(Co)Algebraic Specification with Base Sets, Recursive and Iterative Equations
 Peter Padawitz
 TU Dortmund, Germany

June 2, 2016
(actual version: http://fldit-www.cs.uni-dortmund.de/~peter/IFIP2014.pdf)
More details can be found in:

- Algebraic Compiler Construction
- Fixpoints, Categories, and (Co)Algebraic Modeling
- From Modal Logic to (Co)Algebraic Reasoning (with Expander2)

Abstract

We present some fundamentals of a uniform approach to specify, implement and reason about (co)algebraic models in a many-sorted setting that covers constant, polynomial and collection types. Three kinds of (infinite-)tree models (finite terms, coterms and continuous trees) yield concrete representations (and Haskell implementations) of initial resp. final models.

On the axiomatic side, a format for recursive equations, which define either constructors on a final model or destructors on an initial one, is introduced. We show how iterative equations, which define continuous trees, can be translated into recursive equations so that the unique solvability of the latter implies the unique solvability of the former.

As a prototypical example, recursive equations define the Brzozowski automaton whose states are regular expressions and which accepts regular languages. We show how this set of equations can be extended by equations representing a non-left-recursive grammar G such that it defines an acceptor of the language of G.

Contents

- Syntax 4
- Semantics 12
- Initial and final algebras 27
- Recursive equations 48
- Iterative equations 59
- Context-free grammars with base sets 67
- Constructing recursive from iterative equations 75
- (Co-)Horn Logic 82

Syntax

Let S be a set of sorts.

An S-sorted set A is a tuple $\left(A_{s}\right)_{s \in S}$ of sets.
We also write A for the union of A_{s} over all $s \in S$.
An S-sorted subset B of A, written as $B \subseteq A$, is an S-sorted set with $B_{s} \subseteq A_{s}$ for all $s \in S$.

Given S-sorted sets A_{1}, \ldots, A_{n}, an S-sorted relation $r \subseteq A_{1} \times \cdots \times A_{n}$ is an S-sorted set with $r_{s} \subseteq A_{1, s} \times \ldots \times A_{n, s}$ for all $s \in S$.

The S-sorted binary relation $\Delta_{A}=\left\{\Delta_{A, s} \mid s \in S\right\}$ is called the diagonal of A^{2}.
Given S-sorted sets A and B, an S-sorted function $f: A \rightarrow B$ is an S-sorted set such that for all $s \in S, f_{s}$ is a function from A_{s} to B_{s}.

Set ${ }^{S}$ denotes the category of S-sorted sets and S-sorted functions.

Let S and $B S$ be sets of sorts and base sets, respectively.

The set $\mathbb{T}(S, B S)$ of types over S and $B S$
is inductively defined as follows:

- $S \subseteq \mathbb{T}(S, B S)$.
- $B S \subseteq \mathbb{T}(S, B S)$.
- For all $n>0, e_{1}, \ldots, e_{n} \in \mathbb{T}(S, B S), e_{1} \times \cdots \times e_{n} \in \mathbb{T}(S, B S)$. The nullary product is identified with the base set $1=\{\epsilon\}$.
- For all $n>0, e_{1}, \ldots, e_{n} \in \mathbb{T}(S, B S), e_{1}+\cdots+e_{n} \in \mathbb{T}(S, B S)$.
- For all $e \in \mathbb{T}(S, B S)$, $\operatorname{word}(e), \operatorname{bag}(e), \operatorname{set}(e) \in \mathbb{T}(S, B S)$. (collection types over e)
- For all $X \in B S$ and $e \in \mathbb{T}(S, B S), e^{X} \in \mathbb{T}(S, B S)$. (power types over e)
- For all $e, e^{\prime} \in \mathbb{T}(S, B S)$ with $e^{\prime} \notin B S, e^{e^{\prime}} \in \mathbb{T}(S, B S)$. (higher-order types over e)

A type is first-order if it does not contain higher-order types.
$\mathbb{T}_{1}(S, B S)$ denotes the set of first-order types over S and $B S$.

A type is flat if it is a sort, a base set or a collection or power type over a sort.
$\mathbb{F} \mathbb{T}(S, B S)$ denotes the set of flat types over S and $B S$.

A signature $\Sigma=(S, B S, B F, F, P)$

consists of

- a finite set S of sorts (symbols for sets),
- a finite set $B S$ of base sets, implicitly including $1=\{\epsilon\}$ and $2=\{0,1\}$,
- a finite set $B F$ of base functions $f: X \rightarrow Y$ with $X, Y \in B S$,
- a finite set F of operations (symbols for functions) $f: e \rightarrow e^{\prime}$ with $e, e^{\prime} \in \mathbb{T}(S, B S)$,
- a finite set P of predicates (symbols for relations) $p: e$ where e is a finite product of sorts and base sets.

