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Abstract

In the semantics of programming, finite data types such as finite lists, have traditionally been
modelled by initial algebras. Later final coalgebras were used in order to deal with infinite data
types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as mod-
els for certain types of automata and more generally, for (transition and dynamical) systems.
An important property of initial algebras is that they satisfy the familiar principle of induc-
tion. Such a principle was missing for coalgebras until the work of Aczel (Non-Well-Founded
sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stan-
ford, 1988) on a theory of non-wellfounded sets, in which he introduced a proof principle
nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally
stemming from the world of concurrent programming languages. Using the notion of coalge-
bra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally
dual to that of congruence on algebras. Thus, the three basic notions of universal algebra:
algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, ho-
momorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
as the basic ingredients of a theory called wuniversal coalgebra. Some standard results from
universal algebra are reformulated (using the aforementioned correspondence) and proved for
a large class of coalgebras, leading to a series of results on, e.g., the lattices of subcoalge-
bras and bisimulations, simple coalgebras and coinduction, and a covariety theorem for coalge-
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1. Introduction

In the semantics of programming, data types are usually presented as algebras (cf.
[24,47]). For instance, the collection of finite words A* over some alphabet 4 is an
algebra

(A% o: (14 (A x A7) — 4™),

where o maps * (the sole element of the singleton set 1 = {x}) to the empty word and
a pair (a,w) to a-w. This example is typical in that 4™ is an initial algebra. Initial
algebras are generalizations of Jeast fixed points, and satisfy familiar inductive proof
and definition principles.

For infinite data structures, the dual notion of coalgebra has been used as an al-
ternative to the algebraic approach [6]. For instance, the set A°° of finite and infinite
words over 4 can be described by the pair

(A%°,7:A%° — (1 + (4 x A™))),

where y maps the empty word to * and a non-empty word to the pair consisting of its
head (the first letter) and tail (the remainder). It is a coalgebra because 7y is a function
from the carrier set 4°° to an expression involving 4>°, that is, 1 4+ (4 x A*°), as
opposed to the algebra above, where « was a function info the carrier set 4*. Again
the example is typical because 4 is a final coalgebra, which generalizes the notion
of greatest fixed point.

Coalgebras are also suitable for the description of the dynamics of systems such as
deterministic automata (cf. [5, 52]). Traditionally, these are represented as tuples

(0,4,B,0:0xA— 0, :0—B),
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consisting of a set of states O, an input alphabet 4, an output alphabet B, a next state
function J, and an output function f (in addition an initial state is often specified as
well). Alternatively, such an automaton can be represented as a coalgebra of the form

(Q,0:0— (0" x B)),

where 04 is the set of all functions from 4 to O, and o can be defined in an obvious
manner from ¢ and f (and vice versa). Another, more recent use of coalgebras is made
in the specification of the behaviour of classes in object-oriented languages [35, 36, 68].

Similarly, Peter Aczel uses a coalgebraic description of (nondeterministic transition)
systems in constructing a model for a theory of non-wellfounded sets [2]. Maybe more
importantly, he also introduces a proof principle for final coalgebras called strong
extensionality. It is formulated in terms of the notion of bisimulation relation, origi-
nally stemming from the field of concurrency semantics [56, 60]. Using the notion of
coalgebra homomorphism, the definition of bisimulation has been generalized in [4],
as a formal dual to the notion of congruence on algebras (see also [76]). This ab-
stract formulation of bisimulation gives rise to definition and proof principles for final
coalgebras (generalizing Aczel’s principle of strong extensionality), which are the coal-
gebraic counterpart of the inductive principles for initial algebras, and which therefore
are called coinductive [75].

These observations, then, have led to the development in the present paper of a
general theory of coalgebras called universal coalgebra, along the lines of universal
algebra. Universal algebra (cf. [16, 54]) deals with the features common to the many
well-known examples of algebras such as groups, rings, etc. The central concepts are
2-algebra, homomorphism of X-algebras, and congruence relation. The corresponding
notions [76] on the coalgebra side are: coalgebra, homomorphism of coalgebras, and
bisimulation equivalence. These notions constitute the basic ingredients of our theory
of universal coalgebra. (More generally, the notion of substitutive relation corresponds
to that of bisimulation relation; hence congruences, which are substitutive equivalence
relations, correspond to bisimulation equivalences.) Adding to this the above-mentioned
observation that various dynamical systems (automata, transition systems, and many
others as we shall see) can be represented as coalgebras, makes us speak of universal
coalgebra as a theory of systems. We shall go even as far as, at least for the context
of the present paper, to consider coalgebra and system as synonyms.

The correspondence between the basic elements of the theories of algebra and coal-
gebra are summarized in the following table:

H Universal algebra: Universal coalgebra: H
(2-)algebra coalgebra = system
algebra homomorphism system homomorphism
substitutive relation bisimulation relation
(congruence relation) (bisimulation equivalence)
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As mentioned above, universal algebra plays a guiding role in the development of
universal algebra as a theory of coalgebras (=systems). Much of this involves re-
placing the central notions from universal algebra by the corresponding coalgebraic
notions, and see whether the resulting statements can actually be proved. Often, facts
on X-algebras turn out to be valid (in their translated version) for systems as well. Ex-
amples are basic observations on quotients and subsystems, and the so-called three
isomorphism theorems. In other cases, more can be said in the world of coalge-
bras about the dual of an algebraically important notion than about that notion it-
self. For instance, initial algebras play a role of central importance. Initial coalgebras
are usually trivial but final coalgebras are most relevant. A related example: initial
algebras are minimal: they have no proper subalgebras. This property is equivalent
to the familiar induction proof principle. Dually, final coalgebras are simple: they
have no proper quotients, which can be interpreted as a so-called coinductive proof
principle.

In a previous paper [71], the above programme has been carried out for one particular
family of systems: unlabelled nondeterministic transition systems (also called frames).
As it turns out, all observations on such systems apply to many other kinds of systems
as well, such as deterministic and nondeterministic automata, binary systems, and hyper-
systems. Also the afore-mentioned infinite data structures, which can be interpreted as
dynamical systems as well, are examples to which the theory applies.

All these different examples can be conveniently described in one single framework,
using some basic category theory. Each of these classes of systems turns out to be the
collection of coalgebras of a particular functor, and different functors correspond to
different types of systems. (In that respect, the world of universal algebra is simpler
because of the existence of a general, noncategorical way of describing all X-algebras
at the same time, namely as sets with operations, the type of which is specified by the
signature X. A categorical treatment is also feasible in the algebraic case, though; see
[511)

The generality of the coalgebraic theory presented here thus lies in the fact that
all results are formulated for coalgebras of a collection of well-behaved functors on
the category of sets and functions, and thereby apply to a great number of different
systems. This number can be seen to be larger still by varying the category involved.
Taking, for instance, the category of complete metric spaces rather than simply sets
allows us to deal with (discrete time) dynamical systems (Section 18).

Some familiarity with the basic elements of category theory, therefore, will be of
use when reading this paper. The notions of category and functor will be assumed to
be known. Section 20 has been included to provide some background information. It
contains some basic definitions, facts, and notation both on sets and functors on the
category of sets, and is to be consulted when needed.

The family of (nondeterministic labelled) transition systems [43,65] will be used as
a running example throughout the first sections of the paper. The reader might want
to refer to [71], where many of the present observations are proved in a less abstract
way for transition systems; to [39], for an introduction to coalgebra and coinduction;
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or to [73], where deterministic automata are treated coalgebraically, but without any

reference to category theory.

A synopsis of the contents of the present paper is given by the second column of the
following table, which extends the one above. Its first column shows the corresponding
algebraic notions. (See Section 13 for a discussion on the formal relationship between

the algebraic and the coalgebraic notions.)

|| Universal algebra

Universal coalgebra

(2-)algebra

coalgebra=system

algebra homomorphism

system homomorphism

substitutive relation

bisimulation relation

congruence

bisimulation equivalence

subalgebra

subsystem

minimal algebra
(no proper subalgebras) <=
induction proof principle

minimal system
(no proper subsystems)

simple algebra
(no proper quotients)

simple system
(no proper quotients) <=
coinduction proof principle

initial algebra
(is minimal, plus:
induction definition principle)

initial system
(often trivial)

final algebra
(often trivial)

final system
(is simple, plus:
coinduction definition principle)

free algebra (used in
algebraic specification)

free system
(often trivial)

cofree algebra
(often trivial)

cofree system (used in
coalgebraic specification)

variety (closed under subalgebras,
quotients, and products) <~
definable by a quotient
of a free algebra

variety (closed under subsystems,
quotients, and products)

covariety (closed under subalgebras,
quotients, and coproducts)

covariety (closed under subsystems,
quotients, and coproducts) <=
definable by a subsystem
of a cofree system

Note that this table is not to suggest that the theory of systems is dual to that of
algebras. (If so the paper would end here.) It is true that certain facts about algebras
can be dualized and then apply to systems. For instance, the fact that the quotient
of a system with respect to a bisimulation equivalence is again a system is dual to
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the fact that the quotient of an algebra with respect to a congruence yields again an
algebra. However, many notions that are defined in both worlds in the same way, have
entirely different properties. Examples are the afore-mentioned initial algebras and final
coalgebras.

Deep insights about groups are not obtained by studying universal algebra. Nor
will universal coalgebra lead to difficult theorems about (specific types of) systems.
Like universal algebra, its possible merit consists of the fact that it “... tidies up
a mass of rather trivial detail, allowing us to concentrate our powers on the hard
core of the problem” [16]. There are maybe two aspects that we might want to add
to this. Firstly, induction principles are well-known and much used. The coinduc-
tive definition and proof principles for coalgebras are less well-known by far, and
often even not very clearly formulated. Universal coalgebra offers a simple context
for a good understanding of coinduction. Secondly, many families of systems look
rather different from the outside, and so do the corresponding notions of bisimula-
tion. A systematic study of coalgebras brings to light many, sometimes unexpected
similarities.

This paper both gives an overview of some of the existing insights in the theory of
coalgebras, and, in addition, presents some new material. Section 19 contains a brief
description per section of which results have been taken from the literature, as well as
a discussion of related work. In summary, the present theory was preceded by [71],
which at its turn builds on previous joint work with Turi [75, 76], from which a number
of results on final systems is taken. Many observations that are folklore in the context
of particular examples (such as transition systems) are generalized to arbitrary systems.
The section on the existence of final systems is based on results from Barr [9]. The
work of Jacobs on a coalgebraic semantics for object-oriented programming [35] and
coalgebraic specification [33] has greatly influenced the section on cofree systems. The
present paper is a reworking of [72]. Since the appearance of the latter report, much
new theory on coalgebra has been developed. Many of these recent developments can
be found in [38,40].

2. Coalgebras, homomorphisms, and bisimulations

The basic notions of coalgebra, homomorphism, and bisimulation relation are in-
troduced. A running example for this section will be the family of labelled transition
systems. Many more examples will follow in Section 3.

Let F: Set — Set be a functor. An F-coalgebra or F-system is a pair (S,og) con-
sisting of a set S and a function og:S — F(S). The set S is called the carrier of the
system, also to be called the set of states; the function oy is called the F-transition
structure (or dynamics) of the system. When no explicit reference to the functor (i.e.,
the type of the system) is needed, we shall simply speak of system and transition
structure. Moreover, when no explicit reference to the transition structure is needed,
we shall often use S instead of (S, ay).
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Example 2.1. Consider labelled transition systems (S, —g,A), consisting of a set S
of states, a transition relation —gC S x A4 x §, and a set A of labels [29, 43, 65]. As
always, s ——gs' is used to denote (s,a,s’) € —g. Define

B(X)=2(AxX)={V|VCAxX},

for any set X. We shall see below that B is a functor from Sef to Setr. A labelled
transition system (S, —g,4) can be represented as a B-system (S, ag) by defining

o518 = B(S), s {{as)|s 5"}

And conversely, any B-system (S, o5) corresponds to a transition system (S,4, —g) by
defining

s—5gs = (a,5') €ag(s).

In other words, the class of all labelled transition systems coincides with the class of
all B-systems.

Let (S,o5) and (7,ar) be two F-systems, where F is again an arbitrary func-
tor. A function f:S— T is a homomorphism of F-systems, or F-homomorphism,

if F(f)ooag=oaro f:

F(S) ——— F(I),

Intuitively, homomorphisms are functions that preserve and reflect F-transition struc-
tures (see the example below). We sometimes write f :(S,as)— (7T,07) to express
that f is a homomorphism. The identity function on an F-system (S,o5) is always
a homomorphism, and the composition of two homomorphisms is again a homomor-
phism. Thus the collection of all F-systems together with F-system homomorphisms
is a category, which we denote by Sefr.

Example 2.1 (continued). Let (S,4, —s) and (7,4, —7) be two labelled transition
systems with the same set A of labels, and let (S, as) and (7, a7) be the corresponding
representations as B-systems. Per definition, a B-homomorphism f :(S,as)— (7, 07)
is a function f:S— T such that B(f)oas=oaro f, where the function B(f), also
denoted by 2(4 x f), is defined by

BV =24 x fYV)={{a, f(s))[(a.s) €V}
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Note that B is defined both on sets and on functions. Moreover, B can be shown to
preserve identities: B(ls)= lp(s), and compositions: B(f og)=B(f)oB(g). In other
words, B is indeed a functor. One can easily prove that the equality B(f)oog=oro f
is equivalent to the following two conditions: for all s in S,

1. for all s’ in S, if s —gs’ then f(s) =1 f(s');

2. for all ¢ in T, if f(s)—>r¢ then there is s’ in S with s =75 and f(s')=t.
Thus a homomorphism is a function that is transition preserving and reflecting.

An F-homomorphism f:S— T with an inverse f~':T —S which is also a ho-
momorphism is called an isomorphism between S and 7. As usual, S =T means that
there exists an isomorphism between S and 7. An injective homomorphism is called
monomorphism. Dually, a surjective homomorphism is called epimorphism. Given sys-
tems S and 7, we say that S can be embedded into T if there is a monomorphism
from S to T. If there exists an epimorphism from S to T, T is called a homomorphic
image of S. In that case, T is also called a quotient of S.

Remark 2.2. The above definitions are sufficient for our purposes but, more generally,
monomorphisms could be defined as homomorphism that are mono in the category
Setp: that is, homomorphisms f :S — T such that for all homomorphisms & : U — S and
[:U—S:if fok= fol then k=1. Clearly injective homomorphisms are mono. One
can show that for a large class of functors, the converse of this statement holds as well.
A dual remark applies to epimorphisms. Further details are given in Proposition 4.7.

The following properties will be useful.
Proposition 2.3. Every bijective homomorphism is necessarily an isomorphism.

Proof. If f:(S,05)— (T,0r) is an F-homomorphism and g: 7 — S is an inverse of f
then

050y
= F(g)oF(f)ousoyg
= F(g)oaro fog
= F(g)oor,

thus ¢ is a homomorphism. [

Lemma 2.4. Let S,T, and U be systems, and f:S—T, g:S— U, and h:U — T any

functions.

1. If f=hog, g is surjective, and f and g are homomorphisms, then h is a homo-
morphism.

2. If f=hog, h is injective, and f and h are homomorphisms, then g is a homo-
morphism.
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Proof. We prove 1, the proof of 2 is similar. Consider u€ U and let s €S be such
that g(s) =u. Then

i
TT r
F(S) M»\F(JU)/&: F(JT).

F(f)
F(h)ooay(u)
= F(h)oayog(s)
= F(h)oF(g)oas(s)
= F(f)ouas(s)
= aro f(s)
= arohogy(s)
— oroh(u). O

We now come to the third fundamental notion of universal coalgebra. A bisimulation
between two systems is intuitively a transition structure respecting relation between
sets of states. Formally, it is defined, for an arbitrary set functor F':Set — Set, as
follows [4]: Let (S,as) and (7, ar) be F-systems. A subset RC .S x T of the Cartesian
product of S and T is called an F-bisimulation between S and T if there exists an
F-transition structure oy : R — F(R) such that the projections from R to S and T are
F-homomorphisms:

i T,

S R T

1
“sJ 3 g J"‘T

F(S) o FR) —— F(D).

We shall also say, making explicit reference to the transition structures, that (R, o)
is a bisimulation between (S, as) and (7,ar). If (T,07)=(S,as) then (R, op) is called
a bisimulation on (S,os). A bisimulation equivalence is a bisimulation that is also an
equivalence relation. Two states s and ¢ are called bisimilar if there exists a bisimu-
lation R with (s,7) € R. (See Section 19 for some references to alternative categorical
approaches to bisimulation.)

