
Modeling and reasoning with I-polynomial data types

Peter Padawitz, TU Dortmund, Germany
September 1, 2017

(actual version: http://fldit-www.cs.uni-dortmund.de/∼peter/IFIP2016.pdf)

1

http://en.wikipedia.org/wiki/Taiji_(philosophy)

�
�

�
Road map

• Some examples that motivated this approach 3
• I-polynomial types 10
• Signatures 11
• Terms and coterms 12
• Σ-algebras and Σ-functors 19
• Term folding und state unfolding 26
• From constructors to destructors and backwards 30
• Iterative equations 35
• Typed theories 38

The next steps:

• First-order and modal formulas
• Congruences and invariants
• Induction and coinduction
• Varieties and covarieties
• Term monads and coterm comonads

2

�
�

�
Some examples that motivated this approach

1 points to the carrier set of a standard model of the respective signature.

Constructive signatures

• Nat 1 N
S = {nat}, I = ∅, F = { zero : 1→ nat,

succ : nat→ nat }.
• Lists(X, Y) 1 X∗ × I

S = {list}, I = {X, Y }, F = { nil : Y → list,

cons : X × list→ list }.

• List(X) =def Lists(X, 1) 1 X∗,

alternatively:

S = {list}, I = {X,N>1}, F = {[. . .] : X∗ → list}.

3

• Bintree(X) 1 binary trees of finite depth with node labels from X

S = {btree}, I = {X} F = { empty : 1→ btree,

bjoin : btree×X × btree→ btree }.

• Tree(X, Y) 1 finitely branching trees of finite depth with node labels from X and
edge labels from Y

S = {tree, trees}, I = {X, Y }, F = { join : X × trees→ tree,

nil : 1→ trees,

cons : Y × tree× trees→ trees }.

• Reg(BS) 1 regular expressions over BS

S = {reg}, I = {BS}, F = { par : reg × reg → reg, (parallel composition)

seq : reg × reg → reg, (sequential composition)

iter : reg → reg, (iteration)

base : BS → reg } (embedding of base sets)

4

• CCS(Act) 1 Calculus of Communicating Systems

S = { proc }, I = {Act},
F = { pre : Act→ proc, (prefixing by an action)

cho : proc× proc→ proc, (choice)

par : proc× proc→ proc, (parallelism)

res : proc× Act→ proc, (restriction)

rel : proc× ActAct → proc }. (relabelling)

Destructive signatures

• coNat 1 N ∪ {∞}

S = {nat}, I = ∅, F = {pred : nat→ 1 + nat}.

• coList(X) 1 X∗ ∪XN (coList(1) =̂ coNat)

S = {list}, I = {X}, F = {split : list→ 1 + X × list}.

• coBintree(X) 1 binary trees of finite or infinite depth with node labels from X

S = {btree}, I = {X}, F = {split : btree→ 1 + btree×X × btree}.

5

https://en.wikipedia.org/wiki/Calculus_of_communicating_systems

• coTree(X, Y) 1 finitely or infinitely branching trees of finite or infinite depth with
node labels from X and edge labels from Y

S = {tree}, I = {X, Y }, F = { root : tree→ X,

subtrees : tree→ etrees,

split : etrees→ 1 + Y × tree× etrees }.

• FBTree(X, Y) 1 finitely branching trees of finite or infinite depth with node labels
from X and edge labels from Y

S = {tree}, I = {X, Y,N>1}, F = { root : tree→ X,

subtrees : tree→ (Y × tree)∗ }.

• Inftree(X, Y) 1 finitely branching trees of infinite depth with node labels from X

and edge labels from Y

S = {tree}, I = {X, Y,N>1}, F = { root : tree→ X,

subtrees : tree→ (Y × tree)+ }.

6

• DAut(X, Y) 1 Y X∗ = behaviors of deterministic Moore automata with input from
X and output from Y

S = {state}, I = {X, Y }, F = { δ : state→ stateX ,

β : state→ Y }.

• Acc(X) =def DAut(X, 2) 1 P(X) ∼= 2X
∗ = behaviors of deterministic acceptors of

languages over X

• Stream(X) =def DAut(1, X) 1 XN

S = {stream}, I = {X}, F = { head : stream → X,

tail : stream → stream },
alternatively:

S = {stream}, I = {X,N}, F = {get : stream→ XN}.

