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Preface

These course notes present universal coalgebra as a general theory of systems�

By �system� we understand some entity running in and communicating with an environ�
ment� We also assume that a system has a �xed interface and that the environment can
perform only those observations�experiments�communications on the system allowed by
the interface� By �general theory� we understand a theory which allows to investigate in a
uniform way as many di�erent types of systems as possible� Of course� here is a trade o��
the more diverse the types of systems we admit for study� the less results we can expect
to obtain in a uniform way� It is one of the aims of this course to show that the notion of
coalgebra is general enough to cover many types of systems and is speci�c enough to allow
for quite a number of interesting results�

The term �universal� coalgebra not only refers to the generality of the theory but also
re	ects that universal coalgebra dualises 
to some extent� the well�established area of
universal algebra� To explore this duality is another of the main topics of this course�
In particular we will see what can be said about the duality of logics for algebras and
coalgebras�

Concerning prerequisites� Chapters � and 
 should be easily accessible� Chapter �
requires a bit of category theory which was introduced in the course in more detail than in
the text� The Appendix recalls the necessary de�nitions but cannot replace an introduction
to category theory� Section ��� contains additional material illustrating the techniques
presented in Chapter �� Chapter � needs Chapters ��� and 
� Chapter � builds on Chapter �

excluding Section �����

The exercises in the text are essential and are not meant to be skipped� They should
be easy to solve� often even obvious� but the solution needs ideas which are important in
the following� The exercises in the separate sections contain additional material which did
not �t in a one week�s course� They may be more di�cult�

I gave courses based on earlier versions of these notes at the Faculty of Informatics
of the Masaryk University in Brno� Czech Republic� and at ESSLLI ���� in Helsinki�
Finland� I would like to thank the participants� for many fruitful and enjoyable discussions
and for comments helping to improve these notes� I am also grateful to Dirk Pattinson for
discussions on Chapter ��
� Diagrams were produced with Paul Taylor�s macro package�
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Chapter �

Systems � An Introduction

The aim of this chapter is to show why and how coalgebras model systems� The emphasis
is on a number of familiar examples� leaving a uniform treatment of them to Chapter ��

Section ��� starts with an informal understanding of systems and processes and proposes a
possible formalisation� Section ���� taking a particular type of systems as example� shows
the ingredients of a general theory of systems� Central notions are behavioural equivalence�
�nal system� bisimulation� and coinduction� Section ��
 shows in detail how very much the
same theory can be developed for a di�erent type of systems and Section ��� presents even
more examples which can be treated along the same lines�

��� Systems and Processes

Before we start to look for a mathematical model for systems� we should agree on an
informal level on what we understand by �system�� The following�hopefully�seems rea�
sonable�

�� Systems are reactive� that is� unlike algorithms� they are not supposed to terminate
and announce a result� but are supposed to run� possibly forever� and to communicate�
while running� with their environment�

�� The possible communications between a system and the environment are described in
an interface� An external observer can observe a system only through the interface�


� The external observer�s view is called the black box view of a system� The black box
view is given by the complete observable behaviour of the system�

In general� given a system� we are interested rather in its behaviour than in the actual
system itself� One challenge for a general theory of systems is 
�� to allow for a rich class of
interfaces 
types of systems� and� at the same time� 
�� to describe the relation of systems
and their behaviours in a uniform way� The aim of this chapter is to give enough examples
showing that the theory of coalgebras achieves 
��� To see how 
�� is solved is postponed

�
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until chapter �� Another challenge would be to �nd a uniform logic to specify systems�
This issue is discussed in Chapters � and ��

In order to describe a system we think of it as a set of states X and a transition�function
� describing for every state x � X the e�ect �
x� of taking an observable transition in state
x� That is� a system is a function

X
�
�� �X

where we use the notation �X to indicate the set of possible outcomes of taking a transition�
� is called the type or signature� X is called the carrier or set of states of the system�
and � is called the structure or transition�function of the system�

When we start to run or observe a system 
X� �� we assume that it is in a given initial
state x�� A system together with a state is called a process�� We denote processes by


X� ��� x�� or shorter 
X� �� x��� If the system is clear from the context we also denote the
process simply by its initial state�

Example �
�
� �Streams�


�� Consider a system for which �taking a transition� just means to output an element
a � A of some given set A� Such a system is given by a function

X
�
�� A

where �X � A� This system can only take one transition in its life�time�

�� A system that can output elements of A forever can be described by a function

X
�
�� A�X

Suppose the system is in some state x� and takes a transition yielding �
x�� � 
a� x���
Then a next transition can be taken in x�� and so on� Such a process 
X� �� x�� is
called a stream�

Exercise �
�
�
 This exercise presents some more simple example of systems 
the �rst
two systems below may seem to be too simple to be interesting at all but they are useful to
build up more complicated systems�� You should try to convince yourself of the following�

�� Imagine a system that can do nothing but stop� Such a system can be modeled by a
function

X
�
�� ��

where � � f�g denotes some one�element set�

�The term �process� is often used to denote an equivalence class of processes up to a notion of behavioural
equivalence� see Section ������
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�� Imagine a system which� like a simple clock or metronome� just take transitions but
produces no further output� Such a system can be modeled by a function

X
�
�� X�


� Consider the example of streams above� How can we model streams that are not nec�
essarily in�nite but also may terminate� A system that may output forever elements
in A but also may stop is a function

X
�
�� A�X � ��

where � should be understood as exclusive or 
formally it denotes disjoint union of
sets��

��� Ingredients of a Theory of Systems

A theory of systems should describe the relation of systems and their behaviours in terms
of a given interface� This section explains how this can be done by means of the example of
streams� It is also shown how the notion of behaviour leads to �nal systems and� therefore�
allows de�nitions and proofs by coinduction�

����� Interfaces

We said that a signature � for systems is an operation mapping a set 
of states� to a set
�X containing the possible e�ects of an observable transition� We have seen the following
examples�

� �X Process

� � stop

A A outputs a � A once

Id X metronome 
running forever�

A�� A�X stream over A

A��� � A�X � � �nite or in�nite list over A

In each of this cases we expect from an interface to specify the �observable e�ect� of
a transition� Thinking a bit about the examples we see that � itself provides us with an
appropriate notion of interface�
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����� The Black Box View of a Process

From the point of view of the environment the states of a system are not observable� For
example� speci�er and user of a system are not interested in the system itself but only in
the complete observable behaviour of the system� In the following we explain this notion
of behaviour�

Let us reconsider the example of streams

X
�
�� A�X

and think about the appropriate notion of behaviour�
We assume that the system is in a given state x� � X� Starting from x� the system

takes a transition �
x�� � 
a�� x�� and continues with �
x�� � 
a�� x�� and so on� That is�
the system produces an in�nite list


x�� 
a�� x��� 
a�� x��� � � � ��

Assuming that the states xi are not observable� the behaviour of the process 

X� ��� x��
is then given by�

Beh
x�� � 
a�� a�� a� � � � �

where we should in fact write Beh�X���
x�� but usually drop the subscript�

����� The Black Box View of a System

We have seen that we can assign to every state of a system its behaviour� The behaviour
of a system is simply the set of all these behaviours� A fundamental observation is now
that

the behaviour of a system is itself a system�

To explain this� let 
X� �� be a system and Beh
X� � fBeh
x� � x � Xg the set of
all behaviours of X� To conceive of Beh
X� as a system we have to exhibit a transition�
function � � Beh
X� � A� Beh
X�� � has to map an in�nite list l � 
a�� a�� a�� � � � � into
A� Beh
X�� There is an obvious candidate�

� � Beh
X� � A� Beh
X�


a�� a�� a�� � � � � �� ha�� 
a�� a�� � � � �i


We use 
� � � � to indicate lists and h�� �i to denote tuples of a cartesian product��

Having seen that the behaviour of a system is a system we can ask what the behaviour
of a behaviour is� Following our intuition that the behaviour gives us all we can know of
a system� we expect the behaviour of a behaviour to be the behaviour itself� This is made
precise in the following

�In case you need a precise de�nition �for example to solve the exercises	 go ahead to De�nition ����
�
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Exercise �
�
�
 Since 
Beh
X�� �� is a system� we can consider for each l � Beh
X� the
behaviour of l� Convince yourself that

�� the behaviour of some l � Beh
X� is l

and conclude that

�� the behaviour of the system 
Beh
X�� �� is 
Beh
X�� ���

As a consequence of the previous exercise� we know that x and Beh
x� have the same
behaviour� The next section shows that this is due to Beh being a morphism of systems�

����� Morphisms of Systems

In a general theory of systems we are interested not so much in particular systems but more
in the relationships between di�erent systems or in structural properties of collections of
systems� The main tool to investigate the relationships between systems are structure
preserving mappings between systems�

First� let us introduce a notation which is convenient to work with streams�

Notation �
�
�
 Given a stream 
X� �� x� with �
x� � 
a� x�� we write head
x� for the �rst
value a and tail
x� for the remainder x�� As usual we dropped the subscripts of head �X���
x�
and tail �X���
x��

Using this notation� we de�ne the notion of a morphism for streams�

De
nition �
�
�
 Let X
�
�� A�X and X � ��

�� A�X � be two systems� A homomorphism�
or morphism for short� is a function f � X � X � such that

head
f
x�� � head
x� 
����

tail
f
x�� � f
tail
x�� 
����


In these equations� the occurrences of head and tail on the left�hand side refer to 
X �� ����
the occurrences on the right�hand side to 
X� ����

Another use of the notation above is that we can now give a precise de�nition of
behaviour�

De
nition �
�
� �Behaviour of streams�
 Given a system X � A � X and x� � X
de�ne Beh
x�� � 
head
tailn
x����n�N where tailn is de�ned inductively via tail�
x� � x�
tailn��
x� � tail
tailn
x���

The following exercises are essential� First show that behaviours are invariant under
morphisms�

Exercise �
�
� �Behaviours are invariant under morphisms�

Given a 
stream�morphism f � 
X� �� � 
Y� ��� show that the behaviour of x � X equals
the behaviour of f
x� � Y �
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In particular� two states that can be identi�ed by a morphism have the same behaviour�
To show the converse� namely that any two states that have the same behaviour can be
identi�ed by some morphism� we show that Beh � X � Beh
X� is a morphism�

Exercise �
�
� �Beh � X � Beh
X� is a morphism�
 Let 
X� �� be a system 
of
streams� and 
Beh
X�� �� its behaviour�

�� Show that the mapping Beh � X � Beh
X� is a morphism 
X� �� � 
Beh
X�� ���

�� Show that Beh � X � Beh
X� is moreover the unique such morphism 
Hint� Use
induction to reason about lists l � 

ai�i�N���

As a corollary to the three exercises we obtain the fundamental relationship between
behaviours and morphisms�

Observation �
�
�
 Two states have the same behaviour i� these states are identi�ed by
some morphisms�

����� The Black Box View of the Class of all Systems

Much of the power of a general theory of systems comes from the observation that

all behaviours of all systems constitute themselves a system�

We explain this in the case of streams again�
Since for any process 
X� �� x� its behaviour is an in�nite list 
ai�i�N� the set of all

behaviours of all processes is AN � ff � N � Ag � f
ai�i�N � ai � Ag� Now� in the same
way as the behaviour of a system� we can equip the set of all behaviours of all systems
with a transition structure that makes it into a system�

� � AN � A� AN


a�� a�� a�� � � � � �� ha�� 
a�� a�� � � � �i

��
�

This concept of a system of all behaviours is important for the following reason� Intu�
itively� all we can know from a black box point of view about systems must be contained
in this system of all behaviours� We therefore expect it to play a central role in the theory
of systems and in fact it does� For the moment� we will content ourselves to characterise
this system of all behaviours in a simple but most useful way�

Since we know from Exercise ����� that the mapping from a system to its behaviour is a
morphism� we know that

� for any system there must be a morphism into the system of all behaviours 
namely
the one mapping each process to its behaviour��

Moreover� since morphisms preserve behaviours�
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� for any system there can be at most one morphism into the system of all behaviours�

This argument shows that the system of all behaviours is a �nal system�

De
nition �
�
� �Final system�
 A system 
Z� �� is called �nal 
or terminal� i� for all
systems 
X� �� there is a unique morphism 
X� �� � 
Z� ���

That the system of all behaviours is characterised by �nality is shown by

Proposition �
�
	
 Any two �nal systems are isomorphic�

Proof� Let 
Z� �� and 
Z �� � �� be two �nal systems� The existence part of �nality gives us
two morphisms f � Z � � Z and f � � Z � Z � and the uniqueness part shows that f �f � � idZ
and f � � f � idZ�� that is� f and f � are isomorphisms�

In the following exercise you are asked to make precise� in the case of streams� the
above argument that the system of all behaviours is the �nal system�

Exercise �
�
��
 Show that 
AN � �� as given by 
��
� is �nal�

����� Behavioural Equivalence

Notions of observational or behavioural equivalence 
like e�g� bisimulation� play a central
role in the theory of processes or state based dynamic systems� Once we have a notion of
behaviour there is an obvious de�nition of behavioural equivalence�

Two processes�systems are behaviourally equivalent i� they have the same behaviour�

This can be made precise using the notion of the �nal system�

De
nition �
�
��
 Let 
X� ��� 
X �� ��� be two systems and Beh� Beh � the two correspond�
ing unique morphisms into the �nal system�

�� Two processes 
X� �� x�� 
X �� ��� x�� are behaviourally equivalent i� Beh
x� �
Beh �
x���

�� Two systems 
X� ��� 
X �� ��� are behaviourally equivalent i� Beh
X� � Beh �
X ���

This de�nition has the advantage that it agrees with our understanding of the �nal
system as the system of all the behaviours� Recalling� however� that two processes are
behaviourally equivalent i� they can be identi�ed by a morphism 
Observation �������
there is another obvious de�nition of behavioural equivalence�

De
nition �
�
��
 Let 
X� ��� 
X �� ��� be two systems�
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�� Two processes 
X� �� x�� 
X �� ��� x�� are behaviourally equivalent i� there are mor�
phisms


X� �� 
X �� ���

�
� f

�f �

such that f
x� � f �
x���

�� Two systems 
X� ��� 
X �� ��� are behaviourally equivalent i� there are surjective mor�
phisms


X� �� 
X �� ���

�
�� f

�f ��

This de�nition is more elementary in the sense that it only relies on the notion of
morphism and not on the existence of �nal systems�

Exercise �
�
��
 Show that both de�nitions are equivalent if the �nal system exists�
�Hint� Use that 
�� the disjoint union of two systems is a system and that 
�� every
morphism g � 
X� �� � 
Z� �� �factors through its image�� ie that there is a surjective

morphism e and an injective morphism m such that g � 
X� ��
e
� Im
g�

m
�� 
Z� ����

����� Bisimulation

In the previous section� we have seen two de�nitions of behavioural equivalence� This
section shows that behavioural equivalence agrees with what is known as bisimulation�

De
nition �
�
��
 Let 
X� ��� 
X �� ��� be two systems of streams and R 	 X�X �� Then
R is a bisimulation i�

x R x� 
 head
x� � head
x��

x R x� 
 tail
x� R tail
x��

Two processes 
X� �� x�� 
X �� ��� x�� are bisimilar i� there is a bisimulation R such that
x R x��

Such a relation is called a bisimulation since x R x� implies that a transition x ��
hhead
x�� tail
x�i can be simulated by a transition x� �� hhead
x��� tail
x��i and vice versa�

In order to prove that two processes are bisimilar we �rst have to choose an appropriate
relation R 
which is usually not di�cult� and then to check that it is indeed a bisimulation

which is not di�cult if we made a good choice of R in the �rst place�� A �rst example
for this strategy is given by � 
 � of the proof below� we will see more examples in
sections ����� and ��
�
�
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Proposition �
�
��
 Two processes are behaviourally equivalent i� they are bisimilar�

Proof� Let 
X� �� and 
X �� ��� be two systems of streams� Recall that x � X and x� � X �

are behaviourally equivalent i� head
tailn
x�� � head
tailn
x��� for all in n � N 
see
De�nition �������
� 
 �� Let 
X� �� x�� 
X �� ��� x�� be two behaviourally equivalent processes� De�ne R �
fhtailn
x�� tailn
x��i� n � Ng� To show that R is a bisimulation note that y R y� 

tail
y� R tail
y�� is trivially satis�ed by de�nition of R� Moreover� since x� x� have the
same behaviour� ie head
tailn
x�� � head
tailn
x��� for all n � N � it follows y R y� 

head
y� � head
y���
� � �� Let R be a bisimulation for 
X� �� and 
X �� ��� and let x R x�� We have to show
that head
tailn
x�� � head
tailn
x��� for all n � N � But tailn
x� R tailn
x�� is easily shown
by induction on n � N�

Remark �
�
��
 To reason about behavioural equivalence the de�nitions of the previous
section are convenient� But to establish that two given processes are behaviourally equiv�
alent� the standard technique is to exhibit a bisimulation� 
The reason is that to check
whether a relation is a bisimulation we only need to consider single transitions and not
complete behaviours� The inductive reasoning we save is hidden in the above Proposition�
part � � ���

����� Coinduction

Usually� one is interested in processes only up to behavioural equivalence� It is therefore
sensible to consider behavioural equivalence as equality on processes� From this point of
view� we can consider the elements of the �nal system as the processes�

Observation �
�
��
 In the �nal system� two processes are behaviourally equivalent i�
they are equal�

This allows for a substantial simpli�cation� Instead of reasoning about processes up
to behavioural equivalence we reason up to equality� For example� instead of de�ning an
operation on processes by de�ning it on representatives of equivalence classes and then
showing that the de�nition is invariant under the choice of representatives� we can use the
principle of de
nition by coinduction� It goes as follows�

Since we know that for any system X
�
�� �X there is a unique morphism into the �nal

system 
Z� ��� we can de�ne a function f � X � Z just by giving an appropriate structure
��

for all X
�
�� �X there is a unique morphism 
X� ��

f
�� 
Z� ��

We say that a function f � X � Z is de�ned by coinduction if it arises in such a way from
a � � X � �X�
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For example� let us de�ne the operation merging two streams� That is� we are looking
for a function

merge � AN � AN � AN

such that

head
merge
l�� l��� � head
l�� 
����

tail
merge
l�� l��� � merge
l�� tail
l��� 
����

This looks more circular than like a de�nition� but de�ning 
note that we let X above to
be AN � AN now�

� � AN � AN � A� AN � AN

hl�� l�i �� hhead
l��� hl�� tail
l��ii�

it is not di�cult to see that merge is de�ned by coinduction�

Exercise ������� Let merge be an arbitrary function AN � AN � AN� Show that merge is
a morphism 
AN � AN� �� � 
AN� �� i� it satis�es ��� and ���� �Hint� Show that ��� and
��� are instances of ��� and ��� of De�nition ����
��

