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Abstract. An introduction to coalgebraic specification is presented via
examples. A coalgebraic specification describes a collection of coalgebras
satisfying certain assertions. It is thus an axiomatic description of a par-
ticular class of mathematical structures. Such specifications are especially
suitable for state-based dynamical systems in general, and for classes in
object-oriented programming languages in particular. This paper will
gradually introduce the notions of bisimilarity, invariance, component
classes, temporal logic and refinement in a coalgebraic setting. Besides
the running example of the coalgebraic specification of (possibly infinite)
binary trees, a specification of Peterson’s mutual exclusion algorithm is
elaborated in detail.
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1 Introduction

This paper presents an introduction to the relatively young area of coalgebraic
specification, developed in [33,10,12,11,13,14,6,7,3]. It is aimed at a math-
ematically oriented audience, and therefore it focuses on coalgebraic specifica-
tions as axiomatic descriptions of certain mathematical structures, and on how
to formulate and prove properties about such structures. The emphasis lies on
concrete examples, and not on the meta-theory of coalgebras. Currently, coalge-
braic specifications are being used and developed in theoretical computer science,
in particular to specify classes in object-oriented languages (such as Java [20]).
Much of the motivation, terminology, and many of the examples stem from this
area. We shall not emphasise this aspect, and no prior experience in computer
science is assumed. It is possible that in the future, coalgebras will find com-
parable applications in mathematics, for instance in system and control theory.
Further, the theory of coalgebras is best formulated and developed using cate-
gorical notions and techniques. In this introduction we shall not use any category
theory, however, and describe coalgebras at an elementary level. This means that
we cover neither homomorphisms of coalgebras, nor the related topic of terminal
(also called final) coalgebras.

Coalgebras are simple mathematical structures that can be understood as
duals of algebras. We refer to [18] for an introduction to the study of coalgebras.
Here we shall simply use coalgebras, without concentrating too much on the
difference with algebras, and we hope that readers will come to appreciate their
role in specification and verification. They are typically used to describe state-
based dynamical systems, where the state space (set of states) of the system
is considered as a black box, and where nothing is known about the way that
the observable behaviour is realised. Coalgebraic specification is thus important
for the study of such dynamical systems. In this field one naturally reasons in
terms of invariance and bisimilarity. Indeed, these notions are fundamental in
the theory of coalgebras!. Further, a recent development is the close connection
between coalgebras and temporal logic, see [27,15]. The temporal operators OJ
for henceforth and ¢ for eventually can be defined easily in a coalgebraic setting,
in terms of invariants. Their use is quite natural in a state-based setting, namely
for reasoning about all/some future states in safety/progress formulas. In this
paper we illustrate the use of O and < in coalgebraic specification. We also give
an impression of the application of the least and greatest fixed point operators
from the p-calculus [36] in this setting.

As mentioned, coalgebraic specifications give an axiomatic description of
mathematical structures. As such they resemble axiomatic descriptions of groups
or rings that are common in mathematics. But there are also some differences
with standard mathematical approaches, stemming from their use in computer
science.

! Invariants and bisimilations (or congruences) are also relevant for algebras, see for
example [30, 32, 8], and the end of Section 6.



1. Coalgebraic specifications are typically structured, using the object-oriented
mechanisms of inheritance (with subclasses inheriting from superclasses) and
aggregation (with ambient classes having component classes). This is needed
because specifications in computer science tend to become very big, in order
to capture all possible scenarios in which a system has to function. Such
explicit structuring mechanisms do not exist in axiomatisations in mathe-
matics. Lamport [23, Section 1] writes: “Although mathematicians have de-
veloped the science of writing formulas, they haven’t turned that science into
an engineering discipline. They have developed notations for mathematics
in the small, but not for mathematics in the large.”.

2. Coalgebraic specifications have a rather precise format. Actually, there is
an experimental formal language CCSL, for Coalgebraic Class Specification
Language. Specifications in CCSL are thus objects which can be manipu-
lated by a computer. There is a LOOP compiler [7] which translates CCSL
specifications into logical theories for a proof tool. The latter is a special
program that helps in formal reasoning (e.g. via built-in tactics and decision
procedures). It is like a calculator for reasoning. Such proof tools are useful
for proving the correctness of elaborate system descriptions (e.g. as com-
plex coalgebraic specifications), involving many different case distinctions.
Humans easily make mistakes, by omitting a case or a precondition, but
proof tools are very good at such bureaucratism. The specifications in this
paper are presented in a semi-formal style, resembling CCSL. All the results
about the examples have been proved with the proof tool PVS [28], using
the automatic translation of CCSL specifications into the logic of PVS with
(a recent version of) the compiler from [7]. However, here we shall present
the proofs of these results in usual mathematical style.

This introductory paper is organised as follows. After some explanations
about the notation that will be used, an introduction to formal specification is
given in Section 3; it contains a slightly unusual specification of vector spaces,
meant as preparation to coalgebraic specification. Section 4 introduces the run-
ning example of (possibly infinite) binary trees. It is followed by two sections on
bisimulations and on invariants. Section 7 introduces temporal logic in a coalge-
braic setting, and applies it to binary trees. Subsequently, also the ingredients
of a coalgebraic p-calculus are introduced, and used to describe (in)finiteness
for binary trees. Section 9 then introduces the example of Peterson’s mutual
exclusion algorithm. It is specified in a structured manner, and its correctness is
proved. The final section concentrates on refinement in a coalgebraic setting.

2 Mathematical preliminaries

We will use some standard constructions on sets. For example, the Cartesian
product X xY = {(z,y) | z € X and y € Y}, with projection functions m: X x
Y 5> Xand #: X xY — Y given by n(x,y) = z and #'(x,y) = y. We shall
frequently make use of the fact that functions Z — X x Y correspond to pairs
of functions Z - X, Z - Y.



The dual of the product is the coproduct (also called sum or disjoint union):
X+Y = {(z,0) | z € X} U {(y,1) | y € Y}, with coprojection functions
k:X > X+Y and k1Y - X 4+, given by s(z) = (2,0) and £'(y) = (y,1).
Sometimes we write kz = k(z) and k'y = £'(y) without brackets (=), like for
projections 7, '. Notice that these coprojections are injective functions, and are
“disjoint”, in the sense that k(z) # k'(y), for all z € X,y € Y. We shall also
often use that functions X +Y — Z correspond to pairs of functions X — Z,
Y — Z. For this we use some special notation: given f: X — Z and ¢:Y — Z,
there is a corresponding function X +Y — Z, which we shall write as:

a — CASES a OF

kx — f(x)

&y = g(y)
ENDCASES

This function checks for an element a € X + Y if it is of the form k(z) = (z,0),
or k'(y) = (y,1). In the first case it applies the function f to z, and in the second
case g to y. We shall apply such CASES functions also when f, g are predicates,
since these fit in for Z = {0,1}. Thus, for example, the set

{(z,y) e Nx (1+N)|z > 0= CASES y OF

ku—x=1
Kv— =y
ENDCASES }

contains all pairs of the form (0, kx), (1, k%), (0, 'n), (m, &'m), for n,m € N with
m > 0. In general, coproducts are not so frequently used as products, but they
play an important role for coalgebras, because they occur in many examples.

The empty set will usually be written as 0. Then X +0 =2 X. We write 1 for
an arbitrary singleton set, say 1 = {*}. Note that X x 1 = X. We recall that
XxY2YxX, Xx(Yx2Z)2(XxY)xZ,and also that X +Y =Y + X,
X+Y+2)=2(X+Y)+ 2.

We shall further write YX for the set of (total) functions from X to Y.
There is a one-to-one correspondence between functions Z — Y¥ and functions
Z x X —» Y. A function z — --- will sometimes be written in lambda notation:
Az, ---

Finally, X* will be the set of finite sequences o = {x1,...,2,) of elements
z; € X. We shall write | — | for the length, so that |a| = n. The empty sequence
is (), and zo - a is {xo, x1,- - ., T,). The set X* forms the free monoid on X.

What we shall call a polynomial functor is a certain mapping? from sets to
sets, built from primitive operations. The collection of polynomial functors that
we consider in this paper is the smallest collection satisfying:

1. the identity mapping X — X is polynomial, and for each set A, the constant
mapping X +— A is polynomial;
2 These mappings are described here as acting on sets only, but they also act on

functions. This “functoriality” aspect will not be relevant in this paper, and will
therefore be ignored. See [18] for more information.



2. if Ty and Ty are polynomial functors, then so are the product X +— T3 (X) x
T>(X) and coproduct X +— T1(X) + To(X);
3. if T is a polynomial functor, then so is X — T(X)#, for each set A.

A typical example of a polynomial functor is a mapping
X— 1+ A4+ X)P + (X x X)°.

An algebra for a polynomial functor T' consists of a set X together with a
function T(X) — X. A coalgebra for T is a set X with a function X — T(X) in
the reverse direction. Polynomial functors describe the “interfaces” of algebras
and coalgebras, capturing the types of the operations. This will be illustrated in
many examples below. This paper focuses mostly on coalgebras, assuming that
algebras are relatively well-known.

Coalgebras are abstract dynamical systems. A typical example is given by a
(deterministic) automaton. Ignoring initial states, such an automaton is usually
described as consisting of an alphabet A and a set of states X, together with
a transition function §: X x A — X and a subset F' C X of final states. By
massaging this structure a bit, using the above correspondences, we can equiv-
alently describe such an automaton as a coalgebra: the subset ' C X can also
be described as a “characteristic” function X — {0, 1}. Similarly, the transition
function 6: X x A — X corresponds to a function X — X4. Combining these
two functions X — {0,1} and X — X* we get a coalgebra X — {0,1} x X4
capturing the original automaton.

For more introductory information on coalgebras, see [18], and on automata
as coalgebras, see [34].

Exercises

1. Prove the following “case-lifting” lemma. For functions f: X — Z, ¢:Y — Z and
h:Z — W,onehasforalla € X +Y,

CASES a OF CASES a OF
kx — f(z) _ kx > h(f(x))
&'y = g(y) K"y — h(g(y))
ENDCASES ENDCASES

This equation is often useful in computing with coproducts.

2. Use the case notation to define the canonical distributivity map d: (X x Z) + (Y x
Z) - (X +Y) x Z. Prove that it is an isomorphism, by explicitly constructing
a map e in the opposite direction and using the previous exercise to prove that
doe=1id and eo d =id.

3 Specification of groups and vector spaces

In this section it will be assumed that the reader is (reasonably) familiar with
the notions of group, field and vector space. We shall present specifications (or
axiomatic descriptions) of (two of) these notions in the same style in which



we will specify coalgebras later in this paper. The intention® is to make the
mathematically oriented reader feel more comfortable with this style of specifi-
cation. Therefore, semantical subtleties will be ignored at this stage, since the
reader is already assumed to be familiar with the structures that are being spec-
ified (i.e. with their meaning). We will concentrate on vector spaces because
they are fairly familiar and because they involve aspects—like extension and
parametrisation—which we shall also see in coalgebraic specification.