Example 2.1 (continued). Consider again two (labelled transition systems represented
as) B-systems (S, as) and (7, 07). We show that a B-bisimulation between S and T is
a relation RC S x T satisfying, for all (s,¢) €R,
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1. for all s’ in S, if s —gs' then there is ¢ in T with t —»7¢ and (s,¢') €R,

2. for all ¢ in T, if t —%57 ¢ then there is 5" in S with s 55’ and (s',¢') €R,
which is the familiar definition of bisimulation from concurrency theory [56, 60]. For
let R be a B-bisimulation with transition structure oz : R — B(R). As before, oz induces
a relation —g CRx A4 x R. Let (s,t) €R, and suppose s ——gs’. Because s=m;(s,?)
this implies 7, (s,7) ——gs’, and because 7, is a homomorphism, it follows that there
is (s”,t') €R with (s,t) —¢ (s",¢') and m;(s”,¢')=s'". Thus (s',¢') €R. Because m,
is a homomorphism it follows that t ——7 ¢, which concludes the proof of clause 1.
Clause 2 is proved similarly. Conversely, suppose R satisfies clauses 1 and 2. Define
og:R— B(R), for (s,t) €R, by

ar(s,t) ={{a, (s',1')) | s g5’ and t 57 ¢ and (s',¢') €R}.

It is immediate from clauses 1 and 2 that the projections are homomorphisms from
(R,op) to (S,05) and (7, ar). (Note that in general oy is not the only transition structure
on R having this property.)

A concrete example of a bisimulation relation between two transition systems is the
following. Consider two systems S and 7"

U /
8o S

S ——— 8§ b
f
[/

Then {(si,s;) |i,j =0} U{(s;,s}) |i,j =0} is a bisimulation on S. And {(s;,#)|i>0}
U{(s},t') |i=0} is a bisimulation between S and 7. Note that the function f:S— T
defined by f(s;)=t and f(s))=¢ is a homomorphism, and that there exists no ho-
momorphism from 7 to S.

The last observation of the example above (that f is a homomorphism) is an imme-
diate consequence of the following fundamental relationship between homomorphisms
and bisimulations.

Theorem 2.5. Let (S,as) and (T,or) be two systems. A function f:S—T is a ho-
momorphism if and only if its graph G(f) is a bisimulation between (S,os) and
(T, OCT).

Proof. Let o: G(f)— F(G(f)) be such that (G(f'),«) is a bisimulation between (S, o)
and (7,or). Let m; and 7, be the projections from G(f) to S and 7. Because m; is
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bijective it has an inverse nl_l 1(S,05) — (G(f),o) which is also a homomorphism.
Because f=m, onl_l, also f is a homomorphism.

Conversely, suppose f is a homomorphism. We can take F(m;) 'oosonm as a
transition structure on G(f'). This clearly turns m; into a homomorphism. The same
holds for m,:

F(my)o(F(m) ' oosom)
= F(nzonfl)oocgonl
= F(f)oasom
= aro fom

= 07 O Ty.
(Because F(m;) is mono, there is only one transition structure on G(f).) [J
Therefore homomorphisms are sometimes called functional bisimulations.

Remark 2.6. The characterization of B-bisimulation in the example of transition sys-
tems above is an instance of the following more general result. Let again (S, «g) and
(T,ar) be two F-systems. A relation RC .S x T is an F-bisimulation if and only if, for
all s in S and ¢ in T,

(s,t) €R=>(a(s), B(t)) € G(F(m1)) " 0 G(F(m)),

where the latter expression denotes the relational composition of the inverse of the
graph of F(m;) followed by the graph of F(m). If a set functor preserves weak
pullbacks, then this composition can be taken as the definition of the action of F
on the relation R, thus extending F' from the category of sets and functions to the
category of sets and relations. Such extensions are sometimes called relators. In
[74], the connection between relators, coalgebras and bisimulations is further
investigated.

3. Systems, systems, systems, ...

The coalgebras, homomorphisms, and bisimulations of a number of functors that
can be considered as the basic building blocks for most systems are described. (All
functors that are used are described in the Appendix.)
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3.1. Deterministic systems

Deterministic systems exist in many different forms. The simplest ones are coalgebras
of the identity functor /(S)=3=:

o s—g8 = ag(s)=ys"

>

The notation s —g s’ for ag(s)=s" is used as a shorthand, which puts emphasis on
the fact that og actually gives the dynamics of the system (S, «s), and should be read
as: in state s the system S can make a transition step to state s’. The arrow notation
will turn out to be particularly useful for the characterization of homomorphisms and
bisimulations. Formally, the above equivalence is simply stating that any function is
also a (functional) relation. Conversely, it is often convenient to define the dynamics of
a system by specifying its transitions (in particular when dealing with nondeterministic
systems, see below). For instance, specifying for the set of natural numbers transitions

0—1—02— -+,

defines the deterministic system (.47, succ), where succ is the successor function.
A homomorphism between two deterministic systems (S, as) and (7, «7) is a function
f:§ — T satisfying for all s in S,

s—s'= f(s) — f(s).

(Note that we have dropped the subscripts from —g and — 7, a convention we
shall often apply.) Thus, homomorphisms between deterministic systems are fransition
preserving functions. A bisimulation between deterministic systems S and 7T is any
relation R C S x T such that, for all s€S and t€ T,

(s,t)yeR and s — s and t — ¢’ = (s',¢') €R.

Thus, bisimulations between deterministic systems are transition respecting relations.
For instance, there is an obvious bisimulation relation between the above system
(A, succ), and the system

®

Not only are there many deterministic systems (take any set and any function from the
set to itself), many of them have a more interesting dynamics than one would expect
at first sight, in spite of the fact that the functor at stake is trivial. For instance, let
A be any set (alphabet) and let 47 be the set of all so-called bi-infinite sequences
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(words) over 4. (Here Z is the set of all integers.) It can be given the following
dynamics:

A;“Z
shift shift(¢) = Am.¢p(m + 1).
A7,

This example is of central importance in the theory of symbolic dynamics (cf. [12]).
There the set of bi-infinite words is supplied with a metric, by which the shift exam-
ple becomes even more interesting. See Section 18 for some observations about such
‘metric systems’.

3.2. Termination

Any set S carries a coalgebra structure of the constant functor F(S)=1:

o Sl <~ Ots(s):*,

where 1= {x}. Thus S can be viewed as a system with trivial dynamics, in which no
state can take a step and every state s terminates, as expressed by the arrow notation
s|. Any function between such systems trivially is a homomorphism and any relation
a bisimulation. Thus the category Set; of all systems of the constant functor is just
(isomorphic to) the category of sets.

Deterministic systems with termination are coalgebras of the functor F(S)=1+S:

%}

us s—s = oag(s)=s", s| = og(s)= *.

1458,

Such a system can in a state s either make a transition to a state s’ or terminate.
Homomorphisms (and bisimulations) are as before, with the additional property that
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terminating states are mapped to (related to) terminating states. Note that homomor-
phisms not only preserve but also reflect transitions: if f:S— 7T is a homomorphism
and f(s)—1t, for s€ S and ¢ € T, then there exists s’ €S with s — s’ and f(s')=¢.

An example of a deterministic system with termination is the system of the extended
natural numbers [6] A" =1{0,1,2,...} U{oco}, with dynamics

Qo e —2—1—0,

which, equivalently, can be defined as

N
* if n=0,
pred pred(n)= < n—1 if 0<n # oo,
00 if n=o00.
14,

In this system, a natural number n can take precisely n transition steps and then
terminates, and the additional number oo only takes a step to itself and hence never
terminates.

3.3. Input

Systems in which state transitions may depend on input are coalgebras of the functor
F(S)=S8" (here SA={f|f:4—S}):

%)

as s—5" <<= og(s)a)=s,
S,

where 4 is any set (to be thought of as an input alphabet) and the arrow can be read
as: in state s and given input g, the system can make a transition to state s’. Typical
examples of deterministic systems with input are deterministic automata, which tradi-
tionally are represented as pairs (Q,d:(Q x 4) — Q), consisting of a set Q of states
and a state transition function ¢ that for every state ¢ and input symbol a in A4 deter-
mines the next state d{(g,a). (Often an initial state and a set of final states is specified
as well, but they can be dealt with separately.) As observed in the introduction, in
[66, 52], such automata are precisely the deterministic systems with input mentioned
above, because of the following bijection:

{(f1f:0xA4—-0y={f|f:0—0"}.
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A homomorphism between (S, as) and (7,ar) is any function f:S — T satisfying for
all s in S, a in A,

s—=5' = f(s) == f(s").

A bisimulation between systems S and T is now a relation RC S x T such that, for
all a in A4,

(s,/)€R and s s and t ¢ = (s',¢') €R.
For instance, all states in the following two systems are bisimilar:

a

RN

3.4. Output

Transitions may also yield an output. Thus we consider coalgebras of the functor
F(S)=4x S:

2 s—s = ag(s)=(a,s),

A XS,

where A4 is an arbitrary set and the arrow can be read as: in state s, one can ‘observe’
the output @, and the system can make a transition to the state s’. An intuition that
often applies is to consider the output a as the ‘observable effect’ of the state transition.
(Note that the same arrow notation — is used both for transitions with input and with
output. In general, the right interpretation follows from the context.) Such systems
are also called deterministic labelled transition systems [65]. Homomorphisms and
bisimulations can be characterized by an obvious variation on the descriptions above.
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A concrete example is the set A” of infinite sequences over 4, with
A(,U
ag
(h.t) <a0,a1,...> — <a1,a2,...>.

A X A%,

The pair (h,¢) assigns to an infinite sequence its head (the first element) and zail (the
remainder). Adding the possibility of termination yields, for instance, the following two
variations, where the functors involved are F(S)=1+(4x S) and F(S)=A4+(4xS):

S S

1+UAxS), A+AxS).

An example of the first type is the set A°° of finite and infinite streams, with

AC)O
T e |; (ap,ai,...) A, (a1, az,...).
14 (4 x A4),

Similarly, the set 4%° of non-empty finite and infinite streams over 4 is an example of
the last type, S—A4 + (4 X §).

3.5. Binary systems

Binary systems are coalgebras of the functor F(S)=S x S. Now a transition yields
two new states:

as s — (81,82) <= oas(s)=(s1,52).



J.J.M.M. Rutten| Theoretical Computer Science 249 (2000) 3-80 19

A homomorphism between binary systems S and 7 is any function f:S — T satisfying
for all s in S,

s —(s1,82) = f(s) — (f(51), f(52))-

Similarly for bisimulations. A concrete example of a binary system is the set Z of
integers with transitions

—1 0 1

Note that the fact that there are two outgoing transitions from each state should in
this context not be interpreted as a form of nondeterminism (see below): the system
is perfectly deterministic in that for each state one transition is possible, leading to a
pair of new states. The system can equivalently be defined by

g
(pred, succ) m*><m7 1,m+ 1>

¥ X Z,

Variations of binary systems can be obtained by adding labels (output) and the possi-
bility of termination:

SxA4xS, AxS)yx(AxS), 1+((A4xS8)x(4xS)).

Examples of such systems are, respectively: the set of infinite node-labelled binary
trees, where each node is assigned its label in 4, together with the nodes of the
two subtrees; the set of infinite arc-labelled binary trees, where a node is mapped
to the two nodes of its subtrees, each together with the label of the correspond-
ing arc; and the set of all arc-labelled binary trees with finite and infinite
branches.
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3.6. Nondeterministic systems

From one state, several transitions may be possible:

S
o s—5 <= 5 €ag(s).
2(S),

A variation of this type of systems is obtained by adding labels, thus considering
coalgebras of the functor F(S)=2(4 x S):

S
as s = (a,s) € ag(s).
P4 xS),
These are the nondeterministic labelled transition systems of Example 2.1, where ho-
momorphisms and bisimulations have been characterized as transition-preserving and
reflecting functions and relations. Often one wishes to consider systems with bounded
nondeterminism, in which from an arbitrary state only a finite number of transitions is

possible. Such systems can be modelled using the finite powerset functor:

S

og
P4 % S),

and are called finitely branching. Yet another class of systems are the coalgebras of
the functor F(S)=Z;(S)*:

S

Z77(8)*,

which are called image finite: for every s in S and a in 4, the number of reachable
states {s' | s —— s’} is finite.
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3.7. Hyper systems

The contravariant powerset functor can be used to model Ayper systems, in which
a state can make nondeterministically a step to a set of states:

S
a5 s—V <<= V €as(s).
P(P(S)),

Here 2(S)=25 and thus 2(2(S))=22"); see Appendix. Note that we are describing
the elements of 2(2(S)) as subsets rather than characteristic functions. The arrow
s — V should be read as: from state s the system can reach the set V' of states (but
not necessarily each individual element of 7). Using the definition of the contravariant
powerset functor, one can show that a homomorphism between hyper systems S and
T is any function f:S — T satisfying, for all s in S and W C T,

s—>f71(W) = f(s)—W.

Bisimulations are generally not so easy to characterize. For the special case of a bisim-
ulation equivalence R C S x S on a hypersystem S, the following holds: ! for all s and
s’ in S,

(s,s’) € R=>(for every R-equivalence class V' CS, s =V < s —V).

The reader is invited to try and model hyper systems using the covariant powerset
functor, to find that the notions of homomorphism and bisimulation are rather different
in that case. This example illustrates the importance of functors, which operate both
on sets and on functions, in a theory of coalgebras.

3.8. More examples

Some further examples are given, using functors that combine some of the basic
constructions mentioned above.
Automata: are systems with input and output, possibly with termination, such as

S S S

(B x S)4, B x 54, C+ (B x 8.

! This type of bisimulation seems to be underlying many of the recently proposed probabilistic bisimula-
tions [46, 85]. It was found in joint work with Erik de Vink [21].
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Systems of the first and second type are known as Mealy machines and Moore ma-
chines, respectively, the main difference being that with the latter the output does not
depend on the input. For the case of B=2={0,1}, Moore machines are known as
deterministic automata:

%)

(0.1) s—5 <= ts)a)=s, 5] <= o(s)=1.

2 x84,

The output function o indicates whether a state s in S is accepting (also called
final): o(s)=1, or not: o(s)=0. The transition function ¢ assigns to a state s a
function #(s):4— S, which specifies the state #(s)(a) that is reached after an in-
put symbol a has been consumed. Even though we are using the same notation
s|, note that an accepting state is not terminating in the sense used at the begin-
ning of this section, since any state s can, for any input a, progress to a next state
t(s)(a). Traditionally (but isomorphically), deterministic automata are represented as
sets S together with a transition function of type (S x 4)— S (corresponding to
t:8 —81), together with a set of accepting states F C S (corresponding to o0:S — 2).
The coalgebraic theory of this classical example of automata is described in all detail
in [73].

Graphs: A directed (1-)graph (V,E) consists of a set V' of points (vertices) and an
edge relation £ C V' x V, representing the arcs of the graph. Graphs are in one-to-one
correspondence with nondeterministic systems because of the bijection

{f1f Vo2V 2PV XTV).

Note that the standard notion of graph homomorphism is a function preserving the arc
relation [77], without necessarily reflecting it. In contrast, a homomorphism of (graphs
as) nondeterministic systems both preserves and reflects the arcs, as a consequence of
the categorical definition of homomorphism of F-coalgebras. Nevertheless, the tradi-
tional way of representing graphs and arc-preserving homomorphisms between them
can be modelled in the present framework by considering the following, so to speak
many-sorted coalgebraic definition:> Consider the functor

F:(Set x Set)— (Set x Set), X Yy— (1, X x X).

2 This definition was suggested by Andrea Corradini.
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A graph (V,E) can be represented as a coalgebra of F' by defining

(V. E)
(1,(s.1))

(LV xV),

where s: E— V and t: E — V are the projections from E to V, which we call source
and ftarget. An F-homomorphism

(f.9)
e s LE)

(1,(s,1)) (L")

LV XV) —— (LV' xV')
(L/%])

is a pair of functions f:V — V' and g:E — E’ such that

f(s(e))=5"(g(e)),  f(t(e))=1'(g(e)),

which is the usual definition of graph homomorphism.

Frames and models: A frame in the world of modal logic (cf. [25]) is a directed
graph, and thus (as we have seen above) can be represented as a nondeterministic
system. A model (V,E, f) is a frame (V,E) together with a function f:® — 2(V),
where @ is a collection of atomic formulas in some given modal logic. Intuitively,
f specifies for each formula in which states v in V' it holds. Because of the isomor-
phism

{1 f0—=2={f]1:V—2(®)},

it is easily verified that models correspond to systems of type

y

P(D) x P(V).

As it turns out, homomorphisms and bisimulations for these systems correspond pre-
cisely to the so-called p-morphisms and zig-zag relations of modal logic.
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Resumptions: are systems of type

S

(P(B x S))A.

In other words, resumptions are nondeterministic systems with input and output. They
play a central role in the semantics of (nondeterministic and parallel) programming
languages (cf. [8,29]).

