
Dra
ft

1

Dra
ftIntroduction to Coalgebra.

Towards Mathematics of States and Observations

Bart Jacobs

Institute for Computing and Information Sciences,

Radboud University Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

bart@cs.ru.nl http://www.cs.ru.nl/∼bart

Draft Copy.

Comments / bugs / improvements etc. are welcome at bart@cs.ru.nl

(Please check the latest version on the web first,

to see if the issue you wish to report has already been adderessed)

Version 1.00, 22nd April 2005

Dra
ft

ii

Dra
ft

Preface

Mathematics is about the formal structures underlying counting, measuring, transforming
etc. It has developed fundamental notions like number systems, groups, vector spaces,
see e.g. [168], and has studied their properties. In more recent decades also “dynamical”
features have become a subject of research. The emergence of computers has contributed to
this development. Typically, dynamics involves a “state of affairs”, which can possibly be
observed and modified. For instance, the contents of a tape of a Turing machine contribute
to its state. Such a machine may thus have many possible states, and can move from one
state to another. Also, the combined contents of all memory cells of a computer can be
understood as the computers state. A user can observe part of this state via the screen
(or via the printer), and modify this state by typing commands. In reaction, the computer
can display certain behaviour. Describing the behaviour of such a computer system is a
non-trival matter. However, formal descriptions of such complicated systems are needed
if we wish to reason formally about their behaviour. Such reasoning is required for the
correcteness or security of these systems. It involves a specification describing the required
behaviour, together with a correctness proof demonstrating that a given implementation
satisfies the specification.

Mathematicians and computer scientists have introduced various formal structures to
capture the essence of state-based dynamics, such as automata (in various forms), transi-
tions systems, Petri nets, event systems, etc. The area of coalgebras has emerged with a
unifying claim. It aims to be the mathematics of computational dynamics. It combines
notions and ideas from the mathematical theory of dynamical systems and from the theory
of state-based computation. The area of coalgebra is still in its infancy, but promises a
perspective on uniting, say, the theory of differential equations with automata and process
theory, by providing an appropriate semantical basis with associated logic. The theory of
coalgebras may be seen as one of the original contributions stemming from the area of
theoretical computer science. The span of applications of coalgebras is still fairly limited,
but may in the future be extended to include dynamical phenomena in areas like physics,
biology or economics—based for instance on the claim of Adleman (the father of DNA-
computing) that biological life can be equated with computation [12]; or on [186] which
gives a coalgebraic description of type spaces used in economics [110].

Coalgebras are of surprising simplicity. They consist of state space, or set of states,
say X , together with a structure map of the form X → F (X). The symbol F describes
some expression involving X (a functor), capturing the possible outcomes of the structure
map applied to a state. The map X → F (X) captures the dynamics in the form of a
function acting on states. For instance, one can have F (X) = P(X) for non-deterministic
computation X → P(X), or F (X) = {⊥} ∪ X for possibly non-terminating computa-
tions X → {⊥} ∪ X . At this level of generality, algebras are described as the duals of
coalgebras (or the other way round), namely as maps of the form F (X)→ X .

Computer science is about generated behaviour

What is the essence of computing? What is the topic of the discipline of computer sci-
ence? Answers that are often heard are ‘data processing’ or ‘symbol manipulation’. Here

iii

Dra
ft

iv

we follow a more behaviouristic approach and describe the subject of computer science as
generated behaviour. This is the behaviour that can be observed on the outside of a com-
puter, for instance via a screen or printer. It arises in interaction with the environment, as
a result of the computer executing instructions, layed down in a computer program. The
aim of computer programming is to make a computer do certain things, i.e. to generate be-
haviour. By executing a program a computer displays behaviour that is ultimately produced
by humans, as programmers.

This behaviouristic view allows us to understand the relation between computer science
and the natural sciences: biology is about “spontaneous” behaviour, and physics concen-
trates on lifeless natural phenomena, without autonomous behaviour. Behaviour of a sys-
tem in biology or physics is often described as evolution, where evolutions in physics are
transformational changes according to the laws of physics. Evolutions in biology seem to
lack inherent directionality and predictability [98]. Does this mean that behaviour is deter-
ministic in (classical) physics, and non-deterministic in biology? And that coalgebras of
corresponding kinds capture the situation? At this stage the coalgebraic theory of modeling
has not yet demonstrated its usefulness in those areas. Therefore this text concentrates on
coalgebras in mathematics and computer science.

The behaviouristic view does help in answering questions like: can a computer think?
Or: does a computer feel pain? All a computer can do is display thinking behaviour, or
pain behaviour, and that is it. But it is good enough in interactions—think of the famous
Turing test—because in the end we never know for sure if other people actually feel pain.
We only see pain behaviour, and are conditioned to associate such behaviour with certain
internal states. But this association may not always work, for instance not in a different
culture: in Japan it is common to touch one’s ear after burning a finger; for Europeans this
is non-standard pain behaviour. This issue of external behaviour versus internal states is
nicely demonstrated in [177] where it turns out to be surprisingly difficult for a human to
kill a “Mark III Beast” robot, once it starts displaying desparate survival behaviour with
corresponding sounds, so that people easily attribute feelings to the machine and start to
feel pity.

These wide-ranging considerations form the background for a theory about computa-
tional behaviour in which the relation between observables and internal states is of central
importance.

The generated behaviour that we claim to be the subject of computer science arises by
a computer executing a program according to strict operational rules. The behaviour is
typically observed via the computer’s input & output (I/O). More technically, the program
can be understood as an element in an inductively defined set P of terms. This set forms
a suitable (initial) algebra F (P) → P , where the expression (or functor) F captures the
signature of the operations for forming programs. The operational rules for the behaviour of
programs are described by a coalgebra P → G(P), where the functor G captures the kind
of behaviour that can be displayed—such as deterministic, or with exceptions. In abstract
form, generated computer behaviour amounts to the repeated evaluation of an (inductively
defined) coalgebra structure on an algebra of terms. Hence the algebras and coalgebras
that are studied systematically in this text form the basic structures at the heart of computer
science.

One of the big challenges of computer science is to develop techniques for effectively
establishing properties of generated behaviour. Often such properties are formulated pos-
itively as wanted, functional behaviour. But these properties may also be negative, like in
computer security, where unwanted behaviour must be excluded. However, an appropriate
logical view about program properties within the combined algebraic/coalgebraic setting
has not been fully elaborated yet.

Dra
ft

v

Algebras and coalgebras

The duality with algebras forms a source of inspiration and of opposition: there is a “hate-
love” relationship between algebra and coalgebra. First, there is a fundamental divide.
Think of the difference between an inductively defined data type in a functional program-
ming language (an algebra) and a class in an object-oriented programming language (a
coalgebra). The data type is completely determined by its “constructors”: algebraic oper-
ations of the form F (X) → X going into the data type. The class however involves an
internal state, given by the values of all the public and private fields of the class. This state
can be observed (via the public fields) and can be modified (via the public methods). These
operations of a class act on a state (or object) and are naturally described as “destructors”
pointing out of the class: they are of the coalgebraic form X → F (X).

Next, besides these differences between algebras and coalgebras there are also many
correspondences, analogies, and dualities, for instance between bisimulations and congru-
ences, or between initiality and finality. Whenever possible, these connections will be made
explicit and will be exploited in the course of this work.

As already mentioned, ultimately, stripped to its bare minimum, a programming lan-
guage involves both a coalgebra and an algebra. A program is an element of the algebra
that arises (as so-called initial algebra) from the programming language that is being used.
Each language construct corresponds to certain dynamics, captured via a coalgebra. The
program’s behaviour is thus described by a coalgebra acting on the state space of the com-
puter. This is the view underlying the so-called structural operational semantics. Coalge-
braic behaviour is generated by an algebraic program. This is a simple, clear and appealing
view. It turns out that in such situations one needs a certain level of compatibility between
the algebras and coalgebras involved. It is expressed in terms of so-called distributive laws
connecting algebra-coalgebra pairs. These laws appear towards the end of this text.

Coalgebras have a black box state space

Coalgebra is thus the study of states and their operations and properties. The set of states
is best seen as a black box, to which one has limited access—like with the states of a com-
puter mentioned above. As already mentioned, the tension between what is actually inside
and what can be observed externally is at the heart of the theory of coalgebras. Such ten-
sion also arises for instance in quantum mechanics where the relation between observables
and states is an issue. Similarly, it is an essential element of cryptography that parts of
data are not observable—via encryption or hashing. In a coalgebra it may very well be
the case that two states are internally different, but are indistinguishable as far as one can
see with the available operations. In that case one calls the two states bisimilar. Bisimi-
larity is indeed one of the fundamental notions of the theory of coalgebras, see Chapter 3.
Also important are invariant properties of states: once such a property holds, it contin-
ues to hold no matter which of the available operations is applied, see Chapter 4. Safety
properties of systems are typically expressed as invariants. Finally, specifications of the be-
haviour of systems are conveniently expressed using assertions and modal operators like:
for all direct successor states (nexttime), for all future states (henceforth), for some future
state (eventually), see Chapter 5. This text describes these basic elements of the theory of
coalgebras—bisimilarity, invariants and assertions. It is meant as an introduction to this
new and fascinating field within theoretical computer science. The text is too limited in
both size and aims to justify the grand unifying claims mentioned above. But hopefully, it
does inspire and generate much further research in the area.

Brief historical perspective

Coalgebra does not come out of the blue. Below we shall sketch several, relatively in-
dependent, developments during the last few decades that appeared to have a common

Dra
ft

vi

coalgebraic basis, and that have contributed to the area of coalgebra as it stands today. This
short sketch is of course far from complete.

1. The categorical approach to mathematical system theory. During the 1970s Ar-
bib, Manes and Goguen analysed Kalman’s [153] work on linear dynamical systems,
in relation to automata theory. They realised that linearity does not really play a role
in Kalman’s famous results about minimal realisation and duality, and that these re-
sults could be reformulated and proved more abstractly using elementary categorical
constructions. Their aim was “to place sequential machines and control systems in a
unified framework” (abstract of [20]), by developing a notion of “machine in a cat-
egory” (see also [8]). This led to general notions of state, behaviour, reachability,
observability, and realisation of behaviour. However, the notion of coalgebra did not
emerge explicitly in this approach, probably because the setting of modules and vec-
tor spaces from which this work arose provided too little categorical infrastructure
(especially: no Cartesian closure) to express these results purely coalgebraically.

2. Non-well-founded sets. Aczel [4] formed a next crucial step with his special set
theory that allows infinitely descending ∈-chains, because it used coalgebraic termi-
nology right from the beginning. The development of this theory was motivated by
the desire to provide meaning to Milner’s theory CCS of concurrent processes with
potentially infinite behaviour. Therefore, the notion of bisimulation from process
theory played a crucial role. An important contribution of Aczel is that he showed
how to treat bisimulation in a coalgebraic setting, especially by establishing the first
link between proofs by bisimulations and finality of coalgebras, see also [7, 5].

3. Data types of infinite objects. The first systematic approach to data types in com-
puting [93] relied on initiality of algebras. The elements of such algebraic structures
are finitely generated objects. However, many data types of interest in computing
(and mathematics) consist of infinite objects, like infinite lists or trees (or even real
numbers). The use of (final) coalgebras in [237, 21, 107, 193] to capture such struc-
tures provided a next important step.

4. Initial and final semantics. In the semantics of program and process languages it
appeared that the relevant semantical domains carry the structure of a final coalgebra
(sometimes in combination with initial algebra structure [80, 72]). Especially in the
metric space based tradition (see e.g. [26]) this insight was combined with Aczel’s
techniques by Rutten and Turi. It culminated in the recognition that “compatible”
algebra-coalgebra pairs (called bialgebras) are highly relevant structures, described
via distributive laws. The basic observation of [232, 231], further elaborated in [33],
is that such laws correspond to specification formats for operational rules on (in-
ductively defined) programs. These bialgebras satisfy elementary properties like:
observational equivalence (i.e. bisimulation wrt. the coalgebra) is a congruence (wrt.
the algebra).

5. Behavioural approaches in specification. Reichel [204] was the first to use so-
called behavioural validity of equations in the specification of algebraic structures
that are computationally relevant. The basic idea is to divide one’s types (also called
sorts) into ‘visible’ and ‘hidden’ ones. The latter are supposed to capture states, and
are not directly accessible. Equality is only used for the “observable” elements of
visible types. For elements of hidden types (or states) one uses behavioural equal-
ity instead: two elements x1 and x2 of hidden type are behaviourally equivalent if
t(x1) = t(x2) for each term t of visible type. This means that they are equal as far as
can be observed. The idea is further elaborated in what has become known as hidden
algebra [92], see for instance also [84, 223, 39], and has been applied to describe
classes in object-oriented programming languages, which have an encapsulated state
space. But it was later realised that behavioural equality is essentially bisimilarity in

Dra
ft

vii

a coalgebraic context (see e.g. [172]), and it was again Reichel [206] who first used
coalgebras for the semantics of object-oriented languages. Later on they have been
applied also to actual programming languages like Java [141].

6. Modal logic. A more recent development is the connection between coalgebras and
modal logics. In general, such logics qualify the truth conditions of statements, con-
cerning knowledge, belief and time. In computer science such logics are used to
reason about the way programs behave, and to express dynamical properties of tran-
sitions between states. Temporal logic is a part of modal logic which is particularly
suitable for reasoning about (reactive) state-based systems, as argued for example
in [200, 201], via its nexttime and lasttime operators. Since coalgebras give ab-
stract formalisations of such state-based systems one expects a connection. It was
Moss [183] who first associated a suitable modal logic to coalgebras—which in-
spired much subsequent work [209, 211, 165, 123, 136, 190, 163]. The idea is that
the role of equational formulas in algebra is played by modal formulas in coalgebra.

Position of this text

There are several recent texts presenting a synthesis of several of the developments in the
area of coalgebra [144, 233, 100, 216, 164, 191]. This text is a first systematic presentation
of the subject in the form of a book. Key phrases are: coalgebras are general dynamical
systems, final coalgebras describe behaviour of such systems (often as infinite objects) in
which states and observations coincide, bisimilarity expresses observational indistinguisha-
bility, the natural logic of coalgebras is modal logic, etc.

During the last decade a “coalgebraic community” has emerged, centered around the
workshops Coalgebraic Methods in Computer Science, see the proceedings [139, 145, 207,
57, 185, 101, 11] and associated special journal issues [140, 146, 58, 102]. This text is
specifically not focused on that community, but tries to reach a wider audience. This means
that the emphasis lies on explaining the theory via concrete examples, and on motivation
rather than on generality and abstraction.

Coalgebra and category theory

The field of coalgebra requires the theory of categories already in the definition of the
notion of coalgebra itself—since it requires the concept of a functor. However, the reader
is not assumed to know category theory: in this text the intention is not to describe the
theory of coalgebras in its highest form of generality, making systematic use of category
theory right from the beginning. After all, this is only an introduction. Rather, the text
starts from concrete examples and introduces the basics of category theory as it proceeds.
Categories will thus be introduced gradually, without making it a proper subject matter.
Hopefully, readers unfamiliar with category theory can thus pick up the basics along the
way, seeing directly how it is used. Anyway, most of the examples that are discussed
live in the familiar standard setting of sets and functions, so that it should be relatively
easy to see the underlying categorical structures in a concrete setting. Thus, more or less
familiar set-theoretic language is used most of the time, but with a perspective on the greater
generality offered by the theory of categories. In this way we hope to serve the readers
without background in category theory, and at the same time offer the more experienced
cognoscienti an idea of what is going on at a more abstract level—which they can find to
a limited extent in the exercises, but to a greater extent in the literature. Clearly, this is a
compromise which runs the risk of satisfying no-one: the description may be too abstract
for some, and too concrete for others. The hope is that it does have something to offer for
everyone.

Often the theory of categories is seen as a very abstract part of mathematics, that is not
very accessible. However, it is essential in this text, for several good reasons.

Dra
ft

viii

1. It greatly helps to properly organise the relevant material on coalgebras.

2. Only by using categorical language the duality between coalgebra and algebra can
be fully seen—and exploited.

3. Almost all of the literature on coalgebra uses category theory in one way or another.
Therefore, an introductory text that wishes to properly prepare the reader for further
study cannot avoid the language of categories.

Probably the most controversial aspect of this text within the coalgebraic / categorical
community is its restriction to so-called polynomial functors, and its emphasis on the as-
sociated operations of predicate and relation lifting. Again, this is motivated by our wish
to produce an introduction that is accessible to non-specialists. Certainly, the general per-
spective is always right around the corner, and will hopefully be appreciated once this more
introductory material has been digested.

In the end, we think that coalgebras form a very basic and natural mathematical concept,
and that their identification is real step forward. Many people seem to be using coalgebras
in various situations, without being aware of it. Hopefully this text can make them aware,
and can contribute to a better understanding and exploitation of these situations. And hope-
fully many more such application areas will be identified, further enriching the theory of
coalgebras.

Intended audience

This text is written for everyone with an interest in the mathematical aspects of compu-
tational behaviour. This probably includes primarily mathematicians, logicians and (the-
oretical) computer scientists, but hopefully also an audience with a different background
such as for instance mathematical physics or biology, or even economics. A basic level of
mathematical maturity is assumed, for instance via familiarity with elementary set theory
and logic (and its notation). The examples in the text are taken from various areas. Each
section is accompagnied by a series of exercises, to facilitate teaching—typically at a late
bachelor or early master level.

Acknowledgements

[To be written.]

Dra
ft

Contents

Preface iii

1 Motivation 1
1.1 Naturalness of coalgebraic representations 2
1.2 The power of the coinduction . 4
1.3 Generality of temporal logic of coalgebras 13

1.3.1 Temporal operators for sequences 13
1.3.2 Temporal operators for classes . 16

1.4 Abstractness of the coalgebraic notions 18

2 Preliminaries on coalgebras and algebras 23
2.1 Constructions on sets . 23
2.2 Polynomial functors and their coalgebras 31

2.2.1 Statements and sequences . 32
2.2.2 Trees . 33
2.2.3 Deterministic automata . 34
2.2.4 Non-deterministic automata and transition systems 36
2.2.5 Context-free grammars . 37
2.2.6 Non-well-founded sets . 38

2.3 Final coalgebras . 40
2.3.1 Beyond sets . 45

2.4 Algebras . 46
2.4.1 Bialgebras . 51
2.4.2 Dialgebras . 51
2.4.3 Hidden algebras . 51
2.4.4 Coalgebras as algebras . 52

2.5 Adjunctions, cofree coalgebras, behaviour-realisation 53

3 Bisimulations 65
3.1 Relation lifting, bisimulations and congruences 65
3.2 Properties of bisimulations . 71
3.3 Bisimulations as spans . 78

3.3.1 Comparing definitions of bisimulation 81
3.4 Bisimulations and the coinduction proof principle 86
3.5 Process semantics . 91

3.5.1 Process descriptions . 92
3.5.2 A simple process algebra . 95

4 Invariants 99
4.1 Predicate lifting . 99

4.1.1 Predicate lowering as liftings left adjoint 102
4.2 Invariants . 105

ix

Dra
ft

x CONTENTS

4.2.1 Greatest invariants and limits of coalgebras 108
4.3 Temporal logic of coalgebras . 113

4.3.1 Backward reasoning . 121
4.4 Existence of final coalgebras . 124

4.4.1 Final coalgebras for ω-continuous functors 124
4.4.2 Final coalgebras for ω-accessible functors 126

4.5 Trace semantics . 129

5 Assertions [Not included] 137
5.1 Arities . 137
5.2 Algebraic specification . 140

5.2.1 Monads . 143
5.3 Coalgebraic specification . 147

5.3.1 Comonads . 152
5.4 Modal logic of coalgebras . 154

5.4.1 A bounded stack specification . 157
5.5 Modal algebras and coalgebras . 160
5.6 Coalgebraic class specifications . 166
5.7 Solving recursive equations via finality . 168

5.7.1 Finite and infinite terms, and substitution 168
5.7.2 Recursive equations . 172

6 Algebra meets coalgebra 181

References 181

Subject Index 197

Definition and Symbol Index 205

Dra
ft

Chapter 1

Motivation

This chapter tries to explain why coalgebras are interesting structures in mathematics and
computer science. It does so via several examples. The notation used for these examples
will be explained informally, as we proceed. The emphasis is at this stage not so much
on precision in explanation, but on transfer of ideas and intuitions. Therefore, for the time
being we define a coalgebra—very informally—to be a function of the form:

S
c // · · · S · · · (1.1)

What we mean is: a coalgebra is given by a set S and a function c with S as domain and
with a “structured” codomain (result, output, the box · · ·), in which the domain S may
occur again. The precise form of these codomain boxes is not of immediate concern.

Some terminology: We often call S the state space or set of states, and say that the
coalgebra acts on S. The function c is sometimes called the transition function or also
transition structure. The idea that will be developed is that coalgebras describe general
“state-based systems” provided with “dynamics” given by the function c. For a state x ∈ S,
the result c(x) tells us what the successor states of x are, if any. The codomain · · · is often
called the type or interface of the coalgebra. Later we shall see that it is a functor.

A simple example of a coalgebra is the function,

Z
n 7→ (n− 1, n+ 1)

// Z× Z

with state space Z occurring twice on the right hand side. Thus the box or type of this

coalgebra is: (−)× (−) . The transition function n 7→ (n− 1, n+ 1) may also be written

using λ-notation as λn. (n− 1, n+ 1) or as λn ∈ Z. (n− 1, n+ 1).
Another example of a coalgebra, this time with state space the set AN of functions from

N to some given set A, is:

AN
σ 7→ (σ(0), λn. σ(n + 1))

// A×AN

In this case the box is A× (−) . If we write σ as an infinite sequence (σn)n∈N we may

write this coalgebra as a pair of functions 〈head, tail〉 where

head
(
(σn)n∈N

)
= σ0 and tail

(
(σn)n∈N

)
= (σn+1)n∈N.

Many more examples of coalgebras will occur throughout this text.
This chapter is devoted to “selling” and “promoting” coalgebras. It does so by focusing

on the following topics.

1

Dra
ft

2 CHAPTER 1. MOTIVATION

1. A representation as a coalgebra (1.1) is often very natural.

2. There are poweful “coinductive” definition and proof principles for coalgebras.

3. There is a very natural (and general) temporal logic associated with coalgebras.

4. The coalgebraic notions are on a suitable level of abstraction, so that they can be
recognised and used in various settings.

Full appreciation of this last point requires some familiarity with basic category theory. It
will be provided in Section 1.4.

1.1 Naturalness of coalgebraic representations

We turn to a first area where coalgebraic represenations as in (1.1) occur naturally and may
be useful, namely programming languages—used for writing computer programs. What are
programs, and what do they do? Well, programs are lists of instructions telling a computer
what to do. Fair enough. But what are programs from a mathematical point of view? Put
differently, what do programs mean1? One view is that programs are certain functions that
take an input and use it to compute a certain result. This view does not cover all programs:
certain programs, often called processes, are meant to be running forever, like operating
systems, without really producing a result. But we shall follow the view of programs as
functions for now. The programs we have in mind do not only work on input, but also on
what is usually called a state, for example for storing intermediate results. The effect of a
program on a state is not immediately visible, and is therefore often called the side-effect
of the program. One may think of the state as given by the contents of the memory in the
computer that is executing the program. This is not directly observable.

Our programs should thus be able to modify a state, typically via an assignment like
i = 5 in a so-called imperative programming language2. Such an assignment statement
is interpreted as a function that turns a state x into a new, successor state x′ in which the
value of the identifier i is equal to 5. Statements in such languages are thus described via
suitable “state transformer” functions. In simplest form, ignoring input and output, they
map a state to a successor state, as in:

S
stat // S

where we have written S for the set of states. Its precise structure is not relevant. Often the
set S of states is considered to be a “black box” to which we do not have direct access, so
that we can only observe certain aspects. For instance via a function i:S → Z representing
the above integer i. The value i(x′) should be 5 in the result state x′ after evaluating the
assignment i = 5, considered as a function S → S.

This description of statements as functions S → S is fine as first approximation, but
one quickly realises that statements do not always terminate normally and produce a suc-
cessor state. Sometimes they can “hang” and continue to compute without ever producing a
successor state. This typically happens because of an infinite loop, for example in a while
statement, or because of a recursive call without exit.

There are two obvious ways to incorporate such non-termination.

1. Adjust the state space. In this case one extends the state space S to a space S⊥
def
=

{⊥} ∪ S, where ⊥ is a new “bottom” element not occurring in S that is especially

1This question comes up frequently when confronted with two programs—one possibly as a transformation
from the other—which perform the same task in a different manner, and which could thus be seen as the same
programs. But how can one make precise that they are the same?

2Thus, purely functional programming languages are not included in our investigations.

Dra
ft

1.1. NATURALNESS OF COALGEBRAIC REPRESENTATIONS 3

used to signal non-termination. Statements then become functions:

S⊥
stat // S⊥ with the requirement stat(⊥) = ⊥

The side-condition expresses the idea that once a statement hangs it will continue to
hang.

The disadvantage of this approach is that the state space becomes more complicated,
and that we have to make sure that all statements satisfy the side-condition, namely
that they preserve the bottom element ⊥. But the advantage is that composition of
statements is just function composition.

2. Adjust the codomain. The second approach keeps the state space S as it is, but
adapts the codomain of statements, as in:

S
stat // S⊥ where, recall, S⊥ = {⊥} ∪ S

In this representation we easily see that in each state x ∈ S the statement can either
hang, when stat(x) = ⊥, or terminate normally, namely when stat(x) = x′ for
some successor state x′ ∈ S. What is also good is that there are no side-conditions
anymore. But composition of statements cannot be defined via function composition,
because the types do not match. Thus the types force us to deal explicitly with the
propagation of non-termination: for these kind of statements s1, s2:S → S⊥ the
composition s1 ; s2, as a function S → S⊥, is defined via a case distinction (or
pattern match) as:

s1 ; s2 = λx ∈ S.

{
⊥ if s1(x) = ⊥

s2(x
′) if s1(x) = x′

This definition is more difficult than function composition (as used in 1. above), but
it explicitly deals with the case distinction that is of interest, namely between non-
termination and normal termination. Hence being forced to make these distinctions
explicitly is maybe not so bad at all.

We push these same ideas a bit further. In many programming languages (like Java [23])
programs may not only hang, but may also terminate “abruptly” because of an exception.
An exception arises when some constraint is violated, such as a division by zero or an
access a[i] in an array a which is a null-reference. Abrupt termination is fundamentallty
different from non-termination: non-termination is definitive and irrevocable, whereas a
program can recover from abrupt termination via a suitable exception handler that restores
nornal termination. In Java this is done via a try-catch statement, see for instance [23,
97, 132].

Let us write E for the set of exceptions that can be thrown. Then there are again two
obvious representation of statements that can terminate normally or abruptly, or can hang.

1. Adjust the state space. Statements then remain endofunctions3 on an extended state
space:

(
{⊥} ∪ S ∪ (S ×E)

) stat //
(
{⊥} ∪ S ∪ (S ×E)

)

The entire state space clearly becomes complicated now. But also the side-conditions
are becoming non-trivial: we still want stat(⊥) = ⊥, and also stat(x, e) = (x, e),
for x ∈ S and e ∈ E, but the latter only for non-catch statements. Keeping track of
such side-conditions may easily lead to mistakes. But on the positive side, composi-
tion of statements is still function composition in this representation.

3An endofunction is a function A → A from a set A to itself.

Dra
ft

4 CHAPTER 1. MOTIVATION

2. Adjust the codomain. The alternative approach is again to keep the state space S as
it is, but to adapt the codomain types of statement, namely as:

S
stat //

(
{⊥} ∪ S ∪ (S ×E)

)

Now we do not have side-conditions and we can clearly distinguish the three pos-
sible termination modes of statements. This structured output type in fact forces us
to make these distinctions in the definition of the composition s1 ; s2 of two such
statements s1, s2:S → {⊥} ∪ S ∪ (S ×E), as in:

s1 ; s2 = λx ∈ S.





⊥ if s1(x) = ⊥

s2(x
′) if s1(x) = x′

(x′, e) if s1(x) = (x′, e)

Thus, if s1 hangs or terminates abruptly, then the subsequent statement s2 is not
executed. This is very clear in this second coalgebraic representation.

When such a coalgebraic representation is formalised within the typed language of
a theorem prover (like in [142]), the typechecker of the theorem prover will make
sure that case distinctions are made. See also [132] where Java’s exception mecha-
nism is described via such case distinctions, closely following the official language
definition [97].

These examples illustrate that coalgebras as functions with structured codomains, like
in (1.1), arise naturally, and that the structure of the codomain indicates the kind of compu-
tations that can be performed. This idea will be developed further, and applied to various
forms of computation. For instance, non-deterministic statements may be represented via
the powerset P as coalgebraic state transformers S → P(S) with multiple result states.
But there are many more such examples.

(Readers familiar with computational monads [182] may recognise similarities. Indeed,
in a computational setting there is a close connection between coalgebraic and monadic rep-
resentations. Briefly, the monad introduces the computational structure, like composition
and extension, whereas the coalgebraic view leads to an appropriate program logic. This is
elaborated for Java in [141].)

Exercises

1.1.1. (i) Prove that the composition operation ; as defined for coalgebras S → {⊥} ∪ S is
associative, i.e. satisfies s1 ;(s2 ; s3) = (s1 ; s2) ; s3, for all statements s1, s2, s3:S →
{⊥} ∪ S.
Define a statement skip:S → {⊥} ∪ S which is a unit for composition ;, i.e. which
satisfies skip ; s = s = s ; skip, for all s:S → {⊥} ∪ S.

(ii) Do the same for ; defined on coalgebras S → {⊥} ∪ S ∪ (S ×E).
[In both cases, statements with an associative composition operation and a unit element
form a monoid.]

1.1.2. Define also a composition monoid for coalgebras S → P(S).

1.2 The power of the coinduction

In this section we shall look at sequences—or lists, or words, as they are also called. Se-
quences are basic data structures, both in mathematics and in computer science. One can
distinguish finite sequences 〈a1, . . . , an〉 and infinite 〈a1, a2, . . .〉 ones. The mathematical
theory of finite sequences is well-understood, and a fundamental part of computer science,

Dra
ft

1.2. THE POWER OF THE COINDUCTION 5

used in many programs. Definition and reasoning with finite lists is commonly done with
induction. As we shall see, infinite lists require coinduction. Infinite sequences can arise in
computing as the observable outcomes of a program that runs forever. Also, in functional
programming, they can occur as so-called lazy lists, like in the languages Haskell [41] or
Clean [196].

In the remainder of this section we shall use an arbitrary but fixed set A, and wish to
look at both finite 〈a1, . . . , an〉 and infinite 〈a1, a2, . . .〉 sequences of elements ai of A.
The set A may be understood as a parameter, and our sequences are thus parametrised by
A, or, put differently, are polymorphic in A.

We shall develop a slightly unusual and abstract perspective on sequences. It does not
treat sequences as completely given at once, but as arising in a local, step-by-step manner.
This coalgebraic approach relies on the following basic fact. It turns out that the set of
both finite and infinite sequences enjoys a certain “universal” property, namely that it is a
final coalgebra (of suitable type). We shall explain what this means, and how this special
property can be exploited to define various operations on sequences and to prove properties
about them. A special feature of this universality of the final coalgebra of sequences is that
it gives a way to avoid making the (global) distinction between finiteness and infiniteness
for sequences.

First some notation. We write A? for the set of finite sequences 〈a1, . . . , an〉 (or lists
or words) of elements ai ∈ A, and AN for the set of infinite ones: 〈a1, a2, . . .〉. The latter
may also be described as functions a(−): N → A, which explains the exponent notation in
AN. Sometimes, the infinite sequences in AN are called streams. Finally, the set of both
finite and infinite sequences A∞ is then the (disjoint) union A? ∪ AN.

The set of sequences A∞ carries a coalgebra or transition structure, which we simply
call next. It tries to decompose a sequence into its head and tail, if any. Hence one may
understand next as a partial function. But we describe it as a total function which possibly
outputs a special element ⊥ for undefined.

A∞ next // {⊥} ∪
(
A×A∞

)

σ � //

{
⊥ if σ is the empty sequence 〈〉

(a, σ′) if σ = a · σ′ with “head” a ∈ A and “tail” σ′ ∈ A∞

(1.2)

The type of the coalgebra is thus {⊥} ∪ (A× (−)) . The successor of a state σ ∈ A∞, if
any, is its tail sequence, obtained by removing the head.

The function next captures the external view on sequences: it tells what can be observed
about a sequence σ, namely whether or not it is empty, and if not, what its head is. By
repeated application of the function next all observable elements of the sequence appear.
This “observational” approach is fundamental in coalgebra.

A first point to note is that this function next is an isomorphism: its inverse next−1

sends ⊥ to the empty sequence 〈〉, and a pair (a, τ) ∈ A × A∞ to the sequence a · τ
obtained by prefixing a to τ .

The following result describes a crucial “finality” property of sequences that can be
used to identify the set A∞. Indeed, as we shall see later in Lemma 2.3.3, final coalgebras
are unique, up-to-isomorphism.

1.2.1. Proposition (Finality of sequences). The coalgebra next:A∞ → {⊥} ∪ A × A∞

from (1.2) is final among coalgebras of this type: for an arbitrary coalgebra c:S → {⊥} ∪
(A × S) on a set S there is a unique “behaviour” function behc:S → A∞ which is a
homomorphism of coalgebras. That is, for each x ∈ S, both:

• if c(x) = ⊥, then next(behc(x)) = ⊥.

• if c(x) = (a, x′), then next(behc(x)) = (a, behc(x′)).

Dra
ft

6 CHAPTER 1. MOTIVATION

Both these two points can be combined in a commuting diagram, namely as,

{⊥} ∪ (A× S) //_________
{⊥} ∪ (A× behc)

{⊥} ∪ (A×A∞)

S

c

OO

//_______________
behc

A∞

∼= next

OO

where the function {⊥} ∪ (A× behc) on top maps ⊥ to ⊥ and (a, x) to (a, behc(x)).

In the course of this chapter we shall see that a general notion of homomorphism be-
tween coalgebras (of the same type) can be defined by such commuting diagrams.

Proof. The idea is to obtain the required behaviour function behc:S → A∞ via repeated
application of the given coalgebra c as follows.

behc(x) =





〈〉 if c(x) = ⊥

〈a〉 if c(x) = (a, x′) ∧ c(x′) = ⊥

〈a, a′〉 if c(x) = (a, x′) ∧ c(x′) = (a′, x′′) ∧ c(x′′) = ⊥
...

Doing this formally requires some care. We define for n ∈ N an iterated version cn:S →
{⊥} ∪ A× S of c as:

c0(x) = c(x)

cn+1(x) =

{
⊥ if cn(x) = ⊥

c(y) if cn(x) = (a, y)

Obviously, cn(x) 6= ⊥ implies cm(x) 6= ⊥, for m < n. Thus we can define:

behc(x) =





〈a0, a1, a2, . . .〉 if ∀n ∈ N. cn(x) 6= ⊥, and ci(x) = (ai, xi)

〈a0, . . . , am−1〉
if m ∈ N is the least number with cm(x) = ⊥,
and ci(x) = (ai, xi), for i < m

We check the two conditions for homomorphism from the proposition above.

• If c(x) = ⊥, then the least m with cm(x) = ⊥ is 0, so that behc(x) = 〈〉, and thus
also next(behc(x)) = ⊥.

• If c(x) = (a, x′), then we distinguish two cases:

– If ∀n ∈ N. cn(x) 6= ⊥, then ∀n ∈ N. cn(x′) 6= ⊥, and ci+1(x) = ci(x′). Let
ci(x′) = (ai, xi), then

next(behc(x)) = next(〈a, a0, a1, . . .〉)

= (a, 〈a0, a1, . . .〉)

= (a, behc(x′)).

– If m is least with cm(x) = ⊥, then m > 0 and m − 1 is the least k with
ck(x′) = ⊥. For i < m − 1 we have ci+1(x) = ci(x′), and thus by writing
ci(x′) = (ai, xi), we get as before:

next(behc(x)) = next(〈a, a0, a1, . . . , am−2〉)

= (a, 〈a0, a1, . . . , am−2〉)

= (a, behc(x′)).

Dra
ft

1.2. THE POWER OF THE COINDUCTION 7

Finally, we still need to prove that this behaviour function behc is the unique homo-
morphism from c to next. Thus, assume also g:S → A∞ is such that c(x) = ⊥ ⇒
next(g(x)) = ⊥ and c(x) = (a, x′)⇒ next(g(x)) = (a, g(x′)). We then distinguish:

• g(x) is infinite, say 〈a0, a1, . . .〉. Then one shows by induction that for all n ∈ N,
cn(x) = (an, xn), for some xn. This yields behc(x) = 〈a0, a1, . . .〉 = g(x).

• g(x) is finite, say 〈a0, . . . , am−1〉. Then one proves that for all n < m, cn(x) =
(an, xn), for some xn, and cm(x) = ⊥. So also now, behc(x) = 〈a0, . . . , am−1〉 =
g(x).

Before exploiting this finality result we illustrate the behaviour function.

1.2.2. Example (Decimal representations as behaviour). So far we have considered sequen-
ce coalgebras parametrised by an arbitrary set A. In this example we take a special choice,
namely A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, the set of decimal digits. We wish to define a coal-
gebra (or machine) which generates decimal representations of real numbers in the unit
interval [0, 1) ⊆ R. Notice that this may give rise to both finite sequences (1

8 should
yield the sequence 〈1, 2, 5〉, for 0.125) and infinite ones (1

3 should give 〈3, 3, 3, . . .〉 for
0.333 . . .).

The coalgebra we are looking for computes the first decimal of a real number r ∈ [0, 1).
Hence it should be of the form,

[0, 1)
nextdec // {⊥} ∪

(
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}× [0, 1)

)

with state space [0, 1). How to define nextdec? Especially, when does it stop (i.e. return
⊥), so that a finite sequence is generated? Well, a decimal representation like 0.125 may
be identified with 0.12500000 . . . with a tail of infinitely many zeros. Clearly, we wish to
map such infinitely many zeros to ⊥. Fair enough, but it does have as consquence that the
real number 0 ∈ [0, 1) gets represented as the empty sequence.

A little thought brings us to the following:

nextdec(r) =

{
⊥ if r = 0

(d, 10r − d) otherwise, where d is such that d ≤ 10r < d+ 1.

Notice that this function is well-defined, because in the second case the successor state
10r − d is within the interval [0, 1).

According to the previous proposition, this nextdec coalgebra gives rise to a behaviour
function:

[0, 1)
behnextdec //

(
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

)∞

In order to understand what it does, i.e. which sequences are generated by nextdec, we
consider two examples.

Starting from 1
8 ∈ [0, 1) we get:

nextdec(1
8) = (1, 1

4) because 1 ≤ 10
8 < 2 and 10

8 − 1 = 1
4

nextdec(1
4) = (2, 1

2) because 2 ≤ 10
4 < 3 and 10

4 − 2 = 1
2

nextdec(1
2) = (5, 0) because 5 ≤ 10

2 < 6 and 10
2 − 5 = 0

nextdec(0) = ⊥.

Thus the resulting nextdec-behaviour on 1
8 is indeed 〈1, 2, 5〉, i.e. behnextdec(

1
8) = 〈1, 2, 5〉.

Dra
ft

8 CHAPTER 1. MOTIVATION

Next, when we run nextdec on 1
9 ∈ [0, 1) we see that:

nextdec(1
9) = (1, 1

9) because 1 ≤ 10
9 < 2 and 10

9 − 1 = 1
9

Thus nextdec immediately loops on 1
9 , and we get an infinite sequence 〈1, 1, 1, . . .〉 as

behaviour. This completes the example.

One sees in the proof of Proposition 1.2.1 that manipulating sequences via their ele-
ments is cumbersome and requires us to distinguish between finite and infinite sequences.
However, the nice thing about the finality property is that we do not have to work this way
anymore. This property states two imporant aspects, namely existence and uniqueness of a
homomorphismS → A∞ into the set of sequences, provided we have a coalgebra structure
on S. These two aspects give us two principles:

• A coinductive definition principle. The existence aspect tells us how to obtain
functions S → A∞ into A∞.

• A conductive proof principle. The uniqueness aspect tells us how to prove that
two functions f, g:S → A∞ are equal, namely by showing that they are both ho-
momorphisms from one coalgebra c:S → {⊥} ∪ (A × S) to the final coalgebra
next:A∞ → {⊥} ∪ (A×A∞).

Coinduction is thus the use of finality—just like induction is the use of initiality, as will be
illustrated in Section 2.4 in the next Chapter. We shall see several examples of the use of
these definition and proof principles for sequences in the remainder of this section.

Notation. One thing the previous proposition shows us is that coalgebras c:S → {⊥} ∪
(A× S) can be understood as generators of sequences, namely via the resulting behaviour
function behc:S → A∞. Alternatively, these coalgebras can be understood as certain
automata. The behaviour of a state x ∈ S of this automaton is then the resulting sequence
behc(x) ∈ A∞. These sequences behc(x) only show the external behaviour, and need not
tell everything about states.

Given this behaviour-generating perspective on coalgebras, it will be convenient to use
a transition style notation. For a state x ∈ S of an arbitrary coalgebra c:S → {⊥} ∪
(A× S) we shall often write

x 9 if c(x) = ⊥ and x
a
−→ x′ if c(x) = (a, x′). (1.3)

In the first case there is no transition starting from the state x: the automaton c halts imme-
diately at x. In the second case one can do a c-computation starting with x; it produces an
observable element a ∈ A and results in a successor state x′.

This transition notation applies in particular to the final coalgebra next:A∞ → {⊥} ∪
(A × A∞). In that case, for σ ∈ A∞, σ 9 means that the sequence σ is empty. In the
second case σ

a
−→ σ′ expresses that the sequence σ can do an a-step to σ′, and hence that

σ = a · σ′.
Given this new notation we can reformulate the two homomorphism requirements from

Proposition 1.2.1 as two implications:

• x 9 =⇒ behc(x) 9 ;

• x
a
−→ x′ =⇒ behc(x)

a
−→ behc(x′).

In the tradition of operational semantics, such implications can also be formulated as rules:

x 9

behc(x) 9

x
a
−→ x′

behc(x)
a
−→ behc(x′)

(1.4)

Dra
ft

1.2. THE POWER OF THE COINDUCTION 9

Such rules thus describe implications: (the conjunction of) what is above the line implies
what is below.

In the remainder or this section we consider examples of the use of coinductive defini-
tion and proof principles for sequences.

Evenly listed elements from a sequence

Our first aim is to take a sequence σ ∈ A∞ and turn it into the a new sequence evens(σ) ∈
A∞ consisting only of the elements of σ at even positions. Step-by-step we will show how
such a function evens:A∞ → A∞ can be defined within a coalgebraic framework, using
finality.

Our informal description of evens(σ) can be turned into three requirements:

• If σ 9 then evens(σ) 9 , i.e. if σ is empty, then evens(σ) should also be empty.

• If σ
a
−→ σ′ and σ′ 9 , then evens(σ)

a
−→ σ′. Thus if σ is the singleton sequence

〈a〉, then also evens(σ) = 〈a〉. Notice that by the previous point we could equiva-
lently require evens(σ)

a
−→ evens(σ′) in this case.

• If σ
a
−→ σ′ and σ′ a′

−→ σ′′, then evens(σ)
a
−→ evens(σ′′). This means that if σ

has head a and tail σ′, which in its turn has head a′ and tail σ′′, i.e. if σ = a · a′ · σ′′,
then evens(σ) should have head a and tail evens(σ′′), i.e. then evens(σ) = a ·
evens(σ′′). Thus, the intermediate head at odd position is skipped. And this is
repeated “coinductively”: as long as needed.

Like in (1.4) above we can write these three requirements as rules:

σ 9

evens(σ) 9

σ
a
−→ σ′ σ′

9

evens(σ)
a
−→ evens(σ′)

σ
a
−→ σ′ σ′ a′

−→ σ′′

evens(σ)
a
−→ evens(σ′′)

(1.5)

One could say that these rules give an “observational description” of the sequence evens(σ):
they describe what we can observe about evens(σ) in terms of what we can observe about
σ. For example, if σ = 〈a0, a1, a2, a3, a4〉 we can compute:

evens(σ) = a0 · evens(〈a2, a3, a4〉)

= a0 · a2 · evens(〈a4〉)

= a0 · a2 · a4 · 〈〉

= 〈a0, a2, a4〉.

Now that we have a reasonably understanding of the function evens:A∞ → A∞ we
will see how it arises within a coalgebraic setting. In order to define it coinductively,
following the finality mechanism of Proposition 1.2.1, we need to have a suitable coalgebra
structure e on the domainA∞ of the function evens, like in a diagram:

{⊥} ∪ (A× A∞) //_________
{⊥} ∪ (A× behe)

{⊥} ∪ (A×A∞)

A∞

e

OO

//_______________
evens = behe

A∞

∼= next

OO

That is, for σ ∈ A∞,

• if e(σ) = ⊥, then evens(σ) 9 ;

• if e(σ) = (a, σ′), then evens(σ)
a
−→ evens(σ′).

Dra
ft

10 CHAPTER 1. MOTIVATION

Combining these two points with the above three rules (1.5) we see that the coalgebra e
must be:

e(σ) =





⊥ if σ 9

(a, σ′) if σ
a
−→ σ′ with σ′ 9

(a, σ′′) if σ
a
−→ σ′ ∧ σ′ a′

−→ σ′′

This function e thus tells what can be observed immediately, if anything, and what will be
used in the recursion (or co-recursion, if you like). It contains the same information as the
above three rules. In the terminology used earlier: the coalgebra or automaton e generates
the behaviour of evens.

1.2.3. Remark. The coalgebra e:A∞ → {⊥} ∪ (A × A∞) illustrates the difference be-
tween states and observables. Consider an arbitrary sequence σ ∈ A∞ and write σ1 =
a · a1 · σ and σ2 = a · a2 · σ, where a, a1, a2 ∈ A with a1 6= a2. These σ1, σ2 ∈ A∞ are
clearly different states of the coalgebra e:A∞ → {⊥}∪ (A×A∞), but they have the same
behaviour: evens(σ1) = a · evens(σ) = evens(σ2), where evens = behe. Such obser-
vational induistinguishability of the states σ1, σ2 is called bisimilarity, written as σ1 ↔ σ2,
and will be studied systematically in Chapter 3.

Oddly listed elements from a sequence

Next we would like to have a similar function odds:A∞ → A∞ which extracts the ele-
ments at odd positions. We leave formulation of the appropriate rules to the reader, and
claim this function odds can be defined coinductively via the behaviour-generating coal-
gebra o:A∞ → {⊥} ∪ (A×A∞) given by:

o(σ) =

{
⊥ if σ 9 or σ

a
−→ σ′ with σ′ 9

(a′, σ′′) if σ
a
−→ σ′ ∧ σ′ a′

−→ σ′′

Thus, we take odds = beho to be the behaviour function resulting from o following the
finality principle of Proposition 1.2.1. Hence o(σ) = ⊥ ⇒ odds(σ) 9 and o(σ) =

(a, σ′)⇒ odds(σ)
a
−→ odds(σ′). This allows us to compute:

odds(〈a0, a1, a2, a3, a4〉) = a1 · odds(〈a2, a3, a4〉)

since o(〈a0, a1, a2, a3, a4〉) = (a1, 〈a2, a3, a4〉)

= a1 · a3 · odds(〈a4〉)

since o(〈a2, a3, a4〉) = (a3, 〈a4〉)

= a1 · a3 · 〈〉

since o(〈a4〉) = 〈〉

= 〈a1, a3〉.

At this point the reader may wonder: why not define odds via evens, using an appro-
priate tail function? We shall prove that this gives the same outcome, using coinduction.

1.2.4. Lemma. One has
odds = evens ◦ tail,

where the function tail:A∞ → A∞ is given by:

tail(σ) =

{
σ if σ 9

σ′ if σ
a
−→ σ′.

Dra
ft

1.2. THE POWER OF THE COINDUCTION 11

Proof. In order to prove that the two functions odds, evens ◦ tail:A∞ → A∞ are equal
one needs to show by Proposition 1.2.1 that they are both homomorphisms for the same
coalgebra structure on A∞. Since odds arises by definition from the above function o, it
suffices to show that evens ◦ tail is also a homomorphism from o to next. This involves
two points:

• If o(σ) = ⊥, there are two subcases, both yielding the same result:

– If σ 9 then evens(tail(σ)) = evens(σ) 9 .

– If σ
a
−→ σ′ and σ′ 9 , then evens(tail(σ)) = evens(σ′) 9 .

• Otherwise, if o(σ) = (a′, σ′′), because σ
a
−→ σ′ and σ′ a′

−→ σ′′, then we have

evens(tail(σ)) = evens(σ′)
a′

−→ evens(tail(σ′′)) since:

– If σ′′
9 , then evens(σ′)

a′

−→ evens(σ′′) = evens(tail(σ′′)).

– And if σ′′ a′′

−→ σ′′′, then evens(σ′)
a′

−→ evens(σ′′′) = evens(tail(σ′′)).

Such equality proofs using uniqueness may be a bit puzzling at first. But they are
very common in category theory, and in many other areas of mathematics dealing with
universal properties. Later, in Section 3.4 we shall see that such proofs can also be done
via bisimulations. This is a common proof technique in process theory—and in coalgebra,
of course.

Merging sequences

In order to further familiarise the reader with the way the “coinductive game” is played, we
consider merging two sequences, via a binary operation merge:A∞ × A∞ → A∞. We
want merge(σ, τ) to alternatingly take one element from σ and from τ , starting with σ. In
terms of rules:

σ 9 τ 9

merge(σ, τ) 9

σ 9 τ
a
−→ τ ′

merge(σ, τ)
a
−→ merge(σ, τ ′)

σ
a
−→ σ′

merge(σ, τ)
a
−→ merge(τ, σ′)

Notice the crucial reversal of arguments in the last rule.
Thus, the function merge:A∞×A∞ → A∞ is defined coinductively as the behaviour

behm of the coalgebra

(
A∞ ×A∞

) m // {⊥} ∪
(
A×

(
A∞ ×A∞

))

given by:

m(σ, τ) =





⊥ if σ 9∧ τ 9

(a, (σ, τ ′)) if σ 9∧ τ
a
−→ τ ′

(a, (τ, σ′)) if σ
a
−→ σ′.

At this stage we can combine all of the coinductively defined functions so far in the
following result. It says that the merge of the evenly listed and oddly listed elements in a
sequence is equal to the original sequence. At first, this may seem obvious, but recall that
our sequences may be finite or infinite, so there is some work to do. The proof is again an
exercise in coinductive reasoning using uniqueness. It does not involve a global distincition
between finite and infinite, but proceeds by local, single step reasoning.

1.2.5. Lemma. For each sequence σ ∈ A∞,

merge(evens(σ), odds(σ)) = σ.

Dra
ft

12 CHAPTER 1. MOTIVATION

Proof. Let us write f :A∞ → A∞ as short hand for f(σ) = merge(evens(σ), odds(σ)).
We need to show that f is the identity function. Since the identity function idA∞ :A∞ →
A∞ is a homomorphims from next to next—i.e. idA∞ = behnext—it suffices to show that
also f is such a homomorphism next→ next. This involves two points:

• If σ 9 , then evens(σ) 9 and odds(σ) 9 , so that merge(evens(σ), odds(σ)) 9

and thus f(σ) 9 .

• If σ
a
−→ σ′, then we distinguish two cases, and prove f(σ)

a
−→ f(σ′) in both, using

Lemma 1.2.4.

– If σ′
9 then evens(σ)

a
−→ evens(σ′) and thus

f(σ) = merge(evens(σ), odds(σ))
a
−→ merge(odds(σ), evens(σ′))

= merge(evens(tail(σ)), evens(tail(σ′)))

= merge(evens(σ′), odds(σ′))

= f(σ′).

– If σ′ a′

−→ σ′′, then evens(σ)
a
−→ evens(σ′′), and one can compute f(σ)

a
−→

f(σ′) as before.

This completes our introduction to coinduction for sequences. What we have empha-
sised is that the coalgebraic approach using finality does not consider sequences as a whole
via their elements, but concentrates on the local, one-step behaviour via head and tail (if
any). This makes definitions and reasoning easier—even though the reader may need to see
more examples and get more experience to fully appreciate this point. But there is already
a clear analogy with induction, which also uses single steps instead of global ones. The
formal analogy between induction and coinduction will appear in Section 2.4.

More coinductively defined functions for sequences can be found in [113].

Exercises

1.2.1. Compute the nextdec-behaviour of 1
7
∈ [0, 1) like in Example 1.2.2.

1.2.2. Formulate appropriate rules for the function odds:A∞ → A∞ in analogy with the rules (1.5)
for evens.

1.2.3. Define the empty sequence 〈〉 ∈ A∞ by coinduction as a map 〈〉: {⊥} → A∞.
Fix an element a ∈ A, and the define similarly the infinite sequence ~a: {⊥} → A∞

consisting only of a’s.

1.2.4. Compute the outcome of merge(〈a0, a1, a2〉, 〈b0, b1, b2, b3〉).

1.2.5. Is merge associative, i.e. is merge(σ,merge(τ, ρ)) the same as merge(merge(σ, τ), ρ)?
Give a proof or a counterexample. Is there is neutral element for merge?

1.2.6. Show how to define an alternative merge function which alternatingly takes two elements
from its argument sequences.

1.2.7. (i) Define three functions exi:A∞ → A∞, for i = 0, 1, 2, which extract the elements at
positions 3n+ i.

(ii) Define merge3:A∞×A∞×A∞ → A∞ with merge3(ex0(σ), ex1(σ),ex2(σ)) =
σ, for all σ ∈ A∞.

1.2.8. Consider the sequential composition function comp:A∞ × A∞ → A∞ for sequences,
described by the rules:

σ 9 τ 9

comp(σ, τ) 9

σ 9 τ
a−→ τ ′

comp(σ, τ)
a−→ comp(σ, τ ′)

σ
a−→ σ′

comp(σ, τ)
a−→ comp(σ′, τ)

Dra
ft

1.3. GENERALITY OF TEMPORAL LOGIC OF COALGEBRAS 13

(i) Show by coinduction that the empty sequence 〈〉 = next−1(⊥) ∈ A∞ is a unit
element for comp, i.e. that comp(〈〉, σ) = σ = comp(σ, 〈〉).

(ii) Prove also by coinduction that comp is associative, and thus that sequences carry a
monoid structure.

1.2.9. Consider two sets A,B with a function f :A → B between them. Use finality to define a
function f∞:A∞ → B∞ that applies f elementwise.
Use uniqueness to show that this mapping f 7→ f∞ is “functorial” in the sense that
(idA)∞ = idA∞ and (g ◦ f)∞ = g∞ ◦ f∞.

1.3 Generality of temporal logic of coalgebras

This section will illustrate the important coalgebraic notion of invariant, and use it to in-
troduce temporal operators like � for henceforth, and ♦ for eventually. These operators
are useful for expressing various interesting properties about states of a coalgebra. As we
shall see later in Section 4.3, they can be defined for general coalgebras. But here we shall
introduce them in more concrete situations—although we try to suggest the more general
perspective. First, the sequences from the previous section (1.2) will be reconsidered, and
next, the statements from the first section (1.1) will be used to form a rudimentary notion
of class, with associated temporal operators � and ♦ for expressing safety and liveness
properties.

1.3.1 Temporal operators for sequences

Consider a fixed set A, and an arbitrary “A-sequence” coalgebra c:S → {⊥} ∪ (A × S)
with state space S. We will be interested in properties of states, expressed via predicates or
subsets P ⊆ S. For a state x ∈ S we shall often write P (x) for x ∈ P , and then say that
the predicate P holds for x. Such a property P (x) may for instance be: “the behaviour of
x is an infinite sequence”.

For an arbitrary predicate P ⊆ S we shall define several new predicates, namely
©P ⊆ S for “nexttime” P , and �P ⊆ S for “henceforth” P , and ♦P ⊆ S for “even-
tually” P . These temporal operators©, �, ♦ are all defined with respect to an arbitrary
coalgebra c:S → {⊥} ∪ (A × S) as above. In order to make this dependence on the
coalgebra c explicit we could write©c P , �c P and ♦c P . But usually it is clear from the
context which coalgebra is meant.

