
Initial Algebra Semantics and Continuous Algebras

J. A. G O G U E N

UCLA, Los Angeles, California

A N D

J. W. THATCHER, E. G. W A G N E R , A N D J. B. W R I G H T

IBM Thomas J Watson Research Center, Yorktown Heights, New York

ABSTRACT Many apparently divergent approaches to specifying formal semantics of programmmg languages
are applications of mmal algebra semantics In this paper an overview of imtial algebra semantics ts provided
The major technical feature ts an mmal continuous algebra which permits unified algebraic treatment of
lteratlve and recurslve semantic features in the same framework as more basic operations

KEY WORDS AND PHRASES algebraic semantics, algebras, free algebras, continuous algebras, posets, pro-
grammmg language semantics, flow diagrams, syntax directed translation, solutions of equations

CR CATEGORIES 5 23, 5 24

1. Introduction

In the past few years there has been quite a proliferation of formal semantics for
programming languages, or at least of different descriptive terms, for example, opera-
tional, interpretive, fixed point, predicate calculus, denotational, algebraic, mathemati-
cal, synthesized, W-grammar, axiomatic, inherited, declarative, continuation, process,
and now initial algebra semantics. Moreover, mathematical concepts, said to be deep, or
strange, or new, are asserted to he relevant, for example, continuous lattices, lterative
algebraic theories, infimtary logic, and bicategories This is quite perplexing. How do
these things fit together, if at all? In fact, what is "syntax"; what is "semantics"?

This paper is not going to answer all these questions. But we believe the subject cannot
be said to be in very good shape when such questions are ignored or glossed over, and
when "practical" and "theoretical" approaches have so little to say to each other. In this
paper we offer a unified approach to these questions with some preliminary answers
which expose a surprising and beautiful unity in the apparent diversity of approaches.

The key concept is very simple: An algebra S is init:al in a class C of algebras lff for
every A in C there exists a unique homomorphlsm ha : S ~ A. 1

Copyright © 1977, Association for Computing Machinery, lnc General permission to repubhsh, but not for
profit, all or part of this material ts granted provided that ACM's copyright notice is gwen and that reference lS
made to the pubhcat~on, to its date of issue, and to the fact that reprinting privileges were granted by
permission of the Assooatton for Computmg Machinery.

This is a revised and expanded version of a paper entitled "Initial Algebra Semantics," which was presented at
the 15th IEEE Symposmm on Switching and Automata Theory, October 1974

The work of J A Goguen was partmlly supported by the Naropa Institute, Boulder, Colorado, and the
University of Colorado, Boulder, Colorado.

Authors' addresses: J A Goguen, Computer Soence Department, UCLA, Los Angeles, CA 90024, J W
Thatcher, E G Wagner, and J B Wright, IBM Thomas J Watson Research Center, 'Yorktown Heights, NY
10598

i We are assuming that C comes with an "appropriate" class of homomorphisms which is dosed under
assooative composition and includes an identity for each algebra More f~rmally, we assume that C ts a
category. The reader seeking a more comprehensive algebraic context may want to consult [23] and/or [39]

Journal of the Association for Computing Machinery, Vol 24, No 1, January 1977, pp 68-95

Initial Algebra Semanttcs and Continuous Algebras 69

In the cases we examine, syntax ts an initial algebra in a class of algebras, and any
other algebra A in the class ts a possible semantic domain (or semantic algebra); the
semantic funct ion is the uniquely determined homomorphtsm hA : S ~ A, assigning a
meaning hA(s) in A to each syntactic structure s in S. From this viewpoint it becomes clear
that a major aspect of formal semantics (both practical and theoretical) is constructing
mtended semantic algebras for particular programming languages. We believe that is
what Scott and Strachey [65] and thetr followers are doing with the tools outlined by
Scott [60] and more fully developed m [62-64].

We use abstract syntax (cf. McCarthy [36]), but without employing any "concrete"
verston such as in the Vienna Defmitlon Language [35] What is abstract about "abstract
syntax" is captured by the following propositton.2

PROPOSITION 1 1. I f S a n d S ' are both initial in a class C o f algebras, then S a n d S ' are
isomorphic. I f S" is tsomorphic to an intttal algebra S, then S" ts also initial.

PROOF z If S and S' are imtiai in the class C of algebras we have (unique) homomor-
phtsms hs, : S ~ S' and hs : S' --> S. The composite of hs, followed by hs (denoted hs ohs ,)
is a homomorphtsm from S to S. The tdentity function, l s , ts also a homomorphism; so
hs ° hs, = l s by untqueness Similarly hs, ° hs = Is,, thus hs is an isomorphism.

I fS ts tnittal and S" is tsomorphtc to S, then hs. • S --> S" must be the isomorphism. For
any algebra A in C, we have hA : S ~ A so that ha o h~J is a homomorphism from S" to A.
If g : S" ~ A is any other such homomorphism then g o hs, : S ~ A so g o hs, = ha and g =
ha ° h ~ . Thus S" as initial. []

Rather than assume "that programs are ' real ly ' abstract, hierarchically structured data
objects . . . ," as in Reynolds [53], we avoid t roublesome questions of definition and
notation by identifying "abstract syntax" with "initial a lgebra"; Proposit ion 1.1 says
abstract syntax ~s independent of notational varmtlon - as it should be. For example, if
as a ranked alphabet , 4 define a E-tree to be an e lement of an imtial Z-algebra. In this way
we are not t~ed to any particular representatton of trees (Pohsh notation, infix terms,
prefix parenthesized terms, functions defined on tree domains, or certain directed
ordered labeled graphs). This abstract syntax for trees depends only on the essential
algebraic-structural propert ies that characterize trees

Because of the connection with abstract syntax, the initial algebra approach as implicit
m McCarthy's [36] proposals for a "Mathematacal Science of ComputaUon" and tn Iron 's
pioneering paper [29] on syntax directed translation. The approach becomes more
exphcit at least as far back as Landin [31] and Petrone [50], as well as in McCarthy and
Painter [38], Knuth [30], Burstall and Landln [10], Nivat [48], and Morris [46, 47]. Of
these, Burstall and Landin first use universal algebra (a la Cohn [13]) and (implicitly) the
initiality proper ty , Morris [46, 47] brings m many-sorted algebras, which are essential
for any applications of algebraic semantics to mterestmg programming languages.

This paper makes the mitml algebra approach to semantics completely explicit,
providing the necessary algebraic background and several examples. Our principal new
result is the existence of initial continuous algebras. This extends the applicabdity of
mttial algebra semantics by combining the algebraic insights of Burstall. Landin, and
Morris with the (lamce-) order-theoret ic ideas of Scott and Strachey. We consider
solutions of equations in continuous algebras and show, for example, how Scott 's lattice
of flow diagrams [61] is a specml case ~ an inttial continuous algebra.

Section 2 makes the notion of many-sorted algebra precise. That material is not
mathematically new and has a survey character. However , our presentat ion is different

2 In order to prove existence of initial algebras, we have to employ a concrete construction, but once done, we
can forget about that construction and rely solely on Proposition 1 1

This proof depends exactly on the assumptions about C mentioned in the footnote to the deflmtlon of
"Initial "
4 A ranked alphabet is a family (2 ,) , ~ of disjoint sets indexed by the na tura l numbers 2~ is the set of operator
symbols of rank k, There are more details in Section 2 Note that the assumpt ion that the 2 , are disjoint is not
necessary (or even desirable m g e n e r a l - s e e Tha tche r [67]), we adop t it here to sJmphfy the exposi t ion

7 0 J . A . GOGUEN, J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

from the l i terature (we hope it is simpler) and seems to us to be of fundamental
importance. A careful reading of Section 2 serves multiple purposes, because the
material there can be extended to almost any initial algebra situation, including mttlal
continuous algebras (Section 4).

Section 3 contains applications (examples) of initial many-sorted algebras. Section 4
defines "continuous a lgebra" and constructs initial continuous algebras. Apphcat ions of
this, including Scott 's lattice of flow dmgrams [61], are m Section 5. Section 6 contains
some questions and problems.

Some of the subject mat ter included here is being prepared for inclusion in the second
part of the first repor t of the ADJ series [23] 5

2. Many-Sorted Algebras

An algebra in the sense of Birkhoff [6] (see also Cohn [13] and Graetzer [27]) is simply a
set, called the carrier of the algebra, together with an indexed family of operat ions
(functions) defined on (Cartesian powers of) that set. A many-sorted algebra consists of
an indexed family of sets (called carriers) and an indexed family of operat ions defined on
Cartesian products of those sets. Generalizing to many-sorted algebras is very natural for
computer science. The index set for carriers is called the set of sorts, and might be, for
example, {real, int, bool}. An algebra A of this kind would have three carriers, Areal, Aint,
and A bool , together with some operations such as "1" . A real × A int ~ A real or ~ : A bool X
A,e,~ × A,e,~ ~ A,,,~, which might be exponent ia t lon or conditional, respectively.

A finite automaton, in the sense of Rabin and Scott [52], is an algebra with two sorts:
states named S and mputs named E, i.e. an {S, E}-sorted algebra. The transition function
is an operat ion M of " type" (S~, S) (M . S × E ~ S, using the sort symbols to denote the
carrters, an ambiguous but common practice). The initial state is a constant So of sort S (So
E S) .

The definition below is equivalent to Birkhoff and Lipson's [7] "heterogeneous
algebra" and therefore (according to them) is equivalent to Hlggins' [28] "a lgebra with a
scheme of opera tors . " Btrkhoff and Ltpson show that the conventional theory of
"universal a lgebra" (as in [6, 13, 27]) carries over "with undiminished force" to the
theory of many-sorted algebras. In part icular, the concepts of subalgebra, homomor-
phlsm, quotient , congruence relat ion, product , word algebras, and free algebras general-
lze naturally and easily. Al though Birkhoff and Lipson give some computer science
examples, the first explicit use for new results in computer science seems to be in
Malbaum [41, 42]. The concept appears to have originated with B6nabou [5] in a
category theoretic form.

Let S be a set whose elements are called sorts. An S-sorted operator domain or
stgnature ~ is a family (~w,8) of disjoint sets indexed by S* × S. ~w.8 is the set of operator
symbols of type (w, s), arity w, sort s, and rank lg (w) (lg (w) is the length of w, h ~ S* is the
empty string, and lg(h) = 0). A E-algebra A consists of a famdy (As)~es of sets called the
carriers o f A (A, is the career ofsorts E S); and for each (w, s) ~ S* × S and for each o-
Ew,s, an operat ion O'A of type (w,s) , i.e era : Aw, × • " • × Aw~ -->A~ where w = w~ • • •
w~ and w, E S for t = 1, • • • , n. An operat ion era of type (h, s) is a constant of sort s , i.e
O'A ~ As

For fixed S and varying E we have the class of S-sorted algebras, and as S varies too,
the class of many-sorted algebras.

When # S = 1, we have the conventional case of (one-sorted) a l g e b r a s - h e r e the
opera tor domain is just as well Indexed by to = {0, 1, 2, • • • }, and tr E E, names an
operat ion era : A n ~ A m an algebra A (the single carrter and the algebra being
ambiguously denoted by the same symbol).

5 The set of authors of thJs paper ~s referred to as "ADJ". the series referenced here is devoted 1o an
exploration of "the junction between category theory and computer scwnce "

In i t ia l A l g e b r a S e m a n t t c s a n d C o n t i n u o u s A l g e b r a s 71

Returning to the general case, if A and A ' are both E-algebras, a E - h o m o m o r p h i s m

h : A ~ A ' is a family of functions (hs : A s ~ A~)s~s that preserve the operations, i.e.
(0) if tr ~ `z~,s, then hs(O'A) = ora, ;

(1) If ~ ~ E and (ai, "'" , a,) E As, × "'" × As,, then

hs(tra(al, ' ' ' , a,)) = o'a, (hs I (a l) , "" ", hs, (a,)).
The utility of iniUal algebra semantics rests heavily on being able to handle many-

sorted algebras with as much clarity and notational simplicity as the one-sorted (conven-
tional) case. Indeed, the generalization from sets and functions to S-indexed families of
sets and S-indexed famflms of functions ~s not that great a jump. If A is an S-indexed
family of sets (A = (,4s)s~s) and w = s l • • • s , E S*, then generalizing A n, define A w to be
the Cartesian product A,, × . ' . × As,. Similarly, for an S-indexed family of functions
h : A --->A' ((hs : As-- -~A~)sEs) , defineh w : A t e - - -) A ' U ' b y h W (a l , • "" , an) = (hs, (a l) , "" • ,

hs. (a,)), which generahzes h" : A " ~ A ' " , The special case w = h (n = 0) is handled

uniformly by A ° = A ~ = {~.}, and a function o'a with source A ~ IS identified with the
"constant" which IS ItS value (ra(X) at ItS single a rgument?

Now with this notation, an S - s o r t e d "Z-algebra A consists of: a carrier (ambiguously
denoted) A, which is an S-indexed family of sets; and, for each operator symbol (r ~ Ew.s,
a function t ra : A w ~ A s . An S - s o r t e d ~ h o m o m o r p h i s m h from A to A ' IS an S-indexed
family of functions (hs : As --~ A~) such that hs (O'a (a)) = o'A, (h ~ (a)) , i.e.

(/'4
A u • A,

cr A ,
A TM ~ A',

commutes for all o" ~_ Ew.s and a ~ A w. This has now become only a minor varmtmn on
the one-sorted definition.

Letting A l g z denote the class of Z-algebras with E-algebra homomorphism, we state
the first basic result concerning initml algebras.

PROPOSITION 2.1 T h e c lass A l g z o f ` z - a l g e b r a s has an mi t la l a lgebra; cal l tt T~ . []

This IS a well-known result, at least for the one-sorted case (see Blrkhoff [6] or Cohn
[13] or Graetzer [27]), and the many-sorted case is treated in Birkhoff and Llpson [7].
T z is often called the Z - w o r d a l gebra and the carriers are sometimes callod the H e r b r a n d

u n t v e r s e for `Z. The set T~,s (the carrier of T~ of sort s) can be thought of as the set of well-
formed expressions (or trees) of sort s built up m the usual way (to be made preose in a
moment) from the operator symbols of `Z. But we emphastze that this characterization is
(mathematically) mlportant o n l y for the proof of Proposition 2.1. Once proved, we do
not n e e d to know how a particular initial algebra was cons t ruc t ed -we use only initiality.
Comments about expressions (or pictures of trees) occur only to aid understanding.

Let E (ambiguously) denote the set of all operator symbols in the S-sorted operator
domain E. Now let (T~.s)ses be the smallest family of sets contained in (E t./ {(,)})*
satisfying the following two condmons (here {(,)} is a two-element set disjoint from E):

(0) E~,s c T_~,s;
(1) l f o - ~ E w = s , ' ' ' s , , n > 0 , a n d T , ~ Tz,s ,, t h e n o-(t~ . . . tn) ~ Tz ,s

Then make the family (Tz ,s) into a Z-algebra T z by defimng the operations:
(0) fo r cr ~ `Z~,~, o- , = o" ~ T,=,s; ~

(1) for cr @ Ew.s, w = s l • • • sn, and t, @ T~ o'v(tl , • • • , ta) = o'f f l • • • tn) E Tz,s .

