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Abstract

We present a generic functional program for loading (two-dimensional) containers with arbitrary objects,
filling shelves with items of different kinds and - last not least - designing complete shelf systems. This
piece of software and its development is a case study in functional programming for solving hierarchical
configuration problems. Such problems require tailor-made, but nevertheless abstract and generic data
models and algorithms. We claim that these are more directly realizable in a functional language than in
a classical imperative language. Polymorphism, module abstraction, semantically well-founded exception
handling and the problem-oriented option for static data, ”lazy” structures (streams) or dynamic objects
are the main concepts of functional programming we are going to use and explain in the context of our case
study.
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1 Introduction

A number of functional programming languages (cf. e.g. [Dav 92], [Pau 91], [Ull 94], [Tur 90]) are under

development and use in different application areas. For the various motivations to propagate these languages,
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cf. e.g. [BW 88] and [Rea 89]. In contrast to the well-known imperative or procedural languages and the

associated programming style, functional languages admit rather abstract formulations of algorithmic problem

solutions, which considerably simplify the validation of a program and the comparison of several solutions

against each other. Even if a functional language is not chosen for the final implementation, it provides a formal

framework for specifying problem solutions at high levels in an overall design process. Moreover, functional

languages are useful for the rapid prototyping of algorithmic problem solutions because they combine a simple,

but precise, algebraic semantics (cf. [Pad 92]) with operational features for controlling the program behaviour at

runtime. Many specification languages (cf. e.g. [GH 93], [Pad 94]) and their ”proof assistants”, which support

the design process, adopt the functional view insofar as their roots lie in algebra and term rewriting (cf. [DJ

90], [Wir 90]).

This paper presents a case study in solving a configuration problem by using functional programming con-

cepts. We want to

• load containers with arbitrary objects,

• fill shelves with books and HiFi components with respect to certain constraints, and

• build complete shelf systems

in a highly structured way. Similarities of as well as differences between these tasks will be reflected in the

structure of the program, which is written in Standard ML (cf. [Pau 91], [Ull 94]). ML provides the concepts of

polymorphism for single functions and functoriality for modules. Indeed these are the main means, which allow

us to approach the three tasks at the same time. Functors are ML’s parameterized modules, while structures and

substructures realize the inheritance known from object-oriented programming. The main concept of object-

oriented programming, namely the creation of dynamic objects via instantiating classes, is also available in ML.

In fact, a class in ML is a nullary functor including a dynamic object, which is initialized by each call of the

functor (cf. [MQu 84], [Pad 93]).

Two functors, Container and Display, mainly provide the filling algorithm and a procedure for visualizing

loadings (cf. Sections 2 and 4). Then three classes, CONTAINER, SHELF and SHELFSYSTEM, involve three

different calls of Container and Display and thus become heirs of these functors (cf. Section 5). CONTAINER

realizes the task of loading arbitrary containers with arbitrary objects. SHELF is specialized to filling shelves

with books and HiFi components. SHELFSYSTEM provides the entities for building and displaying shelf

systems. The objects of SHELFSYSTEM are the containers of SHELF. This is reflected in the program insofar

as the structure SH, which defines the objects of SHELFSYSTEM, is an object of the class SHELF.

The functors Container and Display keep to static, immutable data. Only CONTAINER, SHELF and

SHELFSYSTEM are defined as classes for the purpose of handling dynamic objects. Here these objects are

streams of permutations, from which, at any stage of the shelf design process, the loading procedure takes the

first element and regards it as the order in which the given objects are to be packed. If this is not possible,

the loading procedure changes the order gradually. Since the original order may considerably affect the search

time for a fitting permutation, the user can interactively select a new order and restart the loading algorithm

(cf. Sections 5 and 6).

The first goal of this case study is to propagate structured functional programming. The second one is to

integrate functional and object-oriented concepts. For achieving the latter we need not define a new language,

but we need examples, which serve as prototypes for a reasonable separation of naturally functional from

naturally object-oriented issues. We come back to this point when drawing conclusions from the case study (cf.

Section 9).

We assume a little familiarity with ML (cf. e.g. [Pau 91], [Ull 94]) when stepwise presenting and explaining

the program in the following four sections.
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2 Objects and Containers

The functor Container takes a structure parameter Obj of the following signature Object.

signature Object = sig eqtype obj

val le : obj -> int

val he : obj -> int

val topConstraint : obj -> bool

val Aligned : bool

val Symmetric : bool

end

The signature assumes that each object to be loaded comes with a type (obj) and two integer values denoting

the length (le) resp. height (he) of the object. Each two objects must be comparable via an equality relation

eq and each object must be equipped with a top constraint, which determines when it may be put on top of

another object. Finally, Boolean values Aligned and Symmetric indicate whether or not all objects are to be

aligned or piled up symmetrically. We proceed with the details of Container:

functor Container(structure Obj : Object) = struct open Obj Aux1

The following abstract datatype cont provides the container constructors new and add. new(l,h) denotes an

empty container with length l and height h. add(a,x,y,c) represents the container constructed from the container

c by putting a into c such that (x,y) is the position of the leftmost-lowest corner of a in c.

abstype cont = new of int * int | add of obj * int * int * cont

with val New = new

val Add = add

fun len(new(l,_)) = l

| len(add(_,_,_,c)) = len(c)

fun hei(new(_,h)) = h

| hei(add(_,_,_,c)) = hei(c)

fun isNew(new _) = true

| isNew(add _) = false

fun top(add(a,_,_,_)) = a

fun pop(add(_,_,_,c)) = c

fun Objs(new _) = nil

| Objs(add(a,_,_,c)) = a::Objs(c)

fun pos(add(a,x,y,c),b) = if a = b then (x,y) else pos(c,b)

exception undef

1cf. Section 7
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fun get(new _,_,_) = raise undef

| get(add(a,x,y,c),i,j)

= if inside(a,x,y)(i,j) then a else get(c,i,j)

and inside(a,x:int,y:int)(i,j)

= x <= i andalso i < x+le(a) andalso y <= j andalso j < y+he(a)

fun frame(new(l,h)) = new(l+2,h+2)

| frame(add(a,x,y,c)) = add(a,x+1,y+1,frame(c))

end (* cont *)

len(c) and hei(c) denote the length and height of c, respectively. Further basic operations for building

containers and accessing their contents are encapsulated into the abstract datatype definition, which hides the

constructors new and add from all functions except from those defined between with and end. On the one

hand, cont yields the interface for refinements of Container insofar as only the functions in the capsule need to

be redefined when containers are actually implemented. On the other hand, all functions defined outside the

capsule are independent of the actual implementation.