All these temporal operators©, �, ♦ talk about future states obtained via transitions
to successor states, i.e. via successive applications of the coalgebra. The nexttime operator
© is most fundamental because it talks about single transitions. The other two, � and
♦, involve multiple steps (zero or more), and are defined in terms of©. For a sequence
coalgebra c:S → {⊥} ∪ (A × S) with a predicate P ⊆ S on its state space we define a
new predicate©P ⊆ S, for “nexttime P ”, as:

(
©P

)
(x) ⇐⇒ ∀a ∈ A. ∀x′ ∈ S. c(x) = (a, x′)⇒ P (x′)

⇐⇒ ∀a ∈ A. ∀x′ ∈ S. x
a
−→ x′ ⇒ P (x′)

(1.6)

In words:

The predicate©P holds for those states x, all of whose successor states x′, if
any, satisfy P . Thus, (©P)(x) indeed means that nexttime after x, P holds.

This simple operator © turns out to be fundamental. For example in the defining the
following notion.

1.3.1. Definition. A predicate P is a (sequence) invariant if P ⊆ ©P .

Dra
ft

14 CHAPTER 1. MOTIVATION

An invariantP is thus a predicate such that if P holds for a state x, then also©P holds
of x. The latter means that P holds in successor states of x. Hence, if P holds for x, it
holds for successors of x. This means that once P holds, P will continue to hold, no matter
which transitions are taken. Or, once inside P , one cannot get out.

In general, invariants are important predicates in the study of general, state-based sys-
tems. They often express certain safety or data integrity properties which are implicit in
the design of a system, like: the pressure in a tank will not rise above a certain safety level.
An important aspect of formally establishing the safety of systems is to prove that certain
crucial predicates are actually invariants.

A concrete example of an invariant on the state space A∞ of the final sequence coalge-
bra next:A∞ ∼=−→ {⊥} ∪ (A × A∞) is the property “σ is a finite sequence”. Indeed, if σ
is finite, and σ

a
−→ σ′, then also σ′ is finite.

Certain predicates Q ⊆ S on the state space of a coalgebra are thus invariants. Given
an arbitrary predicate P ⊆ S, we can consider those Q ⊆ P which are invariants. The
greatest among these plays a special role.

1.3.2. Definition. Let P ⊆ S be an arbitrary predicate on the state space S of a sequence
coalgebra.

(i) We define a new predicate �P ⊆ S, for henceforth P , to be the greatest invariant
contained in P . That is:

(
�P

)
(x) ⇐⇒ ∃Q ⊆ S.Q is an invariant ∧ Q ⊆ P ∧ Q(x).

More concretely, (�P)(x) means that all successor states of x statisfy P .
(ii) And ♦P ⊆ S, for eventually P , is defined as:

♦P = ¬�¬P

where, for an arbitrary predicateU ⊆ S, the negation¬U ⊆ S is {x ∈ S | x 6∈ U}. Hence:

(
♦P

)
(x) ⇐⇒ ∀Q ⊆ S.Q is an invariant ∧ Q ⊆ ¬P ⇒ ¬Q(x).

Thus, (♦P)(x) says that some successor state of x satisfies P .

The way these temporal operators � and ♦ are defined may seem somewhat compli-
cated at first, but will turn out to be at the right level of abstraction: as we shall see later
in Section 4.3, the same formulation in terms of invariants works much more generally,
for coalgebras of different types (and not just for sequence coalgebras): the definition is
“generic” or “polytypic”.

In order to show that the abstract formulations in the definition indeed capture the in-
tended meaning of � and ♦ as “for all future state” and “for some future state”, we prove
the following result.

1.3.3. Lemma. For an arbitrary sequence coalgebra c:S → {⊥} ∪ (A× S), consider its
iterations cn:S → {⊥} ∪ (A×S), for n ∈ N, as defined in the proof of Proposition 1.2.1.
Then, for P ⊆ S and x ∈ S,

(�P)(x) ⇐⇒ P (x) ∧ ∀n ∈ N. ∀a ∈ A. ∀y ∈ S. cn(x) = (a, y)⇒ P (y)

(♦P)(x) ⇐⇒ P (x) ∨ ∃n ∈ N. ∃a ∈ A. ∃y ∈ S. cn(x) = (a, y) ∧ P (y).

Proof. Since the second equivalence follows by purely logical manipulations from the first
one, we shall only prove the first.

(⇒) Assume (�P)(x), i.e. Q(x) for some invariant Q ⊆ P . By induction on n ∈ N

one gets cn(x) = (a, y)⇒ Q(y). But then also P (y), for all such y in cn(x) = (a, y).
(⇐) The predicate {x ∈ S | P (x) ∧ ∀n ∈ N. ∀a ∈ A. ∀y ∈ S. cn(x) = (a, y) ⇒

P (y)} is an invariant contained in P . Hence it is contained in �P .

Dra
ft

1.3. GENERALITY OF TEMPORAL LOGIC OF COALGEBRAS 15

1.3.4. Example. Consider an arbitrary sequence coalgebra c:S → {⊥} ∪ (A × S). We
give three illustrations of the use of temporal operators � and ♦ to express certain proper-
ties about states x ∈ S of this coalgebra c.

(i) Recall the termination predicate (−) 9 introduced in (1.3): x 9 means c(x) = ⊥.
Now consider the predicate ♦((−) 9) ⊆ S. It holds for those states which are eventually
mapped to ⊥, i.e. for those states whose behaviour is a finite sequence in A? ⊆ A∞.

(ii) In a similar way we can express that an element a ∈ A occurs in the behaviour of a
state x ∈ S. This is done as:

Occ(a) = ♦({y ∈ S | ∃y′ ∈ S. c(y) = (a, y′)})

= ♦({y ∈ S | ∃y′ ∈ S. y
a
−→ y′}).

One may wish to write a ∈ x as a more intuitive notation for x ∈ Occ(a). It means that
there is a future state of x which can do an a-step, i.e. that a occurs somewhere in the
behaviour sequent of the state x.

(iii) Now assume our set A carries an order≤. Consider the predicate

LocOrd(x)

⇐⇒ ∀a, a′ ∈ A. ∀x′, x′′ ∈ S. c(x) = (a, x′) ∧ c(x′) = (a′, x′′)⇒ a ≤ a′

⇐⇒ ∀a, a′ ∈ A. ∀x′, x′′ ∈ S. x
a
−→ x′ ∧ x′

a′

−→ x′′ ⇒ a ≤ a′.

Thus, LocOrd holds for x if the first two elements of the behaviour of x, if any, are related
by ≤. Then,

GlobOrd = � LocOrd.

holds for those states whose behaviour is an ordered sequence: the elements appear in
increasing order.

Next we wish to illustrate how to reason with these temporal operators. We show that
an element occurs in the merge of two sequences if and only if it occurs in at least one of
the two sequences. Intuitively this is clear, but technically it is non-entirely-trivial. The
proof makes essential use of invariants.

1.3.5. Lemma. Consider for an element a ∈ A the occurrence predicate a ∈ (−) =

Occ(a) ⊆ A∞ from the previous example, for the final coalgebra next:A∞ ∼=−→ {⊥} ∪
(A×A∞) from Proposition 1.2.1. Then, for sequences σ, τ ∈ A∞,

a ∈ merge(σ, τ) ⇐⇒ a ∈ σ ∨ a ∈ τ,

where merge:A∞×A∞ → A∞ is the merge operator introduced in the previous section.

Proof. (⇒) Assume a ∈ merge(σ, τ) but neither a ∈ σ nor a ∈ τ . The latter yields
two invariants P,Q ⊆ A∞ with P (σ), Q(τ) and P,Q ⊆ ¬{ρ | ∃ρ′. ρ

a
−→ ρ′}. These

inclusions mean that sequences in P or Q cannot do an a-step.
In order to derive a contradiction we form a new predicate

R = {merge(α, β) | α, β ∈ P ∪ Q}.

Clearly, R(merge(σ, τ)). Note that the only transitions a sequence merge(α, β) ∈ R can
do are:

1. merge(α, β)
b
−→ merge(α, β′) because α 9 and β

b
−→ β′.

2. merge(α, β)
b
−→ merge(β, α′) because α

b
−→ α′.

Dra
ft

16 CHAPTER 1. MOTIVATION

In both cases the successor state is again in R, so that R is an invariant. Also, sequences in
R cannot do an a-step. The predicate R thus disproves the assumption a ∈ merge(σ, τ).

(⇐) Assume, without loss of generality, a ∈ σ but not a ∈ merge(σ, τ). Thus there is
an invariant P ⊆ ¬{ρ | ∃ρ′. ρ

a
−→ ρ′} with P (merge(σ, τ)). We now take:

Q = {α | ∃β. P (merge(α, β)) ∨ P (merge(β, α))}.

Clearly Q(σ). In order to show that Q is an invariant, assume an element α ∈ Q with a

transition α
b
−→ α′. There are then several cases.

1. If P (merge(α, β)) for some β, then merge(α, β)
b
−→ merge(β, α′), so that α′ ∈

Q, because P (merge(β, α′)), and also b 6= a.

2. If P (merge(β, α)) for some β, then there are two further cases:

(a) If β 9 , then merge(β, α)
b
−→ merge(β, α′), so that α′ ∈ Q, and b 6= a.

(b) If β
c
−→ β′, then merge(β, α)

c
−→ merge(α, β′)

b
−→ merge(α′, β′). Thus

P (merge(α′, β′)), so that α′ ∈ Q, and also b 6= a.

These cases also show that Q is contained in ¬{ρ | ∃ρ′. ρ
a
−→ ρ′}. This contradicts the

assumption that a ∈ σ.

This concludes our first look at temporal operators for sequences, from a coalgebraic
perspective.

1.3.2 Temporal operators for classes

A class in object-oriented programming language encapsulates data with associated opera-
tions, called methods in this setting. They can be used to access and manipulate the data.
These data values are contained in so-called fields or attributes. Using the representation of
methods as statements with exceptionsE like in Section 1.1 we can describe the operations
of a class as a collection of attributes and methods, acting on a state space S:

at1 : S −→ D1

...

atn : S −→ Dn

meth1 : S −→ {⊥} ∪ S ∪ (S ×E)
...

methm : S −→ {⊥} ∪ S ∪ (S ×E)

(1.7)

These attributes ati give the data value ati(x) ∈ Di in each state x ∈ S. Similarly,
each method methj can produce a successor state, either normally or exceptionally, in
which the attributes have possibly different values. Objects, in the sense of object-oriented
programming (not of category theory), are thus identified with states.

For such classes, like for sequences, we can define a tailor-made nexttime operator©.
For a predicate P ⊆ S, we have©P ⊆ S, defined on x ∈ S as:

(©P)(x) ⇐⇒ ∀i ≤ m. (∀y ∈ S.methi(x) = y ⇒ P (y)) ∧

(∀y ∈ S. ∀e ∈ E.methi(x) = (y, e)⇒ P (y))

Thus, (©P)(x) means that P holds in each possible successor state of x, resulting from
normal or abnormal termination.

Dra
ft

1.3. GENERALITY OF TEMPORAL LOGIC OF COALGEBRAS 17

From this point on we can follow the pattern used above for sequences. A predicate
P ⊆ S is a class invariant if P ⊆ ©P . Also: �P is the greatest invariant contained
in P , and ♦P = ¬�¬P . Predicates of the form �P are so-called safety properties
expressing that “nothing bad will happen”: P holds in all future states. And predicates
♦P are liveness properties saying that “something good will happen”: P holds in some
future state.

A typical example of a safety property is: this integer field i will always be non-zero
(so that it is safe to divide by i), or: this array a will always be a non-null reference and
have length greater than 1 (so that we can safely access a[0] and a[1]).

Such temporal properties are extremely useful for reasoning about classes. As we have
tried to indicate, they arise quite naturally and uniformly in a coalgebraic setting.

Exercises

1.3.1. The nexttime operator © introduced in (1.6) is the so-called weak nexttime. There is an
associated strong nexttime, given by ¬©¬. See the difference between weak and strong
nexttime for sequences.

1.3.2. Prove that the “truth” predicate that always holds is a (sequence) invariant. And, if P 1 and
P2 are invariants, then so is the intersection P1 ∩ P2. Finally, if P is an invariant, then so
is©P .

1.3.3. (i) Show that � is an interior operator, i.e. satisfies: �P ⊆ P , �P ⊆ � �P , and
P ⊆ Q⇒ �P ⊆ �Q.

(ii) Prove that a predicate P is an invariant if and only if P = �P .

1.3.4. Prove that the finite behaviour predicate♦(− 9) from Example 1.3.4 (ii) is an invariant:
♦(−9) ⊆ ©♦(−9).
[Hint. For an invariant Q, consider the predicate Q′ = ¬(−) 9∩ ©Q.]

1.3.5. Let (A,≤) be a complete lattice, i.e. a poset in which each subset U ⊆ A has a joinW
U ∈ A. It is well-known that each subset U ⊆ A then also has a meet

V
U ∈ A, given

by
V
U =

W{a ∈ A | ∀b ∈ U. a ≤ b}.
Let f :A→ A be a monotone function: a ≤ b implies f(a) ≤ f(b). Recall, e.g. from [64,
Chapter 4] that such a monotone f has both a least fixed point µf ∈ A and a greatest fixed
point νf ∈ A given by the formulas:

µf =
V{a ∈ A | f(a) ≤ a} νf =

W{a ∈ A | a ≤ f(a)}.

Now let c:S → {⊥} ∪ (A × S) be an arbitrary sequence coalgebra, with associated
nexttime operator©.
(i) Prove that © is a monotone function P(S) → P(S), i.e. that P ⊆ Q implies
©P ⊆ ©Q, for all P,Q ⊆ S.

(ii) Check that �P ∈ P(S) is the greatest fixed point of the function P(S) → P(S)
given by U 7→ P ∩ ©U .

(iii) Define for P,Q ⊆ S a new predicate P U Q ⊆ S, for “P until Q” as the least fixed
point of U 7→ Q ∪ (P ∩ ¬©¬U). Check that “until” is indeed a good name for
P U Q, since it can be described explicitly as:

P U Q = {x ∈ S | ∃n ∈ N. ∃x0, x1, . . . , xn ∈ S.
x0 = x ∧ (∀i < n. ∃a. xi a−→ xi+1) ∧ Q(xn)

∧ ∀i < n. P (xi)}

[These fixed point definitions are standard in temporal logic, see e.g. [69, 3.24-25]. What
we describe is the “strong” until. The “weak” one does not have the negations ¬ in its fixed
point description in (iii).]

Dra
ft

18 CHAPTER 1. MOTIVATION

1.4 Abstractness of the coalgebraic notions

In this final section of this first chapter we wish to consider the different settings in which
coalgebras can be studied. Proper appreciation of the level of generality of coalgebras
requires a certain familiarity with the theory of categories. Category theory is a special
area that studies the fundamental structures used within mathematics. It is based on the
very simple notion of an arrow between objects. Category theory is sometimes described as
abstract nonsense, but it is often useful because it provides an abstract framework in which
similarities between seemingly different notions become apparent. It has become a standard
tool in theoretical computer science, especially in the semantics of programming languages.
In particular, the categorical description of fixed points, both of recursive functions and of
recursive types, captures the relevant “universal” properties that are used in programming
and reasoning with these constructs. This categorical approach to fixed points forms one
the starting points for the use of category theory in the study of algebras and coalgebras.

For this reason we need to introduce the fundamental notions of category and functor,
simply because a bit of category helps enormously in presenting the theory of coalgebras,
and in recognising the common structure underlying many examples. Readers who wish to
learn more about categories may consider introductory texts like [17, 60, 236, 194, 31, 171],
or more advanced ones such as [167, 45, 169, 130, 228].

In the beginning of this chapter we have described a coalgebra in (1.1) as a function
of the form α:S → · · · S · · · with a structured output type in which the state space S

may occur. Here we shall describe such a result type as an expression T (S) = · · · S · · ·
involving S. Shortly we shall see that T is a functor. A coalgebra is then a map of the form
α:S → T (S). It can thus be described in an arrow-theoretic setting, as given by a category.

1.4.1. Definition. A category is a mathematical structure consisting of objects with arrows
between them, that can be composed.

More formally, a category C consists of a collection Obj(C) of objects and a collection
Arr(C) of arrows (also called maps, or morphisms). Usually we write X ∈ C for X ∈

Obj(C). Each arrow in C, written as X
f
→ Y or as f :X → Y , has a domain objectX ∈ C

and a codomain object Y ∈ C. These objects and arrows carry a composition structure.

1. For each pair of maps f :X → Y and g:Y → Z there is a composition map g ◦
f :X → Z. This composition operation ◦ is associative: if h:Z → W , then h ◦ (g ◦
f) = (h ◦ g) ◦ f .

2. For each object X ∈ C there is an identity map idX :X → X , such that id is neutral
element for composition ◦: for f :X → Y one has f ◦ idX = f = idY ◦ f . Often,
the subscript X in idX is omitted when it is clear from the context. Sometimes the
object X itself is written for the identity map idX on X .

Ordinary sets with functions between them form an obvious example of a category, for
which we shall write Sets. Although Sets is a standard example, it is important to realise
that a category may be a very different structure. In particular, an arrow in a category need
not be a function.

We give several standard examples, and leave it to the reader to check that the require-
ments of a category hold for all of them.

1.4.2. Examples. (i) Consider a monoid M with composition operation + and unit ele-
ment 0 ∈ M . This M can also be described as a category with one object, say ?, and
with arrows ? → ? given by elements m ∈ M . The identity arrow is then 0 ∈ M , and
composition of arrows m1: ? → ? and m2: ? → ? is m1 +m2: ? → ?. The associativity
and identity requirements required for a category are precisely the associativity and identity
laws of the monoid.

Dra
ft

1.4. ABSTRACTNESS OF THE COALGEBRAIC NOTIONS 19

(ii) Here is another degenerate example: a preorder consists of a set D with a reflexive
and transitive order relation ≤. It corresponds to a category in which there is at most one
arrow between each pair of object. Indeed, the preorder (D,≤) can be seen as a category
with elements d ∈ D as objects, and with an arrow d1 → d2 if and only if d1 ≤ d2.

(iii) Many examples of categories have certain mathematical structures as objects, and
structure preserving functions between them as morphisms. Examples are:

(1) Mon, the category of monoids with monoid homomorphisms (preserving composi-
tion and unit).

(2) Grp, the category of groups with group homomorphisms (preserving composition
and unit, and thereby also inverses).

(3) PreOrd, the category of preorders with monotone functions (preserving the order).
Similarly, there is a category PoSets with posets as objects, and also with monotone func-
tions as morphisms.

(4) Dcpo, the category of directed complete partial orders (dcpos) with continuous
functions between them (preserving the order and directed joins

∨
).

(5) Sp, the category of topological spaces with continuous functions (whose inverse
image preserves open subsets).

(6) Met, the category of metric spaces with non-expansive functions between them.
Consider two objects (M1, d1) and (M2, d2) in Met, where di:Mi ×Mi → [0,∞) is a
distance function on the set Mi. A morphism (M1, d1) → (M2, d2) in Met is defined as a
function f :M1 → M2 between the underlying sets satisfying d2(f(x), f(y)) ≤ d1(x, y),
for all x, y ∈M1.

(iv) An example that we shall use now and then, especially in Section 4.5 for trace
semantics, is the category REL of sets and relations. Its objects are ordinary sets, and its
morphisms X → Y are relations R ⊆ X × Y . Composition of R:X → Y and S:Y → Z
is given by relational composition:

S ◦ R = {(x, z) ∈ X × Z | ∃y ∈ Y.R(x, y) ∧ S(y, z)} (1.8)

The identity morphism X → X in REL is the equality relation (also called diagonal or
identity relation) Eq(X) ⊆ X ×X given by Eq(X) = {(x, x) | x ∈ X}.

A category is thus a very general mathematical structure, with many possible instances.
In the language of categories one can discuss standard mathematical notions, like mono-
/epi-/iso-morphism, product, limit, etc. For example, an isomorphism in a category C is a
morphism f :X → Y for which there is a (necessarily unique) morphism g:Y → X in the
opposite direction with f ◦ g = idY and g ◦ f = idX . If there is such an isomorphism,
one often writes X ∼= Y . Such general categorical definitions then have meaning in every
example of a category. For instance, it yields a notion of isomorphy for groups, posets,
topological spaces, etc.

Categorical properties are expressed in terms of morphisms, often drawn as diagrams.
Two fundamental aspects are commutation and uniqueness.

• Commutation: An equation in category theory usually has the form f1 ◦ · · · ◦ fn =
g1 ◦ · · · ◦ gm, for certain morphisms fi, gj . Such an equation can be expressed in a
commuting diagram, like:

V1

f2 // · · ·
fn−1 // Vn−1 fn

&&NNN
NNN

N

X

f1 99sssssss

g1 %%KKKKKK Y

W1 g2
// · · ·

gm−1

// Wm−1

gm

88ppppppp

Extracting such an equation from a commuting diagram by following two paths is an
example of what is called diagram chasing.

Dra
ft

20 CHAPTER 1. MOTIVATION

• Uniqueness: A frequently occurring formulation is: for every +++ there is a unique
morphism f :X → Y satisfying ***. Such uniqueness is often expressed by writing
a dashed arrow f :X //___ Y , especially in a diagram.

As we have already seen in Section 1.2, uniqueness is a powerful reasoning principle:
one can derive an equality f1 = f2 for two morphisms f1, f2:X → Y by showing
that they both satisfy ***. Often, this property *** can be established via diagram
chasing, i.e. by following paths in a diagram (both for f1 and for f2).

Both commutation and uniqueness will be frequently used in the course of this book.
For future use we mention two ways to construct new categories from old.

• Given a category C, one can form what is called the opposite category Cop which
has the same objects as C, but the arrows reversed. Thus f :X → Y in Cop if and
only if f :Y → X in C. Composition g ◦ f in Cop is then f ◦ g in C.

• Given two categories C and D, we can form the product category C×D. Its objects
are pairs of objects (X,Y) with X ∈ C and Y ∈ D. A morphism (X,Y) →
(X ′, Y ′) in C×D consists of a pair of morphisms X → X ′ in C and Y → Y ′ in D.
Identities and compositions are obtained componentwise.

The above example categories of monoids, groups, etc. indicate that structure preserv-
ing mappings are important in category theory. There is also a notion of such a mapping
between categories, called functor. It preserves the relevant structure.

1.4.3. Definition. Consider two categories C and D. A functor F : C→ D consists of two
mappings Obj(C)→ Obj(D) and Arr(C)→ Arr(D), both written as F , such that:

(i) F preserves domains and codomains: if f :X → Y in C, then F (f):F (X) →
F (Y) in D.

(ii) F preserves identities: F (idX) = idF (X) for each X ∈ C.
(iii) F preserves composition: F (g ◦ f) = F (g) ◦ F (f), for all maps f :X → Y and

g:Y → Z in C.

For each category C there is a trivial “identity” functor idC: C→ C, mapping X 7→ X
and f 7→ f . Also, for each object A ∈ C there are functors which map everything to A.
They can be defined as functors A: D → C, for an arbitrary category D. This constant
functor maps any object X ∈ D to A, and any morphism f in D to the identity map
idA:A→ A.

Further, given two functors F : C → D and G: D → E, there is a composite functor
G ◦ F : C→ E. It is given by X 7→ G(F (X)) and f 7→ G(F (f)).

Often we are a bit sloppy in the use of parentheses in functor applications. Thus FX
and Ff are F (X) and F (f). Similarly, GFX is G(F (X)).

1.4.4. Examples. (i) Consider two monoids (M,+, 0) and (N, ·, 1) as categories, like in
Example 1.4.2 (i). A functor f :M → N is then the same as a monoid homomorphism: it
preserves the composition operation and unit element.

(ii) Similarly, consider two preorders (D,≤) and (E,v) as categories, like in Exam-
ple 1.4.2 (ii). A functor f :D → E is then nothing but a monotone function: x ≤ y implies
f(x) v f(y).

(iii) Frequently occurring examples of functors are so-called forgetful functors. They
forget part of the structure of their domain. For instance, there is a forgetful functor
Mon→ Sets mapping a monoid (M,+, 0) to its underlying setM , and mapping a monoid
homomorphism f to f , considered as a function between sets. Similarly, there is a forgetful
functor Grp→Mon mapping groups to monoids by forgetting their inverse operation.

(iv) There is a “graph” functor Sets → REL. It maps a set X to X itself, and a
function f :X → Y to the corresponding graph relation Graph(f) ⊆ X × Y given by
Graph(f) = {(x, y) | f(x) = y}.

Dra
ft

1.4. ABSTRACTNESS OF THE COALGEBRAIC NOTIONS 21

(v) Recall from Section 1.2 that sequence coalgebras were described as functions of the
form c:S → {⊥} ∪ (A×S). Their codomain can be described via a functor Seq:Sets→
Sets. It maps a set X to the set {⊥} ∪ (A ×X). And it sends a function f :X → Y to a
function {⊥} ∪ (A×X)→ {⊥} ∪ (A× Y) given by:

⊥ 7−→ ⊥ and (a, x) 7−→ (a, f(x)).

We leave it to the reader to check that Seq preserves compositions and identities. We
do note that the requirement that the behaviour function behc:S → A∞ from Proposi-
tion 1.2.1 is a homomorphism of coalgebras can now be described via commutation of the
following diagram.

Seq(S) //_________
Seq(behc)

Seq(A∞)

S

c

OO

//___________
behc

A∞

∼= next

OO

In this book we shall be especially interested in endofunctors, i.e. in functors C → C

from a category C to itself. In many cases this category will C will simply be Sets, the
category of sets and functions. Often we say that a mapping A 7→ G(A) of sets to sets is
functorial if it can be extended in a more or less obvious way to a mapping f 7→ G(f) on
functions such that G becomes a functorG:Sets→ Sets. We shall see many examples in
the next chapter.

We can now introduce coalgebras in full generality.

1.4.5. Definition. Let C be an arbitrary category, with an endofunctor F : C→ C.
(i) An F -coalgebra, or just a coalgebra when F is understood, consists of an object

X ∈ C together with a morphism c:X → F (X). As before, we often call X the state
space, and c the transition or coalgebra structure.

(ii) A homomorphism of coalgebras, or a map of coalgebras, or a coalgebra map,
from one coalgebra c:X → T (X) to another coalgebra d:Y → T (Y) consists of a mor-
phism f :X → Y in C which commutes with the structures, in the sense that the following
diagram commutes.

T (X)
T (f)

// T (Y)

X

c

OO

f
// Y

d

OO

(iii) F -coalgebras with homomorphisms between them form a category, which we shall
write as CoAlg(F). It comes with a forgetful functor CoAlg(F) → C, mapping a
coalgebraX → F (X) to its state space X , and a coalgebra homomorphism f to f .

The abstractness of the notion of coalgebra lies in the fact that it can be expressed in any
category. So we need not only talk about coalgebras in Sets, as we have done so far, but
we can also consider coalgebras in other catgories. For instance, one can have coalgebras
in PreOrd, the category of preorders. In that case, the state space is a preorder, and the
coalgebra structure is a monotone function. Similarly, a coalgebra in the category Mon of
monoids has a monoid as state space, and a structure which preserves this monoid structure.
We can even have a coalgebra in a category CoAlg(F) of coalgebras. We briefly mention
some examples.

• Real numbers (and also Baire and Cantor space) are described in [193, Theorem 5.1]
as final coalgebras (via continued fractions, see also [187]) of an endofunctor on the
category PoSets.

Dra
ft

22 CHAPTER 1. MOTIVATION

• So-called descriptive general frames (special models of modal logic) appear in [162]
as coalgebras of the Vietoris functor on the category of Stone spaces.

• At several places in this book we shall see coalgebra of endofunctors other than sets.
For instance, Exercise 1.4.5 mentions invariants as coalgebras of endofunctors on
poset categories, and Example 2.3.10 and Exercise 2.3.5 describe streams with their
topology as final coalgebra in the category of topological spaces. Section 4.5 intro-
duces traces of suitable coalgebras via coalgebra homomorphism to a final coalgebra
in the category REL of sets with relations as morphisms.

In the next few chapters we shall concentrate on coalgebras in Sets, but occasionally
this more abstract perspective will be useful.

Exercises

1.4.1. Let (M,+, 0) be a monoid, considered as a category. Check that a functor F :M → Sets

can be identified with a monoid action: a set X together with a function µ:X ×M → X
with µ(x, 0) = x and µ(x,m1 +m2) = µ(µ(x,m2),m1).

1.4.2. Check in detail that the opposite C
op and product C× D are indeed categories.

1.4.3. Recall that for an arbitrary set A we write A? for the set of finite sequences 〈a0, . . . , an〉
of elements ai ∈ A.
(i) Check that A? carries a monoid structure given by concatenation of sequences, with

the empty sequence 〈〉 as neutral element.
(ii) Check that the assignmentA 7→ A? yields a functor Sets→Mon by mapping a func-

tion f :A → B between sets to the function f?:A? → B? given by 〈a0, . . . , an〉 7→
〈f(a0), . . . , f(an)〉.
[Be aware of what needs to be checked: f? must be a monoid homomorphism, and
(−)? must preserve composition of functions and identity functions.]

(iii) Prove that A? is the free monoid on A: there is the singleton-sequence insertion map
η:A → A? which is universal among all mappings of A into a monoid: for each
monoid (M, 0,+) and function f :A→M there is a unique monoid homomorphism
g:A? →M with g ◦ η = f .

1.4.4. Reconsider from Section 1.1 the statements with exceptions of the form S → {⊥} ∪ S ∪
(S ×E).
(i) Prove that the assignment X 7→ {⊥} ∪ X ∪ (X×E) is functorial, so that statements

are coalgebras for this functor.
(ii) Show that all the operations at1, . . . , atn,meth1, . . . ,methm of a class as in (1.7) can

also be described as a single coalgebra, namely of the functor:

X 7−→ D1 × · · ·Dn × ({⊥} ∪ X ∪ (X ×E))× · · · × ({⊥} ∪ X ∪ (X ×E))| {z }
m times

1.4.5. Recall the nexttime operator © for a sequence coalgebra c:S → Seq(S) = {⊥} ∪
(A × S) from the previous section. Check that it forms a monotone function P(S) →
P(S)—with respect to the inclusion order—and thus a functor. Conclude that invariants
are©-coalgebras! Dra

ft

Chapter 2

Preliminaries on coalgebras and
algebras

The previous chapter has introduced several examples of coalgebras, and has illustrated
basic coalgebraic notions like behaviour and invariance (for those examples). This chapter
will go deeper into the study of the area of coalgebra, introducing some basic notions, defi-
nitions, and terminology. It will first discuss some fundamental set theoretic constructions,
like products, coproducts, exponents and powerset in a suitably abstract (categorical) lan-
guage. These constructs are used to define the collection of so-called polynomial functors
that we shall be using in this book. Many examples of coalgebras of these polynomial
functors will be described in Section 2.2, including deterministic and non-deterministic au-
tomata. One of the attractive features of polynomial functors is that almost all of them have
a final coalgebra—except when the (non-finite) powerset occurs. The unique map into a
final coalgebra will appear as behaviour morphism, mapping a state to its behaviour. The
two last sections of this chapter, 2.4 and 2.5, provide additional background information,
namely on algebras (as duals of coalgebras) and on adjunctions. The latter form a fun-
damental categorical notion describing back-and-forth translations that occur throughout
mathematics.

2.1 Constructions on sets

This section describes familiar constructions on sets, like products, coproducts (disjoint
unions), exponents and powersets. It does so in order to fix notation, and also to show that
these operations are functorial, i.e. give rise to functors. This latter aspect is maybe not
so familiar. Functoriality is essential for properly developing the theory of coalgebras, see
Definition 1.4.5.

These basic constructions on sets are instances of more general constructions in cate-
gories. We shall give a perspective on these categorical formulations, but we do not overem-
phasise this point. Readers without much familiarity with the theory of categories may then
still follow the development, and readers who are quite comfortable with categories will
recognise this wider perspective anyway.

Products

We recall that for two arbitrary sets X,Y the productX × Y is the set of pairs

X × Y = {(x, y) | x ∈ X ∧ y ∈ Y }.

There are then obvious projection functions π1:X × Y → X and π2:X × Y → Y by
π1(x, y) = x and π2(x, y) = y. Also, for functions f :Z → X and g:Z → Y there is a

23

Dra
ft

24 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

tuple (or pairing) function 〈f, g〉:Z → X ×Y given by 〈f, g〉(z) = (f(z), g(z)) ∈ X ×Y
for z ∈ Z. Here are some basic equations which are useful in computations.

π1 ◦ 〈f, g〉 = f

π2 ◦ 〈f, g〉 = g

〈π1, π2〉 = idX×Y

〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉.

(2.1)

The latter equation holds for functions h:W → Z.
Given these equations it is not hard to see that the product operation gives rise to a

bijective correspondence between pairs of functions Z → X , Z → Y on the one hand,
and functions Z → X × Y into the product on the other. Indeed, given two functions
Z → X , Z → Y one can form their pair Z → X × Y . And in the reverse direction, given
a function Z → X × Y , one can post-compose with the two projections π1 and π2 to get
two functions Z → X , Z → Y . The above equations help to see that these operations
are each other’s inverses. Such a bijective correspondence is conveniently expressed by a
“double rule”, working in two directions:

Z −→ X Z −→ Y
=================

Z −→ X × Y
(2.2)

Interestingly, the product operation (X,Y) 7→ X × Y does not only apply to sets, but
also to functions: for functions f :X → X ′ and g:Y → Y ′ we can define a function f × g
namely:

X × Y
f × g // X ′ × Y ′ given by (x, y) 7−→ (f(x), g(y)) (2.3)

Notice that the symbol × is overloaded: it is used both on sets and on functions. This
product function f × g can also be described in terms of projections and pairing as f × g =
〈f ◦ π1, g ◦ π2〉. It is easily verified that the operation× on functions satisfies

idX × idY = idX×Y and (f ◦ h)× (g ◦ k) = (f × g) ◦ (h× k).

This expresses that the product × is functorial: it does not only apply to sets, but also to
functions; and it does so in such a way that identity maps and compositions are preserved.
The product operation × is a functor Sets × Sets → Sets, from the product category
Sets× Sets of Sets with itself, to Sets.

Products of sets form an instance of the following general notion of product in a cate-
gory.

2.1.1. Definition. Let C be a category. The product of two objects X,Y ∈ C is a new
object X × Y ∈ C with two projection morphisms

X X × Y
π1oo π2 // Y

which are universal: for each pair of maps f :Z → X and g:Z → Y in C there is a unique
tuple morphism 〈f, g〉:Z → X × Y in C, making the following diagram commute.

X X × Y
π1oo π2 // Y

Z

f

eeKKKKKKKKKKKKKKKK

OO�
�
�
�

〈f, g〉

�
�

g

99ssssssssssssssss

Dra
ft

2.1. CONSTRUCTIONS ON SETS 25

Products need not exist in a category, but if they exist they are determined up-to-
isomorphism: if there is another object with projections X

p1
←− X ⊗ Y

p2
−→ Y satisfying

the above universal property, then there is a unique isomorphismX × Y
∼=−→ X ⊗ Y com-

muting with the projections. Similar results can be proven for the other constructs in this
section.

What we have described is the product X × Y of two sets / objects X,Y . For a given
X , we shall write Xn = X×· · ·×X for the n-fold product. The definition of product can
easily be generalised to products

∏
i∈I Xi of collections (Xi)i∈I indexed by a set I . Thus,

the n-fold product Xn is the product
∏

1≤i≤nX of n-copies of X .
We shall be particularly interested in the empty product, over the empty index set I = ∅.

2.1.2. Definition. A final object in a category C is an object, usually written as 1 ∈ C,
such that for each object X ∈ C there is a unique morphism !X :X → 1 in C.

When a category has binary products× and a final object 1, one says that the category
has finite products: for each finite list X1, . . . , Xn of objects one can form the product
X1× · · · ×Xn. The precise bracketing in this expression is not relevant, because products
are associative (up-to-isomorphism), see Exercise 2.1.8 below.

Not every category needs to have a final object, but Sets does. Any singleton set is
final. We choose one, and write it as 1 = {∗}. Notice then that elements of a set X can
be identified with functions 1 → X . Hence we could forget about membership ∈ and talk
only about arrows.

Coproducts

The next construction we consider is the coproduct (or disjoint union, or sum) +. For sets
X,Y we write their coproduct as X + Y . It is defined as:

X + Y = {(x, 1) | x ∈ X} ∪ {(y, 2) | y ∈ Y }.

The components 1 and 2 serve to force this union to be disjoint. These “tags” enables us
to recognise the elements of X and of Y inside X + Y . Instead of projections as above
we now have “coprojections” κ1:X → X + Y and κ2:Y → X + Y going in the other
direction. One puts κ1(x) = (x, 1) and κ2(y) = (y, 2). And instead of tupleing we
now have “cotupleing” (sometimes called “source tupleing”): for functions f :X → Z and
g:Y → Z there is a cotuple function [f, g]:X+Y → Z going out of the coproduct, defined
by case distinction:

[f, g](w) =

{
f(x) if w = (x, 1)

g(y) if w = (y, 2).

There are standard equations for coproducts, similar to those (2.1) for products:

[f, g] ◦ κ1 = f

[f, g] ◦ κ2 = g

[κ1, κ2] = idX+Y

h ◦ [f, g] = [h ◦ f, h ◦ g].

(2.4)

Earlier we described the essence of products in a bijective correspondence (2.2). There
is a similar correspondence for coproducts, but with all arrows reversed:

X −→ Z Y −→ Z
=================

X + Y −→ Z
(2.5)

Dra
ft

26 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

This duality between products and coproducts can be made precise in categorical language,
see Exercise 2.1.3 below.

So far we have described the coproduct X + Y on sets. We can extend it to functions
in the following way. For f :X → X ′ and g:Y → Y ′ there is a function f + g:X + Y →
X ′ + Y ′ by

(f + g)(w) =

{
(f(x), 1) if w = (x, 1)

(g(y), 2) if w = (y, 2).
(2.6)

Equivalently, we could have defined: f + g = [κ1 ◦ f, κ2 ◦ g]. This operation + on
functions preserves identities and composition:

idX + idY = idX+Y and (f ◦ h) + (g ◦ k) = (f + g) ◦ (h+ k).

Thus, coproducts yield a functor +:Sets× Sets→ Sets, like products.
Coproducts in Sets satisfy some additional properties. For example, the coproduct is

disjoint, in the sense that κ1(x) 6= κ2(y), for all x, y. Also, the coprojections cover the
coproduct: every element of a coproduct is either of the form κ1(x) or κ1(y). Further,
products distribute over coproducts, see Exercise 2.1.7 below.

We should emphasise that a coproduct + is very different from ordinary union ∪. For
example, ∪ is idempotent: X ∪ X = X , but there is not even an isomorphism between
X + X and X (if X 6= ∅). Union is an operation on subsets, whereas coproduct is an
operation on sets.

Also the coproduct + in Sets is an instance of a more general categorical notion of
coproduct.

2.1.3. Definition. The coproduct of two objects X,Y in a category C is a new object
X + Y ∈ C with two coprojection morphisms

X
κ1 // X + Y Y

κ2oo

satisfying a universal property: for each pair of maps f :X → Z and g:Y → Z in C there
is a unique cotuple morphism [f, g]:X + Y → Z in C, making the following diagram
commute.

X

f
%%KKKKKKKKKKKKKKKK

κ1 // X + Y

���
�
�
�

[f, g]
�
�

Y
κ2oo

g

yyssssssssssssssss

Z

Also, there is a notion of empty coproduct.

2.1.4. Definition. An initial object 0 in a category C has the property that for each object
X ∈ C there a unique morphism !X : 0→ X in C.

Like for products, one says that a category has finite coproducts when it has binary
coproducts + plus an initial object. In that case one can form coproducts X1 + · · · +Xn

for any finite list of objects Xi.
In Sets the empty set 0 is initial: for each set X there is precisely one function 0 →

X , namely the empty function (the function with the empty graph). In Sets one has the
additional property that each function X → 0 is an isomorphism. This makes 0 ∈ Sets a
so-called strict initial object.

Whereas products are very familiar, coproducts are relatively unknown. From a purely
categorical perspective, they are not more difficult than products, because they are their

Dra
ft

2.1. CONSTRUCTIONS ON SETS 27

duals (see Exercise 2.1.3 below). But in a non-categorical setting the cotuple [f, g] is a bit
complicated, because it involves variable binding: in a term calculus one can write [f, g](z)
for instance as:

CASES z OF

κ1(x) 7−→ f(x)

κ2(y) 7−→ g(y)

Notice that the variables x and y are bound: they are mere place-holders, and their names
are not relevant. Functional programmers are quite used to such cotuple definitions by
pattern matching.

Another reason why coproducts are not so standard in mathematics is probably that in
many algebraic structures coproducts coincide with products (e.g. for monoids or vector
spaces, see Exercise 2.1.6), and in many continuous structures they do not exist (like in
categories of domains).

However, within the theory of coalgebras coproducts play an important role. They
occur in many functors F used to describe coalgebras (namely as F -coalgebras, see Defi-
nition 1.4.5), in order to capture different output options, like normal and abnormal termi-
nation in Section 1.1. Thus it is important within this setting to take coproducts seriously.

Exponents

Given two setsX and Y one can consider the set Y X = {f | f is a total function X → Y }.
This set Y X is sometimes called the function space, or exponent of X and Y . Like prod-
ucts and coproducts, it comes equipped with some basic operations. There is an evalation
function ev:Y X × X → Y , which sends the pair (f, x) to the function application f(x).
And for a function f :Z ×X → Y there is an abstraction function Λ(f):Z → Y X , which
maps z ∈ Z to the function x 7→ f(z, x) that maps x ∈ X to f(z, x) ∈ Y . Some basic
equations are:

ev ◦ Λ(f)× idX = f

Λ(ev) = idY X

Λ(f) ◦ h = Λ(f ◦ h× idX).

(2.7)

Again, the essence of this construction can be summarised concisely in the form of a
bijective correspondence, sometimes called Currying.

Z ×X −→ Y
==========
Z −→ Y X

(2.8)

We have seen that both the product× and the coproduct + give rise to functors Sets×
Sets → Sets. The situation for exponents is more subtle, because of the so-called con-
travariance in the first argument. This leads to an exponent functor Setsop×Sets→ Sets,
involving an opposite category for its first argument. We will show how this works.

For two maps k:X → U in Setsop and h:Y → V in Sets we need to define a function
hk:Y X → V U between exponents. The fact that k:X → U is a morphism in Setsop

means that it really is a function k:U → X . Therefore we can define hk on a function
f ∈ Y X as

hk(f) = h ◦ f ◦ k. (2.9)

This yields indeed a function in V U . Functoriality also means that identities and composi-
tions must be preserved. For identities this is easy:

(
idid)(f) = id ◦ f ◦ id = f.

Dra
ft

28 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

But for preservation of composition we have to remember that composition in an opposite
category is reversed:

(
hk22 ◦ h

k1
1

)
(f) =

(
hk22

(
h1 ◦ f ◦ k1)

= h2 ◦ h1 ◦ f ◦ k1 ◦ k2

=
(
(h2 ◦ h1)

(k2◦k1)
)
(f).

We conclude this discussion of exponents with the categorical formulation.

2.1.5. Definition. Let C be a category with products ×. The exponent of two objects
X,Y ∈ C is a new object Y X ∈ C with an evaluation morphism

Y X ×X
ev // Y

such that: for each map f :Z × X → Y in C there is a unique abstraction morphism
Λ(f):Z → Y X in C, making the following diagram commute.

Y X ×X
ev // Y

Z ×X

f

99ssssssssssssssss

OO�
�
�
�

Λ(f)× idX

The following notions are often useful. A Cartesian closed category, or CCC for
short, is a category with finite products and exponents. And a bicartesian closed category,
or BiCCC is a CCC with finite coproducts. As we have seen, Sets is a BiCCC.

Powersets

For a set X we write P(X) = {U | U ⊆ X} for the set of (all) subsets of X . In more
categorical style we shall also write U ↪→ X or U � X for U ⊆ X . These subsets will
also be called predicates. Therefore, we sometimes write U(x) for x ∈ U , and say in that
case that U holds for x. The powerset P(X) is naturally ordered by inclusion: U ⊆ V iff
∀x ∈ X. x ∈ U ⇒ x ∈ V . This yields a poset (P(X),⊆), with (arbitrary) meets given by
intersection

⋂
i∈I Ui = {x ∈ X | ∀i ∈ I. x ∈ Ui}, (arbitrary) joins by unions

⋃
i∈I Ui =

{x ∈ X | ∃i ∈ I. x ∈ Ui}, and negation by complement ¬U = {x ∈ X | x 6∈ U}. In
brief, (P(X),⊆) is a complete Boolean algebra. Of special interest is the truth predicate
>X = (X ⊆ X) which always holds, and the falsity predicate ⊥X = (∅ ⊆ X) which
never holds.

Relations may be seen as special cases of predicates. For example, a (binary) relationR
on sets X and Y is a subset R ⊆ X × Y of the product set, i.e. an element of the powerset
P(X × Y). We shall use the following notations interchangeably:

R(x, y), (x, y) ∈ R, xRy.

Relations, like predicates, can be ordered by inclusion. The resulting poset (P(X×Y),⊆)
is again a complete Boolean algebra. It also contains a truth relation >X×Y ⊆ X × Y
which always holds, and a falsity relation ⊥X×Y ⊆ X × Y which never holds.

Reversal and composition are two basic constructions on relations. For a relation R ⊆
X × Y we shall write R−1 ⊆ Y ×X for the reverse relation given by yR−1x iff xRy. If
we have another relation S ⊆ Y × Z we can describe the composition of relations S ◦ R
as a new relation (S ◦ R) ⊆ X × Z, via: x(S ◦ R)z iff ∃y ∈ Y.R(x, y) ∧ S(y, z), as
already described in (1.8).

Dra
ft

2.1. CONSTRUCTIONS ON SETS 29

Often we are interested in relations R ⊆ X ×X on a single set X . Of special interest
then is the equality relation Eq(X) ⊆ X ×X given by Eq(X) = {(x, y) ∈ X ×X | x =
y} = {(x, x) | x ∈ X}. As we saw in Example 1.4.2 (iv), sets and relations form a
category REL.

The powerset operationX 7→ P(X) is also functorial. For a function f :X → Y there
is a function P(f):P(X)→ P(Y) given by so-called direct image: for U ⊆ X ,

P(f)(U) = {f(x) | x ∈ U}

= {y ∈ Y | ∃x ∈ X. f(x) = y ∧ x ∈ U}.
(2.10)

Alternative notation for this direct image is f [U] or
∐
f (U). In this way we may describe

the powerset as a functor P(−):Sets→ Sets.
It turns out that one can also describe powerset as a functorP(−):Setsop → Sets with

the opposite of the category of sets as domain. In that case a function f :X → Y yields a
map f−1:P(Y)→ P(X), which is commonly called inverse image: for U ⊆ Y ,

f−1(U) = {x | f(x) ∈ U}. (2.11)

The powerset operation with this inverse image action on morphisms is sometimes called
the contravariant powerset. But standardly we shall consider powersets with direct images,
as functor Sets → Sets. We shall frequently encounter these direct

∐
f and inverse f−1

images. They are related by a Galois connection:
∐
f (U) ⊆ V

===========
U ⊆ f−1(V)

(2.12)

See also in Exercise 2.1.12 below.
We have seen bijective correspondences characterising products, coproducts, exponents

and images. There is also such a correspondence for powersets:

X −→ P(Y)
==============
relations ⊆ Y ×X

(2.13)

This leads to a more systematic description of a powerset as a so-called relation classi-
fier. There is a special inhabitation ∈⊆ Y × P(Y), given by ∈ (y, U) ⇔ y ∈ U . For
any relation R ⊆ Y × X there is then a relation classifier, or characteristic function,
char(R):X → P(Y) mapping x ∈ X to {y ∈ Y | R(y, x)}. This map char(R) is the
unique function f :X → P(Y) with ∈ (y, f(x))⇔ R(y, x), i.e. with (id × f)−1(∈) = R.

This formalisation of this special property in categorical language yields so-called
power objects. The presence of such objects is a key feature of “toposes”. The latter
are categorical set-like universes, with constructive logic. They form a topic that goes be-
yond the introductory material covered in this text. The interested reader is referred to the
extensive literature on toposes [149, 94, 30, 169, 45].

Finally, we shall often need the finite powerset Pfin(X) = {U ∈ P(X) | U is finite}.

Exercises

2.1.1. Verify in detail the bijective correspondences (2.2), (2.5), (2.8) and (2.13).

2.1.2. Consider a poset (D,≤) as a category. Check that the product of two elements d, e ∈ D, if
it exists, is the meet d ∧ e. And a coproduct of d, e, if it exists, is the join d ∨ e.
Similarly, show that a final object is a top element > (with d ≤ >, for all d ∈ D), and that
an initial object is a bottom element ⊥ (with ⊥ ≤ d, for all d ∈ D).

2.1.3. Check that a product in a category C is the same as a coproduct in C
op.

2.1.4. Fix a set A and prove that assignments X 7→ A × X , X 7→ A + X and X 7→ XA are
functorial, and give rise to functors Sets→ Sets.

Dra
ft

30 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

2.1.5. Prove that the category PoSets of partially ordered sets and monotone functions is a BiCCC.
The definitions on the underlying sets X of a poset (X,≤) are like for ordinary sets, but
should be equipped with appropriate orders.

2.1.6. Consider the category Mon of monoids with monoid homomorphisms between them.
(i) Check that the singleton monoid 1 is both an initial and a final object in Mon.
(ii) Given two monoids (M1,+1, 01) and (M2,+2, 02), define a product monoid M1 ×

M2 with componentwise addition (x, y) + (x′, y′) = (x +1 x
′, y +2 y

′) and unit
(01, 02). Prove thatM1×M2 is again a monoid, which forms a product in the category
Mon with the standard projection maps M1

π1←−M1 ×M2
π2−→M2.

(iii) Note that there are also coprojections M1
κ1−→M1 ×M2

κ2←−M2, given by κ1(x) =
(x, 02) and κ2(y) = (01, y) which are monoid homomorphisms, and which make
M1 ×M2 at the same time the coproduct of M1 and M2 in Mon.

[Hint. Define the cotuple [f, g] as x 7→ f(x) + g(x).]

2.1.7. Show that in Sets products distribute over coproducts, in the sense that the canonical maps

(X × Y) + (X × Z)
[idX × κ1, idX × κ2] // X × (Y + Z)

0
! // X × 0

are isomorphisms. Categories in which this is the case are called distributive, see [103] for
an investigation of such distributivities in categories of coalgebras.

2.1.8. (i) Consider a category with finite products (×, 1). Prove that there are isomorphisms:

X × Y ∼= Y ×X (X × Y)× Z ∼= X × (Y × Z) 1×X ∼= X

(ii) Similarly, show that in a category with finite coproducts (+, 0) one has:

X + Y ∼= Y +X (X + Y) + Z ∼= X + (Y + Z) 0 +X ∼= X

[This means that both the finite product and coproduct structure in a category yields so-
called symmetric monoidal structure. See [167, 45] for more information.]
(iii) Next, assume that our category also has exponents. Prove that:

X0 ∼= 1 X1 ∼= X 1X ∼= 1

And also that:

ZX+Y ∼= ZX × ZY ZX×Y ∼=
“
ZY

”X
(X × Y)Z ∼= XZ × Y Z

2.1.9. Check that:

P(0) ∼= 1 P(1) ∼= 2 = {0, 1} P(X + Y) ∼= P(X)×P(Y).

And similarly for the finite powerset Pfin(−) instead of P(−).

2.1.10. Show that the finite powerset also forms a functor Pfin(−):Sets→ Sets.

2.1.11. Notice that a powerset P(X) can also be understood as exponent 2X , where 2 = {0, 1}.
Check that the exponent functoriality gives rise to the contravariant powerset Setsop →
Sets.

2.1.12. Consider a function f :X → Y . Prove that:
(i) the direct image

‘
f :P(X) → P(Y) preserves all joins, and that the inverse image

f−1(−):P(Y)→ P(X) preserves not only joins but also meets and negation (i.e. all
the Boolean structure);

(ii) there is a Galois connection
‘
f (U) ⊆ V ⇐⇒ U ⊆ f−1(V), as claimed in (2.12);

(iii) there is a product function
Q
f :P(X)→ P(Y) given by

Q
f (U) = {y ∈ Y | ∀x ∈

X. f(x) = y ⇒ x ∈ U}, with a Galois connection f−1(V) ⊆ U ⇐⇒ V ⊆Q
f (U).

2.1.13. Let C be a category with finite coproducts (0,+), and let F be an arbitrary endofunctor
C → C. Prove that the category CoAlg(F) of F -coalgebras then also has finite coprod-
ucts, by showing that:

Dra
ft

2.2. POLYNOMIAL FUNCTORS AND THEIR COALGEBRAS 31

(i) the unique map 0→ F (0) is the initial coalgebra;
(ii) the cotuple [F (κ1) ◦ c, F (κ2) ◦ d]:X +Y → F (X +Y) of two coalgebras c:X →

F (X) and d:Y → F (Y) is their coproduct in CoAlg(F).
Generalise this to arbitrary (set-indexed) coproducts

‘
i∈I Xi.

2.1.14. For two parallel functions f, g:X → Y between sets X,Y one can form their coequaliser
q:Y → Q in a diagram,

X

f //

g
// Y

q // Q

with q ◦ f = q ◦ g in a “universal way”: for an arbitrary function h: Y → Z with
h ◦ f = h ◦ g there is a unique map k:Q→ Z with k ◦ q = h.
(i) Check that Q can be defined as the quotient Y/R, where R ⊆ Y × Y is the least

equivalence relation containing all pairs (f(x), g(x)) for x ∈ X .
(ii) Prove that for an arbitrary functor F :Sets→ Sets the associated category of coalge-

bras CoAlg(F) also has coequalisers: for two parallel homomorphisms f, g:X → Y
between coalgebras c:X → F (X) and d:Y → F (Y) there is by universality an in-
duced coalgebra structureQ→ F (Q) on the coequaliserQ of the underlying function,
yielding a diagram of coalgebras

0
@

F (X)
↑ c
X

1
A

f //

g
//

0
@

F (Y)
↑ d
Y

1
A q //

0
@

F (Q)
↑
Q

1
A

with the appropriate universal property in CoAlg(F): for each coalgebra e:Z →
F (Z) with homomorphism h:Y → Z satisfying h ◦ f = h ◦ g there is a unique
homomorphism of coalgebras k:Q→ Z with k ◦ q = h.

2.2 Polynomial functors and their coalgebras

Earlier in Definition 1.4.5 we have seen the general notion of a coalgebra as a map X →
F (X) in a category C, whereF is a functor C→ C. Here, in this section and in much of the
rest of this text we shall concentrate on a more restricted situation: as category C we use the
category Sets of ordinary sets and functions. And as functors F :Sets → Sets we shall
use so-called polynomial functors, like F (X) = A+ (B ×X)C . These are functors built
up inductively from certain simple basic functors, using products, coproducts, exponents
and powersets for forming new functors. There are three reasons for this restriction to
polynomial functors.

1. Polynomial functors are concrete and easy to grasp.

2. Coalgebras of polynomial functors include many of the interesting examples.

3. Polynomial functors allow definitions by induction, for many of the notions that we
shall be interested in—notably relation lifting and predicate lifting in the next two
chapters. These inductive definitions are easy to use, and can be introduced without
any categorical machinery.

This section contains the definition of polynomial functor, and also many examples of
such functors and of their coalgebras.

2.2.1. Definition. (i) The collection SPF of simple polynomial functors is the least class
of functors Sets→ Sets satisfying the following clauses.

(1) The identity functor Sets→ Sets is in SPF.

(2) For each set A, the constant functor A:Sets → Sets is in SPF. Recall that it maps
every set X to A, and every function f to the identity idA on A.

Dra
ft

32 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

(3) If both F and G are in SPF, then so is the product functor F × G, defined as X 7→
F (X)×G(X). On functions it is defined as f 7→ F (f)×G(f), see (2.3).

(4) If F andG are in SPF, then also their coproductF+G given byX 7→ F (X)+G(X)
is in SPF. A function f is sent by this coproduct functor to F (f) +G(f), see (2.6).