For all $f: e \rightarrow e^{\prime} \in F, \operatorname{dom}(f)=e$ resp. $\operatorname{ran}(f)=e^{\prime}$ is the domain resp. range of f. For all $p: e \in P, \operatorname{dom}(p)=e$ is the domain of p.

Given signatures Σ and $\Sigma^{\prime}, \Sigma \cup \Sigma^{\prime}$ denotes the componentwise union of Σ and Σ^{\prime}.
$f \in F$ is a constructor if there are flat types e_{1}, \ldots, e_{n} over S and $B S$ such that $\operatorname{dom}(f)=e_{1} \times \cdots \times e_{n}$ and $\operatorname{ran}(f) \in S$.
$f \in F$ is a destructor if there are non-power flat types e_{1}, \ldots, e_{n} over S and $B S$ and $X \in B S$ such that $\operatorname{dom}(f) \in S$ and $\operatorname{ran}(f)=\left(e_{1}+\cdots+e_{n}\right)^{X}$.
Σ is constructive resp. destructive if F consists of constructors resp. destructors.

Constructive signatures

Let X be a set of constants and $C S$ be a set of nonempty sets of constants.

Nat \propto natural numbers

$$
\begin{aligned}
& S=\{\text { nat }\}, \quad B S=\emptyset, \quad F=\{ \text { zero }: 1 \rightarrow \text { nat } \\
&\text { succ }: \text { nat } \rightarrow \text { nat }\} .
\end{aligned}
$$

$\operatorname{List}(X) \propto$ finite sequences of elements of X

$$
\begin{aligned}
S=\{\text { list }\}, \quad B S=\{X\}, \quad F=\{ & \text { nil }: 1 \rightarrow \text { list }, \\
& \text { cons }: X \times \text { list } \rightarrow \text { list }\}
\end{aligned}
$$

$\operatorname{Reg}(C S)$ co regular expressions over $C S$ and regular languages over $X=\bigcup C S$

$$
\begin{array}{rlrl}
S=\{\text { reg }\}, \quad B S=\emptyset, \quad F= & \{\text { eps }: 1 \rightarrow \text { reg, } & \\
& m t: 1 \rightarrow \text { reg, } & \\
& \text { par }: \text { reg } \times \text { reg } \rightarrow \text { reg, } & \text { (parallel composition) } \\
& \text { seq: reg } \times \text { reg } \rightarrow \text { reg, } & \text { (sequential composition) } \\
& & \text { iter }: \text { reg } \rightarrow \text { reg }\} \cup & \text { (iteration) } \\
& \{\bar{C}: 1 \rightarrow \text { reg } \mid C \in C S\}
\end{array}
$$

The nullary constructor \bar{C} stands for a name of the set C.

Destructive signatures
Let X and Y be sets of constants.
coNat \boldsymbol{c} natural numbers with infinity

$$
S=\{n a t\}, \quad B S=\emptyset, \quad F=\{\text { pred }: n a t \rightarrow 1+n a t\} .
$$

$\operatorname{coList}(X) \propto$ finite or infinite sequences of elements of $X(\operatorname{coList}(1) \widehat{=} \operatorname{coNat})$

$$
\begin{aligned}
S=\{\text { list, pair }\}, \quad B S=\{X\}, \quad F=\{ & \text { split : list } \rightarrow 1+\text { pair }, \\
& \text { first : pair } \rightarrow X, \\
& \text { rest : pair } \rightarrow \text { list }\} .
\end{aligned}
$$

$D A u t(X, Y)$ deterministic Moore automata with input from X and output in Y

$$
\begin{aligned}
S=\{\text { state }\}, \quad B S=\{X, Y\}, \quad F=\{ & \delta: \text { state } \rightarrow \text { state }{ }^{X} \\
& \beta: \text { state } \rightarrow Y\}
\end{aligned}
$$

$\operatorname{Acc}(X) \widehat{=} \operatorname{DAut}(X, 2)$ deterministic acceptors of subsets of X^{*}

$$
\begin{aligned}
& S=\{r e g\}, \quad B S=\{X, 2\}, \quad F=\left\{\delta: r e g \rightarrow r e g^{X},\right. \\
& \beta: r e g \rightarrow 2\} \text {. }
\end{aligned}
$$

$\operatorname{Stream}(X) \widehat{=} \operatorname{DAut}(1, X)$ cos streams over X

$$
\begin{aligned}
S=\{\text { list }\}, \quad B S=\{X\}, \quad F=\{ & \text { head }: \text { list } \rightarrow X \\
& \text { tail }: \text { list } \rightarrow \text { list }\}
\end{aligned}
$$

Let V be a $\mathbb{T}(S, B S)$-sorted set of variables.

