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Preface

These course notes present universal coalgebra as a general theory of systems.

By ‘system’ we understand some entity running in and communicating with an environ-
ment. We also assume that a system has a fixed interface and that the environment can
perform only those observations/experiments/communications on the system allowed by
the interface. By ‘general theory’ we understand a theory which allows to investigate in a
uniform way as many different types of systems as possible. Of course, here is a trade off:
the more diverse the types of systems we admit for study, the less results we can expect
to obtain in a uniform way. It is one of the aims of this course to show that the notion of
coalgebra is general enough to cover many types of systems and is specific enough to allow
for quite a number of interesting results.

The term ‘universal’ coalgebra not only refers to the generality of the theory but also
reflects that universal coalgebra dualises (to some extent) the well-established area of
universal algebra. To explore this duality is another of the main topics of this course.
In particular we will see what can be said about the duality of logics for algebras and
coalgebras.

Concerning prerequisites, Chapters 1 and 3 should be easily accessible. Chapter 2
requires a bit of category theory which was introduced in the course in more detail than in
the text. The Appendix recalls the necessary definitions but cannot replace an introduction
to category theory. Section 2.5 contains additional material illustrating the techniques
presented in Chapter 2. Chapter 4 needs Chapters 2.1 and 3, Chapter 5 builds on Chapter 2
(excluding Section 2.5).

The exercises in the text are essential and are not meant to be skipped. They should
be easy to solve, often even obvious, but the solution needs ideas which are important in
the following. The exercises in the separate sections contain additional material which did
not fit in a one week’s course. They may be more difficult.

I gave courses based on earlier versions of these notes at the Faculty of Informatics
of the Masaryk University in Brno, Czech Republic, and at ESSLLI 2001 in Helsinki,
Finland. I would like to thank the participants, for many fruitful and enjoyable discussions
and for comments helping to improve these notes. I am also grateful to Dirk Pattinson for
discussions on Chapter 4.3. Diagrams were produced with Paul Taylor’s macro package.

Amsterdam, October 2001.
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Chapter 1

Systems — An Introduction

The aim of this chapter is to show why and how coalgebras model systems. The emphasis
is on a number of familiar examples, leaving a uniform treatment of them to Chapter 2.

Section 1.1 starts with an informal understanding of systems and processes and proposes a
possible formalisation. Section 1.2, taking a particular type of systems as example, shows
the ingredients of a general theory of systems. Central notions are behavioural equivalence,
final system, bisimulation, and coinduction. Section 1.3 shows in detail how very much the
same theory can be developed for a different type of systems and Section 1.4 presents even
more examples which can be treated along the same lines.

1.1 Systems and Processes

Before we start to look for a mathematical model for systems, we should agree on an
informal level on what we understand by ‘system’. The following—hopefully—seems rea-
sonable.

1. Systems are reactive, that is, unlike algorithms, they are not supposed to terminate
and announce a result, but are supposed to run, possibly forever, and to communicate,
while running, with their environment.

2. The possible communications between a system and the environment are described in
an interface. An external observer can observe a system only through the interface.

3. The external observer’s view is called the black box view of a system. The black box
view is given by the complete observable behaviour of the system.

In general, given a system, we are interested rather in its behaviour than in the actual
system itself. One challenge for a general theory of systems is (1) to allow for a rich class of
interfaces (types of systems) and, at the same time, (2) to describe the relation of systems
and their behaviours in a uniform way. The aim of this chapter is to give enough examples
showing that the theory of coalgebras achieves (1). To see how (2) is solved is postponed

7



8 CHAPTER 1. SYSTEMS — AN INTRODUCTION

until chapter 2. Another challenge would be to find a uniform logic to specify systems.
This issue is discussed in Chapters 4 and 5.

In order to describe a system we think of it as a set of states X and a transition-function
¢ describing for every state x € X the effect () of taking an observable transition in state
x. That is, a system is a function

X 5 ux

where we use the notation ¥ X to indicate the set of possible outcomes of taking a transition.
Y is called the type or signature, X is called the carrier or set of states of the system,
and £ is called the structure or transition-function of the system.

When we start to run or observe a system (X, ) we assume that it is in a given initial
state zy. A system together with a state is called a process.! We denote processes by
(X, &), zo) or shorter (X, &, xp). If the system is clear from the context we also denote the
process simply by its initial state.

Example 1.1.1 (Streams).

1. Consider a system for which ‘taking a transition’ just means to output an element
a € A of some given set A. Such a system is given by a function

X504
where XX = A. This system can only take one transition in its life-time.

2. A system that can output elements of A forever can be described by a function

X S5 AxX

Suppose the system is in some state o and takes a transition yielding &(x) = (a, z1).
Then a next transition can be taken in 7, and so on. Such a process (X, &, z) is
called a stream.

Exercise 1.1.2. This exercise presents some more simple example of systems (the first
two systems below may seem to be too simple to be interesting at all but they are useful to
build up more complicated systems). You should try to convince yourself of the following:

1. Imagine a system that can do nothing but stop. Such a system can be modeled by a
function

where 1 = {*} denotes some one-element set.

IThe term ‘process’ is often used to denote an equivalence class of processes up to a notion of behavioural
equivalence, see Section 1.2.8.
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2. Imagine a system which, like a simple clock or metronome, just take transitions but
produces no further output. Such a system can be modeled by a function

X -5 X

3. Consider the example of streams above. How can we model streams that are not nec-
essarily infinite but also may terminate? A system that may output forever elements
in A but also may stop is a function

X S Ax X 41,

where + should be understood as exclusive or (formally it denotes disjoint union of
sets).

1.2 Ingredients of a Theory of Systems

A theory of systems should describe the relation of systems and their behaviours in terms
of a given interface. This section explains how this can be done by means of the example of
streams. It is also shown how the notion of behaviour leads to final systems and, therefore,
allows definitions and proofs by coinduction.

1.2.1 Interfaces

We said that a signature X for systems is an operation mapping a set (of states) to a set
¥ X containing the possible effects of an observable transition. We have seen the following
examples:

)y ¥X Process

1 1 stop

A A outputs a € A once

Id X metronome (running forever)
Ax — Ax X stream over A

Ax —+1| Ax X +1 | finite or infinite list over A

In each of this cases we expect from an interface to specify the “observable effect” of
a transition. Thinking a bit about the examples we see that ¥ itself provides us with an
appropriate notion of interface.
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1.2.2 The Black Box View of a Process

From the point of view of the environment the states of a system are not observable. For
example, specifier and user of a system are not interested in the system itself but only in
the complete observable behaviour of the system. In the following we explain this notion
of behaviour.

Let us reconsider the example of streams

XS AxX

and think about the appropriate notion of behaviour.

We assume that the system is in a given state xy € X. Starting from z( the system
takes a transition &(xg) = (ag, 1) and continues with £(z1) = (a1,22) and so on. That is,
the system produces an infinite list

(%o, (a0, x1), (a1, 22), ... ).
Assuming that the states x; are not observable, the behaviour of the process ((X,§), o)
is then given by?
Beh(xzg) = (ag,a1,a9...)

where we should in fact write Beh(x ¢ (%) but usually drop the subscript.

1.2.3 The Black Box View of a System

We have seen that we can assign to every state of a system its behaviour. The behaviour
of a system is simply the set of all these behaviours. A fundamental observation is now
that

the behaviour of a system is itself a system.

To explain this, let (X, &) be a system and Beh(X) = {Beh(z) : © € X} the set of
all behaviours of X. To conceive of Beh(X) as a system we have to exhibit a transition-
function  : Beh(X) — A x Beh(X). [ has to map an infinite list [ = (ag, a1, az, ...) into
A x Beh(X). There is an obvious candidate:

B: Beh(X) = A x Beh(X)
(ao,al,ag,. . ) — <ao, (al,ag, .. )>

(We use (...) to indicate lists and (-,-) to denote tuples of a cartesian product.)

Having seen that the behaviour of a system is a system we can ask what the behaviour
of a behaviour is. Following our intuition that the behaviour gives us all we can know of
a system, we expect the behaviour of a behaviour to be the behaviour itself. This is made
precise in the following

2In case you need a precise definition (for example to solve the exercises) go ahead to Definition 1.2.4.
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Exercise 1.2.1. Since (Beh(X), ) is a system, we can consider for each [ € Beh(X) the
behaviour of [. Convince yourself that

1. the behaviour of some [ € Beh(X) is [
and conclude that
2. the behaviour of the system (Beh(X), 3) is (Beh(X), 3).

As a consequence of the previous exercise, we know that = and Beh(z) have the same
behaviour. The next section shows that this is due to Beh being a morphism of systems.

1.2.4 Morphisms of Systems

In a general theory of systems we are interested not so much in particular systems but more
in the relationships between different systems or in structural properties of collections of
systems. The main tool to investigate the relationships between systems are structure
preserving mappings between systems.

First, let us introduce a notation which is convenient to work with streams.

Notation 1.2.2. Given a stream (X, &, ) with {(x) = (a, 2") we write head(z) for the first
value a and tail(z) for the remainder 2'. As usual we dropped the subscripts of headx ¢ ()
and tail(x ¢)(7).

Using this notation, we define the notion of a morphism for streams.

Definition 1.2.3. Let X — AxX and X’ <5 Ax X' be two systems. A homomorphism,
or morphism for short, is a function f : X — X' such that

head(f(x)) = head(x) (1.1)
tail(f(z)) = f(tail(x)) (1.2)

(In these equations, the occurrences of head and tail on the left-hand side refer to (X', &),
the occurrences on the right-hand side to (X, €).)

Another use of the notation above is that we can now give a precise definition of
behaviour.

Definition 1.2.4 (Behaviour of streams). Given a system X — A x X and zy € X
define Beh(xy) = (head(tail"(20)))nen where tail” is defined inductively via tail’(z) = z,
tail" (z) = tail(tail™ ().

The following exercises are essential. First show that behaviours are invariant under
morphisms.

Exercise 1.2.5 (Behaviours are invariant under morphisms).
Given a (stream)morphism f : (X, &) — (Y, n), show that the behaviour of z € X equals
the behaviour of f(x) € Y.
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In particular, two states that can be identified by a morphism have the same behaviour.
To show the converse, namely that any two states that have the same behaviour can be
identified by some morphism, we show that Beh : X — Beh(X) is a morphism.

Exercise 1.2.6 (Beh : X — Beh(X) is a morphism). Let (X,£) be a system (of
streams) and (Beh(X), 3) its behaviour.

1. Show that the mapping Beh : X — Beh(X) is a morphism (X, ) — (Beh(X), ).

2. Show that Beh : X — Beh(X) is moreover the unique such morphism (Hint: Use
induction to reason about lists [ = ((a;)ien))-

As a corollary to the three exercises we obtain the fundamental relationship between
behaviours and morphisms:

Observation 1.2.7. Two states have the same behaviour iff these states are identified by
some morphisms.

1.2.5 The Black Box View of the Class of all Systems

Much of the power of a general theory of systems comes from the observation that
all behaviours of all systems constitute themselves a system.

We explain this in the case of streams again.

Since for any process (X, &, x) its behaviour is an infinite list (a;);en, the set of all
behaviours of all processes is AN = {f : N — A} = {(a;)ien,a; € A}. Now, in the same
way as the behaviour of a system, we can equip the set of all behaviours of all systems
with a transition structure that makes it into a system:

C:AY 5 A x AN

(ag, a1, as,...) — (ag, (a1, as,...))

(1.3)

This concept of a system of all behaviours is important for the following reason: Intu-
itively, all we can know from a black box point of view about systems must be contained
in this system of all behaviours. We therefore expect it to play a central role in the theory
of systems and in fact it does. For the moment, we will content ourselves to characterise
this system of all behaviours in a simple but most useful way:

Since we know from Exercise 1.2.6 that the mapping from a system to its behaviour is a
morphism, we know that

e for any system there must be a morphism into the system of all behaviours (namely
the one mapping each process to its behaviour).

Moreover, since morphisms preserve behaviours,
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e for any system there can be at most one morphism into the system of all behaviours.
This argument shows that the system of all behaviours is a final system:

Definition 1.2.8 (Final system). A system (Z,() is called final (or terminal) iff for all
systems (X, €) there is a unique morphism (X, &) — (Z, ().

That the system of all behaviours is characterised by finality is shown by
Proposition 1.2.9. Any two final systems are isomorphic.

Proof. Let (Z,(¢) and (Z',(") be two final systems. The existence part of finality gives us
two morphisms f : 7' — Z and f' : Z — Z' and the uniqueness part shows that fo f' =idy
and f'o f =1idy, that is, f and f’ are isomorphisms. O

In the following exercise you are asked to make precise, in the case of streams, the
above argument that the system of all behaviours is the final system.

Exercise 1.2.10. Show that (A", () as given by (1.3) is final.

1.2.6 Behavioural Equivalence

Notions of observational or behavioural equivalence (like e.g. bisimulation) play a central
role in the theory of processes or state based dynamic systems. Once we have a notion of
behaviour there is an obvious definition of behavioural equivalence:

Two processes/systems are behaviourally equivalent iff they have the same behaviour.
This can be made precise using the notion of the final system.

Definition 1.2.11. Let (X&), (X', &) be two systems and Beh, Beh' the two correspond-
ing unique morphisms into the final system.

1. Two processes (X,&, ), (X', &, 2") are behaviourally equivalent iff Beh(z) =
Beh/(z").

2. Two systems (X, &), (X', &) are behaviourally equivalent iff Beh(X) = Beh'(X").

This definition has the advantage that it agrees with our understanding of the final
system as the system of all the behaviours. Recalling, however, that two processes are
behaviourally equivalent iff they can be identified by a morphism (Observation 1.2.7),
there is another obvious definition of behavioural equivalence.

Definition 1.2.12. Let (X,¢), (X', &) be two systems.
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1. Two processes (X,¢&,z), (X', &, 2") are behaviourally equivalent iff there are mor-
phisms

(X,€) (X", ¢)

SA

2. Two systems (X, ), (X', £') are behaviourally equivalent iff there are surjective mor-
phisms

such that f(z) = f'(2').

(X,€) (X", ¢)

24

| 4
o
This definition is more elementary in the sense that it only relies on the notion of
morphism and not on the existence of final systems.

Exercise 1.2.13. Show that both definitions are equivalent if the final system exists.
[Hint: Use that (1) the disjoint union of two systems is a system and that (2) every
morphism ¢ : (X,€) — (Z,() ‘factors through its image’, ie that there is a surjective

morphism e and an injective morphism m such that g = (X, &) — Im(g) < (Z,¢).]

1.2.7 Bisimulation

In the previous section, we have seen two definitions of behavioural equivalence. This
section shows that behavioural equivalence agrees with what is known as bisimulation.

Definition 1.2.14. Let (X, ¢), (X',£&’) be two systems of streams and R C X x X’. Then
R is a bisimulation iff

r Rx' = head(r) = head(z")
xR = tail(x) R tail(a')

Two processes (X, &, x), (X', £, 2') are bisimilar iff there is a bisimulation R such that
xR

Such a relation is called a bisimulation since x R z' implies that a transition x —
(head(z), tail(x)) can be simulated by a transition =’ +— (head(x'), tail(z')) and vice versa.

In order to prove that two processes are bisimilar we first have to choose an appropriate
relation R (which is usually not difficult) and then to check that it is indeed a bisimulation
(which is not difficult if we made a good choice of R in the first place). A first example
for this strategy is given by “ = 7 of the proof below, we will see more examples in
sections 1.2.8 and 1.3.3.
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Proposition 1.2.15. Two processes are behaviourally equivalent iff they are bisimilar.

Proof. Let (X,€) and (X', £') be two systems of streams. Recall that z € X and 2z’ € X’
are behaviourally equivalent iff head(tail"(x)) = head(tail"(z")) for all in n € N (see
Definition 1.2.4).

“= " Let (X,&,2), (X',&,2") be two behaviourally equivalent processes. Define R =
{(tail™(x), tail"(z")),n € N}. To show that R is a bisimulation note that y R y' =
tail(y) R tail(y') is trivially satisfied by definition of R. Moreover, since x,z’ have the
same behaviour, ie head(tail™(x)) = head(tail"(z')) for all n € N, it follows y R ' =
head(y) = head(y').

“<«<7: Let R be a bisimulation for (X,¢) and (X',¢’) and let R 2'. We have to show
that head(tail"(z)) = head(tail™ (x")) for all n € N. But tail"(z) R tail™(z') is easily shown
by induction on n € N. O

Remark 1.2.16. To reason about behavioural equivalence the definitions of the previous
section are convenient. But to establish that two given processes are behaviourally equiv-
alent, the standard technique is to exhibit a bisimulation. (The reason is that to check
whether a relation is a bisimulation we only need to consider single transitions and not
complete behaviours. The inductive reasoning we save is hidden in the above Proposition,
part ¢ <".)

1.2.8 Coinduction

Usually, one is interested in processes only up to behavioural equivalence. It is therefore
sensible to consider behavioural equivalence as equality on processes. From this point of
view, we can consider the elements of the final system as the processes:

Observation 1.2.17. In the final system, two processes are behaviourally equivalent iff
they are equal.

This allows for a substantial simplification: Instead of reasoning about processes up
to behavioural equivalence we reason up to equality. For example, instead of defining an
operation on processes by defining it on representatives of equivalence classes and then
showing that the definition is invariant under the choice of representatives, we can use the
principle of definition by coinduction. It goes as follows.

Since we know that for any system X 55 YX thereis a unique morphism into the final
system (Z, (), we can define a function f : X — Z just by giving an appropriate structure

&:
for all X -5 ©X there is a unique morphism (X, ¢) EIN (Z,¢)

We say that a function f : X — Z is defined by coinduction if it arises in such a way from
al: X - XX.
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For example, let us define the operation merging two streams. That is, we are looking
for a function

merge : AN x AN — AN
such that

head(merge(ly,13)) = head(ly) (1.4)
tail(merge(ly,ls)) = merge(ls, tail(ly)) (1.5)

This looks more circular than like a definition, but defining (note that we let X above to
be AN x AN now)

E:AN x AN 5 A x AN x AN
<l1, l2> — <h€(1d(ll), <l2, tazl(ll)>>,

it is not difficult to see that merge is defined by coinduction:

Ezercise 1.2.18. Let merge be an arbitrary function AN x AN — AN, Show that merge is
a morphism (AN x AN ) — (AN () iff it satisfies 1.4 and 1.5. [Hint: Show that 1.4 and
1.5 are instances of 1.1 and 1.2 of Definition 1.2.3.]