(5) For each set A, if F in SPF, then so is the “constant” exponent FA defined as X 7→
F (X)A. It sends a function f :X → Y to the function F (f)A = F (f)idA which
maps h:A→ F (X) to F (f) ◦ h:A→ F (Y), see (2.9).

(ii) The class KPF of (Kripke) polynomial functors is the superset of SPF defined by
the above clauses (1)–(5), with ‘SPF’ replaced by ‘KPF’, plus two additional rules:

(6) If F is in KPF, then so is the powerset P(F), defined as X 7→ P(F (X)) on sets, and
as f 7→ P(F (f)) on functions, see (2.10).

(7) If F ∈ KPF, then also F ? ∈ KPF, where the functor F ? maps a set X to the set
F (X)? of finite sequences of elements of F (X). On a function f it is defined as
F (f)?, like in Exercise 1.4.3 (ii).

Occasionally, we shall say that a functorF is a finite KPF. This means that all the powersets
P(−) occurring in F are actually finite powersets Pfin(−).

Thus, when we write ‘polynomial functor’ we mean ‘Kripke polynomial functor’. We
shall occasionally restrict ourselves to ‘simple’ polynomial functors (without powersets),
like in Chapter 5 when we introduce specifications for coalgebras. The above clauses yield
a reasonable collection of functors to start from, but we could of course have included
some more constructions in our definition of polynomial functor—like iterations via initial
and final (co)algebras, see e.g. [112, 208, 147], as used in the experimental programming
language Charity [55, 53, 56]. There are thus interesting functors which are out of the
“polynomial scope”, see for instance probability distribution functors in Exercise 2.2.9, or
“dependent” polynomial functors in Exercise 2.2.4. However, the above clauses suffice for
many examples in this introduction.

In the remainder of this section we shall see several instances of (simple and Kripke)
polynomial functors. This includes examples of fundamental mathematical structures that
arise as coalgebras of such functors.

2.2.1 Statements and sequences

In the previous chapter we have used program statements (in Section 1.1) and sequences (in
Section 1.2) as motivating examples for the study of coalgebras. We briefly review these
examples using the latest terminology and notation.

Recall that statements were introduced as functions acting on a state space S, with
different output types depending on whether they could hang or terminate abruptly because
of an exception. These two representations were written as:

S // {⊥} ∪ S S // {⊥} ∪ S ∪ (S ×E)

Using the notation from the previous section we now write these as:

S // 1 + S S // 1 + S + (S ×E)

And so we recognise these statements as coalgebras

S // F (S) S // G(S)

of the simple polynomial functors:

F = 1 + id

=
(
X 7−→ 1 +X

) and
G = 1 + id + (id ×E)

=
(
X 7−→ 1 +X + (X ×E)

)
.

Dra
ft

2.2. POLYNOMIAL FUNCTORS AND THEIR COALGEBRAS 33

Thus, these functors determine the kind of computations.
Sequence coalgebras, for a fixed set A, were described in Section 1.2 as functions:

S // {⊥} ∪ (A× S)

i.e. as coalgebras:

S // 1 + (A× S)

of the simple polynomial functor 1 + (A × id). This functor was called Seq in Exam-
ple 1.4.4 (v). Again, the functor determines the kind of computations: either fail, or pro-
duce an element in A together with a successor state. We could change this a bit and drop
the fail-option. In that case, each state yields an element in A with a successor state. This
different kind of computation is captured by a different polynomial functor, namely by
A× id. A coalgebra of this functor is a function

S // A× S

as briefly mentioned in the introduction to Chapter 1 (before Section 1.1). Its behaviour
will be an infinite sequence of elements of A: since there is no fail-option, these behaviour
sequences do not terminate. In the next section we shall see how to formalise this as:
infinite sequences AN form the final coalgebra of this functor A× id.

2.2.2 Trees

We shall continue this game of capturing different kinds of computation via different poly-
nomial functors. Trees form a good illustration because they occur in various forms. Recall
that in computer science trees are usually written up-side-down.

Let us start by fixing an arbitrary set A, elements of which will be used as labels in
our trees. Binary trees are most common. They arise as outcomes of computations of
coalgebras:

S // A× S × S

of the simple polynomial functor A × id × id. Indeed, given a state x ∈ S, a one-step
computation yields a triple (a0, x1, x2) of an element a0 ∈ A and two successor states
x1, x2 ∈ S. Continuing the computation with both x1 and x2 yields two more elements in
A, and four successor states, etc. This yields for each x ∈ S an infinite binary tree with
one label from A at each node:

a0

ooooo
OOOOO

a1

��
� 99

9 a2

��
� 99

9

...
...

...
...

In a next step we could consider ternary trees as behaviours of coalgebras:

S // A× S × S × S

of the simple polynomial functor A × id × id × id. By a similar extension one can get
quaternary trees, etc. These are all instances of finitely branching trees, arising from coal-
gebras:

S // A× S?

of the Kripke polynomial functor A× id?. Each state x ∈ S is now mapped to an element
in A with a finite sequence 〈x1, . . . xn〉 of successor states—with which one continues to
observe the behaviour of x.

Dra
ft

34 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

We can ask if the behaviour trees should always be infinitely deep. Finiteness must
come from the possibility that a computation fails and yields no successor state. This can
be incorporated by considering coalgebras

S // 1 + (A× S × S)

of the simple polynomial functor 1 + (A × id × id). Notice that the resulting behaviour
trees may be finite in one branch, but infinite in the other. There is nothing in the shape of
the polynomial functor that will guarantee that the whole behaviour will actually be finite.

A minor variation is in replacing the set 1 for non-termination by A, in:

S // A+ (A× S × S)

The resulting behaviour trees will have elements from A at their leaves.

2.2.3 Deterministic automata

Automata are very basic structures in computing, used in various areas: language theory,
text processing, complexity theory, parallel and distributed computing, circuit theory, etc.
Their state-based, dynamical nature makes them canonical examples of coalgebras. There
are many versions of automata, but here we shall concentrate on the two most basic ones:
deterministic and non-deterministic. For more information on the extensive theory of au-
tomata, see for example [14, 67, 221].

A deterministic automaton is usally defined as consisting of a set S of states, a set A
of labels (or actions, or letters of an alphabet), a transition function δ:S × A → S, and
a set F ⊆ S of final states. Sometimes, also an initial state x0 ∈ S is considered part of
the structure, but here it is not. Such an automaton is called deterministic because for each
state x ∈ S, and input a ∈ A, there is precisely one successor state x′ = δ(x, a) ∈ S.

First, we shall massage these ingredients into coalgebraic shape. Via the bijective cor-
respondence (2.8) for exponents, the transition functon S×A→ S can also be understood
as a map S → SA. And the subset F ⊆ S of final states corresponds to a characteristic
function S → {0, 1}. These two functions S → SA and S → {0, 1} can be combined to a
single function,

S // SA × {0, 1}

using the product correspondences (2.2). Thus, deterministic automata with A as set of
labels are coalgebras of the simple polynomial functor idA × {0, 1}.

Here we shall stretch this notion a little bit, and replace the set {0, 1} by an arbitary set
B of “observable” outputs. Thus, what shall call a deterministic automaton is a coalgebra

S
〈δ, ε〉

// SA ×B

of the simple polynomial functor idA × B. Such automata are sometimes called Mealy
machines.

A coalgebra, or deterministic automaton, 〈δ, ε〉:S → SA × B consists of a transition
function δ:S → SA, and an observation function ε:S → B. For such an automaton, we
shall frequently use a transition notation x

a
−→ x′ for x′ = δ(x)(a). Also, we introduce

a notation for observation: x ↓ b stands for ε(x) = b. Finally, a combined notation is
sometimes useful: (x ↓ b)

a
−→ (x′ ↓ b′) means three things at the same time: x ↓ b and

x
a
−→ x′ and x′ ↓ b′.

Often one considers automata with a finite state space. This is not natural in a coalge-
braic setting, because the state space is considered to be a black box, about which essen-
tially nothing is known—except what can be observed via the operations. Hence we shall
work with arbitrary state spaces, without assuming finiteness.

Dra
ft

2.2. POLYNOMIAL FUNCTORS AND THEIR COALGEBRAS 35

Assume we have a state x ∈ S of such a coalgebra / deterministic automaton 〈δ, ε〉:S →
SA × B. Applying the output function ε:S → B to x yields an immediate observation
ε(x) ∈ B. For each element a1 ∈ A we can produce a successor state δ(x)(a1) ∈ S; it also
gives rise to an immediate observation ε(δ(x)(a1)) ∈ B, and for each a2 ∈ A a successor
state δ(δ(x)(a1))(a2) ∈ S, etc. Thus, for each finite sequence 〈a1, . . . , an〉 ∈ A? we can
observe an element ε(δ(· · · δ(x)(a1) · · ·)(an)) ∈ B. Everthing we can possibly observe
about the state x is obtained in this way, namely as a function A? → B. Such behaviours
will form the states of the final coalgebra, see Proposition 2.3.5 in the next section.

For future reference we shall be a bit more precise about what we have just said. The
behaviours can best be described via an iterated transition function

S ×A?
δ∗ // S defined as

{
δ∗(x, 〈〉) = x

δ∗(x, a · σ) = δ∗(δ(x)(a), σ)

This iterated transition function δ∗ gives rise to the multiple-step transition notation: x
σ
−→∗

y stands for y = δ∗(x, σ), and means that y is the (non-immediate) successor state of x
obtained by applying the inputs from the sequent σ ∈ A?, from left to right.

The behaviour beh(x):A? → B of a state x ∈ S is then obtained as the function that
maps a finite sequence σ ∈ A? of inputs to the observable output

beh(x)
def
= ε(δ∗(x, σ)) ∈ B (2.14)

An element of the set BA
?

of all such behaviours can be depicted as a rooted tree with
elements from the set A of inputs as labels, and elements from the set B of outputs at
nodes. For example, a function ϕ ∈ BA

?

can be described as an infinite tree:

b0

annnnnn

nnnnnn a′ a′′ · · ·
HHH

HHH

b1

a�
�

��
a′ a′′

AA

AA

b2

· · ·

b3 · · ·

· · ·

b b′ b′′ · · ·

where

ϕ(〈〉) = b0
ϕ(〈a〉) = b1
ϕ(〈a′〉) = b2
ϕ(〈a′′〉) = b3

etc.
ϕ(〈a, a〉) = b
ϕ(〈a, a′〉) = b′

ϕ(〈a, a′′〉) = b′′

etc.

If the behaviour beh(x) of a state x looks like this, then one can immediatly observe
b0 = ε(x), observe b1 = ε(δ(x)(a)) after input a, observe b = ε(δ(δ(x)(a))(a)) =

ε(δ∗(x, 〈a, a〉)) after inputing a twice, etc. Thus, there is an edge b
a
−→ b′ in the tree

if and only if there are successor states y, y′ of x with (y ↓ b)
a
−→ (y′ ↓ b′). In the next

section we shall see (in Proposition 2.3.5) that these behaviours in BA?

themselves carry
the structure of a deterministic automaton.

Here is a special way to obtain deterministic automata. A standard result (see e.g. [118,
8.7]) in the theory of differential equations says that unique solutions to such equations give
rise to monoid actions, see Exercises 1.4.1 and 2.2.6. Such a monoid action may be of the
form X × R≥0 → X , where X is the set of states and R≥0 is the set of non-negative reals
with monoid structure (+, 0) describing the input (which may be understood as time). In
this context monoid actions are sometimes called flows, motions, solutions or trajectories,
see Exercise 2.2.8 for an example.

Exercise 2.2.10 below contains an account of linear dynamical systems which is very
similar to the above approach to deterministic automata. It is based on the categorical
analysis by Arbib and Manes [15, 16, 19, 18, 20] of Kalman’s [153] module-theoretic
approach to linear systems.

In Lemma 2.2.2 there is a description of what coalgebra homomorphisms mean for
automata.

Dra
ft

36 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

2.2.4 Non-deterministic automata and transition systems

Deterministic automata have a transition function δ:S × A → S. For non-deterministic
automata one replaces this function by a relation. A state can then have multiple successor
states—which is the key aspect of non-determinism. There are several, equivalent, ways
to represent this. For example, one can replace the transition function S × A → S by a
function S ×A→ P(S), yielding for each state x ∈ S and input a ∈ A a set of successor
states. Of course, this function can also be written as S → P(S)A, using Currying. This is
the same as using a transition relation, commonly written as an arrow:→⊆ S×A×S. Or
alternatively, one can use a function S → P(A×S). All this amounts to the same, because
of the bijective correspondences from Section 2.1:

S −→ P(S)A

============= (2.8)
S ×A −→ P(S)

================== (2.13)
relations ⊆ (S ×A)× S

====================
relations ⊆ S × (A× S)
================== (2.13)

S −→ P(A× S)

We have a preference for the first representation, and will thus use functions δ:S → P(S)A

as non-derministic transition structures.
(It should be noted that if we use the finite powerset Pfin(−) instead of the ordinary one

P(−), then there are no such bijective correspondences, and there is then a real choice of
representation.)

Standardly, non-deterministic automata are also considered with a subset F ⊆ S of
final states. As for deterministic automata, we like to generalise this subset to an obser-
vation function S → B. This leads us to the following definition. A non-deterministic
automaton is a coalgebra:

S
〈δ, ε〉

// P(S)A ×B

of a Kripke polynomial functor P(id)A ×B, where A is the set of its inputs, and B the set
of its outputs or observations. Like before, the coalgebra consists of a transition function
δ:S → P(S)A, and an observation function ε:S → B. For such a non-deterministic
automaton we shall use the same notation as for deterministic ones: x

a
−→ x′ stands for

x′ ∈ δ(x)(a), and x ↓ b means ε(x) = b. New notation is x
a

9 , which means δ(x)(a) = ∅,
i.e. there is no successor state x′ such that x can do an a-step x

a
−→ x′ to x′.

In general, for a given x and a there may be multiple (many or no) x′ with x
a
−→ x′, but

there is precisely one b with x ↓ b. We also use the combined notation (x ↓ b)
a
−→ (x′ ↓ b′)

for: x ↓ b and x
a
−→ x′ and x′ ↓ b′.

Like for deterministic automata we wish to define the behaviour of a state from transi-
tions (x ↓ b)

a
−→ (x′ ↓ b′) by omitting the states and keeping the inputs and outputs. But in

the non-deterministic case things are not so easy because there may be multiple successor
states. More technically, there are no final coalgebras for functors P(id)A ×B describing
non-deterministic automata, see Proposition 2.3.8 and the discussion in the preceding para-
graph. However, for non-deterministic automata one can consider other forms of behaviour,
such as traces, see Section 4.5.

Now that we have some idea of what a non-deterministic automaton is, namely a coal-
gebra S → P(S)A ×B, we can introduce various transition systems as special cases.

• An unlabeled transition system (UTS) is a non-deterministic automaton with trivial
inputs and outputs: A = 1 andB = 1. It is thus nothing else but a relation→⊆ S×S
on a set of states. UTSs are very basic dynamical systems, but they are important for

Dra
ft

2.2. POLYNOMIAL FUNCTORS AND THEIR COALGEBRAS 37

instance as a basis for model checking: automatic state exploration for proving or
disproving properties about systems, see for instance [175, 69].

• A labeled transition system, (LTS) introduced in [199], is a non-deterministic au-
tomaton with trivial output: B = 1. It can be identified with a relation →⊆
S × A × S. Labeled transition systems play an important rôle in the theory of
processes, see e.g. [38].

• A Kripke structure is a non-deterministic automaton S −→ P(S) × P(AtProp)
with trivial input (A = 1), and special output: B = P(AtProp), for a set AtProp of
atomic propositions. The transition function δ:S → P(S) thus corresponds to an un-
labeled transition system. And the observation function function ε:S → P(AtProp)
tells for each state which of the atomic propositions are true (in that state). Such
a function, when written as AtProp → P(S) is often called a valuation. Kripke
structures are fundamental in the semantics of modal logic, see e.g. [43] or [70]. The
latter reference describes Kripke structures for “multiple agents”, that is, as coalge-
bras S −→ P(S)× · · · × P(S)×P(AtProp) with multiple transition functions.

When we consider (non-)deterministic automata as coalgebras, we automatically get
an associated notion of (coalgebra) homomorphism. As we shall see next, such a homo-
morphism both preserves and reflects the transitions. The proofs are easy, and left to the
reader.

2.2.2. Lemma. (i) Consider two deterministic automataX → XA×B and Y → Y A×B
as coalgebras. A function f :X → Y is then a homomorphism of coalgebras if and only if

(1) x ↓ b =⇒ f(x) ↓ b;

(2) x
a
−→ x′ =⇒ f(x)

a
−→ f(x′).

(ii) Similarly, for two non-deterministic automataX → P(X)A×B and Y → P(Y)A×
B a function f :X → Y is a homomorphism of coalgebras if and only if

(1) x ↓ b =⇒ f(x) ↓ b;

(2) x
a
−→ x′ =⇒ f(x)

a
−→ f(x′);

(3) f(x)
a
−→ y =⇒ ∃x′ ∈ S1. f(x′) = y ∧ x

a
−→ x′.

Such a function f is sometimes called a zig-zag morphism, see [36].

Note that the analogue of point (3) in (ii) trivially holds for deterministic automata.

2.2.5 Context-free grammars

A context free grammar is a basic tool in computer science to describe the syntax of pro-
gramming languages via so-called production rules. These rules are of the form v −→ σ,
where v is a non-terminal symbol and σ is a finite list of both terminal and non-terminal
symbols. If we write V for the set of non-terminals, andA for the terminals, then a context-
free grammar (CFG) is a coalgebra

V
g // P((V +A)?)

of the polynomial functor X 7−→ P((X + A)?). It sends each non-terminal v to a set
g(v) ⊆ (V +A)? of right-hand-sides σ ∈ g(v) in productions v −→ σ.

A word τ ∈ A?—with terminals only—can be generated by a context-free grammar
g if there is a non-terminal v ∈ V from which τ arises by applying rules repeatedly. The
collection of all such strings is the language that is generated by the grammar.

A simple example is the grammar with V = {v}, A = {a, b} and g(v) = {〈〉, avb}. It
thus involves two productions v −→ 〈〉 and v −→ a · v · b. This grammar generates the

Dra
ft

38 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

language of words anbn consisting of a number of a’s followed by an equal number of b’s.
Such a grammar is often written in “Backus Naur Form” (BNF) as v ::= 〈〉 | avb.

A derivation of a word imposes a structure on the word that is generated. This structure
may be recognised in an arbitrary word in a process called parsing. This is one of the very
first things a compiler does (after lexical analysis), see for instance [13]. See Example 4.5.2
for the parsed language associated with a CFG via a trace semantics defined by coinduction.

2.2.6 Non-well-founded sets

Non-well-founded sets form a source of examples of coalgebras which has been of histori-
cal importance in the development of the area. Recall that in ordinary set theory there is a
foundation axiom (see e.g. [77, Chapter II, §5]) stating that there are no infinite descending
∈-chains · · · ∈ x2 ∈ x1 ∈ x0. This foundation axiom is replaced by an anti-foundation ax-
iom in [76], and also in [4], allowing for non-well-founded sets. The second reference [4]
received much attention; it formulated an anti-foundation axiom as: every graph has a
unique decoration. This can be reformulated easily in coalgebraic terms, stating that the
universe of non-well-founded sets is a final coalgebra for the (special) powerset functor ℘

on the category of classes and functions:

℘X = {U ⊆ X | U is a small set}.

Incidentally, the “initial algebra” (see Section 2.4) of this functor is the ordinary universe
of well-founded sets, see [233, 231] for details.

Aczel developed his non-well-founded set theory in order to provide a semantics for
Milner’s theory CCS [179] of concurrent processes. An important contribution of this work
is the link it established between the proof principle in process theory based on bisim-
ulations (going back to [179, 189]), and coinduction as proof principle in the theory of
coalgebras—which will be described here in Section 3.4. This work formed a source of
much inspiration in the semantics of programming languages [233] and also in logic [35].

Exercises

2.2.1. Check that a polynomial functor which does not contain the identity functor is constant.

2.2.2. Describe the kind of trees that can arise as behaviours of coalgebras:
(i) S −→ A+ (A× S)
(ii) S −→ A+ (A× S) + (A× S × S)

2.2.3. Check, using Exercise 2.1.9, that non-deterministic automata X → P(X)A× 2 can equiv-
alently be described as transition systems X → P(1+ (A×X)). Work out the correspon-
dence in detail.

2.2.4. Consider an indexed collection (Ai)i∈I , and defined the associated “dependent” polyno-
mial functor Sets→ Sets by

X 7−→ ‘
i∈I X

Ai = {(i, f) | i ∈ I ∧ f :Ai → X}.
(i) Prove that we get a functor in this way.
(ii) Check that all simple polynomial functors are dependent—by finding suitable collec-

tions (Ai)i∈I for each of them.
[These functors are studied in the context of so-called W-types in dependent type theory for
well-founded trees, see for instance [1, 188].]

2.2.5. (i) Notice that the behaviour function beh:S → BA
?

from (2.14) for a deterministic
automaton satisfies:

beh(x)(〈〉) = ε(x)

= b, where x ↓ b
beh(x)(a · σ) = beh(δ(x)(a))(σ)

= beh(x′)(σ), where x
a−→ x′.

Dra
ft

2.2. POLYNOMIAL FUNCTORS AND THEIR COALGEBRAS 39

(ii) Consider a homomorphism f :X → Y of coalgebras / deterministic automata from
X → XA ×B and Y → Y A ×B, and prove that for all x ∈ X ,

beh2(f(x)) = beh1(x).

2.2.6. Check that the iterated transition function δ∗:S × A? → S of a deterministic automaton
is a monoid action—see Exercise 1.4.1—for the free monoid structure on A ? from Exer-
cise 1.4.3.

2.2.7. Note that the function spaces SS carries a monoid structure given by composition. Show
that the iterated transition function δ∗ for a deterministic automaton, considered as a monoid
homomorphism A? → SS , is actually obtained from δ by freeness of A?—as described in
Exercise 1.4.3.

2.2.8. Consider a very simple differential equation of the form df

dy
= −Cf , where C ∈ R is a

fixed positive constant. The solution is usually described as f(y) = f(0) · e−Cy . Check
that it can be described as a monoid action R× R≥0 → R, namely (x, y) 7→ xe−Cy .

2.2.9. Let [0, 1] ⊆ R be the unit interval of real numbers. For an arbitrary function ϕ:X → [0, 1]
one writes supp(ϕ) for the “support” of ϕ, i.e. for the set {x ∈ X | ϕ(x) 6= 0}. A
probability distribution is a function ϕ:X → [0, 1] satisfying

P
x∈X ϕ(x) = 1. Such a

distribution ϕ describes for each x ∈ X the chance ϕ(x) that it will occur. We shall write
D(X) for the set of such probability distributions on X , and Dfin(X) ↪→ D(X) for the
subset of distributions with finite support.

(i) A distribution ϕ:X → [0, 1] may be understood as a formal sum
P

x∈X axx where
ax = ϕ(x) ∈ [0, 1]. For a function f :X → Y we put D(f)(ϕ) =

P
x∈X ϕ(x)f(x).

Check that D(f)(ϕ) is again a probability distribution.
(ii) Prove that both D and Dfin are functors Sets→ Sets.
(iii) Note thatD-coalgebras may be called probabilistic transition systems. They are also

known as Markov chains. Investigate what coalgebra homomorphisms are.
(iv) In analogy with (2.13), call a function X → D(Y) a probabilistic relation X → Y .

Prove that one obtains a category in this way—analogously to the category REL from
Example 1.4.2 (iv)—in which composition of R:X → D(Y) and S:Y → D(Z) is
given by the formula:

(S ◦ R)(x)(z) =
P
y∈Y R(x, y) · S(y, z). (2.15)

The identity map X → D(X), given by x 7→ 1x = (λy. if y = x then 1 else 0), is
sometimes called Dirac’s delta.

(v) Use the previous point to show that Markov chains S → D(S) form a monoid—in
analogy with the situation for powersets in Exercise 1.1.2.

[For a systematic description of various forms of probabilistic transitions systems in terms
of such coalgebras, see [235, 183, 34]. The distribution functor D is in many ways similar
to the powerset functorP . Later, much of their common structure will be described in terms
of monads [86].]

2.2.10. Let Vect be the category with finite-dimensional vector spaces over the real numbers R (or
some other field) as objects, and with linear transformations between them as morphisms.
This exercise describes the basics of linear dynamical systems, in analogy with determinis-
tic automata. It does require some basic knowledge of vector spaces.
(i) Prove that the product V ×W of (the underlying sets of) two vector spaces V and W

is at the same time a product and a coproduct in Vect—the same phenomenon as in the
category of monoids, see Exercise 2.1.6. Show also that the singleton space 1 is both
an initial and a final object. And notice that an element x in a vector space V may be
identified with a linear map R→ V .

(ii) A linear dynamical system [153] consists of three vector spaces: S for the state space,
A for input, andB for output, together with three linear transformations: an input map
G:A→ S, a dynamics F :S → S, and an output map H:S → B. Note how the first
two maps can be combined via cotupleing into one transition function S × A → S,
as used for deterministic automata. Because of the possibility of decomposing the
transition function in this linear case into two mapsA→ S and S → S, these systems
are called decomposable by Arbib and Manes [15].

Dra
ft

40 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

[But this transition function S × A → S is not bilinear (i.e. linear in each argument
separately), so it does not give rise to a map S → SA to the vector space SA of linear
transformations from A to S. Hence we do not have a purely coalgebraic description
S → SA ×B in this linear setting.]

(iii) For a vector spaceA, consider, in the notation of [15], the subset of infinite sequences:

A§ = {α ∈ AN | only finitely many α(n) are non-zero}.

Equip the setA§ with a vector space structure, such that the insertion map in:A→ A§,
defined as in(a) = (a, 0, 0, 0, . . .), and shift map sh:A§ → A§, given as sh(α) =
(0, α(0), α(1), . . .), are linear transformations.
[This vector space A§ may be understood as the space of polynomials over A in one
variable. It can be defined as the infinite coproduct

‘
n∈N

A of N-copies ofA—which
is also called a copower, and written as N · A, see [167, III, 3]. It is the analogue in
Vect of the set of finite sequences B? for B ∈ Sets. This will be made precise in
Exercise 2.4.6.]

(iv) Consider a linear dynamical system A
G→ S

F→ S
H→ B as above, and show that the

analogue of the behaviour A? → B for deterministic automata (see also [17, 6.3]) is
the linear map A§ → B defined as

(a0, a2, . . . , an, 0, 0, . . .) 7−→
X

i≤n
HF iGai

This is the standard behaviour formula for linear dynamical systems, see e.g. [153, 18].
[This behaviour map can be understood as starting from the “default” initial state 0 ∈
S. If one wishes to start from an arbitrary initial state x ∈ S, one gets the formula

(a0, a2, . . . , an, 0, 0, . . .) 7−→ HF (n+1)x+
X

i≤n
HF iGai.]

It is obtained by consecutively modifying x with inputs an, an−1, . . . , a0.

2.3 Final coalgebras

In the previous chapter we have seen the special rôle that is played by the final coalgebra
A∞ → 1 + (A × A∞) of sequences, both for defining functions into sequences and for
reasoning about them—with “coinduction”. Here we shall define finality in general for
coalgebras, and investigate this notion more closely—which leads for example to language
acceptance by automata, see Corolary 2.3.6 (ii). This general definition will allow us to use
coinductive techniques for arbitrary final coalgebras. The underlying theme is that in final
coalgebras there is no difference between states and their behaviours.

In system-theoretic terms, final coalgebras are of interest because they form so-called
minimal representations: they are canonical realisations containing all the possible be-
haviours of a system. It is this idea that we have already tried to suggest in the previous
section when discussing various examples of coalgebras of polynomial functors.

Once we have a final coalgebra (for a certain functor), we can map a state from an
arbitrary coalgebra (of the same functor) to its behaviour. This induces a useful notion of
equivalence between states, namely equality of the associated behaviours. As we shall see
later (in Section 3.4), this is bisimilarity.

We shall start in full categorical generality—building on Definition 1.4.5—but we
quickly turn to concrete examples in the category of sets. Examples of final coalgebras in
other categories—like categories of domains or of metric spaces—may be found in many
places, like [79, 80, 81, 225, 3, 233, 73, 72, 117], but also in Section 4.5.

2.3.1. Definition. Let C be an arbitrary category with an endofunctor F : C → C. A fi-
nal F -coalgebra is simply a final object in the associated category CoAlg(F) of F -
coalgebras. Thus, it is a coalgebra ζ:Z → F (Z) such that for any coalgebra c:X → F (X)

Dra
ft

2.3. FINAL COALGEBRAS 41

there is a unique homomorphism behc:X → Z of coalgebras, as in:

F (X) //______
F (behc)

F (Z)

X

c

OO

//_______
behc

Z

ζ

OO

The dashed notation is often used for uniqueness. What we call a behaviour map behc is
sometimes called an unfold or a coreduce of c.

Recall from Section 1.2 the discussion (after Example 1.2.2) about the two aspects of
unique existence of the homomorphism into the final coalgebra: existence (used as coin-
ductive definition principle) and uniqueness (used as coinductive proof principle). In the
next section we shall see that ordinary induction—from a categorical perspective—also in-
volves such a unique existence property. At this level of abstraction there is thus a perfect
duality between induction and coinduction.

This unique existence is in fact all we need about final coalgebras. What these coalge-
bras precisely look like—what their elements are in Sets—is usually not relevant. Nev-
ertheless, in order to become more familiar with this topic of final coalgebras, we shall
describe several examples concretely.

But first we shall look at two general properties of final coalgebras.

2.3.2. Lemma. A final coalgebra, if it exists, is determined up to isomorphism.

Proof. This is in fact a general property of final objects in a category: if 1 and 1′ are both
a final object in the same category, then there are unique maps f : 1→ 1′ and g: 1′ → 1 by
finality. Thus we have two maps 1 → 1, namely the composition g ◦ f and of course the
identity id1. But then they must be equal by finality of 1. Similarly, by finality of 1′ we get
f ◦ g = id1′ . Therefore 1 ∼= 1′.

In view of this result we often talk about the final coalgebra of a functor, if it exists.
Earlier, in the beginning of Section 1.2 we have seen that the final coalgebra A∞ →

1+(A×A∞) of sequences is an isomorphism. This turns out to be a general phenomenon,
as observed by Lambek: a final F -coalgebra is a fixed point for the functor F . The proof
of this result is a nice exercise in diagrammatic reasoning.

2.3.3. Lemma. A final coalgebra ζ:Z → F (Z) is necessarily an isomorphism ζ:Z
∼=→

F (Z).

Proof. The first step towards constructing an inverse of ζ:Z → F (Z) is to apply the
functor F : C → C to the final coalgebra ζ:Z → F (Z), which yields again a coalgebra,
namely F (ζ):F (Z) → F (F (Z)). By finality we get a homomorphism f :F (Z) → Z as
in:

F (F (Z)) //______
F (f)

F (Z)

F (Z)

F (ζ)

OO

//_______
f

Z

ζ

OO

The aim is to show that this f is the inverse of ζ. We first consider the composite f ◦
ζ:Z → Z, and show that it is the identity. We do so by first observing that the identity

Dra
ft

42 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

Z → Z is the unique homomorphism ζ → ζ. Therefore, it suffices to show that f ◦ ζ is
also a homomorphism ζ → ζ. This follows from an easy diagram chase:

F (Z)
F (ζ)

// F (F (Z))
F (f)

// F (Z)

Z

ζ

OO

ζ
// F (Z)

F (ζ)

OO

f
// Z

ζ

OO

The rectangle on the right is the one defining f , and thus commutes by definition. And the
one on the left obviously commutes. Therefore the outer rectangle commutes. This says
that f ◦ ζ is a homomorphism ζ → ζ, and thus allows us to conclude that f ◦ ζ = idZ .

But now we are done since the reverse equation ζ ◦ f = idF (Z) follows from a simple
computation:

ζ ◦ f = F (f) ◦ F (ζ) by definition of f

= F (f ◦ ζ) by functoriality of F

= F (idZ) as we just proved

= idF (Z) because F is a functor.

An immediate negative consequence of this fixed point property of final coalgebras is
the following. It clearly shows that categories of coalgebras need not have a final object.

2.3.4. Corollary. The powerset functor P(−):Sets → Sets does not have a final coal-
gebra.

Proof. A standard result of Cantor (proved by so-called diagonalisation, see e.g. [63, The-
orem 15.10] or [49, Theorem 1.10]) says that there cannot be an injection P(X) � X , for
any set X . This excludes a final coalgebraX

∼=−→ P(X).

As we shall see later in this section, the finite powerset functor does have a final coal-
gebra. But first we shall look at some easier examples. The following result, occurring for
example in [22, 206, 128], is simple but often useful.

2.3.5. Proposition. Fix two sets A and B, and consider the polynomial functor idA × B
whose coalgebras are deterministic automata. The final coalgebra of this functor is given
by the set of behaviour functions BA

?

, with structure:

BA
?

ζ = 〈ζ1, ζ2〉 // (BA?)A
×B

given by:

ζ1(ϕ)(a) = λσ ∈ A?. ϕ(a · σ) and ζ2(ϕ) = ϕ(〈〉).

Proof. We have to show that for an arbitrary coalgebra / deterministic automaton 〈δ, ε〉:X →
XA × B there is a unique homomorphism of coalgebras X → BA?

. For this we take of
course the behaviour function beh:X → BA

?

from the previous section, defined in (2.14)
by beh(x) = λσ ∈ A?. ε(δ∗(x, σ)). We have to prove that it is the unique function making
the following diagram commute.

XA × B
behidA × idB // (BA?)A

×B

X

〈δ, ε〉

OO

beh
// BA

?

ζ = 〈ζ1, ζ2〉

OO

Dra
ft

2.3. FINAL COALGEBRAS 43

We prove commutation first. It amounts to two points, see also Lemma 2.2.2 (i).

(
ζ1 ◦ beh

)
(x)(a) = ζ1(beh(x))(a)

= λσ. beh(x)(a · σ)

= λσ. beh
(
δ(x)(a)

)
(σ) see Exercise 2.2.5 (i)

= beh
(
δ(x)(a)

)

= behidA
(
δ(x)

)
(a)

=
(
behidA ◦ δ

)
(x)(a)

(ζ2 ◦ beh)(x) = beh(x)(〈〉)

= ε(δ∗(x, 〈〉))

= ε(x).

Next we have to prove uniqueness. Assume that f :X → BA?

is also a homomorphism
of coalgebras. Then one can show, by induction on σ ∈ A?, that for all x ∈ X one has
f(x)(σ) = beh(x)(σ):

f(x)(〈〉) = ζ2(f(x))

= ε(x) since f is a homomorphism

= beh(x)(〈〉)

f(x)(a · σ) = ζ1(f(x))(a)(σ)

= f
(
δ(x)(a)

)
(σ) since f is a homomorphism

= beh
(
δ(x)(a)

)
(σ) by induction hypothesis

= beh(x)(a · σ) see Exercise 2.2.5 (i).

There are two special cases of this general result that are worth mentioning explicitly.

2.3.6. Corollary. Consider the above final coalgebraBA? ∼=−→
(
BA

?)A
×B of the deter-

ministic automata functor idA ×B.
(i) When A = 1, so that A? = N, the resulting functor id × B captures stream coal-

gebras X → X × B. Its final coalgebra is the set BN of infinite sequences (streams) of
elements of B, with (tail, head) structure,

BN

∼= // BN ×B given by ϕ 7−→ (λn ∈ N. ϕ(n+ 1), ϕ(0))

as described briefly towards the end of the introduction to Chapter 1.
(ii) When B = 2 = {0, 1} describing final states of the automaton, the final coalgebra

BA
?

is the set P(A?) of languages over the alphabetA, with structure

P(A?)
∼= // P(A?)A × {0, 1}

given by:

L 7−→ (λa ∈ A.La, if 〈〉 ∈ L then 1 else 0),

where La is the so-called a-derivative, introduced by Brzozowski [48], and defined as:

La = {σ ∈ A? | a · σ ∈ L}.

Given an arbitrary automaton 〈δ, ε〉:X → XA × {0, 1} of this type, the resulting
behaviour map beh〈δ,ε〉:X → P(A?) thus describes the language beh〈δ,ε〉(x) ⊆ A?

accepted by this automaton with x ∈ X considered as initial state.

Dra
ft

44 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

Both these final coalgebrasAN and P(A?) are studied extensively by Rutten, see [220,
217, 218], see also Example 3.4.5 later on.

2.3.7. Example. The special case of (i) in the previous result is worth mentioning, where
B is the set R of real numbers (and A = 1). We then get a final coalgebra RN ∼=−→
(RN)N × R of streams of real numbers. Recall that a function f : R→ R is called analytic
if it possesses derivatives of all orders and agrees with its Taylor series in the neighborhood
of every point. Let us write A for the set of such analytic functions. It carries a coalgebra
structure:

A
d // A× R

f � // (f ′, f(0)).

Here we write f ′ for the derivative of f . The induced coalgebra homomorphism behd:A →
RN maps an analytic function f to the sequence (f(0), f ′(0), f ′′(0), . . . , f (n)(0), . . .), i.e.
to its Taylor series expansion, used in:

f(x) =
∞∑

n=0

f (n)(0)

n!
xn.

This shows that behd is an isomorphism—and thus that A can also be considered as the
final coalgebra of the functor (−)× R.

The source of this “coinductive view on calculus” is [192]. It contains a further elab-
oration of these ideas. Other coalgebraic “next” or “tail” operations are also studied as
derivatives in [217, 218].

Corolary 2.3.4 implies that there is no final coalgebra for the non-deterministic au-
tomata functor P(id)A×B. However if we restrict ourselves to the finite powerset functor
Pfin(−) there is a final coalgebra. At this stage we shall be very brief, basically limiting
ourselves to the relevant statement. It is a special case of Theorem 2.3.9, the proof of which
will be given later, in Section 4.4.

2.3.8. Proposition (After [29]). Let A and B be arbitary sets. Consider the finite Kripke
polynomial functor Pfin(id)A × B whose coalgebras are image finite non-deterministic
automata. This functor has a final coalgebra.

So far in this section we have seen several examples of final coalgebras. One might
wonder which polynomial functors possess a coalgebra. The following result gives an
answer. Its proof will be postponed until later in Section 4.4, because it requires some
notions that have not been introduced yet.

2.3.9. Theorem. Each finite Kripke polynomial functor Sets → Sets has a final coalge-
bra.

As argued before, one does not need to know what a final coalgebra looks like in order
to work with it. Its states coincide with its behaviours, so a purely behaviouristic view is
justified: unique existence properties are sufficiently strong to use it as a black box. See for
instance Exercise 2.3.2 below.

A good question raised explicitly in [216] is: which kind of functions can be defined
with coinduction? Put another way: is there, in analogy with the collection of recursively
defined functions (on the natural numbers), a reasonable collection of corecursively defined
functions? This question is still largely open.

Dra
ft

2.3. FINAL COALGEBRAS 45

2.3.1 Beyond sets

So far we have concentrated on functors F :Sets → Sets on the category of sets and
functions. Indeed, most of the examples in this book will arise from such functors. It is
important however to keep the broader (categorical) perspective in mind, and realise that
coalgebras are also of interest in other universes. Good examples appear in Section 4.5
where traces of suitable coalgebras are described via coalgebras in the category REL of
sets with relations as morphisms. At this stage we shall consider a single example in the
category Sp of topological spaces and continuous functions between them.

2.3.10. Example. The set 2N = P(N) (with 2 = {0, 1}) of infinite sequences of bits (or
subsets of N) carries a topology yielding the well-known “Cantor space”, see [224, Subsec-
tion 2.3]. Alternatively, this set can be represented as the intersection of a descending chain
of intervals (2n separate pieces at stage n) of the real interval [0, 1], see any textbook on
topology (for instance [46]). The basic opens of 2N are the subsets ↑σ = {σ · τ | τ ∈ 2N}
of infinite sequences starting with σ, for σ ∈ 2? a finite sequence.

Recall that Sp is the category of topological spaces with continuous maps between
them. This category has coproducts, give as in Sets, with topology induced by the copro-
jections. In particular, for an arbitrary topological space X the coproductX +X carries a
topology in which subsets U ⊆ X +X are open if and only if both κ−1

1 (U) and κ−1
2 (U)

are open in X . The Cantor space can then be characterised as the final coalgebra of the
endofunctorX 7→ X +X on Sp.

A brief argument goes as follows. Corollary 2.3.6 (i) tells that the set of streams 2N

is the final coalgebra of the endofunctor X 7→ X × 2 on Sets. There is an obvious
isomorphism X × 2 ∼= X + X of sets (see Exercise 2.1.7), which is actually also an
isomorphism of topological spaces if one considers the set 2 with the discrete topology (in
which every subset is open), see Exercise 2.3.5 for more details.

But one can of course also check the finality property explicitly in the category Sp of
topological spaces. The final coalgebra ζ: 2N ∼=−→ 2N + 2N is given on σ ∈ 2N by:

ζ(σ) =

{
κ1tail(σ) if head(σ) = 0

κ2tail(σ) if head(σ) = 1

It is not hard to see that both ζ and ζ−1 are continuous. For an arbitrary coalgebra c:X →
X +X in Sp we can describe the unique homomorphism of coalgebra behc:X → 2N on
x ∈ X and n ∈ N as:

behc(x)(n) =

{
0 if ∃y. c

(
([id, id] ◦ c)n(x)

)
= κ1y

1 if ∃y. c
(
([id, id] ◦ c)n(x)

)
= κ2y.

Again, this map is continuous.

Exercises

2.3.1. Check that a final coalgebra of a monotone endofunction f :X → X on a poset X , consid-
ered as a functor, is nothing but a greatest fixed point. (See also Exercise 1.3.5).

2.3.2. Let Z be the (state space of the) final coalgebra of the binary tree functor X 7→ 1 + (A×
X ×X). Define by coinduction a mirror function mir:Z → Z which (deeply) exchanges
the subtrees. Prove, again by coinduction that mir ◦ mir = idZ .
Can you tell what the elements of Z are?

2.3.3. Recall the decimal representation coalgebra nextdec: [0, 1)→ 1+({0, 1, . . . , 9}× [0, 1))
from Example 1.2.2, with its behaviour map behnextdec: [0, 1) → {0, 1, . . . , 9}∞. Prove
that this behaviour map is a split mono: there is a map e in the reverse direction with
e ◦ behnextdec = id[0,1).

Dra
ft

46 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

[The behaviour map is not an isomorphism, because both 5 and 49999 · · ·, considered as
sequences in {0, 1, . . . , 9}∞, represent 1

2
∈ [0, 1). See other representations as continued

fractions in [193] or [187] which do yield isomorphisms.]

2.3.4. This exercise is based on [128, Lemma 5.4].
(i) Fix three sets A,B,C, and consider the simple polynomial functor

X 7−→ (C + (X ×B))A.

Show that its final coalgebra can be described as the set of functions:

Z = {ϕ ∈ (C +B)A
+ | ∀σ ∈ A+. ∀c ∈ C.ϕ(σ) = κ1(c)⇒

∀τ ∈ A?. ϕ(σ · τ) = κ1(c)}.

Once such functions ϕ ∈ Z hit C, they keep this value in C. Here we write A+ for
the subset of A? of non-empty finite sequences. The associated coalgebra structure
ζ:Z

∼=−→ (C + (Z ×B))A given by:

ζ(ϕ)(a) =

(
κ1(c) if ϕ(〈a〉) = κ1(c)

κ2(b, ϕ
′) if ϕ(〈a〉) = κ2(b) where ϕ′ = λσ ∈ A+. ϕ(a · σ)

(ii) Check that the fact that the set B∞ of sequences is the final coalgebra of the functor
X 7→ 1 + (X ×B) is a special case of this.

(iii) Generalise the result in (i) to functors of the form

X 7−→
“
C1 + (X ×B1)

”A1 × · · · ×
“
Cn + (X ×Bn)

”An

using this time as state space of the final coalgebra the set

{ϕ ∈ (C +B)A
+ | ∀σ ∈ A?. ∀i ≤ n.

∀a ∈ Ai. ϕ(σ · κi(a)) ∈ κ1[κi[Ci]] ∨ ϕ(σ · κi(a)) ∈ κ2[κi[Bi]]

∧ ∀c ∈ Ci. σ 6= 〈〉 ∧ ϕ(σ) = κ1(κi(c))

⇒ ∀τ ∈ A?. ϕ(σ · τ) = κ1(κi(c)) }

where A = A1 + · · ·+An, B = B1 + · · · +Bn, and C = C1 + · · ·+ Cn.
(iv) Show how classes like in (1.7) fit into this last result.

[Hint. Use that S+(S×E) ∼= (S×1)+(S×E) ∼= S× (1+E), using distributivity
from Excercise 2.1.7.]

2.3.5. For a topological space A consider the set AN of streams with the product topology (the
least one that makes the projections πn:AN → A continuous).
(i) Check that the head AN → A and tail AN → AN operations are continuous.
(ii) Prove that the functor A× (−):Sp→ Sp has a final coalgebra.
(iii) Show that in the special case where A carries the discrete topology (in which every

subset is open) the product topology on AN is given by basic opens ↑σ = {σ · τ | τ ∈
AN}, for σ ∈ A? like in Example 2.3.10.

2.3.6. (i) Note that the assignment A 7→ AN yields a functor Sets→ Sets.
(ii) Prove the general result: consider a category C with a functor F : C × C → C in two

variables. Assume that for each object A ∈ C, the functor F (A,−): C → C has a
final coalgebra ZA

∼=−→ F (A,ZA). Prove that the mapping A 7→ ZA extends to a
functor C→ C.

2.4 Algebras

So far we have talked much about coalgebras. One way to introduce coalgebras is as duals
of algebras. We shall do this the other way around, and introduce algebras (in categorical
formulation) as duals of coalgebras. This reflects of course the emphasis in this text.

Dra
ft

2.4. ALGEBRAS 47

There are many similarities (or dualities) between algebras and coalgebras which are of-
ten useful as guiding principles. But one should keep in mind that there are also significant
differences between algebra and coalgebra. For example, in a computer science setting,
algebra is mainly of interest for dealing with finite data elements—such as finite lists or
trees—using induction as main definition and proof principle. A key feature of coalge-
bra is that it deals with potentially infinite data elements, and with appropriate state-based
notions and techniques for handling these objects. Thus, algebra is about construction,
whereas coalgebra is about deconstruction—understood as observation and modification.

This section will introduce the categorical definition of algebras for a functor, in anal-
ogy with coalgebras of a functor in Definition 1.4.5. It will briefly discuss initiality for
algebras, as dual of finality, and will illustrate that it amounts to ordinary induction. Also,
it will mention several possible ways of combining algebras and coalgebras. A systematic
approach to such combinations using distributive laws will appear in Chapter 6.

We start with the abstract categorical definition of algebras, which is completely dual
(i.e. with reversed arrows) to what we have seen for coalgebras.

2.4.1. Definition. Let C be an arbitrary category, with an endofunctor F : C→ C.
(i) An F -algebra, or just algebra for F , consists of a “carrier” objectX ∈ C together

with a morphism a:F (X)→ X , often called the constructor, or operation.
(ii) A homomorphism of algebras, or a map of algebras, or an algebra map, from

one algebra a:F (X) → X to another coalgebra b:F (Y) → Y consists of a morphism
f :X → Y in C which preserves the operations:

F (X)

a
��

F (f)
// F (Y)

b
��

X
f

// Y

This yields a category, for which we shall write Alg(F).
(iii) An initial F -algebra is an initial object in Alg(F): it is an algebra α:F (A) → A

such that for any F -algebra b:F (X) → X there is a unique homomorphism of algebras
intb:A→ X , which we see as an interpretation map.

What we call an interpretation map intb is also called a fold or a reduce of b.

Certain maps can be seen both as algebra and as coalgebra. For example, a map S ×
A→ S is an algebra—of the functorX 7→ X×A—but can also be regarded as a coalgebra
S → SA, after Currying (2.8). But for other maps there is more clarity: maps A → S are
algebras, which can be used to construct elements in S from elements in A. And maps
S → A are coalgebras, which provide observations in A about elements in S.

The functorF in the above definition corresponds to what is traditionally called a signa-
ture. In simple form a signature consists of a number of operations opi, say for 1 ≤ i ≤ n,
each with their own arity ki ∈ N. An algebra for such a signature is then a set S with
interpretations [[opi]]:S

ki → S. Using the coproduct correspondence (2.5), they may be
combined to a single cotuple operation,

Sk1 + · · ·+ Skn

[
[[opi]], . . . , [[opi]]

]
// S

forming an algebra of the simple polynomial functorX 7→ Xk1 + · · ·+Xkn . This functor
thus captures the number and types of the operations—that is, the signature.

A rule of thumb is: data types are algebras, and state-based systems are coalgebras.
But this does not always give a clear-cut distinction. For instance, is a stack a data type or
does it have a state? In many cases however, this rule of thumb works: natural numbers are

Dra
ft

48 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

algebras (as we are about to see), and machines are coalgebras. Indeed, the latter have a
state that can be observed and modified.

Initial algebras are special, just like final coalgebras. Initial algebras (in Sets) can be
built as so-called term models: they contain everything that can be built from the oper-
ations themselves, and nothing more. Similarly, we saw that final coalgebras consist of
observations only. The importance of initial algebras in computer science was first empha-
sised in [93]. For example, if F is the signature functor for some programming language,
the initial algebra F (P) → P may be considered as the set of programs, and arbitrary
algebras F (D) → D may be seen as denotational models. Indeed, the resulting unique
homomorphism [[−]]:P → D is the semantical interpretation function. It is compositional
by construction, because it commutes with the operations of the programming language.

In this context of program language semantics, a final coalgebra is also understood
as a canonical operational model of behaviours. The unique homomorphism to the final
coalgebra may be seen as an operational interpretation function which is fully abstract, in
the sense that objects have the same interpretation if and only if they are observationally
indistinguishable. This relies on Theorem 3.4.1, see [233, 231, 232] for more information.
Compositionality for such models in final coalgebras is an issue, see Section ??.

Because of the duality in the definitions of algebras and coalgebras, certain results
can be dualised as well. For example, Lambek’s fixed point result for final coalgebras
(Lemma 2.3.3) also holds for initial algebras. The proofs are the same, but with arrows
reversed.

2.4.2. Lemma. An initial algebra F (A) → A of a functor F : C → C is an isomorphism
F (A)

∼=−→ A in C.

The unique existence in the definition of initiality (again) has two aspects, namely exis-
tence corresponding to definition by induction, and uniqueness, corresponding to proof by
induction. This will be illustrated in two examples.

The natural numbers N form a trivial, but important example of an initial algebra. We
shall consider it in some detail, relating the familiar description of induction to the categor-
ical one based on initiality.

2.4.3. Example (Natural numbers). According to Peano, the most basic operations on the
natural numbers N are zero 0 ∈ N and successor S: N → N. Using that an element of N

can be described as an arrow 1 → N, together with the coproduct correspondence (2.5),
these two maps can be combined into an algebra

1 + N
[0,S]

// N

of the simple polynomial function F (X) = 1 +X . It adds a new point to an arbitrary set.
It is easy to see that this algebra is an isomorphism, because each natural number is either
zero or a successor. The isomorphism [0,S]: 1+N

∼=−→ N is in fact the initial algebra of the
functor F (X) = 1 +X . Indeed, for an arbitrary F -algebra [a, g]: 1+X → X with carrier
X , consisting of functions a: 1 → X and g:X → X , there is a unique homomorphism of
algebras f = int[a,g]: N→ X with

1 + N

[0,S]
��

//______
id1 + f

1 +X

[a, g]
��

N //________
f

X

i.e. with

{
f ◦ 0 = a

f ◦ S = g ◦ f

In ordinary mathematical language, this says that f is the unique function with f(0) = a,
and f(n+1) = g(f(n)). This indeed dermines f completely, by induction. Thus, ordinary
natural number induction implies initiality. We shall illustrate the reverse implication.

Dra
ft

2.4. ALGEBRAS 49

The initiality property of [0,S]: 1 + N
∼=−→ N is strong enough to prove all of Peano’s

axioms. This was first shown in [78], see also [168], or [94], where the initiality is formu-
lated as “natural numbers object”. As an example, we shall consider the familiar induction
rule: for a predicate P ⊆ N,

P (0) ∀n ∈ N. P (n) ⇒ P (n+ 1)

∀n ∈ N. P (n)

In order to show how the validity of this induction rule follows from initiality, let us write i
for the inclusion function P ↪→ N. We then note that the assumptions of the induction rule
state that the zero and successor functions restrict to P , as in:

1 //______ 0

0 &&MMMMMMMMMMMMM P
� _

i
��

P
� _

i
��

//______ S
P

� _

i
��

N N
S

// N

Thus, the subset P itself carries an algebra structure [0,S]: 1 + P → P . Therefore, by
initiality of N we get a unique homomorphism j: N→ P . Then we can show i ◦ j = idN,
by uniqueness:

1 + N

[0,S]
��

id1 + j // 1 + P

[0,S]
��

id1 + i // 1 + N

[0,S]
��

N
j //

idN

44P
i // N

The rectangle on the left commutes by definition of j, and the one of the right by the
previous two diagrams. The fact that i ◦ j = idN now yields P (n), for all n ∈ N.

2.4.4. Example (Binary trees). Fix a set A of labels. A signature for A-labeled binary
trees may be given with two operations:

nil for the empty tree,

node(b1, a, b2) for the tree constructed from subtrees b1, b2 and label a ∈ A.

Thus, the associated signature functor is T (X) = 1 + (X × A ×X). The initial algebra
will be written as BinTree(A), with operation:

1 +
(
BinTree(A)×A× BinTree(A)

) [nil, node]
∼=

// BinTree(A)

This carrier set BinTree(A) can be obtained by considering all terms that can be formed
from the constructor: nil via repeated application of the node operation node(nil, a, nil),
node(nil, a′, node(nil, a, nil)), etc. We do not describe it in too much detail because we
wish to use it abstractly. Our aim is to traverse such binary trees, and collect their labels
in a list. We consider two obvious ways to do this—commonly called inorder traversal
and preorder traversal—resulting in two functions iotrv, potrv: BinTree(A) → A?. These
functions can be defined inductively as:

iotrv(nil) = 〈〉

iotrv(node(b1, a, b2)) = iotrv(b1) · a · iotrv(b2)

potrv(nil) = 〈〉

potrv(node(b1, a, b2)) = a · potrv(b1) · potrv(b2)

Dra
ft

50 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

They can be defined formally via initiality, by putting two different T -algebra structures on
the set A? of sequences: the inorder transversal function arises in:

1 +
(
BinTree(A)×A× BinTree(A)

)

[nil, node]
��

//____________
id1 + (iotrv× idA × iotrv)

1 +
(
A? ×A×A?

)

[〈〉, g]
��

BinTree(A) //_____________________
iotrv = int[〈〉,g]

A?

where the function g:A? × A × A? → A? is defined by g(σ, a, τ) = σ · a · τ . Similarly,
the function h(σ, a, τ) = a · σ · τ is used in the definition of preorder traversal:

1 +
(
BinTree(A)×A× BinTree(A)

)

[nil, node]
��

//____________
id1 + (potrv× idA × potrv)

1 +
(
A? ×A×A?

)

[〈〉, h]
��

BinTree(A) //_____________________
potrv = int[〈〉,h]

A?

What we see is that the familiar pattern matching in inductive definitions fits perfectly in
the initiality scheme, where the way the various patterns are handled corresponds to the
algebra structure on the codomain of the function that is being defined.

It turns out that many such functional programs can be defined elegantly via initiality
(and also finality). Moreover, via uniqueness one can establish various properties about
these programs. This has developed into an area of its own which is usually referred to as
the Bird-Meertens formalism—with its own peculiar notation and terminology, see [42] for
an overview.

As we have seen in Example 2.4.3, an inductive definition of a function f : N → X
on the natural numbers requires two functions a: 1 → X and g:X → X . A recursive
definition allows for an additional parameter, via a function h:X × N → X , determining
f(n+1) = h(f(n), n). The next result shows that recursion can be obtained via induction.
A more general approach via comonads may be found in [234]. An alternative way to add
parameters to induction occurs in Exercise 2.5.3.

2.4.5. Proposition (Recursion). An arbitrary initial algebra α:F (A)
∼=−→ A satisfies the

following recursion property: for each map h:F (X × A) → X there is a unique map
f :A→ X making the following diagram commute.

