
(Co)Algebraic Specification with Base Sets,
Recursive and Iterative Equations

Peter Padawitz
TU Dortmund, Germany

June 2, 2016

(actual version: http://fldit-www.cs.uni-dortmund.de/∼peter/IFIP2014.pdf)

More details can be found in:

• Algebraic Compiler Construction
• Fixpoints, Categories, and (Co)Algebraic Modeling
• From Modal Logic to (Co)Algebraic Reasoning (with Expander2)

1

http://fldit-www.cs.uni-dortmund.de/~peter/CbauFolien.pdf
http://fldit-www.cs.uni-dortmund.de/~peter/DialgSlides.pdf
http://fldit-www.cs.uni-dortmund.de/~peter/Haskellprogs/CTL.pdf
http://fldit-www.cs.uni-dortmund.de/~peter/Expander2.html

�
�

�

Abstract

We present some fundamentals of a uniform approach to specify, implement and reason
about (co)algebraic models in a many-sorted setting that covers constant, polynomial
and collection types. Three kinds of (infinite-)tree models (finite terms, coterms and
continuous trees) yield concrete representations (and Haskell implementations) of initial
resp. final models.

On the axiomatic side, a format for recursive equations, which define either constructors
on a final model or destructors on an initial one, is introduced. We show how iterative
equations, which define continuous trees, can be translated into recursive equations so
that the unique solvability of the latter implies the unique solvability of the former.

As a prototypical example, recursive equations define the Brzozowski automaton whose
states are regular expressions and which accepts regular languages. We show how this
set of equations can be extended by equations representing a non-left-recursive grammar
G such that it defines an acceptor of the language of G.

2

�
�

�

Contents

• Syntax 4
• Semantics 12
• Initial and final algebras 27
• Recursive equations 48
• Iterative equations 59
• Context-free grammars with base sets 67
• Constructing recursive from iterative equations 75
• (Co-)Horn Logic 82

3

�
�

�

Syntax

Let S be a set of sorts.

An S-sorted set A is a tuple (As)s∈S of sets.

We also write A for the union of As over all s ∈ S.

An S-sorted subset B of A, written as B ⊆ A, is an S-sorted set with Bs ⊆ As for all
s ∈ S.

Given S-sorted sets A1, . . . , An, an S-sorted relation r ⊆ A1× · · · ×An is an S-sorted
set with rs ⊆ A1,s × . . .× An,s for all s ∈ S.

The S-sorted binary relation ∆A = {∆A,s | s ∈ S} is called the diagonal of A2.

Given S-sorted sets A and B, an S-sorted function f : A→ B is an S-sorted set such
that for all s ∈ S, fs is a function from As to Bs.

SetS denotes the category of S-sorted sets and S-sorted functions.

4

�� ��Syntax

Let S and BS be sets of sorts and base sets, respectively.

The set T(S,BS) of types over S and BS

is inductively defined as follows:

• S ⊆ T(S,BS). (sorts)
• BS ⊆ T(S,BS). (base sets)
• For all n > 0, e1, . . . , en ∈ T(S,BS), e1 × · · · × en ∈ T(S,BS). (product types)
The nullary product is identified with the base set 1 = {ε}.
• For all n > 0, e1, . . . , en ∈ T(S,BS), e1 + · · · + en ∈ T(S,BS). (sum types)
• For all e ∈ T(S,BS), word(e), bag(e), set(e) ∈ T(S,BS). (collection types over e)
• For all X ∈ BS and e ∈ T(S,BS), eX ∈ T(S,BS). (power types over e)
• For all e, e′ ∈ T(S,BS) with e′ 6∈ BS, ee′ ∈ T(S,BS). (higher-order types over e)

A type is first-order if it does not contain higher-order types.

T1(S,BS) denotes the set of first-order types over S and BS.

5

�� ��Syntax

A type is flat if it is a sort, a base set or a collection or power type over a sort.

FT(S,BS) denotes the set of flat types over S and BS.

A signature Σ = (S,BS,BF, F, P)

consists of

• a finite set S of sorts (symbols for sets),
• a finite set BS of base sets, implicitly including 1 = {ε} and 2 = {0, 1},
• a finite set BF of base functions f : X → Y with X, Y ∈ BS,
• a finite set F of operations (symbols for functions) f : e→ e′ with e, e′ ∈ T(S,BS),
• a finite set P of predicates (symbols for relations) p : e where e is a finite product
of sorts and base sets.

For all f : e→ e′ ∈ F , dom(f) = e resp. ran(f) = e′ is the domain resp. range of f .

For all p : e ∈ P , dom(p) = e is the domain of p.

Given signatures Σ and Σ′, Σ ∪ Σ′ denotes the componentwise union of Σ and Σ′.

6

�� ��Syntax

f ∈ F is a constructor if there are flat types e1, . . . , en over S and BS such that
dom(f) = e1 × · · · × en and ran(f) ∈ S.

f ∈ F is a destructor if there are non-power flat types e1, . . . , en over S and BS and
X ∈ BS such that dom(f) ∈ S and ran(f) = (e1 + · · · + en)X .

Σ is constructive resp. destructive if F consists of constructors resp. destructors.

Constructive signatures

Let X be a set of constants and CS be a set of nonempty sets of constants.

Nat 1 natural numbers
S = {nat}, BS = ∅, F = { zero : 1→ nat,

succ : nat→ nat }.

List(X) 1 finite sequences of elements of X

S = {list}, BS = {X}, F = { nil : 1→ list,

cons : X × list→ list }.

7

�� ��Syntax

Reg(CS) 1 regular expressions over CS and regular languages over X =
⋃
CS

S = {reg}, BS = ∅, F = { eps : 1→ reg,

mt : 1→ reg,

par : reg × reg → reg, (parallel composition)

seq : reg × reg → reg, (sequential composition)

iter : reg → reg } ∪ (iteration)

{ C : 1→ reg | C ∈ CS }

The nullary constructor C stands for a name of the set C.

Destructive signatures

Let X and Y be sets of constants.

coNat 1 natural numbers with infinity

S = {nat}, BS = ∅, F = {pred : nat→ 1 + nat}.

8

�� ��Syntax

coList(X) 1 finite or infinite sequences of elements of X (coList(1) =̂ coNat)

S = {list, pair}, BS = {X}, F = { split : list→ 1 + pair,

first : pair → X,

rest : pair → list }.

DAut(X, Y) 1 deterministic Moore automata with input from X and output in Y

S = {state}, BS = {X, Y }, F = { δ : state→ stateX ,

β : state→ Y }.

Acc(X) =̂ DAut(X, 2) 1 deterministic acceptors of subsets of X∗

S = {reg}, BS = {X, 2}, F = { δ : reg → regX ,

β : reg → 2 }.

Stream(X) =̂ DAut(1, X) 1 streams over X

S = {list}, BS = {X}, F = { head : list→ X,

tail : list→ list }.

9

�� ��Syntax

Let V be a T(S,BS)-sorted set of variables.

The T(S,BS)-sorted set TΣ(V) of Σ-terms over V

is inductively defined as follows:

• For all e ∈ T(S,BS), Ve ⊆ TΣ(V)e.
• For all X ∈ BS, X ⊆ TΣ(V)X .
• For all f : 1→ e ∈ BF ∪ F , f ∈ TΣ(V)e.
• For all n > 1, e1, . . . , en ∈ T(S,BS), t ∈ TΣ(V)e1×···×en and 1 ≤ i ≤ n, πit ∈ TΣ(V)ei.
• For all n > 1, e1, . . . , en ∈ T(S,BS), 1 ≤ i ≤ n and t ∈ TΣ(V)ei, ιit ∈ TΣ(V)e1+···+en.
• For all n > 1, e1, . . . , en ∈ T(S,BS) and ti ∈ TΣ(V)ei, 1 ≤ i ≤ n,

(t1, . . . , tn) ∈ TΣ(V)e1×···×en.
• For all f : e→ e′ ∈ BF ∪ F and t ∈ TΣ(V)e, ft ∈ TΣ(V)e′.
• For all c ∈ {word, bag, set}, e ∈ T(S,BS) and t ∈ TΣ(V)∗e, c(t) ∈ TΣ(V)c(e).
• For all n > 0, e1, . . . , en, e ∈ T(S,BS), x ∈ Ve1 ∪ · · · ∪ Ven and t1, . . . , tn ∈ TΣ(V)e,
λx.(t1| . . . |tn) ∈ TΣ(V)ee1+···+en .
• For all e, e′ ∈ T(S,BS), t ∈ TΣ(V)ee′ and u ∈ TΣ(V)e′, t(u) ∈ TΣ(V)e.

10

�� ��Syntax

• For all e ∈ T(S,BS), t ∈ TΣ(V)2 and u, v ∈ TΣ(V)e, ite(t, u, v) ∈ TΣ(V)e.

A Σ-term t that does not contain variables or ite, then t is called ground.

TΣ denotes the set of ground Σ-terms.

The set FoΣ(V) of Σ-formulas over V

is inductively defined as follows:

• True,False ∈ FoΣ(V).
• For all p : e ∈ P and t ∈ TΣ(V)e, pt ∈ FoΣ(V). (Σ-atoms over V)
• For all e ∈ T(S,BS) and t, u ∈ TΣ(V)e, t =e u ∈ FoΣ(V). (Σ-equations over V)
• For all ϕ ∈ FoΣ(V), ¬ϕ ∈ FoΣ(V).
• For all ϕ, ψ ∈ FoΣ(V), ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ, ϕ⇐ ψ, ϕ⇔ ψ ∈ FoΣ(V).
• For all x ∈ V and ϕ ∈ FoΣ(V), ∀xϕ, ∃xϕ ∈ FoΣ(V).