The $\mathbb{T}(S, B S)$-sorted set $T_{\Sigma}(V)$ of Σ-terms over V

is inductively defined as follows:

- For all $e \in \mathbb{T}(S, B S), V_{e} \subseteq T_{\Sigma}(V)_{e}$.
- For all $X \in B S, X \subseteq T_{\Sigma}(V)_{X}$.
- For all $f: 1 \rightarrow e \in B F \cup F, f \in T_{\Sigma}(V)_{e}$.
- For all $n>1, e_{1}, \ldots, e_{n} \in \mathbb{T}(S, B S), t \in T_{\Sigma}(V)_{e_{1} \times \cdots \times e_{n}}$ and $1 \leq i \leq n, \pi_{i} t \in T_{\Sigma}(V)_{e_{i}}$.
- For all $n>1, e_{1}, \ldots, e_{n} \in \mathbb{T}(S, B S), 1 \leq i \leq n$ and $t \in T_{\Sigma}(V)_{e_{i}}, \iota_{i} t \in T_{\Sigma}(V)_{e_{1}+\cdots+e_{n}}$.
- For all $n>1, e_{1}, \ldots, e_{n} \in \mathbb{T}(S, B S)$ and $t_{i} \in T_{\Sigma}(V)_{e_{i}}, 1 \leq i \leq n$, $\left(t_{1}, \ldots, t_{n}\right) \in T_{\Sigma}(V)_{e_{1} \times \cdots \times e_{n}}$.
- For all $f: e \rightarrow e^{\prime} \in B F \cup F$ and $t \in T_{\Sigma}(V)_{e}, f t \in T_{\Sigma}(V)_{e^{\prime}}$.
- For all $c \in\{$ word, bag, set $\}, e \in \mathbb{T}(S, B S)$ and $t \in T_{\Sigma}(V)_{e}^{*}, c(t) \in T_{\Sigma}(V)_{c(e)}$.
- For all $n>0, e_{1}, \ldots, e_{n}, e \in \mathbb{T}(S, B S), x \in V_{e_{1}} \cup \cdots \cup V_{e_{n}}$ and $t_{1}, \ldots, t_{n} \in T_{\Sigma}(V)_{e}$, $\lambda x .\left(t_{1}|\ldots| t_{n}\right) \in T_{\Sigma}(V)_{e^{e_{1}+\cdots+e_{n}} .}$.
- For all $e, e^{\prime} \in \mathbb{T}(S, B S), t \in T_{\Sigma}(V)_{e^{e^{\prime}}}$ and $u \in T_{\Sigma}(V)_{e^{\prime}}, t(u) \in T_{\Sigma}(V)_{e}$.
- For all $e \in \mathbb{T}(S, B S), t \in T_{\Sigma}(V)_{2}$ and $u, v \in T_{\Sigma}(V)_{e}$, ite $(t, u, v) \in T_{\Sigma}(V)_{e}$.

A Σ-term t that does not contain variables or ite, then t is called ground.
T_{Σ} denotes the set of ground Σ-terms.

The set $F_{O_{\Sigma}}(V)$ of Σ-formulas over V

is inductively defined as follows:

- True, False $\in F_{O_{\Sigma}}(V)$.
- For all $p: e \in P$ and $t \in T_{\Sigma}(V)_{e}, p t \in F_{o_{\Sigma}}(V)$.
- For all $e \in \mathbb{T}(S, B S)$ and $t, u \in T_{\Sigma}(V)_{e}, t={ }_{e} u \in F_{o_{\Sigma}}(V)$. (Σ-equations over V)
- For all $\varphi \in \operatorname{Fo}_{\Sigma}(V), \neg \varphi \in F_{o_{\Sigma}}(V)$.
- For all $\varphi, \psi \in \operatorname{Fo}_{\Sigma}(V), \varphi \wedge \psi, \varphi \vee \psi, \varphi \Rightarrow \psi, \varphi \Leftarrow \psi, \varphi \Leftrightarrow \psi \in \operatorname{Fo}_{\Sigma}(V)$.
- For all $x \in V$ and $\varphi \in F_{\Sigma}(V), \forall x \varphi, \exists x \varphi \in F_{\Sigma}(V)$.

Semantics

$[0]={ }_{d e f} \emptyset$ and for all $n>0,[n]={ }_{d e f}\{1, \ldots, n\}$.