It follows that there is a unique function merge : AN x AN — AN satisfying 1.4 and 1.5,
that is, 1.4 and 1.5 are a valid definition. (Existence follows since there is a morphism
(AN x AN &) — (AN, () and, moreover, this morphism satisfies 1.4 and 1.5. Uniqueness
follows since every function satisfying 1.4 and 1.5 is a morphism and morphisms into the
final system are unique.)

For another example do the following

Exercise 1.2.19. Find a function & : AN — A x AY showing that

head(even(l)) = head(l) (1.6)
tail(even(l)) = even(tail(tail(l)))

is a coinductive definition.

Observation 1.2.17 stated that in the final system two processes are behaviourally equiv-
alent iff they are equal. This statement is also called the coinduction proof principle:
In order to show that two elements of a final system are equal it is enough to show that
they are behaviourally equivalent or, in view of Proposition 1.2.15, that they are bisimilar.

For an example of an application of the coinduction proof principle, recall the functions
merge and even and define odd(x) = even(tail(z)). We now want to show

merge(even(x), odd(x)) = x
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It is not difficult to guess a bisimulation
R = {{merge(even(z), odd(x)), z), = € A"},
We just have to check the two clauses of Definition 1.2.14. For the first calculate

head(merge(even(x), odd(x))) = head(even(zx))
= head(x)
and for the second
tail(merge(even(x), odd(x))) = merge(odd(x), tail (even(z)))

= merge(odd(z), even(tail (tail(x))))
= merge(even(tail(z)), odd(tail(z))),

which is related to tail(z) by definition of R.

1.2.9 Summary and Exercise

We started with the idea that the black box view of a system X — X is obtained by
not allowing to observe the states of the system. This idea lead us—for the signature
¥ = (A x —)—to the following observations:

e We can assign to each process its behaviour.

e Two processes have the same behaviour iff the processes can be identified by some
morphisms. (In particular: Behaviours are invariant under morphisms.)

e There is a final system (7, () and

— (Z,¢) contains all behaviours of all systems;

— the unique morphism (X, &) — (Z, () assigns to each x € X its behaviour.

e The final system gives rise to the definition and proof principle of coinduction.

In case you want to get more familiarity with the notions of behaviour, morphism, and
final system you can try the following

Exercise 1.2.20. We have seen the following signatures. (Recall that 1 denotes a one-
element set. Also note, that we overloaded the notations 1 and A: Both denote a set, but
also the corresponding constant operation mapping any set to 1, respectively A. Id denotes
the identity operation.)
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)y ¥X Process

1 1 stop

A A outputs a € A once

Id X metronome (running forever)
Ax — Ax X stream over A

Ax —+1| Ax X +1 | finite or infinite list over A

The example of streams has been discussed in detail. For (some or all of) the other cases
do the following:

1. Choose an appropriate notion of morphism for each X.
2. What processes then, according to Definition 1.2.12, are behaviourally equivalent?
3. Does this notion of behavioural equivalence agree with what you would expect?

4. Describe the system of all behaviours. Check that it is the final system.

1.3 An Extended Example: Deterministic Automata

We first show how we can deal with inputs and then go through the the theory of systems
presented in the previous section by means of the example of deterministic automata. In
particular, we show that the languages accepted by deterministic automata constitute the
final deterministic automata.

1.3.1 Systems with Input

We have seen systems that can output elements or stop. To model automata we need to
be able to deal with input. To begin with, suppose we want to model a system

XxI—=+X

which only allows to input elements of I. The problem here is that we agreed in the
beginning of this chapter to describe systems by functions of the kind

X — ...
and not of the kind?

o= X

3Functions of the kind ... — X will appear again in section 2.3 as algebras.
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Here, a little well-known trick called currying comes to help: Given
f:XxI—X,

f(z,—) is a function I — X for each z € X. It follows that f(—, —) is function from X to
the functions I — X. In order to express this succinctly, we use the following

Notation 1.3.1. Given sets I, X denote by X’ the set of functions I — X.
By the discussion above, we now write functions

XxI—X
as functions

X — X!

which are in the form we chose to express systems.

1.3.2 Moore and Mealy Automata

Deterministic automata are used in different ways. For example, to define the language of
finite words accepted by an automata. In this case we should say that the behaviour of an
automaton is its accepted language. This is pursued in the next subsection. Here we are
interested in viewing automata as systems possibly running forever. Therefore, similar to
the example of streams, we will describe the behaviour of an automata as the tree of all
its infinite runs.

Suppose we are given the following data

input alphabet 1
output alphabet @)
set of states X
initial state T

then a process (X, &, xg) given by
X -5 0xx!

is a deterministic automaton (so-called Moore automaton): for each state x € X, £(x) =
(0,6,) where o is the output in state z and 0, : I — X is the function determining on
input from I the next state.

What is the right notion of morphism for Moore automata? In order to give a defini-
tion, we decompose functions X £, 0 x X7 into two functions

out : X — O

(1.8)
nert : X xI — X
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t(<>)

t(a) t(b)
N /N
t(aa) t(ab) t(ba) t(bb)

Figure 1.1: Part of a tree ¢ : {a,b}* — O

and then say that f: X — X’ is a morphism (X, &) — (X', &) iff

out'(x) = out(x)

next'(f(x),i) = f(next(z,i))

What is the behaviour of a Moore automata? It is an infinite tree where branches
are sequences of inputs and nodes are labeled with outputs, or, more formally, a function
t: I* — O (I* denoting the set of all finite words over I). Figure 1.1 shows part of such a
tree in the case that I = {a,b}.

Ezercise 1.5.2.

1. Give a formal definition of Beh(x) similar to the one for streams in Definition 1.2.4.
[Hint: Define an auxiliary function nezt* : X x I* — X extending nezt from letters
to words.]

2. Show that behaviours are invariant under morphisms.
In order to describe the system of all behaviours, we have to equip the set Z of all trees

t: I* — O with a transition structure. For this note that the subtree of ¢ obtained along
an edge ¢ is given by the tree t' : [* — O

t' = w.t(i-w)

where - denotes concatenation of words and the A\-notation is used to indicate the argument
of the function. Therefore, the final system (7, () is given by Z = O" and
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out(t) = t({))

next(t) = Ni.\w.t(i - w))

FEzercise 1.3.3. Show that (Z,() is indeed the final system.

Before we come to examples of definitions and proofs by coinduction in the next sub-
section, we first define an appropriate notion of bisimulation. Given (X,¢), (X', ), we
call R € X x X’ a bisimulation for Moore automata iff

r R2' = out(z) = out'(z')
z Ra" = next(z)(i) R next'(2')(i) foralliel

Exercise 1.3.4. Show that two Moore automata are related by a bisimulation iff they are
behaviourally equivalent (compare Proposition 1.2.15).

Exercise 1.3.5 (Mealy automata). In Mealy automata outputs depend not only on the
current state but also on the input.

1. Modify the signature of a Moore automaton in such a way that outputs depend on
the current state and on the input.

2. Define morphisms of Mealy automata.

3. Describe the behaviour of a Mealy automata [Hint: look for a tree IT — O (I is
I — {{)} where () denotes the empty word).]

4. Give a transition function for the system of all behaviours of and show that this

system is final.

1.3.3 The Final Automaton of all Languages

Consider a Moore automata with O = 2 a two element set:
X S ox X!

Denoting the elements of 2 by true and false, we say that x € X is a final or accepting
state iff

out(x) = true

We have thus obtained the usual notion of a deterministic automata except from the fact
that we put no restriction on the set of states X or the set of inputs I to be finite.
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How does our notion of behaviour relate to the language accepted by an automaton?
We have seen that for xzp € X

Beh(xg) : [* — 2.

is a function mapping finite words to true or false, hence a predicate on words. We can
therefore, equivalently, think of Beh(zg) as the set of words

L(zy) ={w € I'" : Beh(x)(w) = true}
which is nothing but the language accepted by (X, &, x).

It follows that the set of all languages is the final system of deterministic automata:
The transition structure of the final system (1.9) becomes (let L C I*,i € I)

out(L) = () € L)
next(L)(i) ={w :i-w € L}

Writing L | for the proposition ‘() € L’ and L; for {w : i -w € L} the transition structure
on the final system of all languages can be written succinctly as

Ll

1.10
L; foralliel ( )

(1.10) gives us a convenient notation for the use of coinduction. For example we can
give coinductive definitions of union

(L+K)] iff L| orK|
(L+K); = Li+K;
sequential composition

(LK)} iff L] and K|

L;K ifnot L
(LK); = o '
LK+K ifL]

and Kleene star

L* ] iff  true
Finally we illustrate the coinduction proof principle. First note that R is a bisim-

ulation iff

LRK = (L& K
LRK = L;RK; forallie [l
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For a first example we want to show
(O} +LL = L", (1.11)
Immediately from the definitions, we obtain

{Oy+LLY) L iff L7

and (using L;L* + L;L* = L;L* in case L |)

{Oy+LLY): = (L)

showing that both sides of the equation (1.11) are bisimilar and hence equal.

FExercise 1.3.6. Show that
1. K+0 =K,

2. K+ K =K.

For a second example try to show
K(L+M)=KL+ KM.

You will see that we cannot proceed as in the first example but have to find a bisimulation.
Try to find an appropriate bisimulation!

Ezercise 1.5.7. Show that {(K(L + M) + N,KL+ KM + N) : K,M,L,N C I*} is a
bisimulation.

1.4 More Examples

You can skip this section or return later to it, but you should think briefly about morphisms
for transition systems, see exercise 1.4.3.

1.4.1 Objects and Classes

In object-oriented programming procedures are called methods. Writing X for the state-
space of an object, the type of a method m is of the form

m: X xI—FE+0xX,

meaning that for each state x € X and each input i € I, m(z,i)—usually written as
x.m(i)—either raises an exception in F or yields an output in O and a new state in X.
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A class in object oriented programming is given as a set of methods
m; X xI; - E;+0; x X (1<j<n)
which can be written as
m;: X = (B;+0;x X)  (1<j<n).

Since functions f; : X — Y;, (1 < j < n), are nothing else than a single function
(fi,--- fa) : X = Tli<j<n Y, We define the signature of the class to be

YX = H (Ej"i‘Oj XX)Ij

1<j<n

and an implementation to be a system

(my,...my,)

X YX.

The main reason why this view of classes as systems is attractive, is that it naturally takes
into account that objects are encapsulated: The only way to access an object is via one of
the methods. Therefore, there is for each class a notion of behavioural equivalence which
expresses that two objects are equivalent iff they cannot be distinguished by applying the
methods to them. This notion of behavioural equivalence coincides with the one given by
the final system.

Exercise 1.4.1. Assume a class with one method m : X x I — E + O x X. Describe the
final system. [Hint: Similar to Equations (1.9), consider trees I* — (E 4 O) but be careful
proving the uniqueness part.]

1.4.2 Datatypes

Traditionally, datatypes are defined by constructors as initial algebras. Then further op-
erations are defined by induction. For an example consider the following specification of
stacks over elements in A.

spec STACK
constructors
new: 1 — stack
push : A x stack — stack
operations
(top, pop) : stack — A X stack + 1
axioms
(top(new), pop(new)) = x
(top(push(a, s)), pop(push(a, s))) = (a, s)
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new gives an empty stack and push then allows to construct new stacks from old. That
stacks are to be considered elements of the initial algebra given by new and push—ie the
initial algebra semantics of stacks—means that

e only data which can be constructed by new and push is considered to be a stack (the
datatype contains no junk) and

e whenever two stacks are constructed in two different ways from new and push, then
they are different (the datatype has no confusion).

Finally, pop and top are defined inductively from new and push.

There is also a different view on datatypes. We can consider stacks as interacting with
an environment via top and pop. Then two stacks are behaviourally equivalent iff they
cannot be distinguished by using only top and pop. Identifying behaviourally equivalent
stacks, we can consider stacks as the elements of the final system given by top and pop
and define new and push coinductively:

spec STACK
observers
(top, pop) : stack — A X stack + 1
operations
new: 1 — stack
push : A x stack — stack
axioms
(top(new), pop(new)) = *
(top(push(a, s)), pop(push(a, s))) = (a, s)

That stacks are to be considered elements of the final system given by top and pop—ie the
final coalgebra semantics for stacks—means that

e two stacks with the same behaviour are considered to be equal and
e any data being observable with top and pop is considered to be a stack.

Exercise 1.4.2. Think about how the two conditions are related which characterise, re-
spectively, the initial algebra semantics (‘no junk’, ‘no confusion’) and the final coalgebra
semantics. Can you describe this relationship in a formal way?

1.4.3 Transition Systems

Of course, all of the previous examples can be understood as special cases of transition
systems. But usually transition systems allow for non-determinism, a feature that was not
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present so far.* As it is often the case, non-determinism can be modeled by the use of the
powerset operation. Let us denote by PX the set of subsets of X. Then a system

£:X 5 PX

maps each z € X to a set £(x) C X. Interpreting £(z) as the set of successors of x, we see
that (X, ) is a transition system.

What are the observations that can be made of such a system? From our discussion of
section 1.1 we expect an observer to be able to count transitions. In particular, an observer
can detect termination (no transition possible).> But it is less clear whether an observer
should be able to distinguish between different branching structures as eg in

[ ] [ ] [ ] e — O

/ .
N\ N\

e — o o

There are different possibilities here. But is there some kind of canonical choice? In
section 1.2.4 we made the observation that two processes are behaviourally equivalent
iff they can be identified by some morphisms. This suggests that we could try to find
the appropriate notion of behaviour by finding the appropriate notion of morphism. The
following exercise shows that, again, there are several possibilities. In particular, not all
reasonable notions of morphism lead to a useful notion of behaviour.

Exercise 1.4.3. Given a system X LN PX, we think of it as a graph (X, R), R C X x X
(let x Ry < y € &x)). Accordingly, it is natural to consider graph morphisms
f:(X,R) — (X', R') as system morphisms. Graph morphisms are functions f : X — X’
such that

zRy = f(x) R f(y).
1. Using Definition 1.2.12, characterise behaviours of graphs. What is the final graph?

2. What goes wrong? Can you modify the notion of a graph morphism in such a way
that Definition 1.2.12 becomes more interesting?

4Note that the operator + does not introduce non-determinism: Systems like eg X — A x X + 1 or
X — X + X are deterministic.

SThere is a hidden assumption here, namely that distinguishability is symmetric. For more sophisticated
notions of observations see eg Vickers [70].
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the feature how to model it | typical system and process
output O x — X—>0xX stream
input (—)! X — (0 x X)! deterministic automaton
exceptions, errors E+ - X =5 (E+0xX)! object (one method)
multiple methods —x - x MY X xomx O t:f;e}; ;Vlvfzfleth'
nondeterminism P X — P(Actx X) ~ as ‘in Milner’s CCS

X — P(X)Ae or in process algebra

Table 1.1: How to Model ...

In chapter 2 we will see that the notion of a coalgebra provides us automatically with an
appropriate notion of morphism and behaviour for transition systems.

We finish this section by giving some more examples of transition systems. Imagine
that we want the system to be able to output information. Then a system is given by a
function

(€0): X = PX xC

where £ : X — PX is a system as before and v : X — C assigns a ¢ € C' to each state x.

In the previous example, we labeled the states via a function v : X — C. We can also
label the transitions with ‘actions’ a € A

£:X = P(X x A)

Processes (X, &, x) for the signature ¥.X = P(X x A) are processes in the sense of Milner’s
CCS or process algebra.

1.5 Summary of Examples

In the previous examples we have seen how to model certain features that systems may
have by choosing the appropriate signature. Table 1.1 gives a summary.

The examples we have seen so far were motivated by research areas where systems
can usefully be modeled by coalgebras. Table 1.2 gives an overview and pointers to the
literature where more references may be found.

1.6 Exercises and Problem

Exercise 1.6.1 (Contexts). If we think of the environment as performing experiments
on processes, the behaviour of a process x should be determined by knowing the outcome
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the application area some literature
automata theory [27, 61]
(behavioural) differential equations | [63]

control theory [62]

object oriented programs [26]

(algebraic) specification [51, 13, 36]
process algebra (2, 67]
probabilistic transition systems [14, 73]

modal logic see Chapters 4, 5

Table 1.2: Application Areas for Coalgebras

of each experiment performed on z. In the case of streams XX = A x X this can be
formalised as follows. An experiment is a ‘term with a hole’ head(tail"(—)), often called a
context. Performing the experiment on x consists of plugging x into the term and looking
for the outcome. The set of possible outcomes is A.

1. Give a transition structure on the set of functions from experiments to outcomes and
show that it is the final coalgebra.

2. Do the same for deterministic automata.

Problem 1.6.2. Try to find out for which signatures the final coalgebra can be described
as the set of functions from experiments to outcomes (as in the exercise above).

Exercise 1.6.3 (Minimal realisation of automata). In Section 1.3 we have described
deterministic automata as processes for the signature © = O x Id’. In automata theory,
one is often interested in finding the minimal automata realising a behaviour ¢t : I* — O.
Show that the description of automata as systems trivialises the existence of a minimal
realisation: The minimal automaton realising the behaviour ¢ : I* — O is just the smallest
subsystem of the final system generated by t.

The next exercise shows that for non-deterministic systems there is no essential differ-
ence between inputs and outputs (as long as the parameter A is kept fixed).

Exercise 1.6.4. Give a bijection between P(A x X) and (PX)4. ¢

6Tt should also be checked that the bijection is natural in X, see the Appendix for a definition of natural
transformations.
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1.7 Notes

Although known and studied before, the current interest in coalgebras goes back to Peter
Aczel’s book [2] “Non-well founded set theory” where he gives a description of the final
system for the signature P(Ax —) and a final semantics for processes in the sense of Milner’s
CCS. In particular, he recognised that the behavioural equivalence given by the final system
is the bisimilarity as known from process theory. Then Aczel and Mendler [1] showed that
final coalgebras exist under rather general circumstances. The research inspired by the view
of coalgebras as systems was then continued in eg [57, 59, 58, 67]. The idea of universal
coalgebra as a general theory of system is due to Rutten [60, 64]. The example of merging
streams in Section 1.2.8 is taken from [25]. For a recent study of and further references on
coinduction see Bartels [9].