A l t h o u g h this u n i f o r m i t y ~s m a t h e m a t m a l l y race , it Is o f t en m o r e c o n v e n i e n t to s e p a r a t e o u t t he c o n s t a n t s
f r o m the m o r e g e n e r a l o p e r a t o r s , for the m o s t pa r t this wdl be d o n e in the s eque l

We are wr i t ing o-r i n s t ead o f O-cr~

72 J . A . GOGUEN, J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

Under the natural identification of elements of A w with strings aw, • • • am. such that

aw, E Aw,, (1) immediately above can be rewritten:
for all (r ~ Ew,s and t E T~, (rr (t) = tr(t).

As an artificial example, S = {a, b}, Z~,a = {xa}, Ex.b = {Xb}, E~b,a = {f}, and Eb,b =
{g}. Then T~., contains terms xa, f (XaXb) , f (xag (Xb)), f (f (x j b) X b) , etc., while T~,b contains
Xb, g(Xb), g(g(xD), etc. Much less artificial is the correspondence, in Section 3, of any
context-free grammar to an imtial N-sorted algebra (where N is the set of nontermmals).

In any algebra A in the class Alga , if cr E ~ ,~ and a ~ A w, then crA(a) ~ As. This
algebraic structure on the set T~ (making it the initial E-algebra) seems to be "synthetic
syntax" [36], and o-r is familiar as the "constructor function" denoted m k - or in Reynolds
[53].

On the other hand, "analyUc syntax" [36] is based on
PROPOSITION 2.2. For any t ~ T~, s there exist unique n -> O, s~ • • • sn E S*, o" E

E<s, s,.s>, and t, E Tz,s. (1 -< i -< n) such that t = o'r(q, • • • , tn). [] s
The notation in Reynolds [53] can be generalized to many sorts as follows: For each o-
E, is - o" tests whether its argument is of the form o'r(q, • • • , t,), taking values in the

set {true, false}; is - s tests whether Its argument could be of sort s; and for each pair (o',
i) with 1 _< i -< rank(o-), s<~,,> is the "selector function" defined iff i s - o " is true by
s<~,,> (o-r(q, " • , t,,)) = t,. These functions are well defined by Proposition 2.2, and ff
is - tr(t) is true, then

m k - - t r (s~o , ,> (t) , " ' " , S<a,n>(t)) = t .

Moreover, if o- ~ X<, ,> and if is - s,(t,) is true for 1 -< z -< n , then

s < , ~ , d m k - o'(t~ , . . . , t ,)) = t , .

In [53] the various selector funcaons are given names (e.g. opr, opnd, etc.), but of
course this isn't necessary. In fact, as an example below illustrates, the "language" of
synthetic and analytic syntax is unnecessary with the mittal algebra approach to abstract
syntax.

We now introduce "freely generated" X-algebras in order to get a concise definition of
"derived operator"; for notatmnal simplicity we consider the one-sorted case first.

Let X be a set (whose elements are called variables) disjoint from E. We form a new
ranked alphabet, denoted E(X), by adjoining the varmbles as new constant symbols:
E(X)o = Eo t.J X and ~(X)k = Ek for all k > 0. By Proposition 2.1, Tx(x) ts the tmtial
X(X)-algebra. The trees whtch are m its carrier differ from those in Tx only m that they
may have variables on the leaf nodes as well as constants from Eo Now Tx(x> has E(X) as
tts signature, whereas we want to thmk of Tx<x) as a X-algebra Since the operations (and
constants) named by X(X) include those named by E, we can do thts just by "forgetting"
that the variables have names in the stgnature; that is, we define a new X-algebra,
denoted Tx(X) . wtth carrier that of T,~x) and with operations those named by ~ in T.~x). It
~s the free X-algebra generated by X , in the following sense.

PROPOSITmN 2 3. I f h : X ~ A ts any funct ion mapping X into the carrter o f a X-
algebra A , then there exists a unique Z - h o m o m o r p h i s m tt : Tx(X) ~ A extending h, t.e
~ (x O = h (x) ?

PROOf. A is a E-algebra. Given h : X --> A , make A mto a E(X)-algebra by having x
name h(x) in A (xa = h(x)). By Proposition 2.1, there ~s a unique E(X)-homomorpbism
/t . Tx<x)~ A , and (by clause (0) of the definition of hornomorphism) [t(XT) = Xa = h(x);
because /~ is a E(X)-homomorphtsm, ~t ts immediately a E-homomorph~sm. For the
untqueness part, ifg : T~(X) ~ A ts a E-bomomorph~sm with g(x~) = h(x), then tt IS also
a E(X)-homomorphism, and thus g = h. []

a This is famil iar for wel l - formed expressions a n d / o r Z- t rees , and that is sufficient p roof because o f Proposi t ion
1 1
a Note that xT is wha teve r the zero-ary symbol x ~ X names m the mlual a lgebra T ~ r) - m the above concre te
c o n s t r u c t i o n ~r = x , but we can ' t assume that since we are depend ing o n l y on the mflmhty of T~a)

Ini t ia l A l g e b r a Seman t i c s a n d C o n t m u o u s A l g e b r a s 73

This const ruct ion is typical of initial a lgebra semanucs . The phrase , " m a k e B into a Z-
a lgebra by • • . , " is fundamenta l because making B into a Z-a lgebra gives the un ique
h o m o m o r p h i s m hB : T~ --* B by lnitiality. In the p roof of Proposi t ion 2.3 this was
part icularly e a s y - A was a l ready a Z-a lgebra and we made it a Z(X)-a lgebra In genera l ,
if B ts any set (later, any family indexed by S), we make B into a E-a lgebra by defining
appropr ia te opera t ions cr B : B" ~ B for each (r ~ E . ; then (zap!) h9 : T~ ~ B.

We are now m a posi t ion to define the very impor tan t not ion of der ived opera to r . The
intmtive idea is that the terms m Tz(X) (like polynomials m ordinary a lgebra) do not
have values, since they contain variables, but they do def ine funct ions on any Y-algebra
by assigning values to the variables. Because this gives rise to new opera to rs on E-
algebras A c o m p o u n d e d out of those named by E, the new opera to rs are called der ived
opera tors

First, let X , = {x~, • • • , x,,}, and call t E T ~ (X ,) a E- term m n varmbles or an n-ary E-

term. Now given a E-a lgebra A and t E T~(X, ,) , we want to def ine its cor responding
der ived opera tor on A , ta : A " ---> A . This employs Proposi t ion 2.3 as follows: G iven
(al, • • • , an) E A " , let a . Xn --~ A be def ined by s e n d i n g x , ~ a~ for 1 -~ t -~ n ; then , by
Proposi t ion 2.3, there exists a un ique E - h o m o m o r p h l s m d : T~(Xn) ~ A extending
a : Xn ~ A; now we define tA(a~, " " " , an) to have value d(t) . Thus we are let t ing a vary in
the expression d(t), while keeping t f ixed; d(t) ts the " e v a l u a t i o n " in A of the n-ary te rm t
in which the var iable x, is given the value a, m A, using the opera t ions of the E-a lgebra A .

For the special cases when A is of the form A = Tz (Xm) , the above gives us a precise
formula t ion of the opera t ion of substi tut ion of m-ary E- te rms for var iables . (When
variables are assigned to terms, " e v a l u a t i o n " ~s just subst i tu t ion.)

That is, g iven t ~ Tz (Xn) and an n- tuple of m-ary E- te rms t ' = (t~, - . . , t~)
(T~(Xm)) n, we again identify t ' with the mapping f rom Xn to Tz(Xm) which sends x, to t;
for 1 ~- i -< n. The result of s imul taneously substi tut ing t,' for x, in t for i = 1, • • • , n is
precisely F(t). We write t ~-- t ' for the substi tut ion of (the n- tuple of m-ary Z- te rms) t ' in
the n-ary term t.

If we take t to be a p- tuple of n-ary E- te rms t = (t~, • • • , tp) E (Z ~ (X n)) p ra ther than just
a single n-ary E- t e rm, then we could def ine t ~-- t ' as (6 ~ t ' , • • • , tp ~-- t ') . H o w e v e r ,
by exploi t ing the co r re spondence be tween p- tuples t E (Tz(Xn)) p and mappings
t : X p ---> T z (X n) , we can more succinctly def ine t ~-- t ' as i'ot ("o" is a funct ion com-
posi t ion) .

x , x ,

t '
T~(X,,) • Tz(X,.)

Then t ~ t' = i ' ot : Xp ~ T~(Xm) and the " l th c o m p o n e n t " of this " p - t u p l e " is (t ~-- t ')(x,)
= (i' o t)(x,) = i ' (t(x,)) = i'(t,) = t, ~-- t ' just as before.

With th~s defini t ion it is easy to show that substi tut ion is associat ive. For given

t : X p - - * T x (X n) , t : X . ~ Tz(Xm), and t " : Xm- -~ T z (X q) ,

we have

X. X. X,.

| ~ t '
T~(X.)) T~(X,.) • T~(X.)

74 J . A . GOGUEN, J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

(t + - t ') + - t " = ([' ot) + - t " = i" o ([, ot) = ([, o/,) ot by def ini t ion o f + - . But t h e n / " or ' and

? ' o i ' are bo th h o m o m o r p h i s m s Tz(X,~) ~ T~(Xa) extending t "o t ' , and so Proposi t ion 2.3
says they are equal , whence q + - t ') + - t " = (i "o i ')o t = (i " ~) o t = t +- (i "o t ') = t +- (t' +- t ")

as desired. Thus we have
PROVOSXTION 2.4. S u b s t i t u t i o n is a s soc ta t t ve F o r t : X v ~ T~(Xn) , t ' : Xn ~ T~.(Xm)

a n d t" : Xm --+ T~(Xq), t h e n (t +- t ') +- t" = t +- (t ' +- t"). [] lo

Just as we can ex tend subst i tut ion to p- tuples , so we can ex tend the no t ion of de r ived
opera to rs to p - t u p l e s of n-ary S - t e rms . Given t = (q , • • • , t o) : X p --+ T_~(Xm), we def ine
tA : A m ~ A p to be such that , for each a ~ A 'n (i.e. a : X,n ~ A) , ta(a) = ci o t, which, for t
= (t l , " ' " , tp) , g i v e s t a (a) = (t (x ~) a (a) , " ' " , t (x p) a (a)) = ((t l) A (a) , " ' " , (t v) A (a)) . NOW

given

X~ X, X,.

T~(X.)) F~(X,.) I. A

which is a trtwal modification of the dmgram for substitution, the proof of Proposition
2.4 Is immedia te ly modi f ied to yield

PROPOSITION 2.5. (t +- t')A = ta ° t] (w h e r e the r i g h t - h a n d s ide ts f u n c t i o n c o m p o -

s i t ion a n d the l e f t - h a n d s ide is s u b s t i t u t i o n) . []
Some famflmr funcnons on t rees or express ions are fur ther examples of initial a lgebra

semantics
Fron t t e r . Make E~ into a Z-a lgebra .
(0) For o- ~ ~o, let o- be o- ~ Eo*.
(1) F o r ~ r E E , , wa, " . , w , E E g , letcr(w~, " " ,w,~) = wl " ' " w, .

The un ique E - h o m o m o r p h i s m f r : Tz --) E~ is the f ron t ie r (or yield) funct ion.
Genera l ly Ws clear and ntce to write era to specify what ~r names m the a lgebra A, but

th,s gets t i resome, and m fact it is not conven t iona l pract ice For Abe l i an groups one
doesn ' t see +c and 0G, but Just + and 0, the symbols indeed name the funct ions and
constants .

Whtle the conven t ion of using the ope ra to r symbols to deno te the funct ions m
(different) algebras can lead to some ra ther strange looking expressions (cf. case (0) in
the example above and m the two that fol low), it Js a r ecogmzed c o n v e m e n c e and avotds
naming algebras m these examples and the resul t ing complex subscrtpts.

H e i g h t . Make o) = {0, 1 , 2 , • - .}11 into a Z-a lgebra :

(0) Fo r ~r ~ E0, let o- = 1.
(1) For o- E E,,, k~, . . • , k, ~ w, let o'(k,, - . . , k,,) = max,(k,) + 1.

The un ique ~ - h o m o m o r p h i s m hg : Tz ~ co is the height f u n c t i o n - i n t ree t e rmino logy ,
the length of the longest path f rom the root to a terminal node (+ 1).

S y m b o l s . M a k e ~2 p(E) into a Z-a lgebra :
(0) For o- ~ E0, let (r = {~r}.
(1) Fo r o- ~ En, n > 0, and u , , • • • , un ~ p (E) , let o-(u,, • • • , un) = {o'} O I.Lu,.

The un ique E - h o m o m o r p h i s m s y m : T z -+ p (E) is the set o f symbols that occur in an
express ion.

We fimsh off thts sect ion by showing how the impor tan t process of def ining der ived
opera to rs works for many-sor ted algebras. Whereas m the convent tona l case we gener-

to From a categorical point of view what we have here is a category T~ (the algebraic theory [32] freely
generated by ~) with set of ob)ects oJ; morphlsms from m to n are functions from Xm to T~(X,~), composit ion is
substitution; and for each n ~ ~o, the mapping X n ---, T ~ (X ,) taking x, to x, is the identity for n
n Throughout we use ~ to denote the nonnegatwe integers.
~ p(E) is the set of subsets of the set of operator symbols E (p is for "power set").

Inittal Algebra Semantics and Contmuous Algebras 75

ated a free a lgebra f rom a single set, now we must have genera to rs for each sort , i .e an
S- indexed family X Given an S-sor ted ope ra to r domain E, def ine an ope ra to r domain
E(X) by E(X)x,, = X~ tO E~,~ and E(X)~,~ = E for w ~ ~; that is, the genera to rs are
ad jo ined as symbols of arity h and sort s. Again T~x~ is v iewed as a Z-a lgebra Tz(X), and
we have the " f r eeness" proposi t ion proved exactly as Proposi t ion 2 3.

PROPOSmON 2.6. For an S-sorted operator domain ~ and an S-mdexed faintly X ,
T~(X) is the ~a lgebra freely generated by X in the sense that any S-indexed family o f
functions, h : X ~ A , to the carrter o f a Z-algebra A , extends untquely to a ~-homomor-
phtsm I~ : T~(X) ~ A . []

For u = s~ • • • s . E S*, define X~ (the analogue of X . is the one-sor ted case) by X . =
{x~ x2 • • • , x }. X . ts a set of n " s o r t e d " or " t y p e d " var iables and can be v iewed

as an S- indexed family with (X.)s = {X~,s, [s, = s}. This specifies, for each s, the countable

set {x~,~, xz,~, x3,,, • • • } of s -sor ted vartables via conventen t f imte subsets X . for u E S*.
For example , with S = {a, b} again, Xa~b~b = {Xl,~, Xz,a, X4,a, X3,b, Xs,b}.