F (A)

α ∼=
��

F 〈f, id〉
// F (X ×A)

h
��

A
f

// X

Proof. Write h′ = 〈h, α ◦ F (π2)〉:F (X × A) → X × A. It gives by initiality rise to a
unique map k:A → X × A with k ◦ α = h′ ◦ F (k). Then π2 ◦ k = id by uniqueness of
algebra maps α→ α:

π2 ◦ k ◦ α = π2 ◦ h′ ◦ F (k)

= α ◦ F (π2) ◦ F (k)

= α ◦ F (π2 ◦ k).

Hence we take f = π1 ◦ k.

Dra
ft

2.4. ALGEBRAS 51

So far we have only seen algebras of functors describing fairly elementary datatypes.
We briefly mention two other applications.

• Joyal and Moerdijk [152] introduce the notion of a Zermelo-Fraenkel algebra, or ZF-
algebra, with two operations for union and singleton. The usual system of Zermelo-
Fraenkel set theory can then be characterised as the free ZF-algebra. Such a charac-
terisation can be extended to ordinals.

• Fiore, Plotkin and Turi [71] describe how variable binding—such as λx.M in the
lambda calculus—can also be captured via initial algebras, namely of suitable func-
tors on categories of presheaves. An alternative approach, also via initiality, is de-
scribed by Gabbay and Pitts [83], using set theory with atoms (or urelements).

In the remainder of this section we shall survey several ways to combine algebras and
coalgebras. Such combinations are needed in descriptions of more complicated systems
involving data as well as behaviour. Later on, in Chapter 6, we shall study bialgebras more
systematically.

Additionally, so-called “binary methods” are problematic in a coalgebraic setting. These
are (algebraic) operations like X × X → X in which the state space X occurs multiple
times (positively) in the domain. The name “binary method” comes from object-oriented
programming, where the status of such methods is controversial, due to the typing prob-
lems they can cause, see [47]. They are also problematic in coalgebra, because they cannot
be described as a coalgebraX → F (X). However, one may ask whether it makes sense in
system theory to have an operation acting on two states, so that the problematic character
of their representation need not worry us very much. But see Exercise 2.4.7 for a possible
way to handle binary methods in a coalgebraic manner.

2.4.1 Bialgebras

A bialgebra consists of an algebra-coalgebra pair F (X) → X → G(X) on a common
state space X , where F,G: C→ C are two endofunctors on the same category C. We shall
investigate them more closely in Chapter 6 using so-called distributive laws, following the
approach of [232, 231, 33].

Such structures are used in [40] to distinguish certain observer operations as coalgebraic
operations within algebraic specification, and to use these in a duality between reachability
and observability (following the result of Kalman, see Exercise 2.5.12).

2.4.2 Dialgebras

A dialgebra consist of a mapping F (X) → G(X) where F and G are two functors C →
C. This notion generalises both algebras (for G = id) and coalgebras (for F = id).
It was introduced in [106], and further studied for example in [74] in combination with
“laws” as a general concept of equation. In [202] a collection of such dialgebras Fi(X)→
Gi(X) is studied, in order to investigate the communalities between algebra and coalgebra,
especially related to invariants and bisimulations.

2.4.3 Hidden algebras

Hidden algebra is introduced in [92] as the “theory of everything” in software engineer-
ing, combining the paragdigms of object-oriented, logic, constraint and functional pro-
gramming. A hidden algebra does not formally combine algebras and coalgebras, like in
bi-/di-algebras, but it uses an algebraic syntax to handle essentially coalgebraic concepts,
like behaviour and observational equivalence. A key feature of the syntax is the partition
of sorts (or types) into visible and hidden ones. Typically, data structures are visible, and
states are hidden. Elements of the visible sorts are directly observable and comparable,

Dra
ft

52 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

but observations about elements of the hidden sorts can only be made via the visible ones.
This yields a notion of behavioural equivalence—first introduced by Reichel—expressed in
terms of equality of contexts of visible sort. This is in fact bisimilarity, from a coalgebraic
perspective, see [172, 52].

Because of the algebraic syntax of hidden algebras one cannot represent typically coal-
gebraic operations. But one can mimic them via subsorts. For instance, a coalgebraic
operation X −→ 1 +X can be represented as a “partial” function S −→ X for a subsort
S ⊆ X . Similarly, an operation X −→ X + X can be represented via two operations
S1 −→ X and S2 −→ X for subsorts S1, S2 ⊆ X with S1 ∪ S2 = X and S1 ∩ S2 = ∅.
This quickly gets out of hand for more complicated operations, like the methods methi
from (1.7), so that the naturality of coalgebraic representations is entirely lost. On the
positive side, hidden algebras can handle binary methods without problems—see also Ex-
ercise 2.4.7.

2.4.4 Coalgebras as algebras

In general, there is reasonable familiarity with algebra, but not (yet) with coalgebra. There-
fore, people like to understand coalgebras as if they were algebras. Indeed, there are
many connections. For example, in [29] it is shown that quite often the final coalgebra
Z

∼=−→ F (Z) of a functor F can be understood as a suitable form of completion of the
initial algebra F (A)

∼=−→ A of the same functor. Examples are the extended natural numers
N ∪ {∞} from Exercise 2.4.1 below, as completion of the initial algebra N of the functor
X 7→ 1 +X . And the set A∞ of finite and infinite sequences as completion of the initial
algebra A? with finite sequences only, of the functor X 7→ 1 + (A×X).

Also, since a final coalgebra ζ:Z
∼=−→ F (Z) is an isomorphism, one can consider its

inverse ζ−1:F (Z)
∼=−→ Z as an algebra. This happens for example in the formalisation of

“coinductive types” (final coalgebras) in the theorem prover Coq [32] (and used for instance
in [59, 121]). However, this may lead to rather complicated formulations of coinduction,
distracting from the coalgebraic essentials. Therefore we like to treat coalgebra as a field
of its own, and not in an artificial way as part of algebra.

Exercises

2.4.1. Check that the set N ∪ {∞} of extended natural numbers is the final coalgebra of the
functor X 7→ 1 + X , as a special case of finality of A∞ for X 7→ 1 + (A × X). Use
this fact to define appropriate addition and multiplication operations (N ∪ {∞}) × (N ∪
{∞})→ N ∪ {∞}, see [216].

2.4.2. Define an appropriate size function BinTree(A)→ N by initiality.

2.4.3. Show, dually to Exercise 2.1.13, that finite products (1,×) in a category C give rise to finite
products in a category Alg(F) of algebras of a functor F : C→ C.

2.4.4. Define addition +: N×N→ N, multiplication ·: N×N→ N and exponentation (−)(−): N×
N→ N by initiality.
[Hint. Use the correspondence (2.8) and define these operations as function N → N

N.
Alternatively, one can use Exercise 2.5.3 from the next section.]

2.4.5. Complete the proof of Proposition 2.4.5.

2.4.6. This exercise illustrates the analogy between the setA? of finite sequences in Sets and the
vector space A§ in Vect, following Exercise 2.2.10.
(i) For an arbitrary set A, consider the functor 1 + (A × id):Sets → Sets. Show that

the set A? of finite sequences of elements of A is the initial algebra of this functor.
(ii) For an arbitrary vector space A, this same functor 1 + (A× id), but considered as an

endofunctor on Vect, can be rewritten as:

1 + (A×X) ∼= A×X because 1 ∈ Vect is initial object
∼= A+X because × and + are the same in Vect

Dra
ft

2.5. ADJUNCTIONS, COFREE COALGEBRAS, BEHAVIOUR-REALISATION 53

Prove that the initial algebra of the resulting functor A+ id: Vect→ Vect is the vector
space A§ with insertion and shift maps in:A → A§ and sh:A§ → A§ defined in
Exercise 2.2.10 (iii).

(iii) Check that the behaviour formula from Exercise 2.2.10 (iv) for a system A
F→ X

G→
X

H→ B is obtained as H ◦ int[F,G]:A
§ → B using initiality.

(iv) Show that the assignment A 7→ A§ yields a functor Vect→ Vect.
[Hint. Actually, this is a special case of the dual of Exercise 2.3.6.]

2.4.7. Suppose we have a “binary method”, say of the form m:X ×X × A −→ 1 + (X × B).
There is a well-known trick from [79] to use a functorial description also in such cases,
namely by separating positive and negative occurrences. This leads to a functor of the form
F : Cop × C→ C, which in this case would be (Y,X) 7→ (1 + (X ×B))Y×A.
In general, for a functor F : Cop × C → C define an F -coalgebra to a map of the form
c:X → F (X,X). A homormorphism from c:X → F (X,X) to d:Y → F (Y, Y) is then
a map f :X → Y in C making the following pentagon commute.

F (X,Y)

F (X,X)

F (idX , f) 44iiiiii
F (Y, Y)

F (f, idY)jjTTTTTT

X

c
OO

f
// Y

d

OO

(i) Elaborate what this means for the above example (Y,X) 7→ (1 + (X ×B))Y×A.
(ii) Prove that these coalgebras and their homomorphisms form a category.

[Such generalised coalgebras are studied systematically in [229].]

2.5 Adjunctions, cofree coalgebras, behaviour-realisation

The concept of an adjunction may be considered as one of the basic contributions of the
theory of categories. It consists of a pair of functors going in opposite direction,

C

F
((
D

G

hh

satisfying certain properties. An adjunction is a fundamental notion, occurring in many,
many situations. Identifying an adjunction is useful, because it captures much information,
and yields additional insights such as: the “left” adjoint functor preserves coproducts, and
the “right” adjoint preserves products. This is the good news. The bad news is that the
notion of adjunction is considered to be a difficult one. It certainly requires some work
and experience to fully appreciate its usefulness. Much of this text can be read without
knowledge of adjunctions. However, there are certain results which can best be organised
in terms of adjunctions. Therefore we include an introduction to adjunctions, and apply
it to two standard examples in the theory of coalgebras, namely behaviour-realisation, and
cofree coalgebras.

We start with “baby-adjunctions”, namely Galois connections. Consider two posets C
and D as categories, with monotone functions f :C → D and g:D → C between them, in
opposite direction. They can be regarded as functors by Example 1.4.4 (ii). These functions
form a Galois connection if for each x ∈ C and y ∈ D one has f(x) ≤ y in D if and only
if x ≤ g(y) in C. We like to write this as a bijective correspondence:

f(x) ≤ y
========
x ≤ g(y)

In this situation one calls f the left or lower adjoint, and g the right or upper adjoint.

Dra
ft

54 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

With these correspondences it is easy to show that the left adjoint f preserves joins
∨ that exist in C, i.e. that f(x1 ∨ x2) = f(x1) ∨ f(x2). This is done by showing that
f(x1 ∨ x2) is the least upperbound in D of f(x1) and f(x2): for any y ∈ D,

f(x1 ∨ x2) ≤ y
============
x1 ∨ x2 ≤ g(y)

========================
x1 ≤ g(y)
=========
f(x1) ≤ y

x2 ≤ g(y)
=========
f(x2) ≤ y

This says that f(x1 ∨ x2) ≤ y if and only if both f(x1) ≤ y and f(x2) ≤ y, and thus that
f(x1 ∨ x2) is the join of f(x1) and f(x2).

The notion of adjunction is defined more generally for functors between categories. It
involves a bijective correspondence like above, together with certain technical naturality
conditions. These side-conditions make the definition a bit complicated, but are usually
trivial in concrete examples. Therefore, the bijective correspondence is what should be
kept in mind.

2.5.1. Definition. Consider two categories C and D with functors F : C→ D and G: D→
C between them. These functors form an adjunction, written as F a G, if for all objects
X ∈ C and Y ∈ D there are bijective correspondences between morphisms

F (X) −→ Y in D
===============
X −→ G(Y) in C

which are “natural” in X and Y . In this case one says that F is the left adjoint, and G the
right adjoint.

Let us write this correspondences as functions ψ: D(F (X), Y)
∼=−→ C(X,G(Y)). The

naturality requirement then says that for morphisms f :X ′ → X in C and g:Y → Y ′ in D

one has, for h:F (X)→ Y ,

G(g) ◦ ψ(h) ◦ f = ψ(g ◦ h ◦ F (f)).

Since morphisms in poset categories are so trivial, the naturality requirement disappears
in the definition of a Galois connection.

There are several equivalent ways to formulate the concept of an adjunction, using for
example unit and counit natural transformations, or freeness (for left adjoints) or cofree-
ness (for right adjoints). We shall describe one alternative, namely the unit-and-counit
formulation, in Exercise 2.5.5, and refer the interested reader to [167, Chapter IV] for more
information. At this stage we are mainly interested in a workable formulation.

We continue with an elementary example. It illustrates that adjunctions involve canon-
ical translations back and forth, which can be understood as minimal (or, more technically:
free) constructions, for left adjoints, and as maximal (or cofree) for right adjoints. Earlier,
Exercise 1.4.3 described the set of finite sequencesA? as free monoid on a set A. Below in
Exercise 2.5.1 this will be rephrased in terms of an adjunction; it gives a similar minimality
phenomenon.

2.5.2. Example (From sets to preorders). Recall from Example 1.4.2 (iii) the definition of
the category PreOrd with preorders (X,≤) as objects—where≤ is a reflexive and transi-
tive order on X—and monotone functions between them as morphisms. There is then an
obvious forgetful functor U : PreOrd→ Sets, given by (X,≤) 7→ X . It maps a preorder
to its underlying set and forgets about the order. This example shows that the forgetful
functor U has both a left and a right adjoint.

The left adjoint D:Sets → PreOrd sends an arbitrary set A to the “discrete” pre-
order D(A) = (A,Eq(A)) obtained by equipping A with the equality relation Eq(A) =

Dra
ft

2.5. ADJUNCTIONS, COFREE COALGEBRAS, BEHAVIOUR-REALISATION 55

{(a, a) | a ∈ A}. A key observation is that for a preorder (X,≤) any function f :A → X
is automatically a monotone function (A,Eq(A)) → (X,≤). This means that there is a
trivial (identity) bijective correspondence:

D(A) = (A,Eq(A))
f // (X,≤) in PreOrd

===
A

f
// X = U(X,≤) in Sets

This yields an adjunctionD a U .
The right adjoint I :Sets → PreOrd equips a set A with the “indiscrete” preorder

I(A) = (A,>A×A) with “truth” relation>A = {(a, a′) | a, a′ ∈ A} in which all elements
of A are related. Then, for a preorder (X,≤), any function X → A is automatically a
monotone function (X,≤)→ (A,>A×A). Hence we again have trivial correspondences:

U(X,≤) = X
f // A in Sets

===
(X,≤)

f
// (A,>A×S) = I(A) in PreOrd

yielding an adjunction U a I .
This situation “discrete a forgetful a indiscrete” is not uncommon, see Excercise 2.5.4

below.

Next we shall consider examples of adjunctions in the context of coalgebras. The first
result describes “cofree” coalgebras: it gives a canonical construction of a coalgebra from
an arbitrary set. Its proof relies on Theorem 2.3.9, which is as yet unproven. The proof
shows that actually checking that one has an adjunction can be quite a bit of work. Indeed,
the notion of adjunction combines much information.

2.5.3. Proposition. For a finite Kripke polynomial functor F :Sets→ Sets, the forgetful
functor U :CoAlg(F)→ Sets has a right adjoint.

Proof. GivenF , consider the functorF ′:Sets→ Sets given byA 7→ A×F (−). ThenF ′

is also a finite Kripke polynomial functor. Hence, by Theorem 2.3.9 it has a final coalgebra
ζA = 〈ζA1 , ζ

A
2 〉: Â

∼=−→ A× F (Â), which we use to define an F -coalgebra:

G(A)
def
=
(
Â

ζA2 // F (Â)
)

We first show thatG extends to a functor Sets→ CoAlg(F). Let f :A→ B therefore
be an arbitrary function. We define G on f as a functionG(f): Â→ B̂ by finality, in:

B × F (Â) //____________
idB × F (G(f))

B × F (B̂)

A× F (Â)

f × id
F (bA)

OO

Â

ζA ∼=

OO

//_______________
G(f)

B̂

∼= ζB

OO

Clearly, ζB2 ◦ G(f) = F (G(f)) ◦ ζA2 , so that G(f) is a homomorphism of coalgebras
G(A) → G(B), as required. By uniqueness one shows that G preserves identities and
compositions. This requires a bit of work but is not really difficult.

Dra
ft

56 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

The adjunction U a G that we want requires a (natural) bijective correspondence:

U
(
X

c // F (X)
)

= X
g // A in Sets

==


F (X)

c ↑
X




h
//




F (Â)

↑ ζA2
Â


 = G(A) in CoAlg(F)

That is:

X
g // A=========================

F (X)
F (h)

// F (Â)

X

c

OO

h
// Â

ζA2

OO

It is obtained as follows.

• Given a function g:X → A, we can define g:X → Â by finality:

A× F (X) //____________
idA × F (g)

A× F (Â)

X

〈g, c〉

OO

//_______________
g Â

∼= ζA = 〈ζA1 , ζ
A
2 〉

OO

Then ζA2 ◦ g = F (g) ◦ c, so that g is a homomorphism of coalgebras c→ G(A).

• Conversely, given a homomorphism h: c→ G(A), take h = ζA1 ◦ h:X → A.

In order to complete the proof we still have to show bijectivity (i.e. g = g and h = h) and
naturality. The latter is left to the interested reader, but:

g = ζA1 ◦ g = π1 ◦ ζ
A ◦ g = π1 ◦ (idA × F (g)) ◦ 〈g, c〉 = π1 ◦ 〈g, c〉 = g.

The second equation h = h follows by uniqueness: h is by construction the unique homo-
morphism k with ζA ◦ k = (idA × F (k)) ◦ 〈h, c〉, i.e. with ζA ◦ k = (idA × F (k)) ◦
〈ζA1 ◦ h, c〉. Since h is by assumption a homomorphism of coalgebras c → G(A), it also
satisfies this condition.

Dual to this result it makes sense to consider for algebras the left adjoint to a forgetful
functor Alg(F) → Sets. This gives so-called free algebras. They can be understood as
term algebras built on top of a given collection of variables.

Since an adjunction F a G involves two translations X 7→ F (X) and Y 7→ G(Y) in
opposite directions, one can translate objects “forth-and-back”, namely as X 7→ GF (X)
and Y 7→ FG(Y). There are then canonical “comparison” maps η:X → GF (X), called
unit, and ε:FG(Y)→ Y called counit.

In the context of the adjunction from the previous theorem, the unit η is a homomor-
phism from a coalgebra X → F (X) to the cofree coalgebra X̂ → F (X̂) on its carrier. It
is obtained by finality. And the counit ε maps the carrier Â of a cofree coalgebra back to
the original set A. It is ζA1 in the notation of the proof.

Dra
ft

2.5. ADJUNCTIONS, COFREE COALGEBRAS, BEHAVIOUR-REALISATION 57

Using the notation ψ: D(F (X), Y)
∼=−→ C(X,G(Y) from Definition 2.5.1, the unit

ηX :X → GF (X) and εY :FG(Y)→ Y maps can be defined as:

ηX = ψ(idF (X)) εY = ψ−1(idG(Y)).

Using the naturality of ψ one easily checks that for arbitrary f :X → X ′ in C and g:Y →
Y ′ in D, the following diagrams commute.

X

f
��

ηX // GF (X)

GF (f)
��

FG(Y)

FG(g)
��

εY // Y

g
��

X ′
ηX′

// GF (X ′) FG(Y ′) εY ′

// Y ′

This leads to the following fundamental notion in category theory: a natural transformation.
It is a mapping between functors.

2.5.4. Definition. Let C, D be two categories, with two (parallel) functors H,K: C → D

between them. A natural transformation α from H to K consists of a collection of
morphisms αX :H(X)→ K(X) in D, indexed by objects X ∈ C satisfying the naturality
requirement: for each morphism f :X → Y in C, the following rectangle commutes.

H(X)
αX //

H(f)
��

K(X)

K(f)
��

H(Y) αY
// K(Y)

In this case one often write α:H ⇒ K with double arrow.

For each set X there is an obvious map ρX :X? → Pfin(X) mapping a sequence
〈x1, . . . , xn〉 to the set {x1, . . . , xn} of elements involved—which may have size less than
n in case duplicate elements occur. This operation is “natural”, also in a technical sense:
for a function f :X → Y one has Pfin(f) ◦ ρX = ρY ◦ f?, since:

(
ρY ◦ f?

)
(〈x1, . . . , xn〉) = ρY (〈f(x1), . . . , f(xn)〉)

= {f(x1), . . . , f(xn)}

= Pfin(f)({x1, . . . , xn})

=
(
Pfin(f) ◦ ρX

)
(〈x1, . . . , xn〉).

In the reverse direction Pfin(X) → X? one can always choose a way to turn a finite set
into a list, but there is no natural way to do this. Natural transformations describe uniform
mappings, such given for instance by terms, see Exercise 2.5.14.

With this definition and notation we can write the unit and counit of an adjunction as
natural transformations η: idC ⇒ GF and ε:FG ⇒ idD. The closely related notion of
equivalence of categories is sometimes useful. It is an adjunction in which both the unit
and counit are isomorphisms. This is a weaker notion than isomorphism of categories.

We shall consider another example of an adjunction which is typical in a coalgebraic
setting, namely a so-called behaviour-realisation adjunction. Such adjunctions were first
recognised in the categorical analysis of mathematical system theory, see [88, 89, 90]. Here
we give a simple version using the deterministic automata introduced in Section 2.2. This
requires two extensions of what we have already seen: (1) homomorphisms between these
automata which allow variation in the input and output sets, and (2) automata with initial
states.

Dra
ft

58 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

2.5.5. Definition. We write DA for the category with:

objects deterministic automata 〈δ, ε〉:X → XA×B with an initial state x0 ∈ X

morphisms from 〈X
〈δ,ε〉
−→ XA×B, x0 ∈ X〉 to 〈Y

〈δ′,ε′〉
−→ Y C ×D, y0 ∈ Y 〉 consist

of a triple of functions:

A C
foo B

g // D X
h // Y

with for all x ∈ X and c ∈ C,

δ′(h(x))(c) = h(δ(x)(f(c)))

ε′(h(x)) = g(ε(x))

h(x0) = y0.

The identity morphisms in DA are of the form (id, id, id). The composition of (f1, g1, h1)
followed by (f2, g2, h2) is (f1 ◦ f2, g2 ◦ g1, h2 ◦ h1). Note the reversed order in the first
component.

The first two equations express that h is a coalgebra homomorphism from the automa-
ton 〈idfX ◦ δ, g ◦ ε〉:X → XC ×D, translated via (f, g), to the automaton 〈δ′, ε′〉:X →
XC × D. Here we use the exponent notation idfX for functions from (2.9). The third
equation simply says that the initial state is preserved.

We also introduce a category of deterministic behaviours. Its objects are elements of
the final coalgebras for deterministic automata, see Proposition 2.3.5.

2.5.6. Definition. Form the category DB with

objects functions of the form ϕ:A? → B

morphisms from A?
ϕ
−→ B to C?

ψ
−→ D are pairs of functions

A C
foo B

g // D

with for σ ∈ C?,

g(ϕ(f?(σ))) = ψ(σ)

That is, for all 〈c1, . . . , cn〉 ∈ C?,

g(ϕ(〈f(c1), . . . , f(cn)〉)) = ψ(〈c1, . . . , cn〉)

The maps (id, id) are identities in DB. And composition in DB is given by: (f2, g2) ◦
(f1, g1) = (f1 ◦ f2, g2 ◦ g1).

The behaviour-realisation adjunction for deterministic automata gives a canonical way
to translate back-and-forth between deterministic automata and behaviours. It looks as
follows.

2.5.7. Proposition. There are a behaviour functor B and a realisation functor R in an
adjunction:

DA

B

��

a

DB

R

\\

Dra
ft

2.5. ADJUNCTIONS, COFREE COALGEBRAS, BEHAVIOUR-REALISATION 59

Proof. We sketch the main lines, and leave many details to the interested reader. The
behaviour functor B: DA→ DB maps an automaton 〈δ, ε〉:X → XA×B with initial state
x0 ∈ X to the behaviour beh〈δ,ε〉(x0) ∈ BA

?

of this initial state, see Proposition 2.3.5.
On morphisms, it is B(f, g, h) = (f, g). This is well-defined because g ◦ beh(x) ◦ f ? =
beh′(h(x)), as is checked easily by induction.

Conversely, the realisation functorR: DB → DA sends a behaviour ψ:C? → D to the
final deterministic automaton ζ:DC? ∼=−→ (DC?

)C×D described in Proposition 2.3.5 with
ψ as initital state. The associated behaviour function behζ is then given by behζ(ϕ) = ϕ.
On morphisms,R it is defined as R(f, g) = (f, g, gf

?

).
The adjunction B a R is established by the bijective correspondence:

B
(
X
〈δ, ε〉

// XA ×B, x0 ∈ X
) (f, g)

//
(
C?

ψ // D
)

===
(
X
〈δ, ε〉

// XA ×B, x0 ∈ X
)

(f, g, h)
// R
(
C?

ψ // D
)

This correspondence exists because the function h below the double line is uniquely deter-
mined by finality in the following diagram.

XC ×D
hidC × idD // (DC?

)C ×D

XA ×B

idfX × g

OO

X

〈δ, ε〉

OO

h
// DC?

ζ∼=

OO

It satisfies h(x0) = ψ if and only if g ◦ beh〈δ,ε〉(x0) ◦ f? = ψ.

Several alternative versions of this behaviour-realisation adjunction for deterministic
automata are described in the exercises below. Such adjunctions have also been studied in
more abstract settings, see for example [24] and [155].

One interesting aspect of the behaviour-realisation adjunction is that it provides a set-
ting in which to (categorically) study various process operators. For instance, one can con-

sider several ways to put deterministic automata in parallel. For automataMi = 〈Xi
〈δi,εi〉
−→

XAi

i ×Bi, xi ∈ X〉, one can define new automata:

M1 |M2 = 〈X1 ×X2

〈δ|,ε|〉
−→ (X1 ×X2)

A1+A2 × (B1 ×B2), (x0, x1)〉

where δ|(y1, y2)(κ1(a)) = (δ1(y1)(a), y2)

δ|(y1, y2)(κ2(a)) = (y1, δ2(y2)(a))

ε|(y1, y2) = (ε1(y1), ε2(y2))

M1 ⊗M2 = 〈X1 ×X2
〈δ⊗,ε⊗〉
−→ (X1 ×X2)

A1×A2 × (B1 ×B2), (x0, x1)〉

where δ⊗(y1, y2)(a1, a2) = (δ1(y1)(a), δ2(y2)(a))

ε⊗(y1, y2) = (ε1(y1), ε2(y2))

The first composition of automata involves transitions in each component automaton sepa-
rately, whereas the second composition combines transitions.

Both these definitions yield a so-called symmetric monoidal structure on the category
DA of deterministic automata. Similar structure can be defined on the associated category

Dra
ft

60 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

DB of behaviours, in such a way that the behaviour functor B: DA → DB preserves this
structure. Thus, complex behaviour can be obtained from more elementary building blocks.

There is a line of research studying such “process categories” with operations that
are commonly used in process calculi as appropriate categorical structure, see for in-
stance [115, 156, 111, 222, 161, 240, 27].

This section concludes with a relatively long series of exercises, mostly because ad-
junctions offer a perspective that leads to many more results. In a particular situation they
can concisely capture the essentials.

Exercises

2.5.1. Recall from Exercise 1.4.3 that the assignment A 7→ A? gives a functor (−)?:Sets →
Mon from sets to monoids. Show that this functor is left adjoint to the forgetful functor
Mon → Sets which maps a monoid (M,+, 0) to its underlying set M and forgets the
monoid structure.

2.5.2. This exercise describes “strength” for endofunctors on Sets. In general, this is a useful
notion in the theory of datatypes [54, 55] and of computations [182].
Let F :Sets→ Sets be an arbitrary functor. Consider for sets X,Y the strength map

F (X)× Y
stX,Y // F (X × Y) given by (u, y) 7−→ F (λx ∈ X. (x, y))(u)

(i) Prove that this yields a natural transformation F (−)×(−)
st

=⇒ F ((−)×(−)), where
both the domain and codomain are functors Sets× Sets→ Sets.

(ii) Sometimes strength is formulated via a map

F (Y X)
st′ // F (Y)X

as:
st′ = Λ(F (ev) ◦ st)

= λv ∈ F (Y X). λx ∈ X.F (λf ∈ Y X . f(x))(v).

Show that st′ is natural too, and that st can also be obtained from st′. Hence the two
formulations are equivalent—in general, in Cartesian closed categories.

2.5.3. The following strengthening of induction is sometimes called “induction with parameters”.
It is different from recursion, which also involves an additional parameter, see Proposi-
tion 2.4.5.
Assume a functor F with a strength natural transformation as in the previous exercise, and
with initial algebra α:F (A)

∼=→ A. Let P be a set (or object) for parameters. Prove that
for each map h:F (X)× P → X there is a unique f :A × P → X making the following
diagram commute.

F (A)× P

α× id ∼=
��

〈F (f) ◦ st, π2〉 // F (X)× P

h
��

A× P
f

// X

[Hint. First turn h into a suitable algebra h′:F (XP)→ XP .]

2.5.4. Show that the forgetful functor U : Sp → Sets from topological spaces to sets has both a
left adjoint (via the discrete topology on a set, in which every subset is open) and a right
adjoint (via the indiscrete topology, with only the empty set and the whole set itself as
opens).

2.5.5. Assume two functors F : C → D and G: D → C in opposite directions, with natural
transformations η: idC ⇒ GF and ε:FG ⇒ idD. Define functions ψ: D(F (X), Y) −→
C(X,G(Y) by ψ(f) = G(f) ◦ ηX .

Dra
ft

2.5. ADJUNCTIONS, COFREE COALGEBRAS, BEHAVIOUR-REALISATION 61

(i) Check that such ψ’s are natural.
(ii) Prove that they are isomorphisms if and only if the following triangular identities

hold.
Gε ◦ ηG = id εF ◦ Fη = id.

2.5.6. A morphism m:X ′ → X in a category D is called a monomorphism, (or mono, for short)
written as m:X ′

� X , if for each parallel pair of arrows f, g:Y → X ′, m ◦ f = m ◦ g
implies f = g.
(i) Prove that the monomorphisms in Sets are precisely the injective functions.
(ii) Let G: D→ C be a right adjoint. Show that if m is a monomorphism in D, then so is

G(m) in C.
Dually, an epimorphism (or epi, for short) in C is an arrow written as e:X ′

� X such
that for all maps f, g:X → Y , if e ◦ f = e ◦ g, then f = g.
(iii) Show that the epimorphims in Sets are the surjective functions.

[Hint. For an epi X � Y , choose two appropriate maps Y → 1 + Y .]
(iv) Prove that left adjoints preserve epimorphisms.

2.5.7. Notice that the existence of final coalgebras for finite polynomial functors (Theorem 2.3.9)
that is used in the proof of Proposition 2.5.3 is actually a special case of this proposition.
[Hint. Consider the right adjoint at the final set 1.]

2.5.8. (Hughes) Let C be an arbitrary category with products ×, and let F,H: C → C be two
endofunctors on C. Assume that cofree F -coalgebras exist, i.e. that the forgetful functor
U :CoAlg(F)→ C has a right adjoint G—like in Proposition 2.5.3. Prove then that there
is an isomorphism of categories of coalgebras:

CoAlg(F ×H)
∼= // CoAlg(GHU)

where CoAlg(GHU) is a category of coalgebras on coalgebras, for the functor composi-
tion GHU :CoAlg(F)→ C→ C→ CoAlg(F).

2.5.9. Recall the distribution functors D,Dfin:Sets → Sets from Exercise 2.2.9. Check that
there are natural transformations:
(i) η: id ⇒ D and η: id ⇒ Dfin, both given by Dirac’s delta x 7→ 1x = (λy. if y =

x then 1 else 0).
(ii) supp:D ⇒ P and supp:Dfin ⇒ Pfin, where the support supp(ϕ) of a distribution

ϕ:X → [0, 1] is the set {x | ϕ(x) 6= 0}.
2.5.10. Consider two adjoint endofunctors as in:

CF 99 Gee with F a G

Prove that we then get an isomorphism of categories:

Alg(F)
∼= // CoAlg(G)

between the associated categories of algebras and coalgebras.
[Remark: as noted in [16, Theorem 5.7], when C = Sets the only such adjunctions F a G
are product-exponent adjunctions X × (−) a (−)X as in (2.8). The argument goes as
follows. In Sets, each object A can be written as coproduct

‘
a∈A 1 of singletons. A left

adjoint F must preserve such coproducts, so that F (A) ∼=
‘
a∈A F (1) ∼= F (1)× A. But

then G(−) ∼= F (1)⇒ (−), by uniqueness of adjoints.]

2.5.11. A deterministic automaton 〈δ, ε〉:X → XA × B is called observable if its behaviour
function beh = λx. λσ. ε(δ∗(x, σ)):X → BA

?

from Proposition 2.3.5 is injective. Later,
in Corollary 3.4.3 we shall see that this means that bisimilar states are equal.
If this automaton comes equipped with an initial state x0 ∈ X one calls the automaton
reachable if the function δ∗(x0,−):A? → X from Section 2.2 is surjective. This means
that every state can be reached from the initial state x0 via a suitable sequence of inputs.
The automaton is called minimal if it is both observable and reachable.
The realisation construction R: DB → DA from Propostion 2.5.7 clearly yields an ob-
servable automaton since the resulting behaviour function is the identity. An alternative

Dra
ft

62 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

construction, the so-called Nerode realisation, gives a minimal automaton. It is obtained
from a behaviour ψ:C? → D as follows. Consider the equivalence relation≡ψ ⊆ C?×C?
defined by:

σ ≡ψ σ′ ⇐⇒ ∀τ ∈ C?. ψ(σ · τ) = ψ(σ′ · τ).
We take the quotient C?/ ≡ψ as state space; it is defined as factorisation:

C?
σ 7−→ λτ. ψ(σ · τ) //

''PPPPPPP

''

DC?

C?/≡ψ
66

66mmmmmmm

It carries an automaton structure with transition function δψ: (C?/ ≡ψ) → (C?/ ≡ψ)C

given by δψ([σ])(c) = [σ · c], observation function εψ: (C?/ ≡ψ) → D defined as
εψ([σ]) = ψ(σ), and initial state [〈〉] ∈ C?/≡ψ.

(i) Check that this Nerode realisation N (C?
ψ→ D) is indeed a minimal automaton,

forming a subautomaton (or subcoalgebra) C?/≡ψ � DC?

of the final coalgebra.
Write RDA for the “subcategory” of DA with reachable automata as objects, and mor-
phisms (f, g, h) like in DA but with f a surjective function between the input sets. Simi-
larly, let RDB be the subcategory of DB with the same objects but with morphisms (f, g)
where f is surjective.

(ii) Check that the behaviour functor B: DA → DB from Proposition 2.5.7 restricts to a
functor B: RDA → RDB, and show that it has Nerode realisation N yields a functor
RDA→ RDB in the opposite direction.

(iii) Prove that there is an adjunction B a N .
(iv) Let MDA be the “subcategory” of RDA with minimal automata as objects. Check that

the adjunction in the previous point restricts to an equivalence of categories MDA '
RDB. Thus, (states of) minimal automata are in fact (elements of) final coalgebras.
[This result comes from [89, 90], see also [8].]

2.5.12. This exercise and the next one continue the description of linear dynamical systems from
Exercise 2.2.10. Here we look at the duality between reachability and observability. First a
preliminary result.
(i) LetB be an arbitrary vector space. Prove that the final coalgebra in Vect of the functor

X 7→ B ×X is the set of infinite sequences BN with obvious vector space structure
〈hd, tl〉:BN ∼=−→ B ×BN given by head and tail.

Call a linear dynamical system A
F→ X

G→ X
H→ B reachable if the induced function

int[F,G]:A
§ → X in the diagram on the left below, is surjective (or equivalently, an epi-

morphism in Vect).

A+A§

[in, sh] ∼=
��

idA + int[F,G] // A+X

[F,G]
��

B ×X
idB × beh〈H,G〉// B ×BN

A§
int[F,G]

// X X

〈H,G〉
OO

beh〈H,G〉
// BN

〈hd, tl〉∼=
OO

Similarly, call this system observable if the induced map beh〈H,G〉:X → BN on the right
is injective (equivalently, a monomorphism in Vect). And call the system minimal if it is
both reachable and observable.
(ii) Prove thatA

F→ X
G→ X

H→ B is reachable in Vect if and only ifB
H→ X

G→ X
F→ A

is observable in Vectop.
[Kalman’s duality result [153, Chapter 2] is now an easy consequence in finite dimensional
vector spaces, where the adjoint operator (−)∗ makes Vect isomorphic to Vectop—where
V ∗ is of course the “dual” vector space of linear maps to the underlying field. This result

says that A
F→ X

G→ X
H→ B is reachable if and only if B∗ H∗

→ X∗ G∗

→ X∗ F∗

→ A∗ is
observable. See also [16]. There is also a duality result for bialgebras in [40].]

Dra
ft

2.5. ADJUNCTIONS, COFREE COALGEBRAS, BEHAVIOUR-REALISATION 63

2.5.13. This exercise sketches an adjunction capturing Kalman’s minimal realisation [153, Chap-
ter 10] for linear dynamical systems, in analogy with the Nerode realisation in Exercise 2.5.11.
This categorical description is based on [15, 16].
Form the category RLDS of reachable linear dynamical systems. Its objects are such reach-

able systems A
F→ X

G→ X
H→ B in Vect. And its morphisms from A

F→ X
G→ X

H→ B

to C
F ′

→ Y
G′

→ Y
H′

→ D are triples of functions C
f
� A, B

g→ D and X
h→ Y with

A
F // X

G //

h
��

X
H //

h
��

B

g
��

C

OO
f

OO

F ′
// Y

G′
// Y

H ′
// D

Note that f is required to be a surjection/epimorphism.
Also, there is a category RLB with linear maps ϕ:A§ → B as objects. A morphism“
A§ ϕ→ B

”
−→

“
C§ ψ→ D

”
is a pair of linear maps f :C � A and g:B → D with g ◦

ϕ ◦ f§ = ψ—where f § results from the functoriality of (−)§, see Exercise 2.4.6 (iv).
(i) Show that the behaviour formula from Exercises 2.2.10 (iv) and 2.4.6 (iii) yields a

behaviour functor B: RLDS→ RLB, given by (F,G,H) 7−→ H ◦ int[F,G].
(ii) Construct a functor K: RLB → RLDS in the reverse direction in the following way.

Assume a behaviour ψ:C§ → D, and form the behaviour map b = beh〈ψ,sh〉:C
§ →

DN below, using the finality from the previous exercise:

D × C§ //______ idD × b
D ×DN

C§

〈ψ, sh〉
OO

//________
b

DN

∼= 〈hd, tl〉
OO

The image Im(b) of this behaviour map can be written as:

„
C§ beh〈ψ,sh〉 // DN

«
=

„
C§ //e // Im(b) // m // DN

«

It is not hard to see that the tail function tl:BN → BN restricts to tl′: Im(b) → Im(b)
via diagonal fill-in:

C§

e ◦ sh
��

//e // Im(b)

tl ◦ m
��{{w

w
w

w

tl′

Im(b) //
m

// DN

Hence one can define a linear dynamical system as:

K
„
C§ ψ // D

«
def
=

„
C
e ◦ in // Im(b)

tl′ // Im(b)
hd ◦ m// D

«

Prove that this gives a minimal realisation, in an adjunction B a K.

2.5.14. This exercise describes the so-called “terms-as-natural-transformations” view which origi-
nally stems from [170]. It is elaborated in a coalgebraic context in [166].
Let H:Sets → Sets be a (not necessarily polynomial) functor, with free algebras, given
by a left adjoint F to the forgetful functor U :Alg(H) → Sets. Let X be an arbitrary
set, whose elements are considered as variables. Elements of the carrier UF (X) of the free
algebra on X can then be seen as terms containing free variables from X . Show that there
is a bijective correspondence:

terms t ∈ UF (X)
===========================
natural transformations τ :UX =⇒ U

Dra
ft

64 CHAPTER 2. PRELIMINARIES ON COALGEBRAS AND ALGEBRAS

[Hint. The component of the natural transformation at a specific algebra HA → A is the
mapping which takes a valuation ρ:X → A of the variables inA to an interpretation [[t]]Aρ
of the term t in the algebra A. Naturality then says that for a homormorphism f :A → B
of algebras, one has the familiar equation f([[t]]Aρ) = [[t]]Bf◦ρ.]

Dra
ft

Chapter 3

Bisimulations

The operation of a coalgebra gives us information about its states. It may allow us to
observe certain things, and it may allow us to “modify states”, or to “move to successor
states”. Typically for coalgebras, we can observe and modify, but we have no means for
constructing new states. The behaviour of a state x is all that we can observe about x, either
directly or indirectly (via its successor states). This behaviour is written as beh(x), where
beh is the unique map to the final coalgebra (if any), as introduced in Definition 2.3.1.

In this situation it may happen that two states have the same behaviour. In that case we
cannot distinguish them with the operations (of the coalgebras) that we have at our disposal.
The two states need not be equal then, since the operations may only give limited access to
the state space, and certain aspects that may not be observable. When two states x, y are
observationally indistinguishable, they are called bisimilar. This is written as x ↔ y.

The bisimilarity relation, for a given coalgebra (or pair of coalgebras), is introduced
as the union of all bisimulations. A bisimulation is a relation on state spaces, which is
maintained by coalgebra transitions and leads to equal observations. Bisimulations were
first introduced in [189] for automata, as mutual simulations—building on an earlier notion
of simulation between programs [178]. Park proved that if the initial states of two deter-
ministic automata are related by a bisimulation, then they accept the same sets of inputs
(see also Corollary 3.4.4 below). Indeed, bisimulations form a crucial tool for stepwise
reasoning—like in induction arguments.

Bisimilarity is the main topic of the present chapter. It is introduced—like congruence—
via a technique called relation lifting. In a related manner the notion of invariance will arise
in the next chapter via predicate lifting. The first part of this chapter concentrates on some
basic properties of relation lifting and of bisimulation relations; these properties will be
used frequently. The coinduction proof principle in Section 3.4 is a basic result in the the-
ory of coalgebras. It says that two states have the same behaviour if and only if they are
contained in a bisimulation relation. Coinduction via bisimulations is illustrated in a simple
process calculus in Section 3.5.

3.1 Relation lifting, bisimulations and congruences

This section will introduce the technique of relation lifting from [116, 117] and use it
to define the notions of bisimulation for coalgebras, and congruence for algebras. Many
elementary results about relation lifting are provided. Alternative ways for introducing
bisimulations will be discussed later in Section 3.3.

We start by motivating the need for relation lifting. Consider a sequence coalgebra
c:X → 1 + (A ×X), like in Section 1.2. A bisimulation for this coalgebra is a relation
R ⊆ X×X on its state space which is “closed under c”. What this means is that ifR holds
for states x, y, then either both x and y have no successor states (i.e. c(x) = κ1(∗) = c(y)),

65

Dra
ft

66 CHAPTER 3. BISIMULATIONS

or they both have successor states which are again related by R and their observations are
the same: c(x) = κ2(a, x

′), c(y) = κ2(b, y
′), with a = b and R(x′, y′).

One way to express such closure properties uniformly is via a “lifting” of R from a
relation on X to a relation R′ on 1 + (A×X) so that this closure can be expressed simply
as:

R(x, y) =⇒ R′(c(x), c(y)).

This idea works if we take R′ ⊆
(
1 + (A×X)

)
×
(
1 + (A×X)

)
to be

R′ = {κ1(∗), κ1(∗)} ∪ {(κ2(a, x), κ2(b, y)) | a = b ∧ R(x, y)}.

The general idea of relation lifting applies to a polynomial functorF . It is a transforma-
tion of a relation R ⊆ X ×X to a relation R′ ⊆ F (X)× F (X), which will be defined by
induction on the structure of F . We shall use the notation Rel(F)(R) forR′ above. Briefly,
the lifted relation Rel(F)(R) uses equality on occurrences of constants A in F , and R on
occurrences of the state space X , as suggested in:

F (X) = · · · X · · · A · · · X · · ·

Rel(F)(R) = R R

F (X) = · · · X · · · A · · · X · · ·

Actually, it will be convenient to define relation lifting slightly more generally, and to
allow different state spaces. Thus, it applies to relations R ⊆ X × Y , and yields a relation
Rel(F)(R) ⊆ F (X)× F (Y).

3.1.1. Definition (Relation lifting). Let F :Sets→ Sets be a polynomial functor, and let
X,Y be arbitrary sets. The mapping Rel(F) which sends a relation R ⊆ X × Y to a
“lifted” relation Rel(F)(R) ⊆ F (X) × F (Y) is defined by induction on the structure of
the functor F , following the points in Definition 2.2.1.

(1) If F is the identity functor, then

Rel(F)(R) = R.

(2) If F is a constant functor Z 7→ A, then

Rel(F)(R) = Eq(A) = {(a, a) | a ∈ A}.

(3) If F is a product F1 × F2, then

Rel(F)(R) = {((u1, u2), (v1, v2)) | Rel(F1)(R)(u1, v1) ∧

Rel(F2)(R)(u2, v2)}.

(4) If F is a coproduct F1 + F2, then

Rel(F)(R) = {(κ1(u), κ1(v)) | Rel(F1)(R)(u, v)} ∪

{(κ2(u), κ2(v)) | Rel(F2)(R)(u, v)}.

(5) If F is an exponentGA, then

Rel(F)(R) = {(f, g) | ∀a ∈ A.Rel(G)(R)(f(a), g(a))}.

Dra
ft

3.1. RELATION LIFTING, BISIMULATIONS AND CONGRUENCES 67

(6) If F is a powerset P(G), then

Rel(F)(R) = {(U, V) | ∀u ∈ U. ∃v ∈ V.Rel(G)(R)(u, v) ∧

∀v ∈ V. ∃u ∈ U.Rel(G)(R)(u, v)}.

This same formula will be used in case F is a finite powerset Pfin(G).

(7) If F is a list G?, then

Rel(F)(R) = {(〈u1, . . . , un〉, 〈v1, . . . , vn〉) | ∀i ≤ n.Rel(G)(R)(ui, vi)}.

In the beginning of Section 3.3 we shall see that relation lifting can also be defined
directly via images. The above inductive definition may seem more cumbersome, but gives
us a better handle on the different cases. Also, it better emphasises the relational aspects
of lifting, and the underlying logical infrastructure (such as finite conjunctions and dis-
junctions, and universal and existential quantification). This is especially relevant in more
general settings, such as in [117].

Relation lifting w.r.t. a functor is closely related to so-called logical relations. These
are collections of relations (Rσ)σ indexed by types σ, in such a way that Rσ→τ and Rσ×τ
are determined byRσ andRτ . Similarly, we use collections of relations (Rel(F)(R))F in-
dexed by polynomial functors F , which are also structurally determined. Logical relations
were originally introduced in the context of semantics of (simply) typed lambda calculus
([227, 82, 198]), see [181, Chapter 8] for an overview. They are used for instance for
definability, observational equivalence and data refinement.

In the next section we shall see various elementary properties of relation lifting. But
first we show what it is used for: bisimulation for coalgebras, and congruence for algebras.
The definitions we use are generic or polytypic, in the sense that they apply uniformly to
(co)algebras of an arbitrary polynomial functor.

3.1.2. Definition. Let F :Sets→ Sets be a polynomial functor.
(i) A bisimulation for coalgebras c:X → F (X) and d:Y → F (Y) is a relation

R ⊆ X × Y which is “closed under c and d”:

(x, y) ∈ R =⇒ (c(x), d(y)) ∈ Rel(F)(R).

for all x ∈ X and y ∈ Y . Equivalently:

R ⊆ (c× d)−1(Rel(F)(R)),

or, by (2.12), ∐
c×d(R) ⊆ Rel(F)(R).

(ii) A congruence for algebras a:F (X) → X and b:F (Y) → Y is a relation R ⊆
X × Y which is also “closed under a and b”:

(u, v) ∈ Rel(F)(R) =⇒ (a(u), b(v)) ∈ R.

That is:

Rel(F)(R) ⊆ (a× b)−1(R) or
∐
a×b(Rel(F)(R)) ⊆ R.

Often we are interested in bisimulations R ⊆ X × X on a single coalgebra c:X →
F (X). We then use the definition with d = c. Similarly for congruences.

Notice that we only require that a congruence is closed under the (algebraic) operations,
and not that it is an equivalence relation. This minor deviation from standard terminology
is justified by the duality we obtain between bisimulations and congruences. We shall use
the following explicit terminology.

Dra
ft

68 CHAPTER 3. BISIMULATIONS

3.1.3. Definition. A bisimulation equivalence is a bisimulation on a single coalgebra
which is an equivalence relation. Similarly, a congruence equivalence is a congruence
on a single algebra which is an equivalence relation.

We continue with several examples of the notions of bisimulation and congruence for
specific functors.

Bisimulations for deterministic automata

Consider a deterministic automaton 〈δ, ε〉:X → XA×B. As we have seen in Section 2.2,
it is a coalgebra for the functor F = idA × B. Relation lifting for this functor yields for a
relation R ⊆ X ×X a new relation Rel(F)(R) ⊆

(
XA ×B

)
×
(
XA ×B

)
, given by:

Rel(F)(R)
(
(f1, b1), (f2, b2)

)
⇐⇒ ∀a ∈ A.R(f1(a), f2(a)) ∧ b1 = b2.

Thus, a relation R ⊆ X × X is a bisimulation w.r.t. the (single) coalgebra 〈δ, ε〉:X →
XA ×B if, for all x, y ∈ X ,

R(x, y) =⇒ Rel(F)(R)
(
(δ(x), ε(x)), (δ(y), ε(y))

)
.

I.e.

R(x, y) =⇒ ∀a ∈ A.R(δ(x)(a), δ(y)(a)) ∧ ε(x) = ε(y).

That is, in transition notation:

R(x, y) =⇒

{
x

a
−→ x′ ∧ y

a
−→ y′ implies R(x′, y′)

x ↓ b ∧ y ↓ c implies b = c.

Thus, once two states are in a bisimulation R, they remain in R and give rise to the same
direct observations. This makes them observationally indistinguishable.

Bisimulations for non-deterministic automata

Next, consider a non-deterministic automaton 〈δ, ε〉:X → P(X)A × B, as coalgebra for
the functor F = P(id)A×B. Relation lifting for this functor is slightly more complicated:
it sends a relationR ⊆ X×X to the relation Rel(F)(R) ⊆

(
P(X)A×B

)
×
(
P(X)A×B

)

given by:

Rel(F)(R)
(
(f1, b1), (f2, b2)

)
⇐⇒ ∀a ∈ A. ∀u ∈ f1(a). ∃v ∈ f2(a). R(u, v) ∧

∀v ∈ f2(a). ∃u ∈ f1(a). R(u, v)

∧ b1 = b2.

Thus, R ⊆ X ×X is a bisimulation if for all x, y ∈ X with R(x, y),

• x
a
−→ x′ implies there is a y′ with y

a
−→ y′ and R(x′, y′);

• y
a
−→ y′ implies there is an x′ with x

a
−→ x′ and R(x′, y′);

• x ↓ b and y ↓ c implies b = c.

This corresponds to the standard notion of bisimulation used in the theory of automata /
transition systems.

Dra
ft

3.1. RELATION LIFTING, BISIMULATIONS AND CONGRUENCES 69

Congruences for monoids

Recall that a monoid is a set M carrying an associative operation +:M ×M →M with a
unit element 0 ∈M . These two operations + and 0, but not the relevant monoid equations,
can be captured as an algebra

1 + (M ×M)
[0,+]

// M

of the functor F (X) = 1 + (X ×X). Relation lifting for F is described by

Rel(F)(R) = {(κ1(∗), κ1(∗))} ∪ {(κ2(x, x
′), κ2(y, y

′)) | R(x, y) ∧ R(x′, y′)}

Hence a relation R ⊆M ×M on the carrier of the monoid is a congruence if:

Rel(F)(R)(u, v) =⇒ R([0,+](u), [0,+](v))

This amounts to:

R(0, 0) and R(x, y) ∧ R(x′, y′) =⇒ R(x+ x′, y + y′)

Thus a congruence, like a bisimulation, is closed under the operations.

Congruences in a binary induction proof principle

We have already discussed the usual “unary” induction proof principle for natural numbers
in Example 2.4.3, expressed in terms of predicates, which are assumed to be closed under
the operations. Later, in Section 4.1 we shall encounter it in full generality, stating that
every invariant on an initial algebra is the truth predicate.

There is also a less well-known binary version of the induction proof principle, ex-
pressed in terms of congruences. It was first formulated as such for the natural numbers
in [219], and further generalised in [117]. It also appeared in the derivations of induction
and coinduction principles in [197] in the context of a formal logic for parametric polymor-
phism.

At this stage we only formulate this binary version, and postpone the proof. It can
be given in various ways, see Exercises 3.3.3 and 4.2.2, but requires some properties of
relation lifting which are still to come.

3.1.4. Theorem (Binary induction proof principle). Every congruence on an initial alge-
bra contains the equality relation.

This binary version of induction is the dual of a coinduction principle, see Corol-
lary 3.4.2.

Bisimulations as congruences

The so-called structural operational semantics (SOS) introduced by Plotkin is a standard
technique in the semantics of programming languages to define the operational behaviour
of programs. The latter are seen as elements of the initial algebra F (Prog)

∼=−→ Prog of
a suitable functor F describing the signature of operations of the programming language.
A transition relation is then defined on top of the set of programs Prog, as the least rela-
tion closed under certain rules. This transition structure may be understood as coalgebra
Prog→ G(Prog), for an appropriate functorG—which is often the functorP(id)A for la-
beled transition systems, see [232, 231]; the transition structure is then given by transitions
p

a
−→ q describing an a-step between programs p, q ∈ Prog.

The transition structure gives rise to certain equivalences for programs, like bisimilar-
ity (see below), trace equivalence or other equivalences, see [87]. These equivalences are

Dra
ft

70 CHAPTER 3. BISIMULATIONS

typically bisimulation equivalences. An important issue in this setting is: are these bisim-
ulation equivalences also congruences for the given algebra structure F (Prog)

∼=−→ Prog.
This is a basic requirement to make the equivalence a reasonable one for the kind of pro-
grams under consideration, because congruence properties are essential in reasoning with
the equivalence. In this setting given by a bialgebra F (Prog) → Prog → G(Prog), the
two fundamental notions of this section (bisimulation and congruence) are thus intimately
related. This situation will be investigated further in Chapter 6 in relation to distributive
laws.

It is a whole area of research to establish suitable syntactic formats for SOS-rules guar-
anteeing that certain bisimulation equivalences are congruences. See [99] for a basic refer-
ence. We shall use a more categorical perspective, first in Section 3.5, and later in Chap-
ter 6, following [232, 231, 33].

3.1.5. Definition. Let X
c
→ F (X) and Y

d
→ F (Y) be two coalgebras of a polynomial

functor F . The bisimilarity relation↔ is the union of all bisimulations:

x↔ y ⇐⇒ ∃R ⊆ X × Y.R is a bisimulation for c and d, and R(x, y)

As a result of Proposition 3.2.5 (iii) in the next section, this union is a bisimulation itself,
so that↔ can be characterised as the greatest bisimulation.

Sometimes we write c
↔

d for ↔ to make the dependence on the coalgebras c and d
explicit.

Bisimilarity formalises the idea of observational indistinguishability. It will be an im-
portant topic in the remainder of this chapter.

Exercises

3.1.1. Unfold the definition of bisimulation for various kind of tree coalgebras, like X → 1 +
(A×X ×X) and X → (A×X)?.

3.1.2. Do the same for classes in object-oriented languages, see (1.7), described as coalgebras of
a functor in Exercise 2.3.4 (iii).

3.1.3. Note that the operations of a vector space V (over R), namely zero, addition, inverse, and
scalar multiplication, can be captured as an algebra 1 + (V × V) + V + (R× V) −→ V .
Investigate then what the associated notion of congruence is.

3.1.4. We have described relation lifting on a coproduct functor F = F1 + F2 in Definition 3.1.1
as:

Rel(F1 + F2)(R) =
‘
κ1×κ1

(Rel(F1)(R)) ∪ ‘
κ2×κ2

(Rel(F2)(R)).