The example of deterministic automata as coalgebras was studied in Rutten [61].
Classes in the sense of object-oriented programming as final coalgebras are due to
Reichel [49] and Jacobs [28]. The idea of specifying datatypes only up to behavioural
equivalence goes back to Reichel, see eg [48]. For recent work on behavioural specifications
based on the duality of algebras and coalgebras see [34, 11].

For supplementary introductions to systems and coalgebras see Gumm [21], Jacobs and
Rutten [25], Rutten [64].
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Chapter 2

Coalgebra

We first show that by considering signatures as functors, we can deal in a uniform way
with all the examples of the previous chapter. Second, we present some general ways to
construct new coalgebras from old ones. Third, (equational specifications of) algebras are
reviewed. Finally, duality of algebras and coalgebras is discussed.

2.1 Coalgebras

If we look back at the previous chapter, we see that the theory of systems we presented
was almost uniform in all signatures. The only thing that had to be invented separately
for each new signature was the notion of morphism. It is therefore a natural question to
ask whether we can modify the definition of a signature in such a way that it includes in a
natural way the right notion of morphism. This is indeed the case: We just have to require
the signature to be a functor.

The other move we make is from an operation (or functor) on sets to a functor on
arbitrary categories. The main reason for us to do this is that it is necessary to make
precise the duality of modal and equational logic in chapter 5.1

Moreover, in building a theory it often pays to use only those assumptions which are
really needed. Category theory allows us to formulate these assumptions in a succinct way.
As a consequence, we obtain more general results, simpler (and reusable) proofs, and new
insights in why certain results hold.

Finally, let us mention that the use of categories does not create too many new difficul-
ties: Although it is important to note that notions like coproduct, quotient, embedding,
and union of images work in all appropriate categories, one can (and should) think in terms
of the corresponding notions familiar from sets.

Definition 2.1.1. Given a category X, called the base category, and a functor ¥ : X — &,
a Y-coalgebra (X, ¢) is given by an arrow £ : X — XX in X. A morphism between two

!As will be explained later, algebras over Set are dual to coalgebras over Set°®. Hence, in order to
use duality, we have to work in a setting allowing not only coalgebras over Set but also over Set°®. The
cleanest way to do this is to set up the theory for coalgebras over arbitrary categories X'.

31
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coalgebras f: (X,&) — (X', &) is an arrow f in X such that o f =X fo&:
£

X TX
f xf
X — oY

The category of coalgebras and morphisms is denoted by Coalg(X).

We will explain in more detail what in means for the signature to be a functor. Assume
X = Set. Then we extend the signatures we have seen so far to functors as follows (let
CeSetand f: X — Y € Set):

b)) ¥ X Xf

C C ide:C —C

Id X f

(_)C’ XC fc . XC —>YC
g fog

As we did earlier, we overloaded notation by denoting with C' the set as well as the constant
functor mapping any set to C. id¢ denotes the identity map on C and X ¢ is function space.
As we have seen before, from these functors, we can build more interesting ones, using
x and +, like eg ¥X = (F + A x X)’. To make this precise, we note that x and + are
functors as well. There action on functions f; : X; — Y3, fo : Xo — Y5 is the following:

i+ Xi+Xo =Y+
-+ = $€X1|—>f1(.7))
IL'EXQHfQ(IL’)

X fa: Xix Xy =YV xY,
(w1, 29) = (fi(w1), f2(22))

It is perhaps not worth looking at these definitions in detail. There are no reasonable
alternatives anyway. But these definitions show that any expression build from constants,
identity, exponentiation with a constant, +, and x gives rise to a functor (this is due to
the fact that the composition of functors is a functor). To understand how these functors
act on functions, do the following
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Exercise 2.1.2. Check that for ¥ = A x Id and ¥ = O x Id’ the coalgebra morphisms
of Definition 2.1.1 agree with the system morphisms of Definition 1.2.3 and of (1.8) in

Chapter 1.3.2, respectively. Describe the morphisms for “classes” with signatures (E +
O x 1d)!, see Chapter 1.4.1.

Next, we show that the notion of coalgebra morphism also helps us to find the mor-
phisms of transition systems, ie for signatures involving P. Remember that the first idea
that came to our mind in Exercise 1.4.3 did not give rise to a reasonable notion of be-
haviour. But, as for the signatures discussed above, there is one obvious way to extend P
to functions, namely as direct image:

) SX Sf

Pf:PX —PY

Pl{W:WcCX} W f(W) = {f(z): 2 € W}

We next characterise morphisms of P-coalgebras. Recall that we can write a P-
coalgebra (X,§) as (X,R) with RC X x X andx Ry < y € &(x).

Proposition 2.1.3. Let (X, R) and (X', R') be two P-coalgebras. A function f: X — X'
s a P-coalgebra morphism iff

t Ry = f(x) R f(y) (2.1)
f@ Ry = yeX . sRy& f(y) =y

Proof. The commuting square defining coalgebra morphisms translates into the condition
that for all z € X it holds {y' : f(z) R' v'} = {f(y) : « Ry}. “D” is (2.1) and “C” is
(2.2). O

Note that (2.1) says that f is a graph morphism. It expresses that (X', R, f(z)) simulates
(X, R, x). (2.2) is the converse stating that (X, R, x) simulates (X', R, f(x)). The following
is therefore no surprise but should be checked for once nevertheless.

Exercise 2.1.4. Let X be P or P(Ax —) and (X, ¢), (Y, n) two X-coalgebras. Then z € X
and y € Y are behaviourally equivalent (Definition 1.2.12(1)) iff they are bisimilar in the
usual sense of modal logic or process algebra (Definition 3.2.1).

To summarise, we have seen that the signatures discussed in Chapter 1 give rise to
functors and that, therefore, the systems of Chapter 1 are coalgebras.? In particular, the
general theory of systems outlined in Chapter 1 is now uniformly available to all categories
of coalgebras over sets.

2This reflects a general experience: All interesting signatures seem to give rise to functors. But not
every operation can be extended to a functor, see the exercises.
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2.2 Basic Constructions on Coalgebras

Not all constructions we want to perform on systems are universal in the sense that they
can be made in a uniform way for all signatures. For example, if we want to make systems
communicate, we usually need to know the specific signature. On the other hand, some
simple but important constructions are universal.

2.2.1 Coproducts

Intuitively, it is clear that we can form the disjoint union of two systems just by forming
the disjoint union of the carriers and using each transition-function for each component.
This seems so obvious that it might be worth to look at

FEzercise 2.2.1. Ts it possible to have a disjoint union for algebras? (Take any familiar
example like perhaps monoids or groups. Or use stacks with operations new and push as
in Chapter 1.4.2.)

The general construction of a coproduct of coalgebras is as easy as the informal descrip-
tion given above. Let ¥ : X — X" and suppose that for a family (X;, & );cr of X-coalgebras
the coproduct [[; X; of the carriers exists. Then the coproduct ([I; X;, ) of the coalgebras
is given by

3
HXz ........ - E(H X;)
I I
m; Yin;
&i

Xi

YX;

where £ exists due to the universal property of the coproduct in X'. That is, the coproduct
of coalgebras is given and completely determined by the coproduct of the carriers.

Ezxercise 2.2.2. Apply the construction above to the signature P.

2.2.2 Quotients and Subcoalgebras

This section deals with quotients and subcoalgebras. We first describe quotients and
subcoalgebras for the case X = Set and then introduce factorisation systems to deal with
the general case.

We say that a coalgebra morphism e : (X, &) — (X', ¢') is a quotient iff e is surjective.
We also call (X', &) a quotient or (homomorphic) image of (X,£). We say that m :
(X', &) — (X,§) is a subcoalgebra or embedding iff m is injective. We also call (X', ¢)
a subcoalgebra of (X, €).

The following proposition shows that the transition-structure on a quotient (X', &') is
completely determined by the structure on (X, ).
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Proposition 2.2.3. Let ¥ : Set — Set, (X,£), (X", &), (X', &") be 3-coalgebras and e :
X — X' surjective. If e is a morphism (X, &) — (X', &) as well as a morphism (X,§) —
(X',€") then & = €',

Proof. Follows from e being epi. O

Similarly, the structure on a subcoalgebra (X', &') is completely determined by the
structure on (X, ¢§).

Proposition 2.2.4. Let ¥ : Set — Set, (X, &), (X', &), (X", £") be X-coalgebras and m :
X' — X injective. If m is a morphism (X', &) — (X, €) as well as a morphism (X', £") —
(X,€) then € = €.

Proof. If X' is not empty, then Ym is injective, hence mono, hence £ = £”. If X' is empty
then & = £” because the only map with empty domain is the empty map. O

As mentioned already, to establish the duality of modal and equational logic, we cannot
restrict our attention to the base category Set. Unfortunately, there is no categorical
generalisation of the set-based notions surjective and injective which is appropriate in
all settings. But it turns out that for the purpose of this lecture (and in many other
circumstances as well) we only need the following properties of quotients and embeddings.

Definition 2.2.5 (Factorisation system). Let C be a category and E, M be classes of
arrows in C. We call arrows in FE quotients, arrows in M embeddings, and (E, M) a
factorisation system in C iff

1. f€ F and f € M implies f iso.
2. E, M are closed under composition.

3. Every arrow f in C has a factorisation f = moe for some m € M and e € E. We
call m the image of f and e the kernel® of f.

4. Factorisations are given up to unique isomorphism, ie for all e, e’ € E and all m, m’ €
M as in the diagram

!

& m

e
e ———— 0
)
»

; [ ]
m

there is a unique isomorphism A making the triangles commute. O

3The kernel of a function f : X — Y is usually defined as Ker f = {(z1,z2) : f(z1) = f(z2)}. Since
Ker f describes the quotient part of the factorisation of f up to unique isomorphism, it seems justified to
use ‘kernel’ for the quotient part of a factorisation in general.
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The use of the letters F and M derives from the fact that in most applications of fac-
torisation systems arrows in E are epi and arrows in M are mono. For example in Set is
(Epi, Mono) = (Surj, Inj) a factorisation system.

The most important property of factorisation systems is the following:

Proposition 2.2.6 (Unique diagonalisation). Let (E, M) be a factorisation system in
C. For any commuting square

r

&
o 4>' o
o ’..

m

with m € M and e € E, there is a unique diagonal d making the triangles commute.

Proof. (The proof is technical and can be skipped.) Factoring [l = m;oe; and r = m, oe,
gives a unique isomorphism A in the left-hand diagram

€ €
e — O [ ] > @
d»
el e el / e
By
@ «—— O @ <« @ <« [ ]
h hq
o
my my my my
Y
®e — O [ ] > @
m m

Then m; o hoe, is a diagonal as required. To show uniqueness consider any diagonal d (ie
doe=1and mod=r). Factoring d = my o e, gives unique isos hy, hy with e, = hy o e,
and mg = my o hy. Since hy o hy must be h, it follows d = m;o hoe,. O

The unique diagonalisation property is often useful in order to arrows d. We will need
it in Chapter 5. For a first example we show that over Set every coalgebra morphism
factors as a surjective and an injective one and that this factorisation is calculated as the
factorisation in Set:

Proposition 2.2.7. Let ¥ : Set — Set, f : (X,€&) — (Y,n) a X-morphism, and X —
X' Y an (Surj, Inj)-factorisation of f in Set. Then there is a unique function & :
X' — X X' making e and m into coalgebra morphisms.
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Proof. Consider the diagram

X - X' .Y
3 ¢ n
y
Y X S X! SY
e YXm

In case that X' is not empty, we know that ¥m is injective (Exercise A.0.2) and we
can use unique diagonalisation. The case X' empty works as usual (see the proof of
Proposition 2.2.4). O

Note that already in this case the argument by unique diagonalisation is easier than a
direct proof going back to the element-wise definition of the image X' of f.

As a corollary note that the surjective and injective morphisms form a factorisation system
in Coalg(X):

Corollary 2.2.8. Let ¥ : Set — Set and denote by Surj and Inj the class of surjective
and injective S-morphisms. (Surj, Inj) is a factorisation system in Coalg(X).

Proof. Existence of factorisations was shown in the proposition. To see that factorisations
are unique up to iso let (X, &), (Y1,11), (Y2, 1), (Z, () € Coalg(X) and consider the left-hand
diagram

b)) >h
X .y P G ) (i )
e'\ \\ \m f‘ 1/1‘ {1/2
Yo —— 7 X - Y] - Y5
m e h

There is a unique iso h. To see that h is a coalgebra morphism we use the following
standard argument. Consider the right-hand diagram above. We know that the left square
and that the outer rectangle commute (since e and €’ = h o e are coalgebra morphisms).
Since e is surjective (hence epi), the right-hand square also commutes. a

Finally, the following proposition summarises what we have shown about factorisation
systems in case the base category is not Set (the proofs remain unchanged).

Proposition 2.2.9. Let (E, M) be a factorisation system in X and ¥ : X — X. Assume
that arrows in E are epi and that ¥ preserves arrows in M.* Let E', M’ be the coalgebra

morphisms which are in E, M, respectively. Then (E', M') is a factorisation system in
Coalg(X).

1Y preserves arrows in M if me M = Ym e M.
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2.2.3 Unions

The perhaps most important construction for us is ‘union of subcoalgebras’. To explain
the interest, suppose we have a system and a property ¢ on its states and we want to know
the largest subcoalgebra whose states all satisfy . In case that the union of subcoalgebras
exists we can take the union of all subcoalgebras satisfying ¢.

We first deal with the case X = Set. Suppose we are given a family of coalgebra
morphisms (s;)er

(Xi, &) SN (X, 8)

and we want to describe the union of the images of the s;. It should be obvious that a
union of the images of the s;, if it exists, has to be given by a factorisation s; = m o ¢;
e m
(X, &) —— (X&) — (X,¢)
such that m is injective and the e; are collectively surjective (ie for each ' € X' there is
i € I and x € X; such that e}(z) = 2’). This determines the union of images up to unique

isomorphism and we write

(X', &) = {Im(s;) : i € I}

We show that coalgebras over sets have union of images.
Proposition 2.2.10. Let ¥ : Set — Set. Then Coalg(X) has union of images.

Proof. Let (s; : A; — A);er be a family of morphisms in Coalg(X). The idea is to construct
unions as disjoint unions (coproducts) followed by a quotient. But we have to be a bit
careful since [; A; may not exists since [ is allowed to be a proper class. Let

Ay Sy AL 4

be a (Surj, Inj)-factorisation of each s;. Since A has—up to isomorphism—only a set of
subcoalgebras there is a subset J C I and a function f : I — J choosing for each A},
t € I, an isomorphic subcoalgebra A’f(i). Moreover, there are morphisms e} : A; — A’f(i)
such that s; = my(;) o e;. Since J is a set the coproduct in; : A; — [I;c; A} exists. Now
consider

14, A
J .
infy)| . |m (2:3)
¢ My s
A Al A

where g is given by the universal property of the coproduct and m o e is the (Surj, Inj)-
factorisation of g. It follows that the s; have a factorisation m o (e o ing(;) o €;). Observing
that (e o ing) o €])icr is collectively surjective finishes the proof. O
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For the general case, we note that in the proof of the proposition above we can replace
Coalg(X) by any category C which has a factorisation system, coproducts, and for each
A € C, up to isomorphism, only a set of embeddings.® For the purposes of this course, the
following definition will be convenient:

Definition 2.2.11 (Union of images). We say that a category C with a factorisation
system has union of images iff C has coproducts and for each A € C, up to isomorphism,
only a set of embeddings A’ — A. Union of images are then given as quotients of coproducts
as in (2.3).

A more general notion of union of images can be given using factorisation systems for sinks,
see Adamek, Herrlich, Strecker [3], Chapter 15 and [36] for their application to coalgebras.

Unions of images have a diagonalisation property which is similar to the one for fac-
torisation systems:

Proposition 2.2.12. Let (E, M) be a factorisation system in a category C which has union
of images. Let noe; be the union of the images of a family s;. Then if form € M, f € C,
and a family t; in C, the square

A; B
N
tz f
o D
m

commutes for all i then there is a unique diagonal d making the triangles commute.

Proof. Redraw the square above with e; = e o ing;) o ej as in (2.3). Then use unique
diagonalisation for factorisation systems (2 times) and the universal property of the co-
product. O

2.2.4 Final and Cofree Coalgebras

We have seen in Chapter 1.2 that final coalgebras play an important role because they
classify processes up to behavioural equivalence. Cofree coalgebras do the same, but allow
the environment additional observations called colourings. We first take the time to discuss
colourings in some detail and then explain cofree coalgebras.

Given a coalgebra X “£4 X and a set ‘of colours’ C, a colouring of (X,¢) in C is
a function X - C. c¢ is simply a marking or labeling of the states. Its import is that

5The technical term for this last condition is that C is wellpowered.
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we can use colourings ¢ to make additional observations. Consider eg the P,-coalgebra

(Y,7n,90) given by
Yo
U1 Y2

Here, the two states yi,y, are behaviourally equivalent for an external observer. But
allowing colourings ¢ : Y — C, C' = {¢y, ¢z}, an external observer can distinguish yi, yo by
choosing a colouring with eg ¢(y;) = ¢; and ¢(y2) = ¢s.

That is, allowing colourings increases the observational power of the environment. If
we want to stay with our basic paradigm that two elements cannot be distinguished by an
external observer iff these elements cannot be identified by some morphisms (see Observa-
tion 1.2.7), we need to require morphisms to respect colourings. This gives rise to a new
category of coalgebras with colourings:

Definition 2.2.13 (Coalg(X,C)). Let ¥ : X — X and C € X. Coalg(X, C) is the cate-
gory having objects

(X 58X, c: X 5 0)
where X —55 X is a Y-coalgebra and ¢ : X — C' an arrow in X. We call these objects
(3, C')-coalgebras and denote them by ((X,&),¢) or (X,&,¢). A (X,C)-morphism f :
(X, & ¢) = (X', €, ¢) is a E-morphism (X, &) — (X', &) such that

X / - X'
C

The last condition expresses that (X, C')-morphisms preserve colours.

commutes.