In an algebra A , a te rm t ~ (T~(X~))s defines a der ived ope ra to r ta : A ~ ~ As
analogously to the one-sor ted case: View a U A ~ as an indexed family of funct ions a : X .

A bya,(X,,s,) = a~ ~ A~, and, using Propos i t ion 2.6, define tA(a) = ~(t).

Again , substi tut ion is a special case. A family of maps t : X~ ~ Tz(X.) is like an n-
tuple of terms m variables X, except that t(x,.~,) has to be m T~(X~)~, so that var iables of

sort s, are assigned terms of sort s,. Also given t' : X~ ~ T~(Xw), S-sor ted subst i tut ion is
def ined by t ~ t ' = t ° / ' ; t ~ t ' is again the result of s imul taneously substi tut ing t~
= t'(X,,~,) forx,,~, in each c o m p o n e n t o f t . Associat ivi ty of substi tut ion and its re la t ionship
to der ived opera to rs go through exactly as in Proposi t ions 2.4 and 2.5.

3. Applications o f lnitial Many-Sorted Algebras

3.1 CONTEXT-FREE GRAMMARS. The most impor tan t and genera l example of
initial many-sor ted algebra semantics ~s semanttcs for context - f ree g rammars

Le t G = (N,E,P> be a content - f ree g rammar 13 with nonte rmina ls N , terminals E
(N N E = ~) , and product ions P C N × (N U E) +. Let V = N to E; for any w ~ V*, def ine
nt(w) to be the string of nonterminals in w, in the same order . (More precisely, nt : V* --~
N* is the umque extens ion to a mono ld h o m o m o r p h t s m of the map V ~ N* which is the
identi ty on N and takes each o" ~ E to h E N*)

Now make G into an N-sor ted ope ra to r domain where , for each (w, A) E N* × N ,

Gw,a = {p E P] p = (A , w') and nt(w') = w}.

Thus a product ion A o--* uoA lulA2 • • • u . _ i A nU. (A, E N, u, ~ 5;*) is an ope ra to r symbol
of type (A~ • • • A . , A0) The imtial G-a lgebra TG has carr iers Tc.,a which are parse t rees
for der ivat ions m G from A E N.

Regard ing the general i ty of this s i tuat ion, we have just seen that any context - f ree
g rammar gives rtse to an inttial N-sor ted a lgebra . Converse ly (because we al low mfm~te
g rammars) , If E is any S-sor ted ope ra to r domain , then there is a context - f ree g r a m m a r
which gives us the initial Z-a lgebra back again under the const ruct ion above . In parttcu-
lar, take

= (S,E tO {(,)}, P) with P = {(s, o-(s, . . . s .)) I o- ~ Es s}.

T h e n one can check that , under the ident if icat ion of the ope ra to r symbol (s, or(s1 • • • s .))
m ~ with cr in E, T~ and T z are i somorphic .

The impact of initial a lgebra semantics here is that any G-algebra wha t soeve r (a set Sn
for each non t e rmmal A and a funct ion ps : Sa, × • • • × Sa. ~ SA for each produc t ion p

13 Usually N, E, and P are fimte (see [19]) We don' t have (or want) that restriction here We believe that the
context-free grammar for the abstract syntax of many programming languages will have an infinite number of
terminals, nontermmals, and productions We don' t consider the effective presentat ion of such systems here
(see van Wljngaarden [77]), but this must be carefully thought out

76 J A. GOGUEN, J. w. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

of type (Aa • • • An, A)) provides a semantics for the context-free language genera ted by
G. TG, being initial , gives the un ique homomorph i sm h s : TG ~ S which assigns " m e a n -
ings" in S to all syntactically wel l - formed phrases of the language (not just to the
"sen tences" genera ted from some specified start symbol in N) .

For example , we make X* into a G-algebra (with every carrier X*) by l e t t ingp(v l , • • • ,
V n) = U o V i U l V 2 " " " Un-lVnU a for p = (Ao, u o A l u l A 2 • • • u,~_lA,,u,~). T h e n the un ique
homomorph i sm d : TG---> ~* assigns to a der ivat ion t ~ TG.A the string which is der ived)4
Note that d : T~ ~ (X U {(,)})* gives exactly the wel l -formed X-expressions correspond-
ing to parse trees in T~; this is the basis for proving the isomorphism of T~ and T~.

G might be ambiguous (d no t inject ive) , bu t that is no t a p rob lem since initial a lgebra
semantics (the abstract syntax point of view) factors ou t the parsing p rob lem (without , of
course, e l iminat ing i t)? 5

Thus even "str ing gene ra t ed" is an initial a lgebra semantzcs for context-free gram-
mars. K n u t h ' s [30] synthesized at t r ibutes (following Irons'~ [29] ideas) really do what we
describe here, bu t Knu th ' s def ini t ions and no ta t ion seem more complex than is neces-
sary. In our formula t ion , Kn u t h constructs a G-a lgebra S in which each carrier Sa is itself
a Car tes ian product of sets. The componen t s of that product are called "synthesized
a t t r ibutes" o f A . Then K n u t h ' s "semant ic rules" def ine (by the componen t s) opera t ions
of the appropr ia te type for each product ion . Of course , semantics of the language is the
un ique homomorph l sm hs • TG ~ S) 6

3.2. DENOTATIONAL SEMANTICS Scott [63] begins with the mot to "Ex tend B NF to
semantics " In fact, that is the "mo ra l " of the previous discussion We now know that
BNF ~7 yields an initial many-sor ted algebra, that semantics arises from an algebra of the
same type, and that " m e a n i n g " is the un ique homomorph i sm. We view the principal
achievement of Scott and Strachey (say [60, 64, 65]) as providing mathemat ica l tools for
construct ing semant ic domains (many-sor ted algebras with opera t ions cor responding to
the product ions of a context-free g r ammar) so that the um que homomorph l sm is the
in tended (denota t ional) mean ing of the language.

Scott and Strachey seem to say (e.g. [65, p. 17]) that they don ' t care if the syntax of
the language is context-free. ("The last thing we want to be dogmatic abou t ts lan-
guage . ") But their semantics does depend on the context-free character of the source
language, because the mean ing of a phrase is a funct ion of the meanings of its cons t i tuent
phrases. (From [65, p. 12], "The semant ical def ini t ion is syntax directed m that it follows
the same order of clauses and t ransforms each language construct into the in tended
opera t ions on the meanings of the pa r t s . ") This essentially says that syntax is context-
free and semantics is a homomorph i sm. 18

In general , the "semant ic equa t ions" (typical of [65, 26], etc.) def ine the m ean ing of a
syntactic construct C as a funct ion Fc of the meanings of the componen t s to that
construct , and in so doing the semant ic equat ions describe an algebra (the funct ion Fc is
the opera t ion cor responding to the syntactic construct C) and say that semant ics is a

~4 This is actually a generalization of the frontier function defined in Section 2
~5 As Schwartz [59] puts it, "We have sufficwnt confidence in our understanding of syntactic analysis to be
wdhng to make the outcome of syntactic analys~s, namely the syntax tree representaUon of program, into a
standard starting point for our thinking on program semantics "
18 Knuth's [30] reheated attributes are not treated in this paper, but Goguen and Zamfir (unpubhshed) have
suggested treating them as variables (that is, new unmterpreted constants) in free algebras whose operator
domain contains, in addition to these varmble symbols for inherited atmbutes, all the operatzons and constants
which are employed m semantic definmons Burstall (personal communication) has suggested using [1 ~ S] as
the carrier of a generalized semantic algebra These issues will hopefully be explored elsewhere On the other
hand, Knuth's [30} mare result, an algorithm testing for c~rcularity of a semantic defmmon mvolwng both
inherited and synthesmed attributes, lies outside the domain of mterest of this paper
~7 Backus-Naur Form, a well-known and convement formulation for context-free syntax
~8 The homomorph~c character of the semantic function must have been clear to Scott In fact, he uses the
phrase "continuous algebraic homomorphlsm" [61, p 46] for the semantic funcUon on the lattice of flow
diagrams (See Section 5.3)

Initial Algebra Semantics and Contmuous Algebras 77

homomorphism. Usually semantic equations give the meaning with respect to an "envi-
ronment ," for example [65, p. 27],

"where p ts an environment; ~ is the semantic function for commands with target, say, F;
and ~ is the semantic function for expressions wtth target T = {true, false}. The initial
algebra " translat ion" of that semantic equation abstracts the environment variable to get

c ~ ~ To, V,~ = hp cond(C~%i~(p), c~Vl~ (p)) * ~ e ~ .

Now this has exactly the form of the homomorphism condition,

and the operat ion (in the semantic target algebra) ts F ~ : T x F z ~ F, defined for all ~ @
T and 'y0, 'yi ~ F in terms of cond, *, and abstraction:

F~ (~, q/o, ~i) = kp cond (~o (P), ~, (P)) * E.

The point is that one need only define the target algebra; mmali ty yields the semantic
homomorphism.

We illustrate this m more detail with a simple apphcative language which we call
SAL, drawn (and modified) from Reynolds [53]. TM Let X = {xi, x2, "" "} be a set of
variables 0dentiflers). In specifymg SAL syntax we give each rule a name m order to
have mnemonics for defining a semantic algebra; those with subscript x represent
families, one member for each x ~ X. There ts one nonterminal , (exp), and all boldfaced
symbols are terminals. Thus varmbles occur as terminal symbols, just as, say, if does.
The (context-free) productions of SAL are the foliowmgZ°:

(%) (exp) : := x
(cond) (exp) : := if (exp) then (exp) else (exp)
(apply) (exp) : := (exp) ((exp))
(abs~) (exp) : := lamhda x ((exp))
(lets) (exp) : := l e t x be (exp) in (exp)
(let-reck) (exp) :: = let recursive x be (exp) in (exp)

From Scott [63] there is a complete lattice 21 V of values satisfying the isomorphism,

v ~ 1 + n + [V ~ V], (*)

where I and B represent respectively the mtegers and the Boolean values {true, false} as
lattices with ~ and -1- adjoined, and [V ~ V] is the complete lattice of continuous
functions from V to V. The +-opera t ion on the right-hand side of (*) is the "coalesced
lattice sum ''22 (disjoint union with mimmum (and maximum) elements identified). For X

{1, B, [V--~ V]}, let j~ be the in ject tonja : X--~ I + B + [V---~ V], and let ~b be the
isomorphism ¢b : V "~ I + B + [V---~ V]. Then V ts equipped with injection tx : X---~ V (Ix
= qb -I Olx) and also "proJections" 7rx : V ~ X such that

f~b(V) If ~b(V)EX,
~ x (V) = otherwise

19 O u r language differs subs tanhal ly f rom Reynolds ' s m that his employs a call-by-value in terpre ta t ion of
application
20 The fact that this is an ambiguous g r a m m a r Is i r relevant for our purposes
21 We dISCUSS completeness , cont inui ty , and al ternat ives to lattices in Section 4 For now, a complete lattice is a
partmlly ordered set where every subset has a least uppe r bound , a function is continuous lff it preserves least
upper bounds of directed subsets , and D is directed lff every finite subset of D has an uppe r bound in D The
min imum and maximum elements of a comple te lattice are denoted ~ and * , respectively
~2 For lattices (and analogously for posets, with only ~) . the coalesced ~um of two lattices Lj and L2 consists of
the disjoint union (say) L1 x { 1 } U L2 × {2} with (-% 1) and (-r, 1) identified respectively with (_t_, 2), (-% 2) u n d e r
the obvious order ing The separated sum is the disjoint union with new x and -1- ad lomted , x C (1, z) C_ -r for all 1
E L, and i ~ {1, 2}.

78 J . A . GOGUEN, J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

We wish variables to have values in V. Thus let E be the set of environments , 1.e. of all
total functions from X to V, E = V x as a complete lattice with componentwise ordering
e E_ e' iffe(x) ~ e'(x) in V for allx ~ X. Finally, meanings of expressions are continuous
functions from environments to values, M = [E ~ V].

M becomes a semantic algebra when we define an operation on M for each production
of SAL; letx, let-recx, and apply are of rank 2, functions M 2 ~ M; cond is rank 3; absx is
rank 1; and vx is rank 0, a constant.

To carry this out, we define some auxdiary continuous functions (and functionals).
Our presentation here is rather sketchy since this development Is what Scott, Strachey,
and followers do anyway, and our aim here is just to show that the relation to the mitml
algebra framework.

(3.1) access~ : E ~ V is the evaluation function on V x at x ~ X: access~(e) = e(x).
(3.2) c : V 3 ~ V is some conditional, say:

i -r if vl =-r ,
c(v~, v2, v3) = v× ffv~ = true,

v3 flY1 = false,
_L otherwise.

(3.3) ap : V 2 -~ V is application: ap(vl , v2) = (~'~v--,v~(vl))(v2), where 7rfwvl is the in-
dicated projection; see discussion following (*) above.

(3.4) assign~ : E × V ~ E is our friend the assignment operator:

{~ i fy = x,
assigns (e, v) = e' where e'@) = e@) otherwise.

Al l o f the above have etther been shown to be cont inuous or can eastly be shown to be
such. In addttion, Scott 1-63] defines

(3.5) abstract : [D × D ' ~ D"] ~ [D ~ [D' ~ D"]] by ((abstract(f))(x))(y) = f (x ,y)
for a l l f ~ [D × D' ~ D"], x ~ D, a n d y E D' .

Here we too enjoy some notational amblgmty by writing "abstract" instead of
"abstracto.D,,o,"; and similarly in other cases.

(3.6) The least fixed point operator Y : [D ~ D] ~ D is continuous.
(3.7) If m, : E ~ V, (1 -< i -< k) are continuous, then [ml, "'" , mk] : E --~ V1 × "" ×

V~ defined by [ml, "'" , mk](e) = (ml(e), " " , ink(e)) Is continuous (called target-tupling)
(3.8) For continuous functions f : D ~ D' and f ' : D ' ~ D", the composite f ' o f is

continuous; and so is composition itself, o : ([D' --~ D"] z [D ~ D']) ~ [D ~ D"].
Now make M = [V x ~ V] into a SAL-algebra by gwmg an appropriate operation for

each production of SAL:
v x = access ~
cond(ml , ms , m3) = c o Ira1, m2, m3]
apply(m1, m2) = ap o [ml, mz]
abs z(m) = t[v~vl o abstract(m o assign x)
letx(ml, m2) = ms ° asstgnx o [1E, ml]
let-recx(ml, m2) = letx(y ° abstract(ml o assign×), m2)
Actually the defimtions of most of these operations seem to be clearer as dmgrams,

since the source and target of each funcuon is exphot . "Abstract ion" is regarded as a
way of getting one function from another The funcUon "assumed" (or given) appears on
the top, the function "deduced" appears below it, and the process is represented by a
line between them; thus

D × D ' - f ~ D "

~' D"] D ---~ [D' ---~

for g = abstract(f). Then the first five definitions are:

lnittal Algebra Semantics and Contmuous Algebras 79

(1) vx = E ~V

(2) cond(ml , m2, m3) = E ["!: J~, V 3 ..5_, V

(3) apply(m, , rn2) E ~ V 2 "p '~ g

E x V g"~ ' E ~ V
(4) abs~(m) = E --~ [V --* V] , V

(5) letz(ml, m~) E I-I~'m~1, E X V u,~ ,,~ = E - - - - ~ V

With M a SAL-algebra , tlae unique homomorphlsm hu : TG --~ M is a semantics for
SAL. There is no claim for great gains in perspicuity, but our mode of definition does
illuminate the places where semantic choices are made. It is through the Introduction of
standard mathematical func t ions-compos iUon, tupilng, injecUon, and the l i k e - t h a t
these choices are clarified, and this process has the addmonal benefit of getting nd of the
need for-"dragging along" the variable for environments.