4. Limits and colimits of systems

We want to prove statements like: the union of a collection of bisimulations is again
a bisimulation; the quotient of a system with respect to a bisimulation equivalence
is again a system; and the kernel of a homomorphism is a bisimulation equivalence.
These facts are well-known for certain systems such as nondeterministic labelled tran-
sition systems. As it turns out, they do not depend on particular properties of such
examples, and actually apply to (almost) all systems we have seen sofar. Therefore,
this section presents a number of basic categorical constructions that will enable us,
in the subsequent sections, to prove all these statements for all systems at the same
time.

There are three basic constructions in the category Setr of F-systems that are
needed: the formation of coproducts (sums), coequalizers, and pullbacks (cf. Ap-
pendix). In this section, they are discussed in some detail for arbitrary F-systems.
The family of Ilabelled transition systems is used again as a running
example.

(We shall see that in Sefr coproducts and coequalizers exist, for arbitrary functors
F. If the functor F' preserves pullbacks, then also pullbacks exist in Setr and they can
be constructed as in Set. For completeness, a general description of limits and colimits
of systems is presented at the end of this section.)

4.1. Coproducts

Coproducts (as well as coequalizers and, more generally any type of colimit) in
Setr are as easy as they are in the category Set. The coproduct (or sum) of two
F-systems (S,as) and (7,u7) can be constructed as follows. Let is: S — (S + T') and
ir:T— (S + T) be the injections of § and T into their disjoint union. It is easy to
see that there is a unique function y:(S+ 7)— F(S 4+ T') such that both is and iy are
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homomorphisms:

Is Ir

S S+T T

1
Og i Y J“T
~+

F(S) —»F(is) FS+T) <—F(ir) F(T).

The function y acts on S as F(is)oas and on T as F(ir)oar. The system (S +
T, y) has the following universal property: for any system (U,oy) and homomor-
phisms & :(S,as)— (U,ay) and [:(T,a7)— (U,ay) there exists a unique homomor-
phism % :(S + T, y) — (U, oy ) making the following diagram commute:

That is (S + T, y) is the coproduct of (S,0g) and (7,0r). Similarly, the coproduct of
an indexed family {S;};c; of systems can be constructed.

Example 4.1. Recall from Example 2.1 that labelled transition systems (lts) are B-
systems where B(X )= 2(A4 xX). The coproduct of two Its’s (S, «s) and (T, ar) consists
of the disjoint union S 4+ T of the sets of states together with a B-transition structure
y:84+ T —B(S+T), defined for s in S and ¢ in T by

ys)=as(s), ()= ar().

Because A X SCA X (S+T)and 4 x TCA x (S + T) (identifying for convenience
S+ T and SUT), this defines indeed a function from S + T into B(S + T).

4.2. Coequalizers

Next we show how in Setr a coequalizer of two homomorphisms can be constructed.
Consider two homomorphisms f :(S,as) — (T,0r) and ¢:(S,05) — (T,ar). We have
to find a system (U, oy ) and a homomorphism % : (7, 07)— (U, oy ) such that
1. hof=hoy;

2. for every homomorphism 4’ : (T,07) — (U’, oy ) such that A’ o f =k’ o g, there exists
a unique homomorphism [: (U, oy ) — (U’,ay:) with the property that loh=F1'.
Since (per definition) f and g are functions f:S—7 and ¢g:S— T in Set, there
exists a coequalizer #: T — U in Set (see Appendix). Consider F(h)oar:T — F(U).

Because

F(h)oaro f
=F(h)oF(f)ous
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=F(ho f)oug
— F(hog)ous
— F(h)o F(g)oas
=F(h)ourog,

and 2:T — U is a coequalizer, there exists a unique function oy : U — F(U) making
the following diagram commute:

f

S——=T ——U

g 1
J“s “TJ i Oy
F(f +

) F(h)
F(S) ﬁ F(T) —— F(U)
g

Thus (U,ay) is an F-system and /4 is a homomorphism. One easily checks that the
universal property (2) is satisfied.

Example 4.1 (continued). Let (S,05) and (7, u7) be again two Its’s and consider ho-
momorphisms f, g:(S,05) — (T,a7). Let R be the smallest equivalence relation on T
that contains the set

{(f(9).9(s)) |s €S},

and let ¢: 7 — T/R be the function that maps ¢ in T to its R-equivalence class [¢]g.
Then T/R can be supplied with a B-transition structure oy : 7/R — B(T/R) by specifying
transitions

a "

(e[l = 3" €[, t—rt
It is moreover the only possible choice for oz making ¢:7 — T/R into a homomor-
phism. A special instance of this example is obtained by taking a bisimulation equiv-
alence on a B-system, say

T, M2 (R, o) — (T, or).
Then the coequalizer of n; and m, is the quotient 7/R, showing that the quotient of
an lts with respect to a bisimulation equivalence yields again an Its. This observation
will be generalized in Proposition 5.8.

The results above are summarized for future reference in the following.

Theorem 4.2. Let F:Set— Set be any functor. In the category Setr of F-systems,
all coproducts and all coequalizers exist, and are constructed as in Set.
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4.3. (Weak) pullbacks

The construction of pullbacks in Setr depends on the functor F. More specifically,
if F:Set — Set preserves pullbacks then pullbacks in Sefr can be constructed as in
Set: Let f:(S,05)— (T,ar) and g:(U,ay)— (T, or) be homomorphisms. Let

al

T f

be the pullback of f and g in Set, with P ={(s,u)| f(s) =g(u)}. Because F preserves
pullbacks,

F(my)
F(P) —— F(S)
F(my) F(f)

FU) ——— F(I)

is a pullback of F(f) and F(g) in Set. Consider ogom;: P — F(S) and oy omy: P —
F(U). Because

F(f)oasom
ZOCTOfO’Ifl
=arogom

=F(g)oay om,

there exists, by the fact that F(P) is a pullback, a unique function op : P — F(P) such
that F(m;)oap =0gom and F(my)ooap =0y omy. Thus (P,ap) is an F-system, and m;
and 7w, are homomorphisms. It is easily verified that (P,op) is a pullback of f and g
in SEIF.

Note that as a consequence, the pullback (P,op) is a bisimulation on S and U : P C
S x U and the projections n; and m, are homomorphisms.
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As it turns out, the pullback of two homomorphisms is a bisimulation even in the
case that F' only preserves weak pullbacks (cf. Appendix).

Theorem 4.3. Let F:Set— Set be a functor that preserves weak pullbacks, and let
f:(S,as)— (T,or) and g:(U,oy)— (T,ar) be homomorphisms of F-systems. Then
the pullback (P,m,my) of f and g in Set is a bisimulation on S and T.

Proof. The proof is essentially the same as the proof of the existence of pullbacks in
Setr in case F preserves pullbacks. The only difference is that F(P) is now, by assump-
tion, a weak pullback. As a consequence, there exists again a (no longer necessarily
unique) transition structure op: P — F(P) on P such that n; and m, are homomor-
phisms.

Example 4.1 (continued). Let f:(S,05)— (T,ar) and ¢:(U,oy)— (T,0r) be homo-
morphisms of Its’s. Because lts’s are B-systems and the functor B preserves weak pull-
backs (cf. Appendix), the above argumentation applies. The following gives a more
direct construction. As above, let P ={(s,u) | f(s)=g¢g(u)}. It can be supplied with a
B-transition structure by specifying transitions

(s,u) (s i) = f(s')=g') and s 55" and u "y 0.

It is straightforward to prove that the projections from P to S and U are homo-
morphisms. Thus P is a bisimulation. A special case is obtained by taking only one
homomorphism [ :(S,os)— (7,ar) and considering the pullback of f and f. The re-
sulting set is P={(s,s’) | /(s)= f(s")}, which is the kernel of f. It follows that it
is a bisimulation (equivalence). Again, this will be proved in greater generality in
Proposition 5.7.

Because Theorem 4.3 will be called upon time and again, and because all functors we
have seen in the examples sofar do preserve weak pullbacks (but for the contravariant
powerset functor, cf. Appendix), we shall assume in the sequel that when talking about
an arbitrary functor F, it preserves weak pullbacks:

Convention 4.4.° In the rest of this paper, set functors F:Set — Set are assumed
to preserve weak pullbacks.* If (the proof of) a lemma, proposition, or theorem
actually makes use of this assumption, then it is marked with an asterisk.

3 Functors F : Set — Set that preserve weak pullbacks are relators (cf. Remark 2.6 and [74]).

4 Sometimes — notably in Theorem 6.4 — we shall assume F to preserve generalized weak pullbacks, i.e.,
pullbacks of more than two, possibly infinitely many functions at the same time. It was pointed out to us
by H.Peter Gumm that this is in fact a stronger requirement.
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4.4. Limits and colimits, generally

This section is concluded with the observation that the above constructions of co-
products, coequalizers, and pullbacks can be generalized by means of the so-called
forgetful functor U : Setp — Set, which sends systems to their carrier: U(S,as) =S,
and homomorphisms f:(S,as)— (T,0r) to the function [f:S—T. (see,
e.g., [9]).

Theorem 4.5. The functor U : Setp — Set creates colimits. This means that any type
of colimit in Setp exists, and is obtained by first constructing the colimit in Set and
next supplying it (in a unique way) with an F-transition structure.

Similarly, there is the following general statement about limits in Setp.

Theorem 4.6. If F:Set — Set preserves a (certain type of) limit, then the functor
U :Setp — Set creates that (type of) limit. This means that any type of limit in
Set that is preserved by F also exists in Setr, and is obtained by first construct-
ing the limit in Set and next supplying it (in a unique way) with an F-transition
structure.

Recently, it has been shown that in Setz all limits exist, independently of the ques-
tion whether they are preserved by the functor F' or not [67]. What Theorem 4.6 says
is that in case F' does preserve a certain limit, then the carrier of the corresponding
limit in Setp is precisely the limit in Sez. In general, however, limits in Setr look
quite a bit more complicated than the corresponding limits in Set of the underlying
carriers. The interested reader is invited to compute, for instance, the product of the
following nondeterministic transition system

N
S1 S5
with itself.

4.5. Epi’s and mono’s in Setp

Using the results of this section, we are now in a position to supply the
details announced in Remark 2.2 about epi’s and mono’s in the category Setp of
F-systems.

Proposition 4.7. Let F: Set — Set be a functor and f:(S,as)— (T,or) an F-homo-

morphism.

1. The homomorphism f is an epimorphism (i.e., surjective) if and only if f is epi
in the category Setp.
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2. If the homomorphism f is a monomorphism (i.e., injective) then it is mono in the
category Setr. If the functor F preserves weak pullbacks then the converse is also
true: if f is mono then it is injective.

Proof. We use the following categorical characterization of epi’s [13, Proposition

2.5.6]. Let C be an arbitrary category. An arrow a:4— B in C is epi if and only
if the following diagram is a pushout in C:

a
—

Q
o
W &

&

-
1z

By Theorem 4.5, the forgetful functor U :Setrp — Set creates colimits and hence
pushouts. Moreover, it is easily verified that U preserves any colimit that it creates.
So in particular U preserves pushouts. Thus we obtain the following equivalence:

P
(S,as) —— (Loar)
f 17 is a pushout in Setp

(T,O(T) 1—> (T,OCT)

S
s
T

As a consequence, the homomorphism f is epi in Setp if and only if the function f
is epi, and hence surjective, in Set.

Injective homomorphisms are readily seen to be mono’s in Sezr. For the converse,
there is the following elementary proof (suggested to us by Tobias Schroeder). Let
f S — T be mono in the category Setr. We shall see later that if ' preserves weak
pullbacks then the kernel K( /') is a bisimulation (Proposition 5.7). Let n;, 7, : K(f) —
S be the projections. Then fon; = fomp, by the definition of K( /), implying 7, = 7,
since f is mono. This proves that f is injective. [J

S
e

1, is a pushout in Set.

NN

N
Ir
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5. Basic facts on bisimulations

This section deals with arbitrary F-systems. For each particular choice of F, all the
results of this section are straightforward. In fact, some of them have already been
proved for the special case of labelled transition systems in Example 4.1. The point is
to prove such properties for all F-systems at the same time.

Let S, T and U be three F-systems with transition structures og, a7 and oy, respec-
tively.

Proposition 5.1. The diagonal As of a system S is a bisimulation.

Proof. Follows from Theorem 2.5 and the observation that A5 equals the graph of the
identity 1g: S—S§. 0O

The inverse of a bisimulation is a bisimulation.

Theorem 5.2. Let (R,0r) be a bisimulation between systems S and T. The inverse
R™" of R is a bisimulation between T and S.

Proof. Let i:R— R~ be the isomorphism sending (s,z) € R to (t,s) € R~'. Then (R™',
F(i)oogoi~!) is a bisimulation between T and S. [J

Consider two homomorphisms with common domain 7,

Such a pair is sometimes called a span. The following lemma says that the image of
a span is a bisimulation. The lemma will be used to prove that the composition and
union of bisimulations is again a bisimulation.

Lemma 5.3. The image {f,g)(T)={{f(t),9()) |t €T} of two homomorphisms f :
T—S and g:T — U is a bisimulation between S and U.

Proof. Consider the following diagram:

(f,9)(T)
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where the function j is defined by j(¢) = (f(¢),g(¢)), the function i is any right inverse
for j (which exists by the axiom of choice because j is surjective): joi =1, and 7; and
m, are projections. Note that everything in this diagram commutes. The set { f,g)(T)
can be given a transition structure y: {( f,g)(T)— F({ f,g)(T)) by defining

y=F(j)oaroli.
It follows that ({f,¢)(T),y) is a bisimulation between S and U because
F(m)oy
= F(m)oF(j)ouroi
=F(moj)oaroi
=F(f)ooaroi
=oagofoi
= og o 7y,

and similarly for m,. [J

Theorem* 5.4.5 The composition RoQ of two bisimulations RCS xT and QC T x U
is a bisimulation between S and U.

Proof. In Section 20, it is shown that Ro Q is equal to the image (r; oxj, g2 0 x2)(X)
of the pullback:

X
7N
R Q
YN YN
S T U.
(Here x;, r;, and ¢; are projections.) Assuming that F preserves weak pullbacks, the
pullback X can be supplied with a transition structure, by Theorem 4.3, such that the
projections x; and x, are homomorphisms. As a consequence, both 7 ox; and ¢; o x;
are homomorphisms. By Lemma 5.3, Ro Q is a bisimulation between S and U. [J

Similarly, the union of bisimulations is again a bisimulation.

Theorem 5.5. The union \J, Ri of a family {Ry}ix of bisimulations between systems
S and T is again a bisimulation.

3 Recall from Convention 4.4 that the asterisk indicates the assumption that the functor F preserves weak
pullbacks.
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Proof. In Section 20, it is shown that (J, Ry is the image of

k !
S e—— YR — T,

where k and / are the componentwise projections. By Theorem 4.2, the coproduct of
a family of systems is again a system. It follows from Lemma 5.3 that the union is a
bisimulation. [

Corollary 5.6. The set of all bisimulations between systems S and T is a complete
lattice, with least upper bounds and greatest lower bounds given by

V Ry =Ry,
k 3

AR:=U {R|R is a bisimulation between S and T with R C ﬂRk}.
k k

In particular, the greatest bisimulation between S and T exists, and is denoted by
~s,ry- 1t is the union of all bisimulations:

~i,1y =UAR|R is a bisimulation between S and T'}.

As a consequence, also the greatest bisimulation on one single system S, denoted by
~s, Is a bisimulation equivalence. [

We shall simply write ~ for the greatest bisimulation relation when the systems are
clear from the context. Moreover, we write ~r when explicit reference to the type of
systems is needed.

Bisimulation equivalences and homomorphisms are related by the following two
propositions.

Proposition* 5.7. The kernel K(f)={(s,s') | f(s)= f(s")} of a homomorphism f:S
— T is a bisimulation equivalence.

Proof. Since K(f)=G(f)o G(f)~", the result follows from Theorems 5.2 and 5.4.
An alternative proof consists of the observation that K(f) is a pullback of f with
itself, followed by an application of Theorem 4.3. [

Conversely, any bisimulation equivalence on a system is the kernel of a homomor-
phism:
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Proposition 5.8. Let R be a bisimulation equivalence on a system S. Let ¢g:S — S/R
be the quotient map of R. Then there is a unique transition structure ogsjg:S/R —
F(S/R) on S/R such that eg:S — S/R is a homomorphism:

S —*  S/R

1
1

o 1 Lsir
1

F(S) = F(SIR).

Proof. Immediate from the observation that &z is a coequalizer of the projections from
R to S and Theorem 4.2. Alternatively and more concretely, o5z can be defined on an
R-equivalence class by F(eg) o ag(s), where s is any element of the equivalence class.

O

The following facts will be useful.

Proposition* 5.9. Let f:S— T be a homomorphism.