For all $f: A \rightarrow B, f^{*}: A^{*} \rightarrow B^{*}$ is defined as follows:
$f^{*}(\epsilon)=\epsilon$ and for all $n>0$ and $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}, f^{*}\left(a_{1}, \ldots, a_{n}\right)=\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)$.

Let A, B be sets and $a=\left(a_{1}, \ldots, a_{m}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in A^{*}$.

$$
\begin{aligned}
a=_{\text {word }} b \Leftrightarrow_{\text {def }} & a=b . \\
a==_{\text {bag }} b \Leftrightarrow{ }_{\text {def }} & \exists f:[n] \xrightarrow{\sim}[n]:\left(a_{1}, \ldots, a_{n}\right)=\left(b_{f(1)}, \ldots, b_{f(n)}\right), \\
& \text { i.e., } b \text { is a permutation of } a . \\
a=_{\text {set }} b \Leftrightarrow \Leftrightarrow_{\text {def }} & \left\{a_{1}, \ldots, a_{m}\right\}=\left\{b_{1}, \ldots, b_{n}\right\} .
\end{aligned}
$$

Let $h: A \rightarrow B$.
$\mathcal{B}_{\text {fin }}(A)={ }_{\text {def }} A /=_{b a g}$ and $\mathcal{B}_{\text {fin }}(h): \mathcal{B}_{\text {fin }}(A) \rightarrow \mathcal{B}_{\text {fin }}(B)$ maps $[a]_{=_{b a g}}$ to $\left[h^{*}(a)\right]_{=_{b a g}}$. $\mathcal{P}_{\text {fin }}(A)=\{C \subseteq A| | A \mid<\omega\}$ and $\mathcal{P}_{\text {fin }}(h): \mathcal{P}_{\text {fin }}(A) \rightarrow \mathcal{P}_{\text {fin }}(B)$ maps C to $\{f(a) a \in C\}$.

Predicate lifting

For alle $e \in \mathbb{T}_{1}(S, B S)$, the functor $F_{e}: S e t^{S} \rightarrow$ Set is inductively defined as follows:
For all S-sorted sets A, B, S-sorted functions $h: A \rightarrow B, s \in S, X \in B S, n>1$ and $e, e_{1}, \ldots, e_{n} \in \mathbb{T}_{1}(S, B S)$,

$$
\begin{array}{ll}
F_{s}(A)=A_{s}, & F_{s}(h)=h_{s}, \quad \text { (projection functor) } \\
F_{X}(A)=X, & F_{X}(h)=i d_{X}, \quad \text { (constant functor) } \\
F_{e_{1}+\cdots+e_{n}}(A)=F_{e_{1}}(A)+\cdots+F_{e_{n}}(A), & F_{e_{1}+\cdots+e_{n}}(h)=F_{e_{1}}(h)+\cdots+F_{e_{n}}(h), \\
F_{e_{1} \times \cdots \times e_{n}}(A)=F_{e_{1}}(A) \times \ldots \times F_{e_{n}}(A), & F_{e_{1} \times \cdots \times e_{n}}(h)=F_{e_{1}}(h) \times \ldots \times F_{e_{n}}(h), \\
F_{w o r d(e)}(A)=F_{e}(A)^{*}, & F_{\text {word }(e)}(h)=F_{e}(h)^{*}, \\
F_{\text {bag(}(e)}(A)=\mathcal{B}_{\text {fin }}\left(F_{e}(A)\right), & F_{\text {bag }(e)}(h)=\mathcal{B}_{\text {fin }}\left(F_{e}(h)\right), \\
F_{\text {set }(e)}(A)=\mathcal{P}_{\text {fin }}\left(F_{e}(A)\right), & F_{\text {sett }(e)}(h)=\mathcal{P}_{\text {fin }}\left(F_{e}(h)\right), \\
F_{e^{X}}(A)=F_{e}(A)^{X}, & F_{e^{X}}(h)=F_{e}(h)^{X} .
\end{array}
$$

We mostly write A_{e} instead of $F_{e}(A)$.

Relation lifting

Given an S-sorted relation $R \subseteq A \times B, R$ is extended to a $\mathbb{T}_{1}(S, B S)$-sorted relation inductively as follows:

Let $s \in S, e_{1}, \ldots, e_{n}, e \in \mathbb{T}_{1}(S, B S)$ and $X \in B S$.