Prove that it can also be defined in terms of products
Q

and intersection ∩ as:

Rel(F1 + F2)(R) =
Q
κ1×κ1

(Rel(F1)(R)) ∩ Q
κ2×κ2

(Rel(F2)(R)).

3.1.5. In this text we concentrate on bi-simulations. There is also the notion of simulation, that
can be defined via an order on a functor, see [230, 125]. For a functor F :Sets → Sets

such an order consists of a functor v as in the diagram below.

PreOrd

forget
��

Sets
F

//

v
66mmmmmmmmmmmmm
Sets

Given such an order we define “lax” relation lifting Relv(F) as R 7→v◦ Rel(F)(R) ◦v.

A relation R ⊆ X × Y is then a simulation on coalgebras X
c→ FX , Y

d→ FY if
R ⊆ (c× d)−1(Relv(F)(R)). Similarity is then the union of all simulations.

Dra
ft

3.2. PROPERTIES OF BISIMULATIONS 71

(i) Investigate what it means to have an order as described in the above diagram.
(ii) Describe on the functor L = 1 + (A × (−)) a “flat” order, and on the powerset

functor P the inclusion order, as in the diagram. Check what the associated notions of
simulation are.

(iii) Prove that similarity on the final coalgebra A∞ of the functor L with order as in (ii) is
the prefix order given by σ ≤ τ iff σ·ρ = τ for some ρ ∈ A∞, see [125, Example 5.7].

3.2 Properties of bisimulations

This section is slightly technical, and possibly also slightly boring. It starts by listing
various elementary properties of relation lifting, and subsequently uses these properties to
prove standard results about bisimulations and bisimilarity.

First there are three lemmas about relation lifting.

3.2.1. Lemma. Let F :Sets → Sets be a polynomial functor. Relation lifting Rel(F)
w.r.t. F satisfies the following basic properties.

(i) It preserves the equality relation:

Rel(F)(Eq(X)) = Eq(F (X))

(ii) It commutes with reversal of relations:

Rel(F)(R−1) = Rel(F)(R)−1

(iii) It is monotone:

R ⊆ S =⇒ Rel(F)(R) ⊆ Rel(F)(S)

(iv) It preserves relation composition

Rel(F)(R ◦ S) = Rel(F)(R) ◦ Rel(F)(S)

(v) It preserves reflexivity, symmetry and transitivity; and thus, if R is an equivalence
relation, then so is Rel(F)(R).

Proof. The first four statement (i)–(iv) are proved by induction on the structure of F , fol-
lowing the cases in Definition 3.1.1. The case in (iv) where F is an exponent GA requires
the Axiom of Choice (AC), as will be illustrated: assume, as induction hypothesis (IH),
that the functorG preserves composition of relations, then so does the exponentGA, since:

Rel(GA)(R ◦ S)(f, g)

⇐⇒ ∀a ∈ A.Rel(G)(R ◦ S)(f(a), g(a))
(IH)
⇐⇒ ∀a ∈ A.

(
Rel(G)(R) ◦ Rel(G)(S)

)
(f(a), g(a))

⇐⇒ ∀a ∈ A. ∃z.Rel(G)(R)(f(a), z) ∧ Rel(G)(S)(z, g(a))
(AC)
⇐⇒ ∃h. ∀a ∈ Rel(G)(R)(f(a), h(a)) ∧ Rel(G)(S)(h(a), g(a)).

⇐⇒ ∃h.Rel(GA)(R)(f, h) ∧ Rel(GA)(S)(h, g)

⇐⇒
(
Rel(GA)(R) ◦ Rel(GA)(S)

)
(f, g).

The last statement (v) follows from the previous ones:

• IfR is reflexive, i.e. Eq(X) ⊆ R, then Eq(F (X)) = Rel(F)(Eq(X)) ⊆ Rel(F)(R),
so that Rel(F)(R) is also reflexive.

• IfR is symmetric, i.e. R ⊆ R−1, then Rel(F)(R) ⊆ Rel(F)(R−1) = Rel(F)(R)−1,
so that Rel(F)(R) is symmetric as well.

Dra
ft

72 CHAPTER 3. BISIMULATIONS

• If R is transitive, i.e. R ◦ R ⊆ R, then Rel(F)(R) ◦ Rel(F)(R) = Rel(F)(R ◦
R) ⊆ Rel(F)(R), so that Rel(F)(R) is also transitive.

We proceed with a similar lemma, about relation lifting and (inverse and direct) images.

3.2.2. Lemma. Let F :Sets → Sets be a polynomial functor again, and let f :X → Z
and g:Y → W be arbitrary functions.

(i) Relation lifting commutes with inverse images: for R ⊆ Z ×W ,

Rel(F)((f × g)−1(R)) = (F (f)× F (g))−1(Rel(F)(R)).

(ii) Relation lifting also commutes with direct images: for R ⊆ X × Y ,

Rel(F)(
∐
f×g(R)) =

∐
F (f)×F (g)(Rel(F)(R)).

Proof. Both equations are proved by induction on the structure of F . We leave (i) to the
reader. Once (i) is established, it can be used to prove the direction (⊇) of (ii), using the
Galois connection relating direct and inverse images in (2.12):

∐
F (f)×F (g)(Rel(F)(R)) ⊆ Rel(F)(

∐
f×g(R))

⇐⇒ Rel(F)(R) ⊆ (F (f)× F (g))−1Rel(F)(
∐
f×g(R))

= Rel(F)((f × g)−1
∐
f×g(R)).

But this latter inclusion holds by monotonicity of relation lifting from Lemma 3.2.1 (iii),
using that R ⊆ (f × g)−1

∐
f×g(R).

The inclusion (⊆) of (ii) is proved by induction on the structure of the functor F . This
requires the Axiom of Choice to handle the exponent functor case, like in the proof of
point (iv) in the previous lemma. The powerset case F = P(G) is most complicated, and
will be described in detail.

Rel(P(G))(
∐
f×g(R))(U, V)

⇐⇒ ∀x ∈ U. ∃y ∈ V.Rel(G)(
∐
f×g(R))(x, y)

∧ ∀y ∈ V. ∃x ∈ U.Rel(G)(
∐
f×g(R))(x, y)

(IH)
⇐⇒ ∀x ∈ U. ∃y ∈ V.

∐
G(f)×G(g) Rel(G)(R)(x, y)

∧ ∀y ∈ V. ∃x ∈ U.
∐
G(f)×G(g) Rel(G)(R)(x, y)

⇐⇒ ∀x ∈ U. ∃y ∈ V. ∃u, v.G(f)(u) = x ∧ G(g)(v) = y ∧ Rel(G)(R)(u, v)

∧ ∀y ∈ V. ∃x ∈ U. ∃u, v.G(f)(u) = x ∧ G(g)(v) = y ∧ Rel(G)(R)(u, v)

=⇒ ∀u ∈ U ′. ∃v ∈ V ′.Rel(G)(R)(u, v)

∧ ∀v ∈ V ′. ∃u ∈ U ′.Rel(G)(R)(u, v), where

U ′ = {u | G(f)(u) ∈ U ∧ ∃v.G(g)(v) ∈ V ∧ Rel(G)(R)(u, v)}

V ′ = {v | G(g)(v) ∈ V ∧ ∃u.G(f)(u) ∈ U ∧ Rel(G)(R)(u, v)}

⇐⇒ ∃U ′, V ′.P(G(f))(U ′) = U ∧ P(G(f))(V ′) = V ∧ Rel(P(G))(R)(U ′, V ′)

⇐⇒
∐

P(G(f))×P(G(g))(Rel(P(G))(R))(U, V).

Below we show in a diagram why Rel(F) is called relation lifting. The term “rela-
tor” is often used in this context for the lifting of F , see for instance [230] (and Exer-
cise 3.3.9, where a more general description of the situation is given). Additionally, the
next result shows that bisimulations are coalgebras themselves. It involves a category Rel
with relations as objects. This Rel should not be confused with the category REL, from
Example 1.4.2 (iv), which has relations as morphisms.

Dra
ft

3.2. PROPERTIES OF BISIMULATIONS 73

3.2.3. Lemma. Let us write Rel for the category with binary relations R ⊆ X × Y as
objects. A morphism (R ⊆ X×Y) −→ (S ⊆ U×V) consists of two functions f :X → U
and g:Y → V with R(x, y) ⇒ S(f(x), g(y)) for all x, y. The latter amounts to the
existence of the necessarily unique dashed map in:

R
��

��

//________ S
��

��
X × Y

f × g
// U × V

In this situation:
(i) Relation lifting forms a functor:

Rel

��

Rel(F)
// Rel

��
Sets× Sets

F × F
// Sets× Sets

where the vertical arrows are the obvious forgetful functors.
(ii) A bisimulation is a Rel(F)-coalgebra. Similarly, a congruence is a Rel(F)-algebra.

Proof. (i) We show that if (f, g):R → S is a morphism in Rel—where f :X → U and
g:Y → V —then (F (f), F (g)): Rel(F)(R) → Rel(F)(S). Note that R ⊆ (f × g)−1(S),
and so by monotony and preservation of inverse images by relation lifting:

Rel(F)(R) ⊆ Rel(F)((f × g)−1(S)) = (F (f)× F (g))−1Rel(F)(S).

This means that (F (f), F (g)) is a morphism Rel(F)(R)→ Rel(F)(S) in Rel.
(ii) A Rel(F)-coalgebra R → Rel(F)(R) for R ⊆ X × Y consists of two underlying

maps c:X → F (X) and d:Y → F (Y) with:

R
��

��

//________ Rel(F)(R)
��

��
X × Y

c× d
// F (X)× F (Y)

This says that R is a relation which is closed under the F -coalgebras c, d, i.e. that R is a
bisimulation for c, d.

In the same way congruences are Rel(F)-algebras.

The next result lists several useful preservation properties of relation lifting.

3.2.4. Lemma. Relation lifting Rel(F) w.r.t. a polynomial functor F :Sets → Sets pre-
serves:

(i) kernel relations, given for an arbitrary function f :X → Y by:

Ker(f) = {(x1, x2) ∈ X ×X | f(x1) = f(x2)}

= (f × f)−1(Eq(Y))

in:
Rel(F)(Ker(f)) = Ker(F (f)).

Dra
ft

74 CHAPTER 3. BISIMULATIONS

(ii) graph relations given for f :X → Y by:

Graph(f) = {(x, y) ∈ X × Y | f(x) = y}

= (f × idY)−1(Eq(Y))

in:
Rel(F)(Graph(f)) = Graph(F (f)).

(iii) images of tuples: for X
f
←− Z

g
−→ Y ,

Im(〈f, g〉) = {(x, y) ∈ X × Y | ∃z ∈ Z. f(z) = x ∧ g(z) = y}

=
∐
f×g(Eq(Z))

in:
Rel(F)(Im(〈f, g〉)) = Im(〈F (f), F (g)〉).

(iv) pullback relations of spans: for X
f
−→ Z

g
←− Y ,

Pb(f, g) = {(x, y) ∈ X × Y | f(x) = g(y)}

= (f × g)−1(Eq(Z))

in:
Rel(F)(Pb(f, g)) = Pb(F (f), F (g)).

Proof. (i) By the results from the previous two lemmas:

Rel(F)(Ker(f)) = Rel(F)((f × f)−1(Eq(Y)))

= (F (f)× F (f))−1(Rel(F)(Eq(Y)))

= (F (f)× F (f))−1(Eq(F (Y)))

= Ker(F (f)).

(ii) Similarly:

Rel(F)(Graph(f)) = Rel(F)((f × idY)−1(Eq(Y)))

= (F (f)× idF (Y))
−1(Rel(F)(Eq(Y)))

= (F (f)× idF (Y))
−1(Eq(F (Y)))

= Graph(F (f)).

(iii) And:

Rel(F)(Im(〈f, g〉)) = Rel(F)(
∐
f×g(Eq(Z)))

=
∐
F (f)×F (g)(Rel(F)(Eq(Z)))

=
∐
F (f)×F (g)(Eq(F (Z)))

= Im(〈F (f), F (g)〉)

(iv) Finally:

Rel(F)(Pb(f, g)) = Rel(F)((f × g)−1(Eq(Z)))

= (F (f)× F (g))−1(Rel(F)(Eq(Z)))

= (F (f)× F (g))−1(Eq(F (Z)))

= Pb(F (f), F (g)).

Dra
ft

3.2. PROPERTIES OF BISIMULATIONS 75

Once these auxiliary results are in place, the next two propositions establish a series
of standard facts about bisimulations and bisimilarity, see [216, Section 5]. We begin with
closure properties.

3.2.5. Proposition. Assume coalgebras X
c
→ F (X), X ′ c′

→ F (X ′), and Y
d
→ F (Y),

Y ′ d
′

→ F (Y ′) of a polynomial functor F . Bisimulations are closed under:
(i) reversal: if R ⊆ X × Y is a bisimulation, then so is R−1 ⊆ Y ×X .

(ii) composition: if R ⊆ X × X ′ and S ⊆ X ′ × Y are bisimulations, then so is
(S ◦ R) ⊆ X × Y .

(iii) arbitrary unions: if Ri ⊆ X × Y is a bisimulation for each i ∈ I , then so is⋃
i∈I Ri ⊆ X × Y .
(iv) inverse images: for homomorphisms f :X → Y and f ′:X ′ → Y ′, if R ⊆ Y × Y ′

is a bisimulation, then so is (f × f ′)−1(R) ⊆ X ×X ′.
(v) direct images: for homomorphisms f :X → Y and f ′:X ′ → Y ′, if R ⊆ X ×X ′

is a bisimulation, then so is
∐
f×f ′(R) ⊆ Y × Y ′.

Proof. (i) If the relation R is a bisimulation, i.e. if R ⊆ (c× d)−1(Rel(F)(R)), then

R−1 ⊆
(
(c× d)−1(Rel(F)(R))

)−1

= (d× c)−1
(

Rel(F)(R)−1
)

= (d× c)−1(Rel(F)(R−1)) by Lemma 3.2.1 (ii).

Notice that the notation (−)−1 is used both for inverse images of functions and for inverses
of relations.

(ii) Assume R ⊆ (c× c′)−1(Rel(F)(R)) and S ⊆ (c′ × d)−1(Rel(F)(S)). If (x, y) ∈
(S ◦ R), say with R(x, x′) and S(x′, y), then by assumption (c(x), c′(x′)) ∈ Rel(F)(R)
and (c′(x′), d(y)) ∈ Rel(F)(S). Hence (c(x), d(y)) ∈

(
Rel(F)(S) ◦ Rel(F)(R)

)
=

Rel(F)(S ◦ R), by Lemma 3.2.1 (iv). We have thus proved the inclusion (S ◦ R) ⊆
(c× d)−1(Rel(F)(S ◦ R), and thus that S ◦ R is a bisimulation.

(iii) Assume Ri ⊆ (c× d)−1(Rel(F)(Ri)), for each i ∈ I . Then

⋃
i∈I Ri ⊆

⋃
i∈I (c× d)

−1(Rel(F)(Ri))

= (c× d)−1
(⋃

i∈I Rel(F)(Ri)
)

since inverse image preserves unions

⊆ (c× d)−1
(
Rel(F)(

⋃
i∈I Ri)

)
by monotony of relation lifting

(and of inverse images).

(iv) If R ⊆ (d× d′)−1(Rel(F)(R)), then:

(f × f ′)−1(R)

⊆ (f × f ′)−1(d× d′)−1(Rel(F)(R))

= (c× c′)−1(F (f)× F (f ′))−1(Rel(F)(R)) because f, f ′ are homomorphisms

= (c× c′)−1(Rel(F)((f × f ′)−1(R))) by Lemma 3.2.2 (i).

(v) If
∐
c×c′(R) ⊆ Rel(F)(R), then:

∐
d×d′

∐
f×f ′(R)

=
∐
F (f)×F (f ′)

∐
c×c′(R) since f, f ′ are homomorphisms

⊆
∐
F (f)×F (f ′)(Rel(F)(R)) by assumption

= Rel(F)(
∐
f×f ′(R)) by Lemma 3.2.2 (ii).

Dra
ft

76 CHAPTER 3. BISIMULATIONS

3.2.6. Proposition. Let X
c
→ F (X), Y

d
→ F (Y) and Z

e
→ F (Z) be three coalgebras of

a polynomial functor F .
(i) An arbitrary function f :X → Y is a homomorphism of coalgebras if and only if

its graph relation Graph(f) is a bisimulation.
(ii) The equality relation Eq(X) on X is a bisimulation equivalence. More generally,

for a homomorphism f :X → Y , the kernel relation Ker(f) is a bisimulation equivalence.

(iii) For two homomorphisms X
f
← Z

g
→ Y the image of the tuple Im(〈f, g〉) is a

bisimulation.
(iv) For two homomorphisms X

f
→ Z

g
← Y in the opposite direction, the pullback

relation Pb(f, g) is a bisimulation.

Proof. By using Lemma 3.2.1.
(i) Because:

Graph(f) is a bisimulation

⇐⇒ Graph(f) ⊆ (c× d)−1(Rel(F)(Graph(f)))

= (c× d)−1(Graph(F (f))) by Lemma 3.2.4 (ii)

⇐⇒ ∀x, y. f(x) = y ⇒ F (f)(c(x)) = d(y)

⇐⇒ ∀x. F (f)(c(x)) = d(f(x))

⇐⇒ f is a homomorphism of coalgebras from c to d.

(ii) The fact that equality is a bisimulation follows directly from Lemma 3.2.1 (i).
Further, the kernel Ker(f) is a bisimulation because it can be written as Graph(f) ◦
Graph(f)−1, which is a bisimulation by (i) and by Proposition 3.2.5 (i), (ii).

(iii) We need to prove an inclusion Im(〈f, g〉) ⊆ (c × d)−1(Rel(F)(Im(〈f, g〉))) =
(c× d)−1(Im(〈F (f), F (g)〉)), using Lemma 3.2.4 (iii). This means that we have to prove:
for each z ∈ Z there is a w ∈ F (Z) with c(f(z)) = F (f)(w) and d(f(z)) = F (g)(w).
But clearly we can take w = e(z).

(iv) What we need is an inclusion Pb(f, g) ⊆ (c × d)−1(Rel(F)(Pb(f, g))) = (c ×
d)−1(Pb(F (f), F (g))), by Lemma 3.2.4 (iv). But this amounts to: f(x) = g(y) ⇒
F (f)(c(x)) = G(f)(d(y)), for all x ∈ X, y ∈ Y . The implication holds because both
f and g are homomorphisms.

We can now also establish some elementary properties of bisimilarity.

3.2.7. Proposition. Let F :Sets → Sets be a polynomial functor, with coalgebras X
c
→

F (X), X ′ c
′

→ F (X ′), and Y
d
→ F (Y), Y ′ d

′

→ F (Y ′).
(i) The bisimilarity relation c

↔
d ⊆ X × Y is a bisimulation; it is the greatest among

all bisimulations between c and d.
(ii)

(
c
↔

d

)−1
⊆ d
↔

c and c
↔

c′ ◦ c′↔d ⊆ c
↔

d.
(iii) The bisimilarity relation c

↔
c⊆ X × X for a single coalgebra is a bisimulation

equivalence.
(iv) For homomorphisms of coalgebras f :X → Y and f ′:X ′ → Y ′ one has, for

x ∈ X, x′ ∈ X ′,

f(x) d↔d′ f
′(x′) ⇐⇒ x c

↔
c′ x

′

Proof. (i) By Proposition 3.2.5 (iii).
(ii) The first inclusion follows from Proposition 3.2.5 (i) and the second one from

Proposition 3.2.5 (ii).
(iii) The bisimilarity relation c

↔
c⊆ X × X is reflexive, because the equality relation

Eq(X) ⊆ X×X is a bisimulation, see Proposition 3.2.5 (ii). Symmetry and transitivity of

c
↔

c follow from (ii).

Dra
ft

3.2. PROPERTIES OF BISIMULATIONS 77

(iv) Since d
↔

d′⊆ Y × Y ′ is a bisimulation, so is (f × f ′)−1(d↔d′) ⊆ X × X ′,
by Proposition 3.2.5 (iv). Hence (f × f ′)−1(d↔d′) ⊆ c

↔
c′, which corresponds to the

implication (=⇒).
Similarly we obtain an inclusion

∐
f×f ′(c↔ c′) ⊆ d

↔
d′ from Proposition 3.2.5 (v),

which yields (⇐=).

Exercises

3.2.1. (i) Prove that relation lifting Rel(F) for a polynomial functor F without powersets P
preserves non-empty intersections of relations: for I 6= ∅,

Rel(F)(
T
i∈I Ri) =

T
i∈I Rel(F)(Ri)

(ii) Assume now that F is not only without powersets P but also without exponents
(−)A—for A infinite, since such exponents for finite A can be obtained via repeated
products ×. Prove that relation lifting Rel(F) preserves unions of ascending chains of
relations: if S0 ⊆ S1 ⊆ S2 ⊆ · · · then:

Rel(F)(
S
n∈N

Sn) =
S
n∈N

Rel(F)(Rn).

Which additional closure properties hold for bisimulations for coalgebras of such functors?

3.2.2. (i) Check that if ≤ is a preorder on a set X , then Rel(F)(≤) is also a preorder on F (X).
(ii) Prove the same with ‘poset’ instead of ‘preorder’, for a polynomial functor F without

powerset.
(iii) Prove that a Galois connection f a g in:

(X,≤X)

g
22 (Y,≤Y)

f
rr

yields a “lifted” Galois connection F (f) a F (g) in:

(FX,Rel(F)(≤X))

F (g)
11 (FY,Rel(F)(≤Y))

F (f)
qq

3.2.3. Check that, in analogy with Proposition 3.2.5, congruences are closed under inverses, com-
position, arbitrary intersections, and under inverse and direct images.

3.2.4. Prove the following analogue of Propositions 3.2.6 for algebras F (X)
a→ X , F (Y)

b→ Y
and F (Z)

c→ Z of a polynomial functor F .
(i) A function f :X → Y is a homomorphism of algebras if and only if its graph relation

Graph(f) ⊆ X × Y is a congruence.
(ii) The kernel relation Ker(f) of an algebra homomorphism f :X → Y is always a

congruence equivalence.

(iii) The image Im(〈f, g〉) of a pair of algebra homomorphisms X
f← Z

g→ Y is a congru-
ence.

(iv) The pullback relation Pb(f, g) of a span of algebra homomorphisms X
f→ Z

g← Y is
a congruence.

3.2.5. Let R ⊆ X × X be an arbitrary relation on the state space of a coalgebra, and let R be
the least equivalence relation containing R. Prove that if R is a bisimulation, then R is a
bisimulation equivalence.

[Hint. Write R as union of iterated compositions Rn for n ∈ N.]

Dra
ft

78 CHAPTER 3. BISIMULATIONS

3.2.6. Check that lax relation lifting as introduced in Exercise 3.1.5 forms a functor in:

Rel

��

Relv(F) // Rel

��
Sets× Sets

F × F
// Sets× Sets

and that simulations are coalgebras of this functor Relv(F)—like in Lemma 3.2.3.

3.2.7. This exercise describes a simple characterisation from [85] of when a function is definable
by induction. The analogue for coinduction is in Excercise 4.2.3.
Consider an initial algebra F (A)

∼=−→ A of a polynomial functor F , where A 6= ∅ Prove
that a function f :A→ X is defined by initiality (i.e. is inta for some algebra a:T (X)→
X on its codomain) if and only its kernel Ker(f) is a congruence.
[Hint. Extend the induced map F (A)/Ker(F (f)) → X along F (A)/Ker(F (f)) �

F (X) by using an aribitrary element in F (A)/Ker(F (f)) obtained from A 6= ∅.]

3.3 Bisimulations as spans

This section continues the investigation of bisimulations, and focusses especifically, on the
relation between the definition of bisimulation used here, given in terms of relation lifting,
and an earlier definition given by Aczel and Mendler [4, 7]. One of the main results is that
these definitions are equivalent, see Theorem 3.3.2.

The first lemma below establishes an important technical relationship which forms the
basis for the subsequent theorem. The lemma uses that relations can be considered as
sets themselves. From a logical perspective this involves a form of comprehension, see
e.g. [130, Chapter 4, Section 6] or [117].

3.3.1. Lemma. Let F be a polynomial functor, and R ⊆ X × Y be an arbitrary rela-
tion, written via explicit functions 〈r1, r2〉:R � X × Y . The lifted relation Rel(F)(R),
considered as a set, is a retract of F (R): there are functions α: Rel(F)(R) → F (R) and
β:F (R) → Rel(F)(R) with β ◦ α = idRel(F)(R). Moreover, these α and β make the
following triangle commute.

Rel(F)(R)
00 α

..
''

''OOOOOOOOOOO
F (R)nn

β
nn

〈F (r1), F (r2)〉xxqqqqqqqqqq

F (X)× F (Y)

This means that Rel(F)(R) � F (X)× F (Y) is the image of F (R)→ F (X)× F (Y).

Proof. The functions α and β are constructed by induction on the structure of F . In the
two base cases where F is the identity functor or a constant functor, α and β are each
other’s inverses. We shall consider two induction steps, for product and powerset.

If F is a product F1 × F2, we may assume appropriate functions αi: Rel(Fi)(R) →
Fi(R) and βi:Fi(R) → Rel(Fi)(R), for i = 1, 2. The aim is to construct functions α, β
in:

(
{((u1, u2), (v1, v2)) |Rel(F1)(R)(u1, v1) ∧

Rel(F2)(R)(u2, v2)}

)
α //

F1(R)× F2(R)
β

oo

The definitions are obvious:

α((u1, u2), (v1, v2)) = (α1(u1, v1), α2(u2, v2))

β(w1, w2) = ((π1β1(w1), π1β2(w2)), (π2β1(w1), π2β2(w2))).

Dra
ft

3.3. BISIMULATIONS AS SPANS 79

If F is a powerset P(F1), we may assume functions α1: Rel(F1)(R) → F1(R) and
β1:F1(R)→ Rel(F1)(R) as in the lemma. We have to construct:

(
{(U, V) | ∀u ∈ U. ∃v ∈ V.Rel(F1)(R)(u, v) ∧

∀v ∈ V. ∃u ∈ U.Rel(F1)(R)(u, v)}

)
α //
P(F1(R))

β
oo

In this case we define:

α(U, V) = {α1(u, v) | u ∈ U ∧ v ∈ V ∧ Rel(F1)(R)(u, v)}

β(W) = ({π1β1(w) | w ∈W}, {π2β1(w) | w ∈W})

Then, using that β1 ◦ α1 = id holds by assumption, we compute:
(
β ◦ α

)
(U, V)

= ({π1β1α1(u, v) | u ∈ U ∧ v ∈ V ∧ Rel(F)(R)(u, v)},

{π2β1α1(u, v) | u ∈ U ∧ v ∈ V ∧ Rel(F)(R)(u, v)})

= ({u ∈ U | ∃v ∈ V.Rel(F1)(R)(u, v)}, {v ∈ V | ∃u ∈ U.Rel(F1)(R)(u, v)})

= (U, V).

The formulation of bisimulation that we are using here relies on relation lifting, see
Definition 3.1.2 and Lemma 3.2.3 (ii), where bisimulations for coalgebras of a functor F
are described as Rel(F)-coalgebras. This comes from [117]. An earlier definition was
introduced by Aczel and Mendler, see [4, 7]. With the last lemma we can prove the equiv-
alence of these definitions.

3.3.2. Theorem. Let X
c
→ F (X) and Y

d
→ F (Y) be two coalgebras of a polynomial

functor F . A relation 〈r1, r2〉:R � X × Y is a bisimulation for c and d if and only if R is
an Aczel-Mendler bisimulation: R itself is the carrier of some coalgebra e:R → F (R),
making the the legs ri homomorphisms of coalgebras, as in:

F (X) F (R)
F (r1)oo

F (r2) // F (Y)

X

c

OO

Rr1
oo

e

OO

r2
// Y

d

OO

Thus, briefly: R carries a Rel(F)-coalgebra if and only if it carries and F -coalgebra
making the diagram commute.

Proof. In Lemma 3.2.3 (ii) we already saw that R ⊆ X × Y is a bisimulation according
to Definition 3.1.2 if and only it carries a Rel(F)-coalgebra; that is, if and only if the
function c× d:X ×Y → F (X)×F (Y) restricts to a necessarily unique function f :R→
Rel(F)(R), making the square on the left below commute.

R
��

〈r1, r2〉
��

//________
f

Rel(F)(R)
��

��

// α // F (R)

〈F (r1), F (r2)〉uu

oo
β

oo

X × Y
c× d

// F (X)× F (Y)

The functions α, β in the triangle on the right form the retract from the previous lemma.
Then, ifR is a bisimulation according to Definition 3.1.2, there is a function f as indicated,
so that α ◦ f :R→ F (R) yields an F -coalgebra on R making the legs ri homomorphisms
of coalgebras. Conversely, if there is a coalgebra e:R → F (R) making the ri homomor-
phisms, then β ◦ e:R→ Rel(F)(R) shows that R ⊆ (c× d)−1(Rel(F)(R)).

Dra
ft

80 CHAPTER 3. BISIMULATIONS

3.3.3. Corollary. Two elements x ∈ X and y ∈ Y of coalgebras X
c
→ F (X) and Y

d
→

F (Y) of a polynomial functor F are bisimilar if and only there is a span of coalgebra
homomorphisms:

•
f

}}zz
zz

zz
zz g

!!C
CC

CC
CC

C




F (X)
↑ c
X







F (Y)
↑ d
Y




with x = f(z) and y = g(z), for some element z.

Proof. If x and y are bisimilar, then they are contained in some bisimulationR ⊆ X × Y .
By the previous result, this relation carries a coalgebra structure making the two legs X ←
R→ Y homomorphisms, and thus a span of coalgebras.

Conversely, if there is a span as indicated in the corollary, then the image Im(〈f, g〉) ⊆
X × Y of the tuple of the two functions is a bisimulation by Proposition 3.2.6 (iii). It
contains (x, y) by assumption, so that x and y are bisimilar.

We postpone a discussion of the different formulations of the notion of bisimulation
to the end of this section. At this stage we shall use the new “Aczel-Mendler” bisimula-
tions in the following standard result—specifically in point (ii)—about monos and epis in
categories of coalgebras.

3.3.4. Theorem. Let F :Sets→ Sets be a polynomial functor.
(i) For a coalgebra c:X → F (X) and a bisimulation equivalence R ⊆ X ×X , the

quotient set X/R carries a unique coalgebra structure, written as c/R:X/R→ F (X/R),
making the canonical quotient map [−]R:X � X/R a homomorphism of coalgebras, as
in:

F (X)
F ([−]R)

// F (X/R)

X

c

OO

//
[−]R

// X/R

c/R

OO

(ii) A homomorphism of coalgebras f :X → Y from X
c
→ F (X) to Y

d
→ F (Y) is a

monomorphism / epimorphism in the category CoAlg(F) if and only if f is an injective /
surjective function between the underlying sets.

(iii) Every homomorphism of coalgebras factors as an epimorphism followed by a mono-
morphism in CoAlg(F). This factorisation is essentially unique because of the following
“diagonal-fill-in” property. For each commuting square of coalgebra homomorphisms as
below, there is a unique diagonal homomorphism making both triangles commute.

• // //

��

•

�����
�

�
�

• // // •

This means that monomorphisms and epimorphisms in the category CoAlg(F) form a
so-called factorisation system, see [30, 16].

As an aside, the result (ii) that a monomorphism between coalgebras is an injective
function holds for polynomial functors, but not for arbitrary functors, as shown in [104].

Dra
ft

3.3. BISIMULATIONS AS SPANS 81

Proof. (i) It suffices to prove that F ([−]R) ◦ c is constant on R. But this is obvious:

R ⊆ (c× c)−1(Rel(F)(R)) since R is a bisimulation

= (c× c)−1(Rel(F)(Ker([−]R)))

= (c× c)−1(Ker(F ([−]R))) by Lemma 3.2.4 (i)

= Ker(F ([−]R) ◦ c).

(ii) It is standard that if f is injective / surjective, then it is a monomorphism / epimor-
phism in Sets—see also Exercise 2.5.6—and hence also in CoAlg(F). Conversely, as-
sume first that f is a monomorphism in CoAlg(F). The kernel 〈r1, r2〉: Ker(f) � X×X
is a bisimulation by Proposition 3.2.6 (ii). Hence it carries an F -coalgebra structure by the
previous theorem, making the ri homomorphisms. From f ◦ r1 = f ◦ r2, we can con-
clude that r1 = r2, since f is a monomorphism in CoAlg(F). But r1 = r2 yields that f
is injective:

f(x1) = f(x2) =⇒ (x1, x2) ∈ Ker(f)

=⇒ x1 = r1(x1, x2) = r2(x1, x2) = x2.

Next, assume that f is an epimorphism in CoAlg(F). There is a short categorical
argument that tells that f is then an epi in Sets, and thus surjective: the forgetful functor
CoAlg(F) → Sets creates colimits, see [216, Proposition 4.7]. But here we shall give
an explicit argument. Recall from Exercise 2.1.13 that coproducts of coalgebras exist.
Specifically we can form the coproduct of the coalgebra d:Y → F (Y) with itself. It is
[F (κ1) ◦ d, F (κ2) ◦ d]:Y + Y → F (Y + Y), with the coprojections κ1, κ2:Y → Y + Y
as homomorphisms. On its carrier Y +Y we consider the following union of bisimulations,
see Proposition 3.2.6.

R
def
= Eq(Y + Y) ∪ Im(〈κ1 ◦ f, κ2 ◦ f〉) ∪ Im(〈κ2 ◦ f, κ1 ◦ f〉).

It is not hard to see that R is an equivalence relation, and thus a bisimulation equivalence.
By (i) there is then a unique coalgebra structure on the quotient (Y + Y)/R making the
quotient map [−]R: (Y + Y) � (Y + Y)/R a homomorphism. By construction of R we
have [−]R ◦ κ1 ◦ f = [−]R ◦ κ2 ◦ f . Since f is assumed to be an epimorphism, this gives
us [−]R ◦ κ1 = [−]R ◦ κ2. For and arbitrary y ∈ Y we get (κ1(y), κ2(y)) ∈ Ker([−]R) =
R. But then (κ1(y), κ2(y)) ∈ Im(〈κ1 ◦ f, κ2 ◦ f〉) = {(κ1(f(x)), κ2(f(x))) | x ∈ X}.
This means that y = f(x) for some x ∈ X . Hence f is surjective.

(iii) Given a homomorphism of coalgebras f :X → Y , we know by Proposition 3.2.6 (ii)
that the kernel Ker(f) is a bisimulation equivalence. Hence the quotient X/Ker(f) carries
a coalgebra structure, and yields a standard factorisation:

(
X

f // Y
)

=
(
X // // X/Ker(f) // // Y

)

The map X � X/Ker(f) is by definition of the coalgebra structure on X/Ker(f)—see
point (i)—a homomorphism of coalgebras. Using that this map is an epimorphism yields
thatX/Ker(f) � Y is also a homomorphism of coalgebras. Hence we have a factorisation
in the category CoAlg(F).

Regarding the diagonal-fill-in property, the diagonal is defined via the surjectivity of
the top arrow. Hence this diagonal is a homomorphism of coalgebras.

3.3.1 Comparing definitions of bisimulation

We started this chapter by introducing bisimulations via the logical technique of relation
lifting, and later showed equivalence to quite different formulations in terms of spans (The-
orem 3.3.2 and Corollary 3.3.3). We shall discuss some differences between these “logical”
and “span-based” approaches.

Dra
ft

82 CHAPTER 3. BISIMULATIONS

1. The logical approach describes bisimulation as relations with a special property,
whereas the span-based approach uses a certain (coalgebra) structure on relations.
This aspect of the logical approach is more appropriate, because it is in line with
the idea that bisimulations are special kinds of relations. If, in the Aczel-Mendler
approach, the coalgebra structure is necessarily unique, existence of this structure
also becomes a property. But uniqueness is neither required nor guaranteed. This is
slightly unsatisfactory.

2. Relation lifting has been defined by induction on the structure of polynomial func-
tors. Therefore, the logical approach only applies to such a limited collection of func-
tors. The span-based approach applies to much more general functors F : C → C.
This is a big advantage. In practice one does not use all of these functors, but only
the (still very general) class of functors preserving so-called weak pullbacks, see the
definition below.

3. Relation lifting is a logical technique which is not restricted to the standard classi-
cal logic of sets, but may be defined for more general (categorical) logics in terms
of “indexed” or “fibred” preorders, see [117, 130]. For instance, one may wish to
consider topological spaces with different logics, for instance with predicates given
by the subsets which are closed, or open, or both (clopen). Each of those preorders
of predicates has different algebraic / logical properties. Thus, the logical approach
is more general (or flexible) in another, logical dimension.

There is no clear answer as to which approach is “the best”. We have chosen to start
from the logical approach because we consider it to be more intuitive and easier to use
in concrete examples. However, from now on we shall freely switch between the two
approaches, and use whatever is most convenient in a particular situation.

In the next chapter on invariants we shall encounter the same situation. There is a
logical definition based on “predicate lifting”. It leads to a notion of invariant, which, in
the classical logic of sets, is equivalent to the notion of subcoalgebra, see Theorem 4.2.5.
The latter is again defined in terms of structure, and applies to more general functors.

A key result about bisimulations is Theorem 3.4.1 in the next section. It states that two
states are bisimilar if and only if they have the same behaviour (i.e. are mapped to the same
element of the final coalgebra). We shall prove this result for (finite) polynomial functors.
In the span-based approach to bisimulation one obtains this result [233] via a restriction
to so-called “weak pullback preserving” functors, see Exercise 3.4.4. We shall briefly
elaborate on such functors because they play an important rôle in the theory of coalgebras.
It involves the notion of (weak) pullback, which is a particular kind of structure (actually
limit) in a category.

3.3.5. Definition. Let C be an arbitrary category.

(i) For two morphisms X
f
−→ Z

g
←− Y with a common codomain, a pullback is a

commuting square of the form

V
h
~~}}

}} k
 A

AA
A

X

f A
AA

A Y

g~~~~
~~

Z

which is universal in the sense that for an arbitrary span X
h′

←− V ′ k′

−→ Y with f ◦ h′ =
g ◦ k′ there is a unique morphism `:V ′ → V with h ◦ ` = h′ and k ◦ ` = k′. In diagrams

Dra
ft

3.3. BISIMULATIONS AS SPANS 83

a pullback is often indicated via a small angle, like in:

V
h //

k
��

X

f
��

Y g
// Z

A weak pullback is like a pullback except that only existence and not unique existence
of ` is required.

(ii) A functor F : C→ C is called (weak) pullback preserving if it maps (weak) pull-
back squares to (weak) pullback squares.

The functors we have been using so far are all weak pullback preserving—which fol-
lows by induction.

3.3.6. Lemma. Every polynomial functor Sets→ Sets preserves weak pullbacks.

Exercise 3.3.9 below relates the preservation of weak pullbacks to the existence of
a “relator” given by relation lifting (in generalised form). This makes it a very natural
requirement.

Exercises

3.3.1. Assume a homomorphism of coalgebras f :X → Y has two factorisations X � U � Y
and X � V � Y . Prove that the diagonal-fill-in property of Theorem 3.3.4 (iv) yields a
unique isomorphism U

∼=→ V commuting with the mono- and epi-morphisms and with the
coalgebra structures.

3.3.2. Use Lemma 3.3.1 to prove the following analogue of Theorem 3.3.2. A relation R ⊆
X × Y is a congruence relation w.r.t. two algebras a:F (X)→ X and b:F (Y)→ Y of a
polynomial functor F if and only it carries an algebra structure F (R)→ R itself, making
the two legs 〈r1, r2〉:R � X × Y of the inclusion homomorphisms of algebras, as in:

F (X)

a
��

F (R)
F (r1)oo

��

F (r2) // F (Y)

b
��

X Rr1
oo

r2
// Y

3.3.3. Use the previous exercise to prove the binary induction proof principle in Theorem 3.1.4:
every congruence on an initial algebra is reflexive.

3.3.4. LetR ⊆ X×X be a congruence equivalence relation (i.e. both a congruence and an equiv-
alence relation) on an algebra F (X)→ X . Prove that the quotient X/R carries an algebra
structure F (X/R)→ X/R making the quotient map X → X/R a homomorphism.
[Hint. First define a map F (X)/Rel(F)(R) → X/R, and then show that the canonical
map F (X)/Rel(F)(R)→ F (X/R) is an isomorphism, via a choice map X/R → X .]

3.3.5. (i) Check that the pullback of two maps X
f−→ Z

g←− Y in the category of sets can be
described by the set:

Pb(f, g) = {(x, y) ∈ X × Y | f(x) = g(y)},

with obvious projections to X and Y .
(ii) Describe the inverse images h−1(P) and (h×k)−1(R) for predicates P and relations

R as pullbacks.
(iii) Similarly, describe the graph Graph(f) of a function as a pullback of f agains the

identity function.

Dra
ft

84 CHAPTER 3. BISIMULATIONS

(iv) Prove, using the Axiom of Choice, that a diagram

• k //

h
��

•
g
��

•
f

// •
is a weak pullback iff Pb(f, g) ⊆ Im(〈h, k〉)

3.3.6. Assume f :X → Y is an epimorphism in a category CoAlg(F), for a polynomial func-
tor F on Sets. Prove that f is the coequaliser in CoAlg(F) of its own kernel pair
p1, p2: Ker(f)→ X .

[Hint. Use that this property holds in Sets, and lift it to CoAlg(F).]

3.3.7. Notice that an arbitrary mapm in a category C is a monomorphism if and only if the square

• •
m
��•

m
// •

is a (weak) pullback. Let F be a weak pullback preserving functor C→ C.
(i) Show that F preserves monomorphisms: if m is mono, then so is F (m).
(ii) Prove also that F preserves (actual) pullbacks of monos: if the diagram below on the

left is a pullback, then so is the one on the right.

•
��

m
��

f // •
��
n
��

•
��

F (m)
��

F (f) // •
��
F (n)
��

•
g

// • •
F (g)

// •

3.3.8. For an arbitrary category C, let Rel(C) be the category of relations in C. Its objects are
monomorphisms 〈r1, r2〉:R � X ×X ′. And its morphisms from 〈r1, r2〉:R � X ×X ′

to 〈s1, s2〉:S � Y × Y ′ are pairs of morphisms f :X → Y , f ′:X ′ → Y ′ in C for which
there is a necessarily unique morphism R→ S making the diagram below commute.

R
��

〈r1, r2〉
��

//________ S
��
〈s1, s2〉
��

X ×X ′
f × f ′

// Y × Y ′

ForR � X × Y and R′
� X × Y we write R ≤ R′ if there is a necessarily unique map

R→ R′ commuting with the monos. Really, we should use equivalence classes of monos,
or subobjects, induced by ≤ instead of actual monos.

(i) Check that this yields a category, which comes equipped with a forgetful functor
Rel(C)→ C× C. Check that Rel(Sets) is the category Rel from Lemma 3.2.3.

(ii) Now assume that every arrow in C can be factored as an epimorphism followed by
a monomorphism, and that diagonal-fill-in property from Theorem 3.3.4 (iv) holds.
For a mono m:P � X and a map f :X → Y we shall write

‘
f (P) � Y for the

mono-part of the composite f ◦ m.
For a functor F : C → C define a lifting Rel(F): Rel(C) → Rel(C) by mapping a
relation 〈r1, r2〉:R � X ×X ′ to the mono part on the left of the factorisation:

F (R)

sshhhhhhhhh
ss

〈F (r1), F (r2)〉����
��

��
�

Rel(F)(R)
'' ''PPP

F (X)× F (X ′)

Dra
ft

3.3. BISIMULATIONS AS SPANS 85

Show how to define Rel(F) on morphisms in Rel(C), so that one gets a commuting
square:

Rel(C)

��

Rel(F) // Rel(C)

��
C× C

F × F
// C× C

Check that for a polynomial functor F :Sets → Sets this construction corresponds
to relation lifting—so that using the same notation is justified.

(iii) Prove that the functor Rel(F) as described in (ii) preserves equality relations and re-
versals of relations.

(iv) Using this general construction one can define a bisimulation as an Rel(F)-coalgebra.
It thus consists of a relation R � X × X ′ with a pair of morphisms (coalgebras)
c:X → F (X), d:Y → F (Y) such that:

R
��

��

//________ Rel(F)(R)
��

��
X × Y

c× d
// F (X)× F (Y)

Assume now that C has pullbacks. Prove that if F preserves weak pullbacks, then
Rel(F) preserves graphs Graph(f) � X × Y of morphisms f :X → Y , defined by
the pullback:

Graph(f)
��

��

// Y
��
id
��

X
f

// Y

Preservations of graphs means Rel(F)(Graph(f)) = Graph(F (f)), of course.
(v) Assume that the “categorical” Axiom of Choice holds in the form that epimorphisms

in C split: for each epi e:X � Y there is a “splitting” s e:Y → X with e ◦ se = idY .
Note that such split epis are preserved under functor application.
Prove then that the mapping Rel(F) preserves composition of relations Rel(F)(S ◦
R) = Rel(F)(S) ◦ Rel(R)(), where the composition of relations 〈r1, r2〉:R �

X × Y and 〈s1, s2〉:S � Y × Z is defined as follows. First form the object T by
pullback in:

T
t2 //

t1
��

S
s2 //

s1
��

Z

R r2
//

r1
��

Y

X

and take the image:

T //e //

〈r1 ◦ t1, s2 ◦ t2〉 ""F
FF

FF
FF

FF
(S ◦ R)

��

��
X × Z

3.3.9. LetF :Sets→ Sets be an arbitrary functor. We write Rel = Rel(Sets) as in Lemma 3.2.3
and in the previous exercise. Call a functor H: Rel→ Rel an F -relator if it makes the fol-
lowing diagram commute

Rel

��

H // Rel

��
Sets× Sets

F × F
// Sets× Sets

and satisfies:

Dra
ft

86 CHAPTER 3. BISIMULATIONS

(i) H preserves equality relations, reversals and compositions of relations;
(ii) H preserves graphs in the sense that H(Graph(f)) = Graph(F (f)).
Prove that F has an F -relator if and only if F preserves weak pullbacks, and that the relator
is in that case uniquely determined as Rel(F)—defined like in the previous exercise.
[Hint. Use that for a relation 〈r1, r2〉:R ↪→ X × Y one can write R = Graph(r2) ◦
Graph(r1)

−1. Similarly, Pb(f, g) = Graph(g)−1 ◦ Graph(f) and Im(〈h, k〉) = Graph(k) ◦
Graph(h)−1.]

[The essence of this result comes from [50]. There is some disagreement about the precise
definition of an F -relator, see for instance [230, 214], but the most reasonable requirements
seem to be precisely those that yield the above equivalence with preservation of weak pull-
backs by F . Often these relators are defined with respect to the category REL with sets
as objects and relations as morphisms, see Example 1.4.2 (iv). But the category Rel with
relations as objects (that we use) seems more natural in this context, for instance, because
it contains bisimulations as coalgebras.]

3.4 Bisimulations and the coinduction proof principle

We have already seen that states of final coalgebras coincide with behaviours, and that
bisimilarity is observational indistinguishability. Hence the following fundamental result
does not come as a surprise: states are bisimilar if and only if they have the same behaviour,
i.e. become equal when mapped to the final coalgebra.

3.4.1. Theorem ([233, 216]). Let F :Sets→ Sets be a (finite) polynomial functor which
has a final coalgebra ζ:Z

∼=−→ F (Z). Let c:X → F (X) and d:Y → F (Y) be arbitrary
coalgebras, with associated homomorphisms behc:X → Z and behd:Y → Z given by
finality. Two states x ∈ X and y ∈ Y are then bisimilar if and only if they have the same
behaviour:

x c
↔

d y ⇐⇒ behc(x) = behd(y).

In particular, bisimilarity ζ↔ ζ⊆ Z × Z on the final coalgebra is equality.

Proof. (⇐) This is easy since we know by Proposition 3.2.6 (iv) that the pullback relation
Pb(behc, behd) = {(x, y) | behc(x) = behd(y)} ⊆ X × Y of two homomorphisms is a
bisimulation. Hence it is included in the greatest bisimulation c

↔
d.

(⇒) The bisimilarity relation c↔d is itself a bisimulation, so it carries by Theorem 3.3.2
a coalgebra structure e: (c↔d) → F (c↔d) making the two legs ri of the relation 〈r1, r2〉
: (c↔d) � X × Y homomorphisms. By finality we then get behc ◦ r1 = behd ◦ r2,
yielding the required result. .

This result gives rise to an important proof method for establishing that two states have
the same behaviour. This is method is often referred to as the coinduction proof principle,
and goes back to [179]. In corresponds to the uniqueness part of the unique existence
property of behaviour maps in Definition 2.3.1.

3.4.2. Corollary (Coinduction proof principle). Two states have the same behaviour if and
only if there is a bisimulation that contains them.

Consequently: every bisimulation on a final coalgebra is contained in the equality
relation.

The second formulation in this corollary is the dual of the binary induction principle
from Theorem 3.1.4.

As we shall see in Example 3.4.5 below, it may sometimes require a bit of ingenuity
to produce an appropriate bisimulation. The standard way to find such a bisimulation is to
start with the given equation as relation, and close it off with successor states until no new
elements appear. In that case one has only “circularities”. Formalising this approach lead
to what is sometimes called circular rewriting, see e.g. [91].

Dra
ft

3.4. BISIMULATIONS AND THE COINDUCTION PROOF PRINCIPLE 87

3.4.3. Corollary. Call a coalgebra c:X → F (X) observable if its bisimilarity relation

c
↔

c is equality on X . This is equivalent to a generalisation of the formulation used in
Exercise 2.5.11 for deterministic automata: the associated behaviour map behc:X → Z
to the final coalgebra Z

∼=−→ F (Z), if any, is injective.

Observable coalgebras are called simple in [216]. Coalgebras can always be forced to
be observable via quotienting, see Exercise 3.4.1 below.

Bisimilarity is closely related to equivalence of automata, expressed in terms of equal-
ity of accepted languages (see Corollary 2.3.6). This result, going back to [189], will be
illustrated next.

3.4.4. Corollary. Consider two deterministic automata 〈δi, εi〉:Si → SAi × {0, 1} with
initial states si ∈ Si, for i = 1, 2. These states s1, s2 are called equivalent if they accept
the same language. The states s1 and s2 are then equivalent if and only if they are bisimilar.

Proof. Because the accepted languages are given by the behaviours beh〈δi,εi〉(si) ∈ P(A?)
of the initial states, see Corollary 2.3.6 (ii).

Early on in Section 1.2 we already saw examples of coinductive reasoning for se-
quences. Here we continue to illustrate coinduction with languages.

3.4.5. Example (Equality of regular languages [213]). In Corollary 2.3.6 (ii) we have seen
that the set L(A) = P(A?) of languages over an alphabet A forms a final coalgebra,
namely for the deterministic automaton functor X 7→ XA × {0, 1}. We recall that the
relevant coalgebra structure on L(A) is given on a language L ⊆ A? by:

L
a
−→ La where La = {σ ∈ A? | a · σ ∈ L} is the a-derivative of L

L ↓ 1⇐⇒ 〈〉 ∈ L which may simply be written as L ↓.

The subset of so-called regular languages is built up inductively from constants

0 = ∅, 1 = {〈〉}, {a}, for a ∈ A, usually written simply as a

and the three operations of union, concatenation and Kleene star:

K + L = K ∪ L

KL = {σ · τ | σ ∈ K ∧ τ ∈ L}

K∗ =
⋃
n∈N

Kn, where K0 = 1 and Kn+1 = KKn.

See also Excercise 3.4.5 below. For example, the regular language a(a+b)∗b consists of all
(finite) words consisting of letters a, b only, that start with an a and end with a b. Regular
languages can be introduced in various other ways, for example as the languages accepted
by deterministic and non-deterministic automata with a finite state space (via what is called
Kleene’s theorem [158]), or as the languages generated by regular grammars. Regular
languages (or expressions) are used in many situations, such lexical analysis (as patterns
for tokens), or text editing and retrieval (for context searches). Regular expressions, see
Exercise 3.4.5, are often used as search strings in a Unix/Linux environement; for example
in the command grep, for “general regular expression parser”.

An important topic is proving equality of regular languages. There are several ap-
proaches, namely via unpacking the definitions, via algebraic reasoning using a complete
set of laws (see [159] and also [138]), or via minimalisation of associated automata. A
fourth, coinductive approach is introduced in [213] using bisimulations. It is convenient,
and will be illustrated here.

Dra
ft

88 CHAPTER 3. BISIMULATIONS

Recall from Section 3.1 that a relation R ⊆ L(A) × L(A) is a bisimulation if for all
languages L,K,

R(L,K) =⇒

{
R(La,Ka) for all a ∈ A

L ↓ iff K ↓

The coinduction proof principle then says:

L = K ⇐⇒ there is a bisimulation R ⊆ L(A) ×L(A) with R(L,K). (3.1)

In order to use this principle effectively the following rules for derivatives La and termina-
tion L ↓ are useful.

0a = 0 ¬
(
0 ↓
)

1a = 0 1 ↓

ba =

{
1 if b = a

0 otherwise
¬
(
b ↓
)

(K + L)a = Ka + La K + L ↓ iff K ↓ or L ↓

(KL)a =

{
KaL+ La if K ↓

KaL otherwise
KL ↓ iff K ↓ ∧ L ↓

(
K∗
)
a

= KaK
∗ K∗ ↓ .

We shall illustrate the use of the coindution proof principle (3.1) for establishing equal-
ity of regular languages via two examples.

1. For an arbitrary element a in the alphabet A one has

(1 + a)∗ = a∗.

As candidate bisimulation R in (3.1) we take:

R = {((1 + a)∗, a∗)} ∪ {(0, 0)}.

The termination requirement obviously holds, so we concentrate on derivatives. First,
for a itself:

(
(1+a)∗

)
a

= (1+a)a (1+a)∗ = (1a+aa) (1+a)∗ = (0+1) (1+a)∗ = (1+a)∗

and similarly: (
a∗
)
a

= aa a
∗ = 1 a∗ = a∗.

Hence the pair of a-derivatives (((1 + a)∗)a, (a
∗)a) = ((1 + a)∗, a∗) is again in the

relation R. Similarly, (0a, 0a) = (0, 0) ∈ R. And for an element b 6= a we similarly
have (

(
(1 + a)∗

)
b
,
(
a∗
)
b
) = (0, 0) ∈ R. This shows that R is a bisimulation, and

completes the proof. The reader may wish to compare it to an alternative proof using
the definition of Kleene star (−)∗.

2. Next we restrict ourselves to an alphabet A = {a, b} consisting of two (different)
letters only. Consider the two languages

E(b) = {σ ∈ A? | σ contains an even number of b’s}

O(b) = {σ ∈ A? | σ contains an odd number of b’s}.

Dra
ft

3.4. BISIMULATIONS AND THE COINDUCTION PROOF PRINCIPLE 89

(We consider 0 ∈ N to be even.) Using the definitions of derivative and termination,
it is not hard to see that:

E(b)a = E(b) E(b)b = O(b) E(b) ↓

O(b)a = O(b) O(b)b = E(b) ¬O(b) ↓.

Our aim is to prove the equality:

E(b) = a∗ + a∗b(a+ ba∗b)∗ba∗

via coinduction. This requires by (3.1) a bisimulationR containing both sides of the
equation. We take:

R = {(E(b),K)} ∪ {(O(b), L)} where

K = a∗ + a∗b(a+ ba∗b)∗ba∗ (the right-hand side of the equation)

L = (a+ ba∗b)∗ba∗.