11

�
�

�

Semantics

[0] =def ∅ and for all n > 0, [n] =def {1, . . . , n}.

For all f : A→ B, f ∗ : A∗ → B∗ is defined as follows:
f ∗(ε) = ε and for all n > 0 and (a1, . . . , an) ∈ An, f ∗(a1, . . . , an) = (f (a1), . . . , f (an)).

Let A,B be sets and a = (a1, . . . , am), b = (b1, . . . , bn) ∈ A∗.

a =word b ⇔def a = b.

a =bag b ⇔def ∃ f : [n]
∼→ [n] : (a1, . . . , an) = (bf(1), . . . , bf(n)),

i.e., b is a permutation of a.
a =set b ⇔def {a1, . . . , am} = {b1, . . . , bn}.

Let h : A→ B.

Bfin(A) =def A/=bag and Bfin(h) : Bfin(A)→ Bfin(B) maps [a]=bag
to [h∗(a)]=bag

.

Pfin(A) = {C ⊆ A | |A| < ω} and Pfin(h) : Pfin(A)→ Pfin(B) maps C to {f (a) a ∈ C}.

12

�� ��Semantics

Predicate lifting

For alle e ∈ T1(S,BS), the functor Fe : SetS → Set is inductively defined as follows:

For all S-sorted sets A,B, S-sorted functions h : A → B, s ∈ S, X ∈ BS, n > 1 and
e, e1, . . . , en ∈ T1(S,BS),

Fs(A) = As, Fs(h) = hs, (projection functor)
FX(A) = X, FX(h) = idX , (constant functor)
Fe1+···+en(A) = Fe1(A) + · · · + Fen(A), Fe1+···+en(h) = Fe1(h) + · · · + Fen(h),

Fe1×···×en(A) = Fe1(A)× . . .× Fen(A), Fe1×···×en(h) = Fe1(h)× . . .× Fen(h),

Fword(e)(A) = Fe(A)∗, Fword(e)(h) = Fe(h)∗,

Fbag(e)(A) = Bfin(Fe(A)), Fbag(e)(h) = Bfin(Fe(h)),

Fset(e)(A) = Pfin(Fe(A)), Fset(e)(h) = Pfin(Fe(h)),

FeX(A) = Fe(A)X , FeX(h) = Fe(h)X .

We mostly write Ae instead of Fe(A).

13

�� ��Semantics

Relation lifting

Given an S-sorted relation R ⊆ A × B, R is extended to a T1(S,BS)-sorted relation
inductively as follows:

Let s ∈ S, e1, . . . , en, e ∈ T1(S,BS) and X ∈ BS.

RX = ∆X ,

Re1+···+en = {((a, i), (b, i)) ∈ (
∐n

i=1Aei)×
∐n

i=1Bei | (a, b) ∈ Rei, 1 ≤ i ≤ n},
Re1×···×en = {((a1, . . . , an), (b1, . . . , bn)) ∈ (

∏n
i=1Aei)×

∏n
i=1Bei

| ∀ 1 ≤ i ≤ n : (ai, bi) ∈ Rei},
Rword(e) =

⋃
n∈N{((a1, . . . , an), (b1, . . . , bn)) ∈ A∗e ×B∗e

| ∀ 1 ≤ i ≤ n : (ai, bi) ∈ Re},
Rbag(e) =

⋃
n∈N{([(a1, . . . , an)]=bag

, [(b1, . . . , bn)]=bag
) ∈ Bfin(Ae)× Bfin(Be)

| ∀ 1 ≤ i ≤ n : (ai, bi) ∈ Re},
Rset(e) = {(C,D) ∈ Pfin(Ae)× Pfin(Be) | ∀ c ∈ C ∃ d ∈ D : (c, d) ∈ Re,

∀ d ∈ D ∃ c ∈ C : (c, d) ∈ Re},
ReX = {(f, g) | ∀ x ∈ X : (f (x), g(x)) ∈ Re}.

14

�� ��Semantics

Let Σ = (S,BS,BF, F, P) be a signature.

A Σ-algebra A

consists of

• an S-sorted set, called the carrier of A and often also denoted by A,
• for each f : e→ e′ ∈ F , a function fA : Ae → Ae′,
• for each p : e ∈ P , a subset pA of Ae.

Suppose that all function and relation symbols of Σ have first-order domains and ranges.
Let A,B be Σ-algebras.

An S-sorted function h : A → B is a Σ-homomorphism if for all f : e → e′ ∈ F ,
he′ ◦ fA = fB ◦ he, and for all p : e ∈ P , he(pA) ⊆ pB.

AlgΣ denotes the category of Σ-algebras and Σ-homomorphisms.

1 A Σ-homomorphism h is iso in AlgΣ iff h is bijective and for all p : e ∈ P , pB ⊆ he(p
A).

15

�� ��Semantics

Let US be the forgetful functor from AlgΣ to SetS.

For all f : e → e′ ∈ F , f : FeUS → Fe′US with f (A) =def f
A for all A ∈ AlgΣ is a

natural transformation:

Ae
fA
�Ae′

Be

he

g fB
�Be′

he′

g

Given a category K and an endofunctor F on K,

• an F -algebra or F -dynamics is a K-morphism α : F (A)→ A,
• an F -coalgebra or F -codynamics is a K-morphism α : A→ F (A).

AlgF and coAlgF denote the categories of F -algebras resp. F -coalgebras where

• an AlgF -morphism from α : F (A) → A to β : F (B) → B is a K-morphism
h :A→ B with h ◦ α = β ◦ F (h),

16

�� ��Semantics

• a coAlgF -morphism from α : A : F (A) to β : B → F (B) is aK-morphism h :A→ B

with F (h) ◦ α = β ◦ h.

A constructive signature Σ = (S,BS,BF, F, P) induces a functor

HΣ : SetS → SetS :

For all A,B ∈ SetS, h ∈ SetS(A,B) and s ∈ S,

HΣ(A)s =
∐

f :e→s∈F Ae,

HΣ(h)s =
∐

f :e→s∈F he.

AlgΣ and AlgHΣ
are equivalent categories:

Let A ∈ AlgΣ and α : A→ HΣ(A) ∈ AlgHΣ
.

The HΣ-algebra A′ : A→ HΣ(A) and the Σ-algebra α′ are defined as follows:

17

�� ��Semantics

For all s ∈ S and f : e→ s ∈ F ,

HΣ(A)s
A′s = [fA]f :e→s∈F�As

Ae

ιf

f

fα
′
= αs ◦ ιf

�

Examples
HNat(A)nat = 1 + Anat,

HList(X)(A)list = 1 + (X × Alist),

HReg(CS)(A)reg = 1 + 1 + CS + A2
reg + A2

reg + Areg.

18

�� ��Semantics

h : A→ B is a Σ-homomorphism ⇐⇒ h is an AlgHΣ
-morphism from α(A) to α(B):

Ae
fA
�As HΣ(A)s

α(A)s�As

⇐⇒

Be

he

g

fB
�Bs

hs

g
HΣ(B)s

HΣ(h)s

g

α(B)s
�Bs

hs

g

h : α→ β is an AlgHΣ
-morphism ⇐⇒ h is a Σ-homomorphism from A(α) to A(β):

HΣ(A)s
αs �As Ae

fA(α)

�As

⇐⇒

HΣ(B)s

HΣ(h)s

g

βs
�Bs

hs

g
Be

he

g

fA(β)
�Bs

hs

g

19

�� ��Semantics

A destructive signature Σ = (S,BS,BF, F, P) induces a functor

HΣ : SetS → SetS :

For all A,B ∈ SetS, h ∈ SetS(A,B) and s ∈ S,
HΣ(A)s =

∏
f :s→e∈F Ae,

HΣ(h)s =
∏

f :s→e∈F he.

AlgΣ and coAlgHΣ
are equivalent categories:

Let A ∈ AlgΣ and α : HΣ(A)→ A ∈ coAlgHΣ
.

The HΣ(A)-coalgebra A′ : HΣ(A)→ A and the Σ-algebra α′ are defined as follows:

For all s ∈ S and f : s→ e ∈ F ,

As

A′s = 〈fA〉f :s→e∈F�HΣ(A)s

Ae

πf

g
fα
′
= πf ◦ αs

�

20

�� ��Semantics

Examples
HcoNat(A)nat = 1 + Anat,

HcoList(X)(A)list = 1 + (X × Alist),

HDAut(X,Y)(A)state = AX
state × Y.

Haskell implementation of AlgΣ

Let Σ = (S,BS, ∅, F, ∅) be a signature,
BS = {X1, . . . , Xk}, S = {s1, . . . , sm} and F = {f1 : e1 → e′1, . . . , fn : en → e′n}.

Each Σ-algebra is an element of the following Haskell datatype:

data Sigma x1 ... xk s1 ... sm = Sigma {f1 :: e1 -> e1’,...,
fn :: en -> en’}

Examples

data Nat nat = Nat {zero :: nat, succ :: nat -> nat}
data List x list = List {nil :: list, cons :: x -> list -> list}

21

�� ��Semantics

data Reg cs reg = Reg {eps,mt :: reg, con :: cs -> reg,
par,seq :: reg -> reg -> reg,
iter :: reg -> reg}

data Conat nat = Conat {pred :: nat -> Maybe nat}
data Colist x list = Colist {split :: list -> Maybe (x,list)}
data DAut x y state = DAut {delta :: state -> x -> state,

beta :: state -> y}

Evaluation of terms and formulas

Let V be a T(S,BS)-sorted set of variables, A be a Σ-algebra and AV be the set of
valuations of V in A, i.e., T(S,BS)-sorted functions from V to A.