$$
\begin{aligned}
& R_{X}=\Delta_{X}, \\
& R_{e_{1}+\cdots+e_{n}}=\left\{((a, i),(b, i)) \in\left(\coprod_{i=1}^{n} A_{e_{i}}\right) \times \coprod_{i=1}^{n} B_{e_{i}} \mid \quad(a, b) \in R_{e_{i}}, 1 \leq i \leq n\right\}, \\
& R_{e_{1} \times \cdots \times e_{n}}=\left\{\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right) \in\left(\prod_{i=1}^{n} A_{e_{i}}\right) \times \prod_{i=1}^{n} B_{e_{i}}\right. \\
& \left.\forall 1 \leq i \leq n:\left(a_{i}, b_{i}\right) \in R_{e_{i}}\right\}, \\
& R_{w o r d(e)}=\bigcup_{n \in \mathbb{N}}\left\{\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right) \in A_{e}^{*} \times B_{e}^{*}\right. \\
& \left.\forall 1 \leq i \leq n:\left(a_{i}, b_{i}\right) \in R_{e}\right\}, \\
& R_{b a g(e)}=\bigcup_{n \in \mathbb{N}}\left\{\left(\left[\left(a_{1}, \ldots, a_{n}\right)\right]_{=_{b a g}},\left[\left(b_{1}, \ldots, b_{n}\right)\right]_{=_{b a g}}\right) \in \mathcal{B}_{\text {fin }}\left(A_{e}\right) \times \mathcal{B}_{\text {fin }}\left(B_{e}\right)\right. \\
& \left.\mid \forall 1 \leq i \leq n:\left(a_{i}, b_{i}\right) \in R_{e}\right\}, \\
& R_{\text {set }(e)}=\left\{(C, D) \in \mathcal{P}_{\text {fin }}\left(A_{e}\right) \times \mathcal{P}_{\text {fin }}\left(B_{e}\right) \mid \forall c \in C \exists d \in D:(c, d) \in R_{e},\right. \\
& \left.\forall d \in D \exists c \in C:(c, d) \in R_{e}\right\}, \\
& R_{e^{X}}=\left\{(f, g) \mid \forall x \in X:(f(x), g(x)) \in R_{e}\right\} .
\end{aligned}
$$

Let $\Sigma=(S, B S, B F, F, P)$ be a signature.

A Σ-algebra A

consists of

- an S-sorted set, called the carrier of A and often also denoted by A,
- for each $f: e \rightarrow e^{\prime} \in F$, a function $f^{A}: A_{e} \rightarrow A_{e^{\prime}}$,
- for each $p: e \in P$, a subset p^{A} of A_{e}.

Suppose that all function and relation symbols of Σ have first-order domains and ranges. Let A, B be Σ-algebras.

An S-sorted function $h: A \rightarrow B$ is a Σ-homomorphism if for all $f: e \rightarrow e^{\prime} \in F$, $h_{e^{\prime}} \circ f^{A}=f^{B} \circ h_{e}$, and for all $p: e \in P, h_{e}\left(p^{A}\right) \subseteq p^{B}$.
$A l g_{\Sigma}$ denotes the category of Σ-algebras and Σ-homomorphisms.
$\propto \mathrm{A} \Sigma$-homomorphism h is iso in $A l g_{\Sigma}$ iff h is bijective and for all $p: e \in P, p^{B} \subseteq h_{e}\left(p^{A}\right)$.

Let U_{S} be the forgetful functor from $A l g_{\Sigma}$ to $S e t^{S}$.
For all $f: e \rightarrow e^{\prime} \in F, \bar{f}: F_{e} U_{S} \rightarrow F_{e^{\prime}} U_{S}$ with $\bar{f}(A)={ }_{d_{e f}} f^{A}$ for all $A \in A l g_{\Sigma}$ is a natural transformation:

Given a category \mathcal{K} and an endofunctor F on \mathcal{K},

- an F-algebra or F-dynamics is a \mathcal{K}-morphism $\alpha: F(A) \rightarrow A$,
- an F-coalgebra or F-codynamics is a \mathcal{K}-morphism $\alpha: A \rightarrow F(A)$.
$A l g_{F}$ and coAlg_{F} denote the categories of F-algebras resp. F-coalgebras where
- an Alg $_{F}$-morphism from $\alpha: F(A) \rightarrow A$ to $\beta: F(B) \rightarrow B$ is a \mathcal{K}-morphism $h: A \rightarrow B$ with $h \circ \alpha=\beta \circ F(h)$,
- a $\operatorname{coAlg} g_{F}$-morphism from $\alpha: A: F(A)$ to $\beta: B \rightarrow F(B)$ is a \mathcal{K}-morphism $h: A \rightarrow B$ with $F(h) \circ \alpha=\beta \circ h$.