Abstract data type definitions considerably reduce the verification task put forth by an implementation of

the data type: The entire implementation is correct if and only if each function of the abstype is equivalent to

its counterpart in the implemented datatype. Since initial semantics provides the model- and proof-theoretic

basis for most ML programs (cf. [Pad 92]), one may employ a suitable proof assistant like Expander (cf. [Pad

94]) for proving such equivalences.

fun free(c,x,y) = (get(c,x,y);false) handle undef => true

val occupied = not o free

fun onTop(c,x,1) = true

| onTop(c,x,y) = occupied(c,x,y-1)

fun aligned(c,a,x,1) = true

| aligned(c,a,x,y) = occupied(c,x,y-1) andalso

let val b = get(c,x,y-1)

val (i,_) = pos(c,b)

in x = i andalso le(a) = le(b) end

fun symmetric(c,a,x,1) = true

| symmetric(c,a,x,y) = occupied(c,x,y-1) andalso

let val b = get(c,x,y-1)

val (i,_) = pos(c,b)

val j = le(a)+x-i

in x <= i andalso j <= le(b)

andalso le(b) <= j+1 end

Some of these predicates are checked before a new object is put into a container. Since they are defined

outside cont, none of them needs to be redefined by an implementation of cont (see above).
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3 The Loading Strategy

For the actual design part of the program we must select a concrete strategy for loading containers. In which

order is a given set of objects to be loaded into a given set of empty containers? Defining such a strategy

involves setting exit points where the execution of a substrategy is stopped and the control is passed over onto

a higher level of execution. In ML, an exit is implemented by raising an exception. Resuming the control at the

higher level corresponds to handling the exception. According to the different functions, which may be called

by the overall loading function fill, we provide the following exceptions:

exception noFilling and nextPerm of obj list * cont list

exception Full and Restart of int

While noFilling and Full have no parameters, nextPerm and Restart have arguments, which transfer certain

information from point where the exception is raised to the point where it is handled.

The loading procedure starts by calling the function fill, which passes the control over to - at the whole -

eight auxiliary functions fillConts, unFill, tryPerms, addSome, tryAdd, AddOrRestart, onTop and Free. The

first three have mutually recursive definitions, while the other five comprise a calling hierarchy, which proceeds

from loading several objects (addSome) via searching for a position for the next object to be entered (tryAdd)

to checking the constraints to be satisfied if a selected object is put at a given position (AddOrRestart) and, on

the lowest level, to traversing single points of the rectangle to be occupied by the selected object (onTop and

Free). Let us start with the main function fill:

val Sizes = map(fn(a)=>(le(a),he(a)))

val newConts = map(fn(l,h)=>New(l,h))

fun fill(objs)((l,h)::sizes)

= if (sum_of_prods o Sizes)(objs) <= l*h+sum_of_prods(sizes)

then fillConts(objs)[New(l,h)](newConts(sizes))

handle nextPerm(objs,full) => unFill(objs)(full)(nil)

else raise noFilling

fill tries to enter the objects listed in objs into empty containers whose lengths and heights are listed in sizes.

If the sum of sizes exceeds the sum of the sizes of the objects, objs does not fit into the containers and the

exception noFilling is raised and passed over to the caller of fill.

and fillConts(nil)(conts) _ = conts

| fillConts(objs)(c::full)(empty)

= let val (c,rest) = addSome(objs)(c)

val conts = c::full

in if rest = nil then conts

else if null(empty) then raise nextPerm(rest,conts)

else fillConts(rest)(hd(empty)::conts)(tl(empty)) end

and unFill _ (nil) _ = raise noFilling

| unFill(objs)(c::full)(empty)

= if isNew(c) then unFill(objs)(full)(c::empty)

else let val objs = top(c)::objs

val conts = pop(c)::full
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in (tryPerms o tail o permutations)(objs)(conts)(empty)

handle noFilling => unFill(objs)(conts)(empty) end

Compared to fill, fillConts and unFill have a further parameter: the list conts = c::full of containers where c is

the container to be filled next and whose full consists of all containers filled up completely. fill calls fillConts

with conts consisting of the empty containers constructed from sizes. If objs does not fit in the given order into

conts, then fillConts raises the exception nextPerm with the list of unpacked objects and the list of nonempty

containers. Later fill handles nextPerm by calling unFill with those parameters and an empty list of empty

containers. unFill unloads the object loaded at latest, adds it to the objects still to be packed and calls tryPerms:

and tryPerms(a)(mt) _ _ = raise noFilling

| tryPerms(a)(perm&perms)(conts)(empty)

= if a = hd(perm) then tryPerms(a)(perms())(conts)(empty)

else fillConts(perm)(conts)(empty)

handle nextPerm _ => tryPerms(a)(perms())(conts)(empty)

tryPerms computes a new permutation2 perm of the extended object list and calls fillConts, which tries to

enter the objects into conts in the order given by perm. Permutations that start with the object a, which was

unpacked by unFill, the caller of tryPerms, are skipped (see below).