For all g ∈ AV , e ∈ T(S,BS), a ∈ Ae, x ∈ Ve and z ∈ V .

g[a/x](z) =def

{
a if z = x,

g(z) otherwise.

22

�� ��Semantics

The T(S,BS)-sorted extension g∗ : TΣ(V)→ A of g

is defined as follows:

• For all x ∈ V , g∗(x) = g(x).
• For all x ∈ X ∈ ∪BS, g∗(x) = x.
• For all n > 1, e1, . . . , en ∈ T(S,BS), t = (t1, . . . , tn) ∈ TΣ(V)e1×···×en and 1 ≤ i ≤ n,
g∗(πit) = g∗(ti).
• For all n > 1, e1, . . . , en ∈ T(S,BS), 1 ≤ i ≤ n and t ∈ TΣ(V)ei, g

∗(ιit) = (g∗(t), i).
• For all n ∈ N and t1, . . . , tn ∈ TΣ(V), g∗(t1, . . . , tn) = (g∗(t1), . . . , g∗(tn)).
• For all f : e→ e′ ∈ F and t ∈ TΣ(V)e, g∗(f (t)) = fA(g∗(t)).
• For all c ∈ {word, bag, set}, c(t) ∈ TΣ(V)c(e), g∗(c(t)) = [g∗(t)]=c.
• For all n > 0, e1, . . . , en, e ∈ T(S,BS), x ∈ Ve1 ∪ · · · ∪ Ven, ti ∈ TΣ(V)e, 1 ≤ i ≤ n,
and (a, i) ∈ Ae1+···+en,

g∗(λx.(t1| . . . |tn))(a, i) = g[a/x]∗(ti).

• For all e, e′ ∈ T(S,BS), t ∈ TΣ(V)ee′ and u ∈ TΣ(V)e′, g∗(t(u)) = g∗(t)(g∗(u)).

23

�� ��Semantics

• For all e ∈ T(S,BS), t ∈ TΣ(V)2 and u, v ∈ TΣ(V)e,

g∗(ite(t, u, v)) =

{
g∗(u) if g∗(t) = 1,

g∗(v) otherwise.

A Σ-term t is first-order if the range of each subterm of t is first-order.

For all e ∈ T(S,BS) and first-order Σ-terms t, we define:

tA : AV → Ae

g 7→ g∗(t)

t : _V → FeUS with tA =def t
A for all A ∈ AlgΣ is a natural transformation:

AV tA
�Ae

(1)

BV

hV

g

tB
�Be

he

g

24

�� ��Semantics

(1) is equivalent to the Substitution Lemma:

For all g ∈ AV , Σ-homomorphisms h : A→ B and first-order Σ-terms t,

(h ◦ g)∗(t) = (h ◦ g∗)(t). (2)

A interprets a Σ-formula ϕ over V by the set ϕA ⊆ AV of valuations that satisfy ϕ and
is inductively defined as follows:

For all e ∈ T(S,BS), p : e ∈ P , t, u ∈ TΣ(V)e, ϕ, ψ ∈ FoΣ(V), s ∈ S ∪BS and x ∈ Vs,

TrueA = AV ,

FalseA = ∅,
p(t)A = {g ∈ AV | g∗(t) ∈ pA},
(¬ϕ)A = AV \ ϕA,
(ϕ ∧ ψ)A = ϕA ∩ ψA,
(ϕ ∨ ψ)A = ϕA ∪ ψA,
(ϕ⇒ ψ)A = (ψ ⇐ ϕ)A = (¬ϕ ∨ ψ)A,

25

�� ��Semantics

(ψ ⇔ ϕ)A = (ϕ⇒ ψ)A ∩ (ϕ⇐ ψ)A,

(∀xϕ)A = {g ∈ AV | ∀ a ∈ As : g[a/x] ∈ ϕA},
(∃xϕ)A = {g ∈ AV | ∃ a ∈ As : g[a/x] ∈ ϕA}.

A satisfies ϕ ∈ FoΣ(V), written as A |= ϕ, if ϕA = AV .

The Substitution Lemma implies:

For all negation-free Σ-formulas ϕ, g ∈ AV and Σ-homomorphisms h : A→ B,

g ∈ ϕA ⇒ h ◦ g ∈ ϕB.

26

�
�

�

Initial and final algebras

An S-sorted binary relation R on A is a Σ-congruence on A

if for all f : e→ e′ ∈ F and (a, b) ∈ Re, (fA(a), fA(b)) ∈ Re′.

If Σ is destructive, then Σ-congruences are also called Σ-bisimulations.

An S-sorted subset B of A is a Σ-invariant (or Σ-subalgebra of A)
if for all f : e→ e′ ∈ F andl a ∈ Ae, fA(a) ∈ Ae′.

A Σ-algebra A satisfies the induction principle if for all S-sorted subsets B of A,
A ⊆ B iff B contains a Σ-invariant.
A is initial in AlgΣ ⇐⇒ A satisfies the induction principle and for all Σ-algebras B
there is a Σ-homomorphism from A to B.

A Σ-algebra A satisfies the coinduction principle if for all S-sorted binary relations
R on A, R ⊆ ∆A iff R is contained in a Σ-congruence.

A is final in AlgΣ ⇐⇒ A satisfies the coinduction principle and for all Σ-algebras B
there is a Σ-homomorphism from B to A.

27

�� ��Initial and final algebras

Terms for constructive signatures

Let Σ = (S,BS,BF, F) be a constructive signature.

TΣ is a Σ-algebra:

For all f : e→ s ∈ F and t ∈ TΣ,e, fTΣ(t) =def ft.

Let ∼ be the least FT(S,BS)-sorted equivalence relation on TΣ such that

• for all n > 1, e1, . . . , en ∈ FT(S,BS) and ti, t′i ∈ TΣ,ei, 1 ≤ i ≤ n,

t1 ∼e1 t
′
1 ∧ · · · ∧ tn ∼en t′n implies (t1, . . . , tn) ∼e1×···×en (t′1, . . . , t

′
n),

• for all n > 1, e ∈ FT(S,BS) and ti, t′i ∈ TΣ,e, 1 ≤ i ≤ n,

t1 ∼e t′1 ∧ · · · ∧ tn ∼e t′n implies word(t1, . . . , tn) ∼word(s) word(t′1, . . . , t
′
n),

• for all n > 1, e ∈ FT(S,BS), f : [n]
∼→ [n] and ti, t′i ∈ TΣ,e, 1 ≤ i ≤ n,

t1 ∼e t′1 ∧ · · · ∧ tn ∼e t′n implies bag(f (t1), . . . , f (tn)) ∼bag(s) bag(t′1, . . . , t
′
n),

28

�� ��Initial and final algebras

• for all m,n > 0, e ∈ FT(S,BS), ti ∈ TΣ,e, i ∈ [m], and t′i ∈ TΣ,e, 1 ≤ i ≤ n,

∀ 1 ≤ i ≤ m ∃ 1 ≤ j ≤ n : ti ∼e t′j ∧ ∀ 1 ≤ j ≤ n ∃ 1 ≤ i ≤ m : ti ∼e t′j
implies set(t1, . . . , tm) ∼set(s) set(t′1, . . . , t′n),

• for all s ∈ S, f : e→ s ∈ F and t, t′ ∈ TΣ,e, t ∼e t′ implies ft ∼s ft′,
• for all X ∈ BS, ∼X= ∆X .

For simplicity, we identify TΣ with TΣ/∼.

TΣ is initial in AlgΣ.

For all Σ-algebras A, the unique Σ-homomorphism

foldA : TΣ → A

is defined inductively as follows:

For all f : e→ s ∈ F , t ∈ TΣ,e, c ∈ {word, bag, set}, e′ ∈ S ∪BS and t′ ∈ T ∗Σ,e′,

foldAs (ft) = fA(foldAe (t)),

foldAc(e′)(c(t
′)) = [foldAe′(t

′)]=c.

29

�� ��Initial and final algebras

Haskell implementation of TΣ and fold

All collection types are implemented by Haskell’s list type.

Let BS = {X1, . . . , Xk}, S = {s1, . . . , sm} and

F = {cij : eij → si | 1 ≤ i ≤ m, 1 ≤ j ≤ ni},

i.e., AlgΣ is implemented by the following datatype:

data Sigma x1 ... xk s1 ... sm =
Sigma {c11 :: e11 -> s1,...,c1n_1 :: e1n_1 -> s1,

...
cm1 :: em1 -> sm,...,cmn_m :: emn_m -> sm}

The following datatypes provide the carriers of TΣ:

data S1T x1 ... xk = C11 E11T | ... | C1n_1 E1n_1T
...
data SmT x1 ... xk = Cm1 Em1T | ... | Cmn_m Emn_mT

30

�� ��Initial and final algebras

The algebra TΣ is then defined as follows:

sigmaT :: Sigma x1 ... xk (S1T x1 ... xk) ... (SmT x1 ... xk)
sigmaT = Sigma C11 ... C1n_1 ... Cm1 ... Cmn_m

Let 1 ≤ i ≤ m.

foldSi :: Sigma x1 ... xk s1 ... sm -> SiT x1 ... xk -> si
foldSi alg ti = case ti of Ci1 t -> ci1 alg $ foldEi1 alg t

...
Cin_i t -> cin_i alg $ foldEin_i alg t

foldWordSi,foldBagSi,foldSetSi :: Sigma x1 ... xk s1 ... sm
-> [SiT x1 ... xk] -> [si]

foldWordSi = map . foldSi
foldBagSi = map . foldSi
foldSetSi = map . foldSi

31

�� ��Initial and final algebras
Let 1 ≤ i ≤ k.