Given the particular conditional and application functions ((3.2) and (3.3) respec-
tively), then the functions cond and apply ((2) and (3) respectively) on the semantic
carrier M are essentially the only choices possible; this differs from Reynold 's meta-
circular interpreters in that he presumes a "defining language" m which the Interpreters
are written and the semantic choices have not been completely made for that meta-
language. In the semantic ca ree r E---~V, there is simply no way to make a distinction
between order of evaluation of opera tor and operand in (2), for example. If expressions
had side effects and E---~ExV were taken as carrier, then the two orders of evaluation
would be clearly represented in

m2 mlXl~)
E ~ E x V E x V x V - k . ~ - ~ E x V

and

E - - 4 E x V ,,,,×1, E x V x V z'×a.P'~ExV,

where ap'(vl , v2) = ap(v2, vl) = v2(vl) and f x g (a , b) = (f (a) , g(b))
3.3. SYNTAX DIRECTED TRANSLATION. The noUon of syntax directed translation

pioneered by Irons [29] has been mathematically treated by several authors [1-3, 30, 35,
50, 63, 73]. We can wew these technical interpretations of syntax directed translation as
special cases of initml algebra semantics with the "semantic a lgebra" nearly f lee. There
are two problems: First, we aren ' t yet sure how best to treat "nondetermimst ic"
translation and therefore don ' t . Second, we only formulate various concepts, giving
neither new results nor simplified proofs We hope that the reader, faced with these
remarkably simple definmons, may be moved to simplify and expand the theoretical
development .

Just as generahzed sequentml machines [19] map E* to X'* (for alphabets ~, and
X'), syntax directed maps go from T~ to T x, (for opera tor domains X and X') . Just as
one later restricts a generalized sequential machine to a subset of X* (e.g. a context-free
language), one can later consider a syntax directed map on a subset of T~, say a set of
derivation or parse trees

Thatcher [69] shows that many prior formulations of syntax translation are special
cases of a general algebrmc formulaUon. So do we here, but with even greater s implioty,
if less mtumve transparency.

Definition 3.1 A k-state root to frontier syntax map from T x into T x, is the unique
homomorphlsm h : Tx ~ (T~,) k guaranteed by lnltmhty of Tx after making (Tx,) k into a
E-algebra. The set [k] = {1, 2, • • • , k} is the set of states. Ifh(t) = (It, • • • , tk), then t, is
the image of t under the syntax map from start state t. []

The standard example (cf. Rounds [57], Thatcher [69]) is polynomial derivative.
Take X0 = {0, 1, x}, Xz = {+, x} and define a (2-state) syntax map (from Tx to T~) by
placing the following X-structure on (Ts)Z:

8 0 J A GOGUEN, J. W THATCHER, E. G. WAGNER, AND J B. WRIGHT

(t'l, t i) + (t~, t 2) = (t~ + t~,t i + t2)
(t'l, t l) × (t~, t2) = ((t~ × t2) + (tl × t~) , t l × tz)

o = <o, o)
i = <o, 1)
x = (1, x)

These " e q u a t i o n s , " especia l ly the last th ree , may be somewha t confusing; of course the
symbols + , × , 0, 1, x are f rom X and, for e x a m p l e , the last equa t ion says tha t x in X
names the pa i r (1, x) in (T~) 2 of ob jec t s n a m e d by 1 and x (each m Tx).

Now h : Tx--~ (T=) 2 yields h(t) = (t ' , t); the left m e m b e r of the pa i r is the (uns impl i f ied)
der iva t ive and the right m e m b e r is lust t again.

The def imt ion s imphfies and encompasses Tha tche r ' s [69] " r o o t to f ront ie r au toma-
ton with o u t p u t " (cal led "f ini te s tate t r ans fo rma t ion" in [68]). In tu i t ive ly , if t = or(t', t"),
t~ is the t rans la t ion of t ' f rom root (s tar t) s ta te t, and t~' is the t rans la t ion of t" f rom state
:, then o'((t~, . . - , t~>, (t~, . - . , t~))~ is the t rans la t ion of or(t', t") f rom state 1.

I f k = 1 and the E-s t ruc ture on T~, is u n i f o r m m the sense that for each o- ~ E,, there ts
a t e rm t , in T x , (X ,) such tha t for all t ' ~ Tz,, or(t~, • • • , t;,) = t , ,,-- (t~, • • • , t~,), then the
resul t ing syntax m a p is ca l led a h o m o m o r p h t s m , genera l iz ing the h o m o m o r p h i s m s of
o rd ina ry formal language theory If, m add i t ion , each t , is hnea r (no repe t i t ions of
var iables) , then the resul t ing maps include the "syntax d i rec ted t rans la t ions" of Lewis
and Stearns [34] and the syntax d i rec ted t rans la t ion schemes of A h o and UI lman [1]. If
k >- 1 and the X-structure on (Tx,) k is uni form in the above sense, our syntax maps include
the gene rahzed syntax d i rec ted t ransla t ion schemes of A h o and Ul lman [2].

The o ther case of syntax d i rec ted t rans la t ion we want to cons ider is f ront ie r to roo t
t ransla t ion. Outs ide t ree a u t o m a t a theory (1.e. outs ide B a k e r [3], Mag ido r and M o r a n
[40], Tha tche r [69], e tc .) we d o n ' t seem to f ind f ron t ie r to root t rans la t ion as much as
root to f ront ie r maps , except when they coincide (k = 1). But the def ini t ion of finite s ta te
fronUer to root syntax map is r emark ab ly s imple and par t icular ly in teres t ing in that it ~s
ob t a ined by replac ing " k t h p o w e r " in Def in i t ion 3.1 by " p r o d u c t with k . " (More
technical ly, we replace the "k - fo ld produc t of Tx," wxth its ca tegory theore t ic dual , the
"k - fo ld coproduc t of Tx,.")

D e f i m t t o n 3 2. A k-state f ront ier to roo t syn tax m a p f rom Tx to Tx, Is the un ique
h o m o m o r p h i s m h : T~ ~ [k] × T~, gua ran t eed by ml t iah ty of T~ af ter making [k] × T~,
into a E-a lgebra . The set [k] = {1, 2, • • • , k} is the set o f states. If h(t) = (:, t ') , then t ' is
the image of t and the t e rmina t ing state is i . []

Fo r example , a t ree a u t o m a t o n (D o n e r [15], Tha tche r and Wr igh t [70]) with transi-
t ion funct ion M : X × [k]" ~ [k] is imi ta ted as a f ron t ie r to roo t syntax m a p by making
[k] x T z into a E - a l g e b r a with or(<i~, t ,) , • - • , (i , , t ,)) = (M(or, i, , • • • , i~), or(t, • • • t ,)) ,
the second componen t is the ~dentlty.

3 4. SYSTEMS or EQUATIONS. If A is a E-a lgebra , we m a k e p A (the set of subsets
of A) in to a Z-a lgebra with the "subse t cons t ruc t ion" :

(0) F o r or ~ Xo, OvA = {orA}.
(1) F o r n > 0 , or G X, , and ut , . . . , u , ~ p A ,

o r ~ (u , , . - . , u ,) = {ora(t, , " - " , t ,) i t , ~ u , , 1 -< ~ - n} .

Assoc i a t ed with each t ~ T x (X ,) is a de r ived o p e r a t o r tEA : (p A) " - + p A ; extending this
idea to sets of te rms, if r C_ p T ~ (x ,) , def ine

rvA(U,, " ' " , Un) = I,.J{tea (U , , " - " , Un) i t ~ r } .

E : Xn ~ p T z (X ,) is cal led a sys t em o f equat :ons (in n var iab les) which de t e rmines a
function Epa : (pA)" ~ (pA) ", by E~A = [E(XOeA, " " " , E(xn)pa] (target- tupling), called the
sys t em f u n c t i o n by Meze l and Wright [45], who show that EeA is o - con t inuous , i .e .
least uppe r bounds of o -cha ins in (pA)" are p rese rved . The re fo re Epa has a m i n i m u m
fixed po in t , cal led its so lu t ion , say (s~, • • • , s ,) G WA)"; in fact ,

(s,, . . . , s ,) = tJkE~A(O, " ' " , ~) .

Initial Algebra Semantics and Contmuous Algebras 81

A subset of A is equational iff it is a component of a solution of a system of equations.
The entire theory of equational sets (cf. Mezel and Wright [45], Eilenberg and Wright
[16], Bhkle [8], and Nlvat [48]) flows from these definitions, from mitiality (to get
derived operators) and from the fixed-point theorem (to get solutions).

4 Continuous Algebras
We begin with some prehmlnartes on partially ordered sets (posets) and the poset of
partial functions in particular. Ordered structures have played an important role in many
different approaches to the semantics of programming; see Beki6 [4], Gordon [26],
Manna [43], Nivat [48], Park [49], Reynolds [53, 54], Scott [61-64], Scott and Strachey
[65], Wagner [73, 74], and Wand [75], among others. This diversity of effort has
resulted m a diversity of terminology, leading to a certain amount of c o n f u s i o n -
heightened by the fact that the various key words have been used by different authors for
different concepts. "Comple te" sometimes refers to the existence of least upper bounds
of arbitrary sets [62], or of directed sets [26[; and "cont inuous" modifies lattices [62],
algebraic theories [11], categories [23], algebras here, and most often, functions Scott
[64] and Reynolds [53, 54] speak of "domains" as complete, countably based, continu-
ous lattices, but then Gordon [26] argues that "semidomains" are more appropria te
than "domains ," where his domains are complete lattices and his semidomalns are
directed-set-complete posets.

In addit ion, it ~s not clear that there is just one "r ight" order structure for semantics.
Thus in this paper we suggest a terminology and mathematical development which
hopefully eliminates confusion and permits the expression of general theorems about
varied forms of completeness and conhnulty. Our presentat ion ts admittedly biased
toward posets over lattices, ~3 based in part on the sometimes greater complexity of the
structures which the lattice approach generates, as well as upon the difficulty of gtwng
concrete computat ional interpretat ions to these addit ional elements when they arise. At
first stght ~t might seem that there is no real difficulty, because one can merely add
enough "overdef ined" elements to a sufficiently complete poset to get a complete lattice
(and often one element "- r" will do; see (4.3) below). But more sophisticated construc-
tions, when constrained to start with lattices, may produce far more than one addit ional
element. For example, coproducts (over index set I) produce free (generated by I)
Boolean algebras of overdefined elements, and our initial continuous algebra construc-
tion produces an infinite and unruly collection of objects revolving substitution instances
of -1- m mflmte trees (see discussion after Proposition 4.2)

The reader should bear in mind, however, that the algebraic approach does not impose
any choice between (say) directed complete posets and lattices. It is the marriage
between the algebraic and the order theoretic approaches that is important .

Following Scott, we use E_ for the order in a poset P , u (read "cup") for binary (or
finite) least upper bounds, and H (read "mug") for least upper bounds of arbitrary sets.
We assume all posets have a minimum element denoted .a_ ("bo t tom") , whde -r (" top")
denotes the maximum element if it exists. A subset S of P is directed fff every finite subset
of S h a s a n upper bound in S A f u n c t i o n f : P ~ P' from a p o s e t P t o a p o s e t P ' i s
monotonic iff for allp0 E_ p~ in P,f(Po) ~- f(P~) in P ' .

In order to be able to introduce concepts such as "comple te" and "cont inuous" in a
uniform manner, it is convenient to introduce the following notation. We say a subset S
of P is a

u-set
to-set
~-set
A-set
H-set

If S if fimte nonempty,
if S is an to-chain,
if S is nonempty, and linearly ordered (i.e. a chain),
if S is directed,
if S t s nonempty

23 For further discussions of the relative merits of lattices versus posets see after Corollary 4 12 and also
Gordon [26] and Lewis and Rosen 133, Pt 2]

8 2 J . A . GOGUEN, J. W. THATCHER, E. G WAGNER, AND J. B WRIGHT

For each symbol Z E {u, co, g, A, I.I}, a function f : P ~ P' is Z-continuous iff it preserves
all least upper bounds (that exist) of Z-sets in P; a poset P is Z-complete iff all Z-sets
have least upper bounds in P . Each of these symbols can be modified by a " d o t " to
indicate boundedness: A Z-set is a Z-set with an upper bound in P and, e.g. , a poset is Z-
complete iff each bounded Z-se t has a least upper bound in P . P IS Z-bounded tff every
Z-set has an upper bound in P (is a Z-set) . Finally we need the modifier "s t r ic t" : P is
strict iff P contains a minimum element a_ (we only consider strict posets here): f : P
P ' is strict iff it preserves _c.

Examples of the use of these conventions are:
(4 1) A function f : P ~ P ' is Z-cont inuous iff it is Z-cont inuous.
(4.2) A poset is g-complete iff it is A-complete (cf. [13] and [44]).

(4.3) Let pT be the poset P with -1- adjoined (i .e. -i- ~ p and p ~ -1- for all p ~ P). Then
P" is H-complete (a complete lattice) lff P is H-complete; and P" is u-complete (an
upper-semilat t ice) iff P is u-complete.

(4.4) Some of the modifier symbols are ordered (oJ C g C A C H), so P U-complete
implies P A-complete implies P g-complete implies P w-complete.

(4.5) S C P is directed lff S is nonempty and u-bounded.
(4.6) For each of our Z, f Z-continuous lmphes f monotonic, because p0 c_pl in P

implies {po, Pl} is a Z-set having at least upper bound (namelyp l) . Thusf(p0 u Pl) = f (P 0
= f(Po) o f (p ,) , sof(p0) c f(Pl).

(4.7) Least upper bounds of Z-sets work by components on Cartesian products, i e.

H (p , . , , . ' . , p k , ,) = (H p , , , , ' ' ' , II Pk , ,)
IE I t e l t e l

for any Z-set {(P1,,, " • " , Pk.,)},~, in P~ × • • • × Ph
(4.8) For Z ~ {to, g, A}, f : P~ × • • • × Pk --* R is Z-continuous i f f f is Z-continuous

componentw~se, i .e. iff

f (U p, - . , H p k , , ,) = H f(P, "'" ,Pk.,,).