1. If RCS xS is a bisimulation on S, then f(R)={(f(s), f(s))]|(s,s') ER} is a
bisimulation on T.

2. If QCT x T is a bisimulation on T, then f~'(Q)={(s,s") | (f(s), f(s')) €O} is
a bisimulation on S.

Proof. Immediate from Theorem 5.4, and the observation that f(R)=G(f) 'oRoG
(f)and f~H(Q)=G(f)oQoG(f)'. Since f(R)={(fomny, fom)(R), an alternative
proof for 1 is obtained by applying Lemma 5.3. Note that here the assumption that F'
preserves weak pullbacks is not needed.® [

6. Subsystems

Let (S,a5) be an F-system and let V' be a subset of S with inclusion mapping
i:V —S§. If there exists a transition structure oy on ¥ such that i:(V,op)— (S, as) is
a homomorphism, then V' is called a subsystem (or subcoalgebra) of S. There is at
most one such transition structure:

Proposition 6.1. Let (S,as) be a system and let i : V — S be a subset of S. If k,1:V —
F(V) are such that i is a homomorphism both from (V,k) to (S,o0s) and from (V,1[)
to (S,as), then k=1.

Proof. If V' is non-empty, the equality follows from F(i)ok=agoi=F(i)ol and the
fact that F(i) is mono, by Proposition A.1. The case that V' =0 is trivial. [J

© This was pointed out by Alexander Kurz.
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For instance, a subsystem of a labelled transition system (Example 2.1) is a set
of states that is closed under (outgoing) transitions; subsystems of graphs are (full)
subgraphs; and subsystems of trees are subtrees.

The empty set and S are always subsystems of (S,0s). A system is called minimal
if it does not have any proper subsystem (i.e., different from @ and S).

Subsystems can be characterized in terms of bisimulations as follows.

Proposition 6.2. Let S be a system. A subset V C S is a subsystem if and only if the
diagonal Ay of V is a bisimulation on S.

Proof. Let i: V' — S be the inclusion homomorphism of a subsystem 7 in S. Because
Ay is equal to G(i) (the graph of i), it is a bisimulation by Theorem 2.5. For the
converse, suppose that 4, = G(i) is a bisimulation on (S, ag). Because n; : G(i) =V
is an isomorphism, the transition structure on G(i) induces a transition structure on V.

O

Theorem* 6.3. Let S and T be two systems and f:S — T a homomorphism.
1. If VCS is a subsystem of S, then f(V) is a subsystem of T.
2. If WCT is a subsystem of T, then f~' (W) is a subsystem of S.

Proof. Part 1 of the theorem follows, by Proposition 5.9 and Proposition 6.2, from the
observation that A ) = f(Ay). (Note that this part of the proof does not use the
assumption that F' preserves weak pullbacks.) For part 2, it is sufficient to observe that
A -1y is the pullback (in Ser) of f and the inclusion i : W — T. If F preserves weak
pullbacks then this is a bisimulation, which implies by Proposition 6.2 that /= (W) is
a subsystem of S. [J

Unions and intersections of subsystems are again subsystems.

Theorem* 6.4. The collection of all subsystems of a system S is a complete lattice,
in which least upper bounds and greatest lower bounds are given by union and inter-
section.

Proof. Let {V;}; be a collection of subsystems of a system S.
Uy Vi: For every k, the set Ay, is a bisimulation by Proposition 6.2. Because

AUka :UAVka
k

it follows from Theorem 5.5 that it is a bisimulation. Thus |J, V% is a subsystem,
again by Proposition 6.2. (Note that for this part of the proof, the assumption that F’
preserves weak pullbacks is not needed.)

() Vi: By Proposition A.3, F preserves intersections. More specifically, F* transforms
the (generalized) pullback diagram of the intersection of the sets {¥}} into a pullback
diagram of the sets F({V;}r) (see the proof of Proposition A.3). It follows from
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Theorem 4.6 that there exists a (unique) transition structure on (1), ¥4 such that the
inclusion mapping from (), ¥ to S is a homomorphism. [

Theorem 6.4 allows us to give the following definitions. Let (S,0s) be a system
and X a subset of S. The subsystem of (S,as) generated by X, denoted by (X), is
defined as

X)=N{V|V is a subsystem of S and X CV'}.

So (X) is the smallest subsystem of S containing X. If S = (X) for some subset X of
S then S is said to be generated by X. The subsystem generated by a singleton set
{s} is denoted by (s).

Dually, one can also look at the greatest subsystem [X] of S that is contained in X:
using again Theorem 6.4, it is defined by

[(X1=U{V |V is a subsystem of S and V CX}.
There is the following characterization, which will be of use in the sequel.
Proposition 6.5. Let X be a subset of a system S and i:[X]— S the inclusion ho-

momorphism. Any homomorphism f:T — S such that f(T)CX, factorizes through
[X]. That is, there exists a unique homomorphism f':T — [X] such that

Proof. By Theorem 6.3, f(T) is a subsystem of S and since f(7') C X, by assumption,
it follows that f(7)C[X]. Defining f'(¢)= f(¢) gives us a function with io f' = f.
It is a homomorphism by Lemma 2.4. It is unique because i is mono. [

Example 6.6. Some examples of subsystems.
1. Let (S, as) be a labelled transition system (Example 2.1). The subsystem (s) gen-
erated by an element s in S consists of all states

U{s’|3s0,...,sn, s=8)— - —8, =5}

n=0

2. Recall from Section 3 that a directed graph is a system of type

S
E s—s = 5 ca(s).

2(S),
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One can define the largest subsystem C(S) of S in which all states have a self-cycle,
by

CS=[{seS|s—s}]

Generally, C(S) is a strict subset of {s € S|s — s}. For instance, if S = {s,s'} with
transitions s — s and s —s’, then the subsystem C(S) is empty. [J

This section is concluded with a note on the size of subsystems generated by one
element. For future reference, we give the following definition.

Definition 6.7. A functor F is bounded if there exists a set V' such that for every
F-system (S,as) and every s in S, there exists an injective function from the carrier

of the subsystem (s) into the set V (cf. [42]). OJ

In other words, the size of any subsystem generated by one element is bounded by
the size of V. As we shall see in Section 10, this condition is sufficient to guarantee
the existence of a final F-coalgebra.

Example 6.8. Two examples of functors that are bounded, and one of a functor that

is not.

1. Z24(S)={V |V CS and V is finite}: Let (S, as) be a Zs-system and s in S. For any
n, there are only finitely many reachable states. Therefore (s) has at most countably
many elements, and can be embedded in ./". More generally, any type of powerset
functor %, which assigns to a set the set of all subsets with cardinality less than
or equal to a given cardinal k, is bounded.

2. F(S)=Ax(B—S): Let (S,05) be an F-system and s in S. If k is the size (cardi-
nality) of B then the number of elements of (s) is bounded by > {x'|i>0}. Any
set with at least that number of elements is a bound for F.

3. 2: The unrestricted powerset is not bounded. [

7. Three isomorphism theorems

This section contains three theorems, in analogy to three well-known theorems in
universal algebra, on the existence of isomorphisms between F-systems.

The first isomorphism theorem states that any homomorphism factorizes through a
pair consisting of an epimorphism and a monomorphism.
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Theorem™ 7.1 (First isomorphism theorem). Let f'|S — T be a homomorphism. Then
there is the following factorization of f:

s ! T
£ i
8 £®)
K() L U
S/K(f),

where i is the inclusion monomorphism of f(S) in T, p is a monomorphism, f' is
an epimorphism (with f'(s)= f(s) for all s), and ek sy is the quotient map of the
kernel K(f) of f.

Proof. By Theorem 6.3(1), f(S) is a subsystem of T. It follows from Lemma 2.4
that f” is a homomorphism, and because it is surjective, it is an epimorphism. (Note
that so far, the assumption that F' preserves weak pullbacks has not been used.) By
Proposition 5.7, K(f) is a bisimulation equivalence on S, and by (the proof of)
Proposition 5.8, S/K(f) is the coequalizer of the projection homomorphisms of K( f').
The homomorphisms from S/K(f) to f(S) and T are given by the coequalizer prop-
erty. Since the former is bijective, it is an isomorphism by Proposition 2.3. The latter
is a monomorphism because 7 is. [

Theorem 7.2. Let f:S— T be a homomorphism and R a bisimulation equivalence
on S which is contained in the kernel of f. Then there is a unique homomorphism
f:S/R—T such that f=f oeg:

S —=*S/R
ALY
T

Proof. There is precisely one function f/ for which f o gg=f. It follows from
Lemma 2.4 that it is a homomorphism. Alternatively, the existence of the homomor-
phism f is given by fact that S/R is a coequalizer of the projection homomorphisms
from R to S. [

The second isomorphism theorem states that there is a ono-to-one correspondence
between subsystems of a quotient of a system S and quotients of subsystems of S.

Theorem* 7.3 (Second isomorphism theorem). Let S be a system, T a subsystem of
S, and R a bisimulation equivalence on S. Let TR be defined by TR={s€S|3teT,
(s,t) ER}. The following facts hold:
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1. TR is a subsystem of S.
2. OQ=RN(T x T) is a bisimulation equivalence on T.
3. T/IQ=TR/R.

Proof. Since TR =n(n,~!(T)), it is a subsystem of S by Theorem 6.3. Because
RN (T x T):nfl(T)ﬂngl(T), it is a subsystem of R, by the same theorem, and
hence it is a bisimulation equivalence on 7. Consider the quotient homomorphism
er: S —S/R, and let ¢ : T — S/R be its restriction to 7. Because &(T) = ex(T%) = T'?/R,

and K(¢)=0, it follows from Theorem 7.1 that 7/Q = TR/R. O

Let S be a system, 7 a subsystem of S, and R a bisimulation equivalence on S. If
RN (T x T)=Ar then R is said to separate T (because, equivalently: for all ¢,¢’ €T,
if t # ' then (£,¢') € R). In this case, the above theorem yields that T = T®/R.

Theorem* 7.4 (Third isomorphism theorem). Let S be a system, and let R and Q be
bisimulation equivalences on S such that RC Q. There is a unique homomorphism
0:S/R— S/Q such that 0o ep=¢ep:

S —=* S/R
) EB
S/0.

Let R/Q denote the kernel of 0: it is a bisimulation equivalence on S/R and induces
an isomorphism 0 :(S/R)/(R/Q)— S/Q such that 0 =0 o egp:

S/R — ™ (SIR)/(R/Q)

x{ Iy
JPtar

510"

Proof. The existence of 6 follows from Theorem 7.2. Because &¢ is surjective also 0
is surjective. The existence of the isomorphism 6’ is now given by Theorem 7.1. [J

8. Simple systems and coinduction

An algebra is called simple if it does not have proper quotients. We apply the same
definition to systems: a system S is simple if it has no proper quotients (homomorphic
images): i.e., every epimorphism f:S— 7 is an isomorphism. Theorem 8.1 below
gives a number of equivalent characterizations of simplicity, the most important of



40 J.J.M.M. Rutten| Theoretical Computer Science 249 (2000) 3-80

which is the so-called coinduction proof principle: for every bisimulation R on S,
R C Ag (where A5 ={(s,s) |s €S}). Equivalently, for all s and s’ in S,

s~gs =s=¢.

Thus in order to prove the equality of two states in S, it is sufficient to show that
they are bisimilar. We shall see examples of the use of this surprisingly strong proof
principle in Section 12. In Section 13, it will be related to the more familiar principle
of induction in a way that will justify the chosen terminology.

Theorem* 8.1. Let S be a system. The following are equivalent:

1. S is simple.

2. S satisfies the coinduction proof principle: for every bisimulation R on S, R C As.

3. As is the only bisimulation equivalence on S.

4. For any system T, and functions f:T—S and g:T —S: if f and g are homo-
morphisms then f=g.

5. The quotient homomorphism ¢:S — S/ ~, where ~ denotes the greatest bisimula-
tion on S, is an isomorphism.

Proof. 1=-3: Let R be a bisimulation equivalence on S and consider the quotient
homomorphism ¢z : S — S/R. If S is simple then ¢z is an isomorphism. Thus R = 4g.
3=1: Let f:S— T be an epimorphism. Since the kernel of f is a bisimulation
equivalence, it follows from 3 that it is equal to Ag. By Theorem 7.1, §/4s 2= f(S),
hence S=T. Thus S is simple.
2=-4:Let T be a system, and let /: 7 — S and g: T — S be homomorphisms. Define

O={{f().9(1)) |1€T}.

Since 0= G(f)~ !0 G(g) (recall that G(f) is the graph of f), it is a bisimulation
by Theorem 5.4. It follows from 2 that O C Ag. Thus f =g.

4=-2: Let R be a bisimulation on S. By definition, its projections n; : R— S and
7, : R— S are homomorphisms. It follows from 4 that m; =m,, hence R C 4.

3 < 2: Immediate from the observation that the greatest bisimulation on S is an
equivalence.

1 =5: Immediate.

5=-3: Suppose that ¢:S — S/ ~ is an isomorphism. Let R be a bisimulation equiv-
alence on S. Because RC ~ and ~ is the kernel of ¢, there exists by Theorem 7.2 a
(unique) homomorphism /:S/R— S/ ~ such that foeg =¢. Since ¢ is an isomorphism
this implies that ez is injective. Thus R=A4g. [J

Every system can be made simple by taking the quotient with respect to its greatest
bisimulation. This is a consequence of the following.

Proposition* 8.2. For every system S and bisimulation equivalence R on S, the quo-
tient S/R is simple if and only if R=~.
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Proof. «<: Let Q be a bisimulation on S/~. We show that O C Ag... Then it follows
from Theorem 8.1 that S/~ is simple. Consider ¢:S — S/ ~. By Proposition 5.9 ¢~'(Q)
is a bisimulation on § and hence is included in ~. This implies Q C Ag/...

=: Let QO be a bisimulation on §. We show that Q CR. By definition the pro-
jections m;:Q—S and m,:Q— S are homomorphisms. Consider the compositions
gom :Q—S/R and ¢ o m:Q— S/R. By assumption, S/R is simple. It follows from
Theorem 8.1 that ¢ o m; =¢ o mp, whence O C R. Therefore R= ~. [J

9. Final systems

An F-system (P,m) is final” if for any F-system (S, og) there exists precisely one
homomorphism fs: (S,as) — (P, 7). (In other words, (P,m) is a final object in the
category Setr. As a consequence, any two final systems are isomorphic.) Final systems
are of special interest because they have a number of pleasant properties.

First of all, the transition structure on a final system is an isomorphism (Lambek,
cf. [78]).
Theorem 9.1. Let (P,n) be a final F-system. Then n:P — F(P) is an isomorphism.
Proof. Because (F(P),F(n)) is an F-system, there exists by the finality of P a unique

homomorphism f:(F(P),F(n))— (P,m). Again by finality, the composition of the
homomorphisms 7 and f:

P —- . FP) —— P
n F(n) n

F(P) — FFWP) — F(P)
F(m) F(f)
is equal to 1p, since 1p is also a homomorphism. It follows from the fact that f is a
homomorphism that the reverse composition equals the identity on F(P). [J
Final systems allow coinductive proofs.

Theorem 9.2 (Rutten and Turi [75]). Final systems (are simple and hence) satisfy the
coinduction proof principle: for any bisimulation R on P, R C Ap.

Proof. Immediate from Theorem 8.1. [

7We prefer final to terminal, which we associate with malady.
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A final system can be considered as a universal domain of canonical representatives
for bisimulation equivalences classes in the following way.

Theorem* 9.3 (Rutten and Turi [75]). Let S be an F-system, P a final F-system, and
fs:S — P the unique homomorphism from S to P. For all s and s' in S,

s~ss' = fs(s)= fs(s)).

Thus fs(s) represents the ~g-equivalence class of s.

Proof. =: Let R be a bisimulation on S with a projections 7n; and 7, and with
(s,s"y € R. The composites fsom and f;om, are homomorphisms from R to P. By
finality, they are therefore equal. In particular, fs(s)=(fs o m){s,s’) =(fs o 1 ){s,s")
= fs(s').

<«: Because 4p is a bisimulation on P, fS_l(A) is a bisimulation on S, by Proposition
5.9(2). If fs(s)= fs(s") then (s,5") € fg"'(4), thus s ~g s'. [

The element fg(s) in the final system can be viewed as the ‘observable behaviour’
of s. (For that reason, fs is called final semantics in [75].) The following examples
may serve to illustrate this.