• Infbintree(X) 1 binary trees of infinite depth with node labels from X

S = {btree}, I = {X}, F = { root : btree→ X,

left , right : btree→ btree }.

7

• PAut(X, Y) 1 (1 + Y)X
∗ = partial automata

S = {state}, I = {X, Y }, F = { δ : state→ (1 + state)X ,

β : state→ Y }.

• NAut(X, Y) 1 (Y ∗)X
∗ = behaviors of non-deterministic image finite automata

S{state}, I = {X, Y,N>1}, F = { δ : state→ (state∗)X ,

β : state→ Y }.

•WAut(X, Y,CM) 1 ((CM × Y)∗)X
∗ = behaviors of CM -weighted automata

S = {state}, I = {X, Y,CM ,N>1}, F = { δ : state→ ((state× CM)∗)X ,

β : state→ Y }.

• SAut(X, Y) 1 (([0, 1]× Y)∗)X
∗ = behaviors of stochastic automata

S = {state}, I = {X, Y, [0, 1],N>1}, F = { δ : state→ ((state× [0, 1])∗)X ,

β : state→ Y }.

• Proctree(Act) 1 process trees whose edges are labelled with actions

S = {tree}, I = {Act,N>1}, F = { δ : tree→ (Act× tree)∗ }.

8

• Class(I) 1 behaviors of a class with n methods

S = { state }, I = {X1, . . . , Xn, Y1, . . . , Yn, E1, . . . , En},
F = { mi : state→ ((state× Yi) + Ei)

Xi | 1 ≤ i ≤ n }.

9

�
�

�
I-polynomial types

Let S be a finite set and I be a set of nonempty sets (of indices), implicitly including
the one-element set 1 = {ε}, the two-element set 2 = {0, 1} and the n-element set
[n] = {1, . . . , n} for all n > 1. 1, 2 and [n] are omitted in the listings of index sets of
sample signatures.

The set T (S, I) of I-polynomial types over S is inductively defined as follows:

• S ∪ I ⊆ T (S, I).
• For all I ∈ I and {ei}i∈I ⊆ T (S, I),

∐
i∈I ei,

∏
i∈I ei ∈ T (S, I).

For alle I ∈ I, n > 1 and e, e1, . . . , en ∈ T (S, I) we use the following short notations:

e1 × · · · × en =def

∏
i∈[n] ei,

e1 + · · · + en =def

∐
i∈[n] ei,

eI =def

∏
i∈I e,

en =def e[n],

e+ =def e +
∐

n>1 e
n,

e∗ =def 1 + e+.

10

�
�

�
Signatures

A signature Σ = (S, I, F) consists of sets S and I as above and a finite set F of typed
function symbols (“operations”) f : e→ e′ with e, e′ ∈ T (S, I).

f : e→ e′ ∈ F is a constructor if e′ ∈ S and a destructor if e ∈ S.

Σ is constructive if F consists of constructors and for all s ∈ S, I implicitly contains
{f ∈ F | ran(f) = s}.

Σ is destructive if F consists of destructors and for all s ∈ S, I implicitly contains
{f ∈ F | dom(f) = s}.

11

�
�

�
Terms and coterms

A(→ B denotes the set of partial functions from A to B.

L ⊆ A∗ is prefix closed if for all w ∈ A∗ and a ∈ A, wa ∈ L implies w ∈ L.

A deterministic tree is a partial function f : A∗ (→ B with prefix closed domain.

f may be written as a kind of record:

tf = f (ε){x→ tλw.f(xw) | x ∈ def (t) ∩ A}.

f is well-founded if there is n ∈ N with |w| ≤ n for all w ∈ def (t), intuitively: all
paths emanating from the root are finite.

dtr(A,B) denotes the set of all deterministic trees from A∗ to B.
wdtr(A,B) denotes the set of all wellfounded trees of dtr(A,B).

Let Σ = (S, I, F) be a signature, V be an S-sorted set,

ELΣ =
⋃
I ∪ {sel}, (edge labels)

NLΣ,V =
⋃
I ∪ V ∪ {tup}. (node labels)

12

Let Σ be constructive.

The set CTΣ(V) Σ-terms over V is the greatest T (S, I)-sorted set M of subsets of
dtr(ELΣ,NLΣ,V) with the following properties: Let I ∈ I and {ei}i∈I ⊆ T (S, I).

