continuum Hypothesis is
“true,” following the originally startling proof (by Paul Cohen) that it is independent
of other, more widely accepted axioms of set theory. Still more recently, there
has been debate about the Axiom of Foundation, which asserts that there is no
infinite sequence of sets Si,.52,53,... such that each S;;; is an element of S;. In
fact, Aczel [1] and others have used an Anti-Foundation Axiom, which positively
asserts the existence of such non-well founded sets, to model various phenomena in
computation, including communicating processes in the sense of Milner [54]. I think
it is fair to say that most mathematicians no longer believe in the heroic ideal of
a single generally accepted foundation for mathematics, and that many no longer
believe in the possibility of finding “unshakable certainties” [4] upon which to found
all of mathematics.

Set theoretic foundations have also failed to provide fully satisfying accounts of
mathematical practice in certain areas, including category theory itself, and more-
over have encouraged research into areas that have little or nothing to do with math-
ematical practice, such as large cardinals. (Mac Lane [48] gives a lively discussion
of these issues; see also [37] for an overview of various approaches to foundations.)
In any case, attempts to find a minimal set of least debatable concepts upon which
to erect mathematics have little direct relevance to computing science. Of course,
the issue no longer seems as urgent as it once did, because no new paradoxes have
been discovered for a long time.

This paper has tried to show that category theory provides a number of broadly
useful, and yet surprisingly specific, guidelines for organising, generalising, and dis-
covering analogies among and within various branches of mathematics and its ap-
plications. T wish to suggest that the existence of such guidelines can be seen to
support an alternative, more pragmatic view:

Foundations should provide general concepts and tools that reveal the
structures and interrelations of various areas of mathematics and its
applications, and that help in doing and using mathematics.

In a field which is not yet very well developed, such as computing science, where
it often seems that getting the definitions right is the hardest task, foundations in
this sense can be very useful, because they can suggest which research directions
may be fruitful, using relatively explicit measures of elegance and coherence. The
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successful use of category theory for such purposes suggests that it provides at least
the beginnings of such a foundation.
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