We start with groups. Actually, for convenience, we start with Abelian (i.e.
commutative) groups. Figure 1 presents a specification of Abelian groups, using
ad hoc notation, which is hopefully self-explanatory. We have used the computer
science convention of denoting the operations by explicit names, instead of by
mathematical symbols, like 0, + and (—)~!. Also, assertions have names (unit,
assoc, inv, comm), so that it is easy to refer to them. The specification is pre-
sented in a certain (pseudo) format, so that it can (in principle) be processed by
a machine. The text after the double slashes (//) serves as comment. Comments
are valuable in specifications. The underlying set of the structure that we are
specifying is written as X (throughout this paper).

BEGIN AbelianGroup
// ‘AbelianGroup’ is the name of the specification
OPERATIONS
zero:1 — X // recall, 1 is a singleton set {*}; so we have a constant
add: X x X — X
in: X — X
ASSERTIONS // named requirements that are imposed

unit: [‘v’w € X.add(z,zero(*)) = = A add(zero(*),z) =z
assoc: [‘v’:c,y,z € X.add(z, add(y, z)) = add(add(z, y), z)]]
inv: [Vx € X.add(z,inv(z)) = zero(x) ]
comm: [Vm,y € X.add(z,y) = add(y, ) ]

END AbelianGroup

Fig. 1. Specification of Abelian groups

The use of the unit element zero as a function 1 — X instead of as an element
zero € X is a bit formal. It allows us to treat all methods as functions. Also, it
allows us to combine the three methods into a single function:

1+ (X xX)+X X (1)
using the bijective correspondences from Section 2. This single function combines
the three functions zero, add, inv into an algebra of the polynomial functor G

3 There is no claim whatsoever that this is how groups and vector spaces should be
specified; the presentations in this section only serve as preparation.



given by G(X) = 1+ (X x X) + X. Indeed the above specification may be
called an “algebraic specification”. It describes a collection of algebras of the
form (1) satisfying the assertions as in Figure 1. These algebras are the models
of the specification, and are of course precisely the Abelian groups. Algebraic
specification has developed into a field of its own in computer science, see [2]
for an up-to-date source of information. It is used for the description of various
kinds of datastructures, like lists and stacks, with associated operations.

We move on to vector spaces, taking the specification of fields for granted®.
We shall simply write +, 0, -, 1 for their operations. Fields are used as parameters
in the axiomatic description of vector spaces. Also, the underlying set of vectors
of a vector space is an Abelian group. This structure determines the specification
in Figure 2.

BEGIN VectorSpace[K: FIELD]
EXTENDS AbelianGroup // from Figure 1
OPERATIONS
scalaromult: K x X — X
ASSERTIONS
// scalar multiplication and the group structure

scalar_group_add: [Va € K.Vz,y € X. scalar_mult(a, add(z, y))
= add(scalar_mult(a, z),

scalar_mult(a, y)) ]
// scalar multiplication and the field structure

scalar_field_add: [Va, b€ K.Vx € X. scalar_mult(a + b, z)
= add(scalar_mult(a, x),

scalar_mult(b, z)) ]
scalar_field_mult: [Va, b€ K.Vx € X. scalar_mult(a - b, x)
= scalar_mult(a, scalar_mult(b, z)) ]
scalar_field_unit: [Vm € X.scalaromult(l,z) = = ]
END VectorSpace

Fig. 2. Specification of vector spaces

Notice that the fact that vector spaces are parametrised by fields K is ex-
pressed by the addition [K:FIELD] to the name. Further, we say that vector
spaces extend Abelian groups. This means that all the methods and assertions of
Abelian groups also exist for vector spaces. Such EXTENDS clauses are con-
venient for structuring specifications. More formally it means that for each field
K, the underlying polynomial functor Vg of the VectorSpace specification con-
tains the polynomial functor G of the AbelianGroup specification as a coproduct

4 Such a specification has to deal with partiality, since the division operation of fields
is not defined on the zero element.



component:
Vi (X) = G(X) + (K x X) @
=14+ (X xX)+ X+ (K x X).

An algebra Vi (X) — X of this functor thus combines four operations zero,

add, inv and scalar_mult. A model of this specification (for a field K) is such an

algebra satisfying the assertions from Figure 2. It is a vector space over K.
Given a specification as above, there are (at least) two things one can do.

1. Describe models of the specification. For example, for an arbitrary field K,
one obtains an obvious model by choosing K itself for X, with its own
Abelian group structure, and with scalar multiplication given by its mul-
tiplication. Similarly, K™ forms a model, for each n € N. Knowing that a
specification has a (non-trivial) model is important, because it shows its
consistency.

2. Develop the theory of the specification. For example, one can derive the fol-
lowing well-known consequences of the assertions in the VectorSpace speci-

fication:
scalar_mult(0, z) = zero(x)

scalar_mult(a, zero(x)) = zero(x)
scalar_mult(a, inv(z)) = scalar_mult(—a, z).

Theory development often involves further definitions, like basis or dimension
for vector spaces.

A third activity is constructing refinements. These may be understood as
“relative models”, and will be further investigated in Section 10.

Exercises

1. Write down specifications—in the style of this section—for lattices and for Boolean
algebras (see e.g. [4] for details about these notions).

4 A first coalgebraic specification: binary trees

In the previous section we have seen specifications whose methods could be
described as algebras T'(X) — X. An obvious step is to consider specifications
based on coalgebras X — T(X). This is what coalgebraic specification is all
about. It allows us to describe an entirely new class of structures, having a state
space with associated operations.

We start with an example. Let us consider certain trees with labels from a
fixed set A. The trees we wish to consider are possibly infinite binary trees. This
means that each node has a label, and has either no successor trees (also called
children), or has two successor trees. The characteristic coalgebraic operations
for such trees are label: X — A, giving the label at the top of the tree, and
children: X — 1+ (X x X) giving the left and right children, if any. Note that
these two functions can be combined into a single coalgebra of the form:

X Ax (14 (X x X))



For a “tree” z € X the result children(z) is either of the form kx in the left
+-component 1, telling that  has no children, or of the form &'(z1,z2) in the
right component X x X, with x; as first (or left) and x5 as second (right) child.
From here one can continue unfolding the tree x by inspecting children(z1) and
children(z3) (and their labels). If all of these paths stop at some stage,  behaves
like a finite tree, but if one of them continues indefinitely we get an infinite tree.
Note that each such tree has at least one label.

For a fixed set A, we say, by analogy with vector space, that a binary tree space
over A consists of a set U together with a coalgebraU — Ax (14 (U xU)), which
we shall typically write as a pair of functions label: U — A and children: U —
1+ (U x U). An example of a binary tree space over A = {a,b,c} is the set of
states U = {0,1,2,3,4} with functions:

label(0) = a children(0) = £'(3,2)
label(1) = b children(1) = «/(1,2)
label(2) = a children(2) = kx (3)
label(3) = ¢ children(3) = '(2,2)
label(4) = b children(4) = k'(4,2)

The unfoldings (or behaviours) of the states 0 € U and 1 € U then look as

follows.
N N,
a/ \a 7N
AN

a

Such binary trees can occur as the (possibly infinite) behaviour of a process,
where a process may be understood as a program that is supposed to be running
forever, like an operating system on a computer. For terminating processes one
gets finite behaviour.

In a next step we like to include a size method in the specification of these
binary trees. An immediate problem is that the size of such trees need not yield
a natural number. Therefore we choose the “extended natural numbers” 1+ N
as range of the size function, where k* denotes infinity. Addition of infinity to
an extended natural number always yields infinity. These two methods children
and size form the two main ingredients of our first coalgebraic specification of
binary trees in Figure 3.

In this specification we use parametrisation by the type (or set) of labels,
like in Figure 2. An important point is that the types of the methods in the
specification determines a polynomial functor, which, in this case, is

BT(X)=Ax(1+(X xX))x(1+N).

It is obtained by putting a Cartesian product x between the result types of
the individual methods. A crucial observation is that the three methods label,



BEGIN BinaryTreeSpace[A: TYPE]
METHODS // alternative terminology for operations
label: X —» A
children: X — 1+ (X x X)
sizz X — 1+ N
ASSERTIONS
size_def: [‘v’m € X.size(xz) = CASES children(z) OF
Ku > k'l
' (v1,v2) —> CASES size(vy) OF
KU — K%
k'm — CASES size(v2) OF
KU — K%
K'm— &' (1+n+m)
ENDCASES
ENDCASES
ENDCASES |
END BinaryTreeSpace

Fig. 3. Specification of binary trees, version 1.

children, size correspond to a coalgebra X — BT (X) of the polynomial functor
BT. The specification may be understood as describing a collection of coalge-
bras of BT satisfying an assertion. Thus, coalgebraic specification is much like
algebraic specification as described in the previous section.

The assertion ‘size_def’ for the size method is non-trivial; it says that empty
trees have size 1 (since they do have a label), and that if one of the successors
of a non-empty tree has size infinity (x+), then the whole tree has size infinity.
Otherwise the size is the sum of the sizes of the successors plus one. With this
definition we can compute for the earlier example (3) that:

size(2) = k'l since children(2) = kx
size(3) = k'(1+1+ 1) =«'3 since children(3) = £'(2,2)
size(0) = k'(1+3+ 1) = «k'5 since children(0) = £'(3,2)
size(1) = kx

size(4) = kx

The latter two equations holds since if size(1) were k'n, for some n € N, then
assertion ‘size_def’ in Figure 3 yields k'n = size(1) = «'(n + 1 + 1), which is
impossible. Hence size(1) must be xx. Similarly for size(4).

For those readers who are not so familiar with the style of specification as in
Figure 3 we shall give a reformulation of the binary tree space specification as
an axiomatic description in mathematical style:

Let A be an arbitrary set. A binary tree space over A consists of a set
X, elements of which will be called (binary) trees, together with three

10



operations label: X — A, children: X — 14 (X x X) and size: X — 1+N
satisfying, for all z € X,
1. If children(z) = kx*, then size(z) = &'1;
2. If children(z) = k'(z1,z2) and either size(z1) = k* or size(xz2) = K+,
then size(z) = kx;
3. If children(z) = &'(x1,x2) and size(z1) = k'ny and size(z2) = k'ne,
then size(z) = k'(n1 + n2 + 1).
In case children(z) = &/(z1, z2) we shall call z; and z» the successor trees
or children of the tree .

We consider some examples of binary tree spaces (i.e. of models of the spec-
ification BinaryTreeSpace) over an arbitrary set A.

1. A trivial example is the empty set 0 with obvious operations given by the
empty functions. If the set A is non-empty, the singleton set 1 is also a binary
tree space.