The computations that show thatR is a bisimulation use the above computation rules
for derivatives plus some obvious properties of the regular operations (like X + 0 =
X and 1X = X):

Ka =
(
a∗
)
a

+
(
a∗
)
a
b(a+ ba∗b)∗ba∗ +

(
b(a+ ba∗b)∗ba∗

)
a

= a∗ + a∗b(a+ ba∗b)∗ba∗ + ba(a+ ba∗b)∗ba∗

= K + 0(a+ ba∗b)∗ba∗

= K

Kb =
(
a∗
)
b
+
(
a∗
)
b
b(a+ ba∗b)∗ba∗ +

(
b(a+ ba∗b)∗ba∗

)
b

= 0 + 0b(a+ ba∗b)∗ba∗ + bb(a+ ba∗b)∗ba∗

= 0 + 0 + 1(a+ ba∗b)∗ba∗

= L

La =
(
(a+ ba∗b)∗

)
a
ba∗ +

(
ba∗
)
a

=
(
a+ ba∗b

)
a
(a+ ba∗b)∗ba∗ + baa

∗

= (aa + baa
∗b)(a+ ba∗b)∗ba∗ + 0a∗

= (1 + 0a∗b)(a+ ba∗b)∗ba∗ + 0

= L

Lb =
(
(a+ ba∗b)∗

)
b
ba∗ +

(
ba∗
)
b

=
(
a+ ba∗b

)
b
(a+ ba∗b)∗ba∗ + bba

∗

= (ab + bba
∗b)(a+ ba∗b)∗ba∗ + 1a∗

= a∗b(a+ ba∗b)∗ba∗ + a∗

= K.

This shows that (U, V) ∈ R implies both (Ua, Va) ∈ R and (Ub, Vb) ∈ R.

Further:
K ↓ ⇐⇒ a∗ ↓ or a∗b(a+ ba∗b)∗ba∗ ↓

⇐⇒ true

L ↓ ⇐⇒ (a+ ba∗b)∗ ↓ ∧ ba∗ ↓

⇐⇒ true ∧ b ↓ ∧ a∗ ↓

⇐⇒ true ∧ false ∧ true

⇐⇒ false.

Dra
ft

90 CHAPTER 3. BISIMULATIONS

This shows that R is a bisimulation. As a result we obtain E(b) = K, as required,
but also, O(b) = L.

This concludes the example. For more information, see [213, 220, 215].

There are many more examples of coinductive reasoning in the literature, in various ar-
eas: non-well-founded sets [4, 35], processes [180], functional programs [96], streams [215,
113] (with analytic functions as special case [192]), datatypes [112], domains [73, 195], etc.

Exercises

3.4.1. Check that for an arbitrary coalgebra c:X → F (X) of a polynomial functor, the induced
coalgebra c/↔ :X/↔ → F (X/↔) is observable—using Theorem 3.3.4 (i) and Proposi-
tion 3.2.7 (iii). Is the mapping c 7→ c/↔ functorial?
Note that since the canonical map [−]:X � X/↔ is a homomorphism, its graph is a
bisimulation. Hence a state x ∈ X is bisimilar to its equivalence class [x] ∈ X/↔. This
means that making a coalgebra observable does not change the behaviour.

3.4.2. (i) ([216, Theorem 8.1]) Prove that a coalgebra c is observable (or simple) if and only if
it has no proper quotients: every epimorphism c � d is an isomorphism.
[Hint. Consider the kernel of such a map.]

(ii) Conclude that there is at most one homormophism to an observable coalgebra.

3.4.3. Prove the following analogue of Theorem 3.4.1 for algebras a:F (X)→ X and b:F (Y)→
Y of a polynomial functor F , with an initial algebra F (A)

∼=→ A. Two elements x ∈ X
and y ∈ Y are interpretations x = inta(t) and y = intb(t) of the same element t ∈ A if
and only if the pair (x, y) is in each congruence relation R ⊆ X × Y .
Conclude that for coalgebras c, d and algebras a, b:

Pb(behc, behd)
def
= (behc × behd)−1(Eq)

=
S{R | R is a bisimulation on the carriers of c, d}

Im(〈inta, intb〉) def
=

‘
inta×intb

(Eq)

=
T{R | R is a congruence on the carriers of a, b}.

3.4.4. Prove Theorem 3.4.1 for weak pullback preserving functors F with a final coalgebra (like

in [233]) by showing that for coalgebras X
c→ FX and Y

d→ FY :
(i) each Aczel-Mendler bisimulation R ⊆ X × Y satisfies R ⊆ Pb(behc, behd).
(ii) the relation Pb(behc, behd) ⊆ X × Y is an Aczel-Mendler bisimulation.

3.4.5. Fix an alphabet A and consider the polynomial functor

R(X) = 1 + 1 +A+ (X ×X) + (X ×X) +X.

(i) Show that the initial algebra RE of R is the set of regular expressions, given by the
BNF syntax:

E := 0 | 1 | a | E +E | EE | E∗

where a ∈ A.
(ii) Define an interpretation map int: RE → P(A?) = L(A) by initiality, whose image

contains precisely the regular languages.

3.4.6. (From [213]) Prove the following equality of regular languages (over the alphabet {a, b})
by coinduction.

((b∗a)∗ab∗)∗ = 1 + a(a+ b)∗ + (a+ b)∗aa(a+ b)∗.

3.4.7. Prove that the language K = a∗ + a∗b(a+ ba∗b)∗ba∗ of words with an even numbers of
b’s from Example 3.4.5 is the language that is accepted by the following finite automaton:

0

b
((a :: 1

b

hh add

Dra
ft

3.5. PROCESS SEMANTICS 91

•

(2,1)

((

•

(1,3)

��

•

(0,5)

vv•

10kkkkkkkkkkkkk

uukkkkkkkkkkkkkkkkkkkk 10
ssssssss

yysssssssssssss 10
��
��
�

����
��
��
��

10
00

00
0

��0
00

00
00

0 10
KKKKKKKK

%%KKKKKKKKKKKKK 10
SSSSSSSSSSSSS

))SSSSSSSSSSSSSSSSSSSS

5BBBBBB

``BBBBBBBBBB
5

OO

5||||||

>>||||||||||

empty // •

•

(5,0)

22

•

(4,2)

55

•

(3,4)

<<

•

(2,6)

bb

•

(1,8)

ii

•

(0,10)

ll

Figure 3.1: Transition diagram of a machine for changing 5 and 10 Euro notes into coins.

with 1 both as initial and as final state. More formally, this automaton is 〈δ, ε〉: {0, 1} →
{0, 1}{a,b} × {0, 1} with

δ(0)(a) = 0 δ(0)(b) = 1 ε(0) = 0

δ(1)(a) = 1 δ(1)(b) = 0 ε(1) = 1.

3.5 Process semantics

This section will introduce a semantics for processes using the a final coalgebra of the finite
powerset functor Pfin. It captures the behaviour of so-called finitely branching transition
systems. This forms an illustration of many of the ideas we have seen so far, like be-
havioural interpretations via finality and compositional interpretations via initiality. Also,
we shall see how the coalgebraic notion of bisimilarity froms a congruence—an algebraic
notion. The material in this section builds on [233, 222], going back to [212]. It will be put
in a broader context via distributive laws in Chapter 6.

A first, non-trivial question is: what is a process? Usually one understands it as a run-
ning program. Thus, a sequential program, transforming input to output, when in operation
forms a process. But typical examples of processes are programs that are meant to be run-
ning ‘forever’, like operating systems or controllers. Often they consist of several processes
that run in parallel, with appropriate synchronisation between them. The proper way to de-
scribe such processes is not via input-output relations, like for sequential programs. Rather,
one looks at their behaviour, represented as suitable (infinite) trees.

Let us start with the kind of example that is often used to introduced processes. Sup-
pose we wish to describe a machine that can change e5 and e10 notes into e1 and e2
coins. We shall simply use ‘5’ and ‘10’ as input labels. And as output labels we use pairs
(i, j) to describe the return of i 2-e coins and j 1-e coins. Also there is a special output
action empty that indicates that the machine does not have enough coins left. Our abstract
description will not determine which combination of coins is returned, but only gives the
various options as a non-deterministic choice. Pictorially this yields a “state-transition”
diagram like in Figure 3.5. Notice that the machine can only make a ‘5’ or ‘10’ transition
if it can return a corresponding change. Otherwise, it can only do an ‘empty’ step.

In this section we shall describe such transition systems as coalgebras, namely as coal-
gebras of the functor X 7→ Pfin(X)A, for various sets A of “labels” or “actions”. As
usual, for states z, w and actions a ∈ A we write z

a
−→ w for w ∈ c(z)(a), where

c:Y → Pfin(Y)A is our coalgebra. Note that for each z and a there are only finitely
many successor states w with z

a
−→ w. Therefore, such transition systems are often called

finitely branching.

Dra
ft

92 CHAPTER 3. BISIMULATIONS

In the above example, the set of labels is

E = {5, 10, (2, 1), (1, 3), (0, 5), (5, 0), (4, 2), (3, 4), (2, 6), (1, 8), (0, 10), empty}.

And as set of states we use

S = {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10}

with “change” coalgebra structure ch:S → Pfin(S)E given by:

ch(s0) = λy ∈ E.





{s1, s2, s3} if y = 5

{s4, s5, s6, s7, s8, s9} if y = 10

{s10} if y = empty

∅ otherwise

ch(s1) = λy ∈ E.

{
{s0} if y = (2, 1)

∅ otherwise

ch(s2) = λy ∈ E.

{
{s0} if y = (1, 3)

∅ otherwise

etc.

(3.2)

Since the functor X 7→ Pfin(X)A, for an arbitrary set A, is a finite polynomial functor,
we know by Theorem 2.3.9 that it has a final coalgebra. In this section we shall write this
final coalgebra as:

ZA
ζA
∼=

// Pfin(ZA)A (3.3)

We do not really care what these sets ZA actually look like, because we shall only use their
universal properties, and do not wish to depend on a concrete representation. However,
concrete descriptions in terms of certain finitely branching trees modulo bisimilarity may
be given, see [233, Section 4.3] (following [29]). In this context we shall call the elements
of carrier ZA of the final coalgebra processes.

Our change machine coalgebra ch with its set of actionsE thus gives rise to a behaviour
map:

Pfin(S)E //_________
Pfin(behch)

E

Pfin(ZE)E

S

ch

OO

//____________
behch

ZE

∼= ζE

OO

The behaviour function behch thus turns the concrete states s0, . . . , s10 of our change ma-
chine into abstract states of the final coalgebra ZE—i.e. into processes—with the same
behaviour.

3.5.1 Process descriptions

Several languages have been proposed in the literature to capture processes, such as Al-
gebra of Communicating Processes (ACP) [38, 75], Calculus of Communicating Systems
(CCS) [179, 180] or Communicating Sequential Processes (CSP) [119]. The goal of such
languages is to study processes via axiom systems in which notions like sequential and
parallel execution, alternative choice, communication, etc. are formlised by means of al-
gebraic operations and equations. It is not our aim to go into precise syntax and into the

Dra
ft

3.5. PROCESS SEMANTICS 93

various differences between these formalisms. Instead we concentrate on the semantics and
describe only a few central operations on processes, showing how they can be interpreted
in a final coalgebra of the form (3.3). As an example, the above change machine could be
described via a (recursive) process equation:

CH = 5 · (2, 1) · CH + 5 · (1, 3) · CH + 5 · (0, 5) · CH +

10 · (5, 0) · CH + 10 · (4, 2) · CH + 10 · (3, 4) · CH +

10 · (2, 6) · CH + 10 · (1, 8) · CH + 10 · (0, 10) · CH +

empty · 0.

(3.4)

Process algebras can be understood more generally as providing a convenient syntax for
describing various kinds of transition systems, see also Example 3.5.1 below.

In the following we fix an arbitrary set A of actions, and we consider the associated
final coalgebraZA. We shall describe a collection of operations (such as + and · above) on
processes, understood as elements of ZA.

The null process

One can define a trivial process which does nothing. It is commonly denoted as 0, and is
defined as:

0 def
= ζ−1

A (λy ∈ A. ∅).

This means that there are no successor states of the process 0 ∈ ZA—since by construction
the set of successors ζA(0)(a) is empty, for each label a ∈ A.

Sum of two processes

Given two processes z1, z2 ∈ ZA, one can define a sum process z1 +z2 ∈ ZA via the union
operation ∪ on subsets:

z1 + z2
def
= ζ−1

A

(
λy ∈ A. ζA(z1)(y) ∪ ζA(z2)(y)

)
.

This means that for each w ∈ ZA and a ∈ A, there is a transition (z1 + z2)
a
−→ w out of a

sum process if and only if there is either a transition z1
a
−→ w or a transition z2

a
−→ w. In

the process literature one usually encounters the following two rules:

z1
a
−→ w

z1 + z2
a
−→ w

z2
a
−→ w

z1 + z2
a
−→ w

(3.5)

It is not hard to see that the structure (ZA,+, 0) is a commutative monoid with idempotent
operation: z + z = z for all z ∈ ZA.

Prefixing of actions

Given a process z ∈ ZA and an action a ∈ A there is a process a · z which first performs a
and then continues with z. It can be defined as:

a · z
def
= ζ−1

A

(
λy ∈ A. if y = a then {z} else ∅

)
.

We then have, for w ∈ ZA and b ∈ A,

(a · z)
b
−→ w ⇐⇒ w ∈ ζA(a · z)(b)

⇐⇒ w ∈
(
if b = a then {z} else ∅

)

⇐⇒ b = a ∧ w = z.

Dra
ft

94 CHAPTER 3. BISIMULATIONS

This gives the standard rule:

a · z
a
−→ z

(3.6)

3.5.1. Example (Change machine, continued). Having defined prefixing and sum we can
verify the validity of the change machine equation (3.4), for the interpretation CH =
behch(s0) ∈ ZE from (3.2). First we note that:

(2, 1) · CH = ζ−1
E

(
λy ∈ E.

(
if y = (2, 1) then {behch(s0)} else ∅

))

= ζ−1
E

(
λy ∈ E.Pfin(behch)

(
if y = (2, 1) then {s0} else ∅

))

= ζ−1
E

(
λy ∈ E.Pfin(behch)

(
ch(s1)(y)

))

= ζ−1
E

(
λy ∈ E. ζE

(
behch(s1)

)
(y)
)

= behch(s1)

Similar equations can be derived for the states s2, . . . , s9. And for s10 we have:

behch(s10) = ζ−1
E

(
λy ∈ E. ζE

(
behch(s10)

)
(y)
)

= ζ−1
E

(
λy ∈ E.Pfin(behch)

(
ch(s10)(y)

))

= ζ−1
E

(
λy ∈ E.Pfin(behch)(∅)

)

= ζ−1
E

(
λy ∈ E. ∅

)

= 0.

Dra
ft

3.5. PROCESS SEMANTICS 95

Finally we can check that the equation (3.4) holds for the behaviour CH = behch(s0).

ζE(CH)(y)

= Pfin(behch)
(
ch(s0)(y)

)

=





{behch(s1), behch(s2), behch(s3)} if y = 5

{behch(s4), behch(s5), behch(s6),

behch(s7), behch(s8), behch(s9)} if y = 10

{behch(s10)} if y = empty

=
(
if y = 5 then {(2, 1) · CH, (1, 3) · CH, (0, 5) · CH} else ∅

)
∪

(
if y = 10 then

{
(5, 0) · CH, (4, 2) · CH, (3, 4) · CH,

(2, 6) · CH, (1, 8) · CH, (0, 10) · CH

}
else ∅

)
∪

(
if y = empty then {0} else ∅

)
.

=
(
if y = 5 then {(2, 1) · CH} else ∅

)
∪

(
if y = 5 then {(1, 3) · CH} else ∅

)
∪

(
if y = 5 then {(0, 5) · CH} else ∅

)
∪

(
if y = 10 then {(5, 0) · CH} else ∅

)
∪

(
if y = 10 then {(4, 2) · CH} else ∅

)
∪

(
if y = 10 then {(3, 4) · CH} else ∅

)
∪

(
if y = 10 then {(2, 6) · CH} else ∅

)
∪

(
if y = 10 then {(1, 8) · CH} else ∅

)
∪

(
if y = 10 then {(0, 10) · CH} else ∅

)
∪

(
if y = empty then {0} else ∅

)

= ζE(5 · (2, 1) · CH)(y) ∪ ζE(5 · (1, 3) · CH)(y) ∪

ζE(5 · (0, 5) · CH)(y) ∪ ζE(10 · (5, 0) · CH)(y) ∪

ζE(10 · (4, 2) · CH)(y) ∪ ζE(10 · (3, 4) · CH)(y) ∪

ζE(10 · (2, 6) · CH)(y) ∪ ζE(10 · (1, 8) · CH)(y) ∪

ζE(10 · (0, 10) · CH)(y) ∪ ζE(empty · 0)(y)

= ζE

(
5 · (2, 1) · CH + 5 · (1, 3) · CH + 5 · (0, 5) · CH +

10 · (5, 0) · CH + 10 · (4, 2) · CH + 10 · (3, 4) · CH +

10 · (2, 6) · CH + 10 · (1, 8) · CH + 10 · (0, 10) · CH + empty · 0
)
(y).

This example illustrates an approach for verifying that a transition system on an arbitrary
state space satisfies a certain process equation:

1. Map the transition system to the final coalgebra via the behaviour map beh;

2. Check the equation for beh(s0), where s0 is a suitable (initial) state, using the above
interpretations of the process combinators +, 0, · etc. on the final coalgebra.

3.5.2 A simple process algebra

In the previous subsection we have seen several process combinators, described as func-
tions on a terminal coalgebra ZA

∼=−→ Pfin(ZA)A. Next we shall consider these basic
combinators as constructors of a very simple process language, often called Basic Process
Algebra (BPA), see [75, 231]. In the spirit of this text, the language of finite terms will be
described as an initial algebra.

Dra
ft

96 CHAPTER 3. BISIMULATIONS

For an arbitrary set A of actions, consider the simple polynomial functor ΣA:Sets →
Sets given by

ΣA(X) = 1 + (A×X) + (X ×X)

An algebra ΣA(X) → X for this functor thus consists of three operations which we call
0: 1→ X for null-process, ·:A×X → X for prefixing, and +:X ×X → X for sum. We
have seen that the final coalgebraZA

∼=−→ Pfin(ZA)A carries a ΣA-algebra structure which
we shall write as ξA: ΣA(ZA) → ZA. It is given by the structure described earlier (before
Example 3.5.1). Thus we a bialgebra of processes:

ΣA(ZA)
ξA // ZA

ζA
∼=

// Pfin(ZA)A

The free ΣA-algebra on a set V consists the terms build up from the elements from V as
variables. An interesting algebra is given by the free ΣA-algebra on the final coalgebraZA.
It consists of terms built out of processes, as studied in [212] under the phrase “processes
as terms”. Here we shall write PA for the initial ΣA-algebra, i.e. the free algebra on the
empty set. The set PA contains the “closed” process terms, without free variables. They
are built up from 0 and a ∈ A. We shall write this algebra as α: ΣA(PA)

∼=−→ PA. It is not
hard to see that the set PA of process terms also carries a bialgebra structure:

ΣA(PA)
α
∼=

// PA
β // Pfin(PA)A

The coalgebra β is defined by induction, following the transition rules (3.5), (3.6). For each
a ∈ A,

β(0)(a) = ∅

β(b · s)(a) = {s | b = a}

β(s+ t)(a) = β(s)(a) ∪ β(t)(a).

These definitions form a very simple example of a structural operations semantics (SOS):
operational behaviour defined by induction on the structure of terms.

The next result shows that the denotational semantics given by initiality and operational
semantics given by finality for process terms coincide.

3.5.2. Proposition. In the above situation we obtain two maps PA → ZA, one by initiality
and one by finality:

ΣA(PA)

α ∼=
��

//______
ΣA(intα)

ΣA(ZA)

ξ
��

Pfin(PA)A //______
Pfin(behβ)A

Pfin(ZA)A

PA //________
intα

ZA PA

β

OO

//_________
behβ

ZA

ζ∼=

OO

These two maps are equal, so that intα = behβ :PA → ZA is a “map of bialgebras”
commuting both with the algebra and coalgebra structures. This proves in particular that
the behavioural semantics behβ of processes is compositional: it commutes with the term
forming operations.

Proof. By induction on the structure of a term s ∈ PA we prove that behβ(s) = intα(s),

Dra
ft

3.5. PROCESS SEMANTICS 97

or equivalently, ζ(behβ(s))(a) = ζ(intα(s))(a), for all a ∈ A.

ζ(behβ(0))(a) = Pfin(behβ)A
(
β(0)

)
(a)

= Pfin(behβ)(β(0)(a))

= Pfin(behβ)(∅)

= ∅

= ζ(0)(a)

= ζ(intα(0))(a).

ζ(behβ(b · s))(a) = Pfin(behβ)(β(b · s)(a))

= Pfin(behβ)({s | b = a})

= {behβ(s) | b = a})
(IH)
= {intα(s) | b = a})

= ζ(b · intα(s))(a)

= ζ(intα(b · s))(a)

ζ(behβ(s+ t))(a) = Pfin(behβ)(β(s + t)(a))

= Pfin(behβ)(β(s)(a) ∪ β(t)(a))

= Pfin(behβ)(β(s)(a)) ∪ Pfin(behβ)(β(t)(a))

= ζ(behβ(s))(a) ∪ ζ(behβ(t))(a)
(IH)
= ζ(intα(s))(a) ∪ ζ(intα(t))(a)

= ζ(intα(s) + intα(t))(a)

= ζ(intα(s+ t))(a).

3.5.3. Proposition. Still in the above situation, the bisimilarity relation ↔ on the set PA
of process terms is a congruence.

Proof. Consider the following diagram, where we abbreviate f = behβ = intα.

ΣA(↔)
d //

���
�
�
�

ΣA(PA)× ΣA(PA)

α× α

��

ΣA(f ◦ π1) //

ΣA(f ◦ π2)
// ΣA(ZA)

ξ

��
↔ //

e
// PA × PA

f ◦ π1 //

f ◦ π2

// ZA

The map e is the equaliser of f ◦ π1 and f ◦ π2, using Theorem 3.4.1. The map d is the pair
〈ΣA(e ◦ π1),Σ(e ◦ π2)〉. We show that (α× α) ◦ d equalises f ◦ π1, f ◦ π2. The dashed
arrow then exists by the universal property of the equaliser e, making↔ a congruence (see
Exercise 3.3.2). Thus, what remains is:

f ◦ π1 ◦ (α× α) ◦ d = intα ◦ α ◦ π1 ◦ d

= ξ ◦ ΣA(intα) ◦ ΣA(e ◦ π1)

= ξ ◦ ΣA(intα) ◦ ΣA(e ◦ π2)

= intα ◦ α ◦ π2 ◦ d

= f ◦ π2 ◦ (α× α) ◦ d.

This result shows that s ↔ s′ and t ↔ t′ implies a · s ↔ a · s′ and s + t ↔ s′ +
t′. Such congruence results are fundamental in process algebra, because they show that
the algebraic operations for process formation preserve indistinguishability of behaviour.
Later, in Chapter 6, this topic will be studied in greater generality.

Dra
ft

98 CHAPTER 3. BISIMULATIONS

Exercises

3.5.1. Complete the definition of the coalgebra ch:S → Pfin(S)E in the beginning of this section.

3.5.2. Prove that (ZA,+, 0) is indeed a commutative monoid, as claimed above.

3.5.3. One can consider each action a ∈ A as a process

ba def
= a · 0 ∈ ZA

It can do only an a-transition. Prove that this yields an injection A ↪→ ZA.

3.5.4. Consider the following alternative process equation for a Euro change machine.

CH’ = 5 ·
„

(2, 1) · CH’ + (1, 3) · CH’ + (0, 5) · CH’
«

+ 10 ·
„

(5, 0) · CH’ + (4, 2) · CH’ + (3, 4) · CH’ +

(2, 6) · CH’ + (1, 8) · CH’ + (0, 10) · CH’
«

+ empty.

Understand the difference between CH in (3.4) and this CH’, for instance by describing a
suitable transition system which forms a model of this equation.
Are CH and CH’ bisimilar?

Dra
ft

Chapter 4

Invariants

The second important notion in the logic of coalgebras, beside bisimulation, is invariance.
Whereas a bisimulation is a binary relation on state spaces that is closed under transitions,
an invariant is a predicate, or unary relation if you like, on a state space which is closed.
This means, once an invariant holds, it will continue to hold no matter which operations
are applied. That is: coalgebras maintain their invariants.

Invariants are important in the description of systems, because they often express cer-
tain implicit assumptions, like: this integer value will always be non-zero (so that dividing
by this integer is safe), or: the contents of this tank will never be below a given minimum
value. Thus, invariants are “safety properties”, which express that something bad will never
happen.

This chapter will introduce a general notion of invariant for a coalgebra of a polyno-
mial functor, via predicate lifting. Predicate lifting is the unary analogue of relation lifting.
Various properties of invariants are established, in particular their intimate relation to sub-
coalgebras. An important application of invariants lies in a generic temporal logic for
coalgebras, involving henceforth � and eventually ♦ operators on predicates, that will be
introduced in Section 4.3. Further, invariants play a rôle in the construction of final coal-
gebras, a topic that was postponed earlier in Section 2.3. The final section of this chapter
will use the details of such a construction in trace semantics for coalgebras.

4.1 Predicate lifting

This section will introduce the technique of predicate lifting. It will be used in the next
section in the definition of invariance for (co)algebras. Here we will first establish various
elementary, useful properties of predicate lifting. Special attention will be paid to the left
adjoint to predicate lifting, called predicate lowering.

Predicate lifting for a polynomial functor F is an operation Pred(F) which sends a
predicate P ⊆ X on a set X to a “lifted” predicate Pred(F)(P) ⊆ F (X) on the result of
applying the functor F to X . The idea is that P should hold on all occurrences of X inside
F (X), as suggested in:

F (X) = · · · X · · · A · · · X · · ·

Pred(F)(P) =

P P

The formal definition proceeds by induction on the structure of the functor F , just like for
relation lifting in Definition 3.1.1.

99

Dra
ft

100 CHAPTER 4. INVARIANTS

4.1.1. Definition (Predicate lifting). Let F :Sets→ Sets be a polynomial functor, and let
X be an arbitrary set. The mapping Pred(F) which sends a predicate P ⊆ X to a “lifted”
predicate Pred(F)(P) ⊆ F (X) is defined by induction on the structure of F , in accordance
with the points in Definition 2.2.1.

(1) If F is the identity functor, then

Pred(F)(P) = P

(2) If F is a constant functor Y 7→ A, then

Pred(F)(P) = >A = (A ⊆ A).

(3) If F is a product F1 × F2, then

Pred(F)(P) = {(u, v) | Pred(F1)(P)(u) ∧ Pred(F2)(P)(v)}

(4) If F is a coproduct F1 + F2, then

Pred(F)(P) = {κ1(u) | Pred(F1)(P)(u)} ∪ {κ2(v) | Pred(F2)(P)(v)}

(5) If F is an exponentGA, then

Pred(F)(P) = {f | ∀a ∈ A. Pred(G)(P)(f(a))}

(6) If F is a powerset P(G), then

Pred(F)(P) = {U | ∀u ∈ U. Pred(G)(P)(u)}

This same formula will be used in case F is a finite powerset Pfin(G).

(7) If F is a list G?, then

Pred(F)(P) = {〈u1, . . . , un〉 | ∀i ≤ n. Pred(G)(P)(ui)}.

First we show that predicate and relation lifting are closely related.

4.1.2. Lemma. (i) Relation lifting Rel(F) and predicate lifting Pred(F) for a polynomial
functor F :Sets→ Sets are related in the following way.

Rel(F)(
∐
δX

(P)) =
∐
δF (X)

(Pred(F)(P)),

where δX = 〈idX , idX〉 and so
∐
δX

(P) = {δX(x, x) | x ∈ P} = {(x, x) | x ∈ P}.
(ii) Similarly,

Pred(F)(
∐
πi

(R)) =
∐
πi

(Rel(F)(R)),

where
∐
π1

(R) = {x1 | ∃x2. R(x1, x2)} is the domain of the relation R, and
∐
π2

(R) =
{x2 | ∃x1. R(x1, x2)} is its codomain.

(iii) As a result, predicate lifting can be expressed in terms of relation lifting:

Pred(F)(P) =
∐
πi

(
Rel(F)(

∐
δ(P))

)

for both i = 1 and i = 2.

Dra
ft

4.1. PREDICATE LIFTING 101

Proof. (i) + (ii) By induction on the structure of F .
(iii) Since

∐
πi
◦
∐
δ = id we use the previous point to get:

Pred(F)(P) =
∐
πi

∐
δ Pred(F)(P) =

∐
πi

Rel(F)(
∐
δ P).

Despite this last result, it is useful to study predicate lifting separately, because it has
some special properties that relation lifting does not enjoy—like preservation of intersec-
tions, see the next result, and thus existence of a left adjoint, see Subsection 4.1.1.

4.1.3. Lemma. Predicate lifting Pred(F) w.r.t. a polynomial functor F :Sets → Sets

satisfies the following properties.
(i) It preserves arbitrary intersections: for every collection of predicates (Pi ⊆ X)i∈I ,

Pred(F)(
⋂
i∈I Pi) =

⋂
i∈I Pred(F)(Pi).

A special case (intersection over I = ∅) worth mentioning is preservation of truth:

Pred(F)(>X) = >FX .

Another consequence is that predicate lifting is monotone:

P ⊆ Q =⇒ Pred(F)(P) ⊆ Pred(F)(Q).

(ii) It preserves inverse images: for a function f :X → Y and predicate Q ⊆ Y ,

Pred(F)(f−1(Q)) = F (f)−1(Pred(F)(Q)).

(iii) Relation lifting also preserves direct images: for f :X → Y and P ⊆ X ,

Pred(F)(
∐
f (P)) =

∐
F (f)(Pred(F)(P)).

Proof. (i) + (ii) By induction on the structure of F .
(iii) This is easily seen via the link with relation lifting:

Pred(F)(
∐
f P) =

∐
π1

Rel(F)(
∐
δ

∐
f P) by Lemma 4.1.2 (iii)

=
∐
π1

Rel(F)(
∐
f×f

∐
δ P)

=
∐
π1

∐
Ff×Ff Rel(F)(

∐
δ P) by Lemma 3.2.2 (ii)

=
∐
Ff

∐
π1

Rel(F)(
∐
δ P)

=
∐
F (f)(Pred(F)(P)), again by Lemma 4.1.2 (iii).

The next result is the analogue for predicate lifting of Lemma 3.3.1 for relation lifting.
It relies on considering predicates as sets themselves, and may be understood as: predicate
lifting commutes with comprehension, see Exercise 4.2.4 (iii). This is described in a more
general logical setting in [117]. But in the current set-theoretic setting the connection
between predicate lifting and functor application is extremely simple.

4.1.4. Lemma. For a polynomial functor F , predicate lifting Pred(F)(P) for a predicate
m:P � X the same as functor application in:

Pred(F)(P)
&&

&&LLLLLLLLL
F (P)
{{

F (m){{ww
ww

ww
ww

F (X)

Note that from the fact that polynomial functors preserve weak pullbacks (Lemma 3.3.6)
we can already conclude that F (m) is a mono, see Exercise 3.3.7 (i).

Dra
ft

102 CHAPTER 4. INVARIANTS

Proof. Formally, one proves for z ∈ F (X),

z ∈ Pred(F)(P) ⇐⇒ ∃!z′ ∈ F (P). F (m)(z′) = z.

This is obtained by induction on the structure of the polynomial functor F .

In view of this result one may wish to define for an arbitrary functor G: C → C

which preserves monomorphisms (such as a weak pullback preserving functor, see Ex-
ercise 3.3.7), an associated predicate lifting operation Pred(G)(−) simply via functor ap-
plication:

(
P // m // X

)
� //

(
G(P) //

G(m)
// G(X)

)
(4.1)

More generally, if G does not preserve monos we may define Pred(G) via factorisation:

P
��

m
��

Pred(G)(P)
��

��

G(P)

G(m)wwooooooooo
oooo

� //

X G(X)

This operation automatically preserves truth predicates (given by identity monomorphism
X � X), see Lemma 4.1.3 (i). Further properties like preservation of intersections may
be assumed as explicit requirements, when needed. This leads to a more axiomatic ap-
proach. A still further generalisation is possible by moving to fibrations, and consider
predicate lifting as a suitably axiomatised functor between categories of predicates (like in
Exercise 4.2.4 (iii)).

Here we shall stick to our inductive approach to predicate lifting for polynomial func-
tors on Sets because it gives the best handle on concrete examples.

4.1.1 Predicate lowering as liftings left adjoint

We conclude this section with a Galois connection involving predicate lifting. In the next
section we shall use predicate lifting for a next-time operator © in a temporal logic of
coalgebras. There is also a lasttime operator©

←−
(see Subsection 4.3.1), for which we shall

need this left adjoint (or lower Galois adjoint) to predicate lifting Pred(F). We shall write
this left (or lower) adjoint as Pred

←−−
(F), and shall call it “predicate lowering”. Such an adjoint

must exist because predicate lifting preserves arbitrary intersections, see Lemma 4.1.3 (i)—
see e.g. [176] or [150, I, Theorem 4.2]. But it can also be defined explicitly by induction
on the structure of the functor. This is what we shall do.

4.1.5. Proposition (From [129, 136]). Predicate lifting for a polynomial functorF forms a
monotone function Pred(F):P(X)→ P(F (X)) between powerset posets. In the opposite
direction there is also an operation Pred

←−−
(F):P(F (X))→ P(X) satisfying

Pred
←−−

(F)(Q) ⊆ P ⇐⇒ Q ⊆ Pred(F)(P)

Hence Pred
←−−

(F) is the left adjoint of Pred(F) in a Galois connection Pred
←−−

(F) a Pred(F).

Proof. One can define Pred
←−−

(F)(Q) ⊆ X for Q ⊆ F (X) by induction on the structure of
F .

(1) If F is the identity functor, then

Pred
←−−

(F)(Q) = Q.

Dra
ft

4.1. PREDICATE LIFTING 103

(2) If F is a constant functor Z 7→ A, then

Pred←−−
(F)(Q) = ⊥A = (∅ ⊆ A).

(3) If F is a product F1 × F2, then

Pred
←−−

(F)(Q) = Pred
←−−

(F1)(
∐
π1

(Q)) ∪ Pred
←−−

(F2)(
∐
π2

(Q))

= Pred
←−−

(F1)({u ∈ F1(X) | ∃v ∈ F2(X). Q(u, v)})

∪ Pred
←−−

(F2)({v ∈ F2(X) | ∃u ∈ F1(X). Q(u, v)}).

(4) If F is a coproduct F1 + F2, then

Pred
←−−

(F)(Q) = Pred
←−−

(F1)(κ
−1
1 (Q)) ∪ Pred

←−−
(F2)(κ

−1
2 (Q))

= Pred←−−(F1)({u | Q(κ1(u))}) ∪ Pred←−−(F2)({v | Q(κ2(v))}).

(5) If F is an exponentGA, then

Pred
←−−

(F)(Q) = Pred
←−−

(G)({f(a) | a ∈ A ∧ Q(f)})

(6) If F is a powerset P(G), then

Pred
←−−

(F)(Q) = Pred
←−−

(G)(
⋃
Q).

This same formula will be used in case F is a finite powerset Pfin(G).

(7) If F is a list G?, then

Pred←−−(F)(Q) = Pred←−−(G)({ui | Q(〈u1, . . . , un〉)}).

Being a left adjoint means that functions Pred←−−(F) preserve certain “colimit” structures.

4.1.6. Lemma. Let F be a polynomial functor. Its operations Pred
←−−

(F):P(F (X)) →

P(X) preserve:
(i) unions

⋃
of predicates;

(ii) direct images
∐

, in the sense that for f :X → Y ,

Pred
←−−

(F)(
∐
F (f)(Q)) =

∐
f Pred
←−−

(F)(Q).

Proof. (i) This is a general property of left (Galois) adjoints, as illustrated in the beginning
of Section 2.5.

(ii) One can use a “composition of adjoints” argument, or reason directly with the ad-
junctions:

Pred
←−−

(F)(
∐
F (f)(Q)) ⊆ P ⇐⇒

∐
F (f)(Q) ⊆ Pred(F)(P)

⇐⇒ Q ⊆ F (f)−1Pred(F)(P) = Pred(F)(f−1(P))

by Lemma 4.1.3 (ii)

⇐⇒ Pred
←−−

(F)(Q) ⊆ f−1(Q)

⇐⇒
∐
f Pred
←−−

(F)(Q) ⊆ P.

Dra
ft

104 CHAPTER 4. INVARIANTS

This left adjoint to predicate lifting gives rise to a special kind of mapping from an
arbitrary polynomial functor to the powerset functor. With this mapping each coalgebra
can be turned into an unlabeled transition system.

4.1.7. Proposition. For a polynomial functor F and a set X , write σX :F (X) → P(X)
for the following composite.

σX
def
=
(
F (X)

{−}
// P(F (X))

Pred
←−−

(F)
// P(X)

)

This collection (σX)X of maps indexed by sets X is “natural” in the sense that for each
function f :X → Y the following diagram commutes.

F (X)
σX //

F (f)
��

P(X)

P(f) =
∐
f

��
F (Y) σY

// P(Y)

Proof. We only need to prove naturality. For u ∈ F (X):

∐
f

(
σX(u)

)
=

∐
f Pred
←−−

(F)({u})

= Pred
←−−

(F)(
∐
F (f){u}) by Lemma 4.1.6 (ii)

= Pred
←−−

(F)({F (f)(u)})

= σY
(
F (f)(u)

)
.

Natural transformations play a rôle in the following fundamental translation result for
coalgebras.

4.1.8. Proposition. Let C be an arbitrary category. A natural transformation α:F ⇒ G
between two endofunctors F,G: C → C gives rise to a functor between categories of
coalgebras:

CoAlg(F)

$$J
JJJJJ

JJJJ

α ◦ (−)
// CoAlg(G)

zzttttt
ttttt

C

which commutes with the forgetful functors to C. It is given by:

(
X

c // F (X)
)

� //
(
X
αX ◦ c// G(X)

)
and f

� // f.

By combining the previous two propositions we obtain a functor

CoAlg(F) // CoAlg(P) (4.2)

from coalgebras of a polynomial functor to unlabeled transition systems. This translation
will be further investigated in Section 4.3. As can be seen in Exercise 4.1.2, the translation
removes much of the structure of the coalgebra. However, it makes the intuitive idea precise
that states of a coalgebra can make transitions.

Dra
ft

4.2. INVARIANTS 105

Exercises

4.1.1. Use Lemmas 4.1.4 and 3.3.1 to check that relation lifting can also be expressed via predicate
lifting. For a relation 〈r1, r2〉:R ↪→ X × Y ,

Rel(F)(R) =
‘

〈F (r1),F (r2)〉 Pred(F)(R).

4.1.2. Let X
〈δ,ε〉−→ XA × B be a deterministic automaton. Prove that the associated unlabeled

transition system, according to (4.2), is described by:

x −→ x′ ⇐⇒ ∃a ∈ A. δ(x)(a) = x′.

4.1.3. For a polynomial functor F :Sets→ Sets, consider the forgetful functorU :CoAlg(F)→
Sets. Check that predicate lifting Pred(F) is a natural tranformation

2U //Pred(F)
2FU

where 2 = {0, 1} and predicates P ⊆ X are identified with their characteristic functions
X → 2. The functor 2U :CoAlg(F)→ Sets thus sends a coalgebra X → F (X) to the
powerset P(X).
Predicate liftings are used in such natural transformation formulation in [190] as starting
point for temporal logics, like in Section 4.3.

4.2 Invariants

This section will introduce invariants via predicate lifting (introduced in the previous sec-
tion). It will first describe certain standard examples and results—especially relating in-
variants to subcoalgebras. Many of the results we describe for invariants occur in [216,
Section 6], but with subcoalgebra terminology, and thus with slightly different proofs. Spe-
cial attentions will be paid below to “greatest invariants” �P , for an arbitrary predicate P
on the state spaces of a coalgebra. These greatest invariants are useful in various construc-
tions. Most importantly in this section, in the construction of products for coalgebras. In
the next section, the relevance of these greatest invariants will be discussed in the context
of a temporal logic for coalgebras.

We shall define the notion of invariant, both for coalgebras and for algebras. In both
cases it is a predicate which is closed under the operation. There does not seem to be an
established (separate) terminology in algebra, so we use the same as in coalgebra.

4.2.1. Definition. Let F :Sets→ Sets be a polynomial functor.
(i) An invariant for a coalgebra c:X → F (X) is a predicate P ⊆ X satisfying for all

x ∈ X ,
x ∈ P =⇒ c(x) ∈ Pred(F)(P)

Equivalently,

P ⊆ c−1(Pred(F)(P)) or
∐
c(P) ⊆ Pred(F)(P).

(ii) An invariant for an algebra a:F (X)→ X is a predicate P ⊆ X satisfying for all
u ∈ F (X),

u ∈ Pred(F)(P) =⇒ a(u) ∈ P

That is,

Pred(F)(P) ⊆ a−1(P) or
∐
a(Pred(F)(P)) ⊆ P.

This section concentrates on invariants for coalgebras, but occasionally invariants for
algebras are also considered. We first relate invariants to bisimulations. There are similar
results for congruences, see Exercise 4.2.1.

Dra
ft

106 CHAPTER 4. INVARIANTS

4.2.2. Lemma. Consider two coalgebras c:X → F (X) and d:Y → F (Y) of a polyno-
mial functor F . Then:

(i) if R ⊆ X × Y is a bisimulation, then both its domain
∐
π1
R = {x | ∃y.R(x, y)}

and codomain
∐
π2
R = {y | ∃x.R(x, y)} are invariants.

(ii) an invariant P ⊆ X yields a bisimulation
∐
δ P = {(x, x) | x ∈ P} ⊆ X ×X .

Proof. (i) If the relationR is a bisimulation, then the predicate
∐
π1
R ⊆ X is an invariant,

since: ∐
c

∐
π1
R =

∐
π1

∐
c×dR

⊆
∐
π1

Rel(F)(R) because R is a bisimulation

= Pred(F)(
∐
π1
R) by Lemma 4.1.2 (ii).

Similarly,
∐
π2
R ⊆ Y is an invariant for the coalgebra d.

(ii) Suppose now that P ⊆ X is an invariant. Then:

∐
c×c

∐
δ P =

∐
δ

∐
c P

⊆
∐
δ Pred(F)(P) since P is an invariant

= Rel(F)(
∐
δ P) by Lemma 4.1.2 (i).

4.2.3. Example. We consider invariants for both deterministic and non-deterministic au-
tomata.

(i) As is well-known by now, a deterministic automaton 〈δ, ε〉:X → XA × B is a
coalgebra for the functor F = idA × B. Predicate lifting for this functor yields for a
predicate P ⊆ X a new prediate Pred(F)(P) ⊆

(
XA ×B

)
, given by:

Pred(F)(P)(f, b) ⇐⇒ ∀a ∈ A.P (f(a)).

A predicate P ⊆ X is thus an invariant w.r.t. the coalgebra 〈δ, ε〉:X → XA × B if, for all
x ∈ X ,

P (x) =⇒ Pred(F)(P)
(
(δ(x), ε(x))

)

⇐⇒ ∀a ∈ A.P (δ(x)(a))

⇐⇒ ∀a ∈ A. ∀x′ ∈ X. x
a
−→ x′ ⇒ P (x′).

Thus, once a state is in an invariant P , all its successor states are also in P . Once an
invariant holds, it will continue to hold.

(ii) A non-deterministic automaton 〈δ, ε〉:X → P(X)A × B is a coalgebra for the
functor F = P(id)A×B. Predicate lifting for this functor sends a predicate P ⊆ X to the
predicate Pred(F)(P) ⊆

(
P(X)A ×B

)
given by:

Pred(F)(P)(f, b) ⇐⇒ ∀a ∈ A. ∀x′ ∈ f(a). P (x′)

This P ⊆ X is then an invariant for the non-deterministic automaton 〈δ, ε〉:X → P(X)A×
B if for all x ∈ X ,

P (x) =⇒ Pred(F)(P)
(
(δ(x), ε(x))

)

⇐⇒ ∀a ∈ A. ∀x′ ∈ δ(x)(a). P (x′)

⇐⇒ ∀a ∈ A. ∀x′ ∈ X. x
a
−→ x′ ⇒ P (x′).

4.2.4. Proposition. Let X
c
→ F (X) and Y

d
→ F (Y) be two coalgebras of a polynomial

functor F :Sets→ Sets.

Dra
ft

4.2. INVARIANTS 107

(i) Invariants are closed under arbitrary unions and intersections: if predicates Pi ⊆
X are invariants for i ∈ I , then their union

⋃
i∈I Pi and intersection

⋂
i∈I Pi are invari-

ants.
In particular, falsity ⊥ (union over I = ∅) and truth > (intersection over I = ∅) are

invariants.
(ii) Invariants are closed under direct and inverse images along homomorphisms: if

f :X → Y is a homomorphism of coalgebras, and P ⊆ X andQ ⊆ Y are invariants, then
so are

∐
f (P) ⊆ Y and f−1(Q) ⊆ X .

In particular, the image Im(f) =
∐
f (>) of a homomorphism is an invariant.

Proof. (i) First we note that inverse images preserve both unions and intersections. Clo-
sure of invariants under unions then follows from monotonicty of predicate lifting: Pi ⊆
c−1(Pred(F)(Pi)) ⊆ c−1(Pred(F)(

⋃
i∈I Pi) for each i ∈ I , so that we may conclude⋃

i∈I Pi ⊆ c−1Pred(F)(
⋃
i∈I Pi). Similarly, closure under intersection follows because

predicate lifting preserves intersections, see Lemma 4.1.3 (i).
(ii) For preservation of direct images assume that P ⊆ X is an invariant. Then:

∐
d

∐
f P =

∐
F (f)

∐
c P because f is a homomorphism

⊆
∐
F (f) Pred(F)(P) since P is an invariant

= Pred(F)(
∐
f P) by Lemma 4.1.3 (iii).

Similarly, if Q ⊆ Y is an invariant, then:

f−1(Q) ⊆ f−1d−1(Pred(F)(Q)) because Q is an invariant

= c−1F (f)−1(Pred(F)(Q)) because f is a homomorphism

= c−1(Pred(F)(f−1(Q)) by Lemma 4.1.3 (ii).

The next result readily follows from Lemma 4.1.4. It is the analogue of Theorem 3.3.2,
and has important consequences.

4.2.5. Theorem. Let F :Sets→ Sets be a polynomial functor.
(i) A predicate m:P � X on the state space of a coalgebra c:X → F (X) is an in-

variant if and only if P � X is a subcoalgebra: there is a (necessarily unique) coalgebra
structure P → F (P) making m:P � X a homomorphism of coalgebras:

F (P) //
F (m)

// F (X)

P

OO

//
m

// X

c

OO

(ii) Similarly, a predicate m:P � X is an invariant for an algebra a:F (X) → X if
P carries a (necessarily unique) subalgebra structure F (P) → P making m:P � X a
homomorphism of algebras.

Earlier we have seen a generic “binary” induction principle in Theorem 3.1.4. At this
stage we can prove the familiar “unary” induction principle for initial algebras.

4.2.6. Theorem (Unary induction proof principle). Every invariant on an initial algebra is
always true.

Equivalently, the truth predicate is the only invariant on an initial algebra. The proof is
a generalisation of the argument we have used in Example 2.4.3 to derive induction for the
natural numbers from initiality.

Dra
ft

108 CHAPTER 4. INVARIANTS

Proof. Assume m:P � A is an invariant on the initial algebra F (A)
∼=→ A. This means

by the previous theorem that P itself carries a subalgebra structure F (P)→ P , making the
square below on the right commute. This subalgebra yields a homomorphism f :A → P
by initiality, as on the left:

F (A)

∼=
��

F (f)
// F (P)

��

//
F (m)

// F (A)

∼=
��

A
f

// P //
m

// A

By uniqueness we then get m ◦ f = idA, which tells that t ∈ P , for all t ∈ A.

4.2.7. Example. Consider the binary trees trees from Example 2.4.4 as algebras of the
functor T (X) = 1 + (X ×A×X), with initial algebra

1 +
(
BinTree(A)×A× BinTree(A)

) [nil, node]
∼=

// BinTree(A)

Predicate lifting Pred(T)(P) ⊆ T (X) of an arbitrary predicate P ⊆ X is given by:

Pred(T)(P) = {κ1(∗)} ∪ {κ2(x1, a, x2) | a ∈ A ∧ P (x1) ∧ P (x2)}.

Therefore, a predicate P ⊆ BinTree(A) on the initial algebra is an invariant if both:
{

P (nil)

P (x1) ∧ P (x2)⇒ P (node(x1, a, x2))

The unary induction principle then says that such a P must hold for all binary trees t ∈
BinTree(A). This may be rephrased in rule form as:

P (nil) P (x1) ∧ P (x2)⇒ P (node(x1, a, x2))

P (t)

4.2.1 Greatest invariants and limits of coalgebras

In the the first chapter, in Definition 1.3.2 to be precise, we already saw the predicate �P ,
describing “henceforth P ” for a predicate P on sequences. Here we shall extend this same
idea to arbitrary coalgebras. This will be used to prove an important result: existence of
limits (products and equalisers) of coalgebras, see theorems 4.2.12 and 4.2.11. Along the
same lines, greatest invariants can be used to construct right adjoints to functors between
categories of coalgebras, see Exercise 4.2.5.

In Section 4.3 these greatest invariants will be studied more systematically in the con-
text of temporal logic.

4.2.8. Definition. Let c:X → F (X) be a coalgebra of a polynomial functor F :Sets →
Sets. For an arbitrary predicate P ⊆ X on the state space of c, we define a new predicate
�P ⊆ X , called henceforth P , as:

(
�P

)
(x) iff ∃Q ⊆ X.Q is an invariant for c ∧ Q ⊆ P ∧ Q(x).

Since invariants are closed under union—by Proposition 4.2.4 (i)—�P is an invariant.
Among all the invariants Q ⊆ X , it it the greatest one that is contained in P .

The definition of henceforth resembles the definition of bisimilarity (see Definition 3.1.5).
In fact, one could push the similarity by defining for an arbitrary relation R, �R as the

Dra
ft

4.2. INVARIANTS 109

greatest bisimilarity contained in R—so that bisimilarity ↔ would appear as �>. But
there seems to be no clear use for this extra generality.

The next lemma lists some obvious properties of �. Some of these are already men-
tioned in Exercise 1.3.3 for sequences.

4.2.9. Lemma. Consider the henceforth operator � for a coalgebra c:X → F (X). The
first three properties below express that � is an interior operator. The fourth property says
that its opens are invariants.

(i) �P ⊆ P ;
(ii) �P ⊆ ��P ;

(iii) P ⊆ Q⇒ �P ⊆ �Q;
(iv) P is an invariant if and only if P = �P .

Proof. (i) Obvious: if �P (x), thenQ(x) for some invariantQwithQ ⊆ P . Hence P (x).
(ii) If �P (x), then we have an invariant Q, namely �P , with Q(x) and Q ⊆ �P .

Hence ��P (x).
(iii) Obvious.
(iv) The (if)-part is clear because we have already seen that �P is an invariant. For the

(only if)-part, by (i) we only have to prove P ⊆ �P , if P is an invariant. So assume P (x),
then we have an invariant Q, namely P , with Q(x) and Q ⊆ P . Hence �P (x).

The following result gives an important structural property of greatest invariants. It
may be understood abstractly as providing a form of comprehension for coalgebras, as
elaborated in Exercise 4.2.4 below.

4.2.10. Proposition. Consider a coalgebra c:X → F (X) of a polynomial functor F with
an arbitrary predicate P ⊆ X . By Theorem 4.2.5 (i) the greatest invariant �P ⊆ P ⊆ X
carries a subcoalgebra structure, say cP , in:

F (�P) � �
F (m)

// F (X)

�P

cP

OO

� �

m
// X

c

OO

This subcoalgebra has the following universal property: each coalgebra homomorphism

f :
(
Y

d
→ F (Y)

)
−→

(
X

c
→ F (X)

)
which factors through P ⊆ X—i.e. satisfies

f(y) ∈ P for all y ∈ Y—also factors through �P as (unique) coalgebra homomorphism

f ′:
(
Y

d
→ F (Y)

)
→
(
�P

cP→ F (�P)
)

with m ◦ f ′ = f .

Proof. The assumption that f factors through P ⊆ X may be rephrased as an inclusion
Im(f) ⊆ P . But since the image along a homomorphism is an invariant, see Proposi-
tion 4.2.4 (ii), we get an inclusion Im(f) ⊆ �P . This gives the factorisation:

(
Y

f // X
)

=
(
Y

f ′
//
�P

� � m // X
)

We only have to show that f ′ is a homomorphism of coalgebras. But this follows because
F (m) is injective, as noted in Lemma 4.1.4. It yields cP ◦ f ′ = F (f ′) ◦ d since:

F (m) ◦ cP ◦ f ′ = c ◦ m ◦ f ′

= c ◦ f

= F (f) ◦ d

= F (m) ◦ F (f ′) ◦ d.

Dra
ft

110 CHAPTER 4. INVARIANTS

In the remainder of this section we shall use greatest invariants to prove the the existence
of limits equalisers and products of coalgebras. Recall from Exercises 2.1.14 and 2.1.13
that colimits (coequalisers and coproducts) are easy: they are constructed just like for sets.
The product structure of coalgebras, however, is less trivial. First results appeared in [241],
for “bounded” endofunctors on Sets. This was generalised in [105, 151, 124] and [134]
(which is followed below). We begin with equalisers, which are easy using henceforth.

4.2.11. Theorem (Equalisers of coalgebras). The category CoAlg(F) of coalgebras of a
polynomial functor F :Sets → Sets has equalisers: for two coalgebras X

c
→ F (X)

and Y
d
→ F (Y) with homomorphisms f, g:X → Y between them there is an equaliser

diagram in CoAlg(F),




F (� Equal(f, g))
↑

� Equal(f, g)


 // m //




F (X)
↑ c
X




f //

g
//




F (Y)
↑ d
Y




where Equal(f, g) ↪→ X is the equaliser {x ∈ X | f(x) = g(x)} as in Sets. The
greatest invariant invariant � Equal(f, g) ↪→ Equal(f, g) carries a coalgebra structure by
the previous proposition.

Proof. We show that the diagram above is universal in CoAlg(F): for each coalgebra
e:Z → F (Z) with homomorphism h:Z → X satisfying f ◦ h = g ◦ h, the map h factors
throughZ → Equal(f, g) via a unique function. By Proposition 4.2.10 h then restricts to a
(unique) coalgebra homomorphismZ → � Equal(f, g).

4.2.12. Theorem (Products of coalgebras). For a polynomial functor F :Sets → Sets,
the category CoAlg(F) of coalgebras has arbitrary products

∏
.

Proof. We shall construct the product of two coalgebras ci:Xi → F (Xi), for i = 1, 2, and
leave the general case to the reader. We first form the product X1 ×X2 of the underlying
sets, and consider the cofree coalgebra on it, see Proposition 2.5.3. It will be written as
e:UFG(X1×X2)→ F (UFG(X1×X2)), whereUF :CoAlg(F)→ Sets is the forgetful
functor, and G its right adjoint. It comes with a map ε:UFG(X1 ×X2)→ X1 ×X2. For
convenience we shall use the ad hoc notation εi = πi ◦ ε:UFG(X1 ×X2)→ Xi.

Next we form the following equaliser (in Sets).

E = {u ∈ UFG(X1 ×X2) | ∀i ∈ {1, 2}.
(
ci ◦ εi

)
(u) =

(
F (εi) ◦ e

)
(u)}.

Then we take its greatest invariant �E ⊆ E in the diagram describing E explicitly as
equaliser:

F (UFG(X1 ×X2))
〈F (ε1), F (ε2)〉

++VVVVVVVVV

�E
� � n // E

� �m // UFG(X1 ×X2)

e 44hhhhhhhhh

ε ++VVVVVVVVVV
F (X1)× F (X2)

X1 ×X2
c1 × c2

33hhhhhhhhhhh

By Proposition 4.2.10, the subset �E ⊆ UFG(X1×X2) carries an F -subcoalgebra struc-
ture, for which we write c1 ×̇ c2 in:

F (�E)
F (m ◦ n)

// F (UFG(X1 ×X2))

�E

c1 ×̇ c2

OO

m ◦ n
// UFG(X1 ×X2)

e

OO
(4.3)

Dra
ft

4.2. INVARIANTS 111

The dot in ×̇ is used to distinguish this product of objects (coalgebras) from the product
c1 × c2 of functions, as used in the equaliser diagram above.

We claim this coalgebra c1 ×̇ c2: �E → F (�E) is the product of the two coalge-
bras c1 and c2, in the category CoAlg(F). We thus follow the categorical description of
product, from Definition 2.1.1. The two projection maps are

pi
def
= εi ◦ m ◦ n : �E −→ Xi.