• MI = (1→ I). (1)
• For all s ∈ S and t ∈Ms, t ∈ Vs (2)
or t = c{sel→ t′} for some c : e→ s ∈ F and t′ ∈Me. (3)
• For all t ∈M∏

i∈I ei and i ∈ I , t = tup{i→ ti | i ∈ I} for some ti ∈Mei. (4)
• For all t ∈M∐

i∈I ei, t = i{sel→ t′} for some i ∈ I and t′ ∈Mei. (5)

(2/4) (3/5)(1)

Terms with their respective types.

13

The elements of CTΣ =def CTΣ(∅) are called ground Σ-terms.

TΣ(V) =def CTΣ(V) ∩ wdtr(ELΣ,NLΣ,V) is the least T (S, I)-sorted set M of subsets of
dtr(ELΣ,NLΣ,V) with (1) and the following properties:

Let I ∈ I and {ei}i∈I ⊆ T (S, I).

• For all s ∈ S, Vs ⊆Ms. (6)
• For all c : e→ s ∈ F and t ∈Me, c{sel→ t} ∈Ms. (7)
• For all ti ∈Mei, i ∈ I , tup{i→ ti | i ∈ I} ∈M∏

i∈I ei. (8)
• For all i ∈ I and t ∈Mei, i{sel→ t} ∈M∐

i∈I ei. (9)

TΣ =def TΣ(∅).

14

Let Σ be destructive.

The set DTΣ(V) of Σ-coterms over V is the greatest T (S, I)-sorted set M of subsets
of dtr(ELΣ,NLΣ,V) with (1), (4), (5) and the following property:

• For all s ∈ S and t ∈ Ms there is x ∈ Vs and for all d : s → e ∈ F there is td ∈ Me

with t = x{d→ td | d : s→ e ∈ F}. (10)

(6/7)

!

(1)

Coterms with their respective types.

15

The elements of DTΣ =def DTΣ(1) are called ground Σ-coterms.

Examples

0

tailhead

1

tailhead

2

tailhead

ε

ε

ε

ε

Stream(N)-coterm that represents the stream of natural numbers

16

ε

ε

0β
δ

1

πx

β πx πz

πy πz

ε ε

ε

ε
πy

ε

δ

ε

ε

πx
πy

πz

ε

εε ε

δ πx πy

πz

ε

ε

ε

ε

δ

1β

0 β

Acc({x, y, z})-coterm that represents an acceptor of all words over {x, y, z}
containing x or z

17

coTΣ(V) =def DTΣ(V) ∩ wdtr(ELΣ,NLΣ,V) is the least T (S, I)-sorted set M of subsets
of dtr(ELΣ,NLΣ,V) with (1), (8), (9) and the following property:

• For all s∈S, x∈Vs, d :s→ e ∈ F and td ∈Me, x{d→ td | d :s→ e ∈ F} ∈Ms. (11)

coTΣ =def coTΣ(1).

The set TΣ(V) of well-founded Σ-terms over V , however, is defined as if Σ were
constructive:

TΣ(V) is the least T (S, I)-sorted set M of subsets of dtr(ELΣ,NLΣ,V) with (1), (6), (8),
(9), but the following property instead of (7):

• For all s ∈ S, d : s→ e ∈ F and td ∈Me, ε{d→ td | d : s→ e ∈ F} ∈Ms. (12)

18

�
�

�
Σ-algebras and Σ-functors

Type compatible T (S, I)-sorted sets

A T (S, I)-sorted set A is type compatible if for all I ∈ I,

• AI = (1→ I),
• for all {ei}i∈I ⊆ T (S, I)

• there are

π = (πi : A∏
i∈I ei → Aei)i∈I and ι = (ιi : Aei → A∐

i∈I ei)i∈I

such that (A∏
i∈I ei, π) is a product and (A∐

i∈I ei, ι) is a sum or coproduct of (Aei)i∈I .

Let A be type compatible, I ∈ I and {ei}i∈I ⊆ T (S, I).

(1) For all a ∈ A∐
i∈I ei there are unique i ∈ I and b ∈ Aei such that ιi(b) = a.

(2) For all a, b ∈ A∏
i∈I ei, a = b if for all i ∈ I , πi(a) = πi(b).