Even in the new order objs may not fit into conts. Then, again, fillConts raises nextPerm. But since fillConts

has been called by tryPerms and not by fill as above, it is also tryPerms, which handles nextPerm. In fact,

tryPerms handles nextPerm not in the way fill does. While fill needed the parameters of nextPerm, tryPerms

does not. In other words, the recursive call of tryPerms does not depend on the ”loading state” in which

nextPerm was raised. tryPerms receives the next permutation of objs, but the same lists conts and empty it

obtained in the first call.

If no permutation of objs fits into conts and empty, then tryPerms raises the exception noFilling. Since

unFill was the first caller of tryPerms, control is passed to unFill, which handles noFilling by a recursive call.

A further object is unloaded and added to the objects to be packed and permuted. To sum up, each call of

unFill extends the list objs of unpacked objects by the object a, which was packed at latest, and creates a loop

over all permutations of a::objs. Since a is unpacked only if no permutation of objs fits, each permutation of

a::objs, which begins with a, has already been tested previously. Hence tryPerms skips such permutations.

The loading process stops if an order has been found in which the objects can be placed into conts or if

unFill accesses only empty containers. In the first case fillConts returns conts and hands it over to its caller

fill. In the second case all permutations of the original object list have failed and unFill raises the exception

noFilling, which is then transmitted through all recursive calls of unFill to fill. fill does not handle noFilling.

The exception is passed over to the caller of fill (cf. Section 5).

Let us now look at the local part of the algorithm, i.e. how a single container is filled up. fillConts takes the

first element c of conts and calls addSome(objs)(c).

and addSome(nil)(c) = (c,nil)

| addSome(a::objs)(c) = let val (c,rest) = addSome(objs)(c)

val (l,h) = (len(c),hei(c))

in (tryAdd(a,c)(1,1)(1)(l,h),rest)

handle Full => (c,a::rest) end

addSome puts as many objects as possible into the empty container New(l,h) and returns the pair the filled

container c and the list rest of objects, which do not fit into c. For entering a single object a into c, addSome calls
2For the generation of permutations, cf. Section 7.
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tryAdd. If a does not fit into c, then tryAdd raises the exception Full, which indicates that c is full. addSome

handles Full by returning an unchanged container c and adding a to the list objs of the remaining objects.

and tryAdd(a,c)(i,j)(start)(l,h)

= AddOrRestart(a,c)(i,j)(l,h)

handle Restart(i)

=> if i < l then tryAdd(a,c)(i+1,j)(start)(l,h)

else if j < h then tryAdd(a,c)(start,j+1)(start)(l,h)

else raise Full

tryAdd(a,c) traverses all positions of c between (i,j) and (l,h) and searches for the first position, which may

become the leftmost-lowest corner of a in c. At each of these positions tryAdd calls AddOrRestart and continues

the search only if AddOrRestart has raised the exception Restart. Restart comes with a parameter i, which

is the vertical axis of the position (i,j) checked at last. If i < l, then (i+1,j) becomes the next possible start

position for a. If i ≥ l and j < h, then tryAdd proceeds with the new start position (start,j+1) where start is

the leftmost vertical axis of c. If i ≥ l and j ≥ h, then there is no position left and tryAdd raises the exception

Full.

and AddOrRestart(a,c)(i,j)(l,h)

= let val (x,y) = (i+le(a)-1,j+he(a)-1)

in if y > h then raise Full

else if x > l then raise Restart(l)

else if free(c,i,j) andalso

(j = 1 orelse topConstraint(a)) andalso

(not(Aligned) orelse aligned(c,a,i,j)) andalso

(not(Symmetric) orelse symmetric(c,a,i,j))

then (forward(OnTop(c,j))(i)(x); forward(Free(c,j))(i)(x);

Add(a,i,j,c))

else raise Restart(i) end

and OnTop(c,j)(i) = onTop(c,i,j) orelse raise Restart(i)

and Free(c,j)(i) = free(c,i,j) orelse let val b = get(c,i,j)

val (x,_) = pos(c,b)

in raise Restart(x+le(b)-1) end

end (* Container *)

AddOrRestart first checks whether the remaining free space of c is large enough for a. If the height of c does

not suffice, then AddOrRestart raises Full. Since Full is not handled by tryAdd, the search for a start position

for a stops and Full is passed over to addSome. If only the length of c does not suffice for a, then Restart is

raised with the rightmost vertical axis l of c so that tryAdd will proceed to the next upper horizontal axis.

If a fits into c, then AddOrRestart checks all constraints, which depend on c, a and the current position

(i,j): Is (i,j) free? Does a satisfy the top constraint? In case that Aligned is set to true, can the sides of a be

aligned to the sides of the object below a? In case that Symmetric is set to true, can a be put symmetrically

on top of the object below a? If all these conditions are satisfied, forward3 calls the function OnTop(c,j) on all

integers between i and x and thus checks whether a would lie completely on top of other objects. If this is not

3cf. Section 7.
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true, then OnTop(c,j) raises Restart with the leftmost vertical axis X ≥ i such that the position (X,j-1) is free.

Hence tryAdd will proceed to the start position (X+1,j) (or (start,j+1) if X ≥ l. Analogously, forward calls the

function Free(c,j) on all integers between i and x and thus checks whether all positions between (i,j) and (x,j)

are free. If an object b occupies such a position, then Free(c,j) raises Restart with the rightmost vertical axis X

occupied by b. If all constraints are satisfied, then a is put into c. Otherwise AddOrRestart raises Restart with

the current vertical axis i.

Figure 3.1 depicts the relations between all functions comprising the loading strategy. A circular node

represents a function. A rectangular vertex denotes an exception. An arc from a function f to a function g

labelled by calls indicates that f calls g. An edge from a function f to an exception e marked by raises says that

f raises g. An arc a with two sources, namely a function f and an exception e, indicates that f handles e by

calling the function resp. raising the exception at the target of a. For instance, fill handles nextPerm by calling

unFill, while tryAdd handles Restart by raising Full or calling tryAdd recursively.