foldxi :: Sigma x1 ... xk s1 ... sm -> xi -> xi
foldxi _ = id

foldE1x...xEn :: Sigma x1 ... xk s1 ... sm -> (E1T,...,EnT)
-> (E1,...,En)

foldE1x...xEn alg (t1,...,tn) = (foldE1 alg t1,...,foldEn alg tn)

Examples

data NatT = Zero | Succ NatT

natT :: Nat NatT
natT = Nat Zero Succ

foldNat :: Nat nat -> NatT -> nat
foldNat alg t = case t of Zero -> zero alg

Succ t -> succ alg $ foldNat alg t

32

�� ��Initial and final algebras

data ListT x = Nil | Cons x (ListT x)

listT :: List x (ListT x)
listT = List Nil Cons

foldList :: List x list -> ListT x -> list
foldList alg t = case t of Nil -> nil alg

Cons x t -> cons alg x $ foldList alg t

data RegT cs = Eps | Mt | Con cs | Par (RegT cs) (RegT cs) |
Seq (RegT cs) (RegT cs) | Iter (RegT cs)

regT :: Reg cs (RegT cs)
regT cs = Reg Eps Mt Con Var Par Seq Iter

33

�� ��Initial and final algebras

foldReg :: Reg cs reg -> RegT cs -> reg
foldReg alg t = case t of

Eps -> eps alg
Mt -> mt alg
Con c -> con alg c
Par t u -> par alg (foldReg alg t) $ foldReg alg u
Seq t u -> seq alg (foldReg alg t) $ foldReg alg u
Iter t -> iter alg $ foldReg alg t

Coterms for destructive signatures

Let Σ = (S,BS,BF, F) be a destructive signature and

LabΣ = {(d, x, i) | d : s→ (e1 + · · · + en)X ∈ F, x ∈ X, 1 ≤ i ≤ n} ∪ N.

For all d : s→ eX , a ∈ As and x ∈ X , dAx (a) =def d
A(a)(x).

coTΣ denotes the greatest FT(S,BS)-sorted set of prefix closed partial functions

t : Lab∗Σ (→ 1 + {word, bag, set} + ∪BS

34

�� ��Initial and final algebras

such that the following conditions hold true:

• For all s ∈ S, t ∈ coTΣ,s, d : s → (e1 + · · · + en)X ∈ F and x ∈ X , t(ε) = ε and
there is 1 ≤ i ≤ n such that (d, x, i) ∈ def (t), λw.t((d, x, i)w) ∈ coTΣ,ei and for all
(d, x, i), (d, x, j) ∈ def (t), dom(d) = s and i = j.
• For all c ∈ {word, bag, set}, s ∈ S ∪ BS and t ∈ coTΣ,c(s), t(ε) = c and there is
n ∈ N such that for all 1 ≤ i ≤ n, λw.t(iw) ∈ coTΣ,s, and def (t) ∩ LabΣ = [n].
• For all X ∈ BS, coTΣ,X = X (here identified with the set 1→ X of functions).

The elements of coTΣ are called Σ-coterms.

35

�� ��Initial and final algebras

s4

s2

s1

s2

s3

s4

s4

s1

s2

b

ε

f2,2

f1,3

f5,2

f6,3

f7,2

f3,1

f4,1

f3,2

f4,4

f5,3

s1

d

f5,2

f1,2

f2,1

f3,2
f4,2

cf1,2

f2,1d

f8,2

b

set

s1
f1,3

f2,3 c

1

2

A Σ-coterm with destructors f1, . . . , f8 that map into sum types.
Each root of a subcoterm is labelled with its sort.

Each leaf is labelled with a base element. Three dots stand for an infinite coterm.

36

�� ��Initial and final algebras

For all t ∈ coTΣ, let def1(t) = def (t) ∩ LabΣ.

Let ∼ be the greatest FT(S,BS)-sorted equivalence relation on coTΣ such that

• for all s ∈ S, t ∼s t′ and d ∈ def1(t), λw.t(dw) ∼ λw.t′(dw),
• for all s ∈ S ∪ BS and t ∼word(s) t

′, D =def def1(t) = def1(t′) and for all i ∈ D,
λw.t(iw) ∼s λw.t′(iw),
• for all s ∈ S ∪BS and t ∼bag(s) t

′, D =def def1(t) = def1(t′) and there is f : [n]
∼→ [n]

such that for all i ∈ D, λw.t(iw) ∼s λw.t′(f (i)w),
• for all s ∈ S ∪ BS, t ∼set(s) t′ and i ∈ def1(t) there is j ∈ def1(t′) such that
λw.t(iw) ∼s λw.t′(jw),
for all s ∈ S ∪ BS, t ∼set(s) t′ and j ∈ def1(t′) there is i ∈ def1(t) such that
λw.t(iw) ∼s λw.t′(jw),
• for all X ∈ BS, ∼X= ∆X .

For simplicity, we identify coTΣ with coTΣ/∼.

37

�� ��Initial and final algebras

coTΣ is a Σ-algebra:

For all s ∈ S, t ∈ coTΣ,s, d : s→ (e1 + · · · + en)X ∈ F , x ∈ X and w ∈ Lab∗Σ,

(d, x, i) ∈ def (t) ⇒ dcoTΣ(t)(x)(w) = t((d, i, x)w).

Example 1

Let L = {(δ, x) | x ∈ X}. coTDAut(X,Y) consists of all functions from L∗ + L∗β to 1 + Y ,
that for all w ∈ L∗ map w to ε and wβ to an element of Y :

coTDAut(X,Y)
∼= 1L

∗ × Y L∗β ∼= Y L∗β
L∗β∼=X∗∼= Y X∗.

Hence coTDAut(X,Y) is DAut(X, Y)-isomorphic to the DAut(X, Y)-algebra Beh(X, Y) of
behavior functions that is defined as follows:

Beh(X, Y)state = Y X∗.

For all f : X∗ → Y , x ∈ X und w ∈ X∗,

δBeh(X,Y)(f)(x)(w) = f (xw) and βBeh(X,Y)(f) = f (ε).

38

�� ��Initial and final algebras

ε

ε

0β
δ

1

x

β x z

y z

ε ε

ε

tup
y

tup

δ

ε

ε

x

y

z

ε

εε tup

δ x y

z

ε

ε

ε

tup

δ
1β

0 β

A DAut({x, y, z}, Y)-coterm of sort state

coTΣ is final in AlgΣ.

For all Σ-algebras A, the unique Σ-homomorphism unfoldA : A → coTΣ is defined as
follows: For all s ∈ FT(S,BS), a ∈ As, (d, x, i) ∈ LabΣ, w ∈ Lab∗Σ and k ∈ N,

39

�� ��Initial and final algebras

unfoldAs (a)(ε) = ε,

unfoldAs (a)((d, x, i)w) =


unfoldAei(b)(w) if d : s→ (e1 + · · · + en)X ∈ F

and dA(a)(x) = (b, i),

undefined otherwise,

unfoldAs (a)(kw) =


unfoldAs (ak)(w) if ∃ c ∈ {word, bag, set}, e ∈ S ∪BS :

s = c(e), a = [(a1, . . . , an)]=c

and 1 ≤ k ≤ n,

undefined otherwise.

Example 2

Let A be a DAut(X, Y)-algebra, ξ : Beh(X, Y) → coTDAut(X,Y) be the isomorphism of
Example 1 and unfoldB : A→ Beh(X, Y) be defined as follows:

For all a ∈ Astate, x ∈ X and w ∈ X∗,

unfoldBA(a)(ε) = βA(a),

unfoldBA(a)(xw) = unfoldBA(δA(a)(x))(w).

40

�� ��Initial and final algebras

Since unfoldB is DAut(X, Y)-homomorphic,

unfoldA = ξ ◦ unfoldBA.

Haskell implementation of coTΣ and unfold

Again, all collection types are implemented by Haskell’s list type.

Let BS = {X1, . . . , Xk}, S = {s1, . . . , sm} and

F = {dij : si → eij | 1 ≤ i ≤ m, 1 ≤ j ≤ ni},

i.e., AlgΣ is implemented by the following datatype:

data Sigma x1 ... xk s1 ... sm =
Sigma {d11 :: s1 -> e11,...,d1n_1 :: s1 -> e1n_1,

...
dm1 :: sm -> em1,...,dmn_m :: sm -> emn_m}

41

�� ��Initial and final algebras

The following datatypes provide the carriers of coTΣ:

data S1C x1 ... xk = S1C {d11C :: E11C | ... | d1n_1C :: E1n_1C}
...
data SmC x1 ... xk = SmC {dm1C :: Em1C | ... | dmn_mC :: Emn_mC}

The algebra coTΣ is then defined as follows:

sigmaC :: Sigma x1 ... xk (S1C x1 ... xk) ... (SmC x1 ... xk)
sigmaC = Sigma d11C ... d1n_1C ... dm1C ... dmn_mC

Let 1 ≤ i ≤ m.

unfoldSi :: Sigma x1 ... xk s1 ... sm -> si -> SiC x1 ... xk
unfoldSi alg ai = SiC (unfoldEi1 alg $ di1 alg ai)

...
(unfoldEin_i alg $ din_i alg ai)

unfoldWordSi,foldBagSi,foldSetSi :: Sigma x1 ... xk s1 ... sm
-> [si] -> [SiT x1 ... xk]

42

�� ��Initial and final algebras

unfoldWordSi = map . unfoldSi
unfoldBagSi = map . unfoldSi
unfoldSetSi = map . unfoldSi