2. We can turn the set of all infinite trees with labels from A into a binary tree
space. This set, call it InfTree(A), can be defined as the set of functions A%
of all functions from the free monoid 2* of finite sequences of elements from
2 ={0,1} to A. For ¢ € InfTree(A) = A?" we define

label(¢) = ¢(())
children(¢) = k'(Aa € 2*. ¢(0 - @), Aa € 2*. ¢(1 - a))
size(§) = K *.

3. Next consider the set of both finite and infinite trees:

FinInfTree(A) % {(a, ¢): A x (1 + (A x A))?" | Vo € 2*.Vb € {0,1}.
d(a) = kx = ¢(b-a) = kx}

with operations:

label(a, #) = a
children(a, ¢) = CASES ¢({)) OF
KT > K*
K'(ag, a1) = £'((ag, A € 2*.¢(0 - a)),
(a1, Aa € 2*.¢(1 - @)))
ENDCASES
size(a, ) = ...

The definition of size on FinInfTree(A) is non-trivial. One can of course say
that size is determined by equation ‘size_def’ from Figure 3, but one has still
has to show that such a function exists. One way to go about is to first define
FinTree(A) C FinInfTree(A) to be the smallest subset F satisfying: (a, ) €
F if either and children(a, ¢) = k* or children(a, ¢) = &'((ao, $0), (a1, $1))
and both (ag,¢o) € F and (ai,¢1) € F. The elements of FinTree(A) are
the “finite trees”, and their size is determined by the computation rules in
equation ‘size_def’ from Figure 3. For elements not in FinTree(A), the size is

kx5,

5 We will elaborate on this “u-calculus” style definition in Section 8.

11



4. The subset FinTree(A) C FinInfTree(A) defined above (in 3) with inherited
operations.

Thus we have seen that binary tree spaces exist as non-trivial mathematical
structures. We conclude this section with a warning that coalgebraic specification
is a subtle matter.

4.1 Elements of binary trees

Suppose that we would like to add to the BinTreeSpace specification in Figure 3
a method
elem: X x A — {false, true}

telling whether a tree € X contains an element a € A or not. The associated
assertion that probably first comes to mind is:

elem_def : [ Vz € X.Va € A.elem(z,a) =
(label(z) = a) v CASES children(z) OF
Ku > false
K'(v1,v2) — elem(vy, a) V elem(vs, a)
ENDCASES ]

But this assertion is not good enough, in the sense that it allows interpretations
which are probably unwanted. For example, on the binary tree space InfTree(A)
introduced above, we can define elem(¢) = true, for all ¢ € InfTree(A). Then
the assertion elem_def holds, although we do not have a meaningful membership
method.

Later, in Section 7 we shall introduce a temporal logic for coalgebras which al-
lows us to express an appropriate assertion for the elem method. Then, elem(z, a)
will be equal to: “there is a (not-necessarily direct) successor tree y of z with a
as label”.

Exercises

1. Check that the subset FinTree(A) C FinInfTree(A) is closed under the children
operation defined on FinInfTree(A).

2. Characterise the subset InfTree(A) C FinInfTree(A) in term of the children opera-
tion, by analogy with the above definition of FinTree(A) C FinInfTree(A).
[See also the definitions of Fin and Inf in Section 8.]

5 Bisimulations and bisimilarity

Suppose we have an arbitrary coalgebra ¢: X — T'(X) for a polynomial functor
T. At this level of abstraction, we often a call the elements of X states, and call

5 This definition yields the “smallest” function elem satisfying the above assertion
elem_def with the first ‘= replaced by ‘<.

12



X itself the state space. The function ¢ provides X with certain operations—like
label, children and size in the previous section. These operations give us certain
access to the state space X. They may allow us to observe certain things (like
the current label, or the size), and they may allow us to “modify states”, or
to “move to next states” (like the successor trees). Typically for coalgebras, we
can observe and modify, but we have no means for constructing new states. The
behaviour of a state z € X is all that we can observe about z, either directly or
indirectly (via its successor states).

In this situation it may happen that two states have the same behaviour.
In that case we cannot distinguish them with the operations (of the coalgebra)
that we have at our disposal. The two states need not be equal then, since the
operations may only give limited access to the state space, and certain aspects be
may unobservable. When two states z,y are observationally indistinguishable,
they are called bisimilar. This is written as ¢ £ y. For example, the states 1
and 4 from the binary tree space U = {0,1,2,3,4} in the previous section are
bisimilar; they have the same unfoldings.

In this section we shall formally introduce the notion of bisimilarity £, and
show how it can be used in (coalgebraic) specification. Therefore we shall first
introduce what is called relation lifting. Recall that a polynomial functor T is
a mapping X — T'(X) of sets to sets. We shall define an associated mapping,
called Rel(T"), which maps a relation R C X x X to a new relation Rel(T")(R) C
T(X)xT(X). This mapping Rel(T) will be defined by induction on the structure
of the polynomial functor 7.

1. If T is the identity mapping, then so is Rel(T).

2. If T is the constant mapping X — A, then Rel(T') is the constant mapping
R+ =4, where =4 C Ax A is the equality relation consisting of {(a,a) | a €
A}

3. If T is the product functor X — T7(X) x T2(X), then

Rel(T)(R) = {((z1,%2), (y1,2)) | Rel(T1)(R)(21,y1) A Rel(T2)(R)(22,y2)}
C (T1(X) x Ta(X)) x (Ta(X) x Ta(X))
(X

4. If T is the coproduct functor X ~ T1(X) + T>(X), then

Rel(T)(R) = {(kz1, ky1) | Rel(T1)(R)(w1,91)}
U {(k'z2, k'y2) | Rel(T2)(R)(z2,y2)}
C (Ti(X) + Ta(X)) x (Tu(X) + Ta(X))

5. If T is the function space functor X — T} (X)*, then

Rel(T)(R) = {(f.9) | Va € A.Rel(T1)(R)(f(a),9(a))}
C (Tv(X)*) x (T1(X)*)

For example, for a functor T'(X) = A+ (X x X)) and arelation R C X x X, the
relation Rel(T)(R) C T'(X) x T(X) contains all pairs (ka, ka), for a € A, and all
pairs (k'(z1,z2), k' (y1,y2)) with R(z1,y1) and R(x2,y2). Informally, Rel(T)(R)
contains all pairs (z,w) € T(X) x T'(X) whose constituents in a constant set are
equal, and whose constituents in X are related by R.

13



Definition 1. Let T be a polynomial functor, with relation lifting Rel(T) as
defined above. Further, let ¢: X — T(X) be a coalgebra for T.

1. A relation R C X x X is a bisimulation (with respect to the coalgebra c) if
forall z,y € X,
R(z,y) = Rel(T)(R)(c(z), c(y))-
2. The bisimilarity relation £ C X x X (with respect to c) is defined as the
greatest bisimulation; that is,

z £ y<= AR C X x X.R is a bisimulation, and R(z,y).

Bisimilarity is one of the fundamental notions in the theory of coalgebras.
Notice that the above definition gives for each polynomial functor and for each
coalgebra thereof an appropriate tailor-made definition of bisimilarity. The defi-
nition via relation lifting is convenient in a logical setting, because it is based on
induction (on the structure of the polynomial functor). Therefore it can easily be
translated in the logical language of proof tools—see the discussion in point 2. in
Section 1. One can prove that bisimilarity is an equivalence relation, but this will
not be done here. The proof relies on some basic properties of relation lifting,
which can be proved by induction on the structure of the functor involved.

The notion of bisimilarity comes alive via examples. Let us return to the
binary tree space specification from Figure 3 in the previous section. We have
already seen that the functor involved is BT (X) = Ax (14+ (X x X)) x (1+N).
We shall elaborate what a bisimulation relation is for an arbitrary coalgebra

= (label, children, size): X — BT (X) of this functor. Therefore we first compute
the relation lifting operation Rel(BT). It turns a relation R C X x X into
a relation Rel(BT)(R) C BT(X) x BT(X), in the following way. For a pair
((z1,22,3), (Y1, Y2, 43)) € BT(X) x BT (X),

Rel(BT)(R)((.’L'l,.’L'Q,IIJg), (y17y27y3))
< Rel(4)(@1,y1) A Rel(1 + (X x X))(z2,y2) A Rel(1 + N)(z3,y3)
< (ill'l = 1’2) N
((m2 =y2 = k¥) V
(22 = K' (220, 221) A Y2 = K (Y20, ¥21) A R(20,920) A R(221,921))) A
(z3 = y3)-

Such R C X x X is a bisimulation for a coalgebra ¢ = (label, children, size): X —
BT(X) if for all z,y € X,

R(z,y) = Rel(BT)(R)(c(x), c(y))
i.e. if,

label(z) = label(y) A
((children(z) = children(y) = k) V
R(z,y) = (children(z) = £'(zo , z1) A h|Idren( ) =k (Y0,y1) A
R(z0,y0) A R(z1,y1))) A
size(z) = size(y)

14



This means that elements which are related by a bisimulation R have equal
labels and sizes, and either both have no children, or both have children, which
are again pairwise related by R. Bisimilarity £ for binary trees is the greatest
such bisimulation. Since it is an equivalence relation (and is closed under the
operations), it behaves very much like an equality relation. In fact, bisimilarity
is an important ingredient of assertions in coalgebraic specifications. There, one
generally wishes to avoid using actual equality between states, and so one uses
bisimilarity instead. The reason for not wanting equality between states is that
it severely restricts the possible models” of the specification. But also, if states
are indistinguishable, then they can be considered as equal from the outside.

BEGIN BinaryTreeSpace[A: TYPE]
METHODS
label: X — A
children: X — 1+ (X x X)
sizee X — 1+ N
mirror: X — X
ASSERTIONS

size_def: [see Figure 3 ]
label_mirror: [V:c € X. label(mirror(x)) = label(z) ]

children_mirror: [Vx € X. CASES children(z) OF
ku > children(mirror(z)) = k*
&' (v1,v2) — CASES children(mirror(z)) OF
Kw > false
K (21,22) = (21 £ mirror(v2)) A
(z2 £ mirror(v1))
ENDCASES

ENDCASES |
END BinaryTreeSpace

Fig. 4. Specification of binary trees, version 2.

In Figure 4 we continue the specification of binary tree spaces. What we add
is a mirror method which swaps the children of trees (if any), leaving the labels
unaffected. The assertion children_mirror use bisimilarity to express that the left
and right children of a mirrored tree with children are bisimilar to the mirrored
right and left children.

The reader might have expected an additional assertion stating that mirror-
ring does not change the size. In fact, this can be derived. Also that mirroring
is its own inverse, up to bisimilarity.