We have to show that they are homomorphisms of coalgebras c1 ×̇ c2 → ci. This follows
from easy calculations:

F (pi) ◦ (c1 ×̇ c2) = F (εi) ◦ F (m ◦ n) ◦ (c1 ×̇ c2)

= F (εi) ◦ e ◦ m ◦ n see the above diagram (4.3)

= πi ◦ (c1 × c2) ◦ ε ◦ m ◦ n since m is an equaliser

= ci ◦ πi ◦ ε ◦ m ◦ n

= ci ◦ pi.

Next we have to construct pairs, for coalgebra homomorphisms fi:
(
Y

d
→ F (Y)

)
−→(

Xi
ci→ F (Xi)

)
. To start, we can form the pair 〈f1, f2〉:Y → X1 × X2 in Sets. By

cofreeness it gives rise to unique function g:Y → UFG(X1 × X2) forming a coalgebra
homomorphism d→ e, with ε ◦ g = 〈f1, f2〉. This g has the following equalising property.

〈F (ε1), F (ε2)〉 ◦ e ◦ g = 〈F (π1 ◦ ε), F (π2 ◦ ε)〉 ◦ F (g) ◦ d

since g: d→ e

= 〈F (π1 ◦ 〈f1, f2〉), F (π2 ◦ 〈f1, f2〉)〉 ◦ d

= 〈F (f1) ◦ d, F (f2) ◦ d〉

= 〈c1 ◦ f1, c2 ◦ f2〉

because fi: d→ ci

= 〈c1 ◦ π1 ◦ ε ◦ g, c2 ◦ π2 ◦ ε ◦ g〉

= (c1 × c2) ◦ ε ◦ g.

As a result, g factors through m:E ↪→ UFG(X1 × X2), say as g = m ◦ g′. But then,
by Proposition 4.2.10, g′ also factors through �E. This yields the pair we seek: we write
〈〈f1, f2〉〉 for the unique map Y → �E with n ◦ 〈〈f1, f2〉〉 = g′.

We still have to show that this pair 〈〈f1, f2〉〉 satisfies the required properties.

• The equations pi ◦ 〈〈f1, f2〉〉 = fi hold, since:

pi ◦ 〈〈f1, f2〉〉 = πi ◦ ε ◦ m ◦ n ◦ 〈〈f1, f2〉〉

= πi ◦ ε ◦ m ◦ g′

= πi ◦ ε ◦ g

= πi ◦ 〈f1, f2〉

= fi.

• The pair 〈〈f1, f2〉〉 is the unique homomorphism with pi ◦ 〈〈f1, f2〉〉 = fi. Indeed,
if h:Y → �E is also a coalgebra map d → (c1 ×̇ c2) with pi ◦ h = fi, then
m ◦ n ◦ h is a coalgebra map d→ e which statisfies:

ε ◦ m ◦ n ◦ h = 〈π1 ◦ ε ◦ m ◦ n ◦ h, π2 ◦ ε ◦ m ◦ n ◦ h〉

= 〈p1 ◦ h, p2 ◦ h〉

= 〈f1, f2〉.

Dra
ft

112 CHAPTER 4. INVARIANTS

Hence m ◦ n ◦ h = g, and since g = m ◦ g′ we get n ◦ h = g′ because m is mono.
Similarly, since n ◦ g′ = 〈〈f1, f2〉〉 we get the required uniqueness: h = 〈〈f1, f2〉〉.

Since we have already seen that equalisers exist for coalgebras, we now know that all
limits exist (see for instance [167, V,2]). Exercises 2.1.14 and 2.1.13 showed that colimits
also exist. Hence we can summarise the situation as follows.

4.2.13. Corollary. The category CoAlg(F) of coalgebras of a polynomial functor is both
complete and cocomplete.

Exercises

4.2.1. Let F (X)
a→ X and F (Y)

b→ Y be algebras of a polynomial functor F . Prove, in analogy
with Lemma 4.2.2 that:
(i) If R ⊆ X × Y is a congruence, then both its domain

‘
π1
R ⊆ X and its codomain‘

π2
R ⊆ Y are invariants.

(ii) If P ⊆ X is an invariant, then
‘
δ P ⊆ X ×X is a congruence.

4.2.2. Use binary induction in Theorem 3.1.4 together with the previous exericse to give an alter-
native proof of unary induction from Theorem 4.2.6.

4.2.3. The next result from [85] is the analogue of Exercise 3.2.7; it describes when a function is
definable by coinduction.
Let Z

∼=−→ F (Z) be final coalgebra of a polynomial functor F . Prove that an arbitrary
function f :X → Z is defined by finality (i.e. is behc for some coalgebra c:X → F (X)
on its domain X) if and only if its image Im(f) ⊆ Z is an invariant.

[Hint. Recall the following version of the Axiom of Choice: every surjective function
g:A � B has a section, i.e. a function s:B → A with g ◦ s = idB . Apply this to the
surjective part X � Im(f) � Z in the factorisation of f :X → Z.]

4.2.4. This exercise will first describe (ordinary) comprehension, or subset types see [130, 4.6],
for sets in abstract, categorical form, and then show that the henceforth operator � fits into
this structure. It follows [134].

(i) Let Pred be the category of predicates (P ⊆ X) on sets. Its morphisms (P ⊆ X)
f→

(Q ⊆ Y) are functions f :X → Y mapping P to Q: f(x) ∈ Q for all x ∈ P .
Equivalently,

‘
f (P) ⊆ Q or P ⊆ f−1(Q). There is then an obvious forgetful

functor U : Pred → Sets mapping (P ⊆ X) to X . It is a “fibration”, see [130], but
that is not very relevant here.
There is a “truth” predicate functor >:Sets → Pred sending a set X to the truth
predicate >(X) = (X ⊆ X). Prove that > is right adjoint to U .

(ii) Define a “comprehension” or “subset type” functor {−}: Pred → Sets by (P ⊆
X) 7→ P . Prove that {−} is right adjoint to >, so that there is a situation:

Pred

{−}
~~

U

Sets

>a a
OO

(iii) Let F :Sets → Sets now be a polynomial functor. Show that predicate lifting
Pred(F) forms a functor in a commuting diagram:

Pred
Pred(F) //

U
��

Pred

U
��

Sets
F

// Sets

Dra
ft

4.3. TEMPORAL LOGIC OF COALGEBRAS 113

And prove that also the following two diagrams commute (see Lemma 4.1.3 (i) and
Lemma 4.1.4).

Pred
Pred(F) // Pred Pred

Pred(F) //

{−}
��

Pred

{−}
��

Sets
F

//

>
OO

Sets

>
OO

Sets
F

// Sets

(iv) We define a category PredCoAlg(F) of “predicates on coalgebras”. Its objects are
coalgebras-predicate pairs 〈X → F (X), P ⊆ X〉. And its morphisms 〈X →
F (X), P ⊆ X〉 −→ 〈Y → F (Y), Q ⊆ Y 〉 are coalgebra homomorphisms f : (X →
F (X)) −→ (Y → F (Y)) which are at the same time morphisms of predicates:
P ⊆ f−1(Q).
Check that this category PredCoAlg(F) can be formed as a pullback of categories:

PredCoAlg(F) //

��

Pred

U
��

CoAlg(F)
U

// Sets

(v) Define a truth predicate functor >:CoAlg(F) → PredCoAlg(F) which is right
adjoint to the forgetful functor PredCoAlg(F)→ CoAlg(F).

(vi) Prove that > has a right adjoint {−}: PredCoAlg(F)→ CoAlg(F) given by:

〈X c−→ F (X), P ⊆ X〉 7−→
“

�P
cP−→ F (�P)

”

using the induced coalgebra cP on the greatest invariant �P from Proposition 4.2.10.

4.2.5. The next categorical result is a mild generalisation of [216, Theorem 17.1]. It involves an
arbitrary functor K between categories of coalgebras, instead of a special functor induced
by a natural transformation, like in Proposition 4.1.8. Also the proof hint that we give lead
to a slightly more elementary proof than in [216] because it avoids bisimilarity and uses an
equaliser (in Sets) instead, much like in the proof of Theorem 4.2.12.
Consider two polynomial functors F,H:Sets → Sets. Assume that there is a functor
K between categories of coalgebras, commuting with the corresponding forgetful functors
UF and UH , like in:

CoAlg(F)

UF

a
++

K // CoAlg(H)

UHss
Sets

G
hh

Prove that if F has cofree coalgebras, given by a right adjointG to the forgetful functor UF
as in the diagram (and like in Proposition 2.5.3), then K has a right adjoint.

[Hint. For an arbitrary H-coalgebra d:Y → H(Y), first consider the cofree F -coalgebra
on Y , say e:UFG(Y)→ F (UFG(Y)), and then form the equaliser

E = {u ∈ UFG(Y) | (K(e) ◦ H(εY))(u) = (d ◦ εY)(u)}.

The greatest invariant �E is then the carrier of the required F -coalgebra.]

4.3 Temporal logic of coalgebras

Modal logic is a branch of logic in which the notions of necessity and possibility are in-
vestigated, via special modal operators. It has developed into a field in which other notions
like time, knowledge, program execution and provability are analysed in comparable man-
ners, see for instance [69, 95, 122, 160, 226, 43]. The use of temporal logic for reasoning

Dra
ft

114 CHAPTER 4. INVARIANTS

about (reactive) state-based systems is advocated especially in [200, 201, 174], concen-
trating on temporal operators for transition systems—which may be seen as special in-
stances of coalgebras (see Subsection 2.2.4). The coalgebraic approach to temporal logic
extends these operators from transition systems to other coalgebras, in a uniform manner,
following ideas first put forward by Moss [183] and subsequently developed by several
others [209, 211, 165, 136, 190, 163]. This will be the subject of the present section.

We have already seen a few constructions with predicate lifting and invariants. Here we
will elaborate the logical aspects, and will in particular illustrate how a tailor-made tempo-
ral logic can be associated with a coalgebra, via a generic definition. This follows [136].
The exposition starts with “forward” temporal operators, talking about future states, and
will continue with “backward” operators in Subsection 4.3.1.

The logic in this section will deal with predicates on the state spaces of coalgebras. We
extend the usual boolean connectives to predicates, via pointwise definitions: for P,Q ⊆
X ,

¬P = {x ∈ X | ¬P (x)}

P ∧ Q = {x ∈ X | P (x) ∧ Q(x)}

P ⇒ Q = {x ∈ X | P (x)⇒ Q(x)} etc.

In Section 1.3 we have described a nexttime operator© for sequences. We start by gener-
alising it to other coalgebras. This© will be used to construct more temporal operators.

4.3.1. Definition. Let c:X → F (X) be a coalgebra of a polynomial functor F . We define
the nexttime operator©:P(X)→ P(X) as:

©P = c−1
(
Pred(F)(P)

)

= {x ∈ X | c(x) ∈ Pred(F)(P)}.

We understand the predicate ©P as true for those states x, all of whose immediate
successor states, if any, satisfy P . This will be made precise in Proposition 4.3.7 below.
Notice that we leave the dependence of the operator© on the coalgebra c (and the functor)
implicit. Usually, this does not lead to confusion.

Here are some obvious results.

4.3.2. Lemma. The above nexttime operator© satisfies the following properties.
(i) It is monotone: P ⊆ Q ⇒ ©P ⊆ ©Q. Hence it is an endofunctor P(X) →

P(X) on the poset category of predicates ordered by inclusion.
(ii) It commutes with inverse images: ©(f−1Q) = f−1(©Q).

(iii) It has invariants as its coalgebras: P ⊆ X is an invariant if and only if P ⊆ ©P .
(iv) It preserves meets (intersections) of predicates.
(v) The greatest invariant �P from Definition 4.2.8 is the “cofree ©-coalgebra” on

P : it is the final coalgebra—or greatest fixed point—of the operator S 7→ P ∧ ©S on
P(X).

Proof. We only illustrate the second and the last point. For a homomorphism of coalgebras

(X
c
→ FX)

f
−→ (Y

d
→ FY) and a predicate Q ⊆ Y we have:

©(f−1Q) = c−1Pred(F)(f−1Q)

= c−1F (f)−1Pred(F)(Q) by Lemma 4.1.3 (ii)

= f−1d−1Pred(F)(Q) since f is a homomorphism

= f−1(©Q).

For the last point, first note that �P is a coalgebra of the functor P ∧ ©(−) on P(X).
Indeed, �P ⊆ P ∧ ©(�P), because �P is contained in P and is an invariant. Next,

Dra
ft

4.3. TEMPORAL LOGIC OF COALGEBRAS 115

Notation Meaning Definition

©P nexttime P c−1Pred(F)(P)

�P henceforth P νS. (P ∧ ©S)

♦P eventually P ¬�¬P

P U Q P until Q µS. (Q ∨ (P ∧ ¬©¬S))

Figure 4.1: Standard (forward) temporal operators.

�P is the greatest such coalgebra, and hence the final one: if Q ⊆ P ∧ ©Q, then Q
is an invariant contained in P , so that Q ⊆ �P . We conclude that �P is the cofree
©(−)-coalgebra.

The nexttime operator© is fundamental in temporal logic. By combining it with nega-
tions, least fixed points µ, and greatest fixed points ν one can define other temporal opera-
tors. For instance ¬©¬ is the so-called strong nexttime operator. It holds for those states
for which there actually is a successor state satisfying P . The table in Figure 4.3 mentions
a few standard operators.

We shall next illustrate the temporal logic of coalgebras in two examples.

4.3.3. Example. Douglas Hofstadter explains in his book Gödel, Escher, Bach [120] the
object- and meta-level perspective on formal systems using a simple “MU-puzzle”. It con-
sists of a simple “Post” production system (see e.g. [62, Section 5.1]) or rewriting system
for generating certain strings containing the symbols M, I, U. The meta-question that is
considered is wheter the string MU can be produced. Both this production system and this
question (and also its answer) can be (re)formulated in coalgebraic terminology.

Let therefore our alphabetA be the set {M, I,U} of relevant symbols. We will describe
the production system as an unlabeled transition system (UTS) A? → Pfin(A

?) on the the
set A? of strings over this alphabet. This is given by the following transitions (from [120]),
which are parametrised by strings x, y ∈ A?.

xI −→ xIU Mx −→ Mxx xIIIy −→ xUy xUUy −→ xy.

Thus, the associated transition system A? → Pfin(A
?) is given by:

w 7−→ {z ∈ A? | ∃x ∈ A?. (w = xI ∧ z = xIU)

∨ (w = Mx ∧ z = Mxx)

∨ ∃x, y ∈ A?. (w = xIIIy ∧ z = xUy)

∨ (w = xUUy ∧ z = xy)}

It is not hard to see that for each w this set on the right-hand-side is finite.

The question considered in [120] is whether the string MU can be obtained from MI.
That is, wheter MI −→∗ MU. Or, to put it into temporal terminology, whether the predicate

Dra
ft

116 CHAPTER 4. INVARIANTS

“equal to MU” eventually holds, starting from MI:

♦({x ∈ A? | x = MU})(MI)

⇐⇒ ¬�(¬{x ∈ A? | x = MU})(MI)

⇐⇒ ¬∃P invariant. P ⊆ ¬{x ∈ A? | x = MU} ∧ P (MI)

⇐⇒ ∀P invariant.¬
(
∀x ∈ P. x 6= MU) ∧ P (MI)

)

⇐⇒ ∀P invariant. P (MI) ⇒ ∃x ∈ P. x = MU

⇐⇒ ∀P invariant. P (MI) ⇒ P (MU).

Hofstadter [120] provides a counter example, by producing an invariantP for whichP (MI),
but not P (MU), namely:

P (x)
def
⇐⇒ the number of I’s in x is not a multiple of 3.

This P is clearly an invariant: of the above four parametrised transitions, the first and last
one do not change the number of I’s; in the second transition Mx −→ Mxx, if the number
of I’s in the right-hand-side, i.e. in xx, is 3n, then n must be even, so that the number of I’s
in x (and hence in Mx) must already be a multiple of 3; a similar argument applies to the
third transition. Thus, property P is an invariant. Once we have reached this stage we have
P as counter example: clearly P (MI), but not P (MU). Thus MU cannot be obtained from
MI.

This proof is essentially the same proof that Hofstadter provides, but of course he does
not use the same coalgebraic formulation and terminology. However, he does call the
property P ‘hereditary’.

This concludes the example. The relation we have used between −→∗ and ♦ will be
investigated more systematically below, see especially in Proposition 4.3.7.

Here is another, more technical, illustration.

4.3.4. Example. This example assumes some familiarity with the untyped lambda-calculus,
and especially with its theory of Böhm trees, see [28, Chapter 10]. It involves an opera-
tional model for head normal form reduction, consisting of a final coalgebra of certain
trees. Temporal logic will be used to define an appropriate notion of “free variable” on
these trees.

We fix a set V , and think of its elements as variables. We consider the polynomial
functor F :Sets→ Sets given by

F (X) = 1 +
(
V ? × V ×X?

)
(4.4)

In this example we shall often omit the coprojections κi and simply write ∗ for κ1(∗) ∈
1 + (V ? × V ×X?) and (~v, w, ~x) for κ2(~v, w, ~x) ∈ 1 + (V ? × V ×X?). Also, we shall
write ζ:B

∼=−→ F (B) for the final F -coalgebra—which exists by Theorem 2.3.9.
Lambda terms are obtained from variables x ∈ V , application MN of two λ-terms

M,N , and abstraction λx.M . By an easy induction one then sees that an arbitrary term
can be written of the form λx1 . . . xn. yM1 . . .Mm. The set Λ of λ-terms thus carries an
F -coalgebra structure, given by the head-normal-form function hnf: Λ → F (Λ), see [28,
Section 8.3]: for M ∈ Λ,

hnf(M) =





∗ if M has no head normal form

(〈x1, . . . , xn〉, y, 〈M1, . . . ,Mm〉)
if M has head normal form
λx1 . . . x1. yM1 . . .Mm

Dra
ft

4.3. TEMPORAL LOGIC OF COALGEBRAS 117

We can now define the Böhm tree BT(M) of a λ-term M via finality:

1 + (V ? × V × Λ?) //_________
id + (id× id× BT?)

1 + (V ? × V × B?)

Λ

hnf

OO

//________________
BT

B

ζ∼=

OO

We call the elements of B (abstract1) Böhm trees. We do not really need to know what
these elements look like, because we can work with the universal property of B, namely
finality. But a picture may be useful. For A ∈ B we can write:

ζ(A) = ⊥ or ζ(A) =




λx1 . . . xn. y

yy
yy

yy
yy

y

FF
FF

FF
FF

F

ζ(A1) · · · ζ(Am)




where the second picture applies when ζ(A) = (〈x1, . . . , xn〉, y, 〈A1, . . . , Am〉). The ‘λ’
is just syntactic sugar, used to suggest the analogy with the standard notation for Böhm
trees [28]. The elements of B are thus finitely branching, possibly infinite, rooted trees,
with labels of the form λx1 . . . xn. y, for variables xi, y ∈ V .

Using the inverse ζ−1: 1+(B?×V ×B?)→ B of the final coalgebra we can explicitly
construct Böhm trees. We give a few examples.

• Let us write ⊥B ∈ B for ζ−1(∗). This the “empty” Böhm tree.

• The Böhm tree λx. x is obtained as ζ−1(〈x〉, x, 〈〉). In a similar way one can con-
struct various kind of finite Böhm trees. For instance, the S combinatorλxyz. xz(yz)
is obtained as:

ζ−1(〈x, y, z〉, x, 〈ζ−1(〈〉, z, 〈〉), ζ−1(〈〉, y, 〈ζ−1(〈〉, z, 〈〉)〉)〉).

Its picture is:

λxyz. x

��
�� <<

<<

z y

z

• Given an arbitrary Böhm tree A ∈ B, we can define a new tree λx.A ∈ B via
λ-abstraction:

λx.A =

{
⊥B if ζ(A) = ∗

ζ−1(x · ~y, z, ~B) if ζ(A) = (~y, z, ~B).

We proceed by using temporal logic to define free variables for Böhm trees. This
requires some preliminary definitions. Let x ∈ V be an arbitrary variable. It will be used

1One may have a more restricted view and call “B öhm tree” only those elements in B which actullay come
from λ-terms, i.e. which are in the image of the function BT: Λ → B. Then one may wish to call the elements of
the whole set B “abstract” B öhm trees. We shall not do so. But it is good to keep in mind that the function BT is
not surjective. For example, B öhm trees coming from λ-terms can only have a finite number of free variables (as
defined below), whereas elements of B can have arbitrarily many.

Dra
ft

118 CHAPTER 4. INVARIANTS

in the auxiliary predicates Absx and Hvx on Böhm trees, which are defined as follows: for
B ∈ B,

Absx(B) ⇐⇒ ∃x1, . . . , xn. ∃B1, . . . , Bm.

B = λx1 . . . xn. yB1 . . . Bm and x = xi for some i

Hvx(B) ⇐⇒ ∃x1, . . . , xn. ∃B1, . . . , Bm.

B = λx1 . . . xn. yB1 . . . Bm and x = y.

Thus Absx describes the occurrence of x in the abstracted variables, and Hvx that x is the
head variable.

For a Böhm tree A ∈ B we can now define the set FV(A) ⊆ V of free variables in A
via the until operator U from Figure 4.3:

x ∈ FV(A) ⇐⇒
(
¬Absx U (Hvx ∧ ¬Absx)

)
(A).

In words: a variable x is free in a Böhm tree A if there is a successor tree B of A in which
x occurs as “head variable”, and in all successor trees of A until that tree B is reached,
including B itself, x is not used in a lambda abstraction. This until formula then defines a
predicate on B, namely ‘x ∈ FV(−)’.

There are then two crucial properties that we would like to hold for a Böhm tree A.

1. If A = ⊥B, then
FV(A) = ∅.

This holds because if A = ⊥B, then both Absx(A) and Hvx(A) are false, so that the
least fixed point in Figure 4.3 defining U at A in x ∈ FV(A) is µS. ¬©¬S. This
yields the empty set.

2. If A = λx1 . . . xn. yA1 . . . Am, then

FV(A) =
(
{y} ∪ FV(A1) ∪ · · · ∪ FV(Am)

)
− {x1, . . . , xn}.

This result follows from the fixed point property (indicated as ‘f.p.’ below) defining
the until operator U in Figure 4.3:

x ∈ FV(A)
def
⇐⇒

[
¬Absx U (Hvx ∧ ¬Absx)

]
(A)

f.p.
⇐⇒

[
(Hvx ∧ ¬Absx) ∨ (¬Absx ∧ ¬©¬(x ∈ FV(−)))

]
(A)

⇐⇒ ¬Absx(A) ∧
(
Hvx(A) ∨ ¬©¬(x ∈ FV(−))(A)

)

⇐⇒ x 6∈ {x1, . . . , xn} ∧
(
x = y ∨ ∃j ≤ m.x ∈ FV(Aj)

)

⇐⇒ x ∈
(
{y} ∪ FV(A1) ∪ · · · ∪ FV(Am)

)
− {x1, . . . , xn}.

This shows how temporal operators can be used to define sensible predicates on infinite
structures. The generic definitions prove to provide adequate expressive power in concrete
situations. We should emphasise however that the final coalgebra B of Böhm trees is only
an operational model of the lambda calculus and not a denotational one: for instance, it is
not clear how to define an application operation B × B → B on our abstract Böhm trees
via coinduction. Such application is defined on the Böhm model used in [28, Section 18.3]
via finite approximations. For more information on models of the (untyped) λ-calculus, see
e.g. [28, Part V], [130, Section 2.5], or [71].

Our next application of temporal logic does not involve a specific functor, like for Böhm
trees above, but is generic. It involves an (unlabeled) transition relation for an arbitrary
coalgebra. Before we give the definition it is useful to introduce some special notation, and
some associated results.

Dra
ft

4.3. TEMPORAL LOGIC OF COALGEBRAS 119

4.3.5. Lemma. For an arbitrary set X and an element x ∈ X we write introduce a “sin-
gleton” and “non-singleton” predicate on X:

(· = x) = {y ∈ X | y = x}

= {x}.

(· 6= x) = {y ∈ X | y 6= x}

= ¬(· = x).

Then:
(i) For a predicate P ⊆ X ,

P ⊆ (· 6= x) ⇐⇒ ¬P (x).

(ii) For a function f :Y → X ,

f−1
(
· 6= x

)
=

⋂

y∈f−1(x)

(· 6= y).

(iii) And for a polynomial functor F and a predicate Q ⊆ F (X),

Pred
←−−

(F)(Q) ⇐⇒ {x ∈ X | Q 6⊆ Pred(F)(· 6= x)}

where Pred
←−−

(F) is the “predicate lowering” left adjoint to predicate lifting Pred(F) from
Subsection 4.1.1.

Proof. Points (i) + (ii) follow immediately from the definition. For (iii) we use (i) in:

x ∈ Pred
←−−

(F)(Q) ⇐⇒ Pred
←−−

(F)(Q) 6⊆ (· 6= x)

⇐⇒ Q 6⊆ Pred(F)(· 6= x).

In Proposition 4.1.7 we have seen an abstract way to turn an arbitrary coalgebra into an
unlabeled transition system. Here, and later on in Theorem 4.3.9, we shall reconsider this
topic from a temporal perspective.

4.3.6. Definition. Assume we have a coalgebra c:X → F (X) of a polynomial functor F .
On states x, x′ ∈ X we define a transition relation via the strong nexttime operator, as:

x −→ x′ ⇐⇒ x ∈
(
¬©¬

)
(· = x′)

⇐⇒ x 6∈ ©(· 6= x′).

This says that there is a transition x −→ x′ if and only if there is successor state of x
which is equal to x′. In this way we turn an arbitrary coalgebra into an unlabeled transition
system.

We shall first investigate the properties of this new transition system−→, and only later
in Theorem 4.3.9 show that it is actually the same as the earlier translation from coalgebras
to transition systems from Subsection 4.1.1.

So let us first consider what we get for a coalgebra c:X → P(X) of the powerset
functor. Then the notation x −→ x′ is standardly used for x′ ∈ c(x). This coincides with
Definition 4.3.6 since:

x 6∈ ©(· 6= x′) ⇐⇒ x 6∈ c−1
(
Pred(P)(· 6= x′)

)

⇐⇒ c(x) 6∈ {a | a ⊆ (· 6= x′)}

⇐⇒ c(x) 6∈ {a | x′ 6∈ a}, by Lemma 4.3.5 (i)

⇐⇒ x′ ∈ c(x).

Dra
ft

120 CHAPTER 4. INVARIANTS

Now that we have gained some confidence in this temporal transition definition, we
consider further properties. It turns out that the temporal operators can be expressed in
terms of the new transition relation.

4.3.7. Proposition. The transition relation−→ from Definition 4.3.6, induced by a coalge-
bra X → F (X), and its reflexive transitive closure −→∗, satisfy the following properties.

(i) For a predicate P ⊆ X ,

(a) ©P = {x ∈ X | ∀x′. x −→ x′ ⇒ P (x′)}

(b) �P = {x ∈ X | ∀x′. x −→∗ x′ ⇒ P (x′)}

(c) ♦P = {x ∈ X | ∃x′. x −→∗ x′ ∧ P (x′)}.

This says that the temporal operators on the original coalgebra are the same as the
ones on the induced unlabeled transition system.

(ii) For a predicate P ⊆ X , the following three statements are equivalent.

(a) P is an invariant;
(b) ∀x, x′ ∈ X.P (x) ∧ x −→ x′ ⇒ P (x′);
(c) ∀x, x′ ∈ X.P (x) ∧ x −→∗

x′ ⇒ P (x′).

(iii) For arbitrary states x, x′ ∈ X , the following are equivalent.

(a) x −→∗
x′;

(b) P (x)⇒ P (x′), for all invariants P ⊆ X;
(c) x ∈ ♦(· = x′), i.e. eventually there is successor state of x which is equal to

x′.

Proof. (i) We reason as follows.

x ∈ ©P ⇐⇒ c(x) ∈ Pred(F)(P)

⇐⇒ {c(x)} ⊆ Pred(F)(P)

⇐⇒ Pred
←−−

(F)({c(x)}) ⊆ P

⇐⇒ ∀x′. x′ ∈ Pred
←−−

(F)({c(x)})⇒ P (x′)

⇐⇒ ∀x′. {c(x)} 6⊆ Pred(F)(· 6= x′)⇒ P (x′), by Lemma 4.3.5 (iii)

⇐⇒ ∀x′. c(x) 6∈ Pred(F)(· 6= x′)⇒ P (x′)

⇐⇒ ∀x′. x −→ x′ ⇒ P (x′).

For the inclusion (⊆) of (b) we can use (a) an appropriate number of times since �P ⊆
©�P and �P ⊆ P . For (⊇) we use that the predicate {x | ∀x′. x −→∗

x′ ⇒ P (x′)}
contains P and is an invariant, via (a); hence it is contained in �P .

The third point (c) follows directly from (b) since ♦ = ¬�¬.
(ii) Immediate from (i) since P is an invariant if and only if P ⊆ ©P , if and only if

P ⊆ �P .
(iii) The equivalence (b) ⇔ (c) follows by unfolding the definitions. The implication

(a)⇒ (b) follows directly from (ii), but for the reverse we have to do a bit of work. Assume
P (x) ⇒ P (x′) for all invariants P . In order to prove x −→∗

x′, consider the predicate

Q(y)
def
⇐⇒ x −→∗

y. Clearly Q(x), so Q(x′) follows once we have established that Q
is an invariant. But this is an easy consequence using (ii): if Q(y), i.e. x −→∗ y, and
y −→ y′, then clearly x −→∗ y′, which is Q(y′).

Dra
ft

4.3. TEMPORAL LOGIC OF COALGEBRAS 121

4.3.1 Backward reasoning

So far in this section we have concentrated on “forward” reasoning, by only considering
operators that talk about future states. However, within the setting of coalgebras there is
also a natural way to reason about previous states. This happens via predicate lowering
instead of via predicate lifting, i.e. via the left adjoint Pred

←−−
(F) to Pred(F), introduced in

Subsection 4.1.1.
It turns out that the forward temporal operators have backward counterparts. We shall

use notation with backwards underarrows for these analogues: ©
←−

, �←− and ♦←− are backward

versions of©, � and ♦.

4.3.8. Definition. For a coalgebra c:X → F (X) of a polynomial functor F , and a predi-
cate P ⊆ X on its carrier X , we define a new predicate lasttime P on X by

©
←−
P = Pred

←−−
(F)(

∐
c P)

= Pred
←−−

(F)({c(x) | x ∈ P}).

This is the so-called strong lasttime operator, which holds of a state x if there is an (im-
mediate) predecessor state of x which satisfies P . The corresponding weak lasttime is
¬©
←−
¬.

One can easily define an infinite extension of©
←−

, called earlier:

♦←−P = “the least invariant containing P ”

= {x ∈ X | ∀Q, invariant. P ⊆ Q ⇒ Q(x)}.

This predicate ♦←−P holds of a state x if there is some (non-immediate) predecessor state
of x for which P holds.

Figure 4.3.1 gives a brief overview of the main backward temporal operators. In the re-
mainder of this section we shall concentrate on the relation between the backward temporal
operators and transitions.

But first we give a result that was already announced. It states an equivalence between
various (unlabeled) transition systems induced by coalgebras.

4.3.9. Theorem. Consider a coalgebra c:X → F (X) of a polynomial functor F . Using
the lasttime operator©

←−
one can also define an unlabeled transition system by

x −→ x′ ⇐⇒ “there is an immediate predecessor state of x′ which is equal to x”

⇐⇒ x′ ∈ ©
←−

(· = x).

This transition relation is then the same as
(i) x 6∈ ©(· 6= x′) from Definition 4.3.6;

(ii) x′ ∈ Pred
←−−

(F)({c(x)}) used in the translation in (4.2), in Subsection 4.1.1.

Proof. All these forward and backward transition definitions are equivalent because:

x′ ∈ ©
←−

(· = x) ⇐⇒ x′ ∈ Pred
←−−

(F)(
∐
c(· = x)) by Definition 4.3.8

⇐⇒ x′ ∈ Pred
←−−

(F)({c(x)}) as used in (4.2)

⇐⇒ {c(x)} 6⊆ Pred(F)(· 6= x′) by Lemma 4.3.5 (iii)

⇐⇒ x 6∈ ©(· 6= x′) as used in Definition 4.3.6.

Dra
ft

122 CHAPTER 4. INVARIANTS

Notation Meaning Definition Galois connection

©
←−
P lasttime P Pred

←−−
(F)(

∐
c P) ©

←−
a ©

♦←−P (sometime) earlier P µS. (P ∨ ©
←−
S) ♦←− a �

�←−P (always) before P ¬ ♦←−¬P ♦ a �←−

P S Q P since Q µS. (Q ∨ (P ∧ ©
←−
S))

Figure 4.2: Standard (backward) temporal operators.

Finally we mention the descriptions of the backward temporal operators in terms of
transitions, like in Proposition 4.3.7 (i).

4.3.10. Proposition. For a predicate P ⊆ X on the state space of a coalgebra,
(i) ©
←−
P = {x ∈ X | ∃y. y −→ x ∧ P (y)}

(ii) ♦←−P = {x ∈ X | ∃y. y −→∗ x ∧ P (y)}

(iii) �←−P = {x ∈ X | ∀y. y −→∗ x ⇒ P (y)}.

Proof. Assume that c:X → F (X) is the coalgebra we are dealing with.

(i) ©
←−
P = Pred

←−−
(F)({c(y) | y ∈ P})

= Pred
←−−

(F)(
⋃
y∈P {c(y)})

=
⋃
y∈P Pred
←−−

(F)({c(y)}) since Pred
←−−

(F) is a left adjoint

= {x ∈ X | ∃y ∈ P. x ∈ ©
←−

(· = y)}

= {x ∈ X | ∃y. y −→ x ∧ P (y)}.

(ii) Let us write P ′ = {x ∈ X | ∃y. y −→∗
x ∧ P (y)} for the right hand side. We

have to prove that P ′ is the least invariant containing P .

• Clearly P ⊆ P ′, by taking no transition.

• Also P ′ is an invariant, by Proposition 4.3.7 (ii): if P ′(x), say with y −→∗
x where

P (y), and x −→ x′, then also y −→∗ x′ and thus P ′(x′).

• If Q ⊆ X is an invariant containing P , then P ′ ⊆ Q: if P ′(x), say with y −→∗ x
where P (y); then Q(y), and thus Q(x) by Proposition 4.3.7 (ii).

(iii) Immediately from the definition �←− = ¬ ♦←−¬.

Exercises

4.3.1. Consider the transition system A? → Pfin(A
?) from Example 4.3.3, and prove:

�(λx ∈ A?. ∃y ∈ A?. x = My)(MI).

This property is also mentioned in [120].

4.3.2. Prove the following “induction rule of temporal logic”:

P ∧ �(P ⇒©P) ⊆ �P.

[Aside: using the term ‘induction’ for a rule that follows from a greatest fixed point property
is not very fortunate.]

Dra
ft

4.3. TEMPORAL LOGIC OF COALGEBRAS 123

4.3.3. Prove that for a predicate P on the state space of coalgebra of a polynomial functor,

�P =
\

n∈N

©n P and ♦←−P =
[

n∈N

©←−
n P.

(Where©0 P = P , and©n+1 P =©©n P , and similarly for©←−.)

4.3.4. Prove that:

�(f−1Q) = f−1(�Q) ©←−(
‘
f P) =

‘
f (©←−P) ♦←−(

‘
f P) =

‘
f (♦←−P)

when f is a homomorphism of coalgebras.

4.3.5. Consider the transition relation −→ from Definition 4.3.6, and use Lemma 4.3.5 (ii) to
prove that for a homorphism f :X → Y of coalgebras,

f(x) −→ y ⇐⇒ ∃x′. x −→ x′ ∧ f(x′) = y.

Note that this states the functoriality of the translation from coalgebras to transitition sys-
tems like in (4.2).

4.3.6. Prove—and explain in words—that

x −→∗
x′ ⇐⇒ x′ ∈ ♦←−(· = x).

[The notation 〈x〉 = {x′ | x −→∗
x′} and 〈P 〉 = {x′ | ∃x ∈ P. x −→∗

x′} is used
in [216] for the least invariants ♦←−{x} = ♦←−(· = x) and ♦←−P containing an element x or
a predicate P .]

4.3.7. Verify the Galois connections in Figure 4.3.1.
[Such Galois connections for temporal logic are studied systematically in [154, 136].]

4.3.8. Check that P U P = P .

4.3.9. The following is taken from [65, Section 5], where it is referred to as the Whisky Problem.
It is used there as a challenge in proof automation in linear temporal logic. Here it will be
formulated in the temporal logic of an arbitrary coalgebra (of a polynomial functor).
Consider an arbitrary set A with an endofunction h:A → A. Let P :A → P(X) be a
parametrised predicate on the state space of a coalgebra X , satisfying for a specific a ∈ A
and y ∈ X:
(i) P (a)(y);
(ii) ∀b ∈ A.P (b)(y)⇒ P (h(b))(y);

(iii) �

“
{x ∈ X | ∀b ∈ A.P (h(b))(x)⇒©(P (b))(x)}

”
(y).

Prove then that �(P (a))(y).

[Hint. Use Exercise 4.3.3.]

4.3.10. Describe the nexttime operator © as a natural transformation 2U ⇒ 2U , like in Exer-
cise 4.1.3. Show that it can be described as a composition of natural transformations

2U //©

CC
CC

CC
C

CC
CC

CC
C

!!Pred(F)

2U

2FU

{{{{{{{

{{{{{{{

==

4.3.11. Prove that the “until” and “since” operators U ,S:P(X) × P(X) → P(X) on the state
space X of a coalgebra (see Figures 4.3 and 4.3.1) can be described in the following way
in terms of the transition relation −→⊆ X ×X from Definition 4.3.6.

P U Q = {x | ∃n. ∃x0, . . . , xn. x0 = x ∧ (∀i < n. xi −→ xi+1) ∧ Q(xn)

∧ ∀i < n. P (xi)}
P S Q = {x | ∃n. ∃x0, . . . , xn. xn = x ∧ (∀i < n. xi −→ xi+1) ∧ Q(x0)

∧ ∀i > 0. P (xi)}.

Dra
ft

124 CHAPTER 4. INVARIANTS

4.3.12. We consider the strong nexttime operator ¬©¬ associated with a coalgebra, and call a
predicate P maintainable if P ⊆ ¬©¬P . Notice that such a predicate is a ¬©¬-
coalgebra.
(i) Investigate what this requirement means, for instance for a few concrete coalgebras.
(ii) Let us use the notation EAP for the greatest maintainable predicate contained in P .

Describe EAP in terms of the transition relation −→ from Definition 4.3.6.
(iii) Similarly for AEP def

= ¬EA¬P
[Operators like EA and AE are used in computation tree logic (CTL), see e.g. [69] to reason
about paths in trees of computations. The interpretations we use here involve infinite paths.]

4.4 Existence of final coalgebras

At various places in this text final coalgebras have already been used. They have been de-
scribed explicitly for a number of special functors, like in Proposition 2.3.5. Theorem 2.3.9
has mentioned that a final coalgebra exists for each finite polynomial functor. It is the main
aim in this section to prove this result. The proofs are somewhat technical, and skipping the
details of this section should not be problematic for following the rest of the text—except
possibly the next section on trace semantics.

Actually, this section will describe two standard constructions, one for so-called ω-
continuous2 functors (including the simple polynomial functors), and one for ω-accessible
functors (including the finite polynomial ones). The second construction is thus more gen-
eral. But we include the first one as well because:

• it is a straightforward generalisation from well-known fixed point constructions in
order theory;

• it allows one to give an intuitive description of initial algebras and final coalgebras;

• it will be used explicitly in the next section.

The second construction makes use of the temporal logic of coalgebras from the previous
section. That it the reason why we have postponed this topic for so long.

Both these constructions will be used in the category of sets, although the mechanism
works more generally. For more information we refer to the literature [225, 7, 29, 10, 242,
216, 100, 210].

4.4.1 Final coalgebras for ω-continuous functors

It is a well-known fact from order theory—see e.g. [64, Chapter 4]—that the least fixed
point of a continuous function f :X → X on a suitable complete order X with a least
element⊥ ∈ X can be computed by iteration, namely as join

∨
n∈N

fn(⊥). By dualisation,
the greatest fixed point can be obtained as meet

∧
n∈N

fn(>)—where > is the greatest
element. This construction can be generalised to categories (as in [225, Lemma 2]), once
the relevant notions have been suitably extended. This will be done first.

Consider an endofunctor F : C → C on a category C with a final object 1 ∈ C. Then
we can consider the following “ω-chain”

1 F (1)
!oo F 2(1)

F (!)
oo F 3(1)

F 2(!)
oo . . .

F 3(!)
oo (4.5)

where ! is the unique map to the final object 1. If there is a “limit” Z of this chain, and
if F then “preserves” this limit, one gets a suitable final coalgebra Z

∼=−→ F (Z). This
generalises the order theoretic situation.

2The Greek letter ω is often used in mathematical logic for the set N of natual numbers. It is standard in this
context.

Dra
ft

4.4. EXISTENCE OF FINAL COALGEBRAS 125

We shall make this idea more precise. Therefore we consider a more general ω-chain
in C of the form:

X0 X1

f1oo X2

f2oo X3

f3oo . . .
f4oo

A limit of such a chain—if it exists—is an object Z ∈ C with a collection of arrows(
Z

ζn
−→ Xn

)
n∈N

satisfying fn+1 ◦ ζn+1 = ζn, with the following universal property. For
each object Y ∈ C with arrows gn:Y → Xn such that fn+1 ◦ gn+1 = gn, there is a
unique map h:Y → Z with ζn ◦ h = gn, for each n ∈ N. In a diagram:

X0 X1f1oo X2f2oo X3f3oo . . .f4oo · · · Z

ζ0

ww

ζ1

vv
ζ2

uu

Y

OO�
�
�
�
�
�

hg0WWWWWWWWWWWWWWWWWWWWWWWWWW

kkWWWWWWWWWWWWWWWWWWWWWWWWW g1UUUUUUUUUUUUUUUUUUUUU

jjUUUUUUUUUUUUUUUUUUUU g2RRRRRRRRRRRRRRR

hhRRRRRRRRRRRRRRR g3KKKKKKKKKK

. . .

eeKKKKKKKKKK

A functor F : C → D is said to preserve such a limit if the chain
(
F (Xn)

F (ζn)
−→

F (Z)
)
n∈N

resulting from applying F is a limit in the category D. Another way to for-
mulate this is: the induced map F (Z) → Z is an isomorphism. The functor F is called
ω-continuous if it preserves limits of all ω-chains.

The main reason for considering these constructions is the following result.

4.4.1. Lemma. Let C be a category with limits of ω-chains. Each continuous endofunc-
tor F : C → C then has a final coalgebra, obtained as limit Z

∼=−→ F (Z) of the chain
(
Fn+1(1)

Fn(!)
−→ Fn(1)

)
n∈N

in (4.5).

Proof. Applying F to the chain (4.5) and its limit Z yields another chain with limit F (Z).
Using the latter’s universal property yields an isomorphism ζ:Z

∼=−→ F (Z) with F (ζn) ◦
ζ = ζn+1. It is a final coalgebra, since for an arbitrary coalgebra c:Y → F (Y) we can
form a collection of maps cn:Y −→ Fn(1) via:

c0 =
(
Y

!
−→ 1

)

c1 =
(
Y

c
−→ F (Y)

F (!)
−→ F (1)

)

c2 =
(
Y

c
−→ F (Y)

F (c)
−→ F 2(1)

F 2(!)
−→ F 2(1)

)

...

cn+1 = F (cn) ◦ c.

The maps cn commute with the arrows in the chain, which is easily seen by induction. This
yields a unique map h:Y → Z with ζn ◦ h = cn. It forms a homomorphism of coalgebras,
i.e. satisfies ζ ◦ h = F (h) ◦ c, by uniqueness of maps Y → F (Z) to the limit F (Z):

F (ζn) ◦ ζ ◦ h = ζn+1 ◦ h

= cn+1

= F (cn) ◦ c

= F (ζn) ◦ F (h) ◦ c.

Dra
ft

126 CHAPTER 4. INVARIANTS

After these abstract considerations we show that they apply to simple polynomial func-
tors on sets.

4.4.2. Lemma. (i) In Sets limits of ω-chains exist, and are computed as follows. For a

chain
(
Xn+1

fn
−→ Xn

)
n∈N

the limit Z is a subset of the infinite product
∏
n∈N

Xn given
by:

Z = {(x0, x1, x2, . . .) | ∀n ∈ N. xn ∈ Xn ∧ fn(xn+1) = xn}.

(ii) Each polynomial functor F :Sets → Sets that is constructed without powerset is
ω-continuous.

Proof. (i) The maps ζn:Z → Xn are the n-th projections. The universal property is eas-
ily established: given a set Y with functions gn:Y → Xn satisfying fn+1 ◦ gn+1 =
gn, the unique map h:Y → Z with ζn ◦ h = gn is given by the ω-tuple h(y) =
(g0(y), g1(y), g2(y), . . .).

(ii) By induction on the structure of F , using that products, coproducts and (constant)
exponents preserve the relevant constructions.

4.4.3. Corollary. Each polynomial functor F :Sets→ Sets without powerset has a final
coalgebra, which can be computed as in (4.5).

We conclude this subsection onω-continuous functors by actually (re)calculating a final
coalgebra.

4.4.4. Example. In Corolary 2.3.6 (ii) we have seen that the final coalgebra for a (simple
polynomial) functorF (X) = XA×2 can be described as the set 2A

?

= P(A?) = L(A) of
languages with alphabetA. Here we shall reconstruct this coalgebra as limit of an ω-chain.

Therefore we start by investigating what the chain (4.5) looks like for this functor F .

F 0(1) = 1

F 1(1) = 1A × 2 ∼= 1× 2 ∼= 2

F 2(1) ∼= 2A × 2 ∼= 2A+1

F 3(1) ∼=
(
2A+1

)A
× 2 ∼= 2A×(A+1) × 2 ∼= 2A

2+A+1 etc.

One sees that:
Fn(1) ∼= P(

∑n−1
i=0 A

i).

And also that the maps F n(!):Fn+1(1) → Fn(1) are given by the inverse image κ−1
n

of the obvious coprojection function κn:An−1 + · · · + 1 −→ An + An−1 + · · · + 1.
An element U ∈ Z of the limit Z as described in Lemma 4.4.2 (i) consists of elements
Un ⊆ An−1 + · · ·+ 1, with the requirement that κ−1

n (Un+1) = Un. The latter means that
these Un+1 ⊆ An + An−1 + · · · + 1 can be identified with subsets Un+1 ⊆ An of words
of length n. Together they form a set of words, or language, U ⊆ A?, like in the original
description in Corolary 2.3.6 (ii).

4.4.2 Final coalgebras for ω-accessible functors

There is a general notion of “accessible” category and “accessible” functor, see e.g. [45].
But we only need the special case of “ω-accessibility” on Sets for our main result: every
finite polynomial functorF :Sets→ Sets has a final coalgebraZ

∼=−→ F (Z). This special
case uses that every set is a (directed) union of its finite subsets.

4.4.5. Definition. A functor F :Sets→ Sets is ω-accessible (or finitary) if it satisfies for
each set X ,

F (X) =
⋃

U∈Pfin(X)

F (U) =
⋃
{F (U) | U ⊆ X finite}.

This means that F is determined by how it acts on finite sets.

Dra
ft

4.4. EXISTENCE OF FINAL COALGEBRAS 127

4.4.6. Lemma. Each finite polynomial functor F :Sets→ Sets is ω-accessible.

Proof. By induction on the structure of F , using that F preserves inclusions. This accounts
for the inclusion (⊇). For the reverse inclusion we shall consider two cases, namely lists
and finite powersets.

• If F = G? and 〈y0, . . . , yn〉 ∈ F (X) = G(X)?, then by induction assumption there
are finite subsets Ui ⊆ X with yi ∈ G(Ui). The union U =

⋃
i Ui is then a finite set

with yi ∈ G(U) for each i. This yields 〈y0, . . . , yn〉 ∈ G(U)? = F (U), as required.

• The same argument applies for the case F = Pfin(G) and an element {y0, . . . , yn} ∈
F (X) = Pfin(G(X)).

The temporal logic of coalgebras from the previous section is used in the following
observation.

4.4.7. Lemma. For each coalgebra c:X → F (X) of a finite polynomial functor F , and
for each of its states x ∈ X , the invariant predicate of successor states of x,

♦←−(x) = {y ∈ X | x −→∗ y}

is countable.

Proof. By Exercise 4.3.3 we have ♦←−(x) =
⋃
n∈N
©
←−

n(· = x). Hence it suffices to

show that for each x ∈ X the set ©
←−
x = {y | x −→ y} = Pred

←−−
(F)(

∐
c(· = x)) =

Pred←−−(F)({c(x)}) of immediate successors is finite. Now we use that F is ω-accessible and
that predicate lifting is basically given by functor application (see Lemma 4.1.4) in:

c(x) ∈ F (X) =
⋃

U∈Pfin(X)

F (U) =
⋃

U∈Pfin(X)

Pred(F)(U)

=⇒ {c(x)} ⊆ Pred(F)(U), for some finite U ⊆ X

=⇒ Pred
←−−

(F)({c(x)}) ⊆ U, for some finite U ⊆ X , since Pred
←−−

(F) a Pred(F)

=⇒ Pred
←−−

(F)({c(x)}) is finite.

We can now prove the main result, based on [29], see also [216].

4.4.8. Theorem (Theorem 2.3.9). Each finite Kripke polynomial functor F :Sets→ Sets

has a final coalgebra.

Proof. The proof proceeds in two steps: first a so-called weakly final coalgebra is con-
structed, and then a properly final one is obtained via a suitable quotient.

We first form the collection of all states and F -coalgebras on subsets of N.

W = {(n,N, d:N → F (N)) | n ∈ N ∧ N ⊆ N}.

It carries a coalgebra structure ξ:W → F (W) itself, such that for each coalgebra d:N →
F (N) on N ⊆ N the associated coprojection κ(N,d):N → W given by n 7→ (n,N, d) is
a homomorphism. Just take ξ(n,N, d) = (F (κN,d) ◦ d)(n). Next we take Z = W/↔.
Quotienting ξ with bisimilarity ↔, like in Exercise 3.4.1, forces the induced coalgebra
ζ:Z = W/↔ → F (Z) to be observable. The latter means that bisimilarity on Z is
equality. We claim that ζ is final.

For each element x ∈ X , we know by the previous lemma that the set ♦←−(x) = {y ∈

X | x −→∗
y} of successor states is countable. Therefore it is isomorphic to a subset of

Nx ⊆ N, say via ϕx:Nx
∼=−→ ♦←−(x). The invariant ♦←−(x) ⊆ X carries a subcoalgebra

structure, say cx: ♦←−(x) → F (♦←−(x)), by Theorem 4.2.5 (i). We write cNx :Nx → F (Nx)

Dra
ft

128 CHAPTER 4. INVARIANTS

for the induced coalgebra structure onNx. This leads to the following diagram of coalgebra
maps.

F (X) F (♦←−(x))? _oo F (Nx)
F (κ(Nx,cN

x))//? _

∼=

F (ϕx)oo F (W) // F (W/↔)

X

c

OO

♦←−(x)

cx

OO

? _oo

OO

Nx κ(Nx,cN
x)

//

cNx

OO

? _
∼=
ϕx

oo W

ξ

OO

// // W/↔

ζ

OO

Having chosen for each x ∈ X such a subcoalgebra cNX :Nx → F (Nx) of c we can form
their coproduct coalgebra. Its state space

∐
x∈X Nx is the coproduct in Sets, see Exer-

cise 2.1.13, with cotuple homomorphism π:
∐
x∈X Nx � X . This gives the following

diagram of coalgebra homomorphisms.

∐
x∈X Nx

//π //

''PPPPPPP
X

���
�
�
�

fW

&&NN
NNN

N

&&
W/↔ = Z

The dashed homomorphism f exists because the epimorphism π is the coequaliser of
its kernel relation Ker(π), see Exercise 3.3.6. The latter is a bisimulation, by Proposi-
tion 3.2.6 (ii), so that the composite

∐
x∈X Nx →W � W/↔maps pairs (u, v) ∈ Ker(π)

to equal values.
The homomorphism f is unique because the coalgebra on Z = W/↔ is observable by

construction (see Exercises 3.4.1 and 3.4.2): if there are two homomorphisms f, g:X → Z,
their image Im(〈f, g〉) ⊆ Z × Z is a bisimulation, and is thus contained in the equality
relation on Z. Hence (f(x), g(x)) ∈ Im(〈f, g〉) ⊆ Eq(Z), so that f(x) = g(x), for all
x ∈ X .

More information about this construction for ω-accessible functors may be obtained
from [242, 157, 9].

Weakly final (co)algebras may also be constructed in (second order) polymorphic type
theory, see [106, 243]. Under suitable parametricity conditions, these constructions yield
proper final coalgebras, see [108, 197, 25].

Exercises

4.4.1. Fill in the details of the proof of Lemma 4.4.1.

4.4.2. (i) Formulate the notions of ω-colimit and ω-cocontinuity.

(ii) Check that the colimit of an ω-chainX0
f0−→ X1

f1−→ X2 · · · in Sets can be described
as quotient of the disjoint union:

‘
n∈N

Xn/∼ = {(n, x) | n ∈ N ∧ x ∈ Xn}/∼
where

(n, x) ∼ (m, y) ⇐⇒ ∃p ≥ n,m. fnp(x) = fmp(y),

with fqp = fp−1 ◦ fp−2 ◦ · · · ◦ fq :Xq → Xp for q ≤ p.
(iii) Prove that, dually to Lemma 4.4.1, the initial algebra of an ω-cocontinuous functor

F : C → C on a category C with initial object 0 ∈ C can be obtained as ω-colimit A
of the chain:

0
! //

α0

++VVVVVVVVVVVVVVVVVVVVVVVVVVV F (0)
F (!) //

α1

))SSSSSSSSSSSSSSSSS F 2(0)
F 2(!) //

α2

""E
EEE

EEEE
· · ·

A

Dra
ft

4.5. TRACE SEMANTICS 129

with the induced initial algebra α:F (A)
∼=−→ A satisfying α ◦ F (αn) = αn+1.

4.4.3. Consider an initial algebra α:F (A)
∼=−→ A as constructed in the previous exercise for a

functor F that preserves monomorphisms (like any weak-pullback-preserving, and hence
any polynomial functor, see Exercise 3.3.7). Assume F also has a final coalgebra ζ:Z

∼=−→
F (Z), and let ι:A → Z be the unique (algebra and coalgebra) homomorphism with ζ ◦
ι = F (ι) ◦ α−1. Prove that ι is injective.

[Hint. Define suitable ζn:Z → Fn(1) and use that F n(!):Fn(0)→ Fn(1) is mono.]

4.5 Trace semantics

This section will describe how finite traces of observables of computations can be described
via coinduction. The two main examples involve non-deterministic automata and context-
free grammars. This requires a move from the category Sets of sets and functions to the
category REL of sets and relations, as introduced in Example 1.4.2 (iv). Its objects are sets,
and its morphismsX → Y are relations R ⊆ X × Y . They may equivalently be described
as a characteristic function R:X → P(Y). We shall often switch back-and-forth between
these two notations. The identity map X → X in REL is the equality relation Eq(X) ⊆
X×X . And composition ofR:X → Y and S:Y → Z is the usual relational composition:
S ◦ R = {(x, z) ∈ X × Z | ∃y ∈ Y.R(x, y) ∧ S(y, z)}. There is an obvious “graph”
functor Sets → REL as already described in Example 1.4.4 (iv). It maps a set to itself,
and a function f :X → Y to its graph relation Graph(f) = {(x, y) ∈ X × Y | f(x) = y}.

We start with an example. Let us fix a set A, and write L for the “list” functor
Sets → Sets given by X 7→ 1 + (A × X). We shall consider transition systems of
the form c:X → P(LX) = P(1 + (A ×X)). As noticed in Exercise 2.2.3, such transi-
tion systems correspond to non-deterministic automata X → P(X)A × 2. Here we prefer
the formulation with the powerset on the outside, because it allows us to describe such
automata as maps X → L(X) in the category REL.