For sets A, B, let [A ~ B] be the poset ofpartMl functions z4 from A to B. Since we
have fixed source and target, the elements of [A --o-, B] correspond to functtonal subsets
o f A x B; i.e. i f (a , b) ~ f a n d (a, b')Ef, then b = b ' . The order relation on [A ~ B] is
simply set inclusion, and the least upper bound (when it exists) is set union; it exists iff
the set union is a function F o r f : A - * ~ B and C C _ A , f 1 C = {(a ,b) l a E C a n d
(a, b) ~ f} is the restriction o f f to C; def(f) = {a { (a, b) ~ f} is the domain ofdefifinttion of
f . The following are well-known facts about [A ~ B].

(4 9) [A ~ B] is strict A-complete and H-complete.
(4.10) Iff .~H,atf in [A ~ B] where def(f) is fimte and {f},~1 is directed, thenfc_f~ for

somejE1 . This says the finite part ial functions are A-compact
So much for preliminaries We now turn to the definition of "X-trees" which provide

the carriers of mi0al "continuous algebras " The idea is based on the well-known device
of representing a X-tree as a function defined on a prefix closed subset of to* (called a
tree domain; see [67]) taking values in X In Figure l (a) (Xo = {b, xo, x~}, Xz = {f}, and
X, = ~5 for i # 0, 2}), the tree (expressJonf(tlflxoxi)b)xo)) is represented by the function
t : {h. 0, 1, 00, 01 ,000 ,001}-~ {f, b, xo, x,} where h, 0, 00 ~ f ; 1,000 ~ x o : 01 ~ b; and
001 ~ x~. The first generalization considers the representat ion as a partial function on
to* for which the domain of definition has the tree domain property. This subsumes the
previous formulation and immediately includes infinite trees. Figure l (b) is such,
represented by t : to* ~ {f, b} with 0* ~ f ; 0"1 ~ b; and t undefined otherwise. (This
example solves the equation x = f (x , b); see Section 5.1 .) Finally we allow trees to be
partial, the effect being that leaves can be unlabeled (or labeled with .a_; see Proposit ion
4.4). The third tree in the sequence (chain) of Figure 2 is the partial function t : to* -o-,

a4 F A--O-, B designates a function A to B with a possible "hole "

l n i t ia l A l g e b r a S e m a n t i c s a n d C o n t m u o u s A l g e b r a s

(a) (b)

FIG 1

83

b

f f

b

FIG 2

{f, b} with h, 0, 00 ~ f ; 1, 01 ,001 ~ b, and undef ined otherwise . The natural o rder
re la t ion on these trees is the one ob ta ined f rom [~o* ~ {b, f}] , and the least upper
bound of the chain of Figure 2 is the tree of Figure 1 (b).

We now give the precise de f inmon of Z- t ree m the s impler one-sor ted case and
consider many-sor ted ope ra to r domains at the end of this section

Let (E,),~o be a one-sor ted ope ra to r domain (i e a ranked a lphabet) A Z - t r e e is a
partial function t : co* ~ E such that , for all u ~ oJ* and t ~ o~,

(a) ui E deist) implies u E deis t) ;

(b) ui E de f l t) implies t (u) ~ E,, and i < n for some n > 0. (Note that ui E de f (t) does
n o t imply u k E de f l t) for any o ther k.)

Let C T ~ denote the set of Z- t rees : and let FF~ denote the subset of all f inite ~ - t rees
(those trees t for which def l t) is f imte) The order ing on [oJ* ~ E] Induces an order ing =_
on C T z (and F ,) . If a set of parttal funct ions sahsfying (a) and (b) has a least upper
bound (set u n l o n) f m [o~* -~, E], t h e n f a l s o sahsfles (a) and (b); so least upper bounds
in [w* ~ E] are least upper bounds in C T ~ Thus, f rom (4.9) ,

PROPOSITION 4.1 CT, : is a s tr ic t b - c o m p l e t e a n d U - c o m p l e t e p o s e t . []

Let oJ (') be the subset of oo* con ta imng strings of length less than n; then I..In~,~o~ (') = ~o*.
And taking t ('~ = t 1 ~o ('), then t = I.l,~oot ~') By condi t ion (b), each t (') is f inite (even
though oo ~") Is infinite); thus

PROPOSITION 4.2 F o r a n y t E C T z , t = Une~o t (') a n d t ('> E F~ . []

Now make C T x into a I - a l g e b r a .
(0) For o- ~ ~0, let o-<.r = {(X, o')}.
(1) For o- ~ Z,,, n > 0, and t~, . • • , t,, ~ C T ~ , let

o-~.(t , , . - . , t,,) = { (x , o-)} t3 u , < , {(iu, o")1 (u, o-') ~ t,+,}.
Ift~, . . . , t,, E C T ~ and o- ~ E,,, then O-cr(t~, " '" , t,,) U C T , ; in fact, If the t, are finite,
then so ~s O'CT(tl, " '" , t,,). Thus we have also given Z-s t ructure to F~

The order ing on C T ~ is re la ted to this algebraic structure as follows
PROPOSITION 4.3. I n C T ~ , t .~ t ' t f f t = ~ o r t = t ' = O ' c r ~ ~o o r t he re ex i s t o- E E,,

a n d t~, • . • , tn, t'~, • . • , t~ m C T z s u c h tha t t = ~rcr(t~, • • • , t~), t ' = O'cr(t~, • " • , t¢,),.

a n d t , E t l f o r l <_t ~ _ n .

PROOF. Both dtrect ions are qu~te clear f rom the defini t ions, especmlly sufficiency
For necessity, if de f (t) = ~ , then t = _t_. If de f (t) ¢ 0 , then X ~ de f (t) and t(h) = t '(X);

84 J . A . G O G U E N , J. W. T H A T C H E R , E G. W A G N E R , A N D J. B. W R I G H T

so if t(h) ~ X,,, define t, = {(u, ~r') [(m, or') ~ t} and t', = {(u, ~r'> I (iu, o"> E t'}. By the
definition of operat ions O'cr and the order relation on [to* ~ 2], t = O'cr(tt, • • • , t ,) ,
t' = O'er(rE, "" • , t[,), and t, c t~. []

PROPOSITION 4.4. Fz is the free S-algebra on one generator 2_; i.e. it is ann imtial
X(2_)-algebra. []

We won' t burden the reader with a proof of Proposit ion 4.4 here because it is fairly
obvious and a good exercise. It can be done in two ways: ei ther show there is a unique
X(2_)-homomorphism hA : Fx --~ A for any other X(2_)-algebra A, or show that Fx is
isomorphic to (say) the usual algebra of Z(2_)-expressions (defined in Section 2) and then
use Proposition 1,1. Ei ther way, the result depends on the uniqueness of decomposi t ion
inFx; either t = 2_, t ~ 20, or there exist unique n > 0, ~r ~ Z , , and tl, . . . , t , E F x such
that t = O'cT(tl, "'" , tn).

PROPOSITION 4.5 The operations o f CTx are [i-continuous.
PROOF. ASSURe [i,stqL,, "'" , t,,,) exists in CTE. Then by (4.7) it equals
iU~ttl,,, " " , [i~sltn,,), and we need

O'CT (U t I t , " ' " U tB,,) = U 10gCCT(tl,1, " ' " , in . i) .
IEI ' ' t e l z

The left-hand side is

{ix, o-)} u u {<ju, o") l /u, o - '>~ U t~+,,,}

= {iX, or)} U U U {(ju , o-'> I lu, o-'> ~ t++,,,}
-J<a t e l

-- u i{<~., o->} u u {(ju, o-'> I <u, o-'> e t,+,.,}),

which is the right-hand side. []
Because everything in the proof of 4.5 is finite when restricted to F~, the same proof

yields:
PROPOSITION 4.6 The operations o f Fx are [l-continuous. []
Let an ordered E-algebra be a E-algebra whose carrier is a poset with 2_ and whose

operat ions are monotonic. A homomorph i sm of ordered E-algebras is a strict monotonic
Z-homomorphism. Let Palgx be a class of ordered E-algebras. Since the operat ions of
Fx are monotonic (Proposit ion 4.6 and (4,6)) , Fx is an ordered X-algebra. In fact,

PROPOSmON 4.7. Fz is initial in Pa lgx .
PROOF. L e t A be an ordered X-algebra; make it into a X(2_)-algebra by letting 2_a be

the minimum element. Then by Proposit ion 4.4 there is a unique X(2_)-homomorphlsm
h : F z ~ A which, of course, is also a X-homomorphism Fz ~ A preserving 2_. We show
h is monotonic. I f t c t ' in Fx, then by Proposit ion 4.3 ei ther t = 2_ (in which case h(t) = 2_a
c_h(t')), or t = t ' = crcr E X0 (in which case h(t) g h(t')), or there are o- ~ X, and t~, . . . , tn,

• t . . ~ • ~ t , , , t ¢ h, -, t , in CT~ such that t = ¢rcr(h, "" , t,) _O'er(h, , t~) = and t+ gt~. By induction
on the cardinality of def(t), we can assume h(t,) c h(t~). But h(t) = h(~rcr(h , " . ' , t,)) =
o'a(h(h), " " , h(t,)) c (monotomclty of O'A) ~ra(h(t~, . ' . , h(t~)) = h(~rcr(t'~, " " , t[3) =
h(t'). []

A X-algebra is to-continuous iff its carrier IS strict to-complete and its operat ions are to-
continuous. By Proposit ions 4.1 and 4.5, CTx IS an w-continuous algebra.

THEOREM 4.8. CTx is initial in the class o f to-continuous I-algebras with strict A-
continuous X-homomorphtsms .

PROOF. The main idea is that every to-continuous Z-algebra A is in Palgz so there is a
unique homomorphism hA : Fx ~ A which can be extended using Proposit ion 4.2 : kth(t)
= u,~o,,a~,' i. (,o,)~]. We must prove h A is a X-homomorphlsm,, is A-continuous, and is unique .

L e t A be an to-continuous X-algebra. It is also m P a l g x , so by Proposition 4.7 there is a
unique (monotonic) X-homomorphism ha : Fx ~ A. We show it has a unique A-
continuous extension/~a : CTx ~ A which is a X-homomorphism. In fact, define ha(t) =

Imtial Algebra Semantics and Contmuous Algebras 85

H~hA(t (')) which exists because A is to-complete. 25 Now umqueness : If h ' extends ha and
is A-cont inuous (even to-continuous), then h'(t) = h'(Hnt tm = Hnh'(# m) = H,~ha(t in)) =
hA(t).

Next, hA is mono ton ic Assume to E t~ in CT x with to = I.l,,t~ ") and t~ = Hdl'° . For each
k, t(0 k) E_ t~k); by monotonic i ty of hA, ha(t~ I'') E hn(t~k)); and thus/~a(t0) = Hk-hn(t(0 k)) g-
Hkh A(t(1 h)) =]~A(tl) .

Now we show/~a is A-cont inuous. Assume t = I.l,~lt, for some directed set {t~}~z in
CTx. We must show that/~a(t) = U~lha(tt). First, t, c t for all t, so by monotontc i ty of
]~A,]~a(t,) ~- ha(t) for all t; i .e. ha(t) is an upper b o u n d for {l~A(t,)},e~. L e t b be any other
upper bound/~a(t,) ~ b for all t ~ I. For each n , t t') c t = I.l,~tt, and {t~} ~s directed; so
by (4.10) , t TM 7_ t~ for some / . Thus for each n there is s o m e / w i t h hA(t (")) g l~a(t~) g.b; 1.e.
I-I,/~a(t (')) = ,~A(t) g. b. Thus we have l~A(t) = Hl~lha(tt) as required. (This may be

surprising; since A is only w-complete , there is no a priori reason for LI ,etha(t,) to exist.)
Now we have only to show that h a is indeed a X-homomorphism. First check that

. t(~-~q for k > 1 and that t (°) ~ . T h e n ~cv(t ~, " , t,) (~) ff cv(t(~ - ' , ", , . =

ha(O'CT(t,, """, tn)) = kH hA(O'cr(t~, " " , tn) (e')

= H ha(o.cv(t~k-1), . . . , tntk-,))
k

= H ~A(ha(t~h-'), " " , ha(t(nh-~')) k

= tra(~l ha(t~k-~)), - ' " , U hA(t(n#-~'))
k

= O ' a (h h (t ~) , . ' - , h a (t .))

(defini t ion of/~a)

(defini t ion of t (k))

(ha a homomorph i sm)

(to-contmmty of O'A)

(defini t ion of/~A). []

The following result is a corollary of the proof of Theo rem 4.8. We proved there was a
un ique strict w-cont inuous Z - h o m o m o r p h i s m from CTx to A , and then we were able to
show (surprisingly) that m fact that homomorph i sm was A-cont inuous.

COROLLARY 4.9. CTx ts initial in the class o f w-continuous E-algebras with strict w-
continuous homomorphisms. []

A n algebra is A-continuous iff its carrier is A-complete and its opera t ions are A-
cont inuous . Let &algz be the class of A-cont inuous E-algebras with strict A-cont inuous
X-homomorph~sms. Since CTz is in this class, which is a subclass of that described in
Theorem 4.8, we have

COROLLARY 4.10. CT~ ts inttial in class &alg z o f A-continuous I-algebras with strtct
A-continuous homomorphisms. []

There are confusingly many initiality results for CT~. For example , the following
nei ther implies nor is implied by Th eo rem 4.8; details will be provided elsewhere when
the relevance of the result is bet ter unders tood .

THEOREM 4.1 1. CTx is mitial in the class o f Z-algebras with to-complete carrters,
operations that are both to-contmuous and u-continuous and homomorphisms that are
strict U-continuous E-homomorphisms. []

Since the following is a subclass of that in Theorem 4 . l i and conta ins CTx, we have
COROLLARY 4.12. CTx is mittal in the class o f E-algebras with strict A-complete

carriers, H-continuous operattons and strict H-continuous homomorphtsms []
Before considering propert ies of der ived opera t ions on Initial cont inuous algebras, we

can now offer a bit more to the lattice versus poset "dispute " Since Tz ts t.l-complete
(Propos i tmn 4.1) , it follows that CT~ is a complete lattice (4.3) Make CT~ into a E-
algebra by requir ing that if any a rgumen t to Crcv IS -r, the value is -r (the opera t ions
preserve -r). It follows immedia te ly from Corollary 4.10 that CT~ is initial in the class of
Z-algebras with carriers which are complete lattices, opera t ions which are A-cont inuous
and preserve ± , and homomorph i sms whtch are doubly strict A-cont inuous (also pre-

2s When the range of the index ~s obvious (as m th~s proof, n E to), we delete that extra notation, e g LI~ =
~.Jn Eoo

8 6 J A. GOGUEN, J W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

serve -r). It Is fairly clear that the homomorph i sms of lattice algebras should be doubly
strict A-cont inuous , bu t it is equal ly clear that once the "overdef ined" e l emen t -r IS
in t roduced (we would say, artificially) to make the poset H-complete, then we do not
necessari ly want the opera t ions to preserve -r. In order to get the initial a lgebra in the
class of lat t ice-E-algebras with A-cont inuous opera t ions and doubly strict A-cont inuous
homomorph i sms , one hag to pu t the obvious (though cumbersome) order on the algebra
CTx(-r) (the a lgebra freely genera ted by {T}). A c o m m o n a rgumen t in suppor t of lattices
is that the on ly cost of using complete lattices is the occasional addi t ion of an extra "over-
def ined" -r to the domain . This initlality discussion shows that the a rgumen t is somewhat
of an overs imphficat lon, since many curious te rms in CTx(T) involving 7- have been
added and are of dubious in terpre ta t ion .