It follows that there is a unique function merge � AN � AN � AN satisfying ��� and ����
that is� ��� and ��� are a valid de�nition� 
Existence follows since there is a morphism

AN � AN� �� � 
AN� �� and� moreover� this morphism satis�es ��� and ���� Uniqueness
follows since every function satisfying ��� and ��� is a morphism and morphisms into the
�nal system are unique��

For another example do the following

Exercise ������� Find a function � � AN � A� AN showing that

head
even
l�� � head
l� 
����

tail
even
l�� � even
tail
tail
l��� 
����

is a coinductive de�nition�

Observation ������ stated that in the �nal system two processes are behaviourally equiv�
alent i� they are equal� This statement is also called the coinduction proof principle�
In order to show that two elements of a �nal system are equal it is enough to show that
they are behaviourally equivalent or� in view of Proposition ������� that they are bisimilar�

For an example of an application of the coinduction proof principle� recall the functions
merge and even and de�ne odd
x� � even
tail
x��� We now want to show

merge
even
x�� odd
x�� � x
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It is not di�cult to guess a bisimulation

R � fhmerge
even
x�� odd
x�� � xi � x � ANg�

We just have to check the two clauses of De�nition ������� For the �rst calculate

head
merge
even
x�� odd
x��� � head
even
x��

� head
x�

and for the second

tail
merge
even
x�� odd
x��� � merge
odd
x�� tail
even
x���

� merge
odd
x�� even
tail
tail
x����

� merge
even
tail
x��� odd
tail
x����

which is related to tail
x� by de�nition of R�

����	 Summary and Exercise

We started with the idea that the black box view of a system X � �X is obtained by
not allowing to observe the states of the system� This idea lead us�for the signature
� � 
A����to the following observations�

� We can assign to each process its behaviour�

� Two processes have the same behaviour i� the processes can be identi�ed by some
morphisms� 
In particular� Behaviours are invariant under morphisms��

� There is a �nal system 
Z� �� and

� 
Z� �� contains all behaviours of all systems 

� the unique morphism 
X� �� � 
Z� �� assigns to each x � X its behaviour�

� The �nal system gives rise to the de�nition and proof principle of coinduction�

In case you want to get more familiarity with the notions of behaviour� morphism� and
�nal system you can try the following

Exercise �
�
��
 We have seen the following signatures� 
Recall that � denotes a one�
element set� Also note� that we overloaded the notations � and A� Both denote a set� but
also the corresponding constant operation mapping any set to �� respectively A� Id denotes
the identity operation��
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� �X Process

� � stop

A A outputs a � A once

Id X metronome 
running forever�

A�� A�X stream over A

A��� � A�X � � �nite or in�nite list over A

The example of streams has been discussed in detail� For 
some or all of� the other cases
do the following�

�� Choose an appropriate notion of morphism for each ��

�� What processes then� according to De�nition ������� are behaviourally equivalent�


� Does this notion of behavioural equivalence agree with what you would expect�

�� Describe the system of all behaviours� Check that it is the �nal system�

��� An Extended Example� Deterministic Automata

We �rst show how we can deal with inputs and then go through the the theory of systems
presented in the previous section by means of the example of deterministic automata� In
particular� we show that the languages accepted by deterministic automata constitute the
�nal deterministic automata�

����� Systems with Input

We have seen systems that can output elements or stop� To model automata we need to
be able to deal with input� To begin with� suppose we want to model a system

X � I � X

which only allows to input elements of I� The problem here is that we agreed in the
beginning of this chapter to describe systems by functions of the kind

X � � � �

and not of the kind�

� � �� X�

�Functions of the kind � � �� X will appear again in section ��� as algebras�
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Here� a little well�known trick called currying comes to help� Given

f � X � I � X�

f
x��� is a function I � X for each x � X� It follows that f
���� is function from X to
the functions I � X� In order to express this succinctly� we use the following

Notation �
�
�
 Given sets I�X denote by XI the set of functions I � X�

By the discussion above� we now write functions

X � I � X

as functions

X � XI

which are in the form we chose to express systems�

����� Moore and Mealy Automata

Deterministic automata are used in di�erent ways� For example� to de�ne the language of
�nite words accepted by an automata� In this case we should say that the behaviour of an
automaton is its accepted language� This is pursued in the next subsection� Here we are
interested in viewing automata as systems possibly running forever� Therefore� similar to
the example of streams� we will describe the behaviour of an automata as the tree of all
its in�nite runs�

Suppose we are given the following data

input alphabet I

output alphabet O

set of states X

initial state x�

then a process 
X� �� x�� given by

X
�
�� O �XI

is a deterministic automaton 
so�called Moore automaton�� for each state x � X� �
x� �

o� �x� where o is the output in state x and �x � I � X is the function determining on
input from I the next state�

What is the right notion of morphism for Moore automata� In order to give a de�ni�

tion� we decompose functions X
�
�� O �XI into two functions

out � X � O

next � X � I � X

����
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t(a) t(b)

t(<>)

t(ba) t(bb)t(aa) t(ab)

a

a b

b

ba

Figure ���� Part of a tree t � fa� bg� � O

and then say that f � X � X � is a morphism 
X� �� � 
X �� ��� i�

out �
x� � out
x�

next �
f
x�� i� � f
next
x� i��

What is the behaviour of a Moore automata� It is an in�nite tree where branches
are sequences of inputs and nodes are labeled with outputs� or� more formally� a function
t � I� � O 
I� denoting the set of all �nite words over I�� Figure ��� shows part of such a
tree in the case that I � fa� bg�

Exercise ������

�� Give a formal de�nition of Beh
x�� similar to the one for streams in De�nition ������
�Hint� De�ne an auxiliary function next� � X � I� � X extending next from letters
to words��

�� Show that behaviours are invariant under morphisms�

In order to describe the system of all behaviours� we have to equip the set Z of all trees
t � I� � O with a transition structure� For this note that the subtree of t obtained along
an edge i is given by the tree t� � I� � O

t� � �w�t
i � w�

where � denotes concatenation of words and the ��notation is used to indicate the argument
of the function� Therefore� the 
nal system 
Z� �� is given by Z � OI� and
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out
t� � t
hi�

next
t� � �i��w�t
i � w��

����

Exercise ������ Show that 
Z� �� is indeed the �nal system�

Before we come to examples of de�nitions and proofs by coinduction in the next sub�
section� we �rst de�ne an appropriate notion of bisimulation� Given 
X� ��� 
X �� ���� we
call R 	 X �X � a bisimulation for Moore automata i�

x R x� 
 out
x� � out �
x��

x R x� 
 next
x�
i� R next �
x��
i� for all i � I

Exercise ����	� Show that two Moore automata are related by a bisimulation i� they are
behaviourally equivalent 
compare Proposition ��������

Exercise �
�
� �Mealy automata�
 In Mealy automata outputs depend not only on the
current state but also on the input�

�� Modify the signature of a Moore automaton in such a way that outputs depend on
the current state and on the input�

�� De�ne morphisms of Mealy automata�


� Describe the behaviour of a Mealy automata �Hint� look for a tree I� � O 
I� is
I� � fhig where hi denotes the empty word���

�� Give a transition function for the system of all behaviours of and show that this
system is �nal�

����� The Final Automaton of all Languages

Consider a Moore automata with O � � a two element set�

X
�
�� ��XI

Denoting the elements of � by true and false� we say that x � X is a �nal or accepting
state i�

out
x� � true

We have thus obtained the usual notion of a deterministic automata except from the fact
that we put no restriction on the set of states X or the set of inputs I to be �nite�
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How does our notion of behaviour relate to the language accepted by an automaton�
We have seen that for x� � X

Beh
x�� � I� � ��

is a function mapping �nite words to true or false� hence a predicate on words� We can
therefore� equivalently� think of Beh
x�� as the set of words

L
x�� � fw � I� � Beh
x�
w� � trueg

which is nothing but the language accepted by 
X� �� x���

It follows that the set of all languages is the �nal system of deterministic automata�
The transition structure of the �nal system 
���� becomes 
let L 	 I�� i � I�

out
L� � 
hi � L�

next
L�
i� � fw � i � w � Lg

Writing L � for the proposition �hi � L� and Li for fw � i �w � Lg the transition structure
on the �nal system of all languages can be written succinctly as

L �

Li for all i � I

�����


����� gives us a convenient notation for the use of coinduction� For example we can
give coinductive de
nitions of union


L � K� � i� L � or K �


L � K�i � Li � Ki

sequential composition


LK� � i� L � and K �


LK�i �

��
�

LiK if not L �

LiK � Ki if L �

and Kleene star

L� � i� true


L��i � LiL
�

Finally we illustrate the coinduction proof principle� First note that R is a bisim�
ulation i�

L R K 
 
L � 
 K ��

L R K 
 Li R Ki for all i � I
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For a �rst example we want to show

fhig� LL� � L�� 
�����

Immediately from the de�nitions� we obtain


fhig� LL�� � i� L� �

and 
using LiL
� � LiL

� � LiL
� in case L ��


fhig� LL��i � 
L��i

showing that both sides of the equation 
����� are bisimilar and hence equal�

Exercise ����
� Show that

�� K � � � K�

�� K � K � K�

For a second example try to show

K
L � M� � KL � KM�

You will see that we cannot proceed as in the �rst example but have to �nd a bisimulation�
Try to �nd an appropriate bisimulation!

Exercise ������ Show that f
K
L � M� � N�KL � KM � N� � K�M�L�N 	 I�g is a
bisimulation�

��� More Examples

You can skip this section or return later to it� but you should think brie	y about morphisms
for transition systems� see exercise ����
�

����� Objects and Classes

In object�oriented programming procedures are called methods� Writing X for the state�
space of an object� the type of a method m is of the form

m � X � I � E � O �X�

meaning that for each state x � X and each input i � I� m
x� i��usually written as
x�m
i��either raises an exception in E or yields an output in O and a new state in X�
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A class in object oriented programming is given as a set of methods

mj � X � Ij � Ej � Oj �X 
� � j � n�

which can be written as

mj � X � 
Ej � Oj �X�Ij 
� � j � n��

Since functions fj � X � Yj� 
� � j � n�� are nothing else than a single function
hf�� � � � fni � X �

Q
��j�n Yj� we de�ne the signature of the class to be

�X �
Y

��j�n


Ej � Oj �X�Ij

and an implementation to be a system

X
hm�� � � �mni� �X�

The main reason why this view of classes as systems is attractive� is that it naturally takes
into account that objects are encapsulated� The only way to access an object is via one of
the methods� Therefore� there is for each class a notion of behavioural equivalence which
expresses that two objects are equivalent i� they cannot be distinguished by applying the
methods to them� This notion of behavioural equivalence coincides with the one given by
the �nal system�

Exercise �
�
�
 Assume a class with one method m � X � I � E �O�X� Describe the
�nal system� �Hint� Similar to Equations 
����� consider trees I� � 
E �O� but be careful
proving the uniqueness part��

����� Datatypes

Traditionally� datatypes are de�ned by constructors as initial algebras� Then further op�
erations are de�ned by induction� For an example consider the following speci�cation of
stacks over elements in A�

spec STACK

constructors

new � � � stack

push � A� stack � stack

operations

htop� popi � stack � A� stack � �

axioms

htop
new�� pop
new�i � �

htop
push
a� s��� pop
push
a� s��i � ha� si
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new gives an empty stack and push then allows to construct new stacks from old� That
stacks are to be considered elements of the initial algebra given by new and push�ie the
initial algebra semantics of stacks�means that

� only data which can be constructed by new and push is considered to be a stack 
the
datatype contains no junk� and

� whenever two stacks are constructed in two di�erent ways from new and push� then
they are di�erent 
the datatype has no confusion��

Finally� pop and top are de�ned inductively from new and push�

There is also a di�erent view on datatypes� We can consider stacks as interacting with
an environment via top and pop� Then two stacks are behaviourally equivalent i� they
cannot be distinguished by using only top and pop� Identifying behaviourally equivalent
stacks� we can consider stacks as the elements of the �nal system given by top and pop
and de�ne new and push coinductively�

spec STACK

observers

htop� popi � stack � A� stack � �

operations

new � � � stack

push � A� stack � stack

axioms

htop
new�� pop
new�i � �

htop
push
a� s��� pop
push
a� s��i � ha� si

That stacks are to be considered elements of the �nal system given by top and pop�ie the

nal coalgebra semantics for stacks�means that

� two stacks with the same behaviour are considered to be equal and

� any data being observable with top and pop is considered to be a stack�

Exercise �
�
�
 Think about how the two conditions are related which characterise� re�
spectively� the initial algebra semantics 
�no junk�� �no confusion�� and the �nal coalgebra
semantics� Can you describe this relationship in a formal way�

����� Transition Systems

Of course� all of the previous examples can be understood as special cases of transition
systems� But usually transition systems allow for non�determinism� a feature that was not



�� CHAPTER �� SYSTEMS � AN INTRODUCTION

present so far�� As it is often the case� non�determinism can be modeled by the use of the
powerset operation� Let us denote by PX the set of subsets of X� Then a system

� � X � PX

maps each x � X to a set �
x� 	 X� Interpreting �
x� as the set of successors of x� we see
that 
X� �� is a transition system�

What are the observations that can be made of such a system� From our discussion of
section ��� we expect an observer to be able to count transitions� In particular� an observer
can detect termination 
no transition possible��� But it is less clear whether an observer
should be able to distinguish between di�erent branching structures as eg in

� � � � � � � �

�

�

� � �

�

� �
�

� �
�

There are di�erent possibilities here� But is there some kind of canonical choice� In
section ����� we made the observation that two processes are behaviourally equivalent
i� they can be identi�ed by some morphisms� This suggests that we could try to �nd
the appropriate notion of behaviour by �nding the appropriate notion of morphism� The
following exercise shows that� again� there are several possibilities� In particular� not all
reasonable notions of morphism lead to a useful notion of behaviour�

Exercise �
�
�
 Given a system X
�
�� PX� we think of it as a graph 
X�R�� R 	 X�X


let x R y 
 y � �
x��� Accordingly� it is natural to consider graph morphisms
f � 
X�R� � 
X �� R�� as system morphisms� Graph morphisms are functions f � X � X �

such that

x R y 
 f
x� R f
y��

�� Using De�nition ������� characterise behaviours of graphs� What is the �nal graph�

�� What goes wrong� Can you modify the notion of a graph morphism in such a way
that De�nition ������ becomes more interesting�

�Note that the operator � does not introduce non
determinism� Systems like eg X � A � X � � or
X � X �X are deterministic�

�There is a hidden assumption here� namely that distinguishability is symmetric� For more sophisticated
notions of observations see eg Vickers �����
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the feature how to model it typical system and process

output O �� X � O �X stream

input ���I X � �O �X�I deterministic automaton

exceptions� errors E �� X � �E �O �X�I object �one method�

multiple methods ��� X
hm��m�i
�� ��X � ��X

object with two meth	
ods of types �����

nondeterminism P
X � P�Act�X� �
X � P�X�Act

as in Milner
s CCS
or in process algebra

Table ���� How to Model � � �

In chapter � we will see that the notion of a coalgebra provides us automatically with an
appropriate notion of morphism and behaviour for transition systems�

We �nish this section by giving some more examples of transition systems� Imagine
that we want the system to be able to output information� Then a system is given by a
function

h�� vi � X � PX � C

where � � X � PX is a system as before and v � X � C assigns a c � C to each state x�

In the previous example� we labeled the states via a function v � X � C� We can also
label the transitions with �actions� a � A

� � X � P
X � A�

Processes 
X� �� x� for the signature �X � P
X�A� are processes in the sense of Milner�s
CCS or process algebra�

��� Summary of Examples

In the previous examples we have seen how to model certain features that systems may
have by choosing the appropriate signature� Table ��� gives a summary�

The examples we have seen so far were motivated by research areas where systems
can usefully be modeled by coalgebras� Table ��� gives an overview and pointers to the
literature where more references may be found�

��� Exercises and Problem

Exercise �
�
� �Contexts�
 If we think of the environment as performing experiments
on processes� the behaviour of a process x should be determined by knowing the outcome
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the application area some literature

automata theory ��
� ���

�behavioural� di�erential equations ����

control theory ����

object oriented programs ����

�algebraic� speci�cation ���� ��� ���

process algebra ��� �
�

probabilistic transition systems ���� 
��

modal logic see Chapters �� �

Table ���� Application Areas for Coalgebras

of each experiment performed on x� In the case of streams �X � A � X this can be
formalised as follows� An experiment is a �term with a hole� head
tailn
���� often called a
context� Performing the experiment on x consists of plugging x into the term and looking
for the outcome� The set of possible outcomes is A�

�� Give a transition structure on the set of functions from experiments to outcomes and
show that it is the �nal coalgebra�

�� Do the same for deterministic automata�

Problem �
�
�
 Try to �nd out for which signatures the �nal coalgebra can be described
as the set of functions from experiments to outcomes 
as in the exercise above��

Exercise �
�
� �Minimal realisation of automata�
 In Section ��
 we have described
deterministic automata as processes for the signature � � O � IdI � In automata theory�
one is often interested in �nding the minimal automata realising a behaviour t � I� � O�
Show that the description of automata as systems trivialises the existence of a minimal
realisation� The minimal automaton realising the behaviour t � I� � O is just the smallest
subsystem of the �nal system generated by t�

The next exercise shows that for non�deterministic systems there is no essential di�er�
ence between inputs and outputs 
as long as the parameter A is kept �xed��

Exercise �
�
�
 Give a bijection between P
A�X� and 
PX�A� 	

�It should also be checked that the bijection is natural in X � see the Appendix for a de�nition of natural
transformations�
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��� Notes

Although known and studied before� the current interest in coalgebras goes back to Peter
Aczel�s book ��� �Non�well founded set theory� where he gives a description of the �nal
system for the signature P
A��� and a �nal semantics for processes in the sense of Milner�s
CCS� In particular� he recognised that the behavioural equivalence given by the �nal system
is the bisimilarity as known from process theory� Then Aczel and Mendler ��� showed that
�nal coalgebras exist under rather general circumstances� The research inspired by the view
of coalgebras as systems was then continued in eg ���� ��� ��� ���� The idea of universal
coalgebra as a general theory of system is due to Rutten ���� ���� The example of merging
streams in Section ����� is taken from ����� For a recent study of and further references on
coinduction see Bartels ����

The example of deterministic automata as coalgebras was studied in Rutten �����
Classes in the sense of object�oriented programming as �nal coalgebras are due to
Reichel ���� and Jacobs ����� The idea of specifying datatypes only up to behavioural
equivalence goes back to Reichel� see eg ����� For recent work on behavioural speci�cations
based on the duality of algebras and coalgebras see �
�� ����

For supplementary introductions to systems and coalgebras see Gumm ����� Jacobs and
Rutten ����� Rutten �����
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Chapter �

Coalgebra

We �rst show that by considering signatures as functors� we can deal in a uniform way
with all the examples of the previous chapter� Second� we present some general ways to
construct new coalgebras from old ones� Third� 
equational speci�cations of� algebras are
reviewed� Finally� duality of algebras and coalgebras is discussed�

��� Coalgebras

If we look back at the previous chapter� we see that the theory of systems we presented
was almost uniform in all signatures� The only thing that had to be invented separately
for each new signature was the notion of morphism� It is therefore a natural question to
ask whether we can modify the de�nition of a signature in such a way that it includes in a
natural way the right notion of morphism� This is indeed the case� We just have to require
the signature to be a functor�

The other move we make is from an operation 
or functor� on sets to a functor on
arbitrary categories� The main reason for us to do this is that it is necessary to make
precise the duality of modal and equational logic in chapter ���

Moreover� in building a theory it often pays to use only those assumptions which are
really needed� Category theory allows us to formulate these assumptions in a succinct way�
As a consequence� we obtain more general results� simpler 
and reusable� proofs� and new
insights in why certain results hold�

Finally� let us mention that the use of categories does not create too many new di�cul�
ties� Although it is important to note that notions like coproduct� quotient� embedding�
and union of images work in all appropriate categories� one can 
and should� think in terms
of the corresponding notions familiar from sets�

De
nition �
�
�
 Given a category X � called the base category� and a functor � � X � X �
a ��coalgebra 
X� �� is given by an arrow � � X � �X in X � A morphism between two

�As will be explained later� algebras over Set are dual to coalgebras over Setop� Hence� in order to
use duality� we have to work in a setting allowing not only coalgebras over Set but also over Setop� The
cleanest way to do this is to set up the theory for coalgebras over arbitrary categories X �


�
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coalgebras f � 
X� �� � 
X �� ��� is an arrow f in X such that �� � f � �f � ��

X
� � �X

X �

f

�

��
� �X �

�f

�

The category of coalgebras and morphisms is denoted by Coalg
���

We will explain in more detail what in means for the signature to be a functor� Assume
X � Set� Then we extend the signatures we have seen so far to functors as follows 
let
C � Set and f � X � Y � Set��

� �X �f

C C idC � C � C

Id X f


��C XC fC � XC � Y C

g �� f � g

As we did earlier� we overloaded notation by denoting with C the set as well as the constant
functor mapping any set to C� idC denotes the identity map on C and XC is function space�

As we have seen before� from these functors� we can build more interesting ones� using
� and �� like eg �X � 
E � A � X�I � To make this precise� we note that � and � are
functors as well� There action on functions f� � X� � Y�� f� � X� � Y� is the following�

� ��

f� � f� � X� � X� � Y� � Y�

x � X� �� f�
x�

x � X� �� f�
x�

���
f� � f� � X� �X� � Y� � Y�

hx�� x�i �� hf�
x��� f�
x��i

It is perhaps not worth looking at these de�nitions in detail� There are no reasonable
alternatives anyway� But these de�nitions show that any expression build from constants�
identity� exponentiation with a constant� �� and � gives rise to a functor 
this is due to
the fact that the composition of functors is a functor�� To understand how these functors
act on functions� do the following
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Exercise �
�
�
 Check that for � � A � Id and � � O � IdI the coalgebra morphisms
of De�nition ����� agree with the system morphisms of De�nition ����
 and of 
���� in
Chapter ��
��� respectively� Describe the morphisms for �classes� with signatures 
E �
O � Id�I � see Chapter ������

Next� we show that the notion of coalgebra morphism also helps us to �nd the mor�
phisms of transition systems� ie for signatures involving P� Remember that the �rst idea
that came to our mind in Exercise ����
 did not give rise to a reasonable notion of be�
haviour� But� as for the signatures discussed above� there is one obvious way to extend P
to functions� namely as direct image�

� �X �f

P fW � W 	 Xg
Pf � PX � PY

W �� f
W � � ff
x� � x � Wg

We next characterise morphisms of P�coalgebras� Recall that we can write a P�
coalgebra 
X� �� as 
X�R� with R 	 X �X and x R y 
 y � �
x��

Proposition �
�
�
 Let 
X�R� and 
X �� R�� be two P�coalgebras� A function f � X � X �

is a P�coalgebra morphism i�

x R y 
 f
x� R� f
y� 
����

f
x� R� y� 
 �y � X � x R y " f
y� � y� 
����

Proof� The commuting square de�ning coalgebra morphisms translates into the condition
that for all x � X it holds fy� � f
x� R� y�g � ff
y� � x R yg� ��� is 
���� and �	� is

�����

Note that 
���� says that f is a graph morphism� It expresses that 
X �� R�� f
x�� simulates

X�R� x�� 
���� is the converse stating that 
X�R� x� simulates 
X �� R�� f
x��� The following
is therefore no surprise but should be checked for once nevertheless�

Exercise �
�
�
 Let � be P or P
A��� and 
X� ��� 
Y� �� two ��coalgebras� Then x � X
and y � Y are behaviourally equivalent 
De�nition ������
��� i� they are bisimilar in the
usual sense of modal logic or process algebra 
De�nition 
������

To summarise� we have seen that the signatures discussed in Chapter � give rise to
functors and that� therefore� the systems of Chapter � are coalgebras�� In particular� the
general theory of systems outlined in Chapter � is now uniformly available to all categories
of coalgebras over sets�

�This re�ects a general experience� All interesting signatures seem to give rise to functors� But not
every operation can be extended to a functor� see the exercises�
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��� Basic Constructions on Coalgebras

Not all constructions we want to perform on systems are universal in the sense that they
can be made in a uniform way for all signatures� For example� if we want to make systems
communicate� we usually need to know the speci�c signature� On the other hand� some
simple but important constructions are universal�

����� Coproducts

Intuitively� it is clear that we can form the disjoint union of two systems just by forming
the disjoint union of the carriers and using each transition�function for each component�
This seems so obvious that it might be worth to look at

Exercise ������ Is it possible to have a disjoint union for algebras� 
Take any familiar
example like perhaps monoids or groups� Or use stacks with operations new and push as
in Chapter �������

The general construction of a coproduct of coalgebras is as easy as the informal descrip�
tion given above� Let � � X � X and suppose that for a family 
Xi� �i�i�I of ��coalgebras
the coproduct

�
I Xi of the carriers exists� Then the coproduct 


�
I Xi� �� of the coalgebras

is given by

a
I

Xi
���������
�
� �


a
I

Xi�

Xi

ini

�

�

�i � �Xi

�ini
�

where � exists due to the universal property of the coproduct in X � That is� the coproduct
of coalgebras is given and completely determined by the coproduct of the carriers�

Exercise ������ Apply the construction above to the signature P�

����� Quotients and Subcoalgebras

This section deals with quotients and subcoalgebras� We �rst describe quotients and
subcoalgebras for the case X � Set and then introduce factorisation systems to deal with
the general case�

We say that a coalgebra morphism e � 
X� �� � 
X �� ��� is a quotient i� e is surjective�
We also call 
X �� ��� a quotient or 
homomorphic� image of 
X� ��� We say that m �

X �� ��� � 
X� �� is a subcoalgebra or embedding i� m is injective� We also call 
X �� ���
a subcoalgebra of 
X� ���

The following proposition shows that the transition�structure on a quotient 
X �� ��� is
completely determined by the structure on 
X� ���
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Proposition �
�
�
 Let � � Set � Set
 
X� ��� 
X �� ���� 
X �� ���� be ��coalgebras and e �
X � X � surjective� If e is a morphism 
X� �� � 
X �� ��� as well as a morphism 
X� �� �

X �� ���� then �� � ����

Proof� Follows from e being epi�

Similarly� the structure on a subcoalgebra 
X �� ��� is completely determined by the
structure on 
X� ���

Proposition �
�
�
 Let � � Set � Set
 
X� ��� 
X �� ���� 
X �� ���� be ��coalgebras and m �
X � � X injective� If m is a morphism 
X �� ��� � 
X� �� as well as a morphism 
X �� ���� �

X� �� then �� � ����

Proof� If X � is not empty� then �m is injective� hence mono� hence �� � ���� If X � is empty
then �� � ��� because the only map with empty domain is the empty map�

As mentioned already� to establish the duality of modal and equational logic� we cannot
restrict our attention to the base category Set� Unfortunately� there is no categorical
generalisation of the set�based notions surjective and injective which is appropriate in
all settings� But it turns out that for the purpose of this lecture 
and in many other
circumstances as well� we only need the following properties of quotients and embeddings�

De
nition �
�
� �Factorisation system�
 Let C be a category and E�M be classes of
arrows in C� We call arrows in E quotients� arrows in M embeddings� and 
E�M� a
factorisation system in C i�

�� f � E and f �M implies f iso�

�� E�M are closed under composition�


� Every arrow f in C has a factorisation f � m � e for some m � M and e � E� We
call m the image of f and e the kernel� of f �

�� Factorisations are given up to unique isomorphism� ie for all e� e� � E and all m�m� �
M as in the diagram

�
e � �

�

e�

�

m�
�����

����
����

����
����

����
����

����
���

h

�

m

�

there is a unique isomorphism h making the triangles commute�

�The kernel of a function f � X � Y is usually de�ned as Ker f � f�x�� x�	 � f�x�	 � f�x�	g� Since
Ker f describes the quotient part of the factorisation of f up to unique isomorphism� it seems justi�ed to
use �kernel� for the quotient part of a factorisation in general�
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The use of the letters E and M derives from the fact that in most applications of fac�
torisation systems arrows in E are epi and arrows in M are mono� For example in Set is

Epi �Mono� � 
Surj � Inj � a factorisation system�

The most important property of factorisation systems is the following�

Proposition �
�
� �Unique diagonalisation�
 Let 
E�M� be a factorisation system in
C� For any commuting square

�
e � �

�

l

�

m
�����

����
����
����
����
����
����
����
���

d

�

r

�

with m �M and e � E
 there is a unique diagonal d making the triangles commute�

Proof� 
The proof is technical and can be skipped�� Factoring l � ml � el and r � mr � er
gives a unique isomorphism h in the left�hand diagram

�
e � � �

e � �

�

el
�
�
h

�

er
�

�

el
�
�h�

� �
h�

�

e d

�

er
�

�

ml

�

m
� �

mr

�
�

ml

�

m
��

m d

�

mr

�

Then ml � h � er is a diagonal as required� To show uniqueness consider any diagonal d 
ie
d � e � l and m � d � r�� Factoring d � md � ed gives unique isos h�� h� with ed � h� � er
and md � ml � h�� Since h� � h� must be h� it follows d � ml � h � er�

The unique diagonalisation property is often useful in order to arrows d� We will need
it in Chapter �� For a �rst example we show that over Set every coalgebra morphism
factors as a surjective and an injective one and that this factorisation is calculated as the
factorisation in Set�

Proposition �
�
�
 Let � � Set � Set
 f � 
X� �� � 
Y� �� a ��morphism
 and X
e
��

X � m
�� Y an 
Surj � Inj ��factorisation of f in Set� Then there is a unique function �� �

X � � �X � making e and m into coalgebra morphisms�
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Proof� Consider the diagram

X
e � X � m � Y

�X

�

�

�e
� �X �

��

�

�����������������

�m
� �Y

�

�

In case that X � is not empty� we know that �m is injective 
Exercise A����� and we
can use unique diagonalisation� The case X � empty works as usual 
see the proof of
Proposition �������

Note that already in this case the argument by unique diagonalisation is easier than a
direct proof going back to the element�wise de�nition of the image X � of f �

As a corollary note that the surjective and injective morphisms form a factorisation system
in Coalg
���

Corollary �
�
�
 Let � � Set � Set and denote by Surj and Inj the class of surjective
and injective ��morphisms� 
Surj � Inj � is a factorisation system in Coalg
���

Proof� Existence of factorisations was shown in the proposition� To see that factorisations
are unique up to iso let 
X� ��� 
Y�� 	��� 
Y�� 	��� 
Z� �� � Coalg
�� and consider the left�hand
diagram

X
e� Y� �X

�e� �Y�
�h� �Y�

Y�

e�

�

m�
�

����
����

����
����

��

h
Z

m
�

X

�
�

e
� Y�

	�
�

h
� Y�

	�
�

There is a unique iso h� To see that h is a coalgebra morphism we use the following
standard argument� Consider the right�hand diagram above� We know that the left square
and that the outer rectangle commute 
since e and e� � h � e are coalgebra morphisms��
Since e is surjective 
hence epi�� the right�hand square also commutes�

Finally� the following proposition summarises what we have shown about factorisation
systems in case the base category is not Set 
the proofs remain unchanged��

Proposition �
�
	
 Let 
E�M� be a factorisation system in X and � � X � X � Assume
that arrows in E are epi and that � preserves arrows in M �� Let E �
 M � be the coalgebra
morphisms which are in E
 M 
 respectively� Then 
E ��M �� is a factorisation system in
Coalg
���

�� preserves arrows in M i� m �M � �m �M �
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����� Unions

The perhaps most important construction for us is �union of subcoalgebras�� To explain
the interest� suppose we have a system and a property 
 on its states and we want to know
the largest subcoalgebra whose states all satisfy 
� In case that the union of subcoalgebras
exists we can take the union of all subcoalgebras satisfying 
�

We �rst deal with the case X � Set� Suppose we are given a family of coalgebra
morphisms 
si�i�I


Xi� �i�
si� 
X� ��

and we want to describe the union of the images of the si� It should be obvious that a
union of the images of the si� if it exists� has to be given by a factorisation si � m � ei


X� �i�
ei� 
X �� ���

m� 
X� ��

such that m is injective and the ei are collectively surjective 
ie for each x� � X � there is
i � I and x � Xi such that e�i
x� � x��� This determines the union of images up to unique
isomorphism and we write


X �� ��� �
�
fIm
si� � i � Ig�

We show that coalgebras over sets have union of images�

Proposition �
�
��
 Let � � Set� Set� Then Coalg
�� has union of images�

Proof� Let 
si � Ai � A�i�I be a family of morphisms in Coalg
��� The idea is to construct
unions as disjoint unions 
coproducts� followed by a quotient� But we have to be a bit
careful since

�
I Ai may not exists since I is allowed to be a proper class� Let

Ai
ei�� A�

i

mi�� A

be a 
Surj � Inj ��factorisation of each si� Since A has�up to isomorphism�only a set of
subcoalgebras there is a subset J 	 I and a function f � I � J choosing for each A�

i�
i � I� an isomorphic subcoalgebra A�

f�i�� Moreover� there are morphisms e�i � Ai � A�
f�i�

such that si � mf�i� � e
�
i� Since J is a set the coproduct inj � A�

j �
�
j�J A

�
j exists� Now

consider

a
J

A�
j

e � A�

Ai

e�i � A�
f�i�

inf�i�
�

mf�i� � A

m

�

�����������g ������������


��
�

where g is given by the universal property of the coproduct and m � e is the 
Surj � Inj ��
factorisation of g� It follows that the si have a factorisation m � 
e � inf�i� � e�i�� Observing
that 
e � inf�i� � e

�
i�i�I is collectively surjective �nishes the proof�
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For the general case� we note that in the proof of the proposition above we can replace
Coalg
�� by any category C which has a factorisation system� coproducts� and for each
A � C� up to isomorphism� only a set of embeddings�� For the purposes of this course� the
following de�nition will be convenient�

De
nition �
�
�� �Union of images�
 We say that a category C with a factorisation
system has union of images i� C has coproducts and for each A � C� up to isomorphism�
only a set of embeddings A� � A� Union of images are then given as quotients of coproducts
as in 
��
��

A more general notion of union of images can be given using factorisation systems for sinks�
see Ad#amek� Herrlich� Strecker �
�� Chapter �� and �
�� for their application to coalgebras�

Unions of images have a diagonalisation property which is similar to the one for fac�
torisation systems�

Proposition �
�
��
 Let 
E�M� be a factorisation system in a category C which has union
of images� Let n � ei be the union of the images of a family si� Then if for m �M 
 f � C

and a family ti in C
 the square

Ai

ei � B

C

ti

�

m
�

����
����
����
����
����
����
����
����
��

d

D

f

�

commutes for all i then there is a unique diagonal d making the triangles commute�

Proof� Redraw the square above with ei � e � inf�i� � e
�
i as in 
��
�� Then use unique

diagonalisation for factorisation systems 
� times� and the universal property of the co�
product�

����� Final and Cofree Coalgebras

We have seen in Chapter ��� that �nal coalgebras play an important role because they
classify processes up to behavioural equivalence� Cofree coalgebras do the same� but allow
the environment additional observations called colourings� We �rst take the time to discuss
colourings in some detail and then explain cofree coalgebras�

Given a coalgebra X
�
�� �X and a set �of colours� C� a colouring of 
X� �� in C is

a function X
c
�� C� c is simply a marking or labeling of the states� Its import is that

�The technical term for this last condition is that C is wellpowered�
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we can use colourings c to make additional observations� Consider eg the P��coalgebra

Y� �� y�� given by

y�

y�
�

y�

�

Here� the two states y�� y� are behaviourally equivalent for an external observer� But
allowing colourings c � Y � C� C � fc�� c�g� an external observer can distinguish y�� y� by
choosing a colouring with eg c
y�� � c� and c
y�� � c��

That is� allowing colourings increases the observational power of the environment� If
we want to stay with our basic paradigm that two elements cannot be distinguished by an
external observer i� these elements cannot be identi�ed by some morphisms 
see Observa�
tion ������� we need to require morphisms to respect colourings� This gives rise to a new
category of coalgebras with colourings�

De
nition �
�
�� �Coalg
�� C��
 Let � � X � X and C � X � Coalg
�� C� is the cate�
gory having objects


X
�
�� �X � c � X � C�

where X
�
�� �X is a ��coalgebra and c � X � C an arrow in X � We call these objects