Let 1 ≤ i ≤ k and n > 1.

unfoldxi :: Sigma x1 ... xk s1 ... sm -> xi -> xi
unfoldxi _ = id

unfoldE^xi :: Sigma x1 ... xk s1 ... sm -> (xi -> E) -> xi -> EC
unfoldE^xi alg f = unfoldE alg . f

data Sum_n e1 ... en = S1 e1 | ... | Sn en

43

�� ��Initial and final algebras

Let 1 ≤ i ≤ n.

unfoldE1+...+En :: Sigma x1 ... xk s1 ... sm -> Sum_n E1 ... En
-> Sum_n E1C ... EnC

unfoldE1+...+En alg a = case a of S1 a -> unfoldE1 alg a
...
Sn a -> unfoldEn alg a

Examples

data ConatC = ConatC {predC :: Maybe ConatC}

conatC :: Conat ConatC
conatC = Conat predC

unfoldConat :: Conat nat -> nat -> ConatC
unfoldConat alg nat = ConatC $ do nat <- pred alg nat

Just $ unfoldConat alg nat

44

�� ��Initial and final algebras

data ColistC x = ColistC {splitC :: Maybe (x,ColistC x)}

colistC :: Colist x (ColistC x)
colistC = Colist splitC

unfoldColist :: Colist x list -> list -> ColistC x
unfoldColist alg list = ColistC $ do (x,list) <- split alg list

Just (x,unfoldColist alg list)

data StateC x y = StateC {deltaC :: x -> StateC x y, betaC :: y}

dAutC :: DAut x y (StateC x y)
dAutCot = DAut deltaC betaC

unfoldDAut :: DAut x y state -> state -> StateC x y
unfoldDAut alg state = StateC (unfoldDAut alg . delta alg state)

(beta alg state)

45

�� ��Initial and final algebras

Realization of elements of final algebras

Given a Σ-algebra A, a final Σ-algebra Fin, a ∈ A and f ∈ Fin,

(A, a) realizes f iff unfoldA(a) = f .

Example 3

Let A be the following Acc(Z)-algebra:

eo :: DAut Int Bool Bool
eo = DAut (\state -> if state then even else not . even) id

and

f : Z∗ → 2 g : Z∗ → 2

(x1, . . . , xn) 7→
∑n

i=1 xi is even (x1, . . . , xn) 7→
∑n

i=1 xi is odd

46

�� ��Initial and final algebras

ε

ε

1β

δ,x|even x

ε 0β

δ,x|odd x

unfoldeo(1)

unfoldeo(1) unfoldeo(0)

unfoldeo(0)
ε

δ,x|even x δ,x|odd x

ε
unfoldeo(1)

1β

1β0β

Since h : A→ Beh(Z, 2) with h(1) = f and h(0) = g is Acc(Z)-homomorphic,

h = unfold eo.

Hence (A, 1) realizes f and (A, 0) realizes g.

47

�
�

�

Recursive equations

Given a constructive signature CΣ = (S,BS,BF,C) and a destructive signature
DΣ = (S,BS ′, BF ′, D), Ψ = (CΣ, DΣ) is called a bisignature.

Let Σ = CΣ ∪DΣ. A set

E = {dc(x1, . . . , xnc) = td,c | c : e1 × · · · × enc → s ∈ C, d : s→ e ∈ D}

of Σ-equations is a system of recursive Ψ-equations if the following conditions hold
true:

• For all d ∈ D and c ∈ C, freeVars(td,c) ⊆ {x1, . . . , xnc}.
• C is the union of disjoint sets C1 and C2.
• For all d ∈ D, c ∈ C1 and subterms du of td,c, u is a variable and td,c is a term without
elements of C2.
⇒ no nesting of destructors, but possible nestings of constructors of C1

• For all d ∈ D, c ∈ C2, subterms du of td,c and paths p of (the tree representation of)
td,c, u consists of destructors and a variable and p contains at most one occurrence of
an element of C2.
⇒ no nesting of constructors of C2, but possible nestings of destructors

48

�� ��Recursive equations

Let E be a system of recursive Ψ-equations and A be a CΣ-algebra. An inductive
solution of E in A is a Σ-algebra B with B|CΣ = A that satisfies E.

(1) If C2 is empty, then E has a unique inductive solution in every initial CΣ-algebra.

Let E be a system of recursive Ψ-equations and A be a DΣ-algebra. A coinductive
solution of E in A is a Σ-algebra B with B|DΣ = A that satisfies E.

(2) E has a unique coinductive solution in every final DΣ-algebra.
Moreover, TCΣ ∈ AlgDΣ, coTDΣ ∈ AlgCΣ and fold coTDΣ = unfoldTCΣ.

TCΣ
unfoldTCΣ

� coTDΣ

TCΣ(coTDΣ)

inc

≺

inc

�
=

=

TCΣ

id

g

fold coTDΣ
� coTDΣ

id

gunfoldTCΣ(coTDΣ) �

49

�� ��Recursive equations

Example 4

Let

CΣ = ({list}, ∅, ∅, {evens, odds, exchange, exchange′ : list→ list}),

Ψ = (CΣ, Stream(X)) and s ∈ V . The equations

head(evens(s)) = head(s), tail(evens(s)) = evens(tail(tail(s))),

head(odds(s)) = head(tail(s)), tail(odds(s)) = odds(tail(tail(s))),

head(exchange(s)) = head(tail(s)), tail(exchange(s)) = exchange′(s),

head(exchange′(s)) = head(s), tail(exchange′(s)) = exchange(tail(tail(s)))

form a system E of recursive Ψ-equations.

evens(s) und odds(s) list the elements of s at even resp. odd positions.
exchange(s) exchanges the elements at even positions with those at odd positions.

(2) =⇒ E has a unique coinductive solution in the final Stream(X)-algebra.

50

�� ��Recursive equations

Example 5

Let CS be a set of nonempty sets of constants, X =
⋃
CS,

DΣ = ({reg}, {2, X},
{max, ∗ : 2× 2→ 2} ∪ {_ ∈ C : X → 2 | C ∈ CS},
{δ : reg → regX , β : reg → 2}),

Ψ = (Reg(CS), DΣ), C ∈ CS and t, u ∈ V . The equations

δ(eps) = λx.mt,

δ(mt) = λx.mt,

δ(C) = λx.ite(χ(C)(x), eps,mt)

δ(par(t, u)) = λx.par(δ(t)(x), δ(u)(x)),

δ(seq(t, u)) = λx.ite(β(t), par(seq(δ(t)(x), u), δ(u)(x))

seq(δ(t)(x), u)),

δ(iter(t)) = λx.seq(δ(t)(x), iter(t)),

β(eps) = 1,

β(mt) = 0,

β(C) = 0,

51

�� ��Recursive equations

β(par(t, u)) = max{β(t), β(u)},
β(seq(t, u)) = β(t) ∗ β(u),

β(iter(t)) = 1.

form the system BRE of recursive Ψ-equations.

(1) =⇒ BRE has a unique inductive solution A in the initial Reg(CS)-algebra TReg(CS).

Bro(CS) =def A|Acc(X) is called the Brzozowski automaton.

(2) =⇒ BRE has a unique coinductive solution B in the final Acc(X))-algebra Pow (X),

which is defined as follows:

For all L ⊆ X∗ and x ∈ X ,

Pow (X)state = P(X∗),

δPow(X)(L)(x) = {w ∈ X∗ | xw ∈ L},

βPow(X)(L) =

{
0 falls ε ∈ L,
1 sonst.

52

�� ��Recursive equations

Lang(X) = B|Reg(CS) is defined as follows:

For all L,L′ ⊆ X∗ and C ∈ CS,

epsLang(X) = {ε},
mtLang(X) = ∅,
C

Lang(X)
= C,

parLang(X)(L,L′) = L ∪ L′,
seqLang(X)(L,L′) = L · L′,
iterLang(X)(L) = L∗.

(2) =⇒ foldLang(X) = unfoldBro(CS) : TReg(CS) → P(X∗)

=⇒ For all t ∈ TReg(CS), (Bro(CS), t) realizes the characteristic function
of the language foldLang(X)(t) of t.

53

�� ��Recursive equations

Bro(CS) can be optimized to Norm(CS) by simplifying its states with respect to semiring
axioms between each two transition steps:

For all t ∈ TReg(CS), δNorm(CS)(t) =def reduce ◦ δBro(CS)(t). o

Let Ψ = (CΣ, DΣ) be a bisignature, CΣ = (S,BS,BF,C), DΣ = (S,BS ′, BF ′, D),
A be a (CΣ ∪DΣ)-algebra and ∼ be an S-sorted relation on A.

The C-equivalence closure ∼C of ∼ is the least S-sorted equivalence relation on A that
contains ∼ and satisfies the following condition: For all c : e→ s ∈ C and a, b ∈ Ae,

a ∼C b implies cA(a) ∼C cA(b).

∼ is a DΣ-congruence up to C if for all d : s→ e ∈ D and a, b ∈ As,

a ∼ b implies dA(a) ∼C dA(b).

A|DΣ is final in AlgDΣ,
∼ is a DΣ-congruence up to C,
there is a system of recursive Ψ-equations

 =⇒ ∼C is a DΣ-congruence. (3)

54

�� ��Recursive equations

Example 6

Let Ψ be as in Example 5 and V = {x, y, z},

∼= {(g∗(seq(x, par(y, z))), g∗(par(seq(x, y), seq(x, z))) | g : TReg(CS)(V)→ Pow (X)}

is an Acc(X)-congruence up to C.