19

Let A,B be type compatible T (S, I)-sorted sets.

A T (S, I)-sorted function h : A→ B is type compatible if for all I ∈ I,

• hI = idI ,
• for all {ei}i∈I ⊆ T (S, I), h∏

i∈I ei =
∏

i∈I hei and h
∐

i∈I ei =
∐

i∈I hei.

SetS,I denotes the subcategory of SetT (S,I) with type compatible T (S, I)-sorted sets as
objects and type compatible T (S, I)-sorted functions as morphisms.

e ∈ T (S, I) induces the projection functor Fe : SetS,I → Set that maps every object
and morphism of SetS,I to its respective e-component.

Lifting S-sorted to T (S, I)-sorted relations

Let A = (Ae)e∈T (S,I) be a type compatible T (S, I)-sorted set, n > 0 and Rs ⊆ An
s for all

s ∈ S.

For all I ∈ I, RI =def ∆n
I and for all {ei}i∈I ⊆ T (S, I),

R∏
i∈I ei =def {(a1, . . . , an) ∈ An∏

i∈I ei
| ∀ i ∈ I : (πi(a1), . . . , πi(an)) ∈ Rei},

R∐
i∈I ei =def {(ιi(a1), . . . , ιi(an)) | (a1, . . . , an) ∈ Rei, i ∈ I} ⊆ An∐

i∈I ei
.

20

Let Σ = (S, I, F) be a signature.

A Σ-algebra A = (A,Op) consists of a type compatible T (S, I)-sorted set A and an
F -sorted set

Op = (fA : Ae → Ae′)f :e→e′∈F

of functions.

Let A,B be Σ-algebras. A type compatible T (S, I)-sorted function h : A → B is a
Σ-homomorphism if for all f : e→ e′ ∈ F ,

he′ ◦ fA = fB ◦ he.

AlgΣ denotes the subcategory of SetS,I with Σ-algebras as objects and Σ-homomorphisms
as morphisms.

If Σ is constructive, then CTΣ(V) is a Σ-algebra:

Let I ∈ I and {ei} ⊆ T (S, I).

• For all c : e→ s ∈ C, t ∈ CTΣ(V)e, cCTΣ(V)(t) =def c{sel→ t}.
• For all ti ∈ CTΣ(V)ei, i ∈ I , and k ∈ I , πk(tup{i→ ti | i ∈ I}) =def tk.
• For all i ∈ I and t ∈ CTΣ(V)ei, ιi(t) =def i{sel→ t}.

TΣ(V) is a Σ-subalgebra of CTΣ(V).

21

If Σ is destructive, then DTΣ(V) is a Σ-algebra:

Let I ∈ I and {ei} ⊆ T (S, I).

• For all d : s→ e ∈ D, x ∈ Vs and t′d ∈ DTΣ(V)e, d′ : s→ e′ ∈ D,
dDTΣ(V)(x{d→ t′d | d′ : s→ e′ ∈ D}) =def td.

• For all ti ∈ DTΣ(V)ei, i ∈ I , and k ∈ I , πk(tup{i→ ti | i ∈ I}) =def tk.
• For all i ∈ I and t ∈ DTΣ(V)ei, ιi(t) =def i{sel→ t}.

coTΣ(V) is a Σ-subalgebra of DTΣ(V).

Let e ∈ T (S, I), I ∈ I and {ei}i∈I ⊆ T (S, I).

{ci : Aei → Ae | i ∈ I} is a set of constructors for e if [ci]i∈I :
∐

i∈I Aei → Ae is iso.

{di : Ae → Aei | i ∈ I} is a set of destructors for e if 〈di〉i∈I : Ae →
∏

i∈I Aei is iso.

• The injections of A for a sum type form a set of constructors for this type.
• The projections of A for a product type form a set of destructors for this type.
• If Σ is constructive and A is initial in AlgΣ, then for all s ∈ S, {fA | f : e→ s ∈ F}
is a set of constructors for s.
• If Σ is destructive and A is final in AlgΣ, then for all s ∈ S, {fA | f : s→ e ∈ F} is
a set of destructors for s.

22

Let Σ = (S, I, F) be a constructive signature.

Σ induces the functor HΣ : SetS → SetS:

For all A,B ∈ SetS, h ∈ SetS(A,B) and s ∈ S,

HΣ(A)s =
∐

f :e→s∈F Ae,

HΣ(h)s =
∐

f :e→s∈F he.