�� C��coalgebras and denote them by 

X� ��� c� or 
X� �� c�� A 
�� C��morphism f �

X� �� c� � 
X �� ��� c�� is a ��morphism 
X� �� � 
X �� ��� such that

X
f � X �

C
�

c
�c �

commutes�

The last condition expresses that 
�� C��morphisms preserve colours�

We can now de�ne cofree coalgebras

De
nition �
�
�� �Cofree Coalgebras�
 A 
�� C��coalgebra 
ZC � �C� �C� is called the
cofree ��coalgebra over C i� it is �nal in Coalg
�� C�� We say that Coalg
�� has cofree
coalgebras if cofree coalgebras exists for all C � X �

Usually� we leave �C implicit and call 
ZC � �C� alone the cofree ��coalgebra over C� In the
following exercise you are asked to unravel the de�nition of a cofree coalgebra�

Exercise �
�
��
 Show that 
ZC� �C� is cofree over C i� for all ��coalgebras 
X� �� and
all colourings c � X � C there is a unique ��morphism c� � 
X� �� � 
ZC � �C� such that

X �������������������������������
c�

� Z

C
� � C

c �
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commutes�

The diagram above is not �well�typed� in the sense that two arrows are colourings 
from
the base category� and another one is a coalgebra morphism� This can be corrected by
introducing the following

Notation �
�
�� �Forgetful functor�
 The forgetful functor is the operation U �
Coalg
�� � X mapping a coalgebra to its carrier and a coalgebra morphism f � 
X� �� �

X �� ��� to f � X � X ��

Note that U is indeed a functor� Restating the exercise above using the new terminology
yields a formulation of cofreeness which will be of use in Chapter ��

Proposition �
�
��
 Let U � Coalg
�� � X be the forgetful functor� Coalg
�� has cofree
coalgebras i� for each C � X there is a ��coalgebra FC and a colouring �C � UFC � C
such that for any ��coalgebra A and any colouring c � UA� C there is a unique coalgebra
morphism c� � A� FC such that the triangle

UFC FC

C �
c

�

�C

UA

Uc�

�

A

c�

�

commutes�

We �nish this section with two exercises which should make you familiar with the
notions of 
�� C��coalgebra and cofree coalgebra�

Exercise �
�
��
 Give an isomorphism Coalg
�� C� � Coalg
��C� 
for any base category
with binary products��

Exercise �
�
�	
 Consider three P��coalgebras 
X� �� x��� 
Y� �� y��� 
Z �� � �� z�� given by

x� y� z�

x�
�

x�
�

x�

�

y�
�

y�

�

z�
�

�� Show that 
Z �� � �� is a subcoalgebra of the �nal P��coalgebra�

�� Show that 
X� ��� 
Y� ��� 
Z �� � �� are behaviourally equivalent�


� Say that two processes 
X� �� x��� 
Y� �� y�� are C�behaviourally equivalent i�
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� for each colouring c � X � C there is a colouring d � Y � C such that

X� �� c� x�� and 
Y� �� d� y�� are behaviourally equivalent and� vice versa�

� for each colouring d � Y � C there is a colouring c � X � C such that

X� �� c� x�� and 
Y� �� d� y�� are behaviourally equivalent�

Show that


a� 
Y� �� y�� and 
Z �� � �� z�� are not ��behaviourally equivalent�


b� 
X� �� x�� and 
Y� �� y�� are ��behaviourally equivalent�


c� 
X� �� x�� and 
Y� �� y�� are not 
�behaviourally equivalent�

where � and 
 denote sets of respective cardinality�

��� Algebras

This section reviews algebras as far as needed to understand the duality to coalgebras� We
also brie	y review the semantics of equations� Some basic familiarity with algebras and
equational logic will be helpful� see eg Wechler ���� for an introduction�

De
nition �
�
�
 Given a category X � called the base category� and a functor � � X � X �
a ��algebra 
Y� 	� is given by an arrow 	 � �Y � Y in X � A morphism between two
algebras 
Y� 	� � 
Y �� 	 �� is an arrow f in X such that 	 � � �f � f � 	�

�Y
	 � Y

�Y �

�f

�

	 �
� Y �

f

�

The category of ��algebras and morphisms is denoted by Alg
��� The forgetful functor
U � Alg
�� � X maps algebras 
Y� 	� to the carrier Y and morphisms f � 
Y� 	� � 
Y �� 	 ��
to the arrows f � Y � Y ��

This notion of algebras for a functor includes algebras de�ned by operations in the
usual sense� To give examples it is useful to have the following

Notation �
�
�
 A family of functions 
fi � Yi � Y ���i�n can equivalently be written as
a single function

Y� � � � � � Yn
�f�� � � � � fn�� Y

where as before � denotes disjoint unions of sets and �f�� � � � � fn� is the function which
applies fi to arguments from Yi� 
This equivalence is valid in any category with coproducts��
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Example �
�
�
 The following examples show that algebras in the standard sense are
algebras for a functor�

�� Consider algebras given by a constant � and a unary operation s� The corresponding
functor is �Y � � � Y and a ��algebra is given by

� � Y
��� s�� Y

�� Consider the following signature for algebras

new � � stack

push � A� stack � stack

The corresponding functor is �Y � � � A� Y and a ��algebra is given by

� � A� Y
�new� push�� Y


� Groups 
Y� e� 
����� �� are algebras for the functor �Y � � � Y � Y � Y �

� � Y � Y � Y
� e� 
����� � �� Y�

In the same way� any signature for algebras given by some collection of operation symbols
gives rise to a functor�

A ��algebra 
I� �� is initial i� it is initial in Alg
��� ie i� for any ��algebra 
Y� 	� there
is a unique ��morphism


I� �� � 
Y� 	��

I consists precisely of all terms that can be formed from the operations in the signature�
For example� the natural numbers are the initial algebra for the functor �Y � � �Y 
read
� as zero and s as successor��

� � N
��� s� � N

To say that 
N� ��� s�� is initial is equivalent to the principle of induction� To see that
initiality gives rise to induction� recall that de�ning a function f � N � Y by induction
means to give a y� � Y such that f
�� � y� and a t � Y � Y such that f
s
n�� � t
f
n���
that is� to give

� � Y
�y�� t� � Y
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such that

� � N
��� s� � N

� � Y

id� � f

� �y�� t� � Y

f

�

Exercise ����	� Check that the diagram above commutes i� f
�� � y� and f
s
n�� �
t
f
n�� for all n � N �

Exercise ������ Compare induction with coinduction 
see Chapter �������

Equations

As shown by the example of groups in Example ��
�
 
or the example of stacks in Chap�
ter ������� we often want algebras not to be given only by a signature but also by some
equations as eg

e � x � x

x � e � x


x � y� � z � x � 
y � z�

where x� y� z are variables from some set X�

Although it should be clear what it means for an algebra 
Y� 	� to satisfy a set of
equations $� we want a precise de�nition� Since equations are formed from terms� we �rst
need a description of terms in variables from X� This is provided by the notion of a free
algebra over X�

De
nition �
�
� �Free algebra�
 Let � � X � X and X � X � The free ��algebra over
X is given by an algebra 
AX � 
X� and an arrow �X � X � AX such that for each algebra

Y� 	� and each v � X � Y there is a unique algebra morphism v� � 
AX � 
X� � 
Y� 	� such
that v� � �X � v�

AX
�����������������������������

v�
� Y

X

v

��

�
X

We say that Alg
�� has free algebras i� for all X � X there is a free algebra over X�

Remark� In the case X � Set we read this as follows� For a set of variables X there is
the term algebra 
AX � 
X� which has as a carrier AX all terms formed from operations in
� and variables in X� �X is the inclusion of variables into terms� v is an assignment of
variables to elements of 
Y� 	�� The condition above now expresses the familiar fact that
any assignment of variables v de�nes a unique interpretation v� of terms�
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Exercise ������ Compare the de�nition of free algebras with the characterisation of cofree
coalgebras in Exercise �������

We can now say that� in the case X � Set� an equation t � t� of terms t� t� in variables
from X is an element of 
t� t�� � AX � AX � Satisfaction of equations is then de�ned as
follows�

De
nition �
�
� �Satisfaction of equations�
 Let � � Set � Set and 
AX � 
X� a free
��algebra over X� Let 
Y� 	� � Alg
�� and $ 	 AX � AX 
ie $ is a set of equations in
variables from X�� For an equation 
t� t�� � $ and an assignment v � X � Y de�ne


Y� 	�� v j� 
t� t�� i� v�
t� � v�
t��

We write 
Y� 	� j� $ and say that 
Y� 	� satis�es $� or that $ holds in 
Y� 	�� i� 
Y� 	�� v j�

t� t�� for all 
t� t�� � $ and all assignments v � X � Y �

How the concept of a set of equations can be generalised to arbitrary categories 
with
factorisation system� is shown in Chapter ��
�

��� Duality

We brie	y review categorical duality� A category C consists of a class of objects� also
denoted by C� and for all A�B � C of a set of arrows 
or morphisms� C
A�B�� The dual 
or
opposite� category Cop has the same objects and arrows Cop
A�B� � C
B�A�� We write
Aop and f op for A � C and f � C
B�A� to indicate when we think of A as an object in Cop

and of f as an arrow in Cop
A�B�� Duality can now be formalised as follows� Let P be a
property of objects or arrows in C� We then say that

an object A 
arrow f � respectively� in C has property co�P
i� Aop 
f op� respectively� has property P �

For example� an object A is co�initial in C 
usually called terminal or �nal� i� A is initial
in Cop a morphism f � C
A�B� is co�mono 
usually called epi� i� f op is mono C is a
co�product A � B i� Cop is a product Aop � Bop� Of particular importance for us is

Exercise ��	��� Show that 
E�M� is a factorisation system in C i� 
M�E� is a factorisation
system in Cop�

The duality principle can also be extended to functors� The dual of a functor F � C � D
is the functor F op � Cop � Dop which acts on objects and morphisms as F does� We can
now state precisely that algebras are dual to coalgebras�

Proposition �
�
�
 Let � � X � X � Alg
��op is equivalent to Coalg
�op��

Proof� The iso maps objects 
�X
�
�� X�op to Xop �op

�� �opXop and is the identity on
morphisms�
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Note that the base category X gets dualised as well� To emphasise this trivial but
important point we state an evident corollary to the proposition�

Corollary �
�
�
 Let � � X � X � Then the forgetful functor U � Alg
�� � X is dual to
the forgetful functor Uop � Coalg
�op� � X op�

The fact that the base category has to be dualised makes it di�cult to exploit the duality
of algebras and coalgebras� For example exercise ����� shows that Setop is isomorphic to
the category of complete atomic boolean algebras� Therefore� coalgebras over set are
isomorphic to algebras over complete atomic boolean algebras� a fact that seems not very
helpful in the study of coalgebras�

Nevertheless� duality may still be exploited� The idea is to take care that the proofs of
our results do not depend on a speci
c base category� There are two possibilities�
First� it may be that the properties we are interested in can be formulated in a way such
that they do not depend on the base category at all� Second� if some properties P of the
base category are needed� we are careful to keep track of them� In this way� we are able
to obtain results that hold� say� for all algebras over base categories satisfying P � and all
coalgebras over base categories satisfying co�P � Even if we are only interested in results
about algebras as well as coalgebras over sets� this approach is still useful� For example�
Set is wellpowered and cowellpowered� complete and cocomplete and has a factorisation
system�

Coalg
�� Alg
�op�

factorisation system 
E�M� factorisation system 
M�E�

subcoalgebras quotients

quotients subalgebras

coproducts products

union of images intersection of kernels

�nal coalgebra initial algebra

cofree coalgebra free algebra

coinduction induction

behaviour reachable part

bisimulation subalgebra 
��

Table ���� List of Dualities

Table ��� summarises dualities which are interesting for us� The notion of intersection
of kernels is given by the dual of De�nition ������ and will be illustrated in the next
section� Behaviour and reachable part are dual notions� the behaviour of a coalgebra 
X� ��
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is given by the factorisation 
X� ��
e
�� Beh
X� ��

m
�� 
Z� �� of the unique morphism


X� �� � 
Z� �� into the �nal coalgebra 
Z� �� the reachable part of an algebra 
Y� 	�
is given by the factorisation 
I� ��

e
�� Reach
Y� 	�

m
�� 
Y� 	� of the unique morphism


I� �� � 
Y� 	� from the initial algebra� Bisimulation and subalgebra are dual notions if we
consider the essence of a bisimulation being to de�ne a quotient on a system�

To investigate whether this table can be extended to logics for 
co�algebras is the
purpose of Chapter ��

��� Extended Example� Limits

This section illustrates the material we have seen so far� namely duality� union of images�
and cofree coalgebras�

We have seen that that colimits of coalgebras are easy 
ie calculated as in Set�� What
about limits� We will use our intuition on algebras and then duality to provide a solution�

The �rst step is to describe colimits of algebras� In order to think of something concrete�
let us consider the coproduct of two monoids 
Y�� e� �� and 
Y�� e� ��� Clearly� it can not
be given by the coproduct 
disjoint union� Y� � Y� because� roughly speaking� Y� � Y�
contains not enough elements� For example� Y� � Y� contains no element which we could
consider as the composition of some y� � Y� and some y� � Y�� Surely� the free algebra over
both carriers� F 
Y� � Y��� contains enough elements 
eg y� � y��� But F 
Y� � Y�� is not the
coproduct itself because it does not satisfy enough equations� For example� if x� �y� � z� in

Y�� e� �� then x� �y� �� z� in F 
Y��Y�� just because it is the free algebra 
which means that
it satis�es no equations but those enforced by the monoid axioms�� So what we need to
�nd is the appropriate equations which make the quotient of F 
Y��Y�� into the coproduct
of 
Y�� e� �� and 
Y�� e� ��� But this is easy� Consider two algebra morphisms as in


Y�� e� �� F 
Y� � Y�� 
Y�� e� ��


Z� e� ��

hf�g

��

gf
�

Since F 
Y� � Y�� is free� there is a unique algebra morphism hf�g which agrees with f and
g on Y� and Y�� respectively� The kernel Ker hf�g � f
t� t�� � hf�g
t� � hf�g
t

��g contains
precisely the equations	 
t� t�� satis�ed by 
Z� e� ��� Now� in order to �nd the equations
satis�ed by the coproduct we take the intersections of all these kernels� Let

$ �
�
fKerhf�g � � 
Z� e� �� " f � 
Y�� e� �� � 
Z� e� �� " g � 
Y�� e� �� � 
Z� e� ��g

and de�ne the coproduct of 
Y�� e� �� and 
Y�� e� �� as the quotient of F 
Y� � Y�� wrt to the
smallest congruence generated by $� Of course� it remains to be checked that this de�nition
yields indeed the coproduct� If you are interested in the details� dualise the proof below�

�Recall that we write equations as �t� t�	 rather than t � t��
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The principle of duality now makes us guess that limits of coalgebras must be obtained
as certain subcoalgebras of cofree coalgebras� This idea gives rise to the following theorem
and proof�

Theorem �
�
�
 Let � be a functor on Set such that Coalg
�� has cofree coalgebras� Then
Coalg
�� has all limits and they are constructed as shown in the proof�

Proof� Let D � I � Coalg
�� be a diagram in Coalg
��� Let ci � L � UDi be a limit of
UD in Set� Consider the cofree coalgebra FL over L with colouring �L � UFL� L�

UDi �
ci

L �
�L

UFL

UAj

Uf ij

�

Uej
�

Ug
�
j

�

g j

�

UB

Um

�

Let f ij � Aj � Di be a cone for the diagram D� Since L is a limit of UD� there is a unique

gj � UAj � L such that Uf ij � ci � gj� Since FL is cofree� gj lifts to a unique g�j � A� FL

such that �L � Ug
�
j � gj�

Let ff ij � Aj � Di � j � Jg be the class of cones for D� We have seen that every cone

f ij � Aj � Di gives rise to a g�j � Aj � FL� The limit B of D is now the union of images

Aj

ej
�� B

m
�� FL of the family 
g�j�j�J �

To �nd the limiting cone consider li � ci � �L � Um� Since for all i � I� li � Uej � Uf ij
are morphisms in Coalg
�� and the family of morphisms 
ej�j�J is collectively surjective�
it follows that the li � B � Di are coalgebra morphisms� Furthermore� li is a cone for D
because it is a cone for UD which in turn holds because Uf ij is a cone for UD 
for all j�
and the 
Uej�j�J are collectively surjective�

To complete the proof we have to show that every cone in Coalg
�� over D factors uniquely
through li � B � Di� The existence follows from the de�nition of B� uniqueness from m
being mono�

Remark �
�
�
 The construction of the limit shown in the proof of the theorem can
be used to obtain detailed information on limits� As an example consider the following
coalgebra A for the 
�nite� powerset functor�

s�

s�
�

s�

�
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The carrier of A is fs�� s�� s�g and the transition relation is as depicted in the diagram��
You are invited to use the construction in the proof of the theorem to prove the following
remarks on the product A� A�

� The product A�A is not the largest bisimulation because the product has �too many
states� 
the largest bisimulation on A has ���

� A� A is �nite 
the construction in the proof of the theorem also allows to calculate
the precise number of states in A� A though this requires a bit more work��

� De�ne A� by adding transitions from s� and s� to s� in the coalgebra A� Then A��A�

is in�nite�

��� Exercises

Exercise �
�
�
 Some strange operations give rise to functors and some don�t�

�� De�ne AM � Set � Set as AM
X� � f
x� y� z� � X� � jfx� y� zgj � �g� Show that
AM can be extended to a functor�

�� De�ne B � Set � Set as B
X� � f
x� y� z� � X� � jfx� y� zgj � �g� Show that B can
not be extended to a functor� �Hint� Do the next exercise �rst��

Exercise �
�
�
 Show that� roughly speaking� operations have to be monotone in order
to allow for an extension to functors�

�� A functor that maps some non�empty set to the empty set maps any non�empty set
to the empty set�

�� Denote the cardinality of a set X by jXj� Suppose jXj �� �� Then jXj � jY j 

j�Xj � j�Y j�

Hint� Use that functors map injective functions with non�empty domain to injective func�
tions�

Exercise �
�
� �Largest 
xed points as 
nal coalgebras�
 Let X be the category of
sets with inclusions as morphisms� Show that functors are monotone operators and �nal
coalgebras are largest �xed points�
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Exercise �
�
� �Lambek�s lemma�
 From the previous exercise� we expect the struc�
ture of a �nal coalgebra to be an isomorphism� Trying to generalise the previous proof
leads us to consider

Z
� � �Z

f � Z

�Z

�

� ��� ��Z

��

� �f � �Z

�

�

Assuming that 
Z� �� is �nal� show that � is iso�

Exercise �
�
� �Setop�
 A boolean algebra A is complete i� it has in�nite joins� that is�
for all subsets B 	 A there exists a least upper bound