A constructive signature $\Sigma=(S, B S, B F, F, P)$ induces a functor

$$
H_{\Sigma}: \text { Set }^{S} \rightarrow \text { Set }^{S}:
$$

For all $A, B \in S e t^{S}, h \in \operatorname{Set}^{S}(A, B)$ and $s \in S$,

$$
\begin{aligned}
H_{\Sigma}(A)_{s} & =\coprod_{f: e \rightarrow s \in F} A_{e} \\
H_{\Sigma}(h)_{s} & =\coprod_{f: e \rightarrow s \in F} h_{e}
\end{aligned}
$$

$A l g_{\Sigma}$ and $A l g_{H_{\Sigma}}$ are equivalent categories:
Let $A \in A l g_{\Sigma}$ and $\alpha: A \rightarrow H_{\Sigma}(A) \in A l g_{H_{\Sigma}}$.
The $H_{\Sigma^{-}}$algebra $A^{\prime}: A \rightarrow H_{\Sigma}(A)$ and the Σ-algebra α^{\prime} are defined as follows:

For all $s \in S$ and $f: e \rightarrow s \in F$,

Examples

$$
\begin{aligned}
H_{\text {Nat }}(A)_{\text {nat }} & =1+A_{\text {nat }}, \\
H_{\text {List }(X)}(A)_{\text {list }} & =1+\left(X \times A_{\text {list }}\right) \\
H_{\text {Reg }(C S)}(A)_{\text {reg }} & =1+1+C S+A_{\text {reg }}^{2}+A_{\text {reg }}^{2}+A_{\text {reg }} .
\end{aligned}
$$

$h: A \rightarrow B$ is a Σ-homomorphism $\Longleftrightarrow h$ is an $A l g_{H_{\Sigma}}$-morphism from $\alpha(A)$ to $\alpha(B)$:

$h: \alpha \rightarrow \beta$ is an $A l g_{H_{\Sigma}}$-morphism $\Longleftrightarrow h$ is a Σ-homomorphism from $A(\alpha)$ to $A(\beta)$:

A destructive signature $\Sigma=(S, B S, B F, F, P)$ induces a functor

$$
H_{\Sigma}: S^{S e} t^{S} \rightarrow \text { Set }^{S}:
$$

For all $A, B \in \operatorname{Set}^{S}, h \in \operatorname{Set}^{S}(A, B)$ and $s \in S$,

$$
\begin{aligned}
H_{\Sigma}(A)_{s} & =\prod_{f: s \rightarrow e \in F} A_{e}, \\
H_{\Sigma}(h)_{s} & =\prod_{f: s \rightarrow e \in F} h_{e} .
\end{aligned}
$$

Alg_{Σ} and $\mathrm{coAlg}_{H_{\Sigma}}$ are equivalent categories:
Let $A \in A l g_{\Sigma}$ and $\alpha: H_{\Sigma}(A) \rightarrow A \in \operatorname{coAlg}_{H_{\Sigma}}$.
The $H_{\Sigma}(A)$-coalgebra $A^{\prime}: H_{\Sigma}(A) \rightarrow A$ and the Σ-algebra α^{\prime} are defined as follows:
For all $s \in S$ and $f: s \rightarrow e \in F$,

Examples

$$
\begin{aligned}
H_{\text {coNat }}(A)_{\text {nat }} & =1+A_{\text {nat }} \\
H_{\text {coList }(X)}(A)_{\text {list }} & =1+\left(X \times A_{\text {list }}\right) \\
H_{\text {DAut }(X, Y)}(A)_{\text {state }} & =A_{\text {state }}^{X} \times Y .
\end{aligned}
$$

Haskell implementation of $A l g_{\Sigma}$

Let $\Sigma=(S, B S, \emptyset, F, \emptyset)$ be a signature,
$B S=\left\{X_{1}, \ldots, X_{k}\right\}, S=\left\{s_{1}, \ldots, s_{m}\right\}$ and $F=\left\{f_{1}: e_{1} \rightarrow e_{1}^{\prime}, \ldots, f_{n}: e_{n} \rightarrow e_{n}^{\prime}\right\}$.
Each Σ-algebra is an element of the following Haskell datatype:

$$
\begin{array}{r}
\text { data Sigma x1 ... xk s1 ... sm = Sigma \{f1 : : e1 -> e1',..., } \\
\text { fn : : en -> en'\} }
\end{array}
$$

Examples

```
data Nat nat = Nat {zero :: nat, succ :: nat -> nat}
data List x list = List {nil :: list, cons :: x -> list -> list}
```

```
data Reg cs reg = Reg {eps,mt :: reg, con :: cs -> reg,
    par,seq :: reg -> reg -> reg,
    iter :: reg -> reg}
data Conat nat = Conat {pred :: nat -> Maybe nat}
data Colist x list = Colist {split :: list -> Maybe (x,list)}
data DAut x y state = DAut {delta :: state -> x -> state,
    beta :: state -> y}
```

Evaluation of terms and formulas
Let V be a $\mathbb{T}(S, B S)$-sorted set of variables, A be a Σ-algebra and A^{V} be the set of valuations of V in A, i.e., $\mathbb{T}(S, B S)$-sorted functions from V to A.