T As a typical example, consider a specification of a system with a “do” and an “undo”
operation. The equation undo(do(z)) = = will not hold in “history” models where
one internally keeps track of the operations that have been applied.
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Proposition 1. From the binary tree space assertions in Figure 4 one can de-
rive, for all z € X,

1.

size(mirror(x)) = size(x)

2. mirror(mirror(z)) £ x.

Proof. We only give a sketch, leaving details to the reader.

1. First, one can prove by well-founded induction,

Vn € N.size(z) = k'n < size(mirror(z)) = k'n
The result then follows easily.

2. According to the definition of bisimilarity €, it suffices to find a bisimu-
lation R C X x X with R(mirror(mirror(z)), z). Because £ is the greatest
bisimulation, we then get R C . One can use

R = {(z,y) | = £ mirror(mirror(y))}. O
Exercises
1. Let T be an arbitrary polynomial functor. Prove the following basic properties
about the associated relation lifting operation Rel(T').
(a) Rel(T)(=x) = =7(x); op
(b) Rel(T)(R*) = (Rel(T)(R))”", where R = {(3,2) | (x,y) € R);
(c) Rel(T)(R o S) = Rel(T)(R) o Rel(T')(S);
(d) R C S implies Rel(T)(R) C Rel(T')(S);
(e) R is symmetric implies Rel(T')(R) is symmetric;
(f) For a collection of relations (R; € X x X)ier one has Rel(T)(N,¢; Ri) =
Nicr Rel(T)(R;).
Conclude that for a coalgebra ¢: X — T'(X), the union ¢ of all bisimulations on
X is itself a bisimulation, and is also an equivalence relation.
2. Prove that the relation R in the proof of Proposition 1.2 is a bisimulation.
3. Check that the above definition of relation lifting Rel(T") sending a relation R C

X x X to Rel(T)(R) C T(X) x T(X) in fact also works on relations R C X x Y,
with different carrier sets, and then yields a relation Rel(T)(R) C T'(X) x T'(Y).

For two coalgebras X = T(X) and Y 4 T(Y) we then call a relation RC X xY
a bisimulation (w.r.t. (¢,d)) if R(z,y) = Rel(T)(R)(c(z),d(y)) for all z € X and
y € Y. And we say that a function f: X — Y is a homomorphism (of coalgebras)
if its graph G(f) = {(z, f(x)) | z € X} is a bisimulation.

Prove that the identity function is a homomorphism, and also that the composition
of two homomorphisms is again a homomorphism. Thus one can form a category
CoAlg(T) of coalgebras and homomorphisms between them.

[ Remark: what we present is an alternative to the standard definition, which uses
the action of polynomial functors on functions (which we have not mentioned here,
see e.g. [18]). It says that a function f: X — Y as above is a homomorphism if and
only if the following diagram commutes.

T
T ’

X—Y
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The reader familiar with this ‘T'(f)’ may wish to prove the equivalence of these
two definitions. |

6 Invariants

Bisimulations are binary predicates on the state space of a coalgebra, which are
closed under the operations. We will now introduce invariants, which are unary
predicates that are closed under the operations. They are important for several
reasons.

1. An invariant expresses a property which is maintained by all operations.
If it also holds in initial states, then it holds in all reachable states. Thus,
intended “safety” properties of a specification—like: the value of the integer
(attribute) ¢ will always be positive—are expressed via invariants.

2. Invariants are used for defining the temporal operators O (henceforth) and
¢ (eventually) in a coalgebraic setting, see Section 7.

3. Invariants are crucial for refinements between coalgebraic specifications, see
Section 10.

Bisimulations were introduced in Section 5 via relation lifting. Similarly, we
shall introduce invariants via what is called predicate lifting. For a polynomial
functor T' we define a mapping Pred(T") which sends a predicate P C X on X
to a predicate Pred(T)(P) on T(X), by induction on the structure of T'. This
goes as follow.

1. If T is the identity mapping, then so is Pred(T').

2. If T is the constant mapping X — A, then Pred(T") is the constant mapping
P — A, where A is considered as the “truth” predicate A C A.

3. If T is the product functor X — T7(X) x T2(X), then

Pred(T')(P) = {(x,y) | Pred(T1)(P)(x) A Pred(T2)(P)(y)}
C T1(X) x Tz(X)

4. If T is the coproduct functor X — T (X) + T>(X), then

Pred(T)(P) = {kz | Pred(T1)(P)(z)} U {«'y | Pred(T2)(P)(y)}
CTh(X)+Tx(X)

5. If T is the function space functor X +— T} (X)4, then

Pred(T)(P) = {f | Va € A. Pred(T1)(P)(f(a))}
C Ty(x)4

For the polynomial functor T(X) = A + (X x X), a predicate P C X
is lifted to the relation Pred(T)(P) C T(X) containing all elements ka and
those elements &'(z1,22) where both P(z;) and P(z3). In general, Pred(T')(P)
contains all elements from T'(X) where P holds on all X-positions in T'(X).
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Definition 2. Let ¢: X — T(X) be a coalgebra of a polynomial functor T, and
P C X be a predicate on its state space.

1. A new predicate NextTime(c)(P) C X is defined as
NextTime(c)(P)(x) <= Pred(T)(P)(c(x)).

It expresses that P holds for all successor states of x.
2. The predicate P C X is then an invariant for c if it satisfies, for all x € X,

P(z) = NextTime(c)(P)(z).

The requirement in the definition expresses that if an invariant P holds in
a state x, then it holds on each successor state of z. Using some elementary
properties of predicate lifting, one can show that invariants are closed under
conjunction A. Also, the predicate which is always true is an invariant. Further,
if we have an arbitrary collection (F;);cr of invariants, then Vi € I.P; is an
invariant, see the exercises below.

Let us consider the binary tree space specification from Figure 4. The poly-
nomial functor that captures the interface of this specification is:

BTo(X)=Ax(1+ (X xX)) x (1+N) x X.

For a predicate P C X, the lifting Pred(BT2)(P) C BT72(X) on a 4-tuple
(w1, 22,73, 24) € BT 2(X) is:

Pred(BT2)(P)(x1, %2, T3, %4)
& Pred(A)(P)(z1) A Pred(1 + (X x X))(P)(z2) A
Pred(1 + N)(P)(23) A Pred(X)(P)(z4)
i=+ (IL'2 = Kx V (5172 = IQI(SL'Q(),IIS'zl) A P(.’L‘zo) A P(JEzl))) N P(ZL“4)

An invariant on a coalgebra ¢ = (label, children, size, mirror): X — BT,(X) is a
predicate P C X with

P(z) = Pred(BT2)(P)(c(x))

i.e. with

pior = { finatey " P e

An invariant P thus holds on all successor states of an x € P, produced either
as children of z, or as mirror of z.

A concrete example of an invariant for the binary tree specification is the
predicate stating that the size is finite: FinSize(z) & (size(z) # &x). Clearly,
if FinSize(z), then none of the successor trees can have infinite size; and also
FinSize(mirror(z)) holds because mirroring does not change the size, see Propo-
sition 1 (1).
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As we have seen, invariants and bisimulations on a coalgebra are unary and
binary predicates which are closed under the operations. The more operations the
coalgebra has, the more closure requirements there are. The approach that we
follow—via predicate and relation lifting—produces tailor-made requirements,
following the structure of the interface (as given by a polynomial functor) of a
coalgebra. Since these requirements follow from the structure, they can be gener-
ated automatically. That is precisely what is done by the LOOP tool (from [7]).

As afinal remark we add that predicates and relations which are closed under
the operations of an algebra (instead of a coalgebra) also make sense, see [30,
32,8]. A relation R C X x X on the carrier set of an algebra a:T(X) — X is
closed under the operations if:

Rel(T')(R)(a(z), aly)) = R(,y).

In this case one may call R a congruence. But note that such an R need not be
an equivalence relation. There is no special name in mathematics for a predicate
P C X which is closed under the operations of an algebra a, i.e. which satisfies:

Pred(T)(P)(a(z)) = P(x).

Such a P is called an inductive predicate in [8] (since such predicates form the
assumptions of induction arguments), but invariant would be a reasonable name
also in this algebraic case.

Exercises

1. Prove for an arbitrary polynomial functor 7' that predicate lifting Pred(7") satisfies:
(a) P C Q implies Pred(T)(P) C Pred(T)(Q);
(b) Pred(T)(X C X) = (T(X) C T(X));
(c) Pred(T)(N;er Pi) = N;e; Pred(T)(F).

2. Let ¢: X — T(X) be a coalgebra of a polynomial functor 7. Prove that:
(a) P C X is an invariant if and only if {(z,y) | x = y A P(z)} is a bisimulation.
(b) If R is a bisimulation, then 7R = {x | Jy. R(x,y)} is an invariant.

3. Elaborate what it means for a relation to be a congruence for Abelian groups
and vector spaces, using the above formulation (and the interface functors from
Section 3).

7 Temporal logic for coalgebras

Temporal logic is a formalism for reasoning about assertions varying with time.
Time may be understood here in a loose sense, including situations where one
deals with later or earlier stages, or with successor and predecessor states. Typ-
ical operators of temporal logic are “henceforth” O and “eventually” <. It was
Pnueli [31,26] who first argued that temporal logic could be useful for reasoning
about computer systems with potentially infinite behaviour, such as controllers
which are meant to be running forever. Hence it comes as no surprise that the
operators of temporal logic arise quite naturally for coalgebras, because they
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abstractly capture dynamical systems, typically with infinite behaviour. In this
section we shall define O and <) in terms of invariants, and show how to use
them in the running example of binary trees.

Let ¢: X — T'(X) be an arbitrary coalgebra of a polynomial functor T'. For a
predicate P C X we shall define two new predicates O(c)(P) C X and {(c)(P) C
X. If the coalgebra c is clear from the context, we often omit it, and simply write
O(P) and ¢(P). For an element x € X, we define the predicate “henceforth P”
(with respect to c¢) as:

O(c)(P)(z) & 3I C X.I is an invariant for cand I C P and I(z). (4)

This says that O(c)(P) is the greatest invariant contained in P8. The associated
“eventually” operator ¢ is defined as —0—, or, more precisely as:

O()(P)(z) & -0(c)({y € X [ 2P (y)})(x)- ()

Here we use — for negation on truth values. These temporal operators satisfy the
familiar properties from modal logic. Basically they say that [J is an interior op-
eration: O(P) C P, O(P) C O(O(P)), and P C Q = O(P) C I(Q). Invariants
are its opens (i.e. fixed points).

In the remainder of this section we shall use [0 and <) for binary tree spaces,
as described in Figure 4 in the previous section (é.e. with mirror operation).
There we have already seen what it means for a predicate to be an invariant for
binary trees. With the above definitions we thus have [0 and < for these trees.
We will first redescribe these operators concretely. Then we shall show how they
can be used in specification and verification (without relying on the concrete
description).