W
B in A� An element a � A is

called an atom i� for all b � A� � � b � a 
 a � b� A boolean algebra is atomic
i� every element is a 
possibly in�nite� join of atoms� Morphisms are boolean algebra
morphisms which preserve in�nite joins 
hence meets�� Denote the category of complete
atomic boolean algebras by CABA� The following shows that Setop is equivalent to CABA�


�� Show that 
 � Setop � CABA� 
Y
fop

�� X� �� 
PY
f��

�� PX� de�nes a faithful func�
tor� �Here PY�PX denotes the powerset endowed with the structure of a complete
atomic boolean algebra��

�� Writing at
A� for the set of atoms of A � CABA� show that f � A � P
at
A���
a �� fb � at
A� � b � ag is a CABA�isomorphism�


� To see that 
 is full consider a CABA�morphism f � PX � PY and let g � Y � X
be such that g
y� is the x � X with y � f
fxg�� Show that g is well�de�ned and


g� � f �

��� Notes

The founding paper for the area of universal coalgebra is Rutten ����� Rutten�s approach
is based on sets as a base category whereas our goal was to treat 
co�algebras over Set

and Setop simultaneously� More on this approach can be found in �
��� For an overview of
results which are speci�c to coalgebras over Set see Gumm ����� The duality of behaviours
and reachable parts has been studied by Arbib and Manes ��� and recently in the context
of algebraic speci�cations in ����� The construction of limits in Section ��� is from �
���

�Using the following characterisation of equivalence� Categories A and B are equivalent i� there is a
full and faithful functor � � A � B such that every B � B is isomorphic to some ��A	�
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di�erent proofs were given by Worrell ����� Power and Watanabe ����� and Gumm and
Schr%oder �����

A detailed textbook presentation of factorisation systems and their applications to
algebra can be found in Ad#amek� Herrlich� Strecker �
��



�� CHAPTER �� COALGEBRA



Chapter �

Modal Logic

The purpose of this chapter is to introduce modal logic as far as needed in this course� For
more information see e�g� Blackburn� de Rijke� Venema ���� or Goldblatt �����

��� Kripke Semantics

����� Introduction

Modal logic originated with the study of logics comprising modalities as eg �necessarily�� In
the beginning of the ��th century a piece of syntax was invented� nowadays mostly written
�� in order to write formulas

�


having the intended meaning that 
 holds necessarily� A question at that time was to
describe axiomatically the valid formulas involving necessity� Di�erent proposals were
discussed generally including the following two axiom schemes and two rules�


taut� all propositional tautologies


dist� �

� �� � �
� ��


mp� from 
� 
� � derive �


nec� from 
 derive �


The interpretation is� propositional tautologies are valid if necessarily 
� � and neces�
sarily 
 then necessarily � modus ponens is clear if 
 is valid� then necessarily 
 is valid�
The modal logic consisting of these axioms and rules is today usually denoted by K�

In general� one also proposed additional axiom schemes as eg


re	� �
� 



trans� �
� ��


�
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The interpretation is� if 
 holds necessarily� then it holds indeed if 
 holds necessarily
then it is necessary that it holds necessarily�

For a long time it was di�cult to judge the value of such axiomatisation because there
was no appropriate semantics of modal logic� This changed in the ����s with the advent
of possible worlds or Kripke semantics� The idea is to use graphs 
X�R�� R 	 X � X�
as models for modal logic and to think of X as a set of possible worlds and of R as an
alternative relation� We then say that a formula holds necessarily in the world x i� it holds
in all possible alternatives�


X�R� x� j� �
 i� 
X�R� y� j� 
 for all y with xRy

A formula holds in 
X�R� i� it holds in all worlds x � X and a formula is valid i� it holds
in all 
X�R��

Exercise �
�
�
 If you are not familiar with Kripke semantics� then show that 
dist� is
valid� Also show that 
nec� is correct� if 
 is valid� then also �
� Show that 
 � �
 is
not valid�

����� Frames and Models

We presented modal logic avoiding any discussion of propositional logic� But there is an
issue� namely whether we should interpret the atomic propositions p � Prop of proposi�
tional logic as variables or as constants� This distinction gives rise to the notions of Kripke
frame and Kripke model�

But �rst let us be precise about the language of modal logic�

De
nition �
�
� �Modal language�
 Given a set of atomic propositions Prop� the set
of all modal formulas ML� sometimes written ML
Prop�� is de�ned inductively by

p � Prop 
 p � ML

� �ML


� � � ML 
 
� � � ML


 � ML 
 �
 � ML

� is falsum� The other boolean operators ������� can be de�ned from ���� The modal
operator � is de�ned as ����

If we understand atomic propositions as constants we need to extend graphs by inter�
pretations of atomic propositions�

De
nition �
�
�
 A Kripke model 
X�R� V � consists of a set X � a relation R 	 X�X
and a valuation V � X � PProp�
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Elements of X are called states� 
possible� worlds� or points� R is called the accessibil�
ity relation or alternative relation� Elements of Prop are called atomic propositions or
propositional variables�

The idea is that V assigns to x � X the set of atomic propositions holding in x the
semantics of propositional connectives is as usual and the semantics of � is as we have
seen it� To summarise�

De
nition �
�
� �Semantics of modal logic�
 For a Kripke model 
X�R� V � and x �
X de�ne�


X�R� V� x� j� p i� p � V 
x�


X�R� V� x� �j� �


X�R� V� x� j� 
� � i� 
X�R� V� x� j� 
 
 
X�R� V� x� j� �


X�R� V� x� j� �
 i� xRy 
 
X�R� V� y� j� 
 for all y � X�


 holds in a model 
X�R� V �� written 
X�R� V � j� 
� i� 
X�R� V� x� j� 
 for all x � X�
And 
 is valid� written j� 
� i� 
 holds in all models�

Notation� We write x j� 
 instead of 
X�R� V� x� j� 
 when 
X�R� V � is clear from the
context�

We can also take another perspective on atomic propositions� Studying eg the logic of
necessity� one is interested in the formulas valid under all possible interpretations of atomic
propositions� We then think of atomic propositions as propositional variables�

De
nition �
�
�
 A Kripke frame 
X�R� consists of a set X� and a relation R 	 X�X�
Models 
X�R� V �� V � X � PProp� are said to be based on 
X�R� and 
X�R� is called the
underlying frame of the model�

A frame 
X�R� satis�es a formula 
� or 
 holds in 
X�R�� i� all models based on the frame
satisfy 
�


X�R� j� 
 i� 
X�R� V � j� 
 for all V � X � PProp

Note that 
 holds in all models i� it holds in all frames�

One di�erence between models and frames is that the theory of a frame is always closed
under substitution� see Exercise 
����� For frames� it is therefore enough to consider axioms
as eg �p� p for some p � Prop for models� however� we would employ an axiom scheme
�
 � 
 corresponding to the set of axioms f�
 � 
 � 
 � MLg� A more essential
di�erence between models and frames is the topic of the next

Exercise �
�
�
 Let p � Prop�

�� Show that �p� p holds in all re	exive frames 
X�R� 
ie �x � X � xRx��
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�� Give an example of a non�re	exive model satisfying �
 � 
 for all 
 � ML� Is
there a non�re	exive frame satisfying �p� p�

From the point of view of logic� frames seem to be the interesting structures� When
we ask what formulas are valid under all interpretations of propositional variables� it is
natural to consider frames as the semantic structures for modal logic�

On the other hand� from the computer science point of view� models seem to be the
natural structures� Consider a program or algorithm as given by a set of states X and a
relation R� R giving for each state its successors� But program states are not just �naked�
elements� they carry additional information� typically the contents of the memory� This
information can be thought of as being encoded by the valuation V � X � PProp� That
is� thinking of modal logic as a speci�cation language for transition systems 
algorithms�
programs�� models are the natural semantic structures of modal logic�

But even then� the underlying frames 
X�R� are of some interest� Often� we are not
interested in arbitrary models 
X�R� V � but want to restrict our attention to programs
with special properties� eg deterministic ones� Being deterministic then� is a property of
R� and hence a property of the class of underlying frames� For another typical example�
think of Kripke models 
X�R� V � as runs of programs� In this case we may want to require
the underlying frames to have an initial state� to be re	exive� transitive� and perhaps linear�

The next section further develops the exercise above and discusses how modal logic can
be used to describe certain frame classes�

����� De
nability

We say that a class of frames B is de�ned by a class of formulas $ i� B � f
X�R� �

X�R� j� $g� There are then two questions relating to de�nability�

� Given a class of formulas� can we characterise the de�ned class of frames�

� Given a class of frames� are there formulas de�ning it�

To illustrate the �rst question� suppose that someone proposes formulas 
re	� and 
trans�
as axioms for necessity� Understanding then the de�ned class of frames would make it easier
to judge the proposed axiomatisation 
for example� as will be shown below� whether we
accept 
trans� depends on whether we think of the alternative relation as being transitive��
To illustrate the second question� recall from the discussion at the end of the previous
section that we might be interested in de�ning eg the class of deterministic frames or the
class of re	exive� transitive� linear frames�

There exist only partial answers to these questions but many important cases are well�
known� Table 
�� gives a typical list of examples�

To check that a frame satisfying the �rst�order property also satis�es the modal formula
is usually straight forward� If you are not familiar with this� you should do some of the
correspondences in Table 
�� as exercises� The converse direction is usually more di�cult
to establish� An easy but typical example is the case of 
trans��
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We show that only transitive frames satisfy �p� ��p� Suppose 
X�R� is not transi�
tive� that is� there are x� y� z � X such that xRy�yRz��xRz� We have to �nd a valuation
V such that 
X�R� V� x� �j� �p � ��p� Choose as extension of p the smallest set such
that 
X�R� V� x� j� �p 
ie let p � V 
w� 
 xRw�� Now� �xRz guarantees that p �� V 
z�
and it follows from xRy � yRz that 
X�R� V� x� �j� ��p�

Name Axiom

� �re�� �p� p

� �trans� �p� ��p

� �ser� ��

� �det� �p� �p

� �fun� �p� �p

� �dir� ��p� ��p

Name Conditions on R

� re�exive �x�xRx�

� transitive �x�y�z�xRy � yRz � xRz�

� serial �x�y�xRy�

� deterministic �x�y�z�xRy � xRz � y � z�

� functional �x��y�xRy�

� directed �x�y�z�xRy � xRz � �x��yRx� � zRx���

Table 
��� Modal Formulas and First�Order Correspondences

����� Multimodal Logics

We have seen Kripke semantics for modal logics with one modality� But the basic ideas
of modal logic and possible world semantics can be varied in many ways� We will discuss
here only modal logics with more than one modality�

A multimodal logic has modalities �a for all a � A for some set A� That is� the last
clause of De�nition 
���� is replaced by


 � ML� a � A 
 �a
 � ML

One should now write ML
Prop� A� but if no confusion can arise we continue to use ML�

A frame 
X� 
Ra�a�A� for a multimodal logic has a relation Ra for each modality �a� A
model 
X� 
Ra�a�A� V � has additionally a valuation of atomic propositions�
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Example �
�
� �Hennessy�Milner logic�
 Consider a multimodal logic without atomic
propositions and with modalities �a� a � A� where we think of A as a set of actions and
of �a
 as �
 holds after a�� A Kripke model is then a transition system 
X� 
Ra�a�A�

remember that there are no atomic propositions and hence no valuation�� It is customary
to write x

a
�� y for x Ra y and �a� for �a�

Example �
�
� �Multi�agent systems�
 Consider a multimodal logic with modalities
�a� a � A� where we think of A as a set of agents and of �a
 as �agent a knows 
�� Atomic
propositions describe the facts agents can know� A Kripke model 
X� 
Ra�a�A� V � can be
understood as follows� X is a set of possible worlds and V describes the facts holding in
each world� xRay means that agent a considers y as an alternative world for x� x j� �a

means that 
 holds in all worlds which are considered as alternative worlds by agent a� ie
a knows 
�

Example �
�
	 �Temporal logic�
 Consider a multimodal logic with two modalities
e�� where we think of e
 as �in the next state holds 
� and of �
 as �now and always in

the future holds 
�� A particularly interesting Kripke frame for this logic is 
N � S ��� where
m S n i� n � m � �� Models based on this frame can be considered as runs of programs
and the modal logic de�ned by this frame� linear temporal logic� plays an important role
in the veri�cation of programs� see eg �

� �
� ��� ����

��� Bisimulation

Having seen Kripke frames and models� it is natural to ask what would be an appropriate
notion of morphism for these structures� But instead of de�ning morphisms right away� we
look �rst at relations between models� In particular� given two 
multimodal� Kripke models

X� 
Ra�a�A� V �� 
X �� 
R�

a�a�A� V
��� we are interested in describing relations B 	 X � X �

such that

x B x� 
 
x j� 
 
 x� j� 
��

A careful analysis of the de�nition of x j� 
 leads to the following notion of bisimulation�

De
nition �
�
� �Bisimulation�
 Given two Kripke models 
X� 
Ra�a�A� V ��

X �� 
R�

a�a�A� V
�� we call B 	 X � X � a bisimulation between the models i� x B x�

implies that

V 
x� � V 
x��

x
a
�� y 
 �y� � x�

a
�� y� " y B y�

x�
a

��� y� 
 �y � x
a
�� y " y B y�


writing
a
�� for Ra and R�

a�� x� x� are called bisimilar i� there is a bisimulation relating
them� Bisimulations for frames can be obtained as a special case by ignoring the clause
concerning the valuations V� V ��
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Examples of 
non��bisimilarity can be found in the exercises� For us� the following is
essential and an exercise that should not be missed�

Exercise �
�
�
 Show by induction on the structure of formulas that given two models

X� 
Ra�a�A� V �� 
X �� 
R�

a�a�A� V
�� then for all x � X� x� � X � it holds� x� x� bisimilar

implies that x j� 
 
 x� j� 
 for all modal formulas 
�

We now de�ne morphisms as functional bisimulations�

De
nition �
�
�
 Given two Kripke models�frames 
X� � � � �� 
X �� � � � � a morphism f �

X� � � � � � 
X �� � � � � is a function f � X � X � such that its graph f
x� f
x�� � x � Xg is a
bisimulation�

These morphisms are usually called p�morphisms or bounded morphisms� The following
observation�which should by now be no surprise�justi�es to call them simply morphisms�

Proposition �
�
�
 The morphisms of Kripke models�frames are precisely the coalgebra
morphisms�

Proof� 
Monomodal� Kripke frames are P�coalgebras and their morphisms were shown to
be functional bisimulations in Proposition ����
 
check this�� Kripke models are 
P �
PProp��coalgebras multimodal Kripke frames are P
A � ���coalgebras and multimodal
Kripke models 
P
A����PProp��coalgebras� These cases are only slight variations�

Another way to phrase the relationship between coalgebras and Kripke models�frames is
the following�

Proposition �
�
�
 Let 
X� � � � �
 
X �� � � � � be two Kripke models�frames� Then x � X

x� � X � are bisimilar �in the sense of modal logic� i� they are behaviourally equivalent �in
the coalgebraic sense��

The relationship between modal formulas and morphisms is summarised by the follow�
ing two classical results� We need some standard terminology� a formula 
 is preserved
under quotients if A � A� surjective and A j� 
 implies A� j� 
 
 is preserved under
submodels�subframes if A� � A injective and A j� 
 implies A� j� 
 
 is preserved under
disjoint unions 
or coproducts� if Ai j� 
 for all i � I implies

�
I Ai j� 
 
 is preserved

under domains of quotients if A� � A surjective and A j� 
 implies A� j� 
�

Proposition �
�
�
 Wrt Kripke models
 modal formulas are preserved under quotients

submodels
 disjoint unions
 and domains of quotients�

Proposition �
�
�
 Wrt Kripke frames
 modal formulas are preserved under quotients

subframes
 and disjoint unions�

The proof of this propositions is an easy corollary to Exercise 
�����
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��� The Logic of Bisimulation

The aim of this section is to substantiate the claim that modal logic is the logic of bisim�
ulation� We have seen in Exercise 
���� that for two models 
X�R� V �� 
X �� R�� V ��� and
x � X� x� � X �

x� x� bisimilar 
 �
 � ML � x j� 
 
 x� j� 
�

that is� bisimilarity implies modal equivalence� Unfortunately� the converse does not hold�
Figure 
�� shows an example where x has for each n � N a branch of length n� and x� has
additionally an in�nite branch� That x and x� are not bisimilar is not di�cult to see�

....x

.... ....

x’

Figure 
��� Modally equivalent but not bisimilar models

Exercise �
�
�
 Consider the models in Figure 
�� 
assume that all states satisfy the same
atomic propositions�� Show that x� x� are not bisimilar�

To show that x and x� are modally equivalent is not di�cult either but requires a bit more
work� see Exercise 
�����

The example suggests 
at least after having done Exercise 
����� that the failure of
modal logic to characterise states up to bisimilarity is related to the facts that

� a single modal formula can not express enough about an in�nite branch� and that

� a transition system may have in�nite branching�

And indeed� adjusting either of the two points above results in a perfect match of bisimi�
larity and modal expressiveness� This is the contents of the following two theorems�

The �rst idea is to increase expressiveness of modal logic using in�nitary modal logic
ML�� ML� is de�ned as ML with the additional clause

$ 	ML� 

V

$ � ML�

and stipulating x j�
V

$ 
 �
 � $ � x j� 
�
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Theorem �
�
�
 For each model 
X�R� V � and each x � X there is a formula 
x � ML�
such that for all models 
X �� R�� V �� and all x� � X �

x� j� 
x i� x� x� bisimilar�

The other idea is to restrict attention to models with �nite branching�

Theorem �
�
� �Hennessy and Milner�
 Let K be the class of image��nite Kripke
models
 ie for all 
X�R� V � and all x � X the set fy � x R yg is �nite� Then for all

X�R� V �
 
X �� R�� V �� in K and all x � X
 x� � X �

�
 � ML � x j� 
 
 x� j� 
 
 x� x� bisimilar�

From the point of view of classical �rst�order logic� however� the most satisfactory expla�
nation of the relationship of modal logic to bisimulation is the following characterisation of
modal logic as the bisimulation invariant fragment of �rst�order logic� A �rst�order formula
is invariant under bisimulations i� it is equivalent to a modal formula�

To make this precise we note that a Kripke model 
X�R� V � can also be understood as
a �rst�order model with one binary relation R and one unary predicate P for each atomic
proposition p � Prop� Let us callFL the corresponding �rst�order language 
containing one
relation symbol and for each atomic proposition a unary predicate symbol�� The de�nition
of 
X�R� V� x� j� 
 in Section 
���� can now be read as a translation 
��� � ML� FL of
modal formulas in �rst�order formulas with one free variable x�

p� � P 
x�

�� � �



� ��� � 
� � ��


�
�� � �y � xRy � 
��y�x�

where y is a variable not occurring free in 
� 
and �y�x� denotes substitution of y for x��

Theorem �
�
� �van Benthem�
 A �rst�order formula � � FL is invariant under
bisimulation i� it is logically equivalent to a translation 
� of a modal formula 
 � ML�

��� Exercises

Exercise �
�
�
 Show that the theory of a frame is closed under substitution� That is�
for 
� � � ML and p � Prop it holds that 
X�R� j� 
 
 
X�R� j� 
���p� 
where ���p�
denotes substitution of � for p��

Exercise �
�
� �Examples of bisimilarities�
 Assume a monomodal language� Show
that in the models given below the states x and x� are bisimilar�
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�� The relational structure of the models is depicted below� For the valuations assume
that V 
y� � V 
z� � V �
y�� and V 
x� � V �
x���

y’x’x

y

z

�� For the following models assume that all states have the same valuation�

x .... x’

Exercise �
�
� �A non�example of bisimilarity�
 Assume a multimodal language
with three modalities A � fa� b� cg and no atomic propositions� Consider the two models
below�

x x’
a

b

c

a

c

b

a

�� Show that x� x� are not bisimilar�

�� Give modal formulas that distinguish x and x��

Note that both models show the same behaviour fab� acg if only traces are considered�

Exercise �
�
� �Bisimilarity of frames�
 For frames bisimilarity does not imply modal
equivalence� First note that x� x� in the the following two frames are bisimilar�

x .... x’

Now� show

�� x j� 
 
 x� j� 


�� x� j� 
� x j� 
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Exercise �
�
� �Modal equivalence does not imply bisimilarity�
 Denote by

X�R� V � and 
X �� R�� V �� the two models of Figure 
��� The aim is to show that x and x�

are modally equivalent� We need two de�nitions�

The depth of a modal formula counts the number of nested boxes� ie depth
�� � depth
p� �
�� depth

� �� � max
depth

�� depth
���� depth
�
� � depth

� � ��

Denote by Cut
x� n� the model which is obtained from 
X�R� V � by deleting all states
which are not reachable from x in n or fewer than n steps� For example Cut
x� �� consists
just of x� Similarly de�ne Cut �
x�� n��

�� Show that depth

� � n implies that 
Cut
x� n�� x� j� 
 
 
X�R� V� x� j� 
 and
that 
Cut �
x�� n�� x�� j� 
 
 
X �� R�� V �� x�� j� 
�

�� Conclude that for all modal formulas 
X�R� V� x� j� 
 
 
X �� R�� V �� x�� j� 
�

��� Notes

For background on modal logic the reader is referred to Chapter � and 
 of Blackburn�
de Rijke� Venema ����� We just note that bisimulation goes back� in its functional form�
to Segerberg ����� and in its relational form to van Benthem ���� Theorem 
�
�� can be
found in Barwise and Moss ����� Theorem 
�
�
 is due to Hennessy and Milner ��
�� and
Theorem 
�
�� to van Benthem ���� ����
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Chapter �

Modal Logics for Coalgebras

The investigation of modal logics for coalgebras is still a young area of research� Since it
is not in a de�nite shape yet� we will content ourselves to describe a few approaches�

We put emphasis on the theory of coalgebras as a general theory of systems� Not in the
sense� of course� that it solves all problems concerning systems� But general in the sense
that it o�ers tools that apply uniformly to a large class of systems� An obvious question
from this perspective is� whether we can deal with logics for coalgebras in a uniform way�
This question is of interest from a computer science point of view because coalgebras are
systems and logics are speci�cation languages�

This chapter presents some approaches which represent the tension between achieving
uniformness and remaining close to the speci�c signature� The ideal description of a logic
for coalgebras would work uniformly for all signatures and� at the same time� would re	ect
for each signature our intuition of coalgebras as transition systems�

The following three sections present three approaches that may be compared wrt this
dilemma� The �rst solves the problem of being uniform but its syntax is neither familiar
nor practical to work with� The second only works for speci�c signatures but its syntax is
familiar modal logic� The third tries to get as much as possible from both approaches�

The order of the presentation re	ects the historical development�

��� Coalgebraic Logic

Coalgebraic logic is an ingenious invention by Larry Moss� To appreciate it� before contin�
uing to read on� try to think of a syntax and semantics of a logic for coalgebras working
in a uniform way for all signatures � � Set � Set� Moreover� formulas of the logic should
be invariant under behavioural equivalence and the logic should be reasonably expressive�
Reasonably expressive can be made precise by requiring that admitting in�nite conjunc�
tions� the logic should be able to characterise processes 
elements of coalgebras� up to
behavioural equivalence 
compare with Theorem 
�
����

The aim is to �nd a language L� and for each ��coalgebra 
X� �� a relation j�� 	 X�L�

satisfying the above requirements� The starting point is that signatures are functors on

��
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Set and may hence also be applied to sets of formulas L� and relations j���
We allow L� and j�� to be proper classes� The category of classes is denoted by SET�

Functors � on Set are extended to functors on SET via �K �
S
f�X � X 	 K�X a setg

for classes K� Moreover� � is assumed to weakly preserve pullbacks�

De
nition �
�
� �coalgebraic logic� syntax�
 L� is de�ned to be the least class satis�
fying�

$ 	 L�� $ a set �

V

$ � L�


 � �
L�� �
 
 � L�


That is� L� is the initial algebra wrt the functor P � ��� Due to the �rst clause
V
��

denoted by true� is in L� and L� is a proper class� The last clause uses the fact that � is
a functor on SET and can also be applied to classes of formulas�

Example �
�
�
 Let �X � A � X and ai � A� Then true� 
a�� true�� 
a�� 
a�� true���V
f
a�� � � � � an� true� � n � Ng are examples of formulas�

Exercise �
�
�
 Give examples of formulas for � � O � IdI 
ie deterministic automata�
see Chapter ��
� and � � P�

The semantics of coalgebraic logic goes as follows�

De
nition �
�
� �coalgebraic logic� semantics�
 Given a coalgebra 
X� �� de�ne
j�� 	 X � L� as the least relation such that 
let x � X��

x j�� 
 for all 
 � $� $ 	 L�� $ a set 
 x j��
V

$

there is w � �
j��� s�t� ���
w� � �
x�� ���
w� � 
 
 x j�� 


where ��� �� denote the projections from the product X � L� to its components�

The following exercise explains how this de�nition works in the example of streams� In
particular� it shows that formulas are invariant under behavioural equivalence�

Exercise �
�
�
 Let X
�
�� A�X and x � X� Show that

x j�A�Id 
a�� � � � an� true� i� head
tail i
x�� � ai for all � � i � n

where head � X � A and tail � X � X denote the components of ��

The following theorem summarises the main properties of coalgebraic logic� For proofs
we refer to the original paper �����

Theorem �
�
�
 Let � � Set� Set be a functor weakly preserving pullbacks� Then

�� formulas of L� are invariant under behavioural equivalence and
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�� for each coalgebra 
X� �� and each x � X there is a formula 
x � L� such that for
all coalgebras 
X �� ��� and all x� � X �

x� j�� 
x i� x� x� behaviourally equivalent�

This theorem shows that coalgebraic logic re	ects precisely the notion of behavioural
equivalence� Moreover� Exercise ����� shows that� eg in the case of � � P� every formula
of modal logic is equivalent to a formula of coalgebraic logic 
with negation�� We can
therefore�neglecting syntactical �details��consider coalgebraic logic as modal logic� But
what happened� then� to the modalities of modal logic� To explain this� let us take a closer
look at coalgebraic logic in the case � � P� Recall that formulas are either of the formV

$ or�due to the second clause of De�nition ������of the form $ for $ � PLP � We take
a look at the formulas of the second kind��

Proposition �
�
�
 Let $ � PLP 
 X
�
�� PX
 and x � X� Then

x j�P $ 


���
��
�y � �
x� � �
 � $ � y j�P 
 and

�
 � $ � �y � �
x� � y j�P 


Using the modal operators ���� this can be rewritten as

x j� �
�

$ �
�
�$

where �$ � f�
 � 
 � $g� This shows that the modalities are still there� but in �some
strange way�� Whether it is possible to extract the familiar modalities from a functor �
will be addressed in Section ��
�

��� Logics Designed for Speci	c Signatures

As we have seen� coalgebraic logic solves the problem of describing a logic which depends
in a uniform way on the given signature� But in some other respects it is far away from
what we are used to call modal logic� It is therefore natural to give up a bit of generality
and see what can be achieved in concrete examples� The basic idea is simply to �nd a
translation of coalgebras into transition systems and then to use standard modal logic as
a logic for coalgebras�

Let us consider as an example the signatures of classes� see Chapter ������ Signatures
are then functors

�X �
Y

��m�n


Em � Om �X�Im� 
����

�We write � instead of � because� due to � � P � the formula � is indeed a set of formulas� Unfor

tunately� this may cause confusion because x j� � could be understood as �x j� � for all � � �� or as
x j� � according to the second clause of De�nition 
���
� It is the latter understanding of x j� � which is
discussed in the following�
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where for each method m the sets Im� Om� Em denote the sets of inputs� outputs� exceptions�
respectively�

It is now straight forward to translate coalgebras X � �X into Kripke models

X� 
Ra�a�A� V �� To each method and each input corresponds a relation� ie A � f
m� i� �
� � m � n� i � Img� Atomic propositions are used to describe the outcomes of the meth�
ods� that is we put Prop � f
m� i� o� � � � m � n� i � Im� o � Omg � f
m� i� e� � � � m �
n� i � Im� e � Emg and interpret the proposition 
m� i� o� as �method m applied to input i
yields output o� and 
m� i� e� as �method m applied to input i yields exception e���

To discuss this translation in a bit more detail� let us denote by K
�� the class of

all Kripke models 
X� 
Ra�a�A� X
V
�� PProp� with A and Prop as described above� The

translation of coalgebras to models will be denoted by

ck � Coalg
�� � K
���

Of course� we are not interested in all of K
�� but only in those models in K
�� which
are ��coalgebras� That is� we are interested in the image of ck� The idea is now

� to describe the image of ck� up to bisimulation� by modal formulas� and

� to add these formulas as axioms to a standard modal logic for K
���

which will result in a modal logic for the image of ck and hence for Coalg
��� Moreover�
this logic will in general inherit good properties from the modal logic for K
�� such as
completeness and decidability 
model checking�� You can work this out as Exercise ������

Of course� as described so far� this approach su�ers from the fact that� although straight
forward and easy� it only works for the signatures describing classes as in 
����� It can be
generalised� though� to all signatures which are de�ned inductively via

� ��� Id j A j �� � j � � � j �A j P��

This line of research was pursued by R%o&iger ���� �
� ��� ����

��� Modalities from Functors

We have seen that coalgebraic logic solves the problem of a uniform approach to modal
logics for coalgebras but that it has no modalities� And we have seen that for speci�c
functors we can give a modal logic with modalities by translating them to Kripke models
and then using standard modalities from modal logic� This section presents an approach
with allows to extract the modalities from the functors � in a uniform way�

�A more detailed description of the translation of coalgebras into Kripke models can be found in
Exercise 
�
��� see properties ��	���	�
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����� Modalities Induced by Natural Transformations 
� P

The beautiful insight� due to Pattinson ����� is that modalities 
at least those studied so
far for coalgebras� correspond to natural transformations � � P 
or to natural relations
on �� see ������ We �rst take a look at a few examples of natural transformations�

Exercise �
�
�


�� Show that � � 
E � O ��� � P de�ned by

�X � E � O �X � PX

e �� �


o� x� �� fxg

is a natural transformation 
where e � E� o � O� x � X��

�� Show that� for each i � I� ��i� � O � 
��I � P de�ned by

��i�X � O �XI � PX


o� f� �� ff
i�g

is a natural transformation�


� Let �X �
Q

��m�n
Em � Om �X�Im� Show that for all � � m � n and im � Im

��m� i� � � � P

de�ned by

��m� i�X � �X � PX

hf�� � � � fni ��

��
�
fxg if fm
i� � 
o� x� for some o � Om

� otherwise

is a natural transformation 
where � � m � n and i � Im��

Remark �
�
�
 Note how the natural transformations � of the exercise above extract
from �X the successors� In detail� � � X � �X being a coalgebra for the signatures 
��
to 

�� respectively�

�� �X
�
x��� is the empty set if x� has no successor and otherwise the singleton con�
taining the unique successor of x��

�� ��i�X
�
x��� gives the successor of x� obtained on input i�



�� CHAPTER �� MODAL LOGICS FOR COALGEBRAS


� ��m� i�X
�
x��� gives the successor of x� obtained by applying method m with input
i to state x��

Also note that� in case 

�� ��m� i�X�� gives precisely the relation R�m�i� which was discussed
in the previous section as the relation corresponding in a Kripke model to a ��coalgebra

X� �� 
see also Exercise �������

That only singletons fxg appear on the right hand side is of course due to the systems
being deterministic�

Exercise �
�
�
 Show that ��a� � P
A��� � P de�ned for all a � A by

��a�X � P
A�X� � PX

Q �� fx � 
a� x� � Qg

is a natural transformation�

We have seen that for a system � � X � �X and a natural transformation � � � � P�
the ��successors of x � X are given by �X
�
x��� The semantics of modal operators� one
for each natural transformation �� can now be de�ned as usual for all x � X

x j� ��
 i� y j� 
 for all y � �X
�
x�� 
����

or� equivalently� but of use below

����
�� � ���
��X
��
��� 
��
�

where ��
��� called the extension of 
� is fx � X � x j� 
g and �� is de�ned via�

��X � �X � ��X

P �� fs � �X � �X
s� 	 Pg�

����

�Comment on notation� It would be more precise to write 
X� �� x� j� 
 instead of x j� 


cf De�nition 
����� and ��
���X��� instead of ��
�� but we suppress 
X� �� when convenient��

What is the point of requiring the transformations � to be natural� It is precisely this
requirement� what makes in the de�nition above �� into a modal operator� This is the
contents of the next proposition�

Proposition �
�
�
 Let � � Set � Set and � � � � P a natural transformation� If 
 is
invariant under behavioural equivalence then so is ��
�

�Recall that �X is the set of functions X � � for some �xed two
element set �� ie �X � PX is the set of
subsets of X � Here� we prefer the notation �X since ���� is the contravariant functor mapping f � X � Y

to the inverse image f�� � �f � �Y � �X �
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Proof� Consider a coalgebra 
X� �� and let 
Z� �� be its behaviour� First note that any
subset U 	 X of a coalgebra 
X� �� is invariant under behavioural equivalence i� there is
V 	 Z such that U � !��
V � where ! is the unique morphism into 
Z� ��� Now consider

�X �
���

��X �
��X �X

�Z

!��

�

� ���
��Z


�!���

�

� ��Z �Z

!��

�

The left�hand square commutes since ! is a morphism and ���� � 
���� is a functor� The
right�hand square commutes since �� is natural 
Exercise ����
�� Now� consider !
��
��� as
an element of the lower right corner �Z � Since 
 is invariant� ie !��
!
��
���� � ��
��� going up
and left gives us ����
�� 
see 
��
��� And going left and up shows that ����
�� � !��
V � for
some V 	 Z�

Having seen how to obtain modalities from natural transformations � � P we use
the same idea for atomic propositions� Given �� we call atomic propositions any set Prop

together with a natural transformation 	 � � � PProp�� We then de�ne as usual 
compare
with �rst clause of De�nition 
����� for any x � X�

x j� p i� p � 
	X � ��
x� 
����

We have seen that modal operators and atomic propositions arise from natural trans�
formations� Suppose we have chosen a set f��a� � a � Ag of natural transformations � � P
and a natural transformation 	 � � � PProp of atomic propositions� Is there a condition
telling us that we chose enough ��a� and atomic propositions in order to get a reasonably�

expressive modal logic� A su�cient condition is� To be able to embed ��coalgebras into
Kripke models� ie into

Q
a�A P � PProp coalgebras�	 Stated more formally� the condition

becomes� The natural transformation induced by the ��a�� a � A� and 	

� ��
Y
a�A

P � PProp

is injective� The proof that this condition implies that the corresponding logic is reasonable
expressive is the main result of �����

�The notation PProp corresponds to the atomic propositions part of the signature for Kripke models
� � P � PProp and is appropriate since we consider Prop to be a given constant� In case we would
like to compare Kripke models with di�erent sets of atomic propositions� we should rather use signatures
� � P � �Prop and natural transformations �� �Prop� see �����

�Again� �reasonably� expressive can be made precise by requiring that if in�nitary conjunctions are
allowed then formulas should characterise elements of coalgebras up to behavioural equivalence�

�Recall that
Q

a�A P � PA � P�A��	�
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To summarise� we have seen how natural transformations can be used to extract modal�
ities from functors� Comparing with the previous section� the next challenge would be to
ask whether it is possible to �nd axioms in a uniform way which characterise the image
of the embedding of coalgebras into Kripke frames� Another open question is whether the
approach can be extended to cover all 
weakly pullback preserving� functors ��

����� Modalities Induced by Predicate Liftings

Going back to the explanation of modal operators as induced by natural transformations
� � � � P� we see that for the proof of Proposition ��
�� only the naturality of �� �
�Id � �� is required� It is therefore an obvious idea to consider modalities induced by
natural transformations �Id � ��� Natural transformations �Id � �� can be considered as
predicate liftings in the sense that �X � ��X is a lifting of � from an operation on carrier
sets X to an operation on predicates P � �X on X�

Having said that we want to consider modal operators induced by natural transforma�
tions �Id � ��� what about atomic propositions� There are slight variations possible 
see
Exercise ������ and we propose the following� Atomic propositions p � Prop are induced
by natural transformations

'p � � � �

where � � ftrue� falseg� We then de�ne

x j� p i� 
'pX � ��
x� � true 
����

which is equivalent to

��p�� � ���
'pX�� 
����

�Note that 'pX � ��X and recall ��� � ��X � �X ��

To summarise� given a set M of natural transformations �Id � �� and a set Prop of
natural transformations � � �� we obtain a language L
M�Prop� as laid out in

De
nition �
�
� �Syntax and semantics of L
M�Prop��
 Suppose � � Set� Set� M
a set of natural transformations �Id � ��� and Prop a set of natural transformations � � ��
Then the language L
M�Prop� is the least set containing � and p for all p � Prop and
closed under implication � and containing the formula ��
 for every � � M and every

 � L
M�Prop��

Given a coalgebra 
X� ��� the semantics for boolean operators is as usual and for atomic
propositions and modal operators as follows