=⇒ Since Pow (X) is final in AlgAcc(X), (3) implies that ∼C is Acc(X)-congruence.

=⇒ Since Pow (X) satisfies the coinduction principle, ∼ ⊆ ∆Pow(X) and thus

Pow (X) |= seq(x, par(y, z)) = par(seq(x, y), seq(x, z)).

o

Given a bisignature Ψ, we have seen that a system E of recursive Ψ-equations defines

• destructors on constructors inductively or
• constructors on destructors coinductively.

Similarly,

55

�� ��Recursive equations

• the rules of a structural operational semantics (SOS) or a transition system
specification
• or a distributive law λ : TD → DT of an endofunctor T over an endofunctor D

provide both

• an inductive definition of a semantics (destructors; D) of the syntax (constructors;
T) of some language and
• a coinductive definition of the constructors on the language’s behavioral model, given
by the destructors.

Can λ be derived from Ψ such that (CΣ ∪ DΣ)-algebras satisfying E correspond to λ-
bialgebras?

With regard to their domain and range types, functions that come as inductive or coin-
ductive solutions of systems of recursive Ψ-equations are destructors or constructors,
respectively.

56

�� ��Recursive equations

Recursion schemas that define functions with more general domain or range types have
been studied mainly in category-theoretical settings like distributive laws or adjunctions.
For instance, in Ralf Hinze, Adjoint Folds and Unfolds, functions are defined as adjoint
(co)extensions of folds or unfolds.

We think that most examples investigated in category-theoretical settings can be pre-
sented as systems of recursive Ψ-equations. Maybe, in some cases, the syntactic conditions
given here must be weakened, but in many cases, they will already be weak enough – due
to our powerful term language that involves polynomial as well as power and collection
types.

Here are some modeling formalisms where coinductive definability has already been stud-
ied in detail:

• basic process algebra
1 Rutten, Processes as Terms: Non-well-founded Models for Bisimulation
• stream expressions and infinite sequences

1 Rutten, A Coinductive Calculus of Streams
• tree expressions and infinite trees

1 Silva, Rutten, A Coinductive Calculus of Binary Trees

57

�� ��Recursive equations

• arithmetic expressions and valuations, CCS and transition trees
1 Hutton, Fold and Unfold for Program Semantics
• stream function expressions and causal stream functions

1 Hansen, Rutten, Symbolic Synthesis of Mealy Machines from Arithmetic Bitstream
Functions

58

�
�

�

Iterative equations

Let Σ = (S,BS,BF, F) be a constructive signature and V be an S-sorted set.

An S-sorted function
E : V → TΣ(V)

with img(E) ∩ V = ∅ is called a system of iterative Σ-equations.

Let A be a Σ-algebra and AV be the set of S-sorted functions from V to A.

g ∈ AV solves E in A if g∗ ◦ E = g.

Iterative equations are uniquely solvable in the following tree model:

CTΣ denotes the greatest FT(S,BS)-sorted set of prefix closed partial functions

t : N∗ (→ F + {word, bag, set} + ∪BS

such that

• for all s ∈ S and t ∈ CTΣ,s there are n > 0 and e1, . . . , en ∈ FT(S,BS) with
t(ε) : e1 × · · · × en → s ∈ F , def (t) ∩ N = [n] and λw.t(iw) ∈ CTΣ,ei for all
1 ≤ i ≤ n,

59

�� ��Iterative equations

• for all c ∈ {word, bag, set}, s ∈ S ∪ BS and t ∈ CTΣ,c(s) there is nt ∈ N with
t(ε) = c, def (t) ∩ N = [nt] and λw.t(iw) ∈ CTΣ,s for all 1 ≤ i ≤ nt,
• for all X ∈ BS, CTΣ,X = X (again identified with the set 1→ X of functions).

Let ∼ be the greatest FT(S,BS)-sorted equivalence relation on CTΣ such that

• for all s ∈ S and t ∼s t′, t(ε) = t′(ε) and for all i ∈ N, λw.t(iw) ∼ λw.t′(iw),
• for all s ∈ S ∪BS and t ∼word(s) t

′, nt = nt′ and for all i ∈ [nt],
λw.t(iw) ∼s λw.t′(iw),
• for all s ∈ S ∪BS, t ∼bag(s) t

′ and f : [nt]
∼→ [nt], nt = nt′ and for all i ∈ [nt],

λw.t(f (i)w) ∼s λw.t′(iw),
• for all s ∈ S ∪ BS, t ∼set(s) t′, i ∈ [nt] and j ∈ [nt′] there are k ∈ [nt′] and l ∈ [nt]

such that λw.t(iw) ∼s λw.t′(kw) and λw.t(lw) ∼s λw.t′(jw),
• for all X ∈ BS, ∼X= ∆X .

For simplicity, we identify CTΣ with CTΣ/∼.

The elements of CTΣ are called Σ-trees.

60

�� ��Iterative equations

CTΣ is a Σ-algebra:

For all f : e→ s ∈ F , t = (t1, . . . , tn) ∈ CTΣ,e and w ∈ N∗,

fCTΣ(t)(w) =def

{
f if w = ε,

ti(v) if ∃ i ∈ N : iv = w.

fCTΣ(t) is also written as ft and fCTΣ(ε) as f .

Let Σ⊥ = (S,BS,BF, F ∪ {⊥s : 1→ s | s ∈ S}) and ≤ be the least reflexive, transitive
and Σ-congruent S-sorted relation on CTΣ⊥ such that for all s ∈ S and t ∈ CTΣ⊥,s,
⊥s ≤ t.

Kleene’s fixpoint theorem =⇒

CTΣ⊥ is initial in CAlgΣ,

the category of ω-continuous Σ-algebras as objects and strict and ω-continuous Σ-homo-
morphisms.

61

�� ��Iterative equations

Elgot’s Theorem (see Goguen et al., Initial Algebra Semantics and Continuous Algebras)

Each system of iterative Σ-equations has a unique solution in CTΣ.

Σ induces the destructive signature coΣ with HΣ = HcoΣ:

coΣ = (S,BS,BF, {ds : s→
∐

f :e→s∈F e | s ∈ S} ∪
{πi : e1 × · · · × en → ei | n > 1, e1, . . . , en ∈ FT(S,BS),

1 ≤ i ≤ n})

Here each product type e1 × · · · × en is regarded as an additional sort. The projections
πi : e1 × · · · × en → ei, 1 ≤ i ≤ n, provide its destructors.

CTΣ is a coΣ-algebra:

For all s ∈ S and t ∈ CTΣ,s such that t(ε) is n-ary,

dCTΣ
s (t) =def ((λw.t(1w), . . . , λw.t(nw)), t(ε)).

62

�� ��Iterative equations

CTΣ is final in AlgcoΣ.

For all coΣ-algebras A, the unique Σ-homomorphism unfoldA : A → CTΣ is defined as
follows: For all s ∈ S, a ∈ As, i ∈ N and w ∈ N∗,

unfoldA(a)(ε) = f,

unfoldA(a)(iw) =

{
unfoldA(ai)(w) if π1(dAs (a)) = (a1, . . . , an) ∧ 1 ≤ i ≤ n,

undefined otherwise.

CTΣ
∼= coTcoΣ.

63

�� ��Iterative equations

ε

ds0,f0

π1 π2

ds1,f1

π1 π2

ds3,f3

ds6,f6

ds4,f4

π1 π2

b0

ds7,f7π1 π2

ds9,f9

ds2,f2

ds5,f5

π2π1

b1 ε

ds8,f8

π1 π2

b2

π3

A coΣ-coterm

64

�� ��Iterative equations

... and the corresponding Σ-tree:

f1

f3

f7f6

f5f4

f8

f9

f0

f2

b0

b1

ε

ε b2

Let E : V → TΣ(V) be a system of iterative Σ-equations.

The coΣ-algebra TE

is defined as follows: For all s ∈ S, f : e→ s ∈ F , t ∈ TΣ(V)e and x ∈ Vs,
TEs = TΣ(V)s,

dT
E

s (ft) = (t, f),

dT
E

s (x) = dT
E

s (E(x)).

65

�� ��Iterative equations

unfoldT
E ◦ incV : V → CTΣ solves E in CTΣ. (4)

g : V → CTΣ solves E in CTΣ iff g∗ : TE → CTΣ is coΣ-homomorphic. (5)

(4) ∧ (5) =⇒ Each system of iterative Σ-equations has a unique solution in CTΣ.

An alternative proof of this result is given in Example 8 below.

Example 7 Ψ = (Σ, coΣ)

For all e ∈ T(S,BS), let xe be a variable that is not contained in V .

DC = {ds(f (x)) = ιf(x) | s ∈ S, f : e→ s ∈ F}

is a system of recursive Ψ-equations.

(2) =⇒ DC has a unique coinductive solution in CTΣ. (6)

66

�
�

�

Context-free grammars with base sets

A context-free grammar G = (S,BS,R)

consists of

• a set S of sorts (also called nonterminals),
• a set BS of nonempty base sets whose singletons are called terminals and are
identified with their respective unique element,
• a set R of rules s→ w with s ∈ S and w ∈ (S ∪BS)∗.

Let Z be the set of terminals of G. The following function typ : (S ∪BS)∗ → T (S,BS)

removes all elements of Z from words over S ∪ BS and translates the latter into the
corresponding product types:

• typ(ε) = 1.
• For all s ∈ S ∪BS \ Z and w ∈ (S ∪BS)∗, typ(sw) = s× typ(w).
• For all x ∈ Z and w ∈ (S ∪BS)∗, typ(xw) = typ(w).