For all s ∈ S and f : e→ s ∈ F ,

HΣ(A)s
αs = [fA]f :e→s∈F�As

Ae

ιf (1)

f

fA = αs ◦ ιf

�

23

Let Σ = (S, I, F) be a destructive signature.

Σ induces the functor HΣ : SetS → SetS:

For all A,B ∈ SetS, h ∈ SetS(A,B) and s ∈ S,

HΣ(A)s =
∏

f :s→e∈F Ae,

HΣ(h)s =
∏

f :s→e∈F he.

For all s ∈ S and f : s→ e ∈ F ,

As

αs = 〈fA〉f :s→e∈F�HΣ(A)s

Ae

(2) πf

g
fA = πf ◦ αs

�

24

HNAut(X,Y)(A)state = (A∗state)
X × Y,

HWAut(X,Y,CM)(A)state = ((Astate × CM)∗)X × Y,
HSAut(X,Y)(A)state = ((Astate × [0, 1])∗)X × Y.

Wfin(A,CM) = {f : A→ CM | |supp(f)| < ω},
Dfin(A) = {f : A→ [0, 1] | |supp(f)| < ω,

∑
f (supp(f)) = 1}.

BNAut(X,Y)(A)state = Pfin(Astate)
X × Y,

BWAut(X,Y,CM)(A)state = Wfin(Astate,CM)X × Y,
CSAut(X,Y)(A)state = ({((ai, pi))ni=1 ∈ (Astate × [0, 1])∗ |

∑n
i=1 pi = 1})X × Y,

BSAut(X,Y)(A)state = Dfin(Astate)
X × Y.

Do exist surjective natural transformations

τ1 : HNAut(X,Y) → BNAut(X,Y),

τ2 : HWAut(X,Y,CM) → BWAut(X,Y,CM),

τ3 : CSAut(X,Y) → BSAut(X,Y)

and an injective natural transformation τ4 : CSAut(X,Y) → HSAut(X,Y) ?

25

�
�

�
Term folding und state unfolding

Let Σ = (S, I, C) be a constructive signature, A = (A,Op) be a Σ-algebra, V be an
S-sorted set of “variables” and g : V → A be an S-sorted valuation of V .

The extension of g,
g∗ : TΣ(V)→ A,

is the T (S, I)-sorted function that is inductively defined as follows:

Let I ∈ I and {ei}i∈I ⊆ T (S, I).

• g∗I = idI . (1)
• For all s ∈ S and x ∈ Vs, g∗s(x) = gs(x). (2)
• For all c : e→ s ∈ F and t ∈ TΣ(V)e, g∗s(c{sel→ t}) = cA(g∗e(t)). (3)
• For all ti ∈ TΣ(V)ei, i ∈ I , and k ∈ I , πk(g∗∏i∈I ei

({tup→ ti | i ∈ I})) = g∗ek(tk). (4)
• For all k ∈ I and t ∈ TΣ(V)ek, g

∗∐
i∈I ei

(k{sel→ t}) = ιk(g
∗
ek

(t)). (5)

Intuitively, g∗ evaluates each wellfounded Σ-term over V in A.

26

Theorem FREE

g∗ is the only Σ-homomorphism from TΣ(V) to A that satisfies (2):

V
incV �TΣ(V)

(2)

As

g∗

≺

g
�

The restriction of g∗ to ground terms does not depend on g and is denoted by

foldA: TΣ → A.

Since g∗ is the only Σ-homomorphism from TΣ(V) to A that satisfies (2), foldA is the
only Σ-homomorphism from TΣ to A, i.e., TΣ is initial in AlgΣ.

A is reachable (or generated) if foldA is epi.

A is equationally consistent if foldA is mono.

27

Let Σ = (S, I, D) be a destructive signature, A = (A,Op) be a Σ-algebra, V be an
S-sorted set of “colors” and g : A→ V be an S-sorted coloring of A.

The coextension of g,
g# : A→ DTΣ(V),

is the T (S, I)-sorted function that is inductively defined as follows:

Let I ∈ I and {ei}i∈I ⊆ T (S, I).