7.1 A concrete description of O and ¢ for binary trees

In order to convince the reader that O(P) holds for z if P holds for all future
states of z, and that {(P) holds for z if P holds for some future state of z,
we first have to make explicit what ‘future state’ means for binary trees. In
principle we can proceed to a successor state via left and right children, and
via mirroring. A path to a future state of x can thus be described by a finite
lists of elements from {0, 1,2}, where 0 stands for left child, 1 for right child (if
any), and 2 for mirror. But from the way that the children and mirror operations
interact, as given by assertion ‘children_mirror’ in Figure 4, we can simplify
such paths into certain normal forms, with at most one mirror operation, right
at the beginning, and with paths consisting only of 0’s and 1’s. Therefore we
first introduce the following auxiliary function offspring: X x {0,1}* - 1+ X
producing the successor state offspring(x, @) of a tree x € X along a path «, if

8 More formally, O(c)(P) = gfp(AQ € PX.P A NextTime(c)(Q)), using NextTime
from Definition 2 and the greatest fixed point operator gfp that will be introduced
in the beginning of Section 8.
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any.
offspring(z, () = 'z
offspring(x,a - a) = CASES offspring(x,«) OF
KY > K%
k'z — CASES children(z) OF
KU > Kok
k' (v1,v2) = IFa=0
THEN &'vq
ELSE k'vs
ENDCASES
ENDCASES

First we establish some auxiliary results about this offspring function. The last
point in the lemma below shows how offspring commutes with mirroring.

Lemma 1. Let x,y be arbitrary tree spaces. Then
1. For all lists o, p € {0,1}*,

offspring(z, o - §) = CASES offspring(x, 3) OF
KZ — K*
K'w — offspring(w, o)
ENDCASES

where - is concatenation.
2. Successor trees along the same path of bisimilar trees are bisimilar again:

x £y = Va € {0,1}*. CASES offspring(z,a) OF
kz — CASES offspring(y, o) OF
Ku — true
k'v — false
ENDCASES
k'w — CASES offspring(y,a) OF
ku — false
o= wew
ENDCASES
ENDCASES

3. Let @ € {0,1}* be obtained from a € {0,1}* by changing 0’s in 1’s and
vice-versa. Then:

Yo € {0,1}*. CASES offspring(x,a) OF
kz +— CASES offspring(mirror(z), @) OF
Ku — true
k'v — false
ENDCASES
k'w — CASES offspring(mirror(z), @) OF
Ku — false
K'v = mirror(w) £ v
ENDCASES
ENDCASES
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The CASES notation gives a precise way of stating, for example in the last
point, that if offspring(x, @) = k'w, then offspring(mirror(z), @) is of the form &'v,
and this v is bisimilar to mirror(w).

Proof. By induction on « (in all three cases). O
Proposition 2. Let P C X be a predicate on a binary tree space X, which
respects bisimilarity, i.e. which satisfies x £ y A P(x) = P(y), for all z,y € X.
Then:

1. O(P)(z) <=

Va € {0,1}*.
CASES offspring(z, ) OF CASES offspring(mirror(x),a) OF
Kz > true Kz > true
K'w — P(w) A K'w — P(w)
ENDCASES ENDCASES
2. O(P)(z) <=
Ja € {0, 1},
CASES offspring(z,a) OF CASES offspring(mirror(x),a) OF
Kz — false Kz — false
K'w — P(w) 4 K'w — P(w)
ENDCASES ENDCASES

Proof. The second point follows directly from the first one, since $ = —[1—, and
so we concentrate on 1.

(=) Assume O(P)(x). Then there is an invariant ¢ C X with Q C P and
Q(z). The result follows from the statement:

Vo € {0,1}*.
CASES offspring(z, ) OF CASES offspring(mirror(z), a) OF
Kz + true Kz +> true
K'w — Q(w) A Kw— Ty e Xy wA Qy)
ENDCASES ENDCASES

which can be proved by induction on .
(«=) We have to produce an invariant Q C X with @ C P and Q(z). We can
take Q(y) as:

Va € {0,1}*.
CASES offspring(y, ) OF CASES offspring(mirror(y), o) OF
KZ > true Kz +—> true
K'w — P(w) A K'w — P(w)
ENDCASES ENDCASES

Then @(z) holds by assumption; @ C P follows easily by taking a = (), but
invariance is more difficult. It requires Lemma 1. O
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7.2 Using O and ¢ for specification and verification of binary trees

Now that we have seen how O and < (for binary trees) indeed express “for all
future states” and “for some future state”, we start using these temporal opera-
tors in specifications. Subsequently we show how to reason with them (without
relying on the concrete descriptions of Proposition 2).

BEGIN BinaryTreeSpace[A: TYPE]
METHODS
label: X — A
children: X — 1 + (X x X))
size: X — 1+ N
mirror: X — X
elem: X x A —» {false, true}
ASSERTIONS

size_def: [see Figure 3 ]
label_mirror: [see Figure 4]
children_mirror: [see Figure 4]

elem _def: [V:c € X.Va € A.elem(z,a) = O({y € X | label(y) = a})(x) ]

CONSTRUCTORS
leaf: A — X
filkA — X
CREATION

leaf_def: [Va € A.label(leaf(a)) = a A children(leaf(a)) =  * ]
fill_def: [Va € A.0{y € X | label(y) = a A children(y) # r+})(fill(a)) ]
END BinaryTreeSpace

Fig. 5. Specification of binary trees, version 3.

Recall from Subsection 4.1 that the naive assertion for a membership method
elem: X x A — {false, true} does not work. We are now in a position to express
elem(z,a) as “in some future state y of z, label(y) = a”, namely as ¢({y €
X | label(y) = a})(x). This is incorporated in the next version of the binary tree
space specification in Figure 5.

Of course one can also define elem(x,a) via the auxiliary function offspring
from the previous subsection. But such a definition is too concrete, too verbose,
and not at the right level of abstraction. For instance, if we were using ternary
trees, with a children operation X — 1+ (X x X x X), instead of binary trees,
then the eventually assertion for elem would still work, because ) abstracts from
the particular tree structure.

New in this specification are the constructors. These are functions of the form
I — X, giving initial states, parametrised by the set I. These initial states are
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required to satisfy the assertions listed under ‘CREATION’. In this case we have
two® constructors, namely leaf: A — X and fill: A = X. The intention is that
leaf(a) is the tree with a as label and with no children. This is easy to express,
see the assertion ‘leaf_def’ in Figure 5. The other constructor yields a tree fill(a)
that has a not only as direct label but also as label for all of its successors, which
are all required to exist. This can be expressed conveniently via a O formula.

We give an indication of what can be proved about this latest specification in
two lemmas. The next section elaborates further on (in)finiteness of behaviour
of binary trees.

Lemma 2. Consider the binary tree specification from Figure 5. The mirror of
a tree x € X has the same elements as x, i.e. for all a € A,

elem(z,a) <= elem(mirror(x),a).
With this result one can show that mirroring is its own inverse, for binary
tree spaces as in Figure 5 (like in Figure 4, see Proposition 1 (2)).
Proof. What we have to prove is, for an arbitrary € X and a € A:

I C X. (I is an invariant) A (I C {y € X | label(y) # a}) A (I(mirror(z))
—
37 C X.(I is an invariant) A (I C {y € X | label(y) # a}) A I(z).

For the direction (<) one can use the same predicate I, but for (=-) one has to
do some work: assume I as in the assumption, and define I' C X as:

I'(z) & Jy € X.y £ mirror(z) A I(y)
Then I' is the required predicate. O

A next exercise that we set ourselves is to prove that the size of an initial
state fill(a), for a € A, is infinite (i.e. is k*). We do so by first proving a more
general statement.

Lemma 3. Still in the context of the specification in Figure 5,

1. O({y € X | children(y) # k+})(x) = size(z) = kx*, for all x € X.
2. size(fillla)) = kx, for all a € A.

Proof. The second point follows immediately from the first one using the def-
inition of fill(a). For 1 we first prove an auxiliary statement. Assume O({y €
X | children(y) # x+})(z). Then, for all n € N,

(size(z) = k'n) = Vm € N. {({y € X | CASES size(y) OF
Kku — false
Kv—=v+m<n
ENDCASES })(z)

In words: if the size of x is k'n, then for all m € N there is a future state y of
x whose size is k'v and satisfies v + m < n. The conclusion of this statement
follows by induction on m. This shows that size(x) cannot be of the form x'n—
take m = n + 1 in that case—and thus that size(xz) must be xx. O

9 These two constructors can be combined into a single one with type A + A — X.
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Exercises

1. Prove that O(N;c; Pi) = N;c; O(F)-
2. Prove that the predicate I’ in the proof of Lemma 2 is an invariant.
3. Prove the following “induction rule of temporal logic”:

P NO(P D NextTime(P)) C O(P),

where P D Q = {z | P(z) implies Q(z)}.
4. Consider the specification in Figure 5, and prove, for all a,b € A,

elem(fill(a),b) = a = b.

8 Towards a u-calculus for coalgebras

We continue the study of binary trees as in Figure 5. In the first point in
Lemma 3 in the previous section we have seen a certain property, namely O({y €
X | children(y) # kx})(x), guaranteeing that size(z) is infinite. At this stage we
wonder: are there formulas expressing finiteness of behaviour, and also infinite-
ness behaviour, in such a way that a tree has finite behaviour if and only if its
size is finite (i.e. of the form &'n, for some n € N), and has infinite behaviour if
and only if its size is infinite (i.e. k*)?

In this section we give a positive answer to this question. In order to express
such formulas, say finite(z) and infinite(z), for a binary tree z, we shall make
use of least and greatest fixed points, via operators g and v as are standard in
what is called the p-calculus (see [36]). In the p-calculus one allows p and v in
the construction of logical formulas, with associated rules for reasoning. Here
we shall only illustrate the usefulness of y and v in our running example. We
proceed at a semantical level, without developing a logic. So first we have to
make clear what we mean by these fixed points.

Let Y be an arbitrary set. The set P(Y) of subsets of Y is partially ordered
by inclusion C. A function F: P(Y) — P(Y) is called monotone if it respects
inclusions: P C Q = F(P) C F(Q). For such an F we define

ifp(F) = {U C Y | FU) C U}
gfp(F) = U{U C Y |U C F(U)}

Then it is not hard to prove (using that F' is monotone):

F(P)C P =Ifp(F)CP F(lfp(F)) = Ifp(F)
P CF(P)= P Cgfp(F) F(gfp(F)) = gfp(F).