We can now define cofree coalgebras

Definition 2.2.14 (Cofree Coalgebras). A (X, C)-coalgebra (Z¢, (¢, e¢) is called the
cofree Y-coalgebra over C' iff it is final in Coalg(X,C'). We say that Coalg(X) has cofree
coalgebras if cofree coalgebras exists for all C' € X.

Usually, we leave ¢ implicit and call (Z¢, () alone the cofree 3-coalgebra over C'. In the
following exercise you are asked to unravel the definition of a cofree coalgebra.

Exercise 2.2.15. Show that (Z¢, (¢) is cofree over C' iff for all X-coalgebras (X, &) and
all colourings ¢ : X — C there is a unique Y-morphism ¢’ : (X, £) — (Z¢, (¢) such that
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commutes.

The diagram above is not ‘well-typed’ in the sense that two arrows are colourings (from
the base category) and another one is a coalgebra morphism. This can be corrected by
introducing the following

Notation 2.2.16 (Forgetful functor). The forgetful functor is the operation U

Coalg(X) — X mapping a coalgebra to its carrier and a coalgebra morphism f: (X,§) —
(X", &) to f: X — X',

Note that U is indeed a functor. Restating the exercise above using the new terminology
yields a formulation of cofreeness which will be of use in Chapter 5.

Proposition 2.2.17. Let U : Coalg(X) — X be the forgetful functor. Coalg(X) has cofree
coalgebras iff for each C' € X there is a X-coalgebra FC and a colouring ec : UFC — C
such that for any 3-coalgebra A and any colouring ¢ : UA — C there is a unique coalgebra
morphism c¢* : A — FC such that the triangle

UFC FC
2 U ct
C UA A

commutes.

We finish this section with two exercises which should make you familiar with the
notions of (¥, C)-coalgebra and cofree coalgebra.

Exercise 2.2.18. Give an isomorphism Coalg(X, C') ~ Coalg(X xC') (for any base category
with binary products).

Exercise 2.2.19. Consider three P, -coalgebras (X, &, z0), (Y,n,y0), (Z', (', 20) given by

/350 Yo 20
T1 Ta T3 Y1 Y2 21

1. Show that (Z',{’) is a subcoalgebra of the final P,-coalgebra.
2. Show that (X,¢), (Y,n), (Z',(’) are behaviourally equivalent.

3. Say that two processes (X, &, o), (Y,n,40) are C-behaviourally equivalent iff
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e for each colouring ¢ : X — C there is a colouring d : Y — C such that
(X, &, ¢, 19) and (Y, n,d, yo) are behaviourally equivalent and, vice versa,

e for each colouring d : Y — C there is a colouring ¢ : X — C such that
(X, &, ¢, 19) and (Y, n,d, yo) are behaviourally equivalent.
Show that

(a) (Y,n,v0) and (Z',{’, z) are not 2-behaviourally equivalent,
(b) (X,&,x9) and (Y, n,yo) are 2-behaviourally equivalent,
(c) (X,&, x) and (Y, n, o) are not 3-behaviourally equivalent,

where 2 and 3 denote sets of respective cardinality.

2.3 Algebras

This section reviews algebras as far as needed to understand the duality to coalgebras. We
also briefly review the semantics of equations. Some basic familiarity with algebras and
equational logic will be helpful, see eg Wechler [71] for an introduction.

Definition 2.3.1. Given a category X, called the base category, and a functor ¥ : X — &,
a Y-algebra (Y,v) is given by an arrow v : ¥Y — Y in X. A morphism between two
algebras (Y,v) — (Y',v') is an arrow f in X such that v/ o Xf = fov:

Sy — 2 Ly
Xf f
) (N
1%

The category of Y-algebras and morphisms is denoted by Alg(X). The forgetful functor
U : Alg(X) — X maps algebras (Y, v) to the carrier Y and morphisms f: (Y,v) — (Y, /)
to the arrows f:Y — Y.

This notion of algebras for a functor includes algebras defined by operations in the
usual sense. To give examples it is useful to have the following

Notation 2.3.2. A family of functions (f; : ¥; = Y)1<i<, can equivalently be written as
a single function

Yi+... +Y, M, Y
where as before + denotes disjoint unions of sets and [fi,..., f,] is the function which

applies f; to arguments from Y;. (This equivalence is valid in any category with coproducts.)
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Example 2.3.3. The following examples show that algebras in the standard sense are
algebras for a functor.

1. Consider algebras given by a constant 0 and a unary operation s. The corresponding
functor is ¥Y = 1+ Y and a Y-algebra is given by

[0, 5]

1+Y Y

2. Consider the following signature for algebras

new : — stack
push : A x stack — stack
The corresponding functor is XY =1+ A x Y and a X-algebra is given by

h
[new, push)| v

1+AxY

3. Groups (Y, e, (—)7',-) are algebras for the functor BY =1+Y +YV x YV

[ev(_)ila'] ‘
1+Y +Y xY Y.

In the same way, any signature for algebras given by some collection of operation symbols
gives rise to a functor.

A X-algebra (I,¢) is initial iff it is initial in Alg(X), ie iff for any X-algebra (Y, v) there
is a unique Y-morphism

(I,1) = (Y,v).

I consists precisely of all terms that can be formed from the operations in the signature.
For example, the natural numbers are the initial algebra for the functor XY = 1+Y (read
0 as zero and s as successor):

[0, 5]

1+N N

To say that (N, [0, s]) is initial is equivalent to the principle of induction. To see that
initiality gives rise to induction, recall that defining a function f : N — Y by induction
means to give a yo € ¥ such that f(0) =y and a ¢ : Y — Y such that f(s(n)) = t(f(n)),
that is, to give

[Yo, 1]

1+Y Y
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such that
0
T Lk
idy + f f
t

Ezercise 2.3.4. Check that the diagram above commutes iff f(0) = yo and f(s(n)) =
t(f(n)) for all n € N.

Ezercise 2.3.5. Compare induction with coinduction (see Chapter 1.2.8).

Equations

As shown by the example of groups in Example 2.3.3 (or the example of stacks in Chap-
ter 1.4.2), we often want algebras not to be given only by a signature but also by some
equations as eg

T-e=
(-y)-z=x-(y-2)
where x,y, z are variables from some set X.

Although it should be clear what it means for an algebra (Y, v) to satisfy a set of
equations ®, we want a precise definition. Since equations are formed from terms, we first
need a description of terms in variables from X. This is provided by the notion of a free
algebra over X.

Definition 2.3.6 (Free algebra). Let ¥ : X — X and X € X. The free X-algebra over
X is given by an algebra (Ax, ax) and an arrow ny : X — Ax such that for each algebra
(Y,v) and each v : X — Y there is a unique algebra morphism v : (Ax, ax) — (Y, v) such
that vf oy = v

We say that Alg(X) has free algebras iff for all X € X there is a free algebra over X.

Remark. In the case X' = Set we read this as follows: For a set of variables X there is
the term algebra (Ax,ax) which has as a carrier Ay all terms formed from operations in
Y and variables in X. nyx is the inclusion of variables into terms. v is an assignment of
variables to elements of (Y, v). The condition above now expresses the familiar fact that
any assignment of variables v defines a unique interpretation v* of terms.
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Exercise 2.3.7. Compare the definition of free algebras with the characterisation of cofree
coalgebras in Exercise 2.2.15.

We can now say that, in the case X = Set, an equation ¢t = ' of terms ¢, ¢’ in variables
from X is an element of (t,t') € Ax x Ax. Satisfaction of equations is then defined as
follows.

Definition 2.3.8 (Satisfaction of equations). Let ¥ : Set — Set and (Ax,ax) a free
Y-algebra over X. Let (Y,v) € Alg(X) and ® C Ax x Ay (ie ® is a set of equations in
variables from X'). For an equation (¢,t') € ® and an assignment v : X — Y define

(Vov),v (4 t) iff v¥(t) = v¥(t)

We write (Y, v) = ® and say that (Y, v) satisfies @, or that ® holds in (Y, v), iff (Y,v),v |
(t,t') for all (¢,t') € ® and all assignments v : X — Y.

How the concept of a set of equations can be generalised to arbitrary categories (with
factorisation system) is shown in Chapter 5.3.

2.4 Duality

We briefly review categorical duality. A category C consists of a class of objects, also
denoted by C, and for all A, B € C of a set of arrows (or morphisms) C(A4, B). The dual (or
opposite) category C° has the same objects and arrows C°?(A, B) = C(B, A). We write
A°P and f°P for A € C and f € C(B, A) to indicate when we think of A as an object in C°P
and of f as an arrow in C°?(A, B). Duality can now be formalised as follows: Let P be a
property of objects or arrows in C. We then say that

an object A (arrow f, respectively) in C has property co-P
iff A°P (f°P, respectively) has property P.

For example, an object A is co-initial in C (usually called terminal or final) iff A is initial
in C°?; a morphism f € C(A, B) is co-mono (usually called epi) iff f°° is mono; C' is a
co-product A 4+ B iff C°P is a product A°? x B°P. Of particular importance for us is
Ezercise 2.4.1. Show that (E, M) is a factorisation system in C iff (M, E) is a factorisation
system in C°P.

The duality principle can also be extended to functors. The dual of a functor F' : C — D
is the functor F°P : C°? — D°P which acts on objects and morphisms as F' does. We can
now state precisely that algebras are dual to coalgebras:

Proposition 2.4.2. Let ¥ : X — X. Alg(X)P is equivalent to Coalg(XP).

Proof. The iso maps objects (XX LN X)°P to X°P & sop xoP and is the identity on
morphisms. U
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Note that the base category X gets dualised as well. To emphasise this trivial but
important point we state an evident corollary to the proposition:

Corollary 2.4.3. Let ¥ : X — X. Then the forgetful functor U : Alg(X) — X is dual to
the forgetful functor U : Coalg(XP) — X°P.

The fact that the base category has to be dualised makes it difficult to exploit the duality
of algebras and coalgebras. For example exercise 2.6.5 shows that Set°” is isomorphic to
the category of complete atomic boolean algebras. Therefore, coalgebras over set are
isomorphic to algebras over complete atomic boolean algebras, a fact that seems not very
helpful in the study of coalgebras.

Nevertheless, duality may still be exploited. The idea is to take care that the proofs of
our results do not depend on a specific base category. There are two possibilities.
First, it may be that the properties we are interested in can be formulated in a way such
that they do not depend on the base category at all. Second, if some properties P of the
base category are needed, we are careful to keep track of them. In this way, we are able
to obtain results that hold, say, for all algebras over base categories satisfying P, and all
coalgebras over base categories satisfying co-P. Even if we are only interested in results
about algebras as well as coalgebras over sets, this approach is still useful. For example,
Set is wellpowered and cowellpowered, complete and cocomplete and has a factorisation
system.

Coalg(X) Alg(32°P)

factorisation system (E, M) | factorisation system (M, E)
subcoalgebras quotients

quotients subalgebras
coproducts products

union of images intersection of kernels
final coalgebra initial algebra

cofree coalgebra free algebra
coinduction induction

behaviour reachable part
bisimulation subalgebra (7)

Table 2.1: List of Dualities

Table 2.1 summarises dualities which are interesting for us. The notion of intersection
of kernels is given by the dual of Definition 2.2.11 and will be illustrated in the next
section. Behaviour and reachable part are dual notions: the behaviour of a coalgebra (X, &)
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is given by the factorisation (X,&) - Beh(X,€&) % (Z,(¢) of the unique morphism
(X,€) — (Z,() into the final coalgebra (Z,(); the reachable part of an algebra (Y,v)
is given by the factorisation (I,1) — Reach(Y,v) — (Y,v) of the unique morphism
(I,1) — (Y,v) from the initial algebra. Bisimulation and subalgebra are dual notions if we
consider the essence of a bisimulation being to define a quotient on a system.

To investigate whether this table can be extended to logics for (co)algebras is the
purpose of Chapter 5.

2.5 Extended Example: Limits

This section illustrates the material we have seen so far, namely duality, union of images,
and cofree coalgebras.

We have seen that that colimits of coalgebras are easy (ie calculated as in Set). What
about limits? We will use our intuition on algebras and then duality to provide a solution.

The first step is to describe colimits of algebras. In order to think of something concrete,
let us consider the coproduct of two monoids (Y3,e,-) and (Y3,e,-). Clearly, it can not
be given by the coproduct (disjoint union) Y; + Y5 because, roughly speaking, Y; + Y5
contains not enough elements. For example, Y] + Y5 contains no element which we could
consider as the composition of some y; € Y; and some y, € Y5. Surely, the free algebra over
both carriers, F(Y; + Y3), contains enough elements (eg y; - 42). But F(Y; + Y53) is not the
coproduct itself because it does not satisfy enough equations. For example, if z;-y; = 27 in
(Y1,e,-) then z1 -y; # 21 in F(Y14Y3) just because it is the free algebra (which means that
it satisfies no equations but those enforced by the monoid axioms). So what we need to
find is the appropriate equations which make the quotient of F'(Y; +Y3) into the coproduct
of (Y1,e,-) and (Y5, e,-). But this is easy. Consider two algebra morphisms as in

(Ylaea') F(YI_FYZ) (Y2767')

o hI’g 9

(Za 6,-)

Since F (Y7 + Y3) is free, there is a unique algebra morphism Ay, which agrees with f and
g on Y; and Y5, respectively. The kernel Kerhy, = {(¢,t') : hy4(t) = hy4(t')} contains
precisely the equations® (¢,t') satisfied by (Z,e,+). Now, in order to find the equations
satisfied by the coproduct we take the intersections of all these kernels: Let

®=({Kerhsy:3(Ze,-) & f:(Yi,e,r) = (Zye,) & g: (Ya,e,r) = (Z,e,4)}

and define the coproduct of (Y7,e,-) and (Y5, €, -) as the quotient of F(Y] + Ys) wrt to the
smallest congruence generated by ®. Of course, it remains to be checked that this definition
yields indeed the coproduct. If you are interested in the details, dualise the proof below.

6Recall that we write equations as (t,t') rather than ¢t = ¢'.
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The principle of duality now makes us guess that limits of coalgebras must be obtained
as certain subcoalgebras of cofree coalgebras. This idea gives rise to the following theorem
and proof.

Theorem 2.5.1. Let X be a functor on Set such that Coalg(X) has cofree coalgebras. Then
Coalg(X) has all limits and they are constructed as shown in the proof.

Proof. Let D : T — Coalg(X) be a diagram in Coalg(X). Let ¢; : L — UDi be a limit of
UD in Set. Consider the cofree coalgebra F'L over L with colouring ey, : UFL — L.

C; €L

UD7 < L ‘/UFL
Uf; /yﬂ& Um
UA; - UB

€

Let f; : Aj — D1 be a cone for the diagram D. Since L is a limit of UD, there is a unique
gj : UA; — L such that Uf; = ¢; 0 g;. Since F'L is cofree, g; lifts to a unique gg- :A— FL
such that 7, o Ugg = gj.

Let {f] : Aj = Di : j € J} be the class of cones for D. We have seen that every cone
f} : A; — Di gives rise to a gg- : A; = FL. The limit B of D is now the union of images
A; % B ™ FL of the family (¢");e.

To find the limiting cone consider [; = ¢; o ¢, o Um. Since for all i € Z, [; o Ue; = Uf;
are morphisms in Coalg(X) and the family of morphisms (e;) e, is collectively surjective,
it follows that the [; : B — Di are coalgebra morphisms. Furthermore, [; is a cone for D
because it is a cone for UD which in turn holds because Uf} is a cone for UD (for all j)
and the (Ue;);ec s are collectively surjective.

To complete the proof we have to show that every cone in Coalg(X) over D factors uniquely
through [; : B — Di. The existence follows from the definition of B, uniqueness from m
being mono. O

Remark 2.5.2. The construction of the limit shown in the proof of the theorem can
be used to obtain detailed information on limits. As an example consider the following
coalgebra A for the (finite) powerset functor:

S0

7N\

S1 59
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(The carrier of A is {sg, s1, s2} and the transition relation is as depicted in the diagram.)
You are invited to use the construction in the proof of the theorem to prove the following
remarks on the product A x A:

e The product A x A is not the largest bisimulation because the product has ‘too many
states’ (the largest bisimulation on A has 5).

e A x A is finite (the construction in the proof of the theorem also allows to calculate
the precise number of states in A x A though this requires a bit more work).

e Define A’ by adding transitions from s; and s to sy in the coalgebra A. Then A’ x A’
is infinite.

2.6 Exercises
Exercise 2.6.1. Some strange operations give rise to functors and some don’t:

1. Define AM : Set — Set as AM(X) = {(x,y,2) € X* : |[{x,y,2}| < 2}. Show that
AM can be extended to a functor.

2. Define B : Set — Set as B(X) = {(z,y,2) € X?: |{z,y,2}| > 2}. Show that B can
not be extended to a functor. [Hint: Do the next exercise first.]

Exercise 2.6.2. Show that, roughly speaking, operations have to be monotone in order
to allow for an extension to functors.

1. A functor that maps some non-empty set to the empty set maps any non-empty set
to the empty set.

2. Denote the cardinality of a set X by |X|. Suppose |X| # 0. Then |X| < |Y| =
ZX| < |BY).

Hint: Use that functors map injective functions with non-empty domain to injective func-
tions.

Exercise 2.6.3 (Largest fixed points as final coalgebras). Let X be the category of
sets with inclusions as morphisms. Show that functors are monotone operators and final
coalgebras are largest fixed points.
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Exercise 2.6.4 (Lambek’s lemma). From the previous exercise, we expect the struc-
ture of a final coalgebra to be an isomorphism. Trying to generalise the previous proof
leads us to consider

7— S vz T .,
¢ % ¢
vz = vwz 2l vy

Assuming that (Z, () is final, show that  is iso.

Exercise 2.6.5 (Set®?). A boolean algebra A is complete iff it has infinite joins, that is,
for all subsets B C A there exists a least upper bound V B in A. An element a € A is
called an atom iff for all b € A, 0 < b < a = a = b. A boolean algebra is atomic
iff every element is a (possibly infinite) join of atoms. Morphisms are boolean algebra
morphisms which preserve infinite joins (hence meets). Denote the category of complete
atomic boolean algebras by CABA. The following shows that Set®® is equivalent to CABA.”