Example 9.4. Consider the functor F(S)=4 x S of deterministic transition systems
with output. For this functor, (4, (h,t)) (Section 3) is final: Consider a system S
with dynamics (v,n) : S — (4 x S). The function from fs:S§— A®, which assigns to a
state s in S with transitions

ap aj
S ——> 8 —> -
the infinite word

(ag, ai, ...) (= {(v(s), v(n(s)), v(n(n(s))), ...)

is the only homomorphism between S and A“. If the output symbols a; are interpreted
as the observations corresponding to the individual transition steps, then fs(s) can be
viewed as the observable behaviour of the entire transition sequence (computation)
starting in s. [J

Example 9.5. Consider the functor F(S)=2 x S and recall from Section 3 that F-
systems (S, (0,7)) are deterministic automata. Let ¥ ={L|L C A*} be the set of all
languages over (the alphabet) 4. For a word w in A* and a in A4, the a-derivative
of a language L is L,={v€A*|aveL}. This notion can be used to turn the set
& of languages into an F-system (automaton) (%, (og, t¢)), defined, for L € ¥ and
a€A4, by

1 ifeel
og(L)= {0 if e¢l and 1g(L)(a)=L,
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(here ¢ denotes the empty word). It can be readily verified that the function /s:S — &,
assigning to every state s in S the language it accepts

ZS(S):{al...a”sle Lmisnl},

(where s; =t(s)(a1) and s;+1 =1(s;)(ait1), for 1 <i<n), is a homomorphism, and that
it is the only one. Thus (%, (o¢, ty)) is final. (This example is worked out in all
detail in [73], which also includes many examples of the use of coinduction.) [J

Finally, the existence of a unique homomorphism from a given system into a final
system P can be used as a way of giving definitions. Therefore, P is said to satisfy
the coinduction definition principle. We shall see examples of this in Section 11.

10. Existence of final systems

A final F-system need not always exist. For instance, if F is the powerset functor &
(of nondeterministic systems) and P were a final #-system, then Theorem 9.1 implies
P=2(P), a contradiction because the cardinality of 2(P) is strictly greater than that
of P. For many functors, though, final systems do exist. We shall briefly describe two
ways of constructing final systems and give some concrete examples.

For many functors F':Set — Set, the following construction yields a final system.
Let !: F(1)— 1 be the unique function from F(1) to the one element set 1. The inverse
limit of the following sequence:

F2(1)
8

1 ry EY p2
where F"t! =F o F”, is defined as
P={{(x0,x1,%2,...) |Vn=0, x, € F"(1) and F"()(xp11) =%}

The set P is a categorical limit of the sequence. If F(P) is again a limit of the
same sequence, then F' is called (w-)continuous. In that case, there exists a unique
(mediating) bijection from F(P) to P, the inverse of which, say n: P — F(P), turns P
into an F-system (P, n), which can be easily shown to be a final F-system (cf. [78]).

Let the class of polynomial functors consist of all functors that we can build from
the following basic functors: the constant functor 4 (where 4 is any set), the identity
functor 7, sum +, product x, and the function space functor F(X)=X*, where 4
again an arbitrary set. (Note that this definition if somewhat non-standard in that the
function space functor is usually not included.)

Theorem 10.1. A/l polynomial functors are continuous and hence have a final system.

Below we give a few concrete examples.
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Example 10.2. An explicit description of some final systems is given, on the basis of

which a direct proof — not using the continuity of the functor — of their finality can

be easily given as well. (The sets 4, B, and C below are arbitrary.)

1. I1(S)=S: The one element set 1 is a final system for the identity functor.

2. F(S)=A x §: For this functor, the system (4%, (h,t)) is final (cf. Example 9.4).

3. F(S)=1+4(4 x §): the system (4°°, ) (Section 3) is final.

4. A special case: if 4 =1 then the previous final system is (isomorphic to) (4, pred),
the set of extended natural numbers (Section 3).

5. F(S)=4 x S: the system (45", 7) is final [52], where

AP A x (45HE
is defined, for ¢ in 4%, by n(¢) = (¢(e),¥), with for b in B and v in B,
Y(b)(w) = p((b) - v).

(Here ¢ is the empty sequence and - denotes concatenation of finite sequences.)
Note that the observation, of Example 9.5, that the set % of all languages is a final
(2 x (—)*)-system (i.e., deterministic automaton) is a special instance of the present
example, because of the existence of the isomorphism {L|LC 4*} = 24"

6. F(S)=C + (4 x §%): Note that this example subsumes all of the above examples.
The following set can be given a transition structure similarly to the definition of
7 in the previous example, turning it into a final system [36]:

{¢p:B* =4+ C)|VoeB*, ¢p(v) € C= (YweB*, ¢p(v-w)=(v))}.

7. F(S)=14 ((4 x §) x (4 x S)): The following system (7,7) is final. It consists
of the set 7 of all binary arc-labelled trees (possibly containing finite and infinite
branches):

T={$:{0.1}* = (1+ (A x 4))|
Voe {0, 1}, ¢(v) € 1= (Ywe {0,1}%, d(v- w) = $(v))},
and the function 7:7 — 1+ (4 X T') X (4 x T)), defined for ¢ €T by
* if ¢p(e) ==,
= { PN
({a1, 1), (a2, d2)) if Pp(e)=)ar, az),
where ¢; is defined for v e {0,1}* by ¢:(v) = p((a) - v).

The class of polynomial functors contains most but not all of the functors we have
encountered so far. Notably the powerset functor 2 is not polynomial. Now we have
already seen at the beginning of this section that no final system exists for this functor.
However, we shall see that for the finite powerset #, a final system exists. It cannot be

obtained by the inverse limit construction described above, since #; is not continuous.
Fortunately, there exist other more general ways of finding final systems, one of which
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is discussed next. It is a variation on the following naive approach, which almost
works. First we form the coproduct (disjoint union) of all F-systems:

(U, B) = H{(Si, )| (S;,0;) is an F-system}.
Next the quotient of U is taken with respect to the greatest bisimulation on U:

(P,TE):(U/ NUsﬁNU)'

We claim that (P, ) is final: let (S, «) be any F-system. There exists a homomorphism
from S to P by composing the embedding homomorphism of S into the coproduct U
with the quotient homomorphism ¢: U — P. Because P is simple by Theorem 8.2, this
homomorphism is unique by Theorem 8.1.

This argument has, of course, a flaw: the coproduct of all systems does not exist
(its carrier would generally be a proper class). For many functors, however, it is not
necessary to take the coproduct of all systems, but it is sufficient to consider only a
‘generating’ set of designated systems. More precisely, suppose that (F is such that)
there exists a set of F-systems

G = {(G,—,ot,—) |l€1}
(for some index set '), with the property that
V(S,a5) Vs €S HGio) €%, (Girou) = (s).

(Recall that (s) is the subsystem of S generated by the singleton set {s}.) Such a set
9 is called a set of generators® because every F-system (S,ug) can be obtained as
a quotient of a coproduct of elements of ¥ as follows: choose for any s €S a system
G, in ¢ with G; = (s). Then there exists a surjective homomorphism

q: | {Gs|s€S}—S,

which is determined by the homomorphisms, for all s€ S, G; = (s) — S (the latter
homomorphism is the embedding of the subsystem (s) in §).
Now the construction proceeds as before: let

(U’ﬁ): U{(Giso‘i) ‘ (G,‘,KZ[‘) S @}’

and let again

(P,TC):(U/ NU)BNU)'

We claim that (P,7) is final: let (S,a) be any F-system. Because (P, 7) is simple (as
before), it is sufficient to prove the existence of a homomorphism from any system S

8 See [13, Proposition 4.5.2] for two equivalent characterizations of this notion.
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to P. Consider the following diagram:

LU{G,|seS} 4 S

N

W, B £

1
1
1
1
1
1
1
1
1
1
1
1

+

(P, m).

The existence of the homomorphism ¢ was established above, and ¢: (U, f) — (P, )
is the quotient homomorphism. The homomorphism / is determined by the embed-
dings, for all s €S, of Gy in U. The existence of the homomorphism fg follows from
Theorem 7.2, whose conditions can be seen to be fulfilled as follows: by the First
Isomorphism Theorem (7.1) S 2 | [{G,|s € S}/K(g) (recall that K stands for kernel);
K(q) is a bisimulation, by Proposition 5.7, and hence /(K(g)) is a bisimulation on U,
by Proposition 5.9; consequently, /(K(g)) C ~y = K(¢), which implies K(g) C K(eol).
This concludes the proof of the finality of (P, 7). We have proven the following.

Theorem* 10.3.° Any functor F for which a set of generators exists, has a final
F-system.

For all bounded functors (Definition 6.7), a set of generators exists.

Theorem* 10.4. For every bounded functor F, a set of generators, and hence a final
F-system, exists.

Proof. Let V' be a set such that for any system (S,0s) and any subsystem (s) = (T, f3)
of (S,as), T can be embedded in V. The following is a set of generators for F:

{(U)|UCV and y: U —F(U)}.

For let (s) = (T, ) be a subsystem of a system (S, o), and let i : T — V be injective. Let
b:T —i(T) be the corresponding bijection. Then (s) is isomorphic with (i(7), F(b) o
B ob~1). Applying Theorem 10.3 yields the existence of a final system. [

Example 10.5. The above results apply to many functors.

1. The functor F(S)=A4 x S? is bounded (Examples 6.8) and hence has a final system
(which we already knew from Theorem 10.1). In fact, it is not to difficult to prove
that all polynomial functors are bounded.

2. A prototypical example of a functor that is not polynomial, Z;, is bounded by A4~
(Examples 6.8). Hence a final #,-system exists.

9 Both Theorems 10.3 and 10.4 are marked with an asterisk, to indicate that the functor F is assumed to
preserve weak pullbacks. Using so-called generalized push-outs, one can easily adapt the present proof and
do without this assumption (cf. [9, 81]).
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3. Similarly, the functor F(S)=(Z2/(S))* of image finite labelled transition systems
(Section 3) is bounded, and thus has a final system (P, n). Using a word from the
world of programming semantics [55], we call the elements of P (image finite)
processes.

In the same way, one can find sets of generators for all possible combinations of
the basic functors mentioned above:

Theorem 10.6. For all functors that we can build from the following basic functors:
the polynomial ones (A, 1+, x,(—)*), and P;, a set of generators exists.
Consequently, all these functors have a final coalgebra.

The proof of the existence of a final system for bounded functors is more general
but at the same time less constructive than the first method, for continuous functors,
where explicit descriptions of final systems (as in Examples 10.2) can be easily given.
In general, we have no such concrete characterizations for the final systems of functors
involving #;, such as the set of processes in Examples 10.5. (See however [76] for a
description of a final system for &, as a subset of an inverse limit.)

11. Examples of coinductive definitions

We mention the general principle of coinductive definitions and give a few examples.

Let S be a set and (P, 7) a final F-system. Given a transition structure o :S — F(S)
there exists by the finality of P a unique homomorphism f, :S — P. Thus, specifying
a transition structure o on S uniquely defines a function f,:S — P which is consistent
with that specification in that it is a homomorphism:

S----E-- »P
I
F(S) -}:Efa)-é F(P)

We say that the function £, is defined by coinduction from (the specification) a. As we
shall see shortly, o gives ‘the first step’ of the action of f,. Therefore f, is sometimes
called the coinductive extension of o.

Example 11.1. Typically, the coinduction definition principle is used to define func-

tions from (products of) a final system to itself. Here are a few examples.

1. ‘Zipping’ two infinite streams: Recall from Example 10.2 that the system (4%,
(h,t)) of infinite streams over 4 is final for the functor F(S)=4 x S. In order to
define a function f%;, that merges two streams into one by alternatingly taking an
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element from the first and the second, we define a transition structure zip:(4“ x
AY)— A x (A” x A®) by

zip(v,w) = (a, (w,v")), where (h,t)(v)=(a,v').

Then by coinduction there exists a unique homomorphism f2;, : 4° x 4 — A”. Be-
cause it is a homomorphism, it satisfies

<h9 t)(f:ip <a : Ula W)) = (d, f:ip <W: UI) )

Note that this equation expresses the fact that f;, is a consistent extension of zip:
it repeats infinitely often the first step of zip, namely taking the first element from
the left stream and swapping the remainder of the left stream with the right stream.

. ‘Zipping’ two infinite streams: We repeat the same example with a small vari-

ation of presentation. Rather than defining the function zip directly, we specify
the corresponding transitions in A” x A“ by means of the following
conditional rule

v
(v,w) == (w, v’>'
We use the symbol — for the transitions in 4% (determined by the function (%,¢)),
and the symbol = for the transitions in A“ x A that we are defining. The rule
should be read as: if the transition of the premise (upper part) is possible, then so
is the transition of the conclusion (lower part). Then = is formally defined as

the smallest relation on A” x A® that satisfies this rule. From =, we derive an
alternative definition of the function zip, by putting

zip(v,w) = (a,(w,v")) <= (v,w) == (w,v').
The function f.; can now be conveniently characterized by the rule

a /
V— 0

Lapoaw) = frp{w,v')’

which is identical in shape to the rule that has been used in the definition of zip.

. Defining concrete infinite streams: Let, in the previous example, a and b be ele-

ments of 4. The infinite streams (ab)® and (ba)® can be formally introduced by
putting a transition structure on the set 2=1{0,1} as follows:

0=%1 and 1=20.
By coinduction there exists a unique homomorphism f:2 — A°° satisfying

£0) = f(1) and  f(1) — (0).
Now put (ab)” = f(0) and (ba)® = f(1). Similarly one defines ¢” and »*.
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4. Concatenation of streams: The system (4°°, ) of finite and infinite streams over
A is final for the functor F(S)=1+ (4 x S) (Examples 10.2). The concatenation
of two streams can be defined by specifying the following transitions on 4% x 4>
(using a notation similar to that of the previous example):

v -5 v| and w = w' v| and w|

(o,w) == (', w)  (o,w) == (v, W) CATR

(The transitions in the premises correspond to the transition structure 7.) As before,
this defines a transition structure conc: A% X A — 1+ A4 X (A X A*), by

* if (v,w) |,
conc{v,w) = .

(a, (W', W) if (v,w) = (', w').
By coinduction, there exists a unique function f,,, : A°° X A*° — A°. For notational
convenience, we shall write v - w= fou(v,w). Again the resulting function f.p.
satisfies the same (in shape, that is) rules that have been used in the definition of
conc above:

v -5 v| and w 5w v] and w|

veow =50 w vew s v vewl
Note that v-¢=¢-v=0v does not come out of this characterization immediately: we
shall prove it in Section 12 using the coinduction proof principle.

5. Concatenation of other structures: Without mentioning the details, let us observe
that concatenation of other structures like trees or processes (Examples 10.5) can
be defined in essentially the same way as the previous example.

6. Addition of natural numbers: A special case of concatenation of streams is obtained
by taking 4 =1. Now the functor looks like F(S)=14S (since 1 +(4 x S)=1+
(1 x8)=1+S8.) Recall from Examples 10.2 that it has (.1, pred), the extended
natural numbers, as a final system. We write @ for the function f,,. in this case,
which satisfies as before

n—sn' n| and m—m’ n| and m|

nom—n' d&m ndm—ndm’ nem|
We shall prove in Section 12 that @ indeed is (a coinductively defined version
of) addition.
7. Merging two processes: The system of nondeterministic processes (P,7) is final
for the functor F(S) =4 — 2,(S) (Examples 10.5). In the same style as above, we

define a merge (or interleaving) operation on P x P by specifying the following
transitions:

p—7p q->4q pl and ¢|
(p.q) == (Pq) (p.q)==(p.q’) (P

As before, this determines a transition structure merge: P X P — (A — Pr(P x P)).
(Note that one has to check that the transition relation = is image finite, which
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is immediate from the fact that — is.) By coinduction, there exists a function
Jfmerge 1 P x P— P, which is characterized by

p—p g—d pl and q|
fmerge<pa 6]> - fmerge<p/; q> fmerge<p, C]> - fmerge<p> q/> fmerge<p: q>l

The merge of two processes is sometimes called parallel composition.

A common feature of all the examples above is that the definition of a function
f S — P by coinduction amounts to the definition of a transition structure o : S — F(S).
A good understanding of coinduction, therefore, should be based on a thorough knowl-
edge of transition system specifications, of which we have seen examples above. The
classification of schemes or formats of such transition system specifications (as in, e.g.,
[26, 84]) could be called the study of corecursion, in the same way as recursion theory
studies schemes for inductive definitions. See also [59] for some further thoughts on
corecursion in the context of nonwellfounded set theory.

12. Examples of proofs by coinduction

Recall from Section 8 the coinduction proof principle, for a system S:
for every bisimulation R on S, RC Aj.

As we have seen, the principle is valid for all simple systems and hence for all final
systems. It is quite a bit more powerful than one might suspect at first sight.

Example 12.1. Typically, the coinduction proof principle is used to prove properties

of coinductively defined functions, such as the ones defined in Examples 11.1.