Having established the existence of imtml con t inuous algebras, we can, as in Section 2,
consider der ived operators . Let A be any Z-cont inuous algebra (strict Z-comple te
carr ier , Z-cont inuous opera t ions) and let a : X,, ~ A ; then d : CTx(X,,) ~ A is the
un ique homomorph i sm de t e rmined by making A into a E(X~)-algebra. As before tA(a) =
ti(t). One can check that if a ~ a' (i.e. a(x,) c a'(x,), 1 -< j ~- n). then d g_ ci' (i.e d(t) :_
,~'(t), t ~ T~(X.)).

PROPOSITION 4.13. For each n ~ to, t E C T x (X ,) , and Z-cont inuous E-algebra A , the
derived operator t 4 : A n --~ A is Z-cont inuous f o r Z ~ {to, A, ~}.

PROOF. Let {a,},~i be a Z-set in A"; then by the observa t ion above, {5~(t)}~1 is also a
Z-set , and by Z-comple teness of A we can define 6(t) = H,~6,(t), We want to show that ti
is a homomorph l sm.

5(O'cT(tl, "'" , t,,)) = LI d ~ (O ' c T (t l , " ' " , t,,)) (defini t ion of 5),

= LI o'a(h,(h), "'" , ,~,(t,)) (6, a homomorph i sm) ,

= cr4(I.I h,(tO, "'" ,H 5,(t,)) (Z -con t l nm ty , (4 .8)) ,
~1 1~1

= ora(h(ti), "'" , 5(tn)) (Z - c o n t m m t y , d)

Clearly, 5 extends Ll,~1a,, and now we know 5 is a E -homomorph l sm, so 5 = Ll~la,.
Thus ta(Ll,~ta~) = ti(t) = U~la~(t) = 13,~tta(a~). []

Exactly as m Section 2, subst i tu t ion is def ined as a specml case of derwed operators ,
and ~t ~s assocmtive; in fact. subst i tut ion IS itself A-cont inuous . and this depends on
mitiality of CTx.

tR PROPOSITION 4.14. Substitution is A-continuous, i.e. ~-- : C T x (X n) x CT~(Xk)
CT~(Xk) ts a A-continuous funct ton on the (A-complete) Cartesian product o f A-complete
sets.

PROOF. For t • Xm ~ CTx(X,~) and t ' : X,, ~ CTx(Xk) , recall f rom Section 2 that
t ~--t' : Xm--'~ CTx(Xk) is def ined by (t ~- t ') (x ,) = i'(t(x,)); Le. t ~---t' = i' ot where i ' is
the un ique homomorph ic extension of t ' . For A-cont inui ty we can consider each argu-
ment separately. Let {t,}~el be a A-set Then (I-L~l,t~) ~-- t ' = (definition) i ' o (U,~lt,) = (i'
is A-cont inuous) I.l,~(t' o t,) = (definit ion) Ll,~t(t, ~-- t ') . Fo r the o ther a rgument , t (--
(U~t~) = (definit ion) U~tt~ o t = (as in proof of Proposi t ion 4 .13) (U,~t/~) ° t = (by
3.8) U,~t(/~ o t) = (defimtion) U,~(t ~ t;). []

A simple example (arrived at wtth Steve Bloom) exemplifies subs t i tuuon and shows
that it is not u-cont inuous . Let X~ = {a} and take I = {1, 2} with ta = a(z-xO and ts =
a (x ~) ; then t~ u t~ = a(x~x~), and (t~ u tz) ~ (t~ u tz) = a(a(x~x~)a(x~x~)); but
(h ~--h) u (tz ~--t~) = a(~a(-a-xO) u a(a(x~-~)~) = a (a (x ~) a (~ x l)) v ~ a(a(x~x~)a(x~xO).

The promised S-sorted initial cont inuous E-algebra is a simple modification of the one-
sorted case. A E-tree o f sort s ~ S ~s a partml funct ion t : o* --~ E such that:

(0) If h ~ deflt), then t(h) has sort s.
(1) If w ~ to*, i G to, and wi ~ deflt), then

(a) w ~ deflt);
(b) ff t(w) has arity s~ -- . s,,, then i < n and t(wi) has sort s,+l.

Imtial Algebra Semantics and Continuous Algebras 87

Then CT~ has carriers C T ~ consisting of all s -sor ted Z- t rees (including .a_) It gets E-
s t ructure just as in the one-sor ted case, and we have

THEORE~ 4.15 CT~ is mitlal m the class o f w-contmuous E-algebras with strtct A-
continuous E-homomorphtsms []

5. Apphcattons o f Initial Continuous Algebras

Initlality of CT~ has Impor tant consequences in the theory of computa t ion Just as
lnltiallty of 7",- clarifies and simplifies " t ree man ipu la t ion , " CT,~ clarifies and simplifies
work with infinite trees which, for example , arise in the semantics of flow diagrams,
recurslve schemes, and o the r data structures.

CTz has advantages in its abstract form (an lmtial A-cont inuous E-a lgebra) and in its
concre te form (we can visualize e lements of CT~ as (infinite) E- t rees) . The abstract
formula t ion facilitates defining der ived opera t ions and solving e q u a h o n s m A-continu-
ous E-algebras; m fact, this is easier than the convent iona l formula t ion employing the
subset construct ion. The concre te representa t ion permits clear unders tanding of the
objects in CT,; for example , our formula t ion of the lattice of flow diagrams is s impler , as
well as more convincing than the inverse limit construct ion employed by Scott [61].

We know three papers 26 with general not ions re la ted to initial cont inuous algebras:
Wand ' s [75] free tz-clones, Nlvat ' s [48[a lgebra of schematic languages, and B l o o m and
Elgot ' s [9] free i terative algebraic theories . The diversi ty of these approaches , plus the
somewha t sketchy charac ter of the first two references and the novel ty of initial cont inu-
ous algebras, make it hard to describe all relat ionships be tween these approaches , but we
do point out several connect ions

The discussion and examples below focus on the class Aalg~ of A-cont inuous E-
algebras with strict A-cont inuous]~-homomorphisms, thus we use Corol lary 4 .10 , that
CT,: is initial in Aalg~ Al though what we say applies to o ther classes of algebras (e.g
those men t ioned in T h e o r e m s 4.8 and 4.1 l , and Corol lar ies 4 .9 and 4 .12) , we don ' t give
applicat ions for these

5.1. SYSTEMS OF (REOuLAR) EQUATIONS. Sect ion 3 4 re la ted imtial algebra seman-
tics to solving equat ions in the initial many-sor ted E-a lgebra We used the phrase " m a k e
pA into a E-a lgebra by . . ." to def ine a der ived ope ra to r tpa : (pA) '~ --~ pA for each t E
T~(X,,). An apparent ly ad hoc step then fol lowed: extending der ived opera tors to sets of
terms by taking unions of values. For a A-cont inuous E-a lgebra , this isn't necessary since
its o rde r structure permits equat ions expressed in CT~ to be solved directly

A system o f n equations (expressed) m CT~_ is a funct ion E : X,, ~ CT~(X,,). This
simplifies the informal def lmt lon " . a sequence or set of equa t ions of the form x, = t,
where t, is a term in n variables , x~, . . . , xn ." To read our system that way, write x, =
E(x,); E(x,) is the rtght-hand side of the tth equa t ion . 27

For any A-cont inuous algebra A, EA : A n ~ A" IS the der ived ope ra to r of E over A ;
recall f rom Section 2 that (El(a)), = E(x,)~(a) = ~(E(x,)) for a l i a ~ A ~ and 1 -< i -< n. By
Proposi t ion 4.1 3, each componen t , E(X,)A " A ~ --> A, of E4 is A-cont inuous, and by (3.7)
so is their target- tuple EA = [E(x04, " " , E(X,,)A] : A" ~ A".

Thus E4 has a min imum fixed-point deno ted I EA [E A" and called the soluuon of E
o v e r A We know that l E4[~ ± = I.IAe~oE~(, " ' " , ~) ; that EA(I EA I) = I Ea I; and that for all
a ~ A ~, lfEA(a) = a, then I EA [7_a. For the special case A = CT~, we write I E I for the
solut ion of E over CT,~.

Famil iar results in the theory of equa t iona l sets fol low nicely in this sett ing Reca lhng
that ha " CT~ ~ A is the unique A-cont inuous Z - h o m o m o r p h i s m f rom CT~ to the A-

cont inuous E-a lgebra A , we write [E [A for h~(] E I).

26 Reynolds's work [55] employing some methods of this paper wdl probably also interest the reader, and
should appear soon after thzs paper does
27 The notahon E(x,) is correcl because E is a function with source X,, = {x~, , x,,}, but note that E(x,) is an
element of CT~(X,) possibly revolving all the varnables x~, , x,

88 J . A . GOGUEN, J W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

The following analogue of Mezei and Wright [45, Th. 5.5] says that solving equations
in the initial algebra, then interpreting the solution; and interpreting the equations, and
then solving in the algebra, give the same answer. (Engelfriet and Schmldt [18] appropri-
ately refer to these as "Mezei-Wright-like results"; cf. the following proposition.)

PROPOSITION 5.1. For any system o f equations E : Xn ---> CTx(X,,) and any A-
c o n t o , u o u s X-algebra A , I E IA = I EA I"

PROOF. By induction on k and Proposition 2.5, hA(E k (.a_, . . . , -)) = E~ (XA, "'" , a-A)
where, for clarity, .a_ is minimum in CTx and "A is minimum in A (In general,
h~(E(t, , . . . , t,)) = Ea(hA(t,), " " , hA(t,)).) Then ha(I E [) = hA(UkE~(-a-, . . . , 2_)) = (by
c o n t i n u i t y o f ha) U k h A (E k (~ , " " , ~)) = LJtcEak(-a-A, • • " , -a-A) =] E A 1. []

Call a system E : Xn ~ CTx(Xn) Meal (cf. Elgot [17]) lff each E(x3 is nontnvial, i.e.
for some m > 0, ¢r E Xm, and G, "'" , t,n E CTx(X ,) , E(x,) = crcT(G, "'" , t ,3.

THEOREM 5.2. Solutions o f Ideal systems o f equations over C T x are unique
PROOF. We indicate the method of proof; full detail will appear elsewhere. If t =

(tl, • • • , t~) is a solution for a system E : Xn --> CT~(Xn), then for all k, t = E~r(t) =
~E ~-- E ~ .~. ~ E ~ E~-- t. By induction on length of strings m to*, one shows for ideal

k
E, if w E def(t,) has length k, then w ~ de f (Ek(x , . . . , .a_)~); i.e. def(t,) C_ def([E I,); but
IEl~t, solEl=t. []

This rather surprising result seems to say the order relation on CTx is superfluous once
solutions are obtained. Th~s suggests a strong connection with Elgot's [17] lteratlve
algebraic theories where, in effect, ideal equations must have unique solutions and no
ordering Is involved.

A system E of equations l s f imte lff each right-hand side is fimte; i.e. E : X,, ---> F~(X,) .
Now EA can be defined over any ordered algebra A (Proposmon 4 7) and a ~ A" is the
solution of E over A iff it is the minimum fixed point of EA.

An ordered algebra A is equattonally complete iff everyf int te system of equations has a
solution over A Obviously every A-continuous (even to-continuous) algebra is equation-
ally c o m p l e t e - m fact, complete with respect to arbitrary systems of equa t i ons -bu t an
ordered X-algebra can be equationally complete without having an to-complete carrier.
The following important case dlustrates this

Let Rx denote the set of equational elements o f C T x ; i e Rx = { [E I s [E : X , - - ~
F~(X,,), n > 0 and 1 -< i -< n}. The " R " in Rx stands for "rccogmzable" or "regular" as
applied to sets of finite trees in Doner [15] and m Thatcher and Wright [70]. (For
appropriate X discussed below, Scott [61] calls Fx rational, Rx algebraic, and CTx - Rx
transcendental) The following two propositions indicate the connection.

PROPOSITION 5.3. For each t ~ Rx , there emsts a recogmzable subset Rt o f F x such
that t = LIRt

PROOF Using Proposition 4.4, we transform a system E : X,, --> Fx(X,) of equations
over CTx to the system E : X,, ---> p(Fx(X,,)) in the Mezel-Wnght sense 145] by E(x,) =
{E(x,), x} (cf. Section 3.4) Let I ~ I be the solution of E over FFx as in Mezel-Wnght,
each I ~ I(x0 is a recogmzable subset of Fx These recognizable sets are called "schematic
languages" by Nlvat [48], who shows that every schematic language is d~rected (m fact a
lattice) with respect to the ordering on F~. So U I E [exists in CT~ (Proposition 4.1) and
we want to show I E I = U I E I. We know [E I = UkEk(2-, "'" , ~) and, by reduction on k,
{Ek(x, . - . , x)} C_ I/~ [, so that [E I g U I/~ I. On the other hand, for each t E I E t there
exists k such that t c Ek (~ , • • • , _L) (by induction on the definition of [~7 t = UmE~F~ (~5,

• .- , ~)) , s o l e l ~ U l e l , , . e . l E l = U , l ~ t . []
The second result relating the equational elements to recogmzabihty uses the concrete

construction of C T gwen in Section 4; we leave its proof to the reader.
PROPOSITION 5.4. In the concrete construction o f CTz , i f t E Rx , then f o r each ~

X, t- l(o ") C_ to* is a regular subset o f {0, 1, " . , k}* f o r some k. []
As indicated m the proof of Proposition 5 3, a schematic language (N~vat [48]) is a

recognizable subset of Fx (viewed as the initial X(x) algebra) defined by equations (in

lnttial Algebra Semantics and Continuous Algebras 89

the Mezei-Wright sense) whose right-hand sides are of the form {t, ±} C Fz By reversing
the translation in the proof of Proposit ion 5 3, it is easy to see that the least upper bound
of any schematic language is an equational e lement of CTx. Nlvat [48] shows that the
schematic languages form a l~-algebra, and his proof also shows that R~ is a subalgebra of
CT x. Because R~ is equatlonally complete by definition, we have

PROPOSmON 5.5. R z is the smallest equationally complete subalgebra of CTz. []
5.2 THE LATTICE OF FLOW DIAGRAMS. Our construction of initial continuous alge-

bras permits simple alternative formulations of Scott 's [61] lattice of flow diagrams.
Since those alternatives are specific initial algebras, the lattice of flow diagrams appears
as a special case of a very general situation. Our comparison is shghtly encumbered by
the fact that Scott uses complete lattices (H-complete posets), while we favor strict A-
complete posets.