• g#
I = idI . (1)

• For all s ∈ S and a ∈ As, g#
s (a) = gs(a){d→ g#

e (dA(a)) | d : s→ e ∈ D}. (2)
• For all a ∈ A∏

i∈I ei, g
#∏

i∈I ei
(a) = tup{i→ g#

ei
(πi(a)) | i ∈ I}. (3)

• For all k ∈ I and a ∈ Aek, g
#∐

i∈I ei
(ιk(a)) = k{sel→ g#

ek
(a)}. (4)

Intuitively, g# unfolds each “state” a ∈ A into the Σ-coterm that represents the “behavior”
of a w.r.t. A.

In particular, the coextension id#
A : A → DTΣ(A) “runs” (the destructors of) A on its

arguments.

28

Theorem COFREE

g# is the only Σ-homomorphism from A to DTΣ(V) that satisfies (5):

V ≺
root =def λt.t(ε)

DTΣ(V)

(5)

A

g#

�

g

≺

The restriction of g# to ground coterms does not depend on g and is denoted by

unfoldA: A → DTΣ.

Since g# is the only Σ-homomorphism from A to DTΣ(V) that satisfies (5), unfoldA is
the only Σ-homomorphism from A to DTΣ, i.e., DTΣ is final in AlgΣ.

A is observable (or cogenerated) if unfoldA is mono.

A is behaviorally complete if unfoldA is epi.

29

�
�

�
From constructors to destructors and backwards

Lambek’s Lemma

(1) Suppose that AlgF has an initial object α : F (A)→ A. α is iso.

(2) Suppose that coAlgF has a final object β : A→ F (A). β is iso.

Lambek’s Lemma allows us to transform every constructive or destructive signature Σ

into a destructive resp. constructive signature coΣ such that

DTcoΣ ∼= CTΣ resp. TcoΣ ∼= coTΣ.

Here are the details:

30

Let Σ = (S, I, C) be a constructive signature,

D = {s : s→
∐

c:e→s∈C e | s ∈ S},
coΣ = (S, I, D).

By Lambek’s Lemma (1), the initial HΣ-algebra

α = {αs : HΣ(TΣ)s
[cTΣ]c:e→s∈C−→ TΣ,s | s ∈ S}

is iso. Hence there is the HΣ-coalgebra

{α−1
s : TΣ,s → HΣ(TΣ)s | s ∈ S}

that corresponds to the coΣ-algebra A = (TΣ, Op) with sA = α−1
s for all s ∈ S.

Since coΣ is destructive, Theorem COFREE implies that DTcoΣ is final in AlgcoΣ.

CTΣ is also final in AlgcoΣ:

CTΣ is a coΣ-algebra: Let I ∈ I and {ei} ⊆ T (S, I).

• For all c : e→ s ∈ C, t ∈ CTΣ,e,

sCTΣ(c{sel→ t}) =def c{sel→ t}.

31

• For all ti ∈ CTΣ,ei, i ∈ I , and k ∈ I , πk(tup{i→ ti | i ∈ I}) =def tk.
• For all i ∈ I and t ∈ CTΣ,ei, ιi(t) =def i{sel→ t}.

CTΣ and DTcoΣ are coΣ-isomorphic. Equivalently,

unfoldCTΣ : CTΣ → DTcoΣ

is bijective.

!

32

Let Σ = (S, I, D) be a destructive signature,

C = {s :
∏

d:s→e∈D e→ s | s ∈ S},
coΣ = (S, I, C).

By Lambek’s Lemma (2), the final HΣ-coalgebra

α = {αs : DTΣ,s
〈dDTΣ〉d:s→e∈D−→ HΣ(DTΣ)s | s ∈ S}

is iso. Hence there is the HΣ-algebra

{α−1
s : HΣ(DTΣ)s → DTΣ,s | s ∈ S}

that corresponds to the coΣ-algebra A = (DTΣ, Op) with sA = α−1
s for all s ∈ S.

Since coΣ is constructive, Theorem FREE implies that TcoΣ is initial in AlgcoΣ.

coTΣ is also initial in AlgcoΣ:

coTΣ is a coΣ-algebra: Let I ∈ I and {ei} ⊆ T (S, I).

• For all s ∈ S, d : s→ e ∈ D and td ∈ coTΣ,e,

scoTΣ(tup{d→ td | d : s→ e ∈ D}) =def ε{d→ td | d : s→ e ∈ D}.