67

�� ��Context-free grammars with base sets

The constructive signature

Σ(G) = (S,BS, {fs→w : typ(w)→ s | s→ w ∈ R})
is called the abstract syntax of G of G.

Finite ground Σ(G)-terms are called syntax trees of G.

Let X =
⋃
BS.

The Σ(G)-word algebra Word(G) recovers the concrete from the abstract syntax:

• For all s ∈ S, Word(G)s =def X
∗.

• For all w ∈ Z∗ and r = (s→ w) ∈ R, fWord(G)
r (ε) =def w.

• For all n > 0, w0 . . . wn ∈ Z∗, e1, . . . , en ∈ S ∪BS \ Z,
r = (s→ w0e1w1 . . . enwn) ∈ R and (v1, . . . , vn) ∈ (X∗)n,

fWord(G)
r (v1, . . . , vn) =def w0v1w1 . . . vnwn.

The language L(G) of G is the set of words over X that result from folding syntax
trees in Word(G):

L(G) =def foldWord(G)(TΣ(G)).

68

�� ��Context-free grammars with base sets

According to [2], generic compilers for G can be formulated in category-theoretic terms
as follows:

Let (M : SetS → SetS, η, ε) be a monad that encapsulates the compiler output or, in
the case of incorrect input, returns error messages, P : SetS → SetS be the (S-sorted)
powerset functor, M ×M = _× _ ◦∆ ◦M ,

⊕ : M ×M →M and set : M → P
be natural transformations and

E = {m ∈ img(M) | set(m) = ∅}
such that for all sets A,B, m,m′,m′′ ∈ M(A), e ∈ E, f : A → M(B), h : A → B and
a ∈ A,

(m⊕m′)⊕m′′ = m⊕ (m′ ⊕m′′),
M(h)(e) = e,

M(h)(m⊕m′) = M(h)(m)⊕M(h)(m′),

setA(m⊕m′) = setA(m) ∪ setA(m′),

setA(ηA(a)) = {a},
setB(m�= f) =

⋃
{setB(f (a)) | a ∈ setA(m)}.

69

�� ��Context-free grammars with base sets

Let const(X∗) be the functor that maps each object and morphism of AlgΣ(G) to the
S-sorted set (X∗)s∈S and the S-sorted function (idX∗)s∈S, respectively, U be the forgetful
functor from AlgΣ(G) to SetS and W = Word(G).

A natural transformation

compileG : const(X∗)→MU

is a generic compiler for G if setW ◦ compileWG is the following coproduct extension:

L(G)
incL(G) �X∗≺

incX∗\L(G)
X∗ \ L(G)

P(X∗)

(7) setW◦ compileWG

g
λw.∅

≺
λw.{w}

�

Such a compiler is generic because it has two parameters: a Σ(G)-algebra A that rep-
resents a target language and the monad M (together with ⊕ and set) that determines
which target objects and error messages, respectively, are to be returned.

70

�� ��Context-free grammars with base sets

Let parseG = compile
TΣ(G)

G and unparseG =def foldWord(G).

Since compileG is a natural transformation and for all Σ(G)-algebras A,

foldA : TΣ(G) → A

is Σ(G)-homomorphic,

compileAG = X∗
parseG−→ M(TΣ(G))

M(foldA)−→ M(A). (8)

Hence the restriction of parseG to L(G) is a right inverse of unparseG:

setW ◦M(unparseG) ◦ parseG ◦ incL(G) = setW ◦M(foldW) ◦ parseG ◦ incL(G)
(8)
= setW ◦ compileWG ◦ incL(G)

(7)
= λw.{w}.

Following the classical notion of compiler correctness [1, 3], we call compileAG correct
w.r.t. a source model Sem and a target model Mach (“abstract machine”) if there
are functions execute : A → Mach and encode : Sem → Mach such that the following
diagram commutes:

71

�� ��Context-free grammars with base sets

TΣ(G)

foldA
�A

(9)

Sem

foldSem

g

encode
�Mach

evaluate

g

evaluate runs a “target program” a ∈ A on the abstract machine Mach, while encode
expresses the source model in terms of the target model.

The initiality of TΣ(G) allows us to reduce the proof that (9) commutes to the extension
of encode and evaluate to Σ(G)-homomorphisms. For this purpose, Mach must be
extended to a Σ(G)-algebra. This can often be done by establishing a target signature Σ′

such that TΣ′ concides with A, each constructor of Σ(G) corresponds to a Σ′-term, Sem

is a Σ′-algebra and evaluate folds Σ′-terms in Sem. The mapping of Σ(G)-constructors
to Σ′-terms may then determine a definition encode such that both encode and evaluate
become Σ(G)-homomorphic. In this way, [3] shows the correctness of a compiler that
translates imperative programs into data flow graphs.

72

�� ��Context-free grammars with base sets

In the sequel, we regard the constructors par and seq of Reg(CS) as operations of
mutable arity and thus write

• par(t1, . . . , tn) instead of par(t1, par(t2, . . . , par(tn−1, tn) . . .)) and
• seq(t1, . . . , tn) instead of seq(t1, seq(t2, . . . , seq(tn−1, tn) . . .)).

par(t) and seq(t) stand for t.

G induces an iterative system of Reg(CS)-equations:

EG : S → TReg(CS)(S)

s 7→ par(w1, . . . , wk)

where {w1, . . . , wk} = {w ∈ (S ∪ CS)∗ | s→ w ∈ R}
and for all n > 1, e1, . . . , en ∈ S ∪ CS and s ∈ S,

e1 . . . en = seq(e1, . . . , en),

s = s.

EG is called the system of equations for G.

73

�� ��Context-free grammars with base sets

The function solG : S → P(X∗) with solG(s) = L(G)s for all s ∈ S solves EG in
Lang(X). (10)

solG is the least solution of EG in Lang(X), i.e., for all solutions g of EG in Lang(X)

and all s ∈ S, solG(s) ⊆ g(s).

74

�
�

�

Constructing recursive from iterative equations

Let Ψ = (CΣ, DΣ), CΣ = (S,BS,BF,C), Σ = CΣ ∪DΣ and V ∈ SetS.

CΣV = (S,BS ∪ {Vs | s ∈ S}, BF,C ∪ {ins : Vs → s | s ∈ S}),
ΨV = (CΣV , DΣ),

ΣV = CΣV ∪DΣ.

Let E : V → TCΣ(V) be a system of iterative CΣ-equations, rec(E) be a system of
recursive ΨV -equations and A be a Σ-algebra.

rec(E) simulates E in A if for all solutions g : V → A of E, the ΣV -algebra Ag with
Ag|Σ = A and inAg

s = gs for all s ∈ S satisfies rec(E).

Suppose that rec(E) simulates E in A and A is final in AlgDΣ. Then E has a unique
solution in A. (11)

Proof. Let g, h : V → A solve E in A. We extend A to ΣV -algebras A1, A2 by defining
inA1

s = gs and inA2
s = hs for all s ∈ S. By assumption, both A1 and A2 satisfy rec(E).

Since A|DΣ is final in AlgDΣ, (2) implies that the coinductive solution of rec(E) in A|DΣ

is unique. Hence A1 = A2 and thus for all s ∈ S, gs = inA1
s = inA2

s = hs. o

75

�� ��Constructing recursive from iterative equations

σV : V → TΣV
denotes the substitution with σV (x) = insx for all x ∈ Vs und s ∈ S. For

all ΣV -algebras A,
(inA)∗ = foldA ◦ σ∗V : TΣ(V)→ A, (12)

where inA = (inAs : Vs → As)s∈S.

Example 8 Ψ = (CΣ, coCΣ)

Let CΣ = (S,BS,BF,C) be a constructive signature, DΣ = coΣ and E : V → TCΣ(V)

be a system of iterative CΣ-equations.

rec(E) = {ds(ins(x)) = ιc(σ
∗
V (t)) | s ∈ S, x ∈ Vs, E(x) = ct}

is a system of recursive ΨV -equations.

By (6), the system DC of recursive ψ-equations has a unique coinductive solution A in
CTCΣ.

Let g : V → A be a solution of E in A. For all s ∈ S, x ∈ Vs with E(x) = ct,

in
Ag
s (x) = g(x) = g∗(E(x)) = g∗(ct) = cA(g∗(t)), (13)

and thus for all S-sorted sets V ′ of variables and h : V ′ → Ag,

76

�� ��Constructing recursive from iterative equations

h∗(ds(insx)) = d
Ag
s (in

Ag
s (x))

(13)
= dAs (cA(g∗(t)))

(6)
= ιc(g

∗(t)) = ιc((in
A
s)∗(t))

(12)
= ιc(foldAg(σ∗V (t))) = ιc(h

∗(σ∗V (t))) = h∗(ιc(σ
∗
V (t))).

Hence Ag satisfies rec(E), i.e.,

rec(E) simulates E in A.

Since A is final in AlgcoΣ, (4) and (11) imply that E has a unique solution in A. o

Example 9 Ψ = (Reg(CS), DΣ)

Let G = (S,BS, Z,R) be a non-left-recursive context-free grammar (i.e., there are no
derivations of the form s

+−→G sw), CS = BS∪{{z} | z ∈ Z} and reduce be a function
that simplifies regular expressions by applying semiring axioms.

Then for all s ∈ S there are ks, ns > 0, Cs,1, . . . , Cs,ns ∈ CS and Reg(CS)-terms
ts,1, . . . , ts,ns over S such that

(reduce ◦ E∗G)ks(s) = par(seq(Cs,1, ts,1), . . . , seq(Cs,ns, ts,ns)) (14)

or

77

�� ��Constructing recursive from iterative equations

(reduce ◦ E∗G)ks(s) = par(seq(Cs,1, ts,1), . . . , seq(Cs,ns, ts,ns), eps). (15)

Seps denotes the set of all s ∈ S such that case (15) holds true.