1. Show that ¢ : Set™ — CABA, (Y L% X) s (PY L5 PX) defines a faithful func-
tor. [Here PY,PX denotes the powerset endowed with the structure of a complete
atomic boolean algebra.|

2. Writing at(A) for the set of atoms of A € CABA, show that f : A — P(at(4)),
ar {becat(4):b<a}isa CABA-isomorphism.

3. To see that ¢ is full consider a CABA-morphism f: PX — PY andlet g: Y — X
be such that g(y) is the z € X with y € f({z}). Show that g is well-defined and

wlg)=f.

2.7 Notes

The founding paper for the area of universal coalgebra is Rutten [64]. Rutten’s approach
is based on sets as a base category whereas our goal was to treat (co)algebras over Set
and Set“? simultaneously. More on this approach can be found in [36]. For an overview of
results which are specific to coalgebras over Set see Gumm [21]. The duality of behaviours
and reachable parts has been studied by Arbib and Manes [4] and recently in the context
of algebraic specifications in [11]. The construction of limits in Section 2.5 is from [36],

"Using the following characterisation of equivalence: Categories A and B are equivalent iff there is a
full and faithful functor ¢ : A — B such that every B € B is isomorphic to some ¢(A).



2.7. NOTES 51

different proofs were given by Worrell [72], Power and Watanabe [47], and Gumm and
Schroder [19].

A detailed textbook presentation of factorisation systems and their applications to
algebra can be found in Addmek, Herrlich, Strecker [3].
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Chapter 3

Modal Logic

The purpose of this chapter is to introduce modal logic as far as needed in this course. For
more information see e.g. Blackburn, de Rijke, Venema [12] or Goldblatt [16].

3.1 Kripke Semantics

3.1.1 Introduction

Modal logic originated with the study of logics comprising modalities as eg ‘necessarily’. In
the beginning of the 20th century a piece of syntax was invented, nowadays mostly written
O, in order to write formulas

[0

having the intended meaning that ¢ holds necessarily. A question at that time was to
describe axiomatically the valid formulas involving necessity. Different proposals were
discussed generally including the following two axiom schemes and two rules.

taut) all propositional tautologies
dist) O(p = ¢) —» Op — Oy
mp)  from @, ¢ — ¢ derive ¢
nec) from ¢ derive Oy

The interpretation is: propositional tautologies are valid; if necessarily ¢ — 1 and neces-
sarily ¢ then necessarily ¢); modus ponens is clear; if ¢ is valid, then necessarily ¢ is valid.
The modal logic consisting of these axioms and rules is today usually denoted by K.

In general, one also proposed additional axiom schemes as eg

(refl)  Op = ¢
(trans) Op — OOp

53
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The interpretation is: if ¢ holds necessarily, then it holds indeed; if ¢ holds necessarily
then it is necessary that it holds necessarily.

For a long time it was difficult to judge the value of such axiomatisation because there
was no appropriate semantics of modal logic. This changed in the 1950s with the advent
of possible worlds or Kripke semantics. The idea is to use graphs (X, R), R C X x X,
as models for modal logic and to think of X as a set of possible worlds and of R as an
alternative relation. We then say that a formula holds necessarily in the world z iff it holds
in all possible alternatives:

(X,R,z) EO¢ iff (X,R,y)E ¢ forall y with zRy

A formula holds in (X, R) iff it holds in all worlds € X and a formula is valid iff it holds
in all (X, R).

Exercise 3.1.1. If you are not familiar with Kripke semantics, then show that (dist) is
valid. Also show that (nec) is correct: if ¢ is valid, then also Ogp. Show that ¢ — Ogp is
not valid.

3.1.2 Frames and Models

We presented modal logic avoiding any discussion of propositional logic. But there is an
issue: namely whether we should interpret the atomic propositions p € Prop of proposi-
tional logic as variables or as constants. This distinction gives rise to the notions of Kripke
frame and Kripke model.

But first let us be precise about the language of modal logic.

Definition 3.1.2 (Modal language). Given a set of atomic propositions Prop, the set
of all modal formulas ML, sometimes written ML(Prop), is defined inductively by

p € Prop = peML

L eML

p,peML = p—=1pe ML
e ML = DOpeML

L is falsum. The other boolean operators T, -, A,V can be defined from 1, —. The modal
operator < is defined as —=O—.

If we understand atomic propositions as constants we need to extend graphs by inter-
pretations of atomic propositions:

Definition 3.1.3. A Kripke model (X, R, V) consists of a set X , arelation R C X x X
and a valuation V : X — PProp.
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Elements of X are called states, (possible) worlds, or points. R is called the accessibil-
ity relation or alternative relation. Elements of Prop are called atomic propositions or
propositional variables.

The idea is that V assigns to x € X the set of atomic propositions holding in z; the
semantics of propositional connectives is as usual and the semantics of O is as we have
seen it. To summarise:

Definition 3.1.4 (Semantics of modal logic). For a Kripke model (X, R, V) and = €
X define:
(X,R,V,z) Ep iff peV(z)

(X,R,V,z) £ L

(X,R,\Viz) Ep—1¢ iff (X,R,V,x)EF¢ = (X,R,V,z) v
(X,R,V,z) E Op iff zRy = (X,R,V,y) E¢ forallye X.

¢ holds in a model (X, R, V), written (X, R, V) = ¢, iff (X, R,V,z) | ¢ for all x € X.
And ¢ is valid, written = ¢, iff ¢ holds in all models.

Notation: We write z |= ¢ instead of (X, R,V,z) = ¢ when (X, R,V) is clear from the
context.

We can also take another perspective on atomic propositions. Studying eg the logic of
necessity, one is interested in the formulas valid under all possible interpretations of atomic
propositions. We then think of atomic propositions as propositional variables:

Definition 3.1.5. A Kripke frame (X, R) consists of a set X, and a relation R C X x X.

Models (X, R, V'), V : X — PProp, are said to be based on (X, R) and (X, R) is called the
underlying frame of the model.

A frame (X, R) satisfies a formula ¢, or ¢ holds in (X, R), iff all models based on the frame
satisfy ¢:

(X,R) E ¢ iff (X,R,V)E¢pforalV:X — PProp

Note that ¢ holds in all models iff it holds in all frames.

One difference between models and frames is that the theory of a frame is always closed
under substitution, see Exercise 3.4.1. For frames, it is therefore enough to consider axioms
as eg Op — p for some p € Prop; for models, however, we would employ an axiom scheme
Oy — ¢ corresponding to the set of axioms {dp — ¢ : ¢ € ML}. A more essential
difference between models and frames is the topic of the next

Exercise 3.1.6. Let p € Prop.

1. Show that Op — p holds in all reflexive frames (X, R) (ie Vz € X . zRx).



56 CHAPTER 3. MODAL LOGIC

2. Give an example of a non-reflexive model satisfying Oy — ¢ for all ¢ € ML. Is
there a non-reflexive frame satisfying Op — p?

From the point of view of logic, frames seem to be the interesting structures: When
we ask what formulas are valid under all interpretations of propositional variables, it is
natural to consider frames as the semantic structures for modal logic.

On the other hand, from the computer science point of view, models seem to be the
natural structures. Consider a program or algorithm as given by a set of states X and a
relation R, R giving for each state its successors. But program states are not just ‘naked’
elements, they carry additional information, typically the contents of the memory. This
information can be thought of as being encoded by the valuation V' : X — PProp. That
is, thinking of modal logic as a specification language for transition systems (algorithms,
programs), models are the natural semantic structures of modal logic.

But even then, the underlying frames (X, R) are of some interest. Often, we are not
interested in arbitrary models (X, R, V) but want to restrict our attention to programs
with special properties, eg deterministic ones. Being deterministic then, is a property of
R, and hence a property of the class of underlying frames. For another typical example,
think of Kripke models (X, R, V') as runs of programs. In this case we may want to require
the underlying frames to have an initial state, to be reflexive, transitive, and perhaps linear.

The next section further develops the exercise above and discusses how modal logic can
be used to describe certain frame classes.

3.1.3 Definability

We say that a class of frames B is defined by a class of formulas ® iff B = {(X,R) :
(X, R) = ®}. There are then two questions relating to definability:

e Given a class of formulas, can we characterise the defined class of frames?
e Given a class of frames, are there formulas defining it?

To illustrate the first question, suppose that someone proposes formulas (refl) and (trans)
as axioms for necessity. Understanding then the defined class of frames would make it easier
to judge the proposed axiomatisation (for example, as will be shown below, whether we
accept (trans) depends on whether we think of the alternative relation as being transitive).
To illustrate the second question, recall from the discussion at the end of the previous
section that we might be interested in defining eg the class of deterministic frames or the
class of reflexive, transitive, linear frames.

There exist only partial answers to these questions but many important cases are well-
known. Table 3.1 gives a typical list of examples.

To check that a frame satisfying the first-order property also satisfies the modal formula
is usually straight forward. If you are not familiar with this, you should do some of the
correspondences in Table 3.1 as exercises. The converse direction is usually more difficult
to establish. An easy but typical example is the case of (trans):



3.1. KRIPKE SEMANTICS o7

We show that only transitive frames satisfy Op — OOp. Suppose (X, R) is not transi-
tive, that is, there are x,y, z € X such that tRyAyRzA—-xRz. We have to find a valuation
V such that (X, R,V,z) £ Op — OOp. Choose as extension of p the smallest set such
that (X, R,V,z) = Op (ie let p € V(w) < zRw). Now, -z Rz guarantees that p & V(z)
and it follows from xRy A yRz that (X, R,V,z) K OOp.

Name Axiom

1| (refl) Op —p

2 | (trans) | Op — OOp

3 | (ser) OT

4 | (det) Op — Op

5| (fun) Op +» Op

6 | (dir) <Op — OCp

Name Conditions on R

1 | reflexive Vz(zRz)
2 | transitive VaVyVz(x Ry A yRz — xRz)
3 | serial VzIy(xzRy)
4 | deterministic VaVyVz(xRy N xRz — y = z)
5 | functional Va3ly(zRy)
6 | directed VaVyVz(x Ry A xRz — 3z’ (yRz' A zRx'))

Table 3.1: Modal Formulas and First-Order Correspondences

3.1.4 Multimodal Logics

We have seen Kripke semantics for modal logics with one modality. But the basic ideas
of modal logic and possible world semantics can be varied in many ways. We will discuss
here only modal logics with more than one modality.

A multimodal logic has modalities O, for all @ € A for some set A. That is, the last
clause of Definition 3.1.2 is replaced by

peMLaceA = OpeML

One should now write ML(Prop, A) but if no confusion can arise we continue to use ML.

A frame (X, (R4)aca) for a multimodal logic has a relation R, for each modality O,. A
model (X, (R,)sea, V) has additionally a valuation of atomic propositions.
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Example 3.1.7 (Hennessy-Milner logic). Consider a multimodal logic without atomic
propositions and with modalities O,, a € A, where we think of A as a set of actions and
of O, as ‘p holds after a’. A Kripke model is then a transition system (X, (R;)qca)
(remember that there are no atomic propositions and hence no valuation). It is customary
to write x — y for R, y and [a] for O,.

Example 3.1.8 (Multi-agent systems). Consider a multimodal logic with modalities
O,, a € A, where we think of A as a set of agents and of O, as ‘agent a knows ¢’. Atomic
propositions describe the facts agents can know. A Kripke model (X, (Ry)qea, V') can be
understood as follows. X is a set of possible worlds and V' describes the facts holding in
each world. R,y means that agent a considers y as an alternative world for z. x | O,
means that ¢ holds in all worlds which are considered as alternative worlds by agent a, ie
a knows ¢.

Example 3.1.9 (Temporal logic). Consider a multimodal logic with two modalities
O, O where we think of Op as ‘in the next state holds ¢’ and of Oy as ‘now and always in
the future holds ¢’. A particularly interesting Kripke frame for this logic is (N, S, <) where
m S n iff n = m + 1. Models based on this frame can be considered as runs of programs
and the modal logic defined by this frame, linear temporal logic, plays an important role
in the verification of programs, see eg [33, 43, 15, 66].

3.2 Bisimulation

Having seen Kripke frames and models, it is natural to ask what would be an appropriate
notion of morphism for these structures. But instead of defining morphisms right away, we
look first at relations between models. In particular, given two (multimodal) Kripke models
(X, (Ra)aca, V), (X', (R])aca, V'), we are interested in describing relations B C X x X'
such that

rBx = (zEe & 2 o).
A careful analysis of the definition of = = ¢ leads to the following notion of bisimulation.

Definition 3.2.1 (Bisimulation). Given two Kripke models (X, (Ry)sca,V),
(X', (R, )aca, V') we call B C X x X' a bisimulation between the models iff x B 2’
implies that

V(z) = V(z')
Ty = .25y &yBy
'y = .-y & yByY

(writing %+ for R, and R.). z, 2’ are called bisimilar iff there is a bisimulation relating
them. Bisimulations for frames can be obtained as a special case by ignoring the clause
concerning the valuations V, V.
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Examples of (non-)bisimilarity can be found in the exercises. For us, the following is
essential and an exercise that should not be missed.

Exercise 3.2.2. Show by induction on the structure of formulas that given two models
(X, (Ra)aca, V), (X', (R])aca, V') then for all z € X, 2’ € X’ it holds: =z, 2’ bisimilar
implies that = = ¢ < 2’ = ¢ for all modal formulas ¢.

We now define morphisms as functional bisimulations.

Definition 3.2.3. Given two Kripke models/frames (X,...), (X',...) a morphism f :
(X,...) = (X',...) is a function f : X — X' such that its graph {(z, f(z)) :x € X} is a
bisimulation.

These morphisms are usually called p-morphisms or bounded morphisms. The following
observation—which should by now be no surprise—justifies to call them simply morphisms.

Proposition 3.2.4. The morphisms of Kripke models/frames are precisely the coalgebra
morphisms.

Proof. (Monomodal) Kripke frames are P-coalgebras and their morphisms were shown to
be functional bisimulations in Proposition 2.1.3 (check this). Kripke models are (P x
PProp)-coalgebras; multimodal Kripke frames are P(A x —)-coalgebras and multimodal
Kripke models (P(A x —) x PProp)-coalgebras. These cases are only slight variations. O

Another way to phrase the relationship between coalgebras and Kripke models/frames is
the following:

Proposition 3.2.5. Let (X,...), (X',...) be two Kripke models/frames. Then z € X,
x' € X' are bisimilar (in the sense of modal logic) iff they are behaviourally equivalent (in
the coalgebraic sense).

The relationship between modal formulas and morphisms is summarised by the follow-
ing two classical results. We need some standard terminology: a formula ¢ is preserved
under quotients if A — A’ surjective and A = ¢ implies A’ = ¢; ¢ is preserved under
submodels/subframes if A" — A injective and A |= ¢ implies A’ |= ¢; ¢ is preserved under
disjoint unions (or coproducts) if A; = ¢ for all i € I implies [1; A; E ¢; ¢ is preserved
under domains of quotients if A" — A surjective and A = ¢ implies A’ = ¢.

Proposition 3.2.6. Wrt Kripke models, modal formulas are preserved under quotients,
submodels, disjoint unions, and domains of quotients.

Proposition 3.2.7. Wrt Kripke frames, modal formulas are preserved under quotients,
subframes, and disjoint unions.

The proof of this propositions is an easy corollary to Exercise 3.2.2.
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3.3 The Logic of Bisimulation

The aim of this section is to substantiate the claim that modal logic is the logic of bisim-
ulation. We have seen in Exercise 3.2.2 that for two models (X, R, V), (X', R, V'), and
reX,reX'

z, 2’ bisimilar = VopeML:zEp & o' E o,

that is, bisimilarity implies modal equivalence. Unfortunately, the converse does not hold.
Figure 3.1 shows an example where x has for each n € N a branch of length n, and 2’ has
additionally an infinite branch. That x and 2’ are not bisimilar is not difficult to see:

// //
///.... ///

X X — —» —_— —

Figure 3.1: Modally equivalent but not bisimilar models

Exercise 3.3.1. Consider the models in Figure 3.1 (assume that all states satisfy the same
atomic propositions). Show that x, 2" are not bisimilar.

To show that x and 2’ are modally equivalent is not difficult either but requires a bit more
work, see Exercise 3.4.5.

The example suggests (at least after having done Exercise 3.4.5) that the failure of
modal logic to characterise states up to bisimilarity is related to the facts that

e a single modal formula can not express enough about an infinite branch, and that
e a transition system may have infinite branching.

And indeed, adjusting either of the two points above results in a perfect match of bisimi-
larity and modal expressiveness. This is the contents of the following two theorems.

The first idea is to increase expressiveness of modal logic using infinitary modal logic
ML . ML is defined as ML with the additional clause

dbC ML, = ANPeML,

and stipulating AP & Vpe d:x | .
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Theorem 3.3.2. For each model (X, R, V') and each x € X there is a formula ¢, € MLy
such that for all models (X', R', V') and all 2’ € X'

= . iff a2 bisimilar.

The other idea is to restrict attention to models with finite branching.

Theorem 3.3.3 (Hennessy and Milner). Let K be the class of image-finite Kripke
models, ie for all (X, R,V) and all x € X the set {y : © R y} is finite. Then for all
(X,R, V), (X',R,2V")in K and all z € X, 2' € X'

Voe ML :zE=p & ' Eo = x,2 bisimilar.

From the point of view of classical first-order logic, however, the most satisfactory expla-
nation of the relationship of modal logic to bisimulation is the following characterisation of
modal logic as the bisimulation invariant fragment of first-order logic: A first-order formula
is invariant under bisimulations iff it is equivalent to a modal formula.

To make this precise we note that a Kripke model (X, R, V') can also be understood as
a first-order model with one binary relation R and one unary predicate P for each atomic
proposition p € Prop. Let us call FL the corresponding first-order language (containing one
relation symbol and for each atomic proposition a unary predicate symbol). The definition
of (X, R,V,z) | ¢ in Section 3.1.2 can now be read as a translation (—)* : ML — FL of
modal formulas in first-order formulas with one free variable x:

p* = P(x)
1*=1
(p=9) =¢" =y
(Op)* =Vy : xRy — ¢*[y/x]
where y is a variable not occurring free in ¢* (and [y/z] denotes substitution of y for z).