33

• For all ti ∈ coTΣ,ei, i ∈ I , and k ∈ I , πk(tup{i→ ti | i ∈ I}) =def tk.
• For all i ∈ I and t ∈ coTΣ,ei, ιi(t) =def i{sel→ t}.

TcoΣ and coTΣ are coΣ-isomorphic. Equivalently,

fold coTΣ : TcoΣ → coTΣ

is bijective.

34

�
�

�
Iterative Σ-equations

Let Σ = (S, I, F) be a constructive or destructive signature and V be a finite S-sorted
set. An S-sorted function

E : V → TΣ(V)

with img(E) ∩ V = ∅ is called a system of iterative Σ-equations.

E is usually written as {x = E(x) | x ∈ V }.

Let Σ be constructive, A = (A,Op) be a Σ-algebra and AV be the set of S-sorted
functions from V to A.

g ∈ AV solves E in A if g∗ ◦ E = g.

E turns TΣ(V) into a coΣ-algebra: Let s ∈ S, I ∈ I and {ei} ⊆ T (S, I).

• For all x ∈ Vs, sTΣ(V)(x) =def s
TΣ(V)(E(x)).

• For all c : e→ s ∈ F , t ∈ TΣ(V)e, sTΣ(V)(c{sel→ t}) =def c{sel→ t}.
• For all ti ∈ TΣ(V)ei, i ∈ I , and k ∈ I , πk(tup{i→ ti | i ∈ I}) =def tk.
• For all i ∈ I and t ∈ TΣ(V)ei, ιi(t) =def i{sel→ t}.

35

Theorem SOL
V

incV→ TΣ(V)
unfoldTΣ(V)

→ DTcoΣ
(unfoldCTΣ)−1

→ CTΣ

solves E in CTΣ uniquely.

Proof. See Theorem SOL (coalgebraic version) in Fixpoints, Categories, and (Co)Algebraic
Modeling. o

Example

Let V = {blink, blink′}. The following system of List(Z)-equations over V has a unique
solution in CTList(Z) and thus defines two elements of CTList(Z):

blink = cons{sel→ tup{1→ 0, 2→ blink′}},
blink′ = cons{sel→ tup{1→ 1, 2→ blink}}.

(1)

Infinite terms that are representable as unique solutions of iterative equations are called
rational. A Σ-term is rational iff it has only finitely many subterms.

Let Σ be destructive and h be the bijection between TΣ(V) and TcoΣ(V) that is the
identity on V and agrees with (fold coTΣ)−1 on TΣ = coTΣ.

36

http://fldit-www.cs.tu-dortmund.de/~peter/DialgSlides.pdf
http://fldit-www.cs.tu-dortmund.de/~peter/DialgSlides.pdf

Corollary h ◦ E has a unique solution in DTΣ.

Proof. DTΣ is a coΣ-algebra: For all s ∈ S,
sDTΣ(ε{d→ td | d : s→ e ∈ F}) =def s{sel→ tup{d→ td | d : s→ e ∈ F}}.

By Theorem SOL, h ◦E has a unique solution in CTcoΣ. Since CTcoΣ is final in AlgcocoΣ,
CTcoΣ is cocoΣ-isomorphic to A =def DTcocoΣ. A is a Σ-algebra: For all s ∈ S and
d : s→ e and td ∈ Ae, d : s→ e ∈ F ,

dA(ε{s→ s{sel→ tup{d→ td | d : s→ e ∈ F}}}) =def td.

unfoldA : A→ DTΣ is bijective: The inverse maps ε{d→ td | d : s→ e ∈ F} ∈ DTΣ to

ε{s→ s{sel→ tup{d→ td | d : s→ e ∈ F}}}.
Hence CTcoΣ ∼= A ∼= DTΣ and thus the solutions of h◦E in CTcoΣ and DTΣ, respectively,
coincide up to isomorphism. o

Example

Let V = {esum, osum}. Given the following system E of Acc(Z)-equations over V ,
h ◦ E has a unique solution in DTAcc(Z) and thus defines two elements of DTAcc(Z):

esum = ε{δ → tup({x→ esum | x ∈ even} ∪ {x→ osum | x ∈ odd}), β → 1},
osum = ε{δ → tup{x→ osum | x ∈ even} ∪ {x→ esum | x ∈ odd}), β → 0}.