Let Reg(CS)′ be the extension of Reg(CS) by the S of sorts of G as a further base set
and the constructor in =def inreg : S → reg as a further operation.

Let DΣ be defined as in Example 5, ΨS = (Reg(CS)′, DΣ) and Σ = Reg(CS)′ ∪DΣ.

Using the notations of (14) and (15), we obtain the following system of recursive ΨS-
equations:

rec(EG) = {δ(in(s)) = λx.σ∗S(par(ite(χ(Cs,1)(x), ts,1,mt), . . . ,

ite(χ(Cs,ns)(x), ts,ns,mt))) | s ∈ S} ∪
{β(in(s)) = 1 | s ∈ Seps} ∪
{β(in(s)) = 0 | s ∈ S \ Seps}

Let X =
⋃
CS. By Example 5, the system BRE of recursive Ψ-equations has a unique

coinductive solution A in Pow (X).

78

�� ��Constructing recursive from iterative equations

Let g : S → A be a solution of EG in A. For all n ∈ N,

g∗ = g∗ ◦ (reduce ◦ E∗)n. (16)

Let h : V → Ag. Hence for all s ∈ S,

h∗(in(s)) = inAg(s) = g(s) = g∗(s)
(16)
= g∗((reduce ◦ E∗G)ks(s)) (17)

By (12),
g∗ = (inAg)∗ = foldAg ◦ σ∗S : TReg(CS)(S)→ A. (18)

Hence for all s ∈ S \ Seps,

h∗(δ(in(s))) = δA(h∗(in(s)))
(17)
= δA(g∗((reduce ◦ E∗G)ks(s))) = . . .

= δA(
⋃ns
i=1(Cs,i · g∗(ts,i))) = λx.δA(

⋃n
i=1(Cs,i · g∗(ts,i)))(x)

Def. δA
= λx.{w ∈ X∗ | xw ∈

⋃ns
i=1(Cs,i · g∗(ts,i))} = . . .

= g∗(λx.par(ite(χ(Cs,1)(x), ts,1,mt), . . . , ite(χ(Cs,ns)(x), ts,ns,mt)))
(18)
= foldAg(σ∗S(λx.par(ite(χ(Cs,1)(x), ts,1,mt), . . . , ite(χ(Cs,ns)(x), ts,ns,mt))))

= h∗(σ∗S(λx.par(ite(χ(Cs,1)(x), ts,1,mt), . . . , ite(χ(Cs,ns)(x), ts,ns,mt))))

and

79

�� ��Constructing recursive from iterative equations

h∗(β(in(s))) = βA(h∗(in(s)))
(17)
= βA(g∗((reduce ◦ E∗G)ks(s))) = . . .

= βA(
⋃ns
i=1(Cs,i · g∗(ts,i)))

Def. βA
= 0 = h∗(0),

and for all s ∈ Seps,

h∗(δ(in(s))) = δA(h∗(in(s)))
(17)
= δA(g∗((reduce ◦ E∗G)ks(s))) = . . .

= δA(
⋃ns
i=1(Cs,i · g∗(ts,i)) ∪ {ε}) = λx.δA(

⋃ns
i=1(Cs,i · g∗(ts,i)) ∪ {ε})(x)

Def. δA
= λx.{w ∈ X∗ | xw ∈

⋃ns
i=1(Cs,i · g∗(ts,i)) ∪ {ε}}

= λx.{w ∈ X∗ | xw ∈
⋃ns
i=1(Cs,i · g∗(ts,i))} = . . .

= g∗(λx.par(ite(χ(Cs,1)(x), ts,1,mt), . . . , ite(χ(Cs,ns)(x), ts,ns,mt)))
(18)
= foldAg(σ∗S(λx.par(ite(χ(Cs,1)(x), ts,1,mt), . . . , ite(χ(Cs,ns)(x), ts,ns,mt))))

= h∗(σ∗S(λx.par(ite(χ(Cs,1)(x), ts,1,mt), . . . , ite(χ(Cs,ns)(x), ts,ns,mt))))

and
h∗(β(in(s))) = βA(h∗(in(s)))

(17)
= βA(g∗((reduce ◦ E∗G)ks(s))) = . . .

= βA(
⋃ns
i=1(Cs,i · g∗(ts,i)) ∪ {ε})

Def. βA
= 1 = h∗(1).

Hence Ag satisfies rec(EG), i.e.,

rec(EG) simulates EG in A. (19)

80

�� ��Constructing recursive from iterative equations

(10) ∧ (11) ∧ (19) ⇒ solG is the only solution of EG in A.

rec(EG) suggests the following extension of Bro(CS) to a Reg(CS)′-Algebra Bro(CS)′:

For all s ∈ S,

δBro(CS)′(in(s)) = λx.σ∗S(par(ite(x ∈ Cs,1, ts,1,mt), . . . , ite(x ∈ Cs,ns, ts,ns,mt))),
βBro(CS)′(in(s)) = if s ∈ Seps then 1 else 0.

Let Lang(X)′ = AsolG|Reg(CS)′ and Σ = Reg(CS)′ ∪DΣ.

Bro(CS)′ agrees with the Σ-algebra TReg(CS)′ (see (2)). Hence

foldLang(X)′ = unfoldBro(CS)′ : Bro(CS)′ → Pow (X)

and thus foldLang(X)′ is Acc(X)-homomorphic. Hence for all s ∈ S,

unfoldBro(CS)′(in(s)) = foldLang(X)′(in(s)) = inLang(X)′(s)

= inAsolG(s) = solG(s) = L(G)s,

i.e., (Bro(CS)′, in(s)) realizes the characteristic function of the language L(G)s of words
over X that are derivable from s via the rules of G.

81

�
�

�

(Co-)Horn Logic

(Co-)Horn clauses

Let Σ = (S,BS,BF, F, P) and Σ′ = (S,BS,BF, F, P ∪ P ′) be signatures and C be a
Σ-algebra.

AlgΣ′,C denotes the full subcategory of AlgΣ consisting of all Σ′-algebras A with A|Σ = C.

AlgΣ′,C is a complete lattice: For all A,B ∈ AlgΣ′,C ,

A ≤ B ⇔def ∀ p ∈ P ′ : pA ⊆ pB.

For all A ⊆ AlgΣ′,C and p : e ∈ P ′,

p⊥ = ∅, p> = Ae, ptA =
⋃
A∈A

pA and puA =
⋂
A∈A

pA.

82

�
�

�
�(Co-)Horn Logic

A Σ′-formula ϕ is negation-free w.r.t. Σ if ϕ does not contain ⇒, ⇐ or ⇔ and all
subformulas of ϕ with a leading negation symbol belong to FoΣ(V).

A Horn clause for P ′ is a Σ′-formula p(t)⇐ ϕ such that p ∈ P ′ and ϕ is negation-free
w.r.t. Σ.

Let AX be a set of Horn clauses for P ′.

The AX-step function Φ : AlgΣ′,C → AlgΣ′,C is defined as follows:

For all A ∈ AlgΣ′,C and p ∈ P ′,

pΦ(A) =def {g∗(t) | p(t)⇐ ϕ ∈ AX, g ∈ ϕA}.

Φ is monotone and thus by the Fixpoint Theorem of Knaster and Tarski, Φ has the least
fixpoint

lfp(Φ) = u {A ∈ AlgΣ′,C | Φ(A) ≤ A}.
Consequently,

lfp(φ) |= p(x)⇔
∨

p(t)⇐ϕ∈AX

∃ var(t, ϕ) : (x = t ∧ ϕ).

83

�
�

�
�(Co-)Horn Logic

A co-Horn clause for P ′ is a Σ′-formula p(t)⇒ ϕ such that p ∈ P ′ and ϕ is negation-
free w.r.t. Σ.

Let AX be a set of co-Horn clauses for P ′.

The AX-step function Φ : AlgΣ′,C → AlgΣ′,C is defined as follows:

For all A ∈ AlgΣ′,C and p : e ∈ P ′,

pΦ(A) =def Ce\{g∗(t) | pt⇒ ϕ ∈ AX, g ∈ CV \ϕA}.

Φ is monotone and thus by the Fixpoint Theorem of Knaster and Tarski, Φ has the
greatest fixpoint

gfp(Φ) = t {A ∈ AlgΣ′,C | A ≤ Φ(A)}.
Consequently,

gfp(φ) |= p(x)⇔
∧

p(t)⇒ϕ∈AX

∀ var(t, ϕ) : (x 6= t ∨ ϕ).

*** to be continued ***

84

REFERENCES REFERENCES

References

[1] F.L. Morris, Advice on Structuring Compilers and Proving Them Correct, Proc.
ACM POPL (1973) 144-152 link

[2] P. Padawitz, Übersetzerbau, TU Dortmund 2016, link

[3] J.W. Thatcher, E.G. Wagner, J.B. Wright, More on Advice on Structuring Com-
pilers and Proving Them Correct, Theoretical Computer Science 15 (1981) 223-249
link

85

http://fldit-www.cs.uni-dortmund.de/~peter/MorrisCompiler.pdf
http://fldit-www.cs.uni-dortmund.de/~peter/CbauFolien.pdf
http://fldit-www.cs.uni-dortmund.de/~peter/TWWcompiler2.pdf

	Abstract
	Contents
	Syntax
	Semantics
	Initial and final algebras
	Recursive equations
	Iterative equations
	CFGs
	IterToRec
	Logic