Most simply put, Scott 's lattice of flow diagrams is the solution to the domain equatton
E ~ {I} + F + E x E + B x E x E , (*)

where + is the coalesced lattice sum, × is the usual lattice product , and {I}, F, and B are
the ("f la t") lattices which result from adjoining ± and -r to, respectively," the set
consisting of a single function symbol I denoting the Identity function, a set F of function
symbols (operations occurring in boxes of a flow diagram), a set B of predicate symbols
(occurring as tests in flow diagram). So if the set F = {fl, " " " , fn}, then the lattice for F
lS:

T

Scott 's Inverse limit construction provides a solution for E as a complete lattice.
However, Gordon [26] argues the advantages of A-complete posets (calling them
semldomalns) over complete lattices (domains) and shows the inverse limit construcUon
(using separated sum) works just as well in that context. Passing over pragmatic and
aesthetic points discussed earl ier (Section 4), we make our comparison with Gordon ' s
solution to (*), thinking of it as the semtdomain of flow dtagrams.

We describe three semldomains of flow diagrams; each is simply CTx for a natural
choice of I~. The first two are different in interesting ways; the third differs from the
second trivially and is included for completeness while providing an example of an initial
many-sorted A-continuous 1E-algebra

For all three the algebraic approach (as opposed to the pure ordered structure
approach) leads directly to algebras of flow diagrams rather than ordered sets of flow
diagrams. (Nlvat [48] stresses this point, and it seems that Scott also saw it [61, Sec. 41.)
We hope this creates a stronger position from which to consider the questions about
equivalence of flow dmgrams raised by Scott [61, Secs. 8 and 9].

(I) Let £ = ({I},F,B) (that is, E0 = {I}, E1 : F, ~2 = B, and Ek = O for k > 2). CT~
(see (4.3)) is a lattice of flow diagrams, with every flow diagram represented by its
unfoldment. But (quite aside from questions about -r) CT~ doesn ' t have quite the
algebraic, or the order theoretic, structure of Scott 's lattice. The equational elements (in
Rx) represent the flow diagrams. The idea, to be developed formally elsewhere, is to
take a variable x,.for each node t of a flow diagram, and an equation x~ = b(x, xk), x, =
f(x~), or x, = I if node i Ls a b-test , an f-applicat ion, or a halt, respectwely.

For example, the while loop is the solution to the system (xl = b(x~, x3), x2 = f(xl) , x3 =
/), which can be collapsed to x~ = b(f(x~), I), and is written x~ = (b ~ (f; x~), 1) by Scott.

90 J . A . GOGUEN, J W. THATCHER, E. G. WAGNER, AND J . ' B. WRIGHT

The element of R~ which is the component for the start node is the unfoldment of the
given flow diagram (cf. Goguen [20]). Conversely, any finite system of equations over
CT~ can be reduced to "primitive" equations of the above form (much as in Mezei and
Wright [45] or in Wand [75, Th. 2]), from which a standard flow diagram can be
retrieved.

Wand [75] takes Scott's construction "trivially modified" as a starting point, calling
E(~) the lattice of flow diagrams with operator symbols ~. He says this follows Elgot's
[17] idea of handling tests (rank 2 or greater) and operations (rank 1) uniformly. His
E(~) seems to be our CT~; his "finite diagrams" to be our F~(X,), with "return codes"
{xl, " " , xn} (also paralleling Elgot [17] because of the n "exits"); and his "loop-
representable" flow diagrams to be our R~(Xn) (that is, equational elements of CT~xn)).
Wand [75] IS rather informal, but seems to miss the distinction brought out by our second
formulation for the lattice of flow diagrams below

One can define context-free sets over initial algebras (Rounds [57]), and this apphes to
initial continuous algebras as well. Alternatively (Maibaum [41, 42], Turner [71], and
Wand [76]), one can make the function symbols zero-ary and introduce a symbol for
composition; then the context-free sets are equational in this modified algebra

(II) In that spirit, let ~' = (17 U {I},O,B U {;}). Again, every flow diagram (over F a n d
B) is represented in CTz, by an unfoldment. But now the algebraic structure corresponds
to Scott's idea: Every element of CTz, is either I , an element of F, (d; d ') , or b(d, d')
(written b ~ d, d ') for diagrams d and d ' .

However, the equauonal elements of this algebra correspond to unfoldings of recurstve
flow diagrams. For example, the solution to the equation xl = b(f;(xl;f),I), problematic
m Scott [61, Fig. 21], is the unfolding of the recursive flow diagram,

xl : if b then (f; call xl; f ') else halt.

Nwat's [48] program schemes over (F U {/}, B~ are reformulated in this setting as
pnmltwe 2s systems of equations E : Xn ~ Fx,(X~), which are connected (meaning xl < xi
for 1 < i -< n, where < is the transitive closure of x, "calls"x,, i.e. if x, occurs in E(x,)).

The program schemes form a ~'-algebra, say PSx,, with E, E ' , and b ~ E;E' defined
as needed in the proof of ProposiUon 5.5. The function E ~ [E I1 is a homomorphlsm
from PSi, to Rw, but of course many program schemes give rise to the same unfoldment
in Rz.

(III) For our last formulation, let E" be a {b,d}-sorted operator domain with ~i'~,~ =
B, ~'~.a> = {I} 0 F, ~'~ad,a> = {;}, and ~aa,d> = {--~}. Then CTx,,,b contains only B U {.a_},
but CT~,,a is lsomorphtc 2~ (in both order and algebraic structure) to Scott's lattice E of
flow diagrams. (This corresponds, as m [41, 42, 71, 76], to making all the function
symbols of ({I}, F, B) zero-ary; the "composmon symbols" are " ; " and "---; ' .) But all that
has been added are diagrams such as (_u ~ d, d ') , which seem to be of little interest at
this point. Because there are no operations of sort b, equations m CTz~ yield the same
solutions as m the previous formulaUon

5.3. SEMANTICS OF FLOW DIAGRAMS Theorem 4.8 says that any A-continuous E-
algebra is a possible semantic algebra for CT x. Looking at the second formulation for the
lattice of flow diagrams E' = (F tA {1},f~,B tA {;}), take. as Scott does, the A-complete
(4.9) poset [S -o S] of "partial state transformations" as carrier of a semantic algebra
ambiguously denoted S Given (Scott's [61]) mterpretatmns of the function symbols
~: : F ~ [S -o S] and predicate symbols ~ : B ~ [S-o {0, 1}], make IS -o S] into a E ' -
algebra by: Is = ls; Fs = ~ (f) ; b~(tr, o") = c o [~(b), o-, cr']; and ;s(tr, o-') = o-'o o'. These
operations (bs and ;s) are A-contmuous.(cf. 3.2, 3.7, 3.8), so initmlity of CTx, gives a
unique homomorphism ~s : CT~, ~ S, Scott's [61] "semanttcs" of flow dmgrams. Note,
however, that ~ and ~ umquely determine ~s only msofar as the intended meanings of
tests and composition are fixed

2s Much as used above , each E(x,) is e i ther f E F, 1, (al, az), or (b ~ a j , t~), where a, ~ F U {1} O X,,
Ignor ing the extra overdef ined e lements discussed in Secuon 4

Initial Algebra Semantics and Cont inuous Algebras 91

To get the intended semantics of flow diagrams when expressed in CT~ (X = ({I}, F,
B)), appeal to contmuat tons of C. Wadsworth and L. Morris (see Reynolds [53] and
Strachey and Wadsworth [66]) seems inevitable. Taking the same carrier for the
semantic algebra, operat ions (f E F) are of type [S -o~ S] --* [S -~ S],, or equivalently
[S ~ S] × S ~ S taking a "cont inuat ion" in [S ~ S] and a state in S giving a new state.
The extent to which continuations can be t reated from an initial algebra point of view,
and the relationship between continuation semantics for CT~ and the semantics de-
scribed above for CTz, are interesting subjects for further investigation, a°

5.4. SYSTEMS OF (REOuLAR) EQUATIONS WITH PARAMETERS. Equational functions
can be defined much as equational elements of an algebra were. In the spirit of Wagner
[73, 74] and Wand [75], a function 31 E : Yn ~ CT~xp~ (Yn) is a system of n-equations with
p parameters {xl, " " , xp}. For any algebra A lnAa lg~ and for each a E A v, make A into
an Z(Xp)-algebra A(a) by having x, name a, The derived opera tor over A(a) is then
EA(a) :A" --+ A " , which has a minimum fixed point] EA(a) I" The funetmn] E a [: A p ---) A n
determined by system E is defined by [EA I (a) = [EA,a)[.

The equation of Proposition 5.1 holds for equational functions as well. Given E as
above, I E I : Y , -+ CTz,xp~ (solving in CT~(xp,), so I E la : A p + An, and

PROPOSITION 5.1'. For a system o f equations E : Yn -+ CTx,x,)(Y~) with p parameters
and any A-contmuous X-algebra A , I EA I = I E IA : AP ~ A" .

PROOV. By definition of solution, lEA I(a) = lEA(a)]. But Proposition 5.1 gives
I EA(a, I = I E IA(a), and from the definition of derived operator , I E IA(a, = I E la(a). []

Solving a finite system of equations with parameters E : Yn "-+ Fx(x,)(Y,) over CT~(x,)
yields] E] ~ R~(x,), by defimtlon. But as sets Rx(x~) = Rx(Xp), so we can talk about
solving a system of equations whose right-hand sides are m Rx(xp) ; this gives nothing new.
(As proved by Nlvat [48] within his schematic language formulation, it is a consequence
of the substitution theorem for context-free languages [19].)

PROPOSITION 5 6 (Nlvat). Systems o f equations with right-hand sides m Rx(X p) have
solutions in R~. []

We believe the principal connections with Wand [75] and with Bloom and Elgot [9]
are to be found here. First, it seems clear that (R~_(Xp))vE~ is the free/x-clone generated
by E, the construction of which is Wand 's principal result. Next, let/~x(Xp) be the set of
maximal elements of Rx(Xp). (In the concrete construction of CT~x,~, t is maximal i f f t (u)
E Xk implies ut E def(t), 0 <- t < k.) The algebraic structure of (/~x(Xp))o~ under
substitution (t : X , ~ R~(Xv), t' : Xp --~ R~(Xq); t <-- t ' . Xn ~ Rz(X~); see Section 2)
gives rise to an algebraic theory (cf. Elgot [17]). Theorem 5.2 and Proposit ion 5.6 say
this algebraic theory is iterative, which means that every ~deal system of equations E : X ,

/~Z(Xp)(X,) has a unique solutmn] E I : Xn ~ / ~ x (X p) (called E? in [17]) in the sense'
that E *--] E] = [E] (this is the definition of fixed point in CT~ since EcT(] E]) = E
I E [). We believe z2 that this algebraic theory is the "free i teratwe theory generated by
X," the construction of which is the principal result of Bloom and Elgot [9].

6 Conclusion

Sections 3 and 5 applied initial algebra semantics to a number of areas, with the
applicability of initial continuous algebras exceeding even our expectations. We have
only skimmed the surface of what might be called the equational theory of continuous
algebras, and we hope to develop it fully elsewhere. The following questions and
problem areas are among those we would like to answer or see answered.

(A) How is the conventmnal theory of equatmnal sets (e.g. Mezei and Wright [45])
expressed in the (s~mpler) continuous algebra setting?

(B) If every finite system of equations has a solution in an ordered (not necessarily oo-

~0 Reynolds [55] considers this in careful and interesting detad
a~ X~ and Y~ = {y~, , y~} are, technically, assumed to be disjoint copies of the respective sets of variables
32 S Gmah proves this in her forthcoming University of Chicago dissertation

92 J. A. GOGUEN, J. W THATCHER, E. G. WAGNER, AND J. B. WRIGHT

complete) algebra, does it follow that lEA [= UkE](~) anyway9
(C) How do the works of Maibaum [42], Turner [71], and Wand [76] (which identify

context-free sets over one algebra with recognizable sets in another) relate to the two
ranked alphabets E and E' in the discussion of the lattice of flow diagrams, or more
generally to the solution of regular equations versus the solution of context-free equa-
tions? Engelfnet and Schmidt [18] tackle this area (and (A) above) m their typically
precise way.

(D) Gordon [26] proves the equivalence of a denotational (Scott-like) semantics and
an interpretative semantics for pure LisP. The proof is very long. Why? Could methods
here contribute to further slmphficatlon?

(E) Our initial algebra formulation of denotational semantics (Section 3) differs
significantly from previous formulations. The "structural reduction" and "finite approxi-
mation" proof techniques used by Gordon are implicit in initial continuous algebras
Could these yield a more workable semantics for "real" programming languages?

(F) We know that T~ is imtial m the class of E-algebras, that CT~ is lmtial m the class
of A-continuous E-algebras, and that these results bear fruit On either side of CT, we
ask the question: In what class of algebras is R~ (and /~) initial, and in what class of
algebras in Nivat's PSz, initial9 The latter is essentially the question posed in Burstail and
Thatcher [11].

(G) Chandra [12] uses mfinite tree flow diagrams which are outside R~ but contained
in CT z (for appropriate E); a clean mathematical semantics is determined by picking
appropriate A-continuous E-algebras. But can the translations from finite counter
schema, finite stack schema, etc. into infinite tree diagrams be made more mathemati-
cal? Most relevant, how are his "meanings" defined from an inmal algebra point of
view?

(H) Can the questions raised by Scott in [61] be answered in the initial continuous
algebra setting? Should they?

(I) The practical aspects of the work reported in this paper should be further ex-
plored. Pottenger [51] has programmed a system which acts as a compder generator:
Given ~ and o-~ for each o" in E, the function ha becomes available. The implementation
is somewhat inefficient, but is useful as it is, and can presumably be improved in various
ways Also, there seem to be a number of imphcations for programming language design
which should be followed up.

(J) What is the connection of the present formulation (that is, CT~, etc.) with the V-
category formulation suggested in Goguen [20], where syntax is an "algebraic theory"
whose horn-sets are sufficiently nice posets, and semantics is a sufficiently nicely ordered
algebra of this theory?

(K) In fact, it would be interesting to give a thorough development of semantics in
terms of algebraic theories [32]; we have restricted ourselves to imtial algebras primarily
to avoid imposing odious mathematical prerequisites. The question ~s, could more than
convenience and conciseness be achieved? We are proposing some suggestions in this
direction in [25].