Fig. 3.1. The functional structure of the loading procedure
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4 ASCII Output

The functor Display takes a structure parameter Picts of the following signature Pictures.

signature Pictures

= sig eqtype obj

type cont

val len : cont -> int

val hei : cont -> int

val get : cont * int * int -> obj

val pos : cont * obj -> int * int

val free : cont * int * int -> bool

val space : int

val interior : int * int -> obj -> int * int -> string

val corner : obj -> int * int -> string

val horiz_edge : obj -> int * int -> string

val left_edge : obj -> int * int -> string

val right_edge : obj -> int * int -> string

val column : obj -> int * int -> string

end

Each string-valued function of Pictures is to determine the representation of a specific part of an object. interior

says how the inside part should look like. horiz edge and corner represent parts of horizontal edges. left edge

(right edge) depicts the left (right) vertical edges. column visualize those objects, which cover a single horizontal

axis.

Display starts by opening the parameter Picts, which means that all the above functions become available

to Display.

functor Display(structure Picts : Pictures) = struct open Picts

fun container(c,file) = let val file = open_out(file)

val (l,h) = (len(c),hei(c))

in Aux.ruler(picture(c))(space,file,l,h);

close_out(file) end

The function picture takes a container c and a point (i,j) of the plane representing c and assigns to (i,j) the

string function, which corresponds to the relation between (i,j) and the object occupying this position.

and picture(c)(i,j)

= if free(c,i,j) then Aux.blanks(space)4

else let val a = get(c,i,j)

fun f(x,y) = free(c,x,y) orelse get(c,x,y) <> a

val g = case (f(i-1,j),f(i+1,j),f(i,j-1),f(i,j+1))

of (false,false,false,false)

=> interior(pos(c,a))

| (true, , ,true) => corner

| (true, ,true, ) => corner

| (false, ,true, ) => horiz edge
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| (false, , ,true) => horiz edge

| (true,false, , ) => left edge

| (false,true, , ) => right edge

| (true,true, , ) => column

in g(a)(i,j) end

end (* Display *)

In the next section, Display is used for an ASCII representation of container fillings. An alternative functor

DisplayPS, which produces PostScript code, will be defined in Section 8.

4For functions qualified by the structure name Aux, cf. Section 7.

10



5 Instances of Container and Display

After having defined the loading strategy and the display procedure for containers in a generic way by the

functors Container and Display, we provide three classes, CONTAINER, SHELF and SHELFSYSTEM, each

including an instance of Container, called Build, and an instance of Display, called Draw. The three versions of

Build and Draw differ in the respective actualizations of the formal parameter Obj of Container and the formal

parameter Picts of Display.

Furthermore, the classes CONTAINER, SHELF and SHELFSYSTEM provide a pointer PERMS to a stream

of permutations of an object list. A call of the function init creates a stream of all orders of the set of objects

to be loaded. A call of the function entails three actions:

• the removal of a given number of permutations from the stream,

• a call of Build.fill with the first permutation of the remaining stream as the object order the loading

strategy starts with,

• a call of Draw.container with the load returned by Build.fill.

The first class CONTAINER does not impose any further constraints on the loading except those already

defined in Container:

functor CONTAINER() = struct

structure Object = struct type obj = int * int * int

fun le(_,l,_) = l

fun he(_,_,h) = h

fun topConstraint _ = true

val Aligned = false

val Symmetric = false

end

structure Build = Container(structure Obj = Object)

structure Draw = Display(structure Picts =

struct open Build

val space = 3

fun interior _ _ _ = "###"

fun corner(a:int,_,_) _ = Aux.left(makestring(a),"-",3)

fun horiz_edge _ _ = "---"

fun left_edge _ _ = "|##"

fun right_edge _ _ = "##|"

fun column _ _ = "|#|"

end)

local val PERMS = ref(Aux.mt:(int*int*int) list Aux.stream)

val SIZE = ref(0,0)

in fun init(objects,l,h) = (SIZE:=(l,h); PERMS:=Aux.permutations(objects))
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fun fill(n) = let val objects = (PERMS:=Aux.suffix(!PERMS,n);

Aux.head(!PERMS))

val [c] = Build.fill(objects)[!SIZE]

in Draw.container(c,"CONTAINER") end

end

end (* CONTAINER *)

Shelves are loaded with books or HiFi components. Hence the formal parameterObj of Container is actualized

by a suitable structure BookOrHifi. The top constraint of BookOrHifi demands that all objects put on top of

other objects are books lying on their cover, i.e. their height must not exceed their length.

datatype object type = book | hifi

functor SHELF() = struct

structure BookOrHifi = struct type obj = int * int * int * object_type

fun le(_,l,_,_) = l

fun he(_,_,h,_) = h

fun topConstraint(_,l:int,h,t)

= l >= h andalso t = book

val Aligned = false

val Symmetric = true

end

structure Build = Container(structure Obj = BookOrHifi)

structure Draw = Display(structure Picts =

struct open Build

val space = 3

fun interior _ (_,_,_,book) _ = "###"

| interior _ _ _ = "@@@"

fun corner(a:int,_,_,_) _ = Aux.left(makestring(a),"-",3)

fun left_edge(_,_,_,book) _ = "|##"

| left_edge _ _ = "|@@"

fun right_edge(_,_,_,book) _ = "##|"

| right_edge _ _ = "@@|"

fun column(_,_,_,book) _ = "|#|"

| column _ _ = "|@|"

end)

local val PERMS = ref(Aux.mt:(int*int*int*object_type) list Aux.stream)

val SIZE = ref(0,0)

in fun init(objects,l,h) = (SIZE:=(l,h); PERMS:=Aux.permutations(objects))

fun fill(n) = let val objects = (PERMS:=Aux.suffix(!PERMS,n);