1. ‘Zipping® infinite streams: We prove that zip(a®, b®) = (ab)®. The relation R C 4®
x A®, consisting of the following two pairs:

R={(zip(a”,b"),(ab)”), {zip(b”,a"),(ba)”)}

is a bisimulation: We have to prove (cf. Section 3) for all a in 4 and (v,w) in R:
(@) v - o' and w -5 w = (V,w') €R.
Consider the first pair of R. The only transition step of its left component is
zip(a“’, bw> 4 Zl'p<bw,am>,
whereas its right component can take the step
a

(ab)” —* (ba)”.

The pair of resulting states, (zip(b®,a®),(ba)®), is again an element of R. Thus we
have proved that the first pair in R has the bisimulation property. Similarly for the
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second pair. Now A® is final and hence satisfies the coinduction proof principle,
which tells us that R C 4., proving the equality we were after.

. Concatenating the empty stream: For any finite or infinite stream v€ A%, left
concatenation with the empty stream ¢ is the identity, because R = {(&-v,v) | v € 4>}
is easily shown to be a bisimulation on the final system 4°°; that is (cf. Section 3),
for all (v,w) in R, (a) above holds as well as

(b) v] <= w|.

Similarly, right concatenation with ¢ is the identity.

. Concatenation of streams is associative: This follows by coinduction from the fact
that

R={{(u-v) -wu-(v-w))|uv,weA*}

is a bisimulation relation on 4°°. Rather than showing this, it turns out to be
convenient to prove that S =RU 4, is a bisimulation. Consider a pair in S. If it
is in A4 then there is nothing to prove since by Proposition 5.1, the diagonal is
a bisimulation. Otherwise, the pair is of the form {((u-v)-w, u-(v-w)) in R. If
u=¢ then it follows from the previous example that

(e-v)-w=v-w=¢-(v-w),

which implies that our pair is in A4 after all, bringing us back to the case we
have already considered. If u is not the empty sequence, it can take an a step to
u', for some a and u’. In that case, there are transitions

(w-v)y-w—"@ - -v)-w, and wu-(-w)—>u-(v-w),

which conclude the proof since the resulting pair is in R again. The reader is invited
to prove directly that R (without taking the union with 44~ ) is a bisimulation. This
is quite possible but involves a few more case distinctions (as to whether v and w
are empty or not).

. Concatenation of trees and processes is associative: by similar proofs.

. Addition of natural numbers: In Examples 11.1, addition (&) on the (extended)
natural numbers ./ has been defined in terms of concatenation. Here we show that
@ has the usual properties in terms of the successor function. Let s: ./ — A" be
the inverse of pred:(1 4+ A")— A, restricted to /. Thus it is defined as usual,
with s(o0) =00. Because pred(s(n))=n there is a transition s(n) — n, for any n
in . The following holds, for any n and m in ./

() 0em=m

(b) s(n) ®m=s(n®m).

The first statement follows from Example 2. above. The second follows by coin-
duction on /" from the fact that R={(s(n) ©m,s(nSm)) |n,mE A s} UA  is a
bisimulation, which is immediate since both s(n) @& m and s(n & m) can take a step to
n@®m, and (n@®m,nPm) is in 4 . Note that it follows from the previous example
that addition is associative.
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Addition of natural numbers is commutative: Not much of a surprise, really. But
just for the fun of it, we present a proof by coinduction (which the reader may
want to compare with the more familiar proof using mathematical induction). We
prove, for all n and m,

(a) n®s(m)=s(n)@ m: This follows by coinduction from the fact that

R={(n®s(m),s(n)®m)|n,mée A7} ud;

is a bisimulation: Consider a pair (n®s(m),s(n) ®m). If n=0 then both com-
ponents make a transition to 0@ m and we are done, since (0B m,0Pm) €4 .
Otherwise, we have transitions

n®s(m) — pred(n)@®s(m), and s(n)®m — ndm.

Now note that (pred(n)® s(m),n®m) = (pred(n)® s(m),s( pred(n)) ®m), which
is in R.
(b) n®m=m®n: Using statement (a) as a lemma, we prove that the relation

O={(n®&mmen) |n,m€ﬂ7}

is a bisimulation. Consider a pair (n ®m,mP®n) and suppose that both are
different from 0 (the other three cases are trivial), say, n=s(n') and m = s(m’).
Then there are transitions

n®dm—n@®&m, and m®n — m Gn.
Now observe that
n®m=n" ®s(m')= [the lemma (a)] s(n')Dm =ndm’,

which implies that (n’ @ m,m’ @ n) is in Q.
(Clearly, concatenation of streams over a set A with more than one element is
generally not commutative.)
The merge of processes: is commutative, since R = {(fmerge (P> q)> fnerge{q> P)) | -4
€ P} is a bisimulation.
We refer to [73] for many examples of proofs by coinduction of properties of
deterministic automata. In particular, coinduction is used there to prove equalities
of languages and regular expressions, as well as the classical theorems of Kleene
and Myhill-Nerode.

13. Induction and coinduction

Why did we call the coinductive proof principle of Section 8 by that name? How

does it relate to induction? In short, coinduction is dual to induction in the following
sense. Recall that a system S satisfies the coinduction proof principle if and only if it
satisfies one of the following two (by Theorem 8.1) equivalent conditions:
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1. § is simple, that is, it has no proper quotients.
2. For every bisimulation relation R on S, RC Ag.
There is also the following dual proof principle for algebras. We say that an algebra
A satisfies the induction proof principle whenever one of the following two conditions,
which turn out to be equivalent, holds:
3. A is minimal, that is, it has no proper subalgebras.
4. For every congruence relation R on 4, 44 CR.
To make 3 and 4 more precise, we shall give the categorical definitions of alge-
bra, homomorphism of algebras, and congruence relation, which are the algebraic
counterparts of the coalgebraic notions of coalgebra, homomorphism of coalgebras,
and bisimulation, respectively (cf. Section 1). Then the equivalence of 3 and 4 is
proved. Next these notions and the induction principle are illustrated by the exam-
ple of the natural numbers, which will make clear that the above, somewhat ab-
stractly formulated induction principle, is just the familiar principle of mathematical
induction.

Let F: Set — Set be a functor. An F-algebra is a pair (4,04) consisting of a set 4
and a function oy :F(4)— A. Let (4,24) and (B,op) be two F-algebras. A function
f:4A— B is a homomorphism of F-algebras if f ooy=apgo F(f):

F()
F(4) —— F(B)

A — B

Intuitively, homomorphisms are functions that preserve the F-algebra structure. An F-
congruence relation between two F-algebras (4,04) and (B,up) is a subset RC A4 X B
for which there exists an F-algebra structure oy :F(R)— R such that the projections
from R to 4 and B are homomorphisms of F-algebras:

F(m) F(m)
F(4) «— FR) —— F(B)

ad aR aB

A — R — B

(This definition of congruence is not to be confused with a congruence equivalence
relation, which is an equivalence relation on one and the same algebra that is moreover
respected by the operators. In fact, the above definition is more general.)
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Example 13.1. Any X-algebra [16] is an F-algebra for a suitable choice of F' (see,
for instance, [76]). Here we look at one particular type of algebras, namely triples
(4,04 €4,54:4— A) consisting of a (carrier) set 4, a constant 04, and a unary (succes-
sor) function s4. A concrete example are the natural numbers (.47, 0,s). Such algebras
can be represented as algebras of the functor F(X)=1+ X, by defining

o:(1+A4)—A, *—04 a— syla).

If we have two such algebras (4, 04€4, sq4:A—A) and (B, 03 €B, sp:B—B)
and represent them as F-algebras (4,04) and (B, ug), then one readily verifies that a
function f:4— B is a (1 + —)-homomorphism from (4,04) to (B,ap) if and only if
it satisfies the usual definition of homomorphism:

S(04) =0z, [(s4(a))=s5(f(a)).

Similarly, it is easy to prove that a (1 + —)-congruence relation R C A4 x B between
(A4,04) and (B, ap) is substitutive:

<0AaOB> €R, (a, b> ER= (sA(a),sB(b)> €R.

As already mentioned above, an F-algebra A satisfies the induction proof principle if
it satisfies clauses 3 and 4, which are next shown to be equivalent: If R is a congruence
on A then m;(R)Nmy(R) is a subalgebra of 4. Assuming 3, this subalgebra is equal to
A, or equivalently, 4, CR. This proves 4. Conversely, if A’ C A is a subalgebra and
i:A" — A is the inclusion homomorphism then the kernel of i is easily shown to be a
congruence on A’, and hence on 4. Assuming 4, A, C R, which implies 4 C 4’.

We have seen that all final systems are simple and hence satisfy the coinduction proof
principle. Dually, an initial algebra (for which there exists precisely one homomorphism
into any given algebra) is minimal and hence satisfies the induction principle.

Example 13.2 (continued). The algebra (.4",0,s) of the natural numbers is initial and
hence minimal. Now minimality amounts to the well-known principle of mathematical
induction: for all P C A",

if: 0P and: for all ne /" (n€P=s(n)€P) then: P=A",
since the if-part of the implication is just the assertion that P is a subalgebra of /.

Note that for proofs by induction, formulation 3 is mostly used, whereas proofs by
coinduction are best given, as we have seen in Section 12, using 2 (which is the dual
of 4 rather than 3).

Although we have only compared induction and coinduction as proof principles, the
corresponding definition principles are similarly related. The main observation there
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is that definitions by induction use the universal property of initiality, as opposed to
definitions by coinduction, which are based on finality.

14. Greatest and least fixed points

Final coalgebras generalize greatest fixed points, and, dually, initial algebras gener-
alize least fixed points, as follows. Let (P, <) be a complete lattice and let &:P — P
be a monotone map. It follows from Tarski’s fixed point theorem [80] that & has a
least fixed point x and a greatest fixed point y, which are given by

x=N{peP|d(p)<p} and y=\{peP|p<P(p)}

The correspondence between fixed points and (co)algebras is based on the well-known
observation that any partially ordered set P is a category: the objects of the category are
the elements of P, and there is an arrow p — g whenever p <g. Any monotone map on
P is furthermore a functor on this category (since it maps any pair of related elements
p<q to ®(p)<P(q)). Clearly, d-coalgebras are so-called post-fixed points: elements
p in P with p<@(p). Dually, ®-algebras are pre-fixed points: elements p in P with
®(p)< p. Now it is immediate from the above equalities that the greatest fixed point y
is a final @-coalgebra and that the least fixed point x is an initial ®-algebra.!® This is
exactly what is expressed by the familiar principles of least-fixed-point induction and
greatest-fixed-point coinduction, which usually are formulated, respectively, as follows:

VpeP, d(p)<p=x<p, and: YpeP, p<P(p)= p<y.

Note that these are proof principles indeed, since for instance the latter implication
can be read as: in order to prove p<y it is sufficient to establish that p<®(p). An
example of its use can be found in [57].

As we have seen, final coalgebras P of a functor F': Set — Set (and similarly initial
algebras) are not proper fixed points of F but satisfy P=F(P) (Theorem 9.1). By
moving to a different setting, namely that of set-continuous functors on the category
of classes, one can show the existence of final coalgebras that are fixed points (cf.
[2, 81]).

15. Natural transformations of systems

Any deterministic system is a special kind of nondeterministic system and, con-
versely, any nondeterministic system can be turned into a deterministic one by applying
the powerset construction. Similarly, any binary tree can be turned into a determin-
istic system by ‘cutting away’ all left branches. Such statements can be formalized

10 Note that the construction of final coalgebras in Theorem 10.3 is a direct generalization of the present
characterization of greatest fixed points.
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using the following (categorical) notion. Let F': Set — Set and G :Set — Set be two
functors. A natural transformation v from F to G, denoted by v:F — G, is a family
{vs:F(S)— G(S)|S € Set} of functions satisfying the following naturality property:
for any function f:S — T, the following diagram commutes:

F(f)
F(S) ——— F(T)
G(S) —— G(T).
G(f)

Any F-system (S,05) can now be viewed as a G-system by composing og with
vs. Moreover, if f:(S,o5)— (7T,ar) is an F-homomorphism then it is also a G-
homomorphism of the resulting G-systems; and, similarly, any F-bisimulation between
F-systems is also a G-bisimulation of the resulting systems:

S e T S — R _— T
as or os OR or
F(f)
F(S) ——— F(T) +— F() «—— FR) —— F()
F(m) F(ny)
Vs vr Vs VR vr
G©S) —— G(T) G(S) —— GR) —— G(T).
G(f) G(m) G(m2)

The above is summarized in the following. (Recall from Corollary 5.6 that ~5 denotes
the greatest F-bisimulation between two systems.)

Theorem 15.1. A natural transformation v:F — G between functors F and G : Set —
Set induces a functor, denoted by vo (—): Setp — Sets which maps (S, as) to (S,vs o)
and an F-homomorphism [ :(S,as)— (T,or) to the G-homomorphism f :(S,vsoas)
— (T,vroar). Moreover, this functor preserves bisimulations: for any s and t, s ~p
t= s~glt.

Example 15.2. A few examples of the use of natural transformations.

1. The natural transformation {—}:7 — 2 maps an element s of a set S to {s}. In this
way, a deterministic system og:S — .S can be transformed into a nondeterministic
system {—}sooas:S— 2(S).
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2. Let vg:Bx 81— (B x S)* be defined, for b€ B, ¢ € S4, and a € 4, by vs({b, ¢p))(a)
= (b, ¢(a)). This natural transformation changes a Moore machine og:S — B x §4
into a Mealy machine vgo og:S — (B x S).

3. Feedback: Consider a Moore machine with identical input and output alphabets:
as:S—A4 x S1. A feedback loop, which uses the produced output for the next
input can be modelled by a natural transformation vs: A4 x $4 — S, defined for a € 4
and ¢ € 5%, by vs({(a,$)) = ¢(a). Applying this natural transformation results in a
deterministic system vgoog:S —S.

4. Relabeling: Any function /: A — B induces a natural transformation v: 4 x(—)— Bx
(—), defined for a set S by v{(a,s) = (l(a),s). Let o5:S — (4% S) and o7 : T — (B X
T') be deterministic transition systems with labels in 4 and B, respectively. Then a
(B x (—))-homomorphism f:(S,vooags)— (T,ar) is characterized by

s = f() 2% f(s,

which are transitions in (S, as) and (7, ar), respectively.

5. Restriction: Let v:Z((AUB) x (=))— % (B x (—)) be defined, for any set S
and VC(AUB) x S by vg¢(V)=VN(B x §). Then composing a nondeterministic
transition system os : S — Zr((4 UB)x §) with vg amounts to restricting its behavior
to B-steps only.

Certain transformations involve a change of state space, such as the powerset con-
struction applied to a nondeterministic system. Such cases can be dealt with by the
following generalization of Theorem 15.1.

Theorem 15.3. Consider functors F, G, and H:Set— Set. Any natural trans-
formation

viHoF —GoH
induces a functor H,: Setr — Sets defined by
H(S)
S H(os)
s —  H(F(S))

E(S) vs

G(H(S)).
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This functor maps an F-homomorphism [ :S — T into a G-homomorphism H( f):H
(S)— H(T), and maps F-bisimulations R into G-bisimulations H(R).

The proof of this theorem is again straightforward.

Example 15.4. Again a few examples.

1. The powerset construction: Let F(S)=2x2(S)*, G(S)=2x84, and H(S)=2(S),
and let the natural transformation vg: 2(2 x 2(S)*) — (2 x 2(5)*) be defined, for
V in 2(2 x 2(S)?), by

Vi (sup{y| (3 ) €V, for some y € 2(S)*}, ¢),

with ¢(a) = J{¥(a) | {(»,y) €V, for some yec2}. Composing a nondeterministic
automaton (o0,t): S — 2 x 2(S)* with vg yields a deterministic automaton (sup o, | J
t): P(S)—2x P(S). A state V of this new automaton is a set of states from the
old automaton, satisfying

V] <= 3selV,s|, VoW < W={scS|I' eV, s s}

As an interesting consequence of this construction, we show how it gives rise
to a coinductive definition of a trace operator for nondeterministic systems. Let
(0,t):8S—2 x 2(S)? again be a nondeterministic automaton and recall the final
deterministic automaton (%, (og, t¢)) of languages over 4 from Example 9.5.
A function 7 :S§ — % can now be defined by the following diagram:

T

— e T

{
(o,t)‘ (sup o, Ut) J(o,,, 1,)

2 x 2(S)* - 2x 2(L),

1,x1

where 1, is the identity function on the set 2 and where /: 2(S)— £ is the by
finality of % unique homomorphism mapping a state / of the deterministic automa-
ton (2(S), (supo, |J1)) to the language it accepts. It follows that 7 =170 {—}s maps
a state s of the nondeterministic automaton (S, (0,7)) to the set of words (traces) it
accepts:

T(s)={ar--a,|3s1,...,, s e 2 Ls,,i}.