These are just a few questions; if the reader has faced infinite structures from
semantics of programs or data structures, he may well have many others. We hope this
paper will stimulate such questions and that the imtml algebra viewpoint will be fruitful
in answering them) z

ACKNOWLEDGMENTS. We individually and jointly are grateful for stimulating discqsslon
on these matters with R.M. Burstall and R. Mllner of Edinburgh University, and D.
Berry, R. Pottenger, and C. Lucena of UCLA. We want to thank M. Gordon, S.
MacLane, B. Rosen, and M. Wand for their suggestions and crmcisms. R.M. Burstall

aa This has actually happened to the authors of th~s paper, who have, subsequent to the work reported here,
proposed an mmal algebra approach to abstract data types [24]

Initial Algebra Semantics and Continuous Algebras 93

a n d J . C . R e y n o l d s d e s e r v e spec ia l g r a t i t u d e fo r t he i r e x t e n s w e e f f o r t s to i m p r o v e b o t h

the c o n t e n t a n d p r e s e n t a t i o n o f the m a t e r m l .

REFERENCES

(Note References [14, 21, 22, 37, 56, 58, 72] are not cited in the text)

1 AHO. A V • AND ULLMAN, J D Properties of syntax directed translations J Computer and Syst, Scts. 3
(1969), 319-334

2 AHo, A B , ANn ULEMAN, J D Translations of a context-free grammar Inform and Contr 19 (1971),
439-475

3 BAKER, B S Tree transductlons and famdles of tree languages Tech Rep TR9-73, Center for Research
in Computing Technology, Harvard U , Cambridge, Mass , 1973

4 BEKI~, H Definable operations in general algebra and the theory of automata and flowcharts Research
Rep, IBM Laboratory, Vienna, Austria, 1969

5 B~NABOU, J Structures algGbrlques darts les catdgorles Th~se, fac SCl , Unlverslt6 de Paris, March 1966
Also, Cahters de Topologte et Gdom~tne Diff~rentlelle 10 (1968), 1-126

6 BIRKHOFF, G Structure of abstract algebras Proc Cambridge Phd Soc 31 (1938), 433-454
7 BIRKHOFF, G , AND LIPSON• J D Heterogeneous algebras J Combinatorial Theory 8 (1970), 115-133
8 BLIKLE, A Equational languages Inform and Contr 21 (1972). 134-147
9 BLOOM, S L , AND ELGOT, C C The existence and construction of free iteratlve theories. Research Rep

RC-4937, IBM Thomas J Watson Research Center, Yorktown Heights, N Y , 1974
10 BURSTALL, R M , ANO LANDIN, P J Programs and their proofs An algebraic approach Machine lntelh-

gence, Vol 4, B Meltzer and D Michle, Eds , Edinburgh U Press, Edinburgh, Scotland, 1969, pp 17-
43

11 BURSTALL, R M , AND THATCHER, J W The algebraic theory of recurslve program schemes. Lecture Notes
m Computer Science, Vol. 25 Category Theory Apphed to Computation and Control, Springer, Berlin,
1974, pp 126-131.

12 CHANDRA, A K Degrees of translatability and canonical forms of program schemes Pt I Proc Sixth
Ann ACM Symp on Theory of Computing, Seattle, 1974, pp 1-12

13 COHN, P M UmversalAIgebra Harper and Row. New York, 1965
14 COURCELLE, B , AND VUILLEMIN, J, Semantics and axlomatlcs of a simple recurslve language, Proc Sixth

Ann ACM Symp on Theory of Computing, Seattle, 1974, pp 13-26
15 DONER, J E Tree acceptors and some of their applications J Computer and Syst Scts 4 (1970), 406-

451
16 E1LENBERG. S , AND WRIGHT, J B Automata in general algebras Inform and Control 11 (1967), 452-

470
17 ELGOT, C C Monadlc computation and ~teratlve algebraic theories Research Rep, RC-4564, IBM

Thomas J Watson Research Center, Yorktown Heights, N Y , 1973, also Proc Logic Colloqumm '73,
Bristol, England, North-Holland Pub Co , Amsterdam, 1975, pp 175-230

18 ENGELFRIET, J , AND SCHMIDT, E M IO and O1 Dataloglsk Afdehng Rep , DAIM1 PB-47, Aarhus U ,
Aarhus, Denmark, July 1975

19 GINSBURG, S The Mathematical Theory of Context-Free Languages McGraw-Hill, New York, 1962
20 GOGUEN, J A On homomorphlsms• correctness, termination, unfoldments and equivalence of flow

diagram programs Proc 13th Ann IEEE Symp on Switching and Automata Theory, 1972, pp 52-60
A portion of this paper appears m expanded form in J Computer and Syst Scls 8 (1974), 333-365

21 GOOUEN, J A Semantics of computation Lecture Notes tn Computer Science, Vol 25 Category Theory
Apphed to Computation and Control, Spnnger, Berlin, 1974, pp 151-163

22 GOGUEN, J A , AND THATCHER. 1 W lmttal algebra semantics Extended Abstract, Research Rep RC-
4865, IBM Thomas J Watson Research Center, Yorktown Heights, N Y , May 1974, also, Proc 15th
Ann IEEE Symp on Switching and Automata Theory, 1974, pp 63-77

23 GOOUEN, J A , THATCHER, J W , WAGNER, E G , AND WRIGHT, 1 B A junction between computer science
and category theory, I Basic definitions and examples Pt 1, Research Rep RC-4526, Pt 2, Research
Rep RC-5908, IBM Thomas J Watson Research Center, Yorktown Heights, N Y , 1973, 1976

24 GOGUEN, J A , THATCHER, J W . WAGNER, E G , AND WRIGHT, J B Abstract data-types as initial algebras
and correctness of data representations Proc. Conference on Computer Graphics, Pattern RecogmUon
and Data Structure. May 1975, pp 89-93

25 GOGUEN, J A , THATCHER, J W , WAGNER, E G , AND WmGHT, J B. Programs lncategorles (summary), in
preparation

26 GORDON, M Models of pure LISP Ph D Th , Edinburgh U , Edinburgh, Scotland, 1973
27 GRAETZEa, G UmversalAlgebra Van Nostrand, Princeton, N J , 1968
28 HIGGINS, P J Algebras with a schema of operators Math Nachr 27 (1963), 115-132
29. IRONS, E T A syntax directed compder for ALGOL 60 Comm ACM 4 (1961), 51-55
30 KNUTn, D E Semantics of context-free languages Math Syst Theory 2 (1968), 127-145

94 J. A. GOGUEN, J, W. THATCHER, E G. WAGNER, AND J. B. WRIGHT

31 LANDIN, P J A program machine symmetric automata theory Machine Intelligence 5, B Meltzer and D
Mlchle, Eds , Edinburgh U. Press, Edinburgh, Scotland, 1970, pp 99-120.

32. LAWVERE, F W Functorlal semantics of algebraic theories. Proc. Nat Acad Sci. 50 (1963), 869-872.
33 LEWIS, C H , AND ROSEN, B K Recurswely defined data types, Pt. 1 Proc ACM Symp on Principles of

Programming Languages, 1973, pp 125-138, Pt 2, Research Rep. RC-4713, IBM Thomas J Watson
Research Center, Yorktown Heights, N Y , 1974

34 LEWIS, P.M II,AND STEARNS, R E Syntax-directed transduction J ACM 15, 3 (July 1968), 465-488
35 LUCAS, P , LAUER, P , AND STIGLEITNER, H Method and notation for the formal definition of program-

mmg languages Tech Rep TR 25 087, IBM Laboratory, Vienna, Austria, 1968
36 McCARTHY. J Towards a mathematical science of computation Proc IFIP Cong. North-Holland Pub

Co , Amsterdam, 1962, pp 21-28
37 McCARTHY, J A formal descrlpUon of a subset of ALGOL In "Formal Language Description Languages

for Computer Programming," Proc IFIP Working Conf 1964, T B Steel, Jr , Ed , North-Holland Pub
Co , Amsterdam, 1966, pp 1-12

38 MCCARTHY, J , AND PAINTER, J Correctness of a compiler for arithmetic expressions In "Mathematical
Aspects of Computer Science," Proc of Symposia in Applied Mathematics, Vol 19, J T Schwartz, Ed ,
Amer Math Soc , Providence, R I , 1967, pp 33-41

39 MACLANE, S Category Theory for the Working Mathematician Springer, New York, 1971
40 MAGIDOR, M , AND MORGAN, G Finite automata over finite trees Tech Rep 30, Hebrew U , Jerusalem,

Israel, 1969
41 MAIBAUM, T S E The characterization of the derivation trees of context-free sets of terms as regular sets

Proc 13th Ann IEEE Symp on Switching and Automata Theory, 1972, pp. 224-230
42 MAIBAUM, T S E Generalized grammars and homomorphic Images of regular sets Research Rep CS-73-

30, U of Waterloo, Waterloo, Ontario, Canada, 1973
43 MANNA, Z Properties of programs and the first-order predicate calculus J ACM 16, 2 (April 1969),

244-255
44 MARKOWSKY, G Chain-complete posets and directed sets with applications Research Rep RC-5024,

IBM Thomas J Watson Research Center, Yorktown Heights, N Y , Aug 1974
45 MEZEI, J , AND WRIGHT, J B Algebraic automata and context-free sets Inform and Contr 1l (1967), 3-

29
46 MORRIS, F L Correctness of translations of programming languages Ph D Th , Computer Science

Memo CS72-303, Stanford U , Stanford, Cahf, 1972
47 MORRIS, F.L Advice on structuring compilers and proving them correct Proc Symp on Principles of

Programming Lanugages, Boston, 1973, pp 144-152
48 NlVAT, M Languages alg6braic sur le magna hbre et s6mantique des schdmas de programme In

Automata, Languages and Programming, M Nlvat (Ed) , North-Holland Pub Co , Amsterdam, 1972,
pp 293-308

49 PARK, D FIxpomt induction and proofs of program properties Machine Intelligence, Vol 5, B Meltzer
and D Mlchle, Eds , Edinburgh U Press, Edinburgh, Scotland, 1970. pp 59-78

50 PETRONE, L Syntactic mappings of context-free languages Proc IFIP Cong 1965, Vol 2, North-
Holland Pub Co , Amsterdam, pp 590-591

51 PorrENGER, R ARBOL, a system for defining functions on trees A I Memo 3, UCLA, 1976
52 RABIN, M P , AND SCOTT, D Finite automata and their decision problems IBM J Res Develop 3

(1959), 114-125
53 REYNOLDS, J C Definitional interpreters for higher-order programming languages Proc 25th National

ACM Conference, Boston, Mass , Aug 1972, pp 717-740
54 REYNOLDS, J C On the relation between direct and continuation semantics Lecture Notes in Computer

Science, Vol 14 Automata, Languages and Programming, Springer, Berlin, 1974, pp 141-156
55 REYNOLDS, J C. Semantics of the lattice of flow diagrams. Manuscript, Syracuse U , Syracuse, N Y ,

submitted for publication, July 1975
56 ROSEN, B K Program equivalence and context-free grammars Proc 13th Ann IEEE Symp on Switch-

ing and Automata Theory, 1972, pp 7-18, revised as Research Rep RC-4822, IBM Thomas J Watson
Research Center, Yorktown Heights. N Y , 1974

57 ROUNDS, W C Mappings and grammars on trees Math Syst Theory 4 (1970), 256-287
58 SCHDTZENBERGER, M P Context-free languages and push down automata Inform and Contr 6 (1963),

246-264
59 SCHWARTZ, J T Semantic definition methods In Formal Semantics of Programming Languages, R

Rustm, Ed , Prentice-Hall, Englewood Cliffs, N J , 1972, pp 1-23
60 SCOTI, D Outline of a mathematical theory of computation Proc 4th Ann Princeton Conf on

Information Sciences and Systems, 1970, pp 169-176
61 ScoTr, D The lattice of flow diagrams Tech Monograph PRG 3, Oxford U Computing Lab , Oxford

U , Oxford, England, also, Lecture Notes in Mathematics, Vol 182 Semantics of Algorithmic Languages,
E Engeler. Ed , Springer. Berlin, 1971, pp 311-366

62 Scott, D Continuous lattices Tech. Monograph PRG 7, Oxford U Computing Lab , Oxford U ,

lnittal Algebra Semantics and Continuous Algebras 95

Oxford, England, 1971, also, Lecture Notes m Mathemattcs, Vol 274, Springer, Berhn, 1971, pp
97-136

63 ScoTt, D Data types as lattices Unpublished notes, Amsterdam, 1972
64 SCOTI, D Data types as lattices Unpublished notes, Oxford, 1974
65 Scott, D , AND SXRACHEY, C Towards a mathematical semantics for computer languages Tech Mono-

graph PRG 6, Oxford U. Computing Lab., Oxford U., Oxford, England, 1971, also, Computers and
Automata, J Fox, Ed , Wiley, New York, 1971, pp 19-46

66 STRACHEY, C , AND WADSWORTH, C P Contmuatlons-A mathematical semantics for handhng full jumps
Tech Monograph PRG-11, Programming Research Group, Oxford U Computing Lab , Oxford, Eng-
land, 1974

67. THATCHER, J.W. Characterizing derivation trees of context free grammars through a generahzatlon of
finite automata theory J Computer and Syst Scis 1 (1967), 317-322

68 THATCHER, J W Generahzed ~ sequential machines J Computer and Syst. Scts 4 (1970), 339-367
69 THATCHER, J W Tree automata' An informal survey In Currents In Computing, A V. Aho, E d ,

Prentice-Hall, Englewood Chffs, N J , 1973, 143-172
70. THATCHER, J W., AND WRIGHT, J B. Generahzed flmte automata theory with an apphcatlon to a decision

problem of second-order logic Math Systems Theory 2 (1968), 57-81
71 TURNER, R Doctoral Dlss , U of London, London, England, 1973
72. VUILLEMIN, J Syntaxe, S6mantlque et Axlomatlque d'un Langage de Programmation Simple These

d'Etat, Umverslt6 Paris 6, France, 1974
73 WAGNER, E.G An algebraic theory of recurstve defimttons and recurstve languages. Proc. Tlurd Annual

ACM Symposium on Theory of Computing, 1971, pp 12-23
74 WA6NER, E G Languages for defining sets in arbitrary algebras. Proc 1 lth Ann IEEE Symp on

Switching and Automata Theory, 1971, pp 191-201
75 WAND, M A concrete approach to abstract recurslve definitions In Automata, Languages and Program-

ming, M Nivat, Ed , North-Holland Pub Co., Amsterdam, 1972, pp 331-341.
76 WAND, M An algebraic formulation of the Chomsky hierarchy Lecture Notes in Computer Science, Vol

25 Category Theory Apphed to Computation and Control, Springer, Berlin, 1974, pp 209-213
77 VAN WIJNGAARDEN, A., Ed Report on the algorithmic language ALGOL 68 Numer Math 14 (1969),

79-218

RECEIVED JANUARY 1975, REVISED MARCH 1976

Journal of the Association for Computing Machinery, Vol 24, No 1, January 1977