Aux.head(!PERMS))

val [shelf] = Build.fill(objects)[!SIZE]
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in Draw.container(shelf,"SHELF") end

end

end (* SHELF *)

Shelf systems are loaded with shelves. Hence the formal parameter Obj of Container is actualized by an

object SH of the class SHELF. The type obj passed to Container is given by SH.Build.cont ref. Hence, as an

object of a shelf system, a shelf is identified by a pointer to it.

functor SHELFSYSTEM() = struct

structure SH = SHELF()

structure Shelf = struct type obj = SH.Build.cont ref

val le = SH.Build.len o !

val he = SH.Build.hei o !

fun topConstraint _ = true

val Aligned = true

val Symmetric = false

end

structure Build = Container(structure Obj = Shelf)

For displaying a shelf system the position of each of its shelves must be accessible by the SHELFSYSTEM

instance of Display. In each call of the function interior(x,y)(a) within a call container(c), (x,y) is the position

of a in c (cf. Section 4). If a is a shelf and c is a shelf system, then the correct position of an object b of a

within c is obtained by adding (x-1,y-1) to the relative position (i,j) of b in a. Conversely, position (i,j) in c

occupies that item, which occupies position (i-x+1,j-y+1) in a. Due to the module structure of our program we

can perform this geometric translation directly by calling the SHELF’s function picture, translating the result

and assigning it to SHELFSYSTEM’s function interior:

structure Draw = Display(structure Picts =

struct open Build

val space = 3

fun interior(x,y)(sh)(i,j) = SH.Draw.picture(!sh)(i-x+1,j-y+1)

fun corner _ _ = "+++"

fun horiz_edge _ _ = "+++"

fun left_edge _ _ = "+ "

fun right_edge _ _ = " +"

fun column _ _ = "+ +"

end)

Furthermore, SHELFSYSTEM contains a pointer objPERMS to a stream of object orders and a pointer

shelfPERMS to a stream of shelf orders. init initializes !SIZE and the streams. fill(n,k) removes n permutations

from !objPERMS and k permutations from !shelfPERMS and then fills the head of the rest of !objPERMS into

the head of the rest of !shelfPERMS. The filled shelves are framed (cf. Section 2) and loaded into a container

with size !SIZE. This yields a shelf system.

local val objPERMS = ref(Aux.mt:(int*int*int*object_type) list Aux.stream)
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val shelfPERMS = ref(Aux.mt:(int*int) list Aux.stream)

val SIZE = ref(0,0)

in fun init(objects,shelves,l,h)

= (SIZE:=(l,h); objPERMS:=Aux.permutations(objects);

shelfPERMS:=Aux.permutations(shelves))

fun fill(n,k)

= let val objects = (objPERMS:=Aux.suffix(!objPERMS,n);

Aux.head(!objPERMS))

val shelves = (shelfPERMS:=Aux.suffix(!shelfPERMS,k);

Aux.head(!shelfPERMS))

val shelves = SH.Build.fill(objects)(shelves)

val shelves = map(ref o SH.Build.frame)(shelves)

val [shs] = Build.fill(shelves)[!SIZE]

in Draw.container(shs,"SHELFSYSTEM") end

end

end (* SHELFSYSTEM *)
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6 A Design Session

We define three structures by calling the functors CONTAINER, SHELF and SHELFSYSTEM. Each of these

structures provides a pointer PERMS (respectively two pointers objPERMS and sizePERMS in the case of

SHELFSYSTEM) to a stream of permutations, which are initialized by a call of init and modified by subsequent

calls of next (cf. Section 5).

structure C = CONTAINER()

structure SH = SHELF()

structure SHS = SHELFSYSTEM()

All objects we are going to load are given as values of the following function:

fun bh(1) = (1,3,6,hifi)

| bh(2) = (2,5,1,book)

| bh(3) = (3,2,2,book)

| bh(4) = (4,5,3,book)

| bh(5) = (5,4,2,book)

| bh(6) = (6,1,1,book)

| bh(7) = (7,1,4,book)

| bh(8) = (8,2,2,book)

| bh(9) = (9,3,8,hifi)

| bh(10) = (10,3,3,book)

| bh(11) = (11,6,3,book)

| bh(12) = (12,3,5,hifi)

| bh(13) = (13,3,3,book)

| bh(14) = (14,2,7,book)

| bh(15) = (15,2,6,book)

| bh(16) = (16,5,3,book)

fun obj(n) = let val (a,l,h,t) = bh(n) in (a,l,h) end

val tenObjects = map(obj)(Aux.up(1,10))

val tenBooksAndHifis = map(bh)(Aux.up(1,10))

The command sequence C.init(tenObjects,17,9); C.fill(0); yields the following contents of CONTAINER:

9 | 1--------

8 | |#######|9--------

7 | |#######||#######|

6 | |#######||#######| 4--------------

5 | |#######||#######| |#############|

4 | 1--------|#######| 7-- 4--------------

3 | 10-------|#######| |#| 2--------------

2 | |#######||#######|8-----|#| 5-----------3-----

1 | 10-------9--------8-----7--6--5-----------3-----

----------------------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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SH.init(tenBooksAndHifis,17,9); SH.fill(0); yields the following contents of SHELF:

9 |

8 | 9--------

7 | |@@@@@@@|

6 | |@@@@@@@| 5----------- 1--------

5 | 3----- |@@@@@@@| 5----------- |@@@@@@@|

4 | 3----- |@@@@@@@| 7--4--------------|@@@@@@@|

3 | 10-------|@@@@@@@|6-- |#||#############||@@@@@@@|

2 | |#######||@@@@@@@|8-----|#|4--------------|@@@@@@@|

1 | 10-------9--------8-----7--2--------------1--------

----------------------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

With the command SH.fill(100); we start the filling process with the 100th element of the stream of all per-

mutations of tenBooksAndHifis. We come up with the same loading except that the piling of objects 2 and