This opens the way to express safety and liveness properties as universal properties
(by varying the function o:S — 2).

2. Let F(S)=(B x S), G(S)=B x §4, and H(S)=B x S. The identity is a natural
transformation 1:H o ' — G o H which transforms any Mealy machine og: S — (B x
S)* into a Moore machine 1z X ag:(B X 8)— B x (B x S).
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16. A unique fixed point theorem

Natural transformations can also be used to characterize functions on final coalgebras
having a unique fixed point, as is illustrated by the following theorem.

Theorem 16.1.'! Let n: P — F(P) be a final F-system and let f: P — P be a function
that factors through a natural transformation v:I1 —F as follows:

st

P—— F(P)
(recall that w is an isomorphism, by Theorem 9.1). Then f has a unique fixed point.

Proof. Because (P, ) is final there exists a unique homomorphism v : (P, vp) — (P, 7):

P —_— P
vp T

F(P) —— F(P).
F(vp)
Since

nofovﬁ:vpovf,

=F (v}i) ovp (v is a natural transformation)

=To vfﬁ (vﬁ is a homomorphism )

and 7 is an isomorphism, it follows that f ovi=vh. Thus vi(p) is a fixed point of
f, for any p in P.

For uniqueness, let P’ ={p€P| f(p)= p} and let i: P’ — P be the inclusion of P’
into P. The latter is actually a homomorphism i:(P’,vp:) — (P,7) since, for p € P’,

noi(p)=mn(p)
=mo f(p)
=vp(p)
=vpoi(p)
=F(@i)ovp(p) (by naturality of v).

11 This observation has independently been made by Pavlovié [62].
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Because i is also a homomorphism i: (P’,vp) — (P, vp), by naturality, it follows from
the finality of (P,m) that vjoi=1i, that is, vj(p)=p for all p€P’. All elements in
(P,vp) are bisimilar since (P x P,vpyp) is a bisimulation, again by naturality of v.
Therefore, vfﬁ identifies all elements in P, according to Theorem 9.3. It follows that P’
is a singleton set. [J

An example of the above situation is the operation of prefixing a - (—): 4% — A°,
where A% is a final (4 x (—))-system. This operation factors through the natural trans-
formation vg:S— A4 x S which maps s in S to {(a,s). Since the prefix operator is a
basic example of a guarded function, we see that the above theorem captures a basic
form of guardedness. More general versions of guardedness exist, of course, and more
general versions of Theorem 16.1 remain therefore to be formulated as well.

17. Cofreeness and covarieties of systems

We saw in Section 15 that a natural transformation v:F — G between functors F
and G:Set— Set induces a functor that maps an F-system to a corresponding G-
system. Given, conversely, a G-system (C,y), there exist, under some conditions on
F, a so-called cofree F-system (Sc,o) that when viewed as a G-system (Sc, vs,. © o),
‘resembles’ (C,y) most. This is made precise by Theorem 17.1 below. Next we shall
show how subsystems of such cofree systems give rise to well-behaved classes of
systems called covarieties.

Theorem* 17.1. Let F and G be functors and v:F — G a natural transformation.
Suppose that for any set V, the functor V x F has a final system (where V is
the constant functor that sends any set to V). Then there exists for any G-system
(C,y) an F-system (Sc,o) and a G-homomorphism &:(Sc,vs. oa)— (C,y) satisfying
the following universal property: for any F-system (U,ay) and any G-homomorphism
f:(Uvyooay)—(C,y) there exists a unique F-homomorphism f:(U, ay)— (Se, o)
such that ¢o f = f:

vf
A
------- S
Uiz S ——— C
MUJ Ju
FWU) ----+ F(S.) 14
F(f)
VUJV vasc

G) LG(SC),% G(C).

G()
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The F-system (Sc,a) (and ¢) is called cofree on the G-system (C,7y). Note that the
functor ¥ x F is bounded whenever F is, in which case a (V' x F')-final system exists
by Theorem 10.4.

Proof. By assumption, C X F has a final system (T, 7). Let t= (m;, 7p), where 7; : T —
C and 7y : T — F(T). By Theorem 15.1, (T,vy omy) is a G-system. Let B={t €T |t ~¢
m1(¢)}. Define (S¢,a)=[B], the largest F-subsystem of (7, 7,) that is contained in the
subset B:

Sc R T

F(Sc) T F(T),

where i is the inclusion F-homomorphism. It is by Theorem 15.1 also a G
-homomorphism i:(S¢,vs. oa)— (T,vrom). By Theorem 2.5, its graph is a G
-bisimulation, hence ¢ ~¢ i(c) for any ¢ in Sc¢. By definition of B also i(¢) ~¢g 71 (i(c)),
and because composition of bisimulation relations is again a bisimulation (Theorem
5.4), it follows that ¢ ~g m(i(c)). Therefore the graph of m; oi is a G-bisimulation,
and so m0i:(Sc,vs.oa)—(C,y) is a G-homomorphism, by Theorem 2.5. That is,
the outer square below commutes:

Sc _— T — C
o T2
F(S¢) — F(T) y
F(i)
VS VT

G(Sc) — G(I) — G(O).
G(i) G(my)

(Note that the right rectangle generally does not commute.) Define ¢ =7 oi. We claim
that (S¢,«) and ¢ satisfy the universal property of the theorem: Consider any F-system
(U,ay) and G-homomorphism f:(U,vy oay)— (C,y). By finality of T, there exists
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a unique (C x F)-homomorphism A:U — T

U —_— T
(f,ow) (m,m2)

CxFU) —— CxF().
(1e X F)(h)

Commutativity of this diagram implies that mjoh= f and h:(U,ay)— (T,m,) is an
F-homomorphism. By Theorem 2.5, its graph is an F-bisimulation and hence, by
Theorem 15.1, a G-bisimulation between (U, vy ooy ) and (7, vy o mp). Thus u ~¢ h(u),
for any ucU. Because f is a G-homomorphism, also wu~¢ f(u), again by
Theorem 2.5. Because inverse and composition of bisimulations yield bisimulations
again (Theorems 5.2 and 5.4), it follows that h(u) ~¢ f(u)=m;(h(u)). Thus A(U) C B,
which implies, by Proposition 6.5, that 4 factorizes through Sc¢ =[B]:there exists a
unique F-homomorphism f 2(U,ay)— (Sc, o) such that

U#'T

N

S.

By Theorem 15.1, it is also a G-homomorphism from (U,vyooay) to (Sc,vs. o a).
Since

60f~:n10i0f~:7110h:f,

£ is the F-homomorphism we have been looking for. Its uniqueness follows from that
of h and the factorization. [

(By a standard argument in category theory, it follows that the assignment of (Sc, o)
to (C,y) actually extends to a functor from Set; to Setr, which is right adjoint to

vo(=).)

Example 17.2. We give a few examples of cofree systems.

1. A simple instantiation of Theorem 17.1 is obtained by taking G =1, the functor
that is constant 1. Then there is only one natural transformation from a functor F
to 1, and the functor it induces from Sezr to Set sends each F-system to its carrier.
(Recall from Section 3 that Set; = Set.) If F is bounded then it follows from the
construction above that, for a set C, the final (C x F)-system S¢ is cofree on C (cf.
[33]). We like to think of the elements of C as ‘colours’. In that view, S¢ can be
regarded as a universally C-coloured F-system: ¢:Sc — C gives the colours of the
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states in S¢; and for any F-system U and any ‘colouring’ f: U — C there exists a
unique F-homomorphism f: U — S¢ which is colour consistent, ¢o f =

vf
/—\

U "y S¢ — C.

. For a concrete example of the preceding situation, consider the functor F(S) =S5 of
deterministic systems with input alphabet 4. Let C =2 ={0, 1} be the colouring set.
Since the set .# of languages over 4 is a final (2 x(—)*)-system (og, tg): ¥ —2x
P4 (Example 9.5), it follows that t¢ : ¥ — 24, with colouring og : ¥ — 2 is cofree
on 2. As a consequence, for any system og:S — S4,

2

§ls g
3

s 20 2

Each choice for f determines a subset of S of accepting states; for each choice,
the homomorphism f gives for each state s in S the language f~ (s) it accepts.

. For a slightly more complicated example, let F(S)=(3xS)x(3x.S) and G(S)=3x
S (with 3={0,1,2}), and let vg:F(S)— G(S) map ({x,s),{x’,s")) to (x,s). We
picture a transition of a state in an F-system by

N
X X'
t/ \u

The application of the induced functor vo(—) to such a system amounts to cutting

away all right branches s — u. Next consider any G-system (C,7). This could be,
for instance,

(012)° —2— (120)”
4 /
(201)”,

How does the cofree system (Sc,a) look like? It is constructed as a subset of a
final (C x F)-system (m;,7,) : T — C x ((3 x S) x (3 xS)), which we describe first.
Elements ¢ of T and their transitions look like

5N\

Xo X4

tl ‘ t2
AN
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where we have not included in the picture the labelling of the states {t,t,...},
which is given by 7m;:7 — C. Now S¢c C T consists of those elements #, in T for
which all left transitions walk in step with the system (C, y); that is, more precisely,
if ¢ Lt_, is a left transition occurring in the picture of #, above, then 7;(t;) ——
71(¢;) should be a transition in (C,y). [

Next we show how any subsystem of a system that is cofree on a set of colours
determines a well-behaved class of systems, called a covariety, and briefly illustrate
how this can been seen as a way of system specification.

Let in the remainder of this section F':Set — Set be a bounded functor, and C a
set, of colours. Let S¢, with colouring ¢:S¢c — C, be an F-system that is cofree on C.
Recall from Examples 17.2 that S¢ is obtained as a final (C x F)-system, which exists
because C x F' is bounded. Consider a subsystem i:S — S¢. Let the class #°(S) consist
of all F-systems (U, ay) with the property that for any colouring function f:U — C,
the (by cofreeness uniquely determined) F-homomorphism f factorizes though S:

(Note that f and ¢ are functions and the other arrows are F-homomorphisms.) Such
classes are well behaved in the following sense.

Theorem* 17.3. The class #(S) of F-systems defined above is closed under the
formation of

1. subsystems;

2. homomorphic images;,

3. and sums.

Such a class is called a covariety.

Proof.

1. Let U be a system in #'(S) and j: U’ — U a subsystem. Any colouring f/: U’ — C
can be extended to a colouring f:U — C such that foj= f’. Because ¢o f
oj=foj=/f", ’, the unique extension of / " to an F-homomorphism from U’ to
Sc is f I= f oj. Because U is in J#'(S), f factorizes through S, and hence so does
7. Thus U’ is in A(S).

2. Let U be a system in #(S) and ¢:U — U’ a surjective homomorphism. Any
colouring f”: U’ — C induces a colouring f = /" ogq on U. Because ¢o f/og= f'o
q=f, it follows from the cofreeness of S¢ that f: f’ 0gq. Because U is in #'(S)
there exists g: U — S such thatiog= f . The kernel K(q) is included in K( f ), since
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/= f"0q. The fact that ¢ is a surjective homomorphism, implies the existence (by
Theorems 7.1 and 7.2) of a homomorphism ¢’ : U’ — S such that g’ og=g. Since
flog=f=iog=iog ogq, it follows from the surjectivity of g that /” =iog’. Thus
U’ is in A'(S).

3. A family of colourings {f;} on a family {U;} of systems in #'(S) determines a
colouring > f;: >, Ui — C. Because each of the induced homomorphisms £ fac-
torizes through S, their sum ) fi >; Ui — Sc is readily seen to factorize through
S as well. [J

Example 17.4. An example of such a class definition is obtained by taking F =1, the
identity functor, and C =2 ={0, 1}. The system #:2° — 2%, with colouring 4 :2% — 2,
is cofree on the set 2. Consider the following subsystem S of 2¢:

On” — (10)° 0{> 1“'[>

The class #°(S) contains all systems (U, o) which consist of one and two cycles
only: oy oay(u)=u, for all u in U.

Returning to the general case again, the following theorem is a kind of converse of
the previous one. It states that any covariety is determined by a subsystem of a cofree
system.

Theorem* 17.5. For any covariety A there exists a set of colours C and a subsystem
S of the cofree F-system Sc, such that # = A (S).

Proof. Let ¢ be a covariety. By assumption F is bounded, say by a set C. Let S¢
and &¢:S¢c — C be as before. Define a subsystem i:S — S¢ by

S=U{f(U)|UeA and f:U —C}.

(Recall that f(U) is a subsystem of S¢ by Theorem 6.3, and that the union of sub-
systems is again a subsystem by Theorem 6.4.) Clearly, ¢ C 2#'(S). For the converse,
first note that S € " this follows from the fact that S is the image of a homomorphism

q: > U —S,
sES
where for each s in § an F-system Us; € % and a colouring f:U;— C have been
chosen such that sefs(Us); and where ¢ is determined by the homomorphisms f 5
Now let 7 be any F-system in #°(S), and ¢ € T. The size of the subsystem (¢) of T
is bounded by that of C, because F is bounded by C. Thus, there exists a colouring
f:T— C that is injective on (r). Because T € #(S), the induced homomorphism
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factorizes through S via some homomorphism g¢:

Because f =¢oiog and f is injective on (¢), also g is injective on (¢). Thus (¢) =
f({2)). Since the latter is a subsystem of S, which we have shown to be in ", also
(¢) is in A". Because T is the image of the homomorphism

S{t)—T
teT
which is determined by the inclusions of the subsystems () in 7, it follows that 7' € £
O

The above characterization of classes of systems is inspired by Birkhoff’s variety
theorem for algebras (see, e.g., [54, Theorem 5.2.16]), which states that a class of
algebras is closed under the formation of subalgebras, quotients, and products, if and
only if it is equationally definable. There is also another theorem by Birkhoff, which
asserts the soundness and completeness of a logical calculus for equations of varieties.
It is unclear what a counterpart of the latter should be for systems. See Section 19 for
references to some recent work in that direction.

18. Dynamical systems and symbolic dynamics

The generality of the coalgebraic view on systems is further illustrated by a brief ac-
count of so-called one-dimensional discrete time dynamical systems (X, ), consisting
of a complete metric space X (with distance function dx) and a continuous function
f:X — X. Such systems are coalgebras of the identity functor on the category Met of
complete metric spaces and continuous functions between them. Thus, we are changing
the scene for the first time by looking at a category different from Ser. One of the
main themes in the theory of dynamical systems is the systematic study of orbits: if
x € X then its orbit is the set

{x f1@), 200, (), ),

where f"1(x)= f(f"(x)). (In our terminology, the orbit of x is just the subsystem (x)
of (X, f) generated by the singleton x.) Questions to be addressed are, for instance,
whether a point x is periodic (x = f"(x), for some n=>0); whether there are many
such periodic points and how they are distributed over X (e.g., do they form a dense
subset?); and whether orbits (x) and (y) are similar if we know that x and y are
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Fig. 1. The graph of f,, for u>4.

close, that is, dx(x, y) is small. Here we shall briefly discuss one important technique
that is used in the world of dynamical systems to answer some of such questions,
called symbolic dynamics (cf. [12]), by giving a coalgebraic account of one particular
example, taken from [20]. As it turns out, the notion of cofreeness plays a crucial role.

Let # denote the set of real numbers. The concrete example we shall consider is
the quadratic family of systems (Z, f,), which are parameterized by a real number pu,
and for which f, is defined by

Jui R =R, fu(x)=pux(1 —x).

More specifically, we shall assume u to be fixed with u>4. (The reason for this choice
is that the maximum /4 in this case is strictly greater than 1.) We shall write f for
fu- Let a and b in 2 be the points with f(a)=1= f(b) and a<b.

A quick look at Fig. 1 tells us that the dynamics of f on the intervals (—o0,0)
and (1,4o00) is easily understood: all orbits tend to —oo. The same applies to the
interval (a,b), since it is mapped by f to (1,4o00), bringing us back to the previous
case. Possibly more interesting dynamic behavior may be expected from elements in
the intervals [0,a] and [b, 1]. Now note that / maps each of these intervals bijectively
to [0, 1]. Consequently, [0,a]N f~'(a,b) and [b,1]N f~'(a,b) have uninteresting dy-
namics as well: those points are mapped by f2 to (1,+00), where all orbits go to
—o0. This leaves us with ([0,a]U[b,1])N f~([0,a] U[b,1]), which consists of four
closed intervals. Continuing in this way, we find a set

J= O 0.aU 1),
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which can alternatively be characterized as the largest subsystem of (£, f) that is
contained in [0, 1]. Its dynamics can in a surprisingly simple way be explained using
symbolic dynamics, which we explain next using our own coalgebraic idiom.