Theorem 3.3.4 (van Benthem). A first-order formula ¢ € FL is invariant under
bisimulation iff it is logically equivalent to a translation ©* of a modal formula ¢ € ML.

3.4 Exercises

Exercise 3.4.1. Show that the theory of a frame is closed under substitution. That is,
for ¢,¢ € ML and p € Prop it holds that (X, R) ¢ = (X, R) E ¢[tv/p] (where [¢/p]
denotes substitution of ¢ for p).

Exercise 3.4.2 (Examples of bisimilarities). Assume a monomodal language. Show
that in the models given below the states x and 2z’ are bisimilar.
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1. The relational structure of the models is depicted below. For the valuations assume
that V(y) = V(z) =V'(y') and V(z) = V'(2).

/y
X X — Yy

N

z

2. For the following models assume that all states have the same valuation.

A

X —» ——» —_— X'

Exercise 3.4.3 (A non-example of bisimilarity). Assume a multimodal language
with three modalities A = {a, b, ¢} and no atomic propositions. Consider the two models
below.

1. Show that x,z’ are not bisimilar.

2. Give modal formulas that distinguish = and z’.

Note that both models show the same behaviour {ab, ac} if only traces are considered.

Exercise 3.4.4 (Bisimilarity of frames). For frames bisimilarity does not imply modal
equivalence. First note that x, 2’ in the the following two frames are bisimilar.

)

X - > > X’
Now, show

lLLzEp = 1dEp

2.2 FEpprakEyp
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Exercise 3.4.5 (Modal equivalence does not imply bisimilarity). Denote by
(X,R,V) and (X', R', V") the two models of Figure 3.1. The aim is to show that z and 2’
are modally equivalent. We need two definitions.

The depth of a modal formula counts the number of nested boxes, ie depth(L) = depth(p) =
0, depth(p — 1) = max(depth(p), depth(v))), depth(Qp) = depth(p) + 1.

Denote by Cut(z,n) the model which is obtained from (X, R,V) by deleting all states
which are not reachable from x in n or fewer than n steps. For example Cut(z,0) consists
just of z. Similarly define Cut'(z',n).

1. Show that depth(yp) < n implies that (Cut(z,n),z) F ¢ < (X,R,V,z) = ¢ and
that (Cut'(z',n),2") E ¢ & (X, R,V 2) E .

2. Conclude that for all modal formulas (X, R,V z) = ¢ & (X', R, V' 2') | ¢.

3.5 Notes

For background on modal logic the reader is referred to Chapter 2 and 3 of Blackburn,
de Rijke, Venema [12]. We just note that bisimulation goes back, in its functional form,
to Segerberg [65], and in its relational form to van Benthem [68]; Theorem 3.3.2 can be
found in Barwise and Moss [10], Theorem 3.3.3 is due to Hennessy and Milner [23], and
Theorem 3.3.4 to van Benthem [68, 69].
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Chapter 4

Modal Logics for Coalgebras

The investigation of modal logics for coalgebras is still a young area of research. Since it
is not in a definite shape yet, we will content ourselves to describe a few approaches.

We put emphasis on the theory of coalgebras as a general theory of systems. Not in the
sense, of course, that it solves all problems concerning systems. But general in the sense
that it offers tools that apply uniformly to a large class of systems. An obvious question
from this perspective is, whether we can deal with logics for coalgebras in a uniform way.
This question is of interest from a computer science point of view because coalgebras are
systems and logics are specification languages.

This chapter presents some approaches which represent the tension between achieving
uniformness and remaining close to the specific signature. The ideal description of a logic
for coalgebras would work uniformly for all signatures and, at the same time, would reflect
for each signature our intuition of coalgebras as transition systems.

The following three sections present three approaches that may be compared wrt this
dilemma. The first solves the problem of being uniform but its syntax is neither familiar
nor practical to work with. The second only works for specific signatures but its syntax is
familiar modal logic. The third tries to get as much as possible from both approaches.

The order of the presentation reflects the historical development.

4.1 Coalgebraic Logic

Coalgebraic logic is an ingenious invention by Larry Moss. To appreciate it, before contin-
uing to read on, try to think of a syntax and semantics of a logic for coalgebras working
in a uniform way for all signatures X : Set — Set. Moreover, formulas of the logic should
be invariant under behavioural equivalence and the logic should be reasonably expressive.
Reasonably expressive can be made precise by requiring that admitting infinite conjunc-
tions, the logic should be able to characterise processes (elements of coalgebras) up to
behavioural equivalence (compare with Theorem 3.3.2).

The aim is to find a language Ly, and for each X-coalgebra (X, £) a relation |y C X XLy
satisfying the above requirements. The starting point is that signatures are functors on

65
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Set and may hence also be applied to sets of formulas Ly, and relations 5.

We allow Ly, and Ey, to be proper classes. The category of classes is denoted by SET.
Functors ¥ on Set are extended to functors on SET via ¥K = U{EX : X C K, X aset}
for classes K. Moreover, ¥ is assumed to weakly preserve pullbacks.

Definition 4.1.1 (coalgebraic logic, syntax). Ly is defined to be the least class satis-
fying:

dC Ly, Paset — ADPeLs
v € X(Ly) — p€ Ly

(That is, Ly is the initial algebra wrt the functor P + X.) Due to the first clause A0,
denoted by true, is in Ly and Ly is a proper class. The last clause uses the fact that X is
a functor on SET and can also be applied to classes of formulas.

Example 4.1.2. Let ¥X = A x X and a; € A. Then true, (ag, true), (ao, (a1, true)),
A (ag, ... ,a,, true) : n € N} are examples of formulas.

Exercise 4.1.3. Give examples of formulas for ¥ = O x Id’ (ie deterministic automata,
see Chapter 1.3) and ¥ = P.

The semantics of coalgebraic logic goes as follows.

Definition 4.1.4 (coalgebraic logic, semantics). Given a coalgebra (X,¢) define
sy C X x Ly as the least relation such that (let z € X):

rhEspforallp e &, & C Ly, P aset = xFEs AP
there is w € X(x) s.t. ¥m(w) =&(x), Em(w)=¢ = zFEsp
where 7, Ty denote the projections from the product X x Ly to its components.

The following exercise explains how this definition works in the example of streams. In
particular, it shows that formulas are invariant under behavioural equivalence.

Exercise 4.1.5. Let X =+ A x X and € X. Show that
T Eaxia (ao, . .. an, true)  iff  head(tail’(z)) = a; forall 0<i<n
where head : X — A and tail : X — X denote the components of &.

The following theorem summarises the main properties of coalgebraic logic. For proofs
we refer to the original paper [44].

Theorem 4.1.6. Let X : Set — Set be a functor weakly preserving pullbacks. Then

1. formulas of Lx. are invariant under behavioural equivalence and
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2. for each coalgebra (X, €) and each x € X there is a formula ¢, € Lyx such that for
all coalgebras (X', &) and all ' € X'

¥ s iff x,2" behaviourally equivalent.

This theorem shows that coalgebraic logic reflects precisely the notion of behavioural
equivalence. Moreover, Exercise 4.4.1 shows that, eg in the case of ¥ = P, every formula
of modal logic is equivalent to a formula of coalgebraic logic (with negation). We can
therefore—meglecting syntactical ‘details’—consider coalgebraic logic as modal logic. But
what happened, then, to the modalities of modal logic? To explain this, let us take a closer
look at coalgebraic logic in the case ¥ = P. Recall that formulas are either of the form
A\ ® or—due to the second clause of Definition 4.1.1—of the form ® for & € PLp. We take
a look at the formulas of the second kind.!

Proposition 4.1.7. Let ® € PLp, X LN PX, and x € X. Then

Vyel(r):Jped:yFEp ¢ and

l‘):pq) =
Voped:3yel(a):ybpy

Using the modal operators O, <, this can be rewritten as

s EO\eAANCD

where O® = {Oyp @ p € @}, This shows that the modalities are still there, but in ‘some
strange way’. Whether it is possible to extract the familiar modalities from a functor X
will be addressed in Section 4.3.

4.2 Logics Designed for Specific Signatures

As we have seen, coalgebraic logic solves the problem of describing a logic which depends
in a uniform way on the given signature. But in some other respects it is far away from
what we are used to call modal logic. It is therefore natural to give up a bit of generality
and see what can be achieved in concrete examples. The basic idea is simply to find a
translation of coalgebras into transition systems and then to use standard modal logic as
a logic for coalgebras.

Let us consider as an example the signatures of classes, see Chapter 1.4.1. Signatures
are then functors

X = ][] (Bm+OpxX)™. (4.1)

1<m<n

'We write ® instead of ¢ because, due to ¥ = P, the formula & is indeed a set of formulas. Unfor-
tunately, this may cause confusion because z = ® could be understood as “z |= ¢ for all ¢ € ®” or as
x |= ® according to the second clause of Definition 4.1.4. It is the latter understanding of z = ® which is
discussed in the following.
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where for each method m the sets I,,,, O,,, E,, denote the sets of inputs, outputs, exceptions,
respectively.

It is now straight forward to translate coalgebras X — XX into Kripke models
(X, (Ra)aca, V). To each method and each input corresponds a relation, ie A = {(m, 1) :
1 <m <mn,ié€ I,}. Atomic propositions are used to describe the outcomes of the meth-
ods, that is we put Prop = {(m,i,0) : 1 < m < n,i € I,,,0 € O} U{(m,i,e) : 1 <m <
n,i € Iy,,e € E,} and interpret the proposition (m, i, 0) as ‘method m applied to input i

yvields output o’ and (m, 1, e) as ‘method m applied to input i yields exception e’.?

To discuss this translation in a bit more detail, let us denote by K(X) the class of

all Kripke models (X, (Ry)aca, X v, PProp) with A and Prop as described above. The
translation of coalgebras to models will be denoted by

ck : Coalg(¥) — K(X).

Of course, we are not interested in all of K(X) but only in those models in K (X) which
are Y-coalgebras. That is, we are interested in the image of ck. The idea is now

e to describe the image of ck, up to bisimulation, by modal formulas, and
e to add these formulas as axioms to a standard modal logic for K(X).

which will result in a modal logic for the image of ck and hence for Coalg(X). Moreover,
this logic will in general inherit good properties from the modal logic for K(X) such as
completeness and decidability (model checking). You can work this out as Exercise 4.4.2.

Of course, as described so far, this approach suffers from the fact that, although straight
forward and easy, it only works for the signatures describing classes as in (4.1). It can be
generalised, though, to all signatures which are defined inductively via

Su=Id|A|E xS |42 |24 P,

This line of research was pursued by RoBiger [56, 53, 54, 55].

4.3 Modalities from Functors

We have seen that coalgebraic logic solves the problem of a uniform approach to modal
logics for coalgebras but that it has no modalities. And we have seen that for specific
functors we can give a modal logic with modalities by translating them to Kripke models
and then using standard modalities from modal logic. This section presents an approach
with allows to extract the modalities from the functors ¥ in a uniform way.

2A more detailed description of the translation of coalgebras into Kripke models can be found in
Exercise 4.4.2, see properties (1)—(3).
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4.3.1 Modalities Induced by Natural Transformations > — P

The beautiful insight, due to Pattinson [45], is that modalities (at least those studied so
far for coalgebras) correspond to natural transformations ¥ — P (or to natural relations
on ¥, see [45]). We first take a look at a few examples of natural transformations.

Exercise 4.3.1.

1. Show that p: (E'+ O x —) — P defined by

ux : E+0x X —-PX
e

(0,7) = {x}
is a natural transformation (where e € E, 0 € O, z € X).

2. Show that, for each i € I, u[i]: O x (=)" — P defined by

plilx : 0O x X' = PX
(0, f) = {f ()}

is a natural transformation.

3. Let ¥X = [Ticpmen(Em + O x X)'m. Show that for all 1 < m < n and i, € I,
pm,il : ¥ — P
defined by

(fi,. fn) = { {z} if fn.(i) = (0,2) for some o € O,

() otherwise
is a natural transformation (where 1 < m <n and i € I,).

Remark 4.3.2. Note how the natural transformations p of the exercise above extract
from XX the successors. In detail, £ : X — XX being a coalgebra for the signatures (1)
to (3), respectively:

1. px(&(xg)) is the empty set if xy has no successor and otherwise the singleton con-
taining the unique successor of xy.

2. pli]x(&(zo)) gives the successor of o obtained on input i.
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3. p[m,i]x(&(xg)) gives the successor of o obtained by applying method m with input
1 to state xg.

Also note that, in case (3), u[m, i) x o gives precisely the relation R, ; which was discussed
in the previous section as the relation corresponding in a Kripke model to a X-coalgebra
(X, &) (see also Exercise 4.4.2).

That only singletons {z} appear on the right hand side is of course due to the systems
being deterministic.

Exercise 4.3.3. Show that ufa] : P(A x —) — P defined for all a € A by
plalx : P(Ax X) - PX
Q = {z:(a,2) €Q}
is a natural transformation.

We have seen that for a system ¢ : X — ¥ X and a natural transformation p: ¥ — P,
the p-successors of x € X are given by pux(£(x)). The semantics of modal operators, one
for each natural transformation u, can now be defined as usual for all z € X

rEOp iff ykEeforalye ux(é(x)) (4.2)

or, equivalently, but of use below

[Oue] = & (nx ([e]) (4.3)

where [], called the extension of ¢, is {r € X : = ¢} and p~ is defined via®

28 =2

Hx (4.4)

P— {se€ XX :pux(s) C P}.

[Comment on notation: It would be more precise to write (X, €, x) = ¢ instead of x = ¢
(cf Definition 3.1.4) and [¢](x¢) instead of [¢] but we suppress (X, &) when convenient.]

What is the point of requiring the transformations i to be natural? It is precisely this
requirement, what makes in the definition above O, into a modal operator. This is the
contents of the next proposition.

Proposition 4.3.4. Let X : Set — Set and p : ¥ — P a natural transformation. If ¢ is
invariant under behavioural equivalence then so is O,¢.

3Recall that 2% is the set of functions X — 2 for some fixed two-element set 2, ie 2X ~ PX is the set of
subsets of X. Here, we prefer the notation 2% since 2(~) is the contravariant functor mapping f: X — Y
to the inverse image f~! = 2/ :2Y — 2%,
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Proof. Consider a coalgebra (X,¢) and let (Z,() be its behaviour. First note that any
subset U C X of a coalgebra (X, ¢) is invariant under behavioural equivalence iff there is
V C Z such that U = !7'(V) where ! is the unique morphism into (Z,¢). Now consider

9X | §! 9BX Hx 9X

-1 (! -1

97 ¢! 927 Mz 97

The left-hand square commutes since ! is a morphism and 2(~) = (=)~! is a functor. The
right-hand square commutes since p~ is natural (Exercise 4.4.3). Now, consider !([¢]) as
an element of the lower right corner 2%. Since ¢ is invariant, ie !™'(!([¢])) = [¢], going up
and left gives us [d,¢] (see (4.3)). And going left and up shows that [O,p] = !""(V) for
some V' C Z. O

Having seen how to obtain modalities from natural transformations ¥ — P we use
the same idea for atomic propositions. Given ¥, we call atomic propositions any set Prop
together with a natural transformation v : ¥ — PProp.* We then define as usual (compare
with first clause of Definition 3.1.4) for any z € X:

zEp iff pe(vxod)(x) (4.5)

We have seen that modal operators and atomic propositions arise from natural trans-
formations. Suppose we have chosen a set {u[a] : @ € A} of natural transformations ¥ — P
and a natural transformation v : 3 — PProp of atomic propositions. Is there a condition
telling us that we chose enough pfa] and atomic propositions in order to get a reasonably®
expressive modal logic? A sufficient condition is: To be able to embed X-coalgebras into
Kripke models, ie into [J,c4 P x PProp coalgebras.® Stated more formally, the condition
becomes: The natural transformation induced by the pla], a € A, and v

E—>HP><PProp

a€A

is injective. The proof that this condition implies that the corresponding logic is reasonable
expressive is the main result of [45].

4The notation PProp corresponds to the atomic propositions part of the signature for Kripke models
> = P x PProp and is appropriate since we consider Prop to be a given constant. In case we would
like to compare Kripke models with different sets of atomic propositions, we should rather use signatures
Y = P x 2P and natural transformations ¥ — 2P™P_ see [35].

5 Again, ‘reasonably’ expressive can be made precise by requiring that if infinitary conjunctions are
allowed then formulas should characterise elements of coalgebras up to behavioural equivalence.

SRecall that [],c, P ~ P4 ~P(4 x —).
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To summarise, we have seen how natural transformations can be used to extract modal-
ities from functors. Comparing with the previous section, the next challenge would be to
ask whether it is possible to find axioms in a uniform way which characterise the image
of the embedding of coalgebras into Kripke frames. Another open question is whether the
approach can be extended to cover all (weakly pullback preserving) functors ¥.

4.3.2 Modalities Induced by Predicate Liftings

Going back to the explanation of modal operators as induced by natural transformations
i X — P, we see that for the proof of Proposition 4.3.4 only the naturality of p= :
21 5 9% is required. It is therefore an obvious idea to consider modalities induced by
natural transformations 2! — 2%, Natural transformations 2% — 2* can be considered as
predicate liftings in the sense that 2% — 2*X is a lifting of ¥ from an operation on carrier
sets X to an operation on predicates P € 2% on X.

Having said that we want to consider modal operators induced by natural transforma-
tions 24 — 2% what about atomic propositions? There are slight variations possible (see
Exercise 4.4.4) and we propose the following. Atomic propositions p € Prop are induced
by natural transformations

p:rX—2
where 2 = {true, false}. We then define
zhEp iff (pxo&)(x)=true (4.6)
which is equivalent to
o] = € (). (47

[Note that px € 25X and recall £71: 255 — 2X ]

To summarise, given a set M of natural transformations 29 — 2% and a set Prop of
natural transformations ¥ — 2, we obtain a language £(M, Prop) as laid out in

Definition 4.3.5 (Syntax and semantics of £(M,Prop)). Suppose X : Set — Set, M
a set of natural transformations 2'¢ — 2% and Prop a set of natural transformations ¥ — 2.
Then the language £(M, Prop) is the least set containing L and p for all p € Prop and
closed under implication — and containing the formula O,¢ for every ; € M and every
¢ € L(M, Prop).