4 is exchanged. Next we pass the next 500 orders of tenBooksAndHifis and start the filling process with the

permutation reached then. SH.fill(500); yields:

9 |

8 | 9--------

7 | |@@@@@@@|

6 | 5----------- |@@@@@@@|1--------

5 | 6-- 5----------- |@@@@@@@||@@@@@@@|

4 | 8-----4--------------|@@@@@@@||@@@@@@@|7--

3 | 10-------8-----|#############||@@@@@@@||@@@@@@@||#|

2 | |#######|3-----4--------------|@@@@@@@||@@@@@@@||#|

1 | 10-------3-----2--------------9--------1--------7--

----------------------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Let’s build shelf systems. First we put objects into two shelves.

val twoShelves = [(15,7),(15,4)]

val booksAndHifis1 = map(bh)[2,3,4,5,6,11,12,13,14,15,16]

A call of SHS.init initializes the stream of permutations of shelves as well as the stream of permutations of books

and HiFi components. The command sequence SHS.init(booksAndHifis1,twoShelves,17,15); SHS.fill(0,0); yields

the following contents of SHELFSYSTEM:

15 | +++++++++++++++++++++++++++++++++++++++++++++++++++

14 | + 2-------------- +

13 | + 11----------------4-------------- +

12 | + |################||#############| +

11 | + 11----------------4-------------- +

10 | +++++++++++++++++++++++++++++++++++++++++++++++++++

9 | +++++++++++++++++++++++++++++++++++++++++++++++++++

8 | + 6-- 14---- +
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7 | + 15----|####| +

6 | + 5----------- |####||####|3----- 12------- +

5 | + 5----------- |####||####|3----- |@@@@@@@| +

4 | + 16-------------|####||####|13-------|@@@@@@@| +

3 | + |#############||####||####||#######||@@@@@@@| +

2 | + 16-------------15----14----13-------12------- +

1 | +++++++++++++++++++++++++++++++++++++++++++++++++++

----------------------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Next we start with the same object order, but with the two shelves exchanged, i.e. we call SHS.fill(0,1); and

obtain:

15 | +++++++++++++++++++++++++++++++++++++++++++++++++++

14 | + 14---- +

13 | + 15----|####| +

12 | + |####||####|12-------5----------- +

11 | + |####||####||@@@@@@@|5----------- +

10 | + |####||####||@@@@@@@|4-------------- +

9 | + |####||####||@@@@@@@||#############|3----- +

8 | + 15----14----12-------4--------------3----- +

7 | +++++++++++++++++++++++++++++++++++++++++++++++++++

6 | +++++++++++++++++++++++++++++++++++++++++++++++++++

5 | + 2-------------- +

4 | + 16-------------13-------11---------------- +

3 | + |#############||#######||################| +

2 | + 16-------------13-------11----------------6-- +

1 | +++++++++++++++++++++++++++++++++++++++++++++++++++

----------------------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Next we have four shelves and a different set of books and HiFi components:

val fourShelves = [(5,8),(4,14),(5,9),(4,14)]

val booksAndHifis2 = map(bh)[1,2,3,4,5,6,7,8,9,10,12,14]

SHS.init(booksAndHifis2,fourShelves,19,21); SHS.fill(0,0); yields:

21 | +++++++++++++++++++++

20 | + +

19 | + +

18 | + +

17 | + 5----------- + ++++++++++++++++++

16 | + 5----------- ++++++++++++++++++++ +

15 | + 2-------------- ++ ++ +

14 | + 4-------------- ++ ++ +

13 | + |#############| ++ 3----- ++ +

12 | + 4-------------- ++ 3----- ++ +

11 | ++++++++++++++++++++++ 8----- ++ +

17



10 | ++++++++++++++++++++++ 8----- ++ +

9 | + 6-- 10------- ++ 9-------- ++ +

8 | + 14----|#######| ++ |@@@@@@@| ++ +

7 | + |####|10------- ++ |@@@@@@@| ++ 1-------- +

6 | + |####|12------- ++ |@@@@@@@| ++ |@@@@@@@| +

5 | + |####||@@@@@@@| ++ |@@@@@@@|7-- ++ |@@@@@@@| +

4 | + |####||@@@@@@@| ++ |@@@@@@@||#| ++ |@@@@@@@| +

3 | + |####||@@@@@@@| ++ |@@@@@@@||#| ++ |@@@@@@@| +

2 | + 14----12------- ++ 9--------7-- ++ 1-------- +

1 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++

----------------------------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

SHS.fill(1,11); yields:

21 | +++++++++++++++++++++

20 | + +

19 | + +

18 | + 5----------- +

17 | + 5----------- +++++++++++++++++++

16 | + 4-------------- ++ +++++++++++++++++++

15 | + |#############| ++ ++ +

14 | + 4-------------- ++ ++ +

13 | + 2-------------- ++ ++ +

12 | ++++++++++++++++++++++ ++ +

11 | ++++++++++++++++++++++ 3----- ++ +

10 | + 8----- ++ 3----- ++ +

9 | + 8-----10------- ++ 9-------- ++ +

8 | + 14----|#######| ++ |@@@@@@@| ++ +

7 | + |####|10------- ++ |@@@@@@@| ++ 1-------- +

6 | + |####|12------- ++ |@@@@@@@|6-- ++ |@@@@@@@| +

5 | + |####||@@@@@@@| ++ |@@@@@@@|7-- ++ |@@@@@@@| +

4 | + |####||@@@@@@@| ++ |@@@@@@@||#| ++ |@@@@@@@| +

3 | + |####||@@@@@@@| ++ |@@@@@@@||#| ++ |@@@@@@@| +

2 | + 14----12------- ++ 9--------7-- ++ 1-------- +

1 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++

----------------------------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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7 Streams, Traversals and String Primitives