��p�� � ���
pX��

����
�� � ���
�X
��
����

where as above ��
�� � fx � X � x j� 
g�
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Remark �
�
�
 This de�nition is from �
��� with the di�erence that there atomic proposi�
tions p � � � � are subsumed under predicate liftings �Id � �� 
see Exercise ������ which
yields a more concise de�nition but does not respect the traditional way of presenting
modal logic�

We want to close this section with some background on predicate liftings and a com�
parison of natural transformations �Id � �� with the original notion of predicate lifting�
Predicate liftings were introduced by Hermida and Jacobs ���� and formulated in a general
setting called categorical logic which we try to sketch brie	y in the following�
 Consider
a category X of �types� and a category E of �predicates�� Predicates and types are linked
by a functor p � E � X which provides for each X � X the category p��
X� of predicates
on X� Endowing p with appropriate structure� one can give an account of formulas 
�
predicates � objects in E� and structures 
� types � objects in X � in a categorical frame�
work� allowing a uni�ed model theoretic treatment of a great variety of logics and type
theories� In the following� only the simple 
although paradigmatic� example below will be
of interest�

Example �
�
� �p � SubSet� Set�
 De�ne SubSet to be the following category� objects
are pairs of sets 
P�X� with P 	 X� morphisms f � 
P�X� � 
Q� Y � are functions
f � X � Y with f
P � 	 Q 
equivalently P 	 f��
Q��� An object 
P�X� is said to be
a predicate P on X� Morphisms are�up to renaming via a function f�inclusions� the
identity idX is a morphism idX � 
P�X� � 
P �� X� i� P 	 P � which we read as �P implies
P ��� De�ne the functor p � SubSet� Set as second projection on objects and on morphisms
as mapping f � 
P�X� � 
Q� Y � to f � X � Y �

The general de�nition of a predicate lifting involves the notion of a �bration 
eg p �
SubSet � Set is a �bration� and a �bred functor� It would lead us too far to de�ne these
notions here and we restrict attention to the special case of the example above�

De
nition �
�
� �Predicate lifting�
 A predicate lifting of � � Set � Set is a functor
(� � SubSet� SubSet such that the diagram

SubSet
(�� SubSet

Set

p
�

�
� Set

p
�

commutes� This means� in particular� that (� maps a predicate P on X to a predicate (�P
on �X� Moreover� for any morphism f � X � Y in Set and any predicate Q on Y � it holds

(�
f��
Q�� � 
�f���
(�Q� 
����


recall that f��
Q� is a predicate on X and (�Q is a predicate on �Y ��

�For introductions to categorical logic see eg Lambek and Scott �
��� Pitts �
�� and Jacobs ����� The
latter also contains an introduction to �brations�
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This de�nition spells out what it means for (� to be a �bred functor over � in case of
the �bration p � SubSet � Set�� The diagram illustrates why (� is called a lifting of ��
The next proposition relates natural transformations �Id � �� and predicate liftings for
the �bration p � SubSet� Set� We �rst need a de�nition�

We call a natural transformation �Id � �� monotone if P 	 Q 	 X implies �X
P � 	
�X
Q�� The natural transformations �� � �Id � �� arising from natural transformations
� � � � P are monotone� For an example of a non�monotone natural transformation
consider � � Id and � � �Id � �Id de�ned as complementation �X
P � � X � P �

Proposition �
�
	
 Let � � Set� Set and consider p � SubSet� Set� There is a bijection
between monotone natural transformations �Id � �� and predicate liftings of ��

Proof� First note that naturality of a transformation � � �Id � �� means that
�X
f��
Q�� � 
�f���
�Y 
Q�� for all f � X � Y and Q 	 Y  compare this with 
�����
Given � � �Id � ��� de�ne (�
P�X� � 
�X
P ���X�� For a morphism f � 
P�X� � 
Q� Y �
de�ne (�f � �f � 
�X
P ���X� � 
�Y 
Q���Y � which is indeed a morphism in SubSet

since � is natural and monotone� Now check that the conditions of De�nition ��
�� are
satis�ed�
Conversely� given (�� we write 
(�P��X� for (�
P�X�� De�ne �X
P � � (�P � � is monotone
since (� is a functor and natural due to 
�����

Let us remark that the notion of a predicate lifting is more general than that of a
monotone natural transformation �Id � �� since it can be stated for arbitrary �brations�

��� Exercises

Exercise �
�
�
 Suppose we added negation to coalgebraic logic CL� Show that in case
� � P


�
�y � f
yg � fg

gives a translation 
��y � ML� CL from modal logic into coalgebraic logic which preserves
and re	ects satisfaction of formulas� �Hint� Use Proposition �������

Exercise �
�
�
 Consider a signature � and the translation ck � Coalg
�� � K
�� as in
Section ���� The aim is to describe the image of ck in K
�� by modal formulas�

Since methods are functions� a model 
X� 
Ra�a�A� X
V
� PProp� in the image of ck has the

following properties 
recall A and Prop from Section ��� and let x � X��

�� 
m� i� e� � V 
x� 
 x has no R�m�i��successor�

�� 
m� i� o� � V 
x� 
 x has precisely one R�m�i��successor�

	Readers familiar with �brations will note that condition �
��	 expresses preservation of cartesian
liftings�
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� V 
x� contains precisely n proposition� one for each method�

Writing the boxes of the modal logic as �m� i� and the diamonds as hm� ii � consider the
following axiom schemes 
assume Em and Om �nite��


Ax�� 
m� i� e� � �hm� ii�


Ax�a� 
m� i� o� � hm� ii�


Ax�b� hm� ii
� �m� i�



Ax
a� 
m� i� d� � �
m� i� d�� for all d �� d�� d� d� � Em � Om


Ax
b�
W
d�Em�Om


m� i� d�

and call $ all modal formulas 
in the language given by A and Prop� which are instances
of one of the schemes�

Now show the following 
point 
�� requires knowledge about completeness in modal logic
which was not presented in Chapter 
��

�� If a model K
�� satis�es $ then it is bisimilar 
behaviourally equivalent� to a model
in the image of ck� �Hint� Compare Table 
��� The only axiom that requires a bit of
work is 
Ax�b� because it does not de�ne determinism on models 
but on frames���

�� $ provides a complete axiomatisation of the image of ck and hence of Coalg
���


� Modal equivalence implies bisimilarity� �Hint� Models are image��nite�

�� The canonical model is the �nal coalgebra� �Hint� Use 

���

Exercise �
�
� ����
 Consider �� � �Id � �� as de�ned in 
���� in Section ��
�

�� Show 
���� 
 
��
��

�� Show that � � � � P natural implies that �� � �Id � �� is natural�

Exercise �
�
� �Atomic Propositions�
 The aim of this easy exercise is to compare
di�erent formalisations of atomic propositions as natural transformations�

�� Let p � � � � be a natural transformation� Use

�X
pX� �

��

�!
� p�� �

id
�

to show that natural transformations � � � are in bijection with subsets of ��� This
can be interpreted as follows� The atomic propositions are precisely those observations
obtained by abstracting away from the state space X� Replacing X with the one�
element set �� the remaining observations are the same for all coalgebras� that is
�atomic��
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�� Show that natural transformations 	 � � � PProp are in bijection to families of
natural transformations 
'p � � � ��p�Prop� �Hint� Use the bijections PProp � �Prop �Q

Prop ���


� Show that a natural transformation � � � can be considered as natural transforma�
tion � � �� which in turn is a special case of a natural transformation �Id � ���

Exercise �
�
� �Atomic Propositions�
 Show that as for modal operators it is the nat�
urality condition that guarantees that the evaluation of atomic propositions is invariant
under behavioural equivalence�

��� Notes

The relationship of coalgebras and modal logic goes back to Barwise and Moss ���� where
both topics appear together� Coalgebraic logic is due to Moss ����� The modal logic for
the signatures as classes is from ����� The more general and di�cult case of modal logics
for inductively de�ned signatures was developed by R%o&iger ���� �
� ��� ���� but see also
Jacobs �
�� Jacobs �
�� shows how temporal operators can be treated� The approach of
obtaining modalities from functors via natural transformations is due to Pattinson �����



Chapter �

Duality of Modal and Equational

Logic

We have seen so far that the theory of coalgebras provides us in a uniform way with a
notion of behavioural equivalence for a large number of di�erent types of systems� And we
argued that modal logics are natural logics for coalgebras because they respect this notion
of behavioural equivalence�

Being convinced that 
variants of� modal logics are the natural logics for coalgebras� we
want to answer in this chapter the question whether it is possible to make precise the
intuition that

modal logic is to coalgebras what
equational logic is to algebras�

We will argue for a positive answer by showing that� up to logical equivalence� ie from a
semantic point of view�

modal logic is dual to equational logic�

��� Preliminaries


The basic notions needed in this chapter are recalled��

For a functor � on a category X � we denote the category of ��coalgebras by Coalg
��� We
assume that Coalg
�� has cofree coalgebras� In the case of X � Set� if we allow coalgebras
to have classes as carriers� we know by Aczel and Mendler�s theorem that cofree coalgebras
exist for all functors ��

We also assume that for each class of ��morphisms si � Ai � A� i � I� there exist the
union of images 
Chapter ����
�

Ai

ei�
�
fIm
si� � i � Ig

m � A

��
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�� C��coalgebras 
De�nition �����
� are pairs consisting of a ��coalgebra and a valuation

colouring�


A � UA
c
�� C��

A cofree coalgebra FC over colours C comes together with a colouring �C � UFC � C�
Recall that


FC � UFC
�c�� C�

is the �nal 
�� C��coalgebra� We also assume that X has a �nal object � which implies
that F� is the �nal ��coalgebra�

In case � � P and C � PProp Kripke frames are ��coalgebras and Kripke models are

�� C��coalgebras� Recall that 
�� C��coalgebras can also be considered as ��C�coalgebras�

��� Modal Formulas as Subcoalgebras

This section concentrates on the case X � Set� We can summarise the essence of the
relation of coalgebras and modal logic studied in Chapters 
 and � as follows�

Assume a signature � over sets and a class of formulas L� We write A for ��coalgebras�
v for colourings UA � C� a for elements of A� We call 
 � L modal formulas for
��coalgebras in colours from C i� there is a relation j� of type A� v� a j� 
 such that

formulas are invariant under 
�� C��behavioural equivalence� 
����

This means that for ��coalgebras A� A� and colourings c � UA � C� c� � UA� � C and a
morphism f � A� A� respecting the colourings 
ie c� � Uf � c� it holds that

A� c� a j� 
 
 A�� c�� f
a� j� 


for all a � UA�

j� gives rise to a satisfaction relation for 
�� C��coalgebras and for ��coalgebras via

A� v j� 
 �
 A� v� a j� 
 �a � UA 
����

A j� 
 �
 A� v j� 
 �v � UA� C 
��
�

We will now show that for any logic satisfying 
����)
��
�� we can characterise
formulas�up to logical equivalence�as subcoalgebras of cofree coalgebras� First note
that 
���� and 
���� imply that modal formulas are preserved under quotients� domains of
morphisms� and unions of 
�� C��coalgebras��

�This is a classical result in modal logic� see Proposition ������ �Domains of morphisms corresponds to
domains of quotients and submodels� disjoint unions are a special case of unions� conversely� unions can
be obtained as disjoint unions and quotients�	
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Lemma �
�
� �Preservation modal formulas�
 Assume a modal formula 
 in colours
from C�

�� If there is a 
�� C��morphism 
A�� v�� � 
A� v� then A� v j� 
 
 A�� v� j� 
�

�� If there is a surjective 
�� C��morphism 
A� v� � 
A�� v�� then A� v j� 
 
 A�� v� j�

�

�� Assume a 
�� C��coalgebra 
B�w�
 and a family of 
�� C��subcoalgebras 
Ai� vi�
i
��


B�w�
 i � I� Let 
A�� v�� be the union of all 
Ai� vi�
 i � I� Then Ai� vi j� 
 for all
i � I implies that A�� v� j� 
�

Proof� We show 

�� 
�� and 
�� are similar� Assume a� � UA�� Since 
A�� v�� is the union
of the 
Ai� vi�� there is j � I such that a� � UAj� It follows now from Aj� vj� a

� j� 
 and

���� that A�� v�� a� j� 
�

We �rst treat the case of formulas without propositional variables� In that case� for�
mulas correspond to subcoalgebras of the �nal coalgebra�

Let F� be the �nal ��coalgebra and 
 a formula� De�ne F�j
 to be the largest subcoalgebra
of F� satisfying 
� ie the union of all subcoalgebras satisfying 
 
see Chapter ����
�� Let us
denote by m� the inclusion F�j
 �� F�� Now� satisfaction can be characterised as follows�

Proposition �
�
�
 A j� 
 i� the �unique� morphism f � A� F� factors through m�

F� �
m�

F�j


A

�
�����������������

�

f

Proof� �if�� First note that it follows from Lemma ������� and ������
 that F�j
 j� 
� Now
suppose that f factors� Then Lemma ������� implies A j� 
� �only if�� A j� 
 implies that
the image of f satis�es 
� Therefore f factors through m� by de�nition of F�j
�

The case of formulas with colours 
propositional variables� is a bit more complicated
but similar� Recall that the cofree ��coalgebra FC is the �nal 
�� C��coalgebra�

De
nition �
�
� �Subcoalgebra corresponding to a formula�
 Let � be a signature
on sets and 
 a modal formula for ��coalgebras in colours C� De�ne FCj
 to be the largest

�� C��subcoalgebra satisfying 
� ie

FCj
 �
�
fIm
v�� � A� v j� 
g

Denote by m� the inclusion FCj
 �� FC�
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Proposition �
�
�
 A j� 
 i� all morphisms f � A� FC factor through m�

FC �
m�

FCj


A

g

�
�����������������

�

f

Proof� �if�� First note that we have FCj
� �C � m� j� 
 by Lemma ������� and ������
�
Now let v � UA� C� Since FC is cofree there is v� � A� FC with �C � Uv� � v� Since v�

factors� it follows A� v j� 
 by Lemma ��������

�only if�� Let f � A � FC� Note that f induces a colouring v � �C � f on A and that
v� � f � Now� A j� 
 implies A� v j� 
� Therefore f � v� factors through m� by de�nition
of FCj
�

The proposition shows that satisfaction of modal formulas can be characterised alge�
braically by projectivity �

De
nition �
�
� �Projective�
 We say that A is projective wrt B�
m
�� B� i� all f �

A� B� factor through m� ie i� for all f � A� B� there is f � � A� B� such that

B�
� m

B�

A

f �

�
����������������

�

f

commutes�

Remark �
�
�
 In De�nition ����
 we de�ned the subcoalgebra corresponding to a for�
mula� There are two variations possible�

�� One can work with the largest subset ��
��FC � fx � UFC � FC� �C� x j� 
g satisfying

� The analogue to Proposition ����� then goes as follows� A j� 
 i� for all morphisms
f � A� FC

UFC � � ��
��FC

UA

�
����������������

�

Uf

Uf factors through ��
��FC �� UFC��

�Another variation would be to use �����FC � fx � UFC � FC� x j� �g as in �����
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�� Whereas De�nition ����
 puts FCj
 �
S
fIm
f� � A� �C � f j� 
 and f � A � FCg�

one can also work with the largest invariant subcoalgebra de�ned as

FCj
 �
�
fIm
f� � A j� 
 and f � A� FCg�

Proposition ����� also holds when we substitute FCj
 for FCj
� Intuitively� whereas

FCj
� �C � Um�� is the largest Kripke submodel of 
FC� �C� satisfying 
� FCj
 is
the largest Kripke subframe of FC satisfying 
�

A subcoalgebra m � A� � A is called invariant i� A� is projective wrt m� or in a
more logical notation� i� A� j� m� That FCj
 is invariant means that FCj
 j� 
�
Note that� in general� FCj
 j� 
 does not hold�

We conclude that invariant subcoalgebras of coalgebras cofree over C and modal
formulas in colours C are� up to logical equivalence of formulas� in a one�to�one
correspondence�

The three levels of subsets� submodels� and subframes correspond to the three levels of
satisfaction relations A� v� a j� 
� A� v j� 
� and A j� 
� Logical operators as conjunction

intersection� or modal operators 
see Chapter ��
� are treated on the level of subsets� The
semantics via projectivity is more naturally formulated on the level of models or frames�

To summarise this section� we have seen that to each modal formula 
 corresponds a
subcoalgebra m� with cofree codomain such that satisfaction of 
 is projectivity wrt m��
If the converse holds� namely that every subcoalgebra of a cofree coalgebra with cofree
codomain corresponds to a formula� we say that the modal logic is expressive�

The import of the correspondence of formulas and subcoalgebras is that

� it allows to treat all logics for coalgebras we have seen or mentioned in the previous
chapters in a uniform way�

� it is abstract and hence easy to work with technically��

� it precisely dualises the satisfaction of equations for algebras� see below�

��� Equations as Quotients

As noted already� to give an account on the duality of equational logic and modal logic� we
cannot restrict our attention to algebras over Set� Can we give an account on equations
which does not rely on X � Set� Yes� and it goes as follows�

For each set of equations $ 	 UFX � UFX we can form the quotient

FX
e
� FX�$

�See for example the proof of theorem ������
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of FX wrt the smallest congruence relation generated by $� Now� satisfaction can be
characterised as follows

Proposition �
�
�
 A j� $ i� all f � FX � A factor through e
�

FX
e
� FX�$

A

f �

�

�����������������

f

�

Proof� First show that

f � FX � A factors through e
 i� �t� t� 	 UFX � e
�t� � e
�t
�� 
 f�t� � f�t�� �����

For � 
 � of the Proposition consider f � FX � A� Note that courtesy of F a U � there
is v � X � UA such that v� � f � To pro�t from 
���� assume e

t� � e

t��� that is�

t� t�� are in the in the smallest congruence generated by $� It follows from our assumption
A j� $ that A� v j� $ and hence v�
t� � v�
t���� That is� f
t� � f
t�� and by 
���� f factors
through e
�
For � � � of the Proposition� let 
t� t�� � $ and v � X � UA� Since v� factors through e
�
it follows from 
���� that v�
t� � v�
t��� hence A� v j� 
t� t���

Similarly� for each quotient e � FX � B with free domain FX we �nd a set of equations
$e � f
t� t�� � e
t� � e
t��g such that

Proposition �
�
�
 A j� $e i� all f � FX � A factor through e�

That is� in the case of X � Set� the two propositions above show that we can�from
a semantic point of view�replace equations by quotients and describe satisfaction by
injectivity�

De
nition �
�
� �Injective�
 We say that A is injective wrt B�
e
�� B� i� all f � B� � A

factor through e� ie i� for all f � B� � A there is f � � B� � A such that

B�

e � B�

A

f �

�

����������������

f
�

commutes�

To summarise� we have seen that to each set of equations $ corresponds a quotient e

with free domain such that satisfaction of $ is injectivity wrt e
� And� conversely� to each
quotient with free domain corresponds a set of equations�

�Note that �t� t�	 is not necessarily in �� But since �t� t�	 is in the smallest congruence generated by ��
ie �t� t�	 is in the intersection of all kernels of all morphisms whose kernels contain �� and since v� is a
morphism it also identi�es t and t��
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��� Duality of Modal and Equational Logic

To summarise the two previous sections we can now extend Table ��� on page �� as follows�

� � X � X �op � X op � X op

Coalg
�� Alg
�op�

factorisation system 
E�M� factorisation system 
M�E�

subcoalgebras m �M quotients e � E


formulas are� 
sets of equations are�

subcoalgebras of cofree coalgebras quotients of free algebras


modal rules are� 
implications are�

subcoalgebras quotients


satisfaction is�

projectivity injectivity

The duality of modal rules and implications is explained in the Exercises�

��� A 
Co�Variety Theorem

This section gives as an application of the duality of modal and equational logic a proof of
the following two theorems�

Theorem �
�
� �Variety theorem� HSP theorem�
 Let � � Set � Set be a functor
such that Alg
�� has free algebras� Then a class B of ��algebras is equationally de�nable
i� B is closed under quotients
 embeddings
 and products�

Theorem �
�
� �Covariety theorem�
 Let � � Set � Set be a functor such that
Coalg
�� has cofree coalgebras� Then a class B of ��coalgebras is de�nable by an expressive
modal logic for ��coalgebras i� B is closed under embeddings
 quotients
 and coproducts�

Note that these theorems are not each other�s dual because Set has not been dualised� But
our proof for second theorem presented below dualises to a proof of the �rst theorem if we
are careful to keep track of the properties used in the proof� But before discussing this in
more detail� let us see the proof�

Proof of the covariety theorem� �only if� is the easy direction which is an immediate corol�
lary of Lemma ������ Nevertheless� we will take the time to show how the preservation
properties can also be deduced using the properties of factorisation systems and projectiv�
ity�
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We show that 
 is invariant under embeddings� quotients� and coproducts� Denote by m�

the subcoalgebra corresponding to 
 
see De�nition ����
��

Let e � A� A� be a quotient� We show that A projective wrt m� implies A� projective wrt
m�� Consider

� �
m�

�

A�

f

�

� e����
����

����
����

����
����

����
����

A

g

�

A projective wrt m� implies that for all f as in the diagram there is g making the square
commute� Now� the dotted morphism exists due to unique diagonalisation 
see ������ and
shows that A� projective wrt m��

For coproducts consider

� �
m�

�

a
Ai

f

�

� ini
����

����
����

���
����

����
����

���

Ai

gi

�

Ai projective wrt m� implies that for all f as in the diagram there are gi making the
squares commute for all i� Now� the dotted morphism exist due to unique diagonalisation

see Proposition ������� and shows that

�
Ai is projective wrt m��

For an embedding m � A� � A consider

FC �
m�

�

A

g

�

� m
A�

�

f

For all f as in the diagram� there is g � A � FC such that the triangle commutes 
check
that this is due to FC being cofree�� Since A is projective wrt m�� g factors through m��
hence f factors as well�

�if�� The main point is to �nd the de�ning modal formulas� Consider the collection of
morphisms 
si � Bi � FC�i�I which consists of all morphisms with codomain FC and the
domain in B� Let mC � F �C � FC be the union of the images of the si 
see Chapter ����
��



���� A 
CO�VARIETY THEOREM ��

Co�Variety Theorem Variety Theorem

U � C � X

C has cofree objects FC C has free objects FX

C has a factorisation system such that�

C has union of images C has intersection of kernels

m � A� � A embedding 


all f � A� � FC factor through m�

FC

A

�
�����������������
� m

A�

�

f

e � A� A� quotient 


all f � FX � A� factor through e�

FX

A
�

����������������� e � A�

f

�

�A � � embedding A� FUA �A � � quotient FUA� A

Table ���� Properties used in the proof of the 
co�variety theorem

Since we assume an expressive modal logic there is a formula 
C corresponding to mC 
ie
A j� 
C i� A projective wrt mC�� Let $ � f
C � C � Setg� We show that B is de�ned by
$� ie

B � fA � Coalg
�� � A j� $g�

�	�� By de�nition of the mC � all B � B are projective wrt to the mC and hence satisfy the

C �

���� Suppose A j� $� In particular� A j� 
UA� ie A is projective wrt mUA � F �UA� FUA�
Note that there is an embedding A� FUA� This embedding factors through mUA� hence
A is a subcoalgebra of F �UA� Since B is closed under coproducts and quotients we have
F �UA � B 
see the proof of Proposition ������� and since B is closed under embeddings it
follows A � B�

Let us now analyse the duality of the two theorems� Table ��� lists the properties we used
to prove the covariety theorem� That is� in fact� we proved

Proposition �
�
�
 Let U � C � X be a functor satisfying the properties of the left column
of Table ���� Then a class B 	 C is projective wrt to a class of embeddings with cofree
codomains i� B is closed under embeddings
 quotients
 and coproducts�
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Since U � C � X satis�es the properties of the left column of Table ��� i� Uop satis�es
the properties of the right column� the same proof shows the dual theorem

Proposition �
�
�
 Let U � C � X be a functor satisfying the properties of the right
column of Table ���� Then a class B 	 C is injective wrt to a class of quotients with free
domains i� B is closed under quotients
 embeddings
 and products�

These two propositions are each other duals and the 
co�variety theorems are their corol�
laries obtained by instantiating C with 
co�algebras and using the correspondence of sub�
coalgebras�formulas and� respectively� of quotients�equations�

��� Exercises

Exercise �
�
� �Implications as quotients�
 An implication
V

$ � 
t� t�� in variables
from X consists of a set $ 	 UFX � UFX and a pair 
t� t�� � UFX � UFX� De�ne for
an assignment v � X � UA

A� v j�
�

$ � 
t� t�� i� A� v j� $ 
 A� v j� 
t� t��

and A j�
V

$ � 
t� t�� i� A� v j�
V

$ � 
t� t�� for all assignments v�

To �nd the quotient corresponding to an implication i �
V

$ � 
t� t�� consider� similarly
to Section ��
� the quotient ei as in

FX�$
ei � FX�$ � f
t� t��g

FX

e


�
���������������� ������

������
������

������
������

������
������

������

e �

�f
�t�
t� �
g�

�

Show the following

�� A j� i i� A is injective wrt ei�

�� For each quotient e there is a class of implications $ such that A j� $ i� A is injective
wrt e�

Exercise �
�
� �Modal rules as subcoalgebras�
 A modal rule 
�� in colours from C
consists of two formulas 
� � in colours from C� For a colouring v � UA� C� let

A� v j� 
�� i� A� v j� 
 
 A� v j� �

and A j� 
�� i� A� v j� 
�� for all colourings v�

For each modal rule 
�� �nd an embedding 
subcoalgebra� m such that A j� 
�� i� A is
projective wrt m� �Hint� Dualise the diagram of the previous exercise��
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The aim of the next three exercises is to show that the 
co�variety theorems can be
formulated without referring to the base category� The idea is to replace free objects by
�projective objects� which are de�ned without reference to the forgetful functors�

Exercise �
�
� �Projective objects� enough projectives�
 In a category with a fac�
torisation system� an object B is called projective i� for all quotients e � A � A� and all
arrows f � B � A� there is an arrow g � B � A such that f � e � g�

B

A

g

�

�����������������

e
� A�

f

�

The category is said to have enough projectives i� for each object A there is a projective
object B and a quotient B � A�

For a category Alg
�� over Set which has free algebras FX for each set X show the
following�

�� Free algebras are projective�

�� There is a quotient FUA� A for all algebras A�


� Alg
�� has enough projectives�

�� B is projective i� it is a retract of a free algebra�

Exercise �
�
�
 The aim is to show that� concerning satisfaction of equations� there is no
need not to distinguish between quotients with free domain and quotients with projective
domain� Let U � Alg
�� � Set have free algebras and consider a quotient e � B � A with
projective domain B� Let e� be the quotient given by the following pushout

B
e � A

FUB

m

�
������������������

e�
� �
�

������������������

where FUB is the free algebra over the carrier of B and m exists because B is a retract of
FUB 
see 
�� of the previous exercise��

Show that for any C � Alg
�� it holds C injective wrt e i� C injective wrt e�
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Exercise �
�
� �variety theorem �without a base category��
 Show the following
variation of the variety theorem 
or its dual�� Let C be a category with factorisation
system� intersection of kernels� and enough projectives� Then a class B 	 C is injective wrt
to a class of quotients with projective domains i� B is closed under quotients� embeddings�
and products� �Hint� Note that �having enough projectives� is just the last two conditions
in the right column of Table �����

��� Notes

This chapter is based on �
�� where� to the author�s knowledge� the idea of the duality of
modal and equational logic was expressed for the �rst time� That the duality can be made
precise by understanding modal formulas as subcoalgebras and equations as quotients was
shown in �
�� 
��� The concept of equations as quotients and satisfaction as injectivity as
well as categorical proofs of the variety and similar theorems are due to Banaschewski and
Herrlich ���� A textbook presentation is given in Ad#amek� Herrlich� Strecker �
�� Chapter ���
Our proof of the covariety theorem was obtained by dualising a corresponding proof in ����
The idea to derive a dual of the variety theorem by dualising injectivity to projectivity
was discovered independently also by Ro*su ���� and Awodey and Hughes ���� The duality
of implications and modal rules is treated in �
���

The duality of Kripke frames and modal algebras 
see eg ����� di�ers from the duality of
algebras and coalgebras� More generally� the duality of Kripke frames and modal algebras
is not a categorical one since the embedding of a Kripke frame into its ultra�lter extension
is not a coalgebra morphism� In case of deterministic signatures� however� the duality is
indeed categorical as shown by Jacobs �
���

A covariety theorem appears already in Rutten ���� but there is no discussion of what
an appropriate logic for coalgebras could be� Gumm and Schr%oder ���� and Ro*su ���� treat
the case without colourings 
ie C � �� and Gumm ���� presents a co�variety theorem where
�coequations� 
 are points in the carrier of cofree coalgebras and A� v j� 
 i� 
 �� Im
v���
Goldblatt ���� ��� restricts attention to speci�c signatures 
polynomial functors� and proves
de�nability results for �nitary logics for coalgebras�



Appendix A

Category Theory

We collect the de�nitions of category theory needed in the course and not appearing in
the text� Natural transformations are only used in Chapter ��
 and adjunctions� as far as
needed� are explained in the text� For introductory texts on category theory the reader is
referred to one of ���� 
� �� ���

A category A consists of a class of objects� also denoted by A� and� for all objects A�B�
of a set of arrows� also called morphisms� A
A�B�� We write f � A� B for f � A
A�B�
and call A the domain� B the codomain of f � Moreover� for all A
A�B�� A
B�C� there is
an operation

�A�B�C � A
A�B� � A
B�C� � A
A�C�


g � A� B� f � B � C� �� f �A�B�C g � A� C

We drop the subscript and read f � g as �f after g�� There is also for each A � A an
�identity� idA � A� A� All this data has to satisfy

f � 
g � h� � 
f � g� � h

id � f � f

f � id � f

We dropped the subscripts which means that these equations have to be satis�ed for all
instantiations matching the required typing for ��

Set is the category of sets and functions� A discrete category is a category which has only
identities as arrows�

m � B � C is mono i� m � f � m � f � 
 f � f � for all A � A and all f� f � � A� B�
e � A� B is epi i� f � e � f � � e 
 f � f � for all C � A and all f� f � � B � C� In case
that for two arrows m � A � B and e � B � A it holds that e �m � idA then e is split
epi� m split mono� and A a retract of B� 
Show that split epis are epi and split monos
are mono�� An arrow is iso i� it is split mono and split epi� If there is an iso i � A � B
then A and B are called isomorphic� written A � B�

��
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Exercise A���� �Monos
 epis
 isos in Set�� A function is injective i� it is mono� A function
with non�empty domain is injective i� it is split mono� A function is surjective i� it is epi
i� it is split epi� A function is iso i� it is mono and epi�

A functor H � A � X from a category A to a category X consists of an operation
H� on objects of A and an operation H� on arrows of A� mapping each f � A
A�B� to
H�
f� � X 
H�
A�� H�
B�� such that

H
idA� � idH�A�

H
f � g� � H
f� � 
g�

where� following common usage� subscripts of H have been dropped� Examples for functors
can be found in Chapter ����

Exercise A����� A functor H � Set� Set maps surjective functions to surjective functions
and injective functions with non�empty domain to injective functions�

For the dual of a category and a functor see Chapter ����

A natural transformation � � G � H from a functor G � A � X to a functor
H � A � X consists of arrows �A � GA � HA for each A � A such that for each
f � A� B in A the following diagram

GA
�A � HA

GB

Gf

�

�B
� HB

Hf

�

commutes�

A diagram is a functor D � I � A� The name diagram indicates that we think of D
as indexing objects in A� We therefore denote objects in I by i� j� A cone 
A� 
ci � A �
Di�i�I� over a diagram D consists of an object A � A and arrows 
ci � A � Di�i�I such
that for all f � i� j in I

A

Di
Df

�
�

c i

Dj

c
j

�

commutes�



��

A limit of the diagram D is a cone 
A� 
ci � A � Di�i�I� satisfying the following
universal property � for any cone 
A�� 
c�i � A� � Di�i�I� over D there is a unique �mediating�
arrow h � A� � A such that for all i � I

A�

Di �
ci

�

c
�
i

A

h

�

�����������������

commutes� 
A� 
ci � Di � A�i�I� is a colimit of D i� 
Aop� 
copi �i�I� is a limit of Dop� A
weak 
co�limit is de�ned like a 
co�limit but the mediating arrow need not be unique�

Exercise A����� Show that two di�erent limits of the same diagram are isomorphic� More�
over� they are canonically isomorphic� that is� the isomorphisms are uniquely determined�

A 
nal object� also called terminal object� is the limit of an empty diagram 
ie I is
empty�� An initial object is� dually� the colimit of an empty diagram�

Exercise A���	� Show that in Set the initial object is the empty set and a terminal object
is a set containing precisely one element�

A product of D� and D� is the limit 
D��D�� �� � D��D� � D�� �� � D��D� � D��
indicated below

A�

D��D�

h�������

�������

D�
�

c
� �

�

� �

D�

c ��

�

�
�

�


I is here the discrete category with two objects f�� �g��

Exercise A����� Show that in Set the product is isomorphic to the cartesian product 
with
�i being the projection to the i�th component��

Exercise A���
� Generalise the de�nition of the binary product to a de�nition of an in�nite
product�
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A pullback 
dual notion� pushout� is a limit of a diagram �

D� D�

D�
� D

gD
f �

that is� a cone 
A� ci � A� Di� such that for all 
A�� c��� c
�
�� with Df � c�� � Dg � c�� there is

a unique h � A� � A such that

A�

A

h�������

�������

D�
�

c
� �

�

c �

D�

c ��

�
c
�

�

D�
�

D
gD

f
�

commutes�

Exercise A����� Show that in Set pullbacks exist and are given by the subset of D��D�
�satisfying the constraint Df � Dg�� that is� by f
d�� d�� � D��D� � Df
d�� � Dg
d��g�

A functor H � A� A weakly preserves pullbacks i� it maps pullbacks 
A� c�� c�� of
a diagram D to weak pullbacks 
HA�Hc�� Hc�� of the diagram HD� H preserves weak
pullbacks i� it maps weak pullbacks 
A� c�� c�� to weak pullbacks 
HA�Hc�� Hc��� If A
has pullbacks then H weakly preserves pullbacks i� H preserves weak pullbacks�

A coproduct 
D� � D�� in� � D� � D� � D�� in� � D� � D� � D�� of D� and D� is

�I is here the category with objects f�� �� �g and arrows �besides identities	 f � �� � and g � �� ��



�


the colimit given by

A�

D� � D�

h������

�
�������

D�

c
� �

�

in �

�

D�

�

c ��
�

in
�

Exercise A����� Show that in Set the coproduct is isomorphic to the disjoint union�

Given a family of objects 
Ai�i�I the coproduct of the Ai is denoted by
�
I Ai�

�

Exercise A����� Let X be a category with coproducts� � � X � X a functor� and I a set�

�� De�ne
�
I on arrows and show that it becomes a functor�

�� Use the universal property of the coproduct to show that there is a natural transfor�
mation � �

�
I � � �

�
I �


� Explain � in case of � � P�

�� Given a family of coalgebras 
Xi� �i�� let 
X� �� be their coproduct as de�ned in
Chapter ������ Show that � � �X �

�
I �i�

That is� the coproduct of systems is given by the coproduct of the transition structures
followed by the canonical natural transformation

�
I � � �

�
I �

An adjunction between two functors U � A � X and F � X � A is given by a
bijection


���A�C � X 
UA�C�
�
�� A
A� FC�

which is natural in A and C� We write U a F and call U the left adjoint and F the right
adjoint� Two di�erent characterisations of adjunctions are the following�

Proposition A
�
��
 The functor U � A � X has a right adjoint i� for each C � X
there is FC � A and �C � UFC � C in X such that for any A � A and any c � UA� C

�
�

I Ai is de�ned as the colimit of the diagram given by the discrete category I with I as the set of
objects and D � I � A mapping i �� Ai�
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in X there is a unique morphism c� � A� FC such that the triangle

UFC FC

C �
c

�

� C

UA

Uc�

�

A

c�

�

commutes� Then � is a natural transformation and F can be extended in a unique way to
a functor X � A�

Remark� c� in the proposition was denoted by c�A�C in the de�nition of adjunction�

Proposition A
�
��
 The functor U � A � X has a left adjoint i� for each X � X there
is FX � A and �X � X � UFX in X such that for any A � A and any v � X � UA there
is a unique morphism v� � FX � A such that the triangle

UFX FX

X
v
�

�X

�

UA

Uv�

�
A

v�

�

commutes� Then � is a natural transformation and F can be extended in a unique way to
a functor X � A�

Exercise A������ Show that 
� � I� is left adjoint to 
��I for any set I� 
Then 
���X�X
maps algebras X � I � X to the corresponding coalgebras X � XI � see Chapter ��
����
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