Given a coalgebra (X, ¢), the semantics for boolean operators is as usual and for atomic
propositions and modal operators as follows

[p] = ¢ (px),
[Ouel =& (ux ([¢]))

where as above [¢] = {z € X : x = ¢}.
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Remark 4.3.6. This definition is from [35], with the difference that there atomic proposi-
tions p : ¥ — 2 are subsumed under predicate liftings 29 — 2 (see Exercise 4.4.4) which
yields a more concise definition but does not respect the traditional way of presenting
modal logic.

We want to close this section with some background on predicate liftings and a com-
parison of natural transformations 2'¢ — 2% with the original notion of predicate lifting.
Predicate liftings were introduced by Hermida and Jacobs [24] and formulated in a general
setting called categorical logic which we try to sketch briefly in the following.” Consider
a category X of ‘types’ and a category £ of ‘predicates’. Predicates and types are linked
by a functor p : £ — X which provides for each X € X the category p~!(X) of predicates
on X. Endowing p with appropriate structure, one can give an account of formulas (=
predicates = objects in £) and structures (= types = objects in X) in a categorical frame-
work, allowing a unified model theoretic treatment of a great variety of logics and type
theories. In the following, only the simple (although paradigmatic) example below will be
of interest.

Example 4.3.7 (p: SubSet — Set). Define SubSet to be the following category: objects
are pairs of sets (P, X) with P C X, morphisms f : (P,X) — (Q,Y) are functions
f: X = Y with f(P) C Q (equivalently P C f~'(Q)). An object (P, X) is said to be
a predicate P on X. Morphisms are—up to renaming via a function f—inclusions: the
identity idy is a morphism idy : (P, X) — (P, X) iff P C P’ which we read as ‘P implies
P". Define the functor p : SubSet — Set as second projection on objects and on morphisms
as mapping f: (P, X) — (Q,Y) to f: X = Y. O

The general definition of a predicate lifting involves the notion of a fibration (eg p :
SubSet — Set is a fibration) and a fibred functor. It would lead us too far to define these
notions here and we restrict attention to the special case of the example above.

Definition 4.3.8 (Predicate lifting). A predicate lifting of ¥ : Set — Set is a functor
Y : SubSet — SubSet such that the diagram

SubSet —E> SubSet

"

Set Set

commutes. This means, in particular, that ¥ maps a predicate P on X to a predicate ¥ P
on X X. Moreover, for any morphism f : X — Y in Set and any predicate () on Y, it holds

(@) =) =) (4.8)
(recall that f~1(Q) is a predicate on X and £Q is a predicate on XY).

"For introductions to categorical logic see eg Lambek and Scott [41], Pitts [46] and Jacobs [29]. The
latter also contains an introduction to fibrations.
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This definition spells out what it means for £ to be a fibred functor over ¥ in case of
the fibration p : SubSet — Set.® The diagram illustrates why ¥ is called a lifting of X.
The next proposition relates natural transformations 29 — 2* and predicate liftings for
the fibration p : SubSet — Set. We first need a definition.

We call a natural transformation 24 — 2% monotone if P C Q C X implies px(P) C
px(Q). The natural transformations = : 214 — 2% arising from natural transformations
i 2 X — P are monotone. For an example of a non-monotone natural transformation
consider ¥ = Id and — : 24 — 219 defined as complementation —x(P) = X — P.

Proposition 4.3.9. Let X : Set — Set and consider p : SubSet — Set. There is a bijection
between monotone natural transformations 2/ — 2% and predicate liftings of ¥.

Proof. First note that naturality of a transformation g : 2'¢ — 2% means that
px(fHR)) = (Zf) Hpy(Q)) for all f: X — Y and Q C Y; compare this with (4.8).
Given p : 29 — 2% define %(P, X) = (ux(P),XX). For a morphism f : (P, X) — (Q,Y)
define Xf = Sf : (ux(P),XX) — (uy(Q),XY) which is indeed a morphism in SubSet
since p is natural and monotone. Now check that the conditions of Definition 4.3.8 are
satisfied.

Conversely, given X, we write (XP, XX for (P, X). Define px(P) = £P. u is monotone
since ¥ is a functor and natural due to (4.8). O

Let us remark that the notion of a predicate lifting is more general than that of a
monotone natural transformation 29 — 2* since it can be stated for arbitrary fibrations.

4.4 Exercises

Exercise 4.4.1. Suppose we added negation to coalgebraic logic CL. Show that in case
YX=P

(@)t = {e'} v {}

gives a translation (=) : ML — CL from modal logic into coalgebraic logic which preserves
and reflects satisfaction of formulas. [Hint: Use Proposition 4.1.7].

Exercise 4.4.2. Consider a signature ¥ and the translation ck : Coalg(X) — K(X) as in
Section 4.2. The aim is to describe the image of ¢k in K(X) by modal formulas.

Since methods are functions, a model (X, (Ry)aca, X — PProp) in the image of ck has the
following properties (recall A and Prop from Section 4.2 and let 2 € X):

1. (m,i,e) € V(z) = x has no Ry, -successor,

2. (m,i,0) € V(r) = x has precisely one R, ;-successor,

8Readers familiar with fibrations will note that condition (4.8) expresses preservation of cartesian
liftings.
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3. V(z) contains precisely n proposition, one for each method.

Writing the boxes of the modal logic as [m,i] and the diamonds as (m, i) , consider the
following axiom schemes (assume E,, and O,, finite):

m,i,e) — —(m,i)T

( (

(Ax2a) (m,i,0) = (m, )T

(Ax2b) (m, i) — [m,i]p

(Ax3a) (m,i,d) - =(m,i,d) foralld#d,dd € E,+O,
(AX3b) \/deEerOm (m7 b d)

and call @ all modal formulas (in the language given by A and Prop) which are instances
of one of the schemes.

Now show the following (point (2) requires knowledge about completeness in modal logic
which was not presented in Chapter 3):

1. If a model K (X) satisfies ® then it is bisimilar (behaviourally equivalent) to a model
in the image of ck. [Hint: Compare Table 3.1. The only axiom that requires a bit of
work is (Ax2b) because it does not define determinism on models (but on frames).]

2. @ provides a complete axiomatisation of the image of ck and hence of Coalg(X).
3. Modal equivalence implies bisimilarity. [Hint: Models are image-finite]
4. The canonical model is the final coalgebra. [Hint: Use (3).]
Exercise 4.4.3 (1). Consider p~ : 219 — 2% as defined in (4.4) in Section 4.3.
1. Show (4.2) < (4.3).
2. Show that y : ¥ — P natural implies that g~ : 2'4 — 2% is natural.

Exercise 4.4.4 (Atomic Propositions). The aim of this easy exercise is to compare
different formalisations of atomic propositions as natural transformations.

1. Let p: ¥ — 2 be a natural transformation. Use

nx PX o

X! id

w1 -2, o

to show that natural transformations ¥ — 2 are in bijection with subsets of ¥1. This
can be interpreted as follows: The atomic propositions are precisely those observations
obtained by abstracting away from the state space X. Replacing X with the one-
element set 1, the remaining observations are the same for all coalgebras, that is
‘atomic’.
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2. Show that natural transformations v : ¥ — PProp are in bijection to families of
natural transformations (p : ¥ — 2),eprop- [Hint: Use the bijections PProp ~ 2P ~

HProp 2']

3. Show that a natural transformation ¥ — 2 can be considered as natural transforma-
tion 1 — 2% which in turn is a special case of a natural transformation 24 — 2%,

Exercise 4.4.5 (Atomic Propositions). Show that as for modal operators it is the nat-
urality condition that guarantees that the evaluation of atomic propositions is invariant
under behavioural equivalence.

4.5 Notes

The relationship of coalgebras and modal logic goes back to Barwise and Moss [10] where
both topics appear together. Coalgebraic logic is due to Moss [44]. The modal logic for
the signatures as classes is from [40]. The more general and difficult case of modal logics
for inductively defined signatures was developed by RoBiger [56, 53, 54, 55], but see also
Jacobs [32]; Jacobs [30] shows how temporal operators can be treated. The approach of
obtaining modalities from functors via natural transformations is due to Pattinson [45].



Chapter 5

Duality of Modal and Equational
Logic

We have seen so far that the theory of coalgebras provides us in a uniform way with a
notion of behavioural equivalence for a large number of different types of systems. And we
argued that modal logics are natural logics for coalgebras because they respect this notion
of behavioural equivalence.

Being convinced that (variants of) modal logics are the natural logics for coalgebras, we
want to answer in this chapter the question whether it is possible to make precise the
intuition that

modal logic is to coalgebras what
equational logic is to algebras.

We will argue for a positive answer by showing that, up to logical equivalence, ie from a
semantic point of view,

modal logic is dual to equational logic.

5.1 Preliminaries

(The basic notions needed in this chapter are recalled.)

For a functor ¥ on a category X', we denote the category of X-coalgebras by Coalg(3). We
assume that Coalg(X) has cofree coalgebras. In the case of X = Set, if we allow coalgebras
to have classes as carriers, we know by Aczel and Mendler’s theorem that cofree coalgebras
exist for all functors >.

We also assume that for each class of YX-morphisms s; : A; — A, i € I, there exist the

union of images (Chapter 2.2.3)

m

A

A; A U{Im(s;) : i € T}

77



78 CHAPTER 5. DUALITY OF MODAL AND EQUATIONAL LOGIC

(X, C)-coalgebras (Definition 2.2.13) are pairs consisting of a X-coalgebra and a valuation
(colouring)

(A, UA -5 O).

A cofree coalgebra F'C' over colours C' comes together with a colouring e : UFC' — C.
Recall that

(FC, UFC =% C)
is the final (X, C)-coalgebra. We also assume that X has a final object 1 which implies

that F'1 is the final Y-coalgebra.

In case ¥ = P and C' = PProp Kripke frames are Y-coalgebras and Kripke models are
(3, C')-coalgebras. Recall that (X, C')-coalgebras can also be considered as ¥ x C-coalgebras.

5.2 Modal Formulas as Subcoalgebras
This section concentrates on the case X = Set. We can summarise the essence of the
relation of coalgebras and modal logic studied in Chapters 3 and 4 as follows.

Assume a signature Y over sets and a class of formulas £. We write A for ¥-coalgebras,
v for colourings UA — C, a for elements of A. We call ¢ € £ modal formulas for
Y-coalgebras in colours from C' iff there is a relation = of type A,v,a | ¢ such that

formulas are invariant under (3, C')-behavioural equivalence. (5.1)

This means that for ¥-coalgebras A, A’ and colourings ¢ : UA — C, ¢ : UA’ — C and a
morphism f: A — A’ respecting the colourings (ie ¢ = Uf o ¢) it holds that
AcalEyp & Ad fla) e
for all a € UA.
= gives rise to a satisfaction relation for (X, C')-coalgebras and for Y-coalgebras via

AviEe <= AuvaEye VacUA (5.2)
AEy <<= AvEe YW:UA-=C (5.3)

We will now show that for any logic satisfying (5.1)-(5.3), we can characterise
formulas—up to logical equivalence—as subcoalgebras of cofree coalgebras. First note
that (5.1) and (5.2) imply that modal formulas are preserved under quotients, domains of
morphisms, and unions of (X, C')-coalgebras.!

IThis is a classical result in modal logic, see Proposition 3.2.6. (Domains of morphisms corresponds to
domains of quotients and submodels; disjoint unions are a special case of unions; conversely, unions can
be obtained as disjoint unions and quotients.)
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Lemma 5.2.1 (Preservation modal formulas). Assume a modal formula ¢ in colours
from C.

1. If there is a (X, C)-morphism (A", v") — (A,v) then A,v = = A"V | .

2. If there is a surjective (X, C)-morphism (A,v) — (A",v') then A,v =@ = A0 E
©.

3. Assume a (3,C)-coalgebra (B,w), and a family of (X, C)-subcoalgebras (A;, v;) <y
(B,w), i € I. Let (A’',v") be the union of all (A;,v;), i € I. Then A;,v; |E ¢ for all

i € I implies that A',v" |= .
Proof. We show (3), (1) and (2) are similar. Assume o' € UA". Since (A’,v') is the union

of the (A4;,v;), there is j € I such that o' € UA;. It follows now from A;,v;,d" = ¢ and
(5.1) that A’,v',d' = . O

We first treat the case of formulas without propositional variables. In that case, for-
mulas correspond to subcoalgebras of the final coalgebra.

Let F'1 be the final 3-coalgebra and ¢ a formula. Define F'1|p to be the largest subcoalgebra
of F'1 satisfying ¢, ie the union of all subcoalgebras satisfying ¢ (see Chapter 2.2.3). Let us
denote by m,, the inclusion F'l|¢ < F'1. Now, satisfaction can be characterised as follows.

Proposition 5.2.2. A = ¢ iff the (unique) morphism f: A — F1 factors through m,

m
F1 L Fllp

A

Proof. ‘if’: First note that it follows from Lemma 5.2.1.2 and 5.2.1.3 that F1|¢ E ¢. Now
suppose that f factors. Then Lemma 5.2.1.1 implies A = ¢. ‘only if”: A | ¢ implies that
the image of f satisfies ¢. Therefore f factors through m, by definition of F'1|p. O

The case of formulas with colours (propositional variables) is a bit more complicated
but similar: Recall that the cofree Y-coalgebra F'C' is the final (X, C')-coalgebra.

Definition 5.2.3 (Subcoalgebra corresponding to a formula). Let ¥ be a signature
on sets and ¢ a modal formula for Y-coalgebras in colours C'. Define F'C'|¢ to be the largest
(3, C')-subcoalgebra satisfying ¢, ie

FClp = U{Im(v”) A E e}

Denote by m, the inclusion FClp — FC.
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Proposition 5.2.4. A = ¢ iff all morphisms f : A — FC factor through m,

My

FC

FCle

§g

A
Proof. ‘if”: First note that we have F'C|p,ec o m, = ¢ by Lemma 5.2.1.2 and 5.2.1.3.
Now let v : UA — C. Since FC is cofree there is v : A — FC with ¢ o Uv? = v. Since v!
factors, it follows A, v = ¢ by Lemma 5.2.1.1.
‘only if": Let f : A — FC. Note that f induces a colouring v = ¢ o f on A and that

v* = f. Now, A = ¢ implies A,v = ¢. Therefore f = v* factors through m, by definition
of FClep. O

The proposition shows that satisfaction of modal formulas can be characterised alge-
braically by projectivity:

Definition 5.2.5 (Projective). We say that A is projective wrt B; — B, iff all f :
A — By factor through m, ie iff for all f: A — By there is f': A — B; such that

By

By
g
o §f

A
commutes.

Remark 5.2.6. In Definition 5.2.3 we defined the subcoalgebra corresponding to a for-
mula. There are two variations possible.

1. One can work with the largest subset [o]F'C = {x € UFC : FC,c¢,z = ¢} satisfying
¢. The analogue to Proposition 5.2.4 then goes as follows. A = ¢ iff for all morphisms
f:A— FC

UFC ~—— [p]F¢

A

<
UA
Uf factors through [o]¥¢ — UFC.2

2 Another variation would be to use [p]F'¢ = {x € UFC : FC,z = ¢} as in [38].
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2. Whereas Definition 5.2.3 puts FClp = U{Im(f) : A,ecof Epand f: A — FC},
one can also work with the largest invariant subcoalgebra defined as

FOlp={Im(f): A ¢and f: A— FC}.

Proposition 5.2.4 also holds when we substitute F'C|p for FC|p. Intuitively, whereas
(FClp,ec 0 Umy,) is the largest Kripke submodel of (F'C,e¢) satisfying ¢, FC|yp is
the largest Kripke subframe of F'C satisfying .

A subcoalgebra m : A" — A is called invariant iff A’ is projective wrt m, or in a
more logical notation, iff A" = m. That FC|p is invariant means that FClp = ¢.
Note that, in general, F'C'|p = ¢ does not hold.

We conclude that invariant subcoalgebras of coalgebras cofree over C' and modal
formulas in colours C' are, up to logical equivalence of formulas, in a one-to-one
correspondence.

The three levels of subsets, submodels, and subframes correspond to the three levels of
satisfaction relations A, v,a = ¢, A,v = ¢, and A = ¢. Logical operators as conjunction
(intersection) or modal operators (see Chapter 4.3) are treated on the level of subsets. The
semantics via projectivity is more naturally formulated on the level of models or frames. [

To summarise this section, we have seen that to each modal formula ¢ corresponds a
subcoalgebra m, with cofree codomain such that satisfaction of ¢ is projectivity wrt m,.
If the converse holds, namely that every subcoalgebra of a cofree coalgebra with cofree
codomain corresponds to a formula, we say that the modal logic is expressive.

The import of the correspondence of formulas and subcoalgebras is that

e it allows to treat all logics for coalgebras we have seen or mentioned in the previous
chapters in a uniform way,

e it is abstract and hence easy to work with technically,?

e it precisely dualises the satisfaction of equations for algebras, see below.

5.3 Equations as Quotients

As noted already, to give an account on the duality of equational logic and modal logic, we
cannot restrict our attention to algebras over Set. Can we give an account on equations
which does not rely on X = Set? Yes, and it goes as follows.

For each set of equations ® C UFX x UFX we can form the quotient

€p

FX

FX/®

3See for example the proof of theorem 5.5.2.
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of FX wrt the smallest congruence relation generated by ®. Now, satisfaction can be
characterised as follows

Proposition 5.3.1. A= ® iff all f: FX — A factor through eg:

€

FX

FX/®

PN

Proof. First show that

f: FX — A factors through es iff Vt,t' €eUFX :ep(t) =ea(t') = f(t)=f(t') (5.4)
For “ = ” of the Proposition consider f : FX — A. Note that courtesy of F' - U, there
is v : X — UA such that v* = f. To profit from (5.4) assume eg(t) = eq(t'), that is,
(t,t') are in the in the smallest congruence generated by ®. It follows from our assumption
A E @ that A, v = ® and hence vf(t) = v*(#').* That is, f(t) = f(¢') and by (5.4) f factors
through eg.
For “ <7 of the Proposition, let (¢,#') € ® and v : X — UA. Since v* factors through eg,
it follows from (5.4) that v*(t) = v*('), hence A, v |= (¢,t). O

Similarly, for each quotient ¢ : FF.X — B with free domain F'.X we find a set of equations
o, = {(t,t') : e(t) = e(t')} such that
Proposition 5.3.2. A E ®, iff all f : FX — A factor through e.