The following module Aux provides auxiliary types and functions used by the functors Container, Display,

DisplayPS (cf. Section 8 below) or their instances.

structure Aux = struct

fun up(k,0) = nil

| up(k,n) = k::up(k+1,n-1)

fun sum_of_prods(w) = fold(op +)(map(op * )(w))(0)

fun iterate(str)(0) = ""

| iterate(str)(n) = str^iterate(str)(n-1)

The crucial data structure for generating object orders is the polymorphic data type ’a stream, which allows

us to stepwise enumerate the elements of a long list. This type is easily implemented in ML by employing

functions of type unit → ’a stream. Such a function s represents an ”unevaluated” stream whose evaluation is

postponed until an occurrence of the call s().

infix & %

datatype ’a stream = mt | & of ’a * (unit -> ’a stream)

fun nil%s = s()

| (x::w)%s = x&(fn()=>w%s)

exception emptyStream

fun head(x&s) = x

| head(mt) = raise emptyStream

fun tail(x&s) = s()

| tail(mt) = raise emptyStream

fun suffix(s,0) = s

| suffix(x&s,n) = suffix(s(),n-1)

| suffix _ = raise emptyStream

fun mapconc(f)(mt) = mt

| mapconc(f)(x&s) = let fun s1() = mapconc(f)(s()) in f(x)%s1 end

fun permutations(nil) = nil&(fn()=>mt)

| permutations(x::w) = mapconc(insert(x))(permutations(w))

and insert(x)(w) = let fun f(v,x,nil) = [v@[x]]

| f(v,x,y::w) = (v@x::y::w)::f(v@[y],x,w)

in f(nil,x,w) end
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Functions with the one-element range type unit are usually called procedures. In particular, we used proce-

dures for traversing argument intervals of a function f up to a point where f is undefined (cf. Section 3).

fun forward(f)(i)(x) = if i > x then () else (f(i); forward(f)(i+1)(x))

fun down(f)(i,j)(x,y)

= if y < j then () else (forward(fn(i)=>f(i,y))(i)(x);

down(f)(i,j)(x,y-1))

forward checks the one-dimensional interval [i,x] from the least up to the greatest element. down traverses the

two-dimensional interval [(i,j),(x,y)] from the greatest up to the least pair.

fun left(str,ch,space) = str^iterate(ch)(space-String.length(str))

fun right(str,ch,space) = iterate(ch)(space-String.length(str))^str

fun center(str,ch,space) = let val rest = space-String.length(str)

val back = rest div 2

val even = rest mod 2 = 0

val front = back+(if even then 0 else 1)

in iterate(ch)(front)^str^iterate(ch)(back) end

fun blanks(n) = iterate" "(n)

fun hyphens(n) = iterate"-"(n)

fun Ints2Strings(space,n)

= let fun f(i,s) = center(makestring(i:int)," ",space)^s

in fold(f)(up(1,n))"" end

fun newline(space,i) = "\n"^right(makestring(i:int)," ",space)^" | "

fun columns(space,n)

= "\n"^blanks(space+2)^"-"^iterate(hyphens(space))(n)^

"\n"^blanks(space+3)^Ints2Strings(space,n)

and ruler(f)(space,file,l,h)

= let fun g(1,j) = output(file,newline(space,j)^f(1,j))

| g(i,j) = output(file,f(i,j))

in down(g)(1,1)(l,h); output(file,columns(space,l)^"\n\n") end

newline places row indices at the beginning of a row. columns prints a final row of column indices. ruler prints

the values of a binary function f and embeds them into a coordinate system.

fun factors(x,y,l,h,space,scale)

= makestring(real(x*space-space)+scale)^" "^

makestring(real(y*space-space)+scale)^" "^

makestring(real(l*space)-scale-scale)^" "^

makestring(real(h*space)-scale-scale)
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fun placeID(x,y,a:int,l,space)

= "0 setgray "^

makestring(x*space-12)^" "^makestring(y*space-12)^" moveto\n"^

"("^center(makestring(a)," ",3*l)^") show\n"

end (* Aux *)
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8 PostScript Output

How do we have to change Display (cf. Section 4) and the classes CONTAINER, SHELF and SHELFSYSTEM

such that the loadings are translated into PostScript code instead of ASCII files? Again, the signature Pictures

imports container functions, which are needed for building the output. But now there are only three code

parameters: linewidth, linegray and interior. We need no longer dip to the level of point descriptions as in the

case of ASCII pictures.

signature Pictures = sig type obj and cont

val le : obj -> int

val he : obj -> int

val len : cont -> int

val hei : cont -> int

val Objs : cont -> obj list

val pos : cont * obj -> int * int

val space : int

val linewidth : real

val linegray : real

val interior : int * int -> obj -> string

end

linewidth and linegray yield the width resp. gray colour of object edges. As in Display, interior determines the

way how and where an object is drawn. The string value of this function comprises appropriate PostScript

code.

functor DisplayPS(structure Picts : Pictures) = struct open Picts

fun container(c,file)

= let val file = open_out(file^".eps")

val code = "%!PS-Adobe-3.0 EPSF-3.0\n"^

"%%BoundingBox: 5 5 "^

makestring(len(c)*factor+20)^" "^

makestring(hei(c)*factor+20)^"\n"^

"/Helvetica 10 selectfont\n"^

"1 setlinejoin\n"^

makestring(space)^" "^

makestring(space)^" translate\n"^

contCode(c)^objsCode(c)(Objs(c))^"showpage"

in output(file,code); close_out(file) end

and contCode(c) = "0.2 setgray 0 0 "^

makestring(len(c)*space)^" "^

makestring(hei(c)*space)^" rectstroke\n"

and objsCode(c,nil) = ""

| objsCode(c,a::objs)