(2)

37

�
�

�
Typed theories

Let Σ = (S, I, F) be a signature.

The set derΣ of derived Σ-operations is inductively defined as follows:

Let I ∈ I and {ei} ⊆ T (S, I).

• F ⊆ derΣ.
• For all e ∈ T (S, I) and i ∈ I , i : e→ I ∈ derΣ.
• For all f : e→ e′, g : e′ → e′′ ∈ derΣ, g ◦ f : e→ e′′ ∈ derΣ.
• πi :

∏
i∈I ei → ei, ιi : ei →

∐
i∈I ei ∈ derΣ (also written as id if I is a singleton).

• For all fi : e→ ei ∈ derΣ, i ∈ I , 〈fi〉 : e→
∏

i∈I ei ∈ derΣ.
• For all fi : ei → e ∈ derΣ, i ∈ I , [fi] :

∐
i∈I ei → e ∈ derΣ.

• λ-abstraction:
For all ci : ei → e, fi : ei → e′ ∈ derΣ, i ∈ I , λ{ci.fi}i∈I : e→ e′ ∈ derΣ.
• κ-abstraction:
For all di : e→ ei, fi : e′ → ei ∈ derΣ, i ∈ I , κ{di.fi}i∈I : e′ → e ∈ derΣ.

Th(Σ) = (S, I, derΣ) is called the (algebraic) Σ-theory.

38

Let A = (A,Op) be a Σ-algebra.

The Th(Σ)-algebra B = Th(A) with B|Σ = A and the following interpretation of derΣ

is called the theory of A.

Let I ∈ I and {ei} ⊆ T (S, I).

• For all e ∈ T (S, I), idB = idA.
• For all e ∈ T (S, I), i ∈ I and a ∈ Ae, i

B
= λx.i.

• Compositions, projections, injections, product and coproduct extensions are defined
as usually.
• For all ci : ei → e, fi : ei → e′ ∈ derΣ, i ∈ I , such that {cBi | i ∈ I} is a set of
constructors for e, for all k ∈ I ,

(λ{ci.fi}i∈I)B ◦ cBk = fBk .

• For all di : e→ ei, fi : e′ → ei ∈ derΣ, i ∈ I , such that {dBi | i ∈ I} is a set of
destructors for e, for all k ∈ I ,

dBk ◦ (κ{di.fi}i∈I)B = fBk .

39

The following lemma implies that λ- and κ-abstractions are well-defined:

(1) Let {fi : Aei → Ae | i ∈ I} be a set of constructors for e.
For all a ∈ Ae there are unique i ∈ I and b ∈ Aei such that fAi (b) = a.

(2) Let {fi : Ae → Aei | i ∈ I} be a set of destructors for e.
For all a, b ∈ Ae, a = b if fi(a) = fi(b) for all i ∈ I .

For ease of notation, Th(A) may be regarded as the category with T (S, I) as the set of
objects and the operations of Th(A) as morphisms:

Every Th(A)-morphism f : e → e′ denotes the interpretation of some derived Σ-
operation in A.

Example

Let p : e→ 2 and f, g : e→ e′ be Th(A)-morphisms. The conditional

if p then f else g : e→ e′

can be derived as follows:

if p then f else g = e
〈id,p〉−→ e× 2

λ{〈id,1〉.f,〈id,0〉.g}−→ e′.

40

Recursive equations

factorial : N→ N
factorial = λ{0.1, (+1).(∗) ◦ 〈id, factorial ◦ (−1)〉}

factorial : N2 → N2

factorial = [id, factorial ◦ (x← x− 1) ◦ (y ← x ∗ y)] ◦ (x = 0) or
factorial = if x ≡ 0 then id else factorial ◦ (x← x− 1) ◦ (y ← x ∗ y)

where (x = 0)(m,n) = if m = 0 then ι1(m,n) else ι2(m,n)

(x ≡ 0)(m,n) = if m = 0 then 1 else 0

(x← x− 1)(m,n) = (m− 1, n)

(y ← x ∗ y)(m,n) = (m,m ∗ n)

zip : XN ×XN → XN

zip = κ{head.head ◦ π1, tail.tail ◦ zip ◦ 〈π2, tail ◦ π1〉}

Where do such equations have unique solutions?

41

	rm
	exas
	typ
	cd
	eqs
	alg
	coext
	ctod
	iter
	theo