That is, in the case of X = Set, the two propositions above show that we can—from
a semantic point of view—replace equations by quotients and describe satisfaction by
injectivity:
Definition 5.3.3 (Injective). We say that A is injective wrt By — By iffall f : By — A
factor through e, ie iff for all f : By — A there is f': B; — A such that

e

By By

> f

commutes.

To summarise, we have seen that to each set of equations ® corresponds a quotient eg
with free domain such that satisfaction of ® is injectivity wrt eg. And, conversely, to each
quotient with free domain corresponds a set of equations.

“Note that (t,#') is not necessarily in ®. But since (¢,#') is in the smallest congruence generated by @,
ie (t,t') is in the intersection of all kernels of all morphisms whose kernels contain ®, and since v is a
morphism it also identifies ¢ and ¢'.
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5.4 Duality of Modal and Equational Logic

To summarise the two previous sections we can now extend Table 2.1 on page 46 as follows.

XX =X YOP L XOP — XYOP

Coalg(X) Alg(X°P)

factorisation system (E, M) factorisation system (M, E)
subcoalgebras m € M quotients e € F

(formulas are) (sets of equations are)

subcoalgebras of cofree coalgebras | quotients of free algebras

(modal rules are) (implications are)

subcoalgebras quotients

(satisfaction is)

projectivity injectivity

The duality of modal rules and implications is explained in the Exercises.

5.5 A (Co)Variety Theorem

This section gives as an application of the duality of modal and equational logic a proof of
the following two theorems:

Theorem 5.5.1 (Variety theorem, HSP theorem). Let ¥ : Set — Set be a functor
such that Alg(X) has free algebras. Then a class B of X-algebras is equationally definable
iff B s closed under quotients, embeddings, and products.

Theorem 5.5.2 (Covariety theorem). Let ¥ : Set — Set be a functor such that
Coalg(X) has cofree coalgebras. Then a class B of ¥.-coalgebras is definable by an expressive
modal logic for Y-coalgebras iff B is closed under embeddings, quotients, and coproducts.

Note that these theorems are not each other’s dual because Set has not been dualised. But
our proof for second theorem presented below dualises to a proof of the first theorem if we
are careful to keep track of the properties used in the proof. But before discussing this in
more detail, let us see the proof.

Proof of the covariety theorem. “only if” is the easy direction which is an immediate corol-
lary of Lemma 5.2.1. Nevertheless, we will take the time to show how the preservation
properties can also be deduced using the properties of factorisation systems and projectiv-
ity.
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We show that ¢ is invariant under embeddings, quotients, and coproducts. Denote by m,,
the subcoalgebra corresponding to ¢ (see Definition 5.2.3).

Let e: A — A’ be a quotient. We show that A projective wrt m,, implies A’ projective wrt
m,,. Consider

A A

A projective wrt m,, implies that for all f as in the diagram there is ¢ making the square
commute. Now, the dotted morphism exists due to unique diagonalisation (see 2.2.5) and
shows that A" projective wrt m,,.

For coproducts consider

m
o« 7 o
f ‘ ) Gi

A;

[T4

A; projective wrt m,, implies that for all f as in the diagram there are g; making the
squares commute for all 2. Now, the dotted morphism exist due to unique diagonalisation
(see Proposition 2.2.12) and shows that [T A; is projective wrt m,,.

For an embedding m : A" — A consider

FC M °
g \f

For all f as in the diagram, there is g : A — F'C such that the triangle commutes (check
that this is due to F'C being cofree). Since A is projective wrt m,, ¢ factors through m.,,
hence f factors as well.

“if”: The main point is to find the defining modal formulas. Consider the collection of
morphisms (s; : B; — F'C);cr which consists of all morphisms with codomain F'C' and the
domain in B. Let m¢ : F'C' — FC be the union of the images of the s; (see Chapter 2.2.3).
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Co-Variety Theorem Variety Theorem
U:C— X
C has cofree objects F'C C has free objects F'.X
C has a factorisation system such that:
C has union of images C has intersection of kernels
m: A" - A embedding = e: A— A quotient =

all f: A" — FC factor through m: | all f: FX — A’ factor through e:

FAC’ FX
o s
Ay A Tu
VA .dembedding A — FUA VA .3 quotient FUA — A

Table 5.1: Properties used in the proof of the (co)variety theorem

Since we assume an ezpressive modal logic there is a formula ¢ corresponding to me (ie
A E pc iff A projective wrt me). Let @ = {¢¢ : C € Set}. We show that B is defined by
D, ie

B={A¢€ Coalg(X) : A = O}.

‘C’: By definition of the m¢, all B € B are projective wrt to the m¢ and hence satisfy the
Y-

‘D’ Suppose A = ®. In particular, A = ¢pa, ie A is projective wrt myy : F'UA — FUA.
Note that there is an embedding A — FUA. This embedding factors through my4, hence
A is a subcoalgebra of F'UA. Since B is closed under coproducts and quotients we have
F'UA € B (see the proof of Proposition 2.2.10) and since B is closed under embeddings it
follows A € B. O

Let us now analyse the duality of the two theorems. Table 5.1 lists the properties we used
to prove the covariety theorem. That is, in fact, we proved

Proposition 5.5.3. Let U : C — X be a functor satisfying the properties of the left column
of Table 5.1. Then a class B C C is projective wrt to a class of embeddings with cofree
codomains iff B is closed under embeddings, quotients, and coproducts.



86 CHAPTER 5. DUALITY OF MODAL AND EQUATIONAL LOGIC

Since U : C — X satisfies the properties of the left column of Table 5.1 iff U°P satisfies
the properties of the right column, the same proof shows the dual theorem

Proposition 5.5.4. Let U : C — X be a functor satisfying the properties of the right
column of Table 5.1. Then a class B C C s injective wrt to a class of quotients with free
domains iff B is closed under quotients, embeddings, and products.

These two propositions are each other duals and the (co)variety theorems are their corol-
laries obtained by instantiating C with (co)algebras and using the correspondence of sub-
coalgebras/formulas and, respectively, of quotients/equations.

5.6 Exercises

Exercise 5.6.1 (Implications as quotients). An implication A ® — (t,t') in variables
from X consists of a set ® C UFX x UFX and a pair (t,t') € UFX x UFX. Define for
an assignment v : X — UA

AvENS = () f AvE® = AvE (1)
and A= AQ — (¢,t) iff Ao = AP — (t,t) for all assignments v.

To find the quotient corresponding to an implication i = A ® — (¢,t') consider, similarly
to Section 5.3, the quotient e; as in

FX/o — FX/®U{(t,)}
e’ )
: N
: . @\)\\w
FX’

Show the following
1. A =iiff Ais injective wrt e;.

2. For each quotient e there is a class of implications ® such that A = @ iff A is injective
wrt e.

Exercise 5.6.2 (Modal rules as subcoalgebras). A modal rule ¢/ in colours from C
consists of two formulas ¢, ¢ in colours from C. For a colouring v : UA — C, let

AvEoly it AvEp = AvEy
and A = ¢/ iff A,v | /1) for all colourings v.

For each modal rule ¢/1 find an embedding (subcoalgebra) m such that A = ¢/ iff A is
projective wrt m. [Hint: Dualise the diagram of the previous exercise.]
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The aim of the next three exercises is to show that the (co)variety theorems can be
formulated without referring to the base category. The idea is to replace free objects by
‘projective objects’ which are defined without reference to the forgetful functors.

Exercise 5.6.3 (Projective objects, enough projectives). In a category with a fac-
torisation system, an object B is called projective iff for all quotients e : A — A’ and all
arrows f : B — A’ there is an arrow g : B — A such that f =eog:

B
e
g
A A
€

The category is said to have enough projectives iff for each object A there is a projective
object B and a quotient B — A.

For a category Alg(X) over Set which has free algebras FX for each set X show the
following.

1. Free algebras are projective.
2. There is a quotient FUA — A for all algebras A.
3. Alg(X) has enough projectives.

4. B is projective iff it is a retract of a free algebra.

Exercise 5.6.4. The aim is to show that, concerning satisfaction of equations, there is no
need not to distinguish between quotients with free domain and quotients with projective
domain. Let U : Alg(X) — Set have free algebras and consider a quotient e : B — A with
projective domain B. Let €' be the quotient given by the following pushout

B ¢ A

"

[

)l 2 J— .o
6I

where F'UB is the free algebra over the carrier of B and m exists because B is a retract of
FUB (see (4) of the previous exercise).

Show that for any C' € Alg(X) it holds C injective wrt e iff C' injective wrt e.
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Exercise 5.6.5 (variety theorem ‘without a base category’). Show the following
variation of the variety theorem (or its dual): Let C be a category with factorisation
system, intersection of kernels, and enough projectives. Then a class B C C is injective wrt
to a class of quotients with projective domains iff B is closed under quotients, embeddings,
and products. [Hint: Note that ‘having enough projectives’ is just the last two conditions
in the right column of Table 5.1.]

5.7 Notes

This chapter is based on [38] where, to the author’s knowledge, the idea of the duality of
modal and equational logic was expressed for the first time. That the duality can be made
precise by understanding modal formulas as subcoalgebras and equations as quotients was
shown in [37, 36]. The concept of equations as quotients and satisfaction as injectivity as
well as categorical proofs of the variety and similar theorems are due to Banaschewski and
Herrlich [7]. A textbook presentation is given in Adamek, Herrlich, Strecker [3], Chapter 16.
Our proof of the covariety theorem was obtained by dualising a corresponding proof in [7].
The idea to derive a dual of the variety theorem by dualising injectivity to projectivity
was discovered independently also by Rosu [50] and Awodey and Hughes [6]. The duality
of implications and modal rules is treated in [39].

The duality of Kripke frames and modal algebras (see eg [12]) differs from the duality of
algebras and coalgebras. More generally, the duality of Kripke frames and modal algebras
is not a categorical one since the embedding of a Kripke frame into its ultrafilter extension
is not a coalgebra morphism. In case of deterministic signatures, however, the duality is
indeed categorical as shown by Jacobs [31].

A covariety theorem appears already in Rutten [64] but there is no discussion of what
an appropriate logic for coalgebras could be. Gumm and Schroder [20] and Rosu [52] treat
the case without colourings (ie C' = 1) and Gumm [22] presents a co-variety theorem where
‘coequations’ ¢ are points in the carrier of cofree coalgebras and A,v = ¢ iff ¢ ¢ Im(vF).
Goldblatt [18, 17] restricts attention to specific signatures (polynomial functors) and proves
definability results for finitary logics for coalgebras.



Appendix A

Category Theory

We collect the definitions of category theory needed in the course and not appearing in
the text. Natural transformations are only used in Chapter 4.3 and adjunctions, as far as
needed, are explained in the text. For introductory texts on category theory the reader is
referred to one of [42, 3, 5, 8].

A category A consists of a class of objects, also denoted by A, and, for all objects A, B,
of a set of arrows, also called morphisms, A(A, B). We write f : A — B for f € A(A, B)
and call A the domain, B the codomain of f. Moreover, for all A(A, B), A(B,C) there is
an operation

oapc:A(A,B) x AB,C) — A(A,C)
(9:A—=B,f:B—C)— foapcg:A—C

We drop the subscript and read f o g as ‘f after ¢g’. There is also for each A € A an
‘identity’ id4 : A — A. All this data has to satisfy

fol(goh)=(fog)oh
idof=f
foid=f

We dropped the subscripts which means that these equations have to be satisfied for all
instantiations matching the required typing for o.

Set is the category of sets and functions. A discrete category is a category which has only
identities as arrows.

m:B — Cismonoiff mof=mof = f=fforalAc Aandall f,f': A — B.
e:A— Bisepiiff foe= f'oe = f=fforallCe Aandall f,f' : B— C. In case
that for two arrows m : A — B and e : B — A it holds that e o m = id4 then e is split
epi, m split mono, and A a retract of B. (Show that split epis are epi and split monos
are mono.) An arrow is iso iff it is split mono and split epi. If there is an isoi: A — B
then A and B are called isomorphic, written A ~ B.

89
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FEzercise A.0.1 (Monos, epis, isos in Set). A function is injective iff it is mono. A function
with non-empty domain is injective iff it is split mono. A function is surjective iff it is epi
iff it is split epi. A function is iso iff it is mono and epi.

A functor H : A — X from a category A to a category X consists of an operation
Hj on objects of A and an operation H; on arrows of A, mapping each f € A(A, B) to
H,(f) € X(Ho(A), Hy(B)) such that

H(idy) = idpa
H(fog)=H(f)o(g)
where, following common usage, subscripts of H have been dropped. Examples for functors
can be found in Chapter 2.1.

Ezxercise A.0.2. A functor H : Set — Set maps surjective functions to surjective functions
and injective functions with non-empty domain to injective functions.

For the dual of a category and a functor see Chapter 2.4.

A natural transformation 7 : G — H from a functor G : A — X to a functor
H : A — X consists of arrows 74 : GA — HA for each A € A such that for each
f:A— Bin A the following diagram

TA

GA HA
Gf Hf
GB HB
B

commutes.

A diagram is a functor D : Z — A. The name diagram indicates that we think of D
as indexing objects in \A. We therefore denote objects in Z by i,j. A cone (A, (¢;: A —
Di);er) over a diagram D consists of an object A € A and arrows (¢; : A — Di);ez such
that forall f:7—j7inZ

commutes.
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A limit of the diagram D is a cone (A,(¢; : A — D;)iez) satisfying the following
universal property: for any cone (A', (¢ : A" — Di);ezr) over D there is a unique ‘mediating’
arrow h : A" — A such that for alli € Z

Al

Ds

commutes. (A, (¢; : Di = A);ez) is a colimit of D iff (A%, (¢;”);ez) is a limit of D°P. A
weak (co)limit is defined like a (co)limit but the mediating arrow need not be unique.

Ezxercise A.0.3. Show that two different limits of the same diagram are isomorphic. More-
over, they are canonically isomorphic, that is, the isomorphisms are uniquely determined.

A final object, also called terminal object, is the limit of an empty diagram (ie Z is
empty). An initial object is, dually, the colimit of an empty diagram.

Ezxercise A.0.4. Show that in Set the initial object is the empty set and a terminal object
is a set containing precisely one element.

A product of D1 and D2 is the limit (D1x D2, 7, : D1xD2 — D1,7 : D1xD2 — D2)
indicated below

Al

v/ D1 x D2 \&"

oY

&
D1 D2

(Z is here the discrete category with two objects {1,2}.)

FEzercise A.0.5. Show that in Set the product is isomorphic to the cartesian product (with
7; being the projection to the i-th component).

Ezercise A.0.6. Generalise the definition of the binary product to a definition of an infinite
product.
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A pullback (dual notion: pushout) is a limit of a diagram !

D1 D2
& A
D0

that is, a cone (A, ¢; : A — Di) such that for all (A’, ¢}, ¢)) with Df o¢| = Dgo ¢, there is
a unique h : A" — A such that

Al
h
w4 \&
o> =
D1 D2
<. 0
D0

commutes.

Exercise A.0.7. Show that in Set pullbacks exist and are given by the subset of D1 x D2
‘satisfying the constraint Df = Dg’, that is, by {(d1,d2) € D1 x D2 : D f(d,) = Dg(ds)}.

A functor H : A — A weakly preserves pullbacks iff it maps pullbacks (A, ¢, ¢3) of
a diagram D to weak pullbacks (HA, Hey, Hey) of the diagram HD. H preserves weak
pullbacks iff it maps weak pullbacks (A, ¢1,¢3) to weak pullbacks (HA, Hey, He). If A
has pullbacks then H weakly preserves pullbacks iff H preserves weak pullbacks.

A coproduct (D1+ D2,iny : Dy — D1+ D2,iny : Dy — D1+ D2) of D1 and D2 is

17 is here the category with objects {0,1,2} and arrows (besides identities) f:1 — 0 and g : 2 — 0.
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the colimit given by

D1 D2

Exercise A.0.8. Show that in Set the coproduct is isomorphic to the disjoint union.
Given a family of objects (A;);cr the coproduct of the A; is denoted by [1; 4;. 2
Exercise A.0.9. Let X be a category with coproducts, ¥ : X — X a functor, and I a set.

1. Define []; on arrows and show that it becomes a functor.

2. Use the universal property of the coproduct to show that there is a natural transfor-
mation 7 : [[; X — X I1;.

3. Explain 7 in case of ¥ = P.

4. Given a family of coalgebras (X;,&;), let (X,&) be their coproduct as defined in
Chapter 2.2.1. Show that £ = 7x o [;&;.

That is, the coproduct of systems is given by the coproduct of the transition structures
followed by the canonical natural transformation [[; ¥ — X ]1;.

An adjunction between two functors U : A — X and F : X — A is given by a
bijection
(=)ac: X(UA,C) — A(A, FC)

which is natural in A and C'. We write U - F' and call U the left adjoint and F' the right
adjoint. Two different characterisations of adjunctions are the following:

Proposition A.0.10. The functor U : A — X has a right adjoint iff for each C € X
there is FC € A and e : UFC — C in X such that for any A € A and any c: UA — C

?1; A; is defined as the colimit of the diagram given by the discrete category Z with I as the set of
objects and D : 7 — A mapping i — A;.
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in X there is a unique morphism ¢! : A — FC' such that the triangle

UFC FC
oS U ct
C UA A
c

commutes. Then ¢ is a natural transformation and F can be extended in a unique way to
a functor X — A.

Remark. ¢* in the proposition was denoted by Ciy,c in the definition of adjunction.

Proposition A.0.11. The functor U : A — X has a left adjoint iff for each X € X there
is FX € A andny : X — UFX in X such that for any A € A and any v : X — UA there
is a unique morphism v* : FX — A such that the triangle

UFX FX
Y Ut vl
X UA A
v

commutes. Then n is a natural transformation and F' can be extended in a unique way to
a functor X — A.

Ezercise A.0.12. Show that (— x I) is left adjoint to (—)" for any set I. (Then (—)% x
maps algebras X x I — X to the corresponding coalgebras X — X', see Chapter 1.3.1.)
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