= let val scale = linewidth/2.0

val (x,y) = pos(c,a)
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val (l,h) = (le(a),he(a))

in interior(x,y)(a)^

makestring(linewidth)^" setlinewidth\n"^

makestring(linegray)^" setgray\n"^

Aux.factors(x,y,l,h,space,scale)^" rectstroke\n"^

objsCode(c)(objs) end

fun translate(x,y)(c)

= makestring(x*space)^" "^makestring(y*space)^" translate\n"^

objsCode(c)(Objs(c))^

"-"^makestring(x*space)^" -"^makestring(y*space)^" translate\n"

end (* DisplayPS *)

Furthermore, only the structure Draw, which occurs in each of the classes CONTAINER, SHELF and

SHELFSYSTEM (cf. Section 5), needs to be changed, namely into a call of the above functor DisplayPS. In

CONTAINER, Draw is now defined as follows:

structure Draw = DisplayPS(structure Picts =

struct open Build

val space = 15

val linewidth = 1.0

val linegray = 0.0

fun interior(x,y)(a,l,h,t)

= "0.7 setgray "^ Aux.factors(x,y,l,h,15,1.0)^

" rectfill\n"^Aux.placeID(x,y+(h div 2),a,l,15)

end)

SHELF gets almost the same definition of Draw:

structure Draw = DisplayPS(structure Picts =

struct open Build

val space = 15

val linewidth = 1.0

val linegray = 0.0

fun interior(x,y)(a,l,h,t)

= (if t = hifi then "0.3 setgray " else "0.7 setgray ")^

Aux.factors(x,y,l,h,15,1.0)^" rectfill\n"^

Aux.placeID(x,y+(h div 2),a,l,15)

end)

The main task of Draw in SHELFSYSTEM is to geometrically place the contents of a shelf into a shelf

system. In Section 5 we described the necessary translation. PostScript code handles lines and planes and not

only points. We need no longer define the translation as a pointwise transformation. However the hierarchic

access from SHELFSYSTEM to SHELF via the structure SH (cf. Section 5) is still the crucial point, which

allows us to define the interior of an object of a shelf system in terms of SH.Draw:

structure Draw = DisplayPS(structure Picts =

struct open Build
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val space = 15

val linewidth = 15.0

val linegray = 0.6

fun interior(x,y) = SH.Draw.translate(x-1,y-1) o !

end)

We repeat the design session of Section 6, now along with the contents of the respective eps file after this

has been evaluated by a PostScript interpreter.

C.init(tenObjects,17,9); C.fill(0);

SH.init(tenBooksAndHifis,17,9); SH.fill(0);

SH.fill(600);

SHS.init(booksAndHifis1,twoShelves,17,15); SHS.fill(0,0);

SHS.fill(0,1);

SHS.init(booksAndHifis2,fourShelves,19,21); SHS.fill(0,0);

SHS.fill(1,11);
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9 Conclusion

We have given an example of how the concepts of functional programming such as polymorphism, functional

abstraction, module abstraction (using functors), partiality (using exceptions) and stream handling can be

employed for solving a hierarchical configuration problem. The task of building shelf systems falls into several

concerns, which have been tackled separately. The corresponding modules were defined as functors. Each module

consists of simple code, which is due to the fact that the underlying algorithms could be implemented directly on

abstract data types. The places where a module is used are easily identified because they are encapsulated into

structures defined as functor calls. With parameters of a functor we realize module hierarchies, even recursive

ones if the same module appears twice in the hierarchy. For instance, SHELFSYSTEM includes a call of the

functor Container with an actual parameter, which stems from a further call of Container (cf. Section 5). This

recursion did not not come up as a subtle implementation detail, it is already inherent to the problem we were

going to implement.

Functional programming aims at avoiding dynamic objects. Dynamic objects make a program difficult to

verify because they change their values at runtime and thus the correctness analysis has to consider all runtime

states the program can achieve. The object-oriented programming paradigm takes the converse position and

makes every object a dynamic one by claiming that this is the natural view. We think the truth is in the

middle. A program using static objects is indeed much easier to understand, even if one dispenses with a formal

proof. Moreover, there are a number of problems, which have direct functional, static solutions. Most of the

computation-intensive stuff, which resides at the bottom levels of a program, is of this sort. However, there may

be high levels where states do not only come up with the implementation, but are part of the problem. Especially

when interaction is involved, dynamic objects are not only preferable, but even necessary. This is exactly the

point where we have introduced dynamic objects into our program. As nullary functors, CONTAINER, SHELF

and SHELFSYSTEM are in fact classes, while a call of one of these functors causes the creation of two objects:

the permutation stream PERMS and a number pair SIZE. The user changes their states by calls of the functions

init and fill (cf. Sections 5 and 6). Object-oriented programming complies well with functional programming.

A high degree of modularization, the use of abstract data types and the focus on static objects enhances the

flexibility and reusability of a program. A module may be redefined, an algorithm may be changed, and this

will hardly affect other parts of the program. CONTAINER, SHELF and SHELFSYSTEM are variants of each

other, with increasing complexity. In object-oriented terms, the three classes are heirs of the functors Container

and Display. We wanted to change the output from ASCII to PostScript code and achieved this goal just

by replacing Display with DisplayPS and corresponding replacements of the calls of Display in CONTAINER,

SHELF and SHELFSYSTEM (cf. Section 8). All this is completely independent of the main algorithm involved:

the loading strategy (cf. Section 3). In fact, a number of variants of this algorithm might be worthwhile to be

analyzed. Our program would provide a flexible environment for such experiments. For instance, if the number

of objects, which are unpacked by one call of unFill, is increased, the enumeration of object orders is changed

and thus the loading algorithm may come up with other fillings and a different time behaviour. Or what about

genetic variants of the algorithm?
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