This says that Ifp(F) is the least fixed point, and gfp(F') the greatest fixed point
of F. The p-calculus offers a special syntax for the functions Ifp and gfp, namely
the binding operators p and v. Their meaning is:

uP. F(P) = Ifp(F) and vP. F(P) = gfp(F).
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We return to binary tree spaces, and define for a subset P C X, two predi-
cates:
Fin(P) = {y € X | Pred(1 4+ (X x X))(P)(children(y))}
= {y € X | CASES children(y) OF
Ku — true
K'(v1,v2) = P(v1) A P(v)
ENDCASES }
Inf(P) = {y € X |=Pred(1 + (X x X))(—P)(children(y))}
= {y € X | CASES children(y) OF
Ku +—> false
K'(v1,v2) = P(v1) V P(vs)
ENDCASES }

It is not hard to see that both Fin and Inf are monotone functions'®. Therefore
we can define the following two predicates on X.

finite = Ifp(Fin)  and  infinite = gfp(Inf)
In the p-calculus one would directly define:

finite = uP. {y € X | CASES children(y) OF
Ku —> true
K'(v1,v2) = P(v1) A P(vs)
ENDCASES }
infinite = vP. {y € X | CASES children(y) OF
ku > false
k' (v1,v2) = P(v1) V P(v2)
ENDCASES }

Such definitions in p-calculus style are usually very compact (and elegant), but
not so easy to read and understand. In this case we shall first relate the definitions
of the predicates finite and infinite to the concrete description in terms of the
offspring function using paths (introduced in Subsection 7.1). Subsequently we
shall relate these predicates to the size function.

In order to familiarise the reader with reasoning using least and greatest fixed
points, we start with the following elementary observations.

Lemma 4. For binary trees x,y € X satisfying the specification from Figure 5
we have:

1. If x &y, then
finite(x) <= finite(y) and infinite(x) <> infinite(y).

10 The occurrence of predicate lifting in this definitions is not accidental. For an ar-
bitrary coalgebra ¢: X — T'(X) of a polynomial functor, one can define the subset
of states with finite behaviour as pP.NextTime(c)(P) = Ifp(NextTime(c)), and the
subset of states with infinite behaviour as vP. -NextTime(c)(—P).
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2. Also:
finite(mirror(x)) <=> finite(x) and infinite(mirror(x)) <= infinite(x).

Proof. 1. We shall prove the first part about finiteness. So assume x £ y and
finite(x), i.e. Ifp(Fin)(z). Because Ifp(Fin) is the least fixed point of Fin, it
suffices to find a predicate P with Fin(P) C P and P(z) = finite(y). These
requirements suggest P = {z € X | Yw € X.z & w = finite(w)}.

2. We do the infinite case.
(=) Assume infinite(mirror(x)), i.e. gfp(Inf)(mirror(z)). In order to prove
infinite(z) we simply take P = {y € X | infinite(mirror(y))}. The inclusion
P C Inf(P) follows from 1, and P(z) is obvious. Therefore infinite(x).
(<) Assume infinite(z). In order to prove gfp(Inf)(mirror(z)) it suffices to
produce a predicate P with P C Inf(P) and P(mirror(z)). We take P = {y €
X | 3z € X.mirror(z) £ y A infinite(z)}. |

Proposition 3. Finiteness and infiniteness of behaviour for binary trees can be
expressed in terms of the offspring function from Subsection 7.1 as follows.

1. finite(z) <= 3n € N.Va € {0,1}*.|a| > n = offspring(z,a) = k*.
2. infinite(z) <= VYn € N.Ja € {0, 1}*. |a| = n A offspring(z,a) # Kk*.

Proof. 1. For the direction (=) one uses that finiteness is defined as a least
fixed point. The predicate P with Fin(P) C P that one can use is given by
P={ye X |3IneNVae{0,1}* |a| >n = offspring(y, o) = kx}.

For the reverse direction (<) assume, for some n € N that offspring(z,a) =
kx* for all & € {0,1}* with |a| > n. Then one can prove, by induction on m,
that:
Vm < n.Va € {0,1}*. CASES offspring(z, ) OF
Ku — true
k'v = |a] > n —m = finite(v)
ENDCASES

But then we are done by taking m = n and a = ().

2. The implication (<) can be proved using that infinity is introduced via a
greatest fixed point. An appropriate predicate P with P C Inf(P) is: P =
{y € X |Vn € N.3a € {0,1}*. |a] = n A offspring(y, &) # rx*}.

For the other implication (=), assume infinite(z). By induction on n we can
prove a slightly stronger statement:

Vn € N.Ja € {0,1}*. CASES offspring(z,a) OF
ku > false
k'v = |a| = n A infinite(v)
ENDCASES U

In a next step we show that both finiteness and infinity can be expressed in
terms of size.
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Proposition 4. For a binary tree space x as in Figure 5 we have

1. finite(x) <= size(x) # K*.
2. infinite(z) <> size(x) = Kx.

Proof. 1. The direction (=) follows from finite being a least fixed point. For
(<) we prove by well-founded induction (on the natural numbers) that:

Vn € N.size(z) = k'n = finite(z).

2. The greatest fixed point property of infinite takes care of the implication
(«). For (=), assume infinite(z) and size(z) = k'n. The statement

Vm € N.O({y € X |infinite(y) A CASES size(y) OF
ku — false
Kv=sn>v+m

ENDCASES})(z)

can be proved by induction on m. But then we get a contradiction by taking
m = n + 1. Hence size(z) = k*. |

This concludes our brief tour of a p-calculus in a coalgebraic setting. It also
concludes our discussion of binary trees. We only mentioned a few operations
that can be used for binary trees, leaving out many others. Typically, one also has
operations for inserting and deleting labels, and for extracting (possibly infinite)
sequences of labels, using for example pre-order, in-order, or post-order tree
traversal. Insertion and deletion are usually defined for so-called binary search
trees where all labels appear in an ordered fashion (assuming the set A of labels
is totally ordered): labels in a left child are below the current label, which is
below labels in the right child. Such properties typically appear as invariants.
Here we did not include these additional operations in our discussion because
our sole aim is to illustrate coalgebraic specification and verification techniques
(especially using temporal and fixed point operators), and not to be in any sense
complete!!.

Exercises

1. Prove that O(P) = gfp(AQ. P N NextTime(Q)).

9 A case study: Peterson’s mutual exclusion algorithm

In this section we present a non-entirely-trivial application in coalgebraic spec-
ification and verification: Peterson’s mutual exclusion algorithm. It provides a
well-known mechanism for regulated access to what are called critical regions (or

' Also, the way we have set up our binary trees is probably not optimal for storage,
because, as is not hard to see, a finite binary tree will always have an odd size. Hence
adding single elements is problematic.
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critical sections): often in computer sciences there situations with two (or more)
processes (running programs) which share certain resources, such as computing
devices or data in memory (or in files or on disks). In such cases it is important
that access is well-regulated, so that no corruption can take place. This issue
called the mutual exclusion problem. What one needs is some mechanism which
grants access to a critical region only to one process at a time. This should be
done in such a way that all requests for access will be granted at some stage,
in a reasonably fair manner. This issue is often discussed at length in books on
operating systems, like [37].

9.1 Peterson’s solution for mutual exclusion

A particularly nice and easy way to achieve mutual exclusion was developed by
Peterson [29], see also [37, 2.2.3], [5, 7.2], [1, 6.5] or [24, 10.5.1]. The latter three
references also contain correctness proofs: in [5] the algorithm is presented as a
parallel composition of two automata, and its correctness is proved in temporal
logic; in [1] the algorithm is described as a parallel composition of two programs,
whose (safety only) correctness is established using (the Owicki-Gries extension
of) Hoare logic; and in [25] state machines are used with a precondition-effect
notation. Here we shall describe the algorithm in coalgebraic specification, mak-
ing use of structuring techniques in object-oriented style. We shall return to this
example in the next section on refinement.

A first, intuitive impression of Peterson’s algorithm can be obtained from the
automata theoretic description used in [5]. It consists of two essentially identical
automata, put in parallel, see Figure 6. They both have a critical section, indi-
cated by the locations ¢3 and m3 with double circles. They share a variable ¢,
which indicates whose turn it is (to proceed to the critical section), with true for
automaton 1 on the left, false for automaton 2 on the right. Both automata can
read and change the value of t. Reading is indicated by the question mark ‘?’;
and writing by the assignment symbol ‘:=’. There are two additional variables
yi, for i € {1,2}, indicating whether automaton i is interested in becoming criti-
cal. Automaton ¢ can read both y; and y2, but change only y;. Through a subtle
interaction of these variables ¢,y ,y2 it is prevented that the automata are both
in their critical sections (i.e. at £3 and mg3 at the same time).

(\‘ Y1 1= true Y2 := true
@@ (ro)—
Y11= falseT lt .= false || y2 := false

Yz A —t? 71 A7

Fig. 6. Peterson’s algorithm, described as composition of two parallel automata
(from [5])
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Of course, this statement needs a rigorous proof. First of all, such a proof
requires a precise formalisation of the algorithm. As such, the automata theoretic
description from Figure 6 is not ideal. For example, it is somehow implicit that
transitions £; — £ and m; — ms cannot happen at the same time, because they
involve an incompatible assignment to ¢. Also, in the transitions o — £3, ma —
mgs the turn variable ¢ does not change. Such facts are crucial in verification'2.
Therefore we seek an alternative, purely assertional formalisation, in which all
these points will be written explicitly. Necessarily, such a description will be
much more verbose. It will be given as a coalgebraic specification below (in
Figure 13). Before presenting it, we have to deal with some new aspects that are
used in this specification.

9.2 Dealing with time in coalgebraic specification

We shall briefly discuss a way of handling time in a coalgebraic setting, follow-
ing [16]. We concentrate on discrete time, as this will be used in the specification
of Peterson’s algorithm. But continuous time will also be mentioned.

BEGIN DiscreteTime
METHODS
tickk X — X
END DiscreteTime

Fig. 7. Discrete time

Discrete time can be modelled via a single operation tick: X — X, see Fig-
ure 7. The idea is that every unit of time, this function is called. How this
happens is not relevant, but one can think of it as resulting from the clock of
a computer system. So for a state x € X, the state after two units of time is
tick(tick(z)). It is convenient to have suitable notation, like tick™, for iteration,
where:

tick®(z) = z and tick™™ () = tick(tick™(z)).

Figure 8 presents a timer which can be set by the user, and then goes off
“automatically” after N units of time (given as parameter). We have used IN-
HERIT FROM to indicate that this specification also has a method tick: X —
X. The polynomial functor 7 underlying the Timer specification then contains
the polynomial functor DT of the DiscreteTime specification as x-component!?:

T(X)=DT(X) x X x {on,off} = X x X x {on, off}.

12 All these aspects can be made precise in an automaton theoretic framework, by
defining appropriate notions of behaviour and composition. But doing so is not our
aim. The description in Figure 6 only serves as a first introduction.