Let 2 be the set {0,1} with the discrete metric (d»(0,1)=1). As before we shall
consider the elements of 2 as colours. Consider the functor

2 X —:Met— Met, X+—2xX,
where the Cartesian product is supplied with distance function

d(<i>x>, <], y>):d2(l>]) + 1/2 : dX(xa y)

The set of infinite sequences (2%, (h,7)) (where h:2° — 2 and ¢:2% — 2® are the head
and tail functions), supplied with distance function

dzu(v W) Z dZ(Ulawl)

is a final (2x —)-system: an elementary proof can be given using the fact that (22, (h,¢))
is a final system in Set of the functor (2 x —):Set — Set. More abstractly, it also
follows from general techniques for the solution of metric domain equations of [7] and
[75]. Consequently, (2“,¢) is a dynamical system that is cofree on the metric space 2.
Now define a colouring c:J —2 of J by

{ 0 if x€[0,a)l,
c(x)=
1 if xe[b,1].

By the universal property of the cofree system (2%,¢) there exists a unique homomor-
phism ¢:(J, f)— (2,¢t) with hoc¢=c. This homomorphism ¢ can readily be shown
to be an isomorphism.

Thus (£, ) falls apart into two subsystems: (#Z—J, /), where all orbits tend to —oco
and (J, /), whose dynamics is the same as that of (2¢,7). The gain of this symbolic
interpretation of (J, /) is that the dynamics of (2¢,¢) is well understood: it is the
prototypical example of a chaotic system.

19. Notes and related work

The use of final coalgebras in the semantics of systems (including automata and
infinite data types such as trees) dates back at least to [6]. Also Peter Aczel modelled
(transition) systems as coalgebras, in constructing a model for a theory of nonwell-
founded sets [2]. In a subsequent paper on final coalgebras [4], a categorical definition
of bisimulation was given. (Later we found that a variation also occurs in [44].) This
categorical definition and the characterization of (final coalgebras and) coinduction
in terms thereof, has been the starting point of the present paper. It generalizes and
extends [71], where part of the theory of universal coalgebra is developed for the spe-
cial case of labelled transition systems. That paper was preceded by joint work with
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Turi [75,76] on final coalgebra semantics for concurrent programming languages. The
present paper is a reworking of [72].

We should also mention a number of relatively early papers dealing with special
cases of coalgebras. In none of these papers, the notions of bisimulation and finality
occur. In spite of its intriguing title, [19] has not been the starting point for our work.
It deals with one particular type of transition system, and it is probably one of the
first papers to speak about universal coalgebra and its connection to transition systems.
In most of the following papers, the notion of function is dualized to the notion of
cofunction: [18, 53, 79]. In [66], a theory of clones of cofunctions is further developed,
and the connection with bisimulations is discussed.

The aim of the present paper has been both to give an overview of some of the
existing insights in coalgebra as well as to present some new material. Below we briefly
describe per section which results have been taken from the literature.

Our references for universal algebra have been [16, 54]; for category theory [13, 50].
The reader might want to have a look at [39] for a first introduction to coalgebra and
coinduction. The definition in Section 2 of F-bisimulation is from [4]. Theorem 2.5
generalizes [76, Proposition 2.8]. Most observations in Section 4 are standard in cat-
egory theory (cf. [9]). Recently, more has been said about the structure of categories
of coalgebras in [67]. The restriction to set functors that preserve weak pullbacks
occurs in [4]. In [74], it is explained that such functors are well-behaved precisely
because they are relators, that is, they can be extended to the category of sets and
relations. Some of the results in Sections 5 and 6 are generalizations of similar ob-
servations in [76] and [71], on the category of labelled transition systems. The notion
of bounded functor is taken from [42], and is ultimately due to [9]. Sections 7 and
8 generalize similar results from [71]. The results on final systems in Section 9 are
from [75]. The results presented in Section 10 are from [9, 10], which build on [4].
Their presentation has been influenced by [81,42]. The example of the extended nat-
ural numbers in Sections 11 and 12 was developed jointly with Bart Jacobs and Bill
Rounds. The comparison of induction and coinduction in Section 13 extends the char-
acterization in [76], which was given in terms of congruences and bisimulations (see
also [31]). For an extensive discussion of coinduction principles based on greatest
fixed points of monotone operators, as in Section 14, see [49]. Theorem 15.3 also
appears in [31]. Theorem 16.1 also occurs in [62]. That paper contains moreover a
general (but infinitary) description of guarded functions. The work of Horst Reichel
and Bart Jacobs on coalgebraic specification [33, 68] and Bart Jacobs’ use of cofree-
ness in a coalgebraic semantics for object-oriented programming [35] have been a
source of inspiration for the writing of Section 17. See also [30,37] for recent work
on coalgebraic specification. The covariety theorems of Section 17 answer a ques-
tion raised in [71]. For recent progress on Birkhoff-like results and the connections
between final coalgebras and modal logic see [17,27,45,58,69]. In both [31] and
[83], additional results on cofreeness can be found. Section 18 gives a coalgebraic
account of the dynamics of the quadratic family of dynamical systems, which occurs
in [20].
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Without intending to give a complete overview, we mention the following recent
work on or related to coalgebra: [28], on a calculus of categorical data types based on
the notion of dialgebra; [81], on a systematic comparison of final coalgebra and initial
algebra semantics for concurrent languages (see also [82, 83]); [68], on object-oriented
programming; [32], on a model for the lambda calculus; [48], on a higher-order con-
current language; [34], on behaviour refinement in object-oriented programming; [15],
on a coalgebra semantics for hidden algebra. The following papers are using nonwell-
founded sets as the starting point for semantics: [3,23,70] and [49], on processes and
non-wellfounded sets; [11], a recent textbook on nonwellfounded sets and circular-
ity; and [59], where corecursion is further studied in that context. See also [61] on
mechanizing coinduction and corecursion. Other categorical approaches to bisimulation
include [1], on a domain for bisimulation; [86], on categories of transition systems;
[2, 63, 64], on mixed induction-coinduction principles on domains in terms of relational
properties; [31], on functors on categories of relations; [41], on a characterization of
bisimulation in terms of open maps and presheaves. In [8, 14, 75], metric domains for
bisimulation can be found.
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Appendix

This section is intended to give an overview of some basic facts on sets and cate-
gories, and also to mention one or two facts that may be less familiar. (The latter are
indicated as propositions.)

On sets: Composition of functions f:S— T and g: T — U is written as go f:S — U.
We write 0 for the empty set, and 1 ={x} for the one element set. The identity func-
tion on a set S is denoted by 15:S5 — S. The sets of natural numbers and integers are
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denoted by
A={0,1,2,...}, Z={0,1,—-1,2,-2,...}.

The set of functions between sets S and 7' is denoted by
ST={f:S—T}.

Let A be any set. The following notation will be used for sets of streams (or sequences,
or lists) over A4:

A*: the set of all finite streams of elements of 4; ¢ denotes the empty stream.
At the set of all nonempty finite streams.

A®: the set of all infinite streams.

A =A% UA®: the set of all finite and infinite streams.

. A =47 UA®: the set of all nonempty finite and infinite streams.

Let S be any set and R an equivalence relation on S. Let the quotient set S/R
be defined by S/R={[s]g|s €S}, with [s]lg={s"|(s,s’) ER}. Let &z:S — S/R be the
surjective mapping sending each element s to its equivalence class [s]g. It is called the
quotient map of R.

The diagonal (or equality) As of a set S is given by

N

As={(s,s) €S x S|seS}.

Let f:S — T be any mapping. The kernel K(f) and the graph G(f) of f are defined
as follows:

K(f)={(s.s) | f()= 1N},
G(f)={{s.f(s)) |s€ S}

For subsets VCS and W CT, let
S ={f(s)|seV},
oy ={s|fs)ew.

The set f(S) is called the image of f. More generally, for functions f:S— T and
g:S— U, the image of f and g is defined by

(£.9)(S$)={(f(5).9(5)) | s € S}.

Also the following notation will be used: for f:S—7, RCSxS and QCT x T,
SR ={{f(s), f(s") | {s5,5") €R},
SO ={{s.5") [ {f(5), /(s")) € O}.
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Let S,T and U be sets, RC S x T a relation between S and 7, and Q C T x U a relation
between T and U. The inverse R~' of R is defined by

R™'={{t.5)| (s.1) €R},
and the composition Ro Q of R and Q is defined by
RoQ={(s,u)y|3teT, (s,t)€R and (t,u) € O}.

Note the difference in order between function composition and relation composition.

On categories: Some familiarity with the following notions will be helpful (but is
not strictly necessary for understanding the rest of the paper): category; functor; epi;
mono; limit and colimit (in particular, pullback, coequalizer, initial object, final object);
opposite category; product of categories.

On the category of sets: The category of sets and functions between them is denoted
by Set. It is complete and cocomplete, i.e., all limits and colimits exist. A function is
mono if and only if it is injective, and it is epi if and only if it is surjective.

Proposition A.1. Let F : Set — Set be an arbitrary functor. If f:S— T is mono and
S is non-empty, then F(f):F(S)— F(T) is mono as well.

Proof. Let 5o €S and define g: 7 — S by
()= s if there is (a unique) s €S with t = f(s),
A= so otherwise.

Clearly, go f =15 and hence by functoriality of F, F(g)o F(f)=F(ls)= lp(s). Thus
F(f) is injective, that is, mono. [J

Below the functors that are used in this paper are described. First the basic functors
are listed, which next are used to define a number of composed functors:
1. The identity functor: /: Set — Set sends sets and functions to themselves.
2. The constant functor 4, where 4 is any set, maps any set to the set 4, and any
function to the identity function 14 on A.
3. Coproduct (or sum):

+:Set x Set — Set

It maps two sets to their disjoint union; a pair of functions f:S§—S" and g: T — T’
is mapped to /' +¢:(S+T)—(S"+T’), sending s in S to f(s) and 1€ T to g(z).
The coproduct of an indexed family of sets {S;}; is denoted by

> S
4. Product:

x : Set x Set — Set
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It maps a pair of sets S and 7 to their Cartesian product S x 7'; a pair of functions
f:S—8" and g: T — T’ is mapped to f x g:(SxT)—(S" x T"), sending (s,?) to
(f(s),9(1)).

5. Function space:
— : Set”” x Set — Set

It maps a pair of sets S and T to the set S — T of all functions from S to 7. A pair
of functions f:S8"— S and g: T — T’ is mapped to (f —g):(S—T)—(S'—=T"),
which sends ¢ €S —T to godo f €S — T'. This functor will mostly be used
with a fixed choice, a set A4 say, for the left argument. Then it is denoted as
follows:

(=) : Set — Set.
6. Powerset:
P . Set — Set

It maps a set S to the set of all its subsets 2(S)={V |V CS}. A function f:S—T
is mapped to 2(f):P(S)— P(T), which is defined, for any V' C S, by 2(f)(V)
= f(V). We shall also encounter the finite powerset: Z(S)={V |V CS and V is
finite}.

7. Contravariant powerset:

P : Set” — Set

acts on sets as 2 does: 2(S)=2(S). A function f:S — T is mapped to 2(f): P
(T)— 2(S), which is defined, for any ¥V C T, by 2(f)(V)= f~'(V). Because

{(v|vcsy=2s

(by representing a subset by its characteristic function), the contravariant powerset
functor could equivalently be described as F(S)=25. (Note that the definition on
functions would indeed be the same.) The contravariant powerset functor will in
particular be considered in composition with itself:

PoP:Set— Set.
One easily verifies that a function f:S — T is mapped by this composition to
PP PP S) = PAT)), V= {WCT|fW)er}.

Next a few examples are given of functors that are obtained by combining one or more
of the basic functors mentioned above:

1. (S)=1+S,

2. B(S)=4 xS,
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. BS)=14AxS),
. Fy(S)=8 xS,

L F5(S)=2(4 % S),

. Fs(S)=(B xS)4,

CES)=14+((AxS)x (4 x9S)).

The definition of how these functors act on functions, follows from the definitions of
the basic functors above. For instance, the functor £y sends a function f:S — T to the
function (B x f)“, which maps a function ¢ in (B x S) to the function qg in (B x T)4,
defined by ¢(a)= (b, f(s)), where ¢(a)=(b,s).

Next a few limit and colimit constructions in Set are described explicitly. A pull-
back of functions f:S—T and g:U — T is a triple (P, k:P—S, [:P— U) with
f ok =gol such that for any set X and functions i : X — S and j: X — U with foi=g
oj there exists a unique (so-called mediating) function #:X — P with koh=i and
loh=j. In Set, a pullback of functions f:S§—T and g:U — T always exists:
the set

N o kW

P={(s,u) S x U| f(s)=g(u)},

with projections 7, : P — S and n,: P — U, is a pullback of f and g.

If (P,k,I) is a pullback of two functions f and g that are mono then k and / are
mono.

We shall also need the following notion: a weak pullback is defined in the same
way as a pullback, but without the requirement that the mediating function be unique.
Weak and strong are the same if all functions involved are mono:

Proposition A.2. A weak pullback consisting of mono’s is an (ordinary) pullback.

A coequalizer of two functions f:S—T and ¢g:S— 7T is a pair (U,c:T—U)
with co f =cog such that for any function h: 7 — V with ho f=hog there exists
a unique function i: U — V such that ioc=h. Also coequalizers always exist in Set:
the quotient of 7' with respect to the smallest equivalence relation on 7 that contains
the set

{(f(5),9(s)) [s €S}

is a coequalizer of f and g. For a set S and an equivalence relation R on S, the
quotient map &g : S — S/R can be readily seen to be the coequalizer of the projections
from R to S:

o e
R———S—" SR
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The following diagrams show how in Set, the diagonal of a set S, and the kernel and
the graph of a function f:S— T can be obtained as pullbacks:

ds— s K(f)—— S  G(f)——s
i) 1s %3 f ) f
S — 5, S — T, 7 — T
ls f Ir

The composition of two relations can be described by means of pullback and image
as follows. Consider two relations R and O

R Q
7Ny N
S T U,
with projections r; and ¢;. If we first take a pullback
2
X X,
R Q
7N YN
S T U,

then it is easy to see that the composition of R and Q is the image of r; ox; and
q20Xx3:

Ro Q= (rioxi, qgz0x)(X).

The wunion of a collection of relations {R; CS x T'}; can be obtained by means of
coproduct and image: consider

Se— S Rje—T,
i

where k& and / are the componentwise projections. Then
URi = (k1) <ZR,~> .

The intersection of a collection {V;}; of subsets of a set S can be constructed by
means of a generalized pullback, which is so to speak a pullback of a whole family



76 J.J.M.M. Rutten| Theoretical Computer Science 249 (2000) 3-80

of arrows at the same time, as follows:

W Ve——Vi

i

where {i;: V, — S}, are the inclusion mappings. Note that all functions are mono.

Proposition A.3. Let F:Set — Set be a functor that preserves weak pullbacks, i.e.,
transforms weak pullbacks into weak pullbacks. Then F preserves intersections.

Proof. Because F preserves weak pullbacks, the diagram above is transformed by F
into a weak pullback diagram:

F(M V) ——— F()

F(ir)

F(Ve) ——— F(S).

(igr)

Because all functions in the original diagram are mono, and because F preserves
mono’s (Proposition A.1), all functions in the second diagram are mono as well. By
Proposition A.2, the diagram is again a pullback in Sez. Thus F((), Vi) is (isomorphic
to) N F(Vx). O

As we shall see in Sections 4 and 5, the requirement that functors preserve weak
pullbacks is needed at various places in the theory. Therefore it is worthwhile to
examine which functors have this property. First an easy proposition.

Proposition A.4. If a functor F:Set — Set preserves pullbacks then it also preserves
weak pullbacks.

Many (combinations of the) functors mentioned above preserve pullbacks and hence
weak pullbacks. To mention a few relevant examples: constant functors, identity, 4 x
(=), A+ (=), (—)* (where 4 is an arbitrary set). The proofs are easy. For instance,
it is straightforward to prove that 4 x R, where R is the pullback of two functions
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f:8S—U and g:T — U, is the pullback of the functions 4 X f:4 xS —A x U and
Axg:AxXT—-AXxU.

An exception is the (covariant) powerset functor: consider 1={0} and 2={0,1},
and let /:2—1 be the unique constant function. Then

R= {<O> O>a <O’ 1>7 <170>7 <1’ 1>}

is a pullback of f with itself, but 2(R) is not a pullback of 2 f with itself. It is,
however, a weak pullback. More generally, it is not difficult to prove that £ preserves
weak pullbacks (cf. [81]).

There is one functor in our list above that does not even preserve weak pullbacks. It
is the contravariant powerset functor composed with itself (2 o 2). Take, for instance,
S={s1,80,83}, T={t1,t0,ts}, U={ui,up}, f:S— U defined by {s;+— uy,s5— uj,
s3—up} and g: T — U defined by {#;— uy, 15— up, 13— uy}. Then the image of the
pullback of f and g is not a pullback and not even a weak pullback.
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