These transition systems X → P(1 + (A × X)) describe besides usual transitions
x

a
−→ x′, as shorthand for (a, x′) ∈ c(x), also terminating transitions x −→ ∗ for ∗ ∈ c(x).

A trace for such a coalgebra starting at an element x ∈ X consists of a list of elements
〈a1, . . . , an〉 ∈ A? for which there is a list of states x0, . . . , xn ∈ X where:

• x0 = x;

• xi
ai−→ xi+1 for all i < n;

• xn −→ ∗.

One can then define a function tracec:X → P(A?) that maps a state to the set of traces
starting in that state. We shall show how to define this function by coinduction. It turns out
not to be a coincidence that the set A? of lists is the initial algebra of the functor L.

First we need to move from sets to relations as morphisms. We shall lift the func-
tor L:Sets → Sets to L: REL → REL. It maps an object (or set) X to L(X), and a
morphism R:X → Y in REL to the morphism Rel(L)(R):L(X) → L(Y) obtained by
relation lifting. This yields a functor because relation lifting preserves equality and compo-
sition, see Lemma 3.2.1. For convenience, we note that according to Definition 3.1.1, the
relation lifting Rel(L)(R) ⊆ L(X)× L(Y) is described by:

Rel(L)(R) = {(∗, ∗)} ∪ {〈(a, x), (a, x′)〉 | R(x, x′)}.

We now have three important observations.

1. The first one is simple: a transition system, or P(L)-coalgebra, c:X → P(LX)
as considered above is an L-coalgebra X → LX in REL, for the lifted functor
L: REL→ REL.

Dra
ft

130 CHAPTER 4. INVARIANTS

2. Further, the above trace map tracec:X → P(A?), considered as a homomorphism
X → A? in REL, is a homomorphism of L-coalgebras in REL:

L(X)
Rel(L)(tracec) // L(A?)

X

c

OO

tracec
// A?

∼= Graph(α−1)

OO
(4.6)

where α = [nil, cons]:L(A?)
∼=−→ A? is the initial algebra map. Commutation

amounts to:

σ ∈ tracec(x) ⇐⇒ ∃u ∈ L(X). u ∈ c(x) ∧ 〈u, α−1(σ)〉 ∈ Rel(L)(tracec).

This may be split in two cases, depending on whether the list σ ∈ A? is empty or
not:

〈〉 ∈ tracec(x) ⇐⇒ ∃u ∈ L(X). u ∈ c(x) ∧ 〈u, ∗〉 ∈ Rel(L)(tracec)

⇐⇒ ∗ ∈ c(x)

⇐⇒ x −→ ∗

a · σ ∈ tracec(x) ⇐⇒ ∃u ∈ L(X). u ∈ c(x) ∧ 〈u, (a, σ)〉 ∈ Rel(L)(tracec)

⇐⇒ ∃x′ ∈ X. (a, x′) ∈ c(x) ∧ 〈x′, σ〉 ∈ tracec
⇐⇒ ∃x′ ∈ X. x

a
−→ x′ ∧ σ ∈ tracec(x′).

This shows that the map tracec indeed makes the diagram commute.

3. Finally, the map tracec in (4.6) is obtained by coinduction since the graph of the
initial L-algebra Graph(α−1):A?

∼=−→ L(A?) is a final L-coalgebra in REL.

We have already seen that there is a homomorphism tracec for an arbitrary L-
coalgebra c. Here we check that it is unique: if a relation S ⊆ X ×A? also satisfies
Graph(α−1) ◦ S = Rel(L)(S) ◦ c, then S = tracec. Indeed, for x ∈ X one obtains
σ ∈ S(x)⇔ σ ∈ tracec(x) by induction on σ ∈ A?:

〈〉 ∈ S(x) ⇐⇒ ∃τ ∈ A?. ∗ = α−1(τ) ∧ τ ∈ S(x)

⇐⇒ ∃τ ∈ A?. ∗ ∈ Graph(α−1)(τ) ∧ τ ∈ S(x)

⇐⇒ ∗ ∈ (Graph(α−1) ◦ S)(x)

⇐⇒ ∗ ∈ (Rel(L)(S) ◦ c)(x)

⇐⇒ ∃u ∈ L(X). ∗ ∈ Rel(L)(S)(u) ∧ u ∈ c(x)

⇐⇒ ∗ ∈ c(x)

⇐⇒ 〈〉 ∈ tracec(x)

a · σ ∈ S(x) ⇐⇒ ∃τ ∈ A?. (a, σ) = α−1(τ) ∧ τ ∈ S(x)

⇐⇒ ∃τ ∈ A?. (a, σ) ∈ Graph(α−1)(τ) ∧ τ ∈ S(x)

⇐⇒ (a, σ) ∈ (Graph(α−1) ◦ S)(x)

⇐⇒ (a, σ) ∈ (Rel(L)(S) ◦ c)(x)

⇐⇒ ∃u ∈ L(X). (a, σ) ∈ Rel(L)(S)(u) ∧ u ∈ c(x)

⇐⇒ ∃x′ ∈ X. σ ∈ S(x′) ∧ (a, x′) ∈ c(x)
(IH)
⇐⇒ ∃x′ ∈ X. σ ∈ tracec(x′) ∧ x

a
−→ x′

⇐⇒ a · σ ∈ tracec(x).

Dra
ft

4.5. TRACE SEMANTICS 131

We shall describe this situation in greater generality, following [109]. Like before, for a
polynomial functor F :Sets→ Sets we shall also write F for the lifting F : REL→ REL
that maps a setX to FX and a relationR:X → Y to its relation lifting Rel(F)(R):FX →
FY .

4.5.1. Theorem. Let F :Sets→ Sets be a polynomial functor without powersets or expo-
nents (−)B with infinite sets B. The initial F -algebra α:F (A)

∼=−→ A in Sets then yields
a final F -coalgebra Graph(α−1):A

∼=−→ F (A) in REL, for the lifting F : REL→ REL.

Proof. For an F -coalgebra c:X → FX in REL—or a function c:X → P(FX)—we
shall construct an appropriate map tracec:X → P(A). We use that the initial algebra
α:F (A)

∼=−→ A is obtained, like in Exercise 4.4.2, as colimit of the ω-chain:

0
! //

α0

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW F (0)
F (!)

//

α1

))TTTTTTTTTTTTTTTTTTTTT F 2(0)
F 2(!)

//

α2

%%JJJJJJJJJJJ
· · ·Fn(0)

Fn(!)
// Fn+1(0) · · ·

αn+1

xxpppppppppppp

F (αn)
��

A F (A)α

∼=oo

where the coprojections αn:Fn(0)→ A satisfy α ◦ F (αn) = αn+1 by construction of α.
In this situation we first define a collection of relations Sn ⊆ X ×Fn(0) by induction:

S0 = 0 and Sn+1 = Rel(F)(Sn) ◦ c

Hence S0 is the empty relation 〈!X , id〉: 0 � X × 0, which can also be described as
inverse image of the equality relation on X , namely S0 = (id× !X)−1(Eq(X)), or as
graph Graph(!X) of the unique function !X : 0 → X . And Sn+1 is the composite of c ⊆
X × F (X) and Rel(F)(Sn) ⊆ F (X)× F n+1(0). We claim that Sn is then a composition
of n relations, of the form:

Sn = Graph(F n(!X)) ◦ Rel(F)n−1(c) ◦ · · · ◦ Rel(F)(c) ◦ c

= {(x, a) ∈ X × F n(0) | ∃x0 ∈ X, x1 ∈ F (X), . . . , xn ∈ Fn(X).

x0 = x ∧ ∀i < n. (xi, xi+1) ∈ Rel(F)n(c) ∧ xn = Fn(!X)(a)}.

(4.7)

This is obtained by induction on n, using that relation lifting preserves compositions and
graphs.

We now define the relation tracec ⊆ X ×A as follows.

tracec =
⋃
n∈N

∐
id×αn

Sn

=
⋃
n∈N

(Graph(αn) ◦ Sn).

This is a union of an ascending chain: assume (x, a) ∈
∐

id×αn
Sn, say a = αn(b) for

b ∈ Fn(0), with (x, b) ∈ Sn. The latter yields x0 ∈ X , x1 ∈ F (X), . . . , xn ∈ Fn(X)
with x0 = x, ∀i < n. (xi, xi+1) ∈ Rel(F)i(c), and xn = Fn(!F0)(b). We take b′ =
Fn(!F0)(b) ∈ Fn+1(0) and xn+1 = Fn+1(!X)(b′) = Fn(!FX)(b) ∈ Fn+1(X). For
(x, b′) to be in Sn+1 it suffices to show (xn, xn+1) ∈ Rel(F)n+1(c). This is done as
follows. We have Eq(0) ⊆ (!X× !FX)−1(c), as demonstrated by the commuting diagram
below.

0
��

〈id, id〉
��

! // c
��

��
0× 0

!X× !FX
// X × FX

Dra
ft

132 CHAPTER 4. INVARIANTS

Then:
(b, b) ∈ Eq(F n(0)) = Rel(F)n(Eq(0))

⊆ Rel(F)n((!X× !FX)−1(c))

= (Fn(!X)× Fn(!FX))−1Rel(F)n(c).

Hence the pair xn = Fn(!X)(b), xn+1 = Fn(!FX)(b) is in Rel(F)n(c), as required.
Finally, we have αn+1(b

′) = αn(b) = a, so that (x, a) ∈
∐

id×αn+1
Sn+1. This shows that

the chain is ascending.
Our aim is to show that tracec is the unique map (in REL) making the following dia-

gram commute.

F (X)
Rel(F)(tracec) // F (A)

X

c

OO

tracec
// A

∼= Graph(α−1)

OO

Commutation of the above square is relatively easy, using that relation lifting for a func-
tor F without powerset or infinite exponents preserves unions of ascending chains, see
Exercise 3.2.1 (ii):

Rel(F)(tracec) ◦ c

=
(⋃

n∈N

∐
id×F (αn) Rel(F)(Sn)

)
◦ c

=
⋃
n∈N

∐
id×F (αn)

(
Rel(F)(Sn) ◦ c

)
by Exercise 4.5.2 (i)

=
⋃
n∈N

∐
id×F (αn) Sn+1

=
⋃
n∈N

∐
id×α−1

∐
id×αn+1

Sn+1 since α ◦ F (αn) = αn+1

=
∐

id×α−1

⋃
n∈N

∐
id×αn+1

Sn+1 since
∐

id×α−1 is a left adjoint

=
∐

id×α−1

(⋃
n∈N

∐
id×αn+1

Sn+1 ∪
∐

id×α0
S0

)
since S0 = 0

=
∐

id×α−1 tracec
= Graph(α−1) ◦ tracec by Exercise 4.5.2 (iii).

The next step is uniqueness: assume R ⊆ X × A also satisfies Rel(F)(R) ◦ c =
Graph(α−1) ◦ R, or equivalently, R = Graph(α) ◦ Rel(F)(R) ◦ c. Then R = tracec,
which is shown in two steps.

(⊇) This requires inclusions Graph(αn) ◦ Sn ⊆ R for each n ∈ N. The proof method is
induction, of course. The base case n = 0 is trivial: Graph(α0) ◦ S0 = Graph(α0) ◦
0 = 0 ⊆ R. For the induction step we compute:

Graph(αn+1) ◦ Sn+1 = Graph(α ◦ F (αn)) ◦ Rel(F)(Sn) ◦ c

= Graph(α) ◦ Graph(F (αn)) ◦ Rel(F)(Sn) ◦ c

= Graph(α) ◦ Rel(F)(Graph(αn)) ◦ Rel(F)(Sn) ◦ c

= Graph(α) ◦ Rel(F)(Graph(αn) ◦ Sn) ◦ c
(IH)
⊆ Graph(α) ◦ Rel(F)(R) ◦ c

= R.

(⊆) For (x, a) ∈ R we need to find an n ∈ N with (x, a) ∈ Graph(αn) ◦ Sn. Since
a ∈ A, and A is obtained as colimit of the ω-chain F i(0), there is an i ∈ N and
b ∈ F i(0) with a = αi(b). So we are done if we can prove for each n,

Graph(αn) ◦ Sn ⊇ R ∩ (X × Im(αn))

= Graph(αn) ◦ Graph(αn)
−1 ◦ R.

(4.8)

Dra
ft

4.5. TRACE SEMANTICS 133

We shall prove this inclusion by induction on n ∈ N. The base case is trivial because
Im(α0) = ∅. For the induction step we reason as follows.

Graph(αn+1) ◦ Graph(αn+1)
−1 ◦ R

= Graph(α ◦ F (αn)) ◦ Graph(α ◦ F (αn))−1 ◦ R

= Graph(α) ◦ Rel(F)(Graph(αn)) ◦ Rel(F)(Graph(αn))−1 ◦ Graph(α)−1 ◦

Graph(α) ◦ Rel(F)(R) ◦ c

= Graph(α) ◦ Rel(F)(Graph(αn)) ◦ Rel(F)(Graph(αn))−1 ◦ Rel(F)(R) ◦ c

= Graph(α) ◦ Rel(F)(Graph(αn) ◦ Graph(αn)
−1 ◦ R) ◦ c

(IH)
⊆ Graph(α) ◦ Rel(F)(Graph(αn) ◦ Sn) ◦ c

= Graph(α) ◦ Graph(F (αn)) ◦ Rel(F)(Sn) ◦ c

= Graph(αn+1) ◦ Sn+1.

This theorem describes traces for transition systems as described in the beginning of
this section. The main application of [109] is the parsed language associated with a context
free grammar.

4.5.2. Example. Recall from Subsection 2.2.5 that a context-free grammar (CFG) is de-
scribed coalgebraically as a function g:X → P((X + A)?) where X is the state space
of nonterminals, and A is the alphabet of terminals (or tokens). Such a CFG is thus a
coalgebra in REL of the functor F (X) = (X +A)?. Let us write its initial algebra as:

(A4 +A)?
α
∼=

// A4

Notice that F (X) = (X + A)? =
∐
n∈N

(X + A)n =
∐
σ∈(1+A)? X‖σ‖ where ‖σ‖ ∈ N

is the number of ∗ ∈ 1 occurring in σ ∈ (1 + A)?. Hence an F -algebra F (X) → X
involves an n-ary operation Xn → X for each σ ∈ (1 + A)? with n = ‖σ‖. An example
of such a σ is 〈if, ∗, then, ∗, else, ∗, fi〉. It may be understood as a ternary operation. The
initial algebra A4 then consists of terms built with such operations. Hence it contains all
structured or parsed words over A.

Theorem 4.5.1 gives for each CFG g:X → P((X + A)?) a unique homomorphism
traceg:X → P(A4). It maps a nonterminal x ∈ X to the collection of parsed words that
can be produced from x.

The trace semantics that we have described in this section induces a new type of equiv-
alence on states (of suitable coalgebras), namely trace equivalence, given by the relation
{(x, y) | trace(x) = trace(y)}. Exercise 4.5.5 below shows that bisimilarity induces trace
equivalence, but not the other way around.

The category REL of sets and relations that we use for trace semantics may be de-
scribed as the so-called Kleisli category of the powerset monad. This aspect of trace se-
mantics is also present in other sources [203, 137] on this topic, and may form the basis for
a more systematic investigation.

Exercises

4.5.1. Give an explicit description of the relations Sn from (4.7) for the functor L = 1+(A×(−))
from the beginning of this section.

4.5.2. Prove that for relations Ri, R, S and functions f :

(i)
“ S

i∈N
Ri

”
◦ S =

S
i∈N

“
Ri ◦ S

”
.

Dra
ft

134 CHAPTER 4. INVARIANTS

(ii)
“ ‘

id×f R
”
◦ S =

‘
id×f

“
R ◦ S

”
.

(iii) Graph(f) ◦ R =
‘

id×f R.

4.5.3. Consider the alphabet {a, b} with two non-terminals V,W and productions:

V −→ a · V V −→W W −→ b ·W · a W −→ 〈〉.

(i) Describe this CFG as a coalgebra with state space {V,W}.
(ii) Check that the unparsed language generated by V is the set {anbmam | n,m ∈ N}.
(iii) Consider the parsed language map traceg : {V,W} → {a, b}4 from Example 4.5.2

and show that a term t ∈ traceg(V) can be drawn as a tree:

a

a

:

a

uuu
u JJJ

J

b
yy

yy FF
FF a

b : a

uuu
u JJJ

J

b a

4.5.4. (i) Define a function A4 → A? that maps parsed words to “flat” words by initiality.
Prove that this function is a split epi.

(ii) Prove that the assignment A 7→ A4 is functorial, and that the mapping A4
� A?

from (i) form a natural transformation.

(iii) Let A∧ be the final coalgebra of the functor X 7→ (X + A)? from Example 4.5.2.
It consists of both the finite and infinite parsed words. Define a map A4 → A∧ and
show that it is injective.

[This gives the following fundamental span of languages A? � A4
� A∧. The three

operations involved A 7→ A?, A4, A∧ are all “monads” (see Subsection 5.2.1) and the
mappings between them preserve the monad structure, see [109].]

4.5.5. Assume two coalgebras c:X → P(FX) and d:Y → P(FY), where F is a functor with
powersets and infinite exponents (like in Theorem 4.5.1).

(i) Assume f :X → Y is a homomorphisms (of PF -coalgebras). Prove that traced ◦
f = tracec.

(ii) Conclude that bisimilarity is included in trace equivalence:

x
c
↔

d
y =⇒ tracec(x) = traced(y).

(iii) Check that the reverse implication (⇐=) in (ii) does not hold, for instance via the
following two pictures.

•
a
~~

~~ a
@@

@@
•
a

•
b

•
c

•
b
~~

~~ c
@@

@@

• • • •

Dra
ft

4.5. TRACE SEMANTICS 135

Dra
ft

182 CHAPTER 6. ALGEBRA MEETS COALGEBRA

Dra
ft

Bibliography

[1] M. Abott, Th. Altenkirch, N. Ghani, and C. McBride. Categories of containers. In
A.D. Gordon, editor, Foundations of Software Science and Computation Structures,
number 2620 in Lect. Notes Comp. Sci., pages 23–38. Springer, Berlin, 2003.

[2] M. Abott, Th. Altenkirch, N. Ghani, and C. McBride. Derivatives of containers. In
M. Hofmann, editor, Typed Lambda Calculi and Applications, number 2701 in Lect.
Notes Comp. Sci., pages ??–?? Springer, Berlin, 2003.

[3] S. Abramsky. A domain equation for bisimulation. Inf. & Comp., 92:161–218, 1990.

[4] P. Aczel. Non-well-founded sets. CSLI Lecture Notes 14, Stanford, 1988.

[5] P. Aczel. Final universes of processes. In S. Brookes, M. Main, A. Melton, M. Mis-
love, and D. Schmidt, editors, Mathematical Foundations of Programming Seman-
tics, number 802 in Lect. Notes Comp. Sci., pages 1–28. Springer, Berlin, 1994.

[6] P. Aczel, J. Adámek, S. Milius, and J. Velebil. Infinite trees and completely iterative
theories: a coalgebraic view. Theor. Comp. Sci., 300 (1-3):1–45, 2003.

[7] P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt, A. Poigné, and
D.E. Rydeheard, editors, Category Theory and Computer Science, number 389 in
Lect. Notes Comp. Sci., pages 357–365. Springer, Berlin, 1989.

[8] J. Adámek. Observability and nerode equivalence in concrete categories. In
F. Gécseg, editor, Fundamentals of Computation Theory, number 117 in Lect. Notes
Comp. Sci., pages 1–15. Springer, Berlin, 1981.

[9] J. Adámek. On final coalgebras of continuous functors. Theor. Comp. Sci., 294:3–29,
2003.

[10] J. Adámek and V. Koubek. On the greatest fixed point of a set functor. Theor. Comp.
Sci., 150:57–75, 1995.

[11] J. Adámek and S. Milius, editors. Coalgebraic Methods in Computer Science
(CMCS’04), number 106 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
2004.

[12] L. Adleman. Computing with DNA. Scientific American, 279(2):54–61, 1998.

[13] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading, Massachusetts, 1985.

[14] M.A. Arbib. Theories of Abstract Automata. Prentice Hall, 1969.

[15] M.A. Arbib and E.G. Manes. Foundations of system theory: Decomposable systems.
Automatica, 10:285–302, 1974.

183

Dra
ft

184 BIBLIOGRAPHY

[16] M.A. Arbib and E.G. Manes. Adjoint machines, state-behaviour machines, and du-
ality. Journ. of Pure & Appl. Algebra, 6:313–344, 1975.

[17] M.A. Arbib and E.G. Manes. Arrows, Structures and Functors. The Categorical
Imperative. Academic Press, New York, 1975.

[18] M.A. Arbib and E.G. Manes. Foundations of system theory: the Hankel matrix.
Journ. Comp. Syst. Sci, 20:330–378, 1980.

[19] M.A. Arbib and E.G. Manes. Generalized Hankel matrices and system realization.
SIAM J. Math. Analysis, 11:405–424, 1980.

[20] M.A. Arbib and E.G. Manes. Machines in a category. Journ. of Pure & Appl.
Algebra, 19:9–20, 1980.

[21] M.A. Arbib and E.G. Manes. Parametrized data types do not need highly constrained
parameters. Inf. & Contr., 52:139–158, 1982.

[22] M.A. Arbib and E.G. Manes. Algebraic Approaches to Program Semantics. Texts
and Monogr. in Comp. Sci.,. Springer, Berlin, 1986.

[23] K. Arnold and J. Gosling. The Java Programming Language. The Java Series.
Addison-Wesley, 2nd edition, 1997.

[24] E.S. Bainbridge. A unified minimal realization theory with duality. PhD thesis, Univ.
Michigan, Ann Arbor, 1972. Techn. rep. 140, Dep. of Comp. and Comm. Sci.

[25] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial polymorphism.
Theor. Comp. Sci., 70(1):35–64, 1990. Corrigendum in Theor. Comp. Sci. 71(3):431,
1990.

[26] J.W. de Bakker and E. Vink. Control Flow Semantics. MIT Press, Cambridge, MA,
1996.

[27] L.S. Barbosa. Towards a calculus of state-based software components. Journ. of
Universal Comp. Sci., 9(8):891–909, 2003.

[28] H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland,
Amsterdam, 2nd rev. edition, 1984.

[29] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comp. Sci.,
114(2):299–315, 1993. Corrigendum in Theor. Comp. Sci. 124:189–192, 1994.

[30] M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985.
Revised and corrected version available from URL:
www.cwru.edu/artsci/math/wells/pub/ttt.html.

[31] M. Barr and Ch. Wells. Category Theory for Computing Science. Prentice Hall,
1990.

[32] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-Chr. Filliâtre, E. Giménez, H. Her-
belin, G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saı̈bi, and
B. Werner. The Coq Proof Assistant User’s Guide Version 6.1. Technical Report
203, INRIA Rocquencourt, France, May 1997.

[33] F. Bartels. On generalised coinduction and probabilistic specification formats. Dis-
tributive laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam, 2004.

[34] F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types.
Theor. Comp. Sci., 327(1-2):3–22, 2004.

Dra
ft

BIBLIOGRAPHY 185

[35] J. Barwise and L.S. Moss. Vicious Circles: On the Mathematics of Non-wellfounded
Phenomena. CSLI Lecture Notes 60, Stanford, 1996.

[36] J. van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic II, pages 167–247, Dordrecht, 1984. Reidel.

[37] A. Benveniste, P. LeGuernic, and C. Jacquemot. Synchronous programming with
events and relations: the SIGNAL language and its semantics. Science of Comput.
Progr., 16:103–149, 1991.

[38] J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra.
North-Holland, Amsterdam, 2001.

[39] M. Bidoit and R. Hennicker. Proving the correctness of behavioural implementa-
tions. In V.S. Alagar and M. Nivat, editors, Algebraic Methods and Software Tech-
nology, number 936 in Lect. Notes Comp. Sci., pages 152–168. Springer, Berlin,
1995.

[40] M. Bidoit, R. Hennicker, and A. Kurz. On the duality between observability and
reachability. In F. Honsell, editor, Foundations of Software Science and Computation
Structures, Lect. Notes Comp. Sci. Springer, Berlin, 2001. To appear.

[41] R. Bird. Introduction to Functional Programming using Haskell. Prentice Hall Press,
2nd edition, 1998.

[42] R. Bird and O. de Moor. Algebra of Programmming. Prentice Hall Int. Series in
Comput. Sci., 1996.

[43] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Number 53 in Tracts in
Theor. Comp. Sci. Cambridge Univ. Press, 2001.

[44] S.L. Bloom and Z. Ésik. Iteration Theories: The Equational Logic of Iterative Pro-
cesses. Number ?? in EATCS Monographs. Springer, Berlin, 1993.

[45] F. Borceux. Handbook of Categorical Algebra, volume 50, 51 and 52 of Encyclope-
dia of Mathematics. Cambridge Univ. Press, 1994.

[46] R. Brown. Topology. John Wiley & Sons, New York, 2nd rev. edition, 1988.

[47] K.B. Bruce, L. Cardelli, G. Castagna, The Hopkins Objects Group (J. Eifrig,
S. Smith, V. Trifonov), G. Leavens, and B.C. Pierce. On binary methods. Theory &
Practice of Object Systems, 1(3):221–242, 1996.

[48] J.A. Brzozowski. Derivatives of regular expressions. Journ. ACM, 11(4):481–494,
1964.

[49] P.J. Cameron. Sets, Logic and Categories. Undergraduate Mathematics. Springer,
1999.

[50] A. Carboni, G.M. Kelly, and R.J. Wood. A 2-categorical approach to change of base
and geometric morphisms I. Cah. de Top. et Géom. Diff., 32(1):47–95, 1991.

[51] C. Cı̈rstea. Coalgebra semantics for hidden algebra: parametrised objects and in-
heritance. In F. Parisi Presicce, editor, Recent Trends in Data Type Specification,
number 1376 in Lect. Notes Comp. Sci., pages 174–189. Springer, Berlin, 1998.

[52] C. Cı̈rstea. Integrating observational and computational features in the specification
of state-based dynamical systems. Inf. Théor. et Appl., 35(1):1–29, 2001.

Dra
ft

186 BIBLIOGRAPHY

[53] J.R.B. Cockett and T. Fukushima. About Charity. Technical Report 92/480/18, Dep.
Comp. Sci., Univ. Calgary, 1992.

[54] J.R.B. Cockett and D. Spencer. Strong categorical datatypes I. In R.A.G. Seely,
editor, Category Theory 1991, number 13 in CMS Conference Proceedings, pages
141–169, 1992.

[55] J.R.B. Cockett and D. Spencer. Strong categorical datatypes II: A term logic for
categorical programming. Theor. Comp. Sci., 139:69–113, 1995.

[56] R. Cockett. Deforestation, program transformation, and cut-elimination. In A. Cor-
radini, M. Lenisa, and U. Montanari, editors, Coalgebraic Methods in Computer Sci-
ence, number 44 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2001.
www.sciencedirect.com/science/journal/15710661.

[57] A. Corradini, M. Lenisa, and U. Montanari, editors. Coalgebraic Methods in Com-
puter Science (CMCS’01), number 44 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2001.

[58] A. Corradini, M. Lenisa, and U. Montanari, editors. Coalgebraic Methods in Com-
puter Science, volume 13(2) of Math. Struct. in Comp. Sci., 2003. Special issue on
CMCS’01.

[59] S. Coupet-Grimal and L. Jakubiec. Hardware verification using co-induction in
COQ. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors,
Theorem Proving in Higher Order Logics, number 1690 in Lect. Notes Comp. Sci.,
pages 91–108. Springer, Berlin, 1999.

[60] R.L. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cambridge
Univ. Press, 1993.

[61] P. Cuoq and M. Pouzet. Modular causality in a synchronous stream language. In
D. Sands, editor, Programming Languages and Systems (ESOP), number 2028 in
Lect. Notes Comp. Sci., pages 237–251. Springer, Berlin, 2001.

[62] N.J. Cutland. Computability. Cambridge Univ. Press, 1980.

[63] D. van Dalen, H.C. Doets, and H. de Swart. Sets: Naive, Axiomatic and Applied.
Number 106 in Pure & applied Math. Pergamum Press, 1978.

[64] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Math. Text-
books. Cambridge Univ. Press, 1990.

[65] L.A. Dennis and A. Bundy. A comparison of two proof critics: Power vs. robustness.
In V.A. Carreño, C.A. Muñoz, and S. Tahar, editors, Theorem Proving in Higher
Order Logics, number 2410 in Lect. Notes Comp. Sci., pages 182–197. Springer,
Berlin, 2002.

[66] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations and
Initial Semantics. Number 6 in EATCS Monographs. Springer, Berlin, 1985.

[67] S. Eilenberg. Automata, Languages and Machines. Academic Press, 1974. 2 vol-
umes.

[68] C.C. Elgot. Monadic computation and iterative algebraic theories. In H.E. Rose and
J.C. Shepherson, editors, Logic Colloquium ’73, pages 175–230, Amsterdam, 1975.
North-Holland.

Dra
ft

BIBLIOGRAPHY 187

[69] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 995–1072. Elsevier/MIT Press,
1990.

[70] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge.
MIT Press, Cambridge, MA, 1995.

[71] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Logic in
Computer Science, pages 193–202. IEEE, Computer Science Press, 1999.

[72] M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Cambridge
Univ. Press, 1996.

[73] M.P. Fiore. A coinduction principle for recursive data types based on bisimulation.
Inf. & Comp., 127(2):186–198, 1996.

[74] M.M. Fokkinga. Datatype laws without signatures. Math. Struct. in Comp. Sci.,
6:1–32, 1996.

[75] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Berlin, 2000.

[76] M. Forti and F. Honsell. Set theory with free construction principles. Annali Scuola
Normale Superiore, Pisa, X(3):493–522, 1983.

[77] A.A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of Set Theory. North-
Holland, Amsterdam, 2nd rev. edition, 1973.

[78] P.J. Freyd. Aspects of topoi. Bull. Austr. Math. Soc., 7:1–76 and 467–480, 1972.

[79] P.J. Freyd. Recursive types reduced to inductive types. In Logic in Computer Sci-
ence, pages 498–507. IEEE, Computer Science Press, 1990.

[80] P.J. Freyd. Algebraically complete categories. In A. Carboni, M.C. Pedicchio, and
G. Rosolini, editors, Como Conference on Category Theory, number 1488 in Lect.
Notes Math., pages 95–104. Springer, Berlin, 1991.

[81] P.J. Freyd. Remarks on algebraically compact categories. In M.P. Fourman, P.T.
Johnstone, and A.M. Pitts, editors, Applications of Categories in Computer Science,
number 177 in LMS, pages 95–106. Cambridge Univ. Press, 1992.

[82] H. Friedman. Equality between functionals. In Logic Colloquium. Symposium on
Logic held at Boston 1972 - 1973, number 453 in Lect. Notes Math., pages 22–37.
Springer, Berlin, 1975.

[83] M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax with variable bind-
ing. Formal Aspects of Comp., ??:??–??, 2002.

[84] V. Giarrantana, F. Gimona, and U. Montanari. Observability concepts in abstract data
specifications. In A. Mazurkiewicz, editor, Mathematical Foundations of Computer
Science, number 45 in Lect. Notes Comp. Sci., pages 576–587. Springer, Berlin,
1976.

[85] J. Gibbons, G. Hutton, and Th. Altenkirch. When is a function a fold or an unfold? In
A. Corradini, M. Lenisa, and U. Montanari, editors, Coalgebraic Methods in Com-
puter Science, number 44 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
2001.

Dra
ft

188 BIBLIOGRAPHY

[86] M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor,
Categorical Aspects of Topology and Analysis, number 915 in Lect. Notes Math.,
pages 68–85. Springer, Berlin, 1982.

[87] R. van Glabbeek. The linear time - branching time spectrum II. In E. Best, editor,
CONCUR ’93. 4th International Conference on Concurrency Theory, number 715 in
Lect. Notes Comp. Sci., pages 66–81. Springer, Berlin, 1993.

[88] J.A. Goguen. Minimal realization of machines in closed categories. Bull. Amer.
Math. Soc., 78(5):777–783, 1972.

[89] J.A. Goguen. Realization is universal. Math. Syst. Theor., 6(4):359–374, 1973.

[90] J.A. Goguen. Discrete-time machines in closed monoidal categories. I. Journ. Comp.
Syst. Sci, 10:1–43, 1975.

[91] J.A Goguen, K. Lin, and G. Rosu. Circular coinductive rewriting. In Automated
Software Engineering (ASE’00), pages 123–131. IEEE Press, 2000.

[92] J.A. Goguen and G. Malcolm. A hidden agenda. Theor. Comp. Sci., 245(1):55–101,
2000.

[93] J.A. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the spec-
ification, correctness and implementation of abstract data types. In R. Yeh, editor,
Current Trends in Programming Methodoloy, pages 80–149. Prentice Hall, 1978.

[94] R. Goldblatt. Topoi. The Categorial Analysis of Logic. North-Holland, Amsterdam,
2nd rev. edition, 1984.

[95] R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes 7, Stanford, 2nd

rev. edition, 1992.

[96] A.D. Gordon. Bisimilarity as a theory of functional programming. In S. Brookes,
M. Main, A. Melton, and M. Mislove, editors, Mathematical Foundations of Pro-
gram Semantics, number 1 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amster-
dam, 1995.

[97] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification
Second Edition. The Java Series. Addison-Wesley, 2000.
http://java.sun.com/docs/books/jls/second_edition/html/
j.title.doc.html.

[98] S.J. Gould. What does the dreaded “E” word mean anyway? In I have landed.
The end of a beginning in natural history, pages 241–256. Three Rivers Press, New
York, 2002.

[99] J.F. Groote and F. Vaandrager. Structured operational semantics and bisimulation as
a congruence. Inf. & Comp., 100(2):202–260, 1992.

[100] H.P. Gumm. Elements of the general theory of coalgebras. Notes of lectures
given at LUATCS’99: Logic, Universal Algebra, Theoretical Computer Science,
Johannesburg. Available as
www.mathematik.uni-marburg.de/˜gumm/Papers/Luatcs.ps,
1999.

[101] H.P. Gumm, editor. Coalgebraic Methods in Computer Science (CMCS’03), number
82(1) in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2003.

[102] H.P. Gumm, editor. Coalgebraic Methods in Computer Science, volume 327 of
Theor. Comp. Sci., 2004. Special issue on CMCS’03.

Dra
ft

BIBLIOGRAPHY 189

[103] H.P. Gumm, J. Hughes, and T. Schröder. Distributivity of categories of coalgebras.
Theor. Comp. Sci., 308:131–143, 2003.

[104] H.P. Gumm and T. Schröder. Coalgebraic structure from weak limit preserving func-
tors. In H. Reichel, editor, Coalgebraic Methods in Computer Science, number 33
in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2000.

[105] H.P. Gumm and T. Schröder. Products of coalgebras. Algebra Universalis, 846:163–
185, 2001.

[106] T. Hagino. A categorical programming language. PhD thesis, Univ. Edinburgh,
1987. Techn. Rep. 87/38.

[107] T. Hagino. A typed lambda calculus with categorical type constructors. In D.H. Pitt,
A Poigné, and D.E. Rydeheard, editors, Category and Computer Science, number
283 in Lect. Notes Comp. Sci., pages 140–157. Springer, Berlin, 1987.

[108] R. Hasegawa. Categorical data types in parametric polymorphism. Math. Struct. in
Comp. Sci., 4:71–109, 1994.

[109] I. Hasuo and B. Jacobs. Context-free languages via coalgebraic trace semantics.
Techn. Rep. ICIS-R05004, Inst. for Computing and Information Sciences, Radboud
Univ. Nijmegen. To appear in the LNCS proceedings of CALCO 2005., 2005.

[110] A. Heifetz and D. Samet. Topology-free typology of beliefs. Journ. of Economic
Theory, 82(2):324–341, 1998.

[111] U. Hensel. Definition and Proof Principles for Data and Processes. PhD thesis,
Techn. Univ. Dresden, Germany, 1999.

[112] U. Hensel and B. Jacobs. Proof principles for datatypes with iterated recursion. In
E. Moggi and G. Rosolini, editors, Category Theory and Computer Science, number
1290 in Lect. Notes Comp. Sci., pages 220–241. Springer, Berlin, 1997.

[113] U. Hensel and B. Jacobs. Coalgebraic theories of sequences in PVS. Journ. of Logic
and Computation, 9(4):463–500, 1999.

[114] U. Hensel and H. Reichel. Defining equations in terminal coalgebras. In E. Aste-
siano, G. Reggio, and A. Tarlecki, editors, Recent trends in Data Type Specification,
number 906 in Lect. Notes Comp. Sci., pages 307–318. Springer, Berlin, 1995.

[115] U. Hensel and D. Spooner. A view on implementing processes: Categories of cir-
cuits. In M. Haveraaen, O. Owe, and O.-J. Dahl, editors, Recent Trends in Data Type
Specification, number 1130 in Lect. Notes Comp. Sci., pages 237–254. Springer,
Berlin, 1996.

[116] C. Hermida. Fibrations, Logical Predicates and Indeterminates. PhD thesis, Univ.
Edinburgh, 1993. Techn. rep. LFCS-93-277. Also available as Aarhus Univ. DAIMI
Techn. rep. PB-462.

[117] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. & Comp., 145:107–152, 1998.

[118] M.W. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and Linear
Algebra. Academic Press, New York, 1974.

[119] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985. Available
at www.usingcsp.com.

Dra
ft

190 BIBLIOGRAPHY

[120] D.R. Hofstadter. Gödel, Escher, Bach: an eternal golden braid. Basic Books, New
York, 1979.

[121] F. Honsell, M. Miculan, and I. Scagnetto. π-calculus in (co)inductive-type theory.
Theor. Comp. Sci., 253(2):239–285, 2001.

[122] G.E. Hughes and M.J. Cresswell. A New Introduction to Modal Logic. Routledge,
London and New York, 1996.

[123] J. Hughes. Modal operators for coequations. In A. Corradini, M. Lenisa, and
U. Montanari, editors, Coalgebraic Methods in Computer Science, number 44 in
Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2001.

[124] J. Hughes. A Study of Categories of Algebras and Coalgebras. PhD thesis, Carnegie
Mellon Univ., 2001.

[125] J. Hughes and B. Jacobs. Simulations in coalgebra. Theor. Comp. Sci., 327(1-2):71–
108, 2004.

[126] B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat, editors,
Algebraic Methodology and Software Technology, number 936 in Lect. Notes Comp.
Sci., pages 245–260. Springer, Berlin, 1995.

[127] B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor, European
Conference on Object-Oriented Programming, number 1098 in Lect. Notes Comp.
Sci., pages 210–231. Springer, Berlin, 1996.

[128] B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones,
C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism and Per-
sistence, pages 83–103. Kluwer Acad. Publ., 1996.

[129] B. Jacobs. Invariants, bisimulations and the correctness of coalgebraic refinements.
In M. Johnson, editor, Algebraic Methodology and Software Technology, number
1349 in Lect. Notes Comp. Sci., pages 276–291. Springer, Berlin, 1997.

[130] B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam, 1999.

[131] B. Jacobs. Towards a duality result in coalgebraic modal logic. In H. Reichel, editor,
Coalgebraic Methods in Computer Science, number 33 in Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 2000.

[132] B. Jacobs. A formalisation of Java’s exception mechanism. In D. Sands, editor,
Programming Languages and Systems (ESOP), number 2028 in Lect. Notes Comp.
Sci., pages 284–301. Springer, Berlin, 2001.

[133] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Inf. Théor.
et Appl., 35(1):31–59, 2001.

[134] B. Jacobs. Comprehension for coalgebras. In L. Moss, editor, Coalgebraic Methods
in Computer Science, number 65(1) in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2002.

[135] B. Jacobs. Exercises in coalgebraic specification. In R. Crole R. Backhouse and
J. Gibbons, editors, Algebraic and Coalgebraic Methods in the Mathematics of
Program Construction, number 2297 in Lect. Notes Comp. Sci., pages 237–280.
Springer, Berlin, 2002.

[136] B. Jacobs. The temporal logic of coalgebras via Galois algebras. Math. Struct. in
Comp. Sci., 12:875–903, 2002.

Dra
ft

BIBLIOGRAPHY 191

[137] B. Jacobs. Trace semantics for coalgebras. In J. Adámek and S. Milius, editors,
Coalgebraic Methods in Computer Science, number 106 in Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 2004.

[138] B. Jacobs. A bialgebraic review of regular expressions, deterministic automata and
languages. Techn. Rep. ICIS-R05003, Inst. for Computing and Information Sci-
ences, Radboud Univ. Nijmegen, 2005.

[139] B. Jacobs, L. Moss, H. Reichel, and J. Rutten, editors. Coalgebraic Methods in Com-
puter Science (CMCS’98), number 11 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 1998.

[140] B. Jacobs, L. Moss, H. Reichel, and J. Rutten, editors. Coalgebraic Methods in
Computer Science, volume 260(1/2) of Theor. Comp. Sci., 2001. Special issue on
CMCS’98.

[141] B. Jacobs and E. Poll. Coalgebras and monads in the semantics of Java. Theor.
Comp. Sci., 291(3):329–349, 2003.

[142] B. Jacobs and E. Poll. Java program verification at nijmegen: Developments and
perspective. Techn. Rep. NIII-R0318, Comput. Sci. Inst., Univ. of Nijmegen., 2003.

[143] B. Jacobs and E. Poll. Java program verification at nijmegen: Developments and per-
spective. In K. Futatsugi, F. Mizoguchi, and N. Yonezaki, editors, Software Security
– Theories and Systems, number 3233 in Lect. Notes Comp. Sci., pages 134–153.
Springer, Berlin, 2004.

[144] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bul-
letin, 62:222–259, 1997.

[145] B. Jacobs and J. Rutten, editors. Coalgebraic Methods in Computer Science
(CMCS’99), number 19 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
1999.

[146] B. Jacobs and J. Rutten, editors. Coalgebraic Methods in Computer Science, volume
280(1/2) of Theor. Comp. Sci., 2002. Special issue on CMCS’99.

[147] B. Jay. Data categories. In M.E. Houle and P.Eades, editors, Computing: The
Australasian Theory Symposium Proceedings, number 18 in Australian Comp. Sci.
Comm., pages 21–28, 1996.

[148] C.B. Jay. A semantics for shape. Science of Comput. Progr., 25:251–283, 1995.

[149] P.T. Johnstone. Topos Theory. Academic Press, London, 1977.

[150] P.T. Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathe-
matics. Cambridge Univ. Press, 1982.

[151] P.T. Johnstone, A.J. Power, T. Tsujishita, H. Watanabe, and J. Worrell. On the struc-
ture of categories of coalgebras. Theor. Comp. Sci., 260:87–117, 2001.

[152] A. Joyal and I. Moerdijk. Algebraic Set Theory. Number 220 in LMS. Cambridge
Univ. Press, 1995.

[153] R.E. Kalman, P.L. Falb, and M.A. Arbib. Topics in Mathematical System Theory.
McGraw-Hill Int. Series in Pure & Appl. Math., 1969.

[154] B. von Karger. Temporal algebra. Math. Struct. in Comp. Sci., 8:277–320, 1998.

Dra
ft

192 BIBLIOGRAPHY

[155] S. Kasangian, G.M. Kelly, and F. Rossi. Cofibrations and the realization of non-
deterministic automata. Cah. de Top. et Géom. Diff., XXIV:23–46, 1983.

[156] P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of processes. Journ. of Pure
& Appl. Algebra, 115(2):141–178, 1997.

[157] Y. Kawahara and M. Mori. A small final coalgebra theorem. Theor. Comp. Sci.,
233(1-2):129–145, 2000.

[158] S.C. Kleene. Representation of events in nerve nets and finite automata. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, number 34 in Annals of Math-
ematics Studies, pages 3–41. Princeton University Press, 1956.

[159] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. & Comp., 110(2):366–390, 1994.

[160] M. Kracht. Tools and Techniques in Modal Logic. North Holland, Amsterdam, 1999.

[161] S. Krstić, J. Launchbury, and D. Pavlović. Categories of processes enriched in final
coalgebras. In F. Honsell and M. Miculan, editors, Foundations of Software Science
and Computation Structures, number 2030 in Lect. Notes Comp. Sci., pages 303–
317. Springer, Berlin, 2001.

[162] C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. In H.P. Gumm, editor, Coalge-
braic Methods in Computer Science, number 82(1) in Elect. Notes in Theor. Comp.
Sci. Elsevier, Amsterdam, 2003.

[163] C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theor. Comp. Sci., 327(1-
2):109–134, 2004.

[164] A. Kurz. Coalgebras and modal logic. Notes of lectures given at ESSLLI’01,
Helsinki. Available as
www.cwi.nl/˜kurz/??, 1999.

[165] A. Kurz. Specifying coalgebras with modal logic. Theor. Comp. Sci., 260(1-2):119–
138, 2001.

[166] A. Kurz and J. Rosický. Operations and equations for coalgebras. Math. Struct. in
Comp. Sci., 15(1):149–166, 2005.

[167] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.

[168] S. Mac Lane. Mathematics: Form and Function. Springer, Berlin, 1986.

[169] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. A First Introduction
to Topos Theory. Springer, New York, 1992.

[170] F.W. Lawvere. Functorial Semantics of Algebraic Theories and Some Algebraic
Problems in the context of Functorial Semantics of Algebraic Theories. PhD thesis,
Columbia Univ., 1963. Reprinted in Theory and Applications of Categories, 5:1–
121, 2004.

[171] F.W. Lawvere and S.H. Schanuel. Conceptual mathematics: a first introduction to
categories. Cambridge Univ. Press, 1997.

[172] G. Malcolm. Behavioural equivalence, bisimulation and minimal realisation. In
M. Haveraaen, O. Owe, and O.J. Dahl, editors, Recent Trends in Data Type Speci-
fication, number 1130 in Lect. Notes Comp. Sci., pages 359–378. Springer, Berlin,
1996.

Dra
ft

BIBLIOGRAPHY 193

[173] E.G. Manes. Algebraic Theories. Springer, Berlin, 1974.

[174] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, Berlin, 1992.

[175] K.L. McMillan. Symbolic Model Checking. Kluwer Acad. Publ., 1993.

[176] A. Melton, D.A. Schmidt, and G.E. Strecker. Galois connections and computer
science applications. In D.H. Pitt, S. Abramsky, A. Poigné, and D.E. Rydeheard,
editors, Category Theory and Computer Programming, number 240 in Lect. Notes
Comp. Sci., pages 299–312. Springer, Berlin, 1985.

[177] T. Miedaner. The soul of the Mark III beast. In D.R. Hofstadter and D.C. Dennet,
editors, The Mind’s I, pages 109–113. Penguin, 1981.

[178] R. Milner. An algebraic definition of simulation between programs. In Sec. Int. Joint
Conf. on Artificial Intelligence, pages 481–489. British Comp. Soc. Press, London,
1971.

[179] R. Milner. A Calculus of Communicating Systems. Lect. Notes Comp. Sci. Springer,
Berlin, 1989.

[180] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[181] John C. Mitchell. Foundations of Programming Languages. MIT Press, Cambridge,
MA, 1996.

[182] E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55–92, 1991.

[183] L.S. Moss. Coalgebraic logic. Ann. Pure & Appl. Logic, 96(1-3):277–317, 1999.
Erratum in Ann. Pure & Appl. Logic, 99(1-3):241–259, 1999.

[184] L.S. Moss. Parametric corecursion. Theor. Comp. Sci., 260(1-2):139–163, 2001.

[185] L.S. Moss, editor. Coalgebraic Methods in Computer Science (CMCS’00), number
65(1) in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2002.

[186] L.S. Moss and I. Viglizzo. Harsanyi type spaces and final coalgebras constructed
from satisfied theories. In J. Adámek and S. Milius, editors, Coalgebraic Methods
in Computer Science, number 106 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2004.

[187] M. Niqui. Formalising Exact Arithmetic: Representations, Algorithms and Proofs.
PhD thesis, Univ. Nijmegen, 2004.

[188] E. Palmgren and I. Moerdijk. Wellfounded trees in categories. Ann. Pure & Appl.
Logic, 104(1/3):189–218, 2000.

[189] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings 5th GI Conference on Theoretical Computer Science, number
104 in Lect. Notes Comp. Sci., pages 15–32. Springer, Berlin, 1981.

[190] D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability
of local consequence. Theor. Comp. Sci., 309(1-3):177–193, 2003.

[191] D. Pattinson. An introduction to the theory of coalgebras. Course notes at the North
American Summer School in Logic, Language and Information (NASSLLI), 2003.

[192] D. Pavlović and M. Escardó. Calculus in coinductive form. In Logic in Computer
Science, pages 408–417. IEEE, Computer Science Press, 1998.

Dra
ft

194 BIBLIOGRAPHY

[193] D. Pavlović and V. Pratt. The continuum as a final coalgebra. Theor. Comp. Sci.,
280 (1-2):105–122, 2002.

[194] B.C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, Cambridge,
MA, 1991.

[195] A.M. Pitts. A co-induction principle for recursively defined domains. Theor. Comp.
Sci., 124(2):195–219, 1994.

[196] R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, 1993.

[197] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In M. Bezem and
J.F. Groote, editors, Typed Lambda Calculi and Applications, number 664 in Lect.
Notes Comp. Sci., pages 361–375. Springer, Berlin, 1993.

[198] G.D. Plotkin. Lambda definability in the full type hierarchy. In J.R. Hindley and J.P.
Seldin, editors, To H.B Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 363–373. Academic Press, New York and London, 1980.

[199] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Aarhus Univ., 1981.

[200] A. Pnueli. The temporal logic of programs. In Found. Comp. Sci., pages 46–57.
IEEE, 1977.

[201] A. Pnueli. The temporal semantics of concurrent programs. Theor. Comp. Sci.,
31:45–60, 1981.

[202] E. Poll and J. Zwanenburg. From algebras and coalgebras to dialgebras. In A. Cor-
radini, M. Lenisa, and U. Montanari, editors, Coalgebraic Methods in Computer
Science, number 44 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2001.

[203] J. Power and D. Turi. A coalgebraic foundation for linear time semantics. In M. Hof-
mann D. Pavlović and G. Rosolini, editors, Category Theory and Computer Science
1999, number 29 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1999.

[204] H. Reichel. Third hugarian computer science conference. In Behavioural equiv-
alence — a unifying concept for initial and final specifications. Akademiai Kiado,
Budapest, 1981.

[205] H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras.
Number 2 in Monographs in Comp. Sci. Oxford Univ. Press, 1987.

[206] H. Reichel. An approach to object semantics based on terminal co-algebras. Math.
Struct. in Comp. Sci., 5:129–152, 1995.

[207] H. Reichel, editor. Coalgebraic Methods in Computer Science (CMCS’00), num-
ber 33 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2000.

[208] M. Rößiger. Languages for coalgebras on datafunctors. In B. Jacobs and J. Rutten,
editors, Coalgebraic Methods in Computer Science, number 19 in Elect. Notes in
Theor. Comp. Sci. Elsevier, Amsterdam, 1999.

[209] M. Rößiger. Coalgebras and modal logic. In H. Reichel, editor, Coalgebraic Meth-
ods in Computer Science, number 33 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2000.

[210] M. Rößiger. Coalgebras, Clone Theory, and Modal Logic. PhD thesis, Techn. Univ.
Dresden, Germany, 2000.

Dra
ft

BIBLIOGRAPHY 195

[211] M. Rößiger. From modal logic to terminal coalgebras. Theor. Comp. Sci., 260(1-
2):209–228, 2001.

[212] J. Rutten. Processes as terms: non-well-founded models for bisimulation. Math.
Struct. in Comp. Sci., 2(3):257–275, 1992.

[213] J. Rutten. Automata and coinduction (an exercise in coalgebra). In D. Sangiorigi
and R. de Simone, editors, Concur’98: Concurrency Theory, number 1466 in Lect.
Notes Comp. Sci., pages 194–218. Springer, Berlin, 1998.

[214] J. Rutten. Relators and metric bisimulations. In B. Jacobs, L. Moss, H. Reichel, and
J. Rutten, editors, Coalgebraic Methods in Computer Science, number 11 in Elect.
Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1998.

[215] J. Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Technical report, CWI Report SEN-R0023, 2000.

[216] J. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci., 249:3–80,
2000.

[217] J. Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theor. Comp. Sci., 308:1–53, 2003.

[218] J. Rutten. A coinductive calculus of streams. Math. Struct. in Comp. Sci., 15(1):93–
147, 2005.

[219] J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency.
In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, A Decade of Con-
currency, number 803 in Lect. Notes Comp. Sci., pages 530–582. Springer, Berlin,
1994.

[220] J.J.M.M. Rutten. Automata, power series, and coinduction: Taking input derivatives
seriously (extended abstract). In J. Wiedermann, P. van Emde Boas, and M. Nielsen,
editors, International Colloquium on Automata, Languages and Programming, num-
ber 1644 in Lect. Notes Comp. Sci., pages 645–654. Springer, Berlin, 1999.

[221] A. Salomaa. Computation and Automata, volume 25 of Encyclopedia of Mathemat-
ics. Cambridge Univ. Press, 1985.

[222] D. Schamschurko. Modelling process calculi with PVS. In B. Jacobs, L. Moss,
H. Reichel, and J. Rutten, editors, Coalgebraic Methods in Computer Science, num-
ber 11 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1998.

[223] O. Schoett. Behavioural correctness of data representations. Science of Comput.
Progr., 14:43–57, 1990.

[224] M.B. Smyth. Topology. In S. Abramsky, Dov M. Gabbai, and T.S.E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 1, pages 641–761. Oxford
Univ. Press, 1992.

[225] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive domain
equations. SIAM Journ. Comput., 11:761–783, 1982.

[226] C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

[227] W.W. Tait. Intensional interpretation of functionals of finite type I. Journ. Symb.
Logic, 32:198–212, 1967.

[228] P. Taylor. Practical Foundations of Mathematics. Number 59 in Cambridge Studies
in Advanced Mathematics. Cambridge Univ. Press, 1999.

Dra
ft

196 BIBLIOGRAPHY

[229] H. Tews. Coalgebras for binary methods: Properties of bisimulations and invariants.
Inf. Théor. et Appl., 35(1):83–111, 2001.

[230] A. Thijs. Simulation and Fixpoint Semantics. PhD thesis, Univ. Groningen, 1996.

[231] D. Turi. Functorial operational semantics and its denotational dual. PhD thesis,
Free Univ. Amsterdam, 1996.

[232] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Logic in
Computer Science, pages 280–291. IEEE, Computer Science Press, 1997.

[233] D. Turi and J. Rutten. On the foundations of final semantics: non-standard sets,
metric spaces and partial orders. Math. Struct. in Comp. Sci., 8(5):481–540, 1998.

[234] T. Uustalu, V. Vene, and A. Pardo. Recursion schemes from comonads. Nordic
Journ. Comput., 8(3):366–390, 2001.

[235] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems:
a coalgebraic approach. Theor. Comp. Sci., 221:271–293, 1999.

[236] R.F.C. Walters. Categories and Computer Science. Carslaw Publications, Sydney,
1991. Also available as: Cambridge Computer Science Text 28, 1992.

[237] M. Wand. Final algebra semantics and data type extension. Journ. Comp. Syst. Sci,
19:27–44, 1979.

[238] W. Wechler. Universal Algebra for Computer Scientists. Number 25 in EATCS
Monographs. Springer, Berlin, 1992.

[239] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, volume B, pages 673–788. Elsevier/MIT Press, 1990.

[240] U. Wolter. CSP, partial automata, and coalgebras. Theor. Comp. Sci., 280 (1-2):3–
34, 2002.

[241] J. Worrell. Toposes of coalgebras and hidden algebras. In B. Jacobs, L. Moss, H. Re-
ichel, and J. Rutten, editors, Coalgebraic Methods in Computer Science, number 11
in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1998.

[242] J. Worrell. Terminal sequences for accessible endofunctors. In B. Jacobs and J. Rut-
ten, editors, Coalgebraic Methods in Computer Science, number 19 in Elect. Notes
in Theor. Comp. Sci. Elsevier, Amsterdam, 1999.

[243] G.C. Wraith. A note on categorical datatypes. In D.H. Pitt, A. Poigné, and D.E.
Rydeheard, editors, Category Theory and Computer Science, number 389 in Lect.
Notes Comp. Sci., pages 118–127. Springer, Berlin, 1989. Dra

ft

SUBJECT INDEX 197