13 And not as +-component, like in algebraic specification, see the functor for the vector
space example (2).
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BEGIN Timer[N:N|
INHERIT FROM DiscreteTime // yields tick
METHODS
set: X — X
status: X —» {on, off}
ASSERTIONS

off remains: | Vz € X.Vn € N. status(z) = off = status(tick”(z)) = off]
off happens: | Vz € X.Vn € N.n > N = status(tick™(z)) = ofF]

status_set: [Vz € X.Vn € N n < N = status(tick™(set(z))) = on ]
END Timer

Fig. 8. A simple parametrised timer

The assertion ‘off_remains’ tells that once the timer is off, it does not “sponta-
neously” become on by passage of time. This could be expressed via temporal
operators—see below—but here we choose to write it explicitly via iteration. The
next assertion ‘off_happens’ expresses that no matter in which state the timer
is, it will be off after at least N units of time. Finally, the first N ticks after
an invocation of set the timer will be on, as expressed by the third assertion
‘status_set’.

This specification has many models. For example, one can take for X the set
[0, N] C N with functions tick, set: [0, N] = [0, N] and status: [0, N] — {on, off}
given by on z € [0, N] as:

. N ifz>N-1 onifx <N
tick(z) = {x +1else set(z) =0 status(z) = {off fo— N

A state z € [0, N] thus represents the number of time units until the timer’s
status will be off.
The tick function in the specification of discrete time describes the passage to

a next state through the passage of time. It can thus be used to described primed
versions of attributes: for a method (or attribute) a: X — A, one sometimes sees
in the computer science literature the notation a’: X — A for “the attribute a
evaluated in the next state”. Thus we can understand a' as a o tick. In such a
way one can translate specifications in the Temporal Logic of Actions (TLA),
see [22, 23], into coalgebraic specifications. Actions in TLA are predicates, which
become methods X — bool. They describe the preconditions and postconditions
in a single conjunction, such as: (a(z) > 0) A (a'(z) = a(x) — 1). The temporal
logic of TLA is linear temporal logic, and its 00 and ¢ operators are the ones
that are associated with the DiscreteTime specification from Figure 7 (following
Section 7):

O(P)(z) <= Vn € N. P(tick"(z)) (6)

O(P)(z) <= In € N. P(tick™(z)).
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Because {y € X | Vn € N. P(tick"(y))} is the greatest DiscreteTime-invariant
contained in P.

BEGIN ContinuousTime
METHODS
flOWZXXR20—>X //RZOZ{S€R|SZO}
ASSERTIONS
flow_zero: [V:c € X.flow(z,0) =z ]

flow_plus: [Va: € X.Vs,t € Rxg.flow(z, s + t) = flow(flow(z, t), s) ]
END ContinuousTime

Fig. 9. Continuous time

Notice that iteration yields a function ticks: X x N — X, namely ticks(z,n) =
tick™ (z). This forms an action for the natural number monoid (N, +, 0), since

ticks(z,0) = z and  ticks(z,n +m) = ticks(ticks(z, m), n).

This action aspect is taken as fundamental in handling continuous time, see
Figure 9. There we have an action flow: X x R>o — X with respect to the monoid
(R>0,+,0) of positive real numbers. Such flows are fundamental in system theory
(see e.g. [21]) and are also known as motions, trajectories or solutions. Indeed,
unique solutions to differential equations give such flows, see e.g. [9, 8.7]. The
temporal operators associated with the ContinuousTime specification of Figure 9

me O(P)(z) <= Vs € Rxq. P(flow(z, s))
Q(P)(z) <= Is € R>g. P(flow(z, 5)).

Since the predicate {y € X | Vs € R>¢. P(flow(y, s))} is the greatest Continuous-
Time-invariant contained in P. We shall not use these flows in this paper. For
more information, see [16].

9.3 Class-valued methods

So far we have seen methods that return a value, like size &+ 1+Nor label: X — A
in Figure 3. Such methods simply describe functions. The question arises whether
one can also have “class-valued” methods such as tree: X — BinaryTreeSpace[N]
in coalgebraic specifications, yielding values in classes (also called objects). For
each state © € X, tree(x) should then be a binary tree with natural numbers
as labels. Such methods are convenient because they allow us to incrementally
build structured specifications from smaller components (i.e. classes).

The question is: what kind of functions are such class-valued methods like
tree? They should return elements of a model'* of the tree specification. But

14 Bven this condition can be relaxed: one can just require elements of the state space
of a coalgebra providing the binary tree space methods, without requiring that the

32



which model? We have seen several models in Section 4, but there seems to be
no canonical choice. Actually there is a canonical choice here, namely the so-
called terminal (or final) model. It is the defined as the model F' such that for an
arbitrary model M there is a unique homomorphism M — F, see [18] for more
information. Terminality is useful when casting is required, i.e. when elements
of classes which inherit from a class C' must be regarded as elements of C. This
can be done via the unique homomorphism just mentioned, see [11]. But this is
beyond scope.

For many purposes, it really does not matter which model is used for class-
valued attributes. In such a situation one can use an arbitrary model—assuming
there is one'®. Since the chosen model is arbitrary, there is nothing specific that
can be used about it. This is called loose semantics. It is what we shall use below.

DiscreteTime
(Figure 7)
PetersonProcess[true] Peterson PetersonProcess|[false]
(Figures 11, 12) (Figure 13) (Figures 11, 12)

Fig. 10. The structure between specifications in Peterson’s algorithm

9.4 Peterson’s algorithm in coalgebraic specification

We can finally describe Peterson’s mutual exclusion algorithm in coalgebraic
specification. The specification as a whole will be built up from smaller specifica-
tions, see Figure 10. The central specification is called Peterson. The arrows going
upwards point to superclasses (using inheritance), the horizontal ones to com-
ponent classes (via class-valued methods). The PetersonProcess is parametrised
by the set bool = {false, true}, so that the two versions (like in Figure 6) can be
described together.

We shall explain the main specifications PetersonProcess (Figures 11, 12) and
Peterson (Figure 13) in some more detail. Basically, it follows the automata-
theoretic description from Figure 6. In the PetersonProcess specification the
real work is done. There are Boolean-valued attributes critical, for describing
whether this process is in its critical section, own_interest, telling whether this
process is interested in becoming critical (corresponding to y; or y» in Figure 6),
other_interest, telling whether the other process is interested (corresponding to yo
or y1), turn, describing whose turn it is (like ¢ does in Figure 6), and pre_critical,

coalgebra also satisfies the assertions. In such a way one can model “casting with
late binding”. But that is beyond the scope of the present paper.
15 1t is good practice to construct a model after introducing a new specification.
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BEGIN PetersonProcess|ident: bool] // where bool = {false, true}
INHERIT FROM DiscreteTime // see Figure 7
METHODS

critical: X — bool
own_interest: X — bool
other_interest: X — bool // describes interest of other process
turn: X — bool // will be shared
pre_critical: X — bool // describes waiting state
interest: X — X // enables a user to indicate interest
// to proceed to critical section
ASSERTIONS
interest: [ own_interest(interest(x)) A turn(interest(z)) = turn(z) A
other_interest(interest(x)) = other_interest(x) A

—pre_critical(interest(z)) A —critical(interest(z)) ]
remain not_interested: [ —own_interest(z) = (ﬂown_interest(tick(x)) A
~critical(tick(z)) A ﬂpre_critical(tick(m))) ]
become_pre_critical: [ (own_interest(x) A —pre_critical(z) A ﬂcritical(x))

= (own_interest(tick(w)) A pre_critical(tick(z)) A
~critical(tick(z)) A
// turn cannot remain ident:
(turn(z) = ident = turn(tick(z)) # ident)) ]
remain_pre_critical: [ (own_interest(a:) A pre_critical(z) A —critical(z) A
other_interest(z) A turn(z) # ident)
= (own_interest(tick(:c)) A pre_critical(tick(z)) A
ﬂcritical(tick(m))> ]

// see Figure 12
END PetersonProcess

Fig. 11. Specification of a (parametrised) Peterson process, part I

indicating whether this process is in the waiting state before becoming critical
(corresponding to locations ¢ and ms in Figure 6). Finally, there is a method
interest which can be used to indicate that a process is interested in becoming
critical, as expressed by the assertion ‘interest’ in Figure 11. The other assertions
tell how the system changes under the influence of time: they describe the effect
of the tick method under various circumstances. These assertions precisely de-
scribe the behaviour, by listing the values of various attributes before and after
a tick. One can notice that nothing is stated about the other_interest attribute
after a tick, since this attribute is not under the control of this process and
can be changed at any time by the other process. The turn attribute is under
control of both processes. Hence changes to turn must be expressed in a care-
ful manner, to avoid clashes (leading to inconsistencies) with possible changes
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BEGIN PetersonProcess|ident: bool ]
// see Figure 11
ASSERTIONS
// see Figure 11
become_critical: [ (own_interest(:c) A pre_critical(z) A —critical(z) A
(—other_interest(z) V turn(z) = ident)
= ( own_interest(tick(z)) A —pre_critical(tick(z)) A
critical(tick(z)) A
// turn cannot change to —ident:
(turn(z) = ident = turn(tick(z)) = ident)) ]
critical_remains_or_stops: [ (own_interest(a)) A —pre_critical(z) A critical(m))

= (ﬂpre_critical(tick(m)) A
(// either remain critical
(own_interest(tick(z)) A critical(tick(z)) A
(turn(z) = ident = turn(tick(z)) = ident))
vV // or stop being critical

(—own_interest(tick(z)) A ﬁcritical(tick(w))))) ]
critical_stops: [ critical(z) =
(O(SUper)({y € X | —critical(y) A —pre_critical(y) A

ﬂown_interest(y)})(x)) ]
END PetersonProcess

Fig. 12. Specification of a (parametrised) Peterson process, part II

by the other process, see assertions ‘become_pre_critical’, ‘become_critical’ and
‘critical_remains_or_stops’ where restrictions occur which do not block changes
by the other process. Notice how the assertion ‘become_pre_critical’ can be used
for both processes at the same time—corresponding to transitions £; — fo,
my; — me in Figure 6—but that only one “assignment” to turn can take place.
The final assertion ‘critical stops’ uses the eventually operator {>(super). It refers
to ¢ for the superclass DiscreteTime, which can be expressed in terms of itera-
tion, see the equivalences (6). It thus says that the critical section will be left,
after an unspecified amount of time. This is needed for fairness: if processes do
not leave their critical sections, their competitors will never get access.

We turn to the central specification Peterson in Figure 13. It has two at-
tributes for the two processes, and two methods for indicating interest of these
processesi®. The assertions establish appropriate connections between the two
processes (‘share_turn’ and ‘exchange_interest’), and also between the methods

16 Actually, using some more expressive language of types, one could combine meth-
ods ppF, ppT into pp: X — [[, poo| PetersonProcess[b] and interestT, interestF into

interest: X — XbOOI.
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tick, interestT, interestF of the Peterson specification and corresponding methods
of the processes. Notice that we do not write a requirement ppF(interestT(z)) £
ppF(z), because it is too strong: interestT sets own_interest of ppT to true, and
thereby other_interest of ppF to false. Hence it does have an effect on ppF.

BEGIN Peterson
INHERIT FROM DiscreteTime // see Figure 7
METHODS
ppT: X —> PetersonProcess|true]
ppF: X — PetersonProcess|false]
interestT: X — X
interestF: X — X
ASSERTIONS

share_turn: [turn(ppT(:z:)) = turn(ppF(z)) ]

exchange_interest: [ own_interest(ppT(z)) = other_interest(ppF(z)) A
other_interest(ppT(x)) = own_interest(ppF(z)) ]
interestT: [ ppT(interestT(z)) £ interest(ppT(z)) A

own_interest(ppF (interestT (z))) = own_interest(ppF(z)) A
pre_critical(ppF(interestT(z))) = pre_critical(ppF(z)) A

critical(ppF(interestT(z))) = critical(ppF(z)) ]
interestF: [ ppF (interestF(z)) £ interest(ppF(z)) A

own_interest(ppT (interestF(x))) = own_interest(ppT(z)) A
pre_critical(ppT (interestF(x))) = pre_critical(ppT(z)) A

critical(ppT (interestF(z))) = critical(ppT(z)) ]
synchronise: [ ppT (tick(z)) £ tick(ppT(z)) A
ppF (tick(x)) £ tick(ppF(x)) |
CONSTRUCTORS

new: X
CREATION

init: [ —own_interest(pp T (new) A —pre_critical(ppT (new) A —critical(ppT (new) A
—own_interest(ppF(new) A —pre_critical(ppF(new) A —critical(ppF(new) ]
END Peterson

Fig. 13. Specification of Peterson’s algorithm
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Next we come to correctness, expressed in Theorem 1 below. In our reasoning
about the Peterson specification we use the next five predicates: for ¢ € X,

critical_exclusionT(z)
= (critical(ppT(z)) = own_interest(ppT(z)) A —pre_critical(ppT(z)) )
critical_exclusionF(z)

= (critical(ppF(z)) = own_interest(ppF(z)) A —pre_critical(ppF(z)) )
critical_turnT(x)

= (critical(ppT(z)) A pre_critical(ppF(z)) = turn(ppT(z)) )
critical turnF ()

= (critical(ppF(z)) A pre_critical(ppT(z)) = —turn(ppF(z)) )
critical _exclusion(z)
= ( critical_exclusionT(z) A critical_exclusionF(z) A

critical_turnT(z) A critical _turnF(x) A

= (critical(ppT(z)) A critical(ppF(z))) )-

Lemma 5. The following five predicates are invariants for the Peterson class
specification in Figure 13.

critical_exclusionT, critical_exclusionF,
critical_exclusionT A critical_exclusionF A critical_turnT,
critical_exclusionT A critical_exclusionF A critical_turnF,
critical_exclusion.

Below we shall only use the last invariant critical_exclusion, but the others are
convenient as intermediate steps.

Proof. According to Definition 2 we have to prove for each of the above predi-
cates, say denoted by ) C X, that for all z € X,

Q(tick(z))
Q(z) = < Q(interestT(x))
Q(interestF(x))

This is not hard, but a lot of work, because of the many case distinctions that
have to be made. Hence a proof tool is useful. O

Theorem 1. The specification of Peterson’s algorithm in Figure 13 satisfies the
following two safety and progress properties.

1. Mutual exclusion holds in all reachable states:

Oy € X | ~(critical(ppT(y)) A critical(ppF(y)))})(new)

2. For both processes, requests to proceed to their critical section will eventually
be granted: for all x € X,

Oy € X | critical(ppT(y))}) (interest T(z))
O({y € X | critical(ppF(y))})(interestF(z)).
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Proof. 1. According to the definition of [, we have to produce an invariant
Q with Q(y) = —(critical(ppT(y)) A critical(ppF(y))) and Q(new). We take
@ = critical_exclusion from Lemma 5.

2. The two statements are proved in the same way, so we concentrate on the
first one. The following intermediate statement is convenient: for all x € X,

(own_interest(ppT(z)) A pre_critical(ppT(z)) A —critical(ppT(z)) A
In € N. —own_interest(tick” (ppF(z))) V turn(tick™ (ppF(z))) )
—
In € N.critical (ppT (tick™ (z)))

The proof of this statement proceeds by considering the least n such that
—own_interest(tick” (ppF(z))) V turn(tick™(ppF(z))). For all m < n, one can
show that after m ticks own_interest, pre_critial and —critical hold for ppT.
Hence the assertion ‘become_critical’ does the job after n ticks. O

10 Refinements between coalgebraic specifications

A refinement is a general construction to turn a model of one specification (usu-
ally called the concrete one) into a model of another specification (called the ab-
stract specification in this context), using (essentially!?) the same set of states.
Typically, the concrete specification has more structure, and describes a partic-
ular way to realise the structure of the abstract specification in terms of its own
concrete structure. In computer science a refinement usually adds certain im-
plementation details, reducing the level of underspecification (sometimes called
non-determinism), and possibly increasing the use of concurrency.

Constructions to turn a model of one specification into a model of another
specification are well-known in mathematics. Typically, one can turn a pointed
topological space into its “fundamental” or “Poincaré” group by using as el-
ements homotopy classes of paths with the base point as beginning and end.
Also, one can construct the integers from the natural numbers (via a quotient
of N x N), but in both these cases the state space changes in an essential way.
An actual (but trivial) refinement is the construction of a topological space out
of a metric space.

In this section we define refinements between coalgebraic specifications, basi-
cally as in [14]. Further, we present an abstract Peterson specification, and show
how the specification from the previous section forms a refinement.

We now assume two coalgebraic specifications: A for abstract, and C for con-
crete. Let ZA and ZC be the associated polynomial functors capturing the inter-
face of methods. For didactic reasons we first define a “simple refinement” (of A4
by C), and postpone the general definition. We assume that both specifications
have precisely one initial state'®, written as new. For a coalgebra c: X — ZA(X),

17 We shall see later what ‘essentially’ means: a subset of the set of states forming an
invariant is also allowed.

8 And not a parametrised collection of initial states. The definition of refinement can
easily be extended to include them as well.
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we have predicates
A-Assert(c) C X and A-Create(c) C X

combining all assertions and creation conditions. Similarly for C. How these pred-
icates are obtained can best be seen in Figures 11 and 12 where we have not
written quantifiers Vz € X. --- in assertions. The induced predicate Peterson-
Process-Assert(z) is then obtained as conjunction of all seven assertions. The
predicate PetersonProcess-Create is obtained by viewing new as a parameter in
the creation condition init.

A simple refinement of A by C consists of a construction which turns an
arbitrary model of C, consisting of a coalgebra ¢: X — ZC(X) and initial state
new € X with Vz € X.(C-Assert(c)(z) and C-Create(c)(new), into a model of A,
consisting of a coalgebra ¢/: X — ZA(X) on the same state space, constructed
out of ¢, and an initial state new’ € X constructed out of ¢ and new, in such a
way that Vz € X. A-Assert(c')(z) and A-Create(c')(new’).

A simple refinement between coalgebraic specifications thus consists of two
things (as in TLA [22,23]): a “refinement mapping”

(: X -5 IC(X),new € X) — (1 X - ZA(X),new’ € X) (7
together with an implication

C-Create(c)(new) A Vx € X.C-Assert(c)(x)
= (8)
A-Create(c')(new') A Vz € X. A-Assert(c')(z).

The definition of refinement says that a concrete model can be turned into
an abstract model, in a straightforward way. In practice it usually does not work
like this, because the requirement Vz € X. A-Assert(c’)(x) cannot be proved for
all z € X. Then we often need to restrict the state space X to some subset
P C X for which we can prove Va € X. P(z) = A-Assert(c')(z). This is good
enough if we can additionally prove that P is an invariant (with respect to the
constructed coalgebra ¢), and that P holds for the constructed initial state new’.
Then we know that all states we can reach from new’ using ¢’ remain within P.
Thus, for a (non-simple) refinement the above implication changes into:

C-Create(c)(new) A Vz € X.C-Assert(c)(x)
= (9)
A-Create(c')(new’) A O(c") (A-Assert(c')) (new').

See the definition of O in (4).
We turn to an example of a refinement with such an implication.

Proposition 5. Consider the MutualExclusion specification in Figure 14 de-
scribing the essentials of mutual exclusion. The Peterson specification from Fig-
ure 18 is a refinement of MutualEzclusion.
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BEGIN MutualExclusion
INHERIT FROM DiscreteTime // see Figure 7
METHODS
criticalT: X — bool
criticalF: X — bool
interestT: X — X
interestF: X — X
ASSERTIONS
exclusion: [ﬂ(criticaIT(x) A criticalF(x)) ]
progressT: [ O (super)({y € X | critical T(y)}) (interestT(z)) ]

progressF: [ O (super)({y € X | criticalF(y)})(interestF(z)) ]

critical_interest: [ —critical T(interestT(z)) A
criticalF(interestT(x)) = criticalF(z) A
critical T (interestF(z)) = critical T(z) A
—criticalF(interestF(z)) ]
CONSTRUCTORS
new: X
CREATION
init: [ —critical T(new) A —criticalF(new) ]
END MutualExclusion

Fig. 14. Specification of mutual exclusion

Proof. We will construct a refinement mapping as in (7) with an implication (9).
Therefore we assume a coalgebra ¢ = (tick,ppT, ppF,interestT,interestF) and
initial state new for the Peterson specification. We get a new coalgebra ¢’ =
(tick, critical T, criticalF, interest T, interestF) for the MutualExclusion specification
by defining criticalT(z) = critical(ppT(z)) and criticalF(z) = critical(ppF(z)).
As new initial state new’ we simply take new from Peterson. Then clearly, the
(abstract) creation conditions from MutualExclusion hold for new. Further, the
predicate critical_exclusion from Lemma 5 is an invariant for ¢’ (since it already
is one for ¢) and implies the abstract assertions, see Theorem 1, and the proof
of its first point. O

Refinement is a fundamental technique to establish the correctness of larger
software (and also hardware) systems: the idea is to first concentrate on an
abstract specification of the system—describing the essentials of the required
behaviour, without going into any realisation issues—and refine this abstract
specification, possibly in several steps, into a concrete specification, coming close
to an actual implementation.

To conclude, we have introduced the subject of specification and verification
for coalgebras via several examples, for which we have proved non-trivial results.
The area is still under development, but has already reached a certain level of
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maturity, with its own theory and logic. For further background reading we refer
to [18,35]. An impression of current research topics in coalgebra can be obtained
from the volumes [17,19].
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