For all $g \in A^{V}, e \in \mathbb{T}(S, B S), a \in A_{e}, x \in V_{e}$ and $z \in V$.

$$
g[a / x](z)={ }_{\operatorname{def}} \begin{cases}a & \text { if } z=x \\ g(z) & \text { otherwise }\end{cases}
$$

The $\mathbb{T}(S, B S)$-sorted extension $g^{*}: T_{\Sigma}(V) \rightarrow A$ of g

is defined as follows:

- For all $x \in V, g^{*}(x)=g(x)$.
- For all $x \in X \in \cup B S, g^{*}(x)=x$.
- For all $n>1, e_{1}, \ldots, e_{n} \in \mathbb{T}(S, B S), t=\left(t_{1}, \ldots, t_{n}\right) \in T_{\Sigma}(V)_{e_{1} \times \cdots \times e_{n}}$ and $1 \leq i \leq n$, $g^{*}\left(\pi_{i} t\right)=g^{*}\left(t_{i}\right)$.
- For all $n>1, e_{1}, \ldots, e_{n} \in \mathbb{T}(S, B S), 1 \leq i \leq n$ and $t \in T_{\Sigma}(V)_{e_{i}}, g^{*}\left(\iota_{i} t\right)=\left(g^{*}(t), i\right)$.
- For all $n \in \mathbb{N}$ and $t_{1}, \ldots, t_{n} \in T_{\Sigma}(V), g^{*}\left(t_{1}, \ldots, t_{n}\right)=\left(g^{*}\left(t_{1}\right), \ldots, g^{*}\left(t_{n}\right)\right)$.
- For all $f: e \rightarrow e^{\prime} \in F$ and $t \in T_{\Sigma}(V)_{e}, g^{*}(f(t))=f^{A}\left(g^{*}(t)\right)$.
- For all $c \in\{$ word, bag, set $\}, c(t) \in T_{\Sigma}(V)_{c(e)}, g^{*}(c(t))=\left[g^{*}(t)\right]_{=_{c}}$.
- For all $n>0, e_{1}, \ldots, e_{n}, e \in \mathbb{T}(S, B S), x \in V_{e_{1}} \cup \cdots \cup V_{e_{n}}, t_{i} \in T_{\Sigma}(V)_{e}, 1 \leq i \leq n$, and $(a, i) \in A_{e_{1}+\cdots+e_{n}}$,

$$
g^{*}\left(\lambda x .\left(t_{1}|\ldots| t_{n}\right)\right)(a, i)=g[a / x]^{*}\left(t_{i}\right)
$$

- For all $e, e^{\prime} \in \mathbb{T}(S, B S), t \in T_{\Sigma}(V)_{e^{e^{\prime}}}$ and $u \in T_{\Sigma}(V)_{e^{\prime}}, g^{*}(t(u))=g^{*}(t)\left(g^{*}(u)\right)$.
- For all $e \in \mathbb{T}(S, B S), t \in T_{\Sigma}(V)_{2}$ and $u, v \in T_{\Sigma}(V)_{e}$,

$$
g^{*}(i t e(t, u, v))= \begin{cases}g^{*}(u) & \text { if } g^{*}(t)=1 \\ g^{*}(v) & \text { otherwise }\end{cases}
$$

A Σ-term t is first-order if the range of each subterm of t is first-order.
For all $e \in \mathbb{T}(S, B S)$ and first-order Σ-terms t, we define:

$$
\begin{aligned}
t^{A}: A^{V} & \rightarrow A_{e} \\
g & \mapsto g^{*}(t)
\end{aligned}
$$

$\bar{t}:{ }_{-}{ }^{V} \rightarrow F_{e} U_{S}$ with $\bar{t}_{A}={ }_{\text {def }} t^{A}$ for all $A \in A l g_{\Sigma}$ is a natural transformation:

(1) is equivalent to the Substitution Lemma:

For all $g \in A^{V}$, Σ-homomorphisms $h: A \rightarrow B$ and first-order Σ-terms t,

$$
\begin{equation*}
(h \circ g)^{*}(t)=\left(h \circ g^{*}\right)(t) . \tag{2}
\end{equation*}
$$

A interprets a Σ-formula φ over V by the set $\varphi^{A} \subseteq A^{V}$ of valuations that satisfy φ and is inductively defined as follows:

For all $e \in \mathbb{T}(S, B S), p: e \in P, t, u \in T_{\Sigma}(V)_{e}, \varphi, \psi \in F_{o_{\Sigma}}(V), s \in S \cup B S$ and $x \in V_{s}$,

$$
\begin{array}{ll}
\text { True }^{A} & =A^{V}, \\
\text { False }^{A} & =\emptyset, \\
p(t)^{A} & =\left\{g \in A^{V} \mid g^{*}(t) \in p^{A}\right\}, \\
(\neg \varphi)^{A} & =A^{V} \backslash \varphi^{A}, \\
(\varphi \wedge \psi)^{A} & =\varphi^{A} \cap \psi^{A}, \\
(\varphi \vee \psi)^{A} & =\varphi^{A} \cup \psi^{A}, \\
(\varphi \Rightarrow \psi)^{A} & =(\psi \Leftarrow \varphi)^{A}=(\neg \varphi \vee \psi)^{A},
\end{array}
$$

$$
\begin{array}{ll}
(\psi \Leftrightarrow \varphi)^{A} & =(\varphi \Rightarrow \psi)^{A} \cap(\varphi \Leftarrow \psi)^{A} \\
(\forall x \varphi)^{A} & =\left\{g \in A^{V} \mid \forall a \in A_{s}: g[a / x] \in \varphi^{A}\right\}, \\
(\exists x \varphi)^{A} & =\left\{g \in A^{V} \mid \exists a \in A_{s}: g[a / x] \in \varphi^{A}\right\} .
\end{array}
$$

A satisfies $\varphi \in F_{\Sigma}(V)$, written as $A \models \varphi$, if $\varphi^{A}=A^{V}$.

The Substitution Lemma implies:
For all negation-free Σ-formulas $\varphi, g \in A^{V}$ and Σ-homomorphisms $h: A \rightarrow B$,

$$
g \in \varphi^{A} \quad \Rightarrow \quad h \circ g \in \varphi^{B} .
$$

Initial and final algebras

An S-sorted binary relation R on A is a Σ-congruence on A if for all $f: e \rightarrow e^{\prime} \in F$ and $(a, b) \in R_{e},\left(f^{A}(a), f^{A}(b)\right) \in R_{e^{\prime}}$.

If Σ is destructive, then Σ-congruences are also called Σ-bisimulations.
An S-sorted subset B of A is a Σ-invariant (or Σ-subalgebra of A) if for all $f: e \rightarrow e^{\prime} \in F$ andl $a \in A_{e}, f^{A}(a) \in A_{e^{\prime}}$.

A Σ-algebra A satisfies the induction principle if for all S-sorted subsets B of A, $A \subseteq B$ iff B contains a \sum-invariant.
A is initial in $A l g_{\Sigma} \Longleftrightarrow A$ satisfies the induction principle and for all Σ-algebras B there is a Σ-homomorphism from A to B.

A Σ-algebra A satisfies the coinduction principle if for all S-sorted binary relations R on $A, R \subseteq \Delta_{A}$ iff R is contained in a Σ-congruence.
A is final in $A l g_{\Sigma} \Longleftrightarrow A$ satisfies the coinduction principle and for all Σ-algebras B there is a Σ-homomorphism from B to A.

Terms for constructive signatures
Let $\Sigma=(S, B S, B F, F)$ be a constructive signature.
T_{Σ} is a \sum-algebra:
For all $f: e \rightarrow s \in F$ and $t \in T_{\Sigma, e}, f^{T_{\Sigma}(t)}=_{d e f} f t$.

Let \sim be the least $\mathbb{F} \mathbb{T}(S, B S)$-sorted equivalence relation on T_{Σ} such that

- for all $n>1, e_{1}, \ldots, e_{n} \in \mathbb{F} \mathbb{T}(S, B S)$ and $t_{i}, t_{i}^{\prime} \in T_{\Sigma, e_{i}}, 1 \leq i \leq n$,

$$
t_{1} \sim_{e_{1}} t_{1}^{\prime} \wedge \cdots \wedge t_{n} \sim_{e_{n}} t_{n}^{\prime} \text { implies }\left(t_{1}, \ldots, t_{n}\right) \sim_{e_{1} \times \cdots \times e_{n}}\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)
$$

- for all $n>1, e \in \mathbb{F} \mathbb{T}(S, B S)$ and $t_{i}, t_{i}^{\prime} \in T_{\Sigma, e}, 1 \leq i \leq n$,

$$
t_{1} \sim_{e} t_{1}^{\prime} \wedge \cdots \wedge t_{n} \sim_{e} t_{n}^{\prime} \text { implies } \operatorname{word}\left(t_{1}, \ldots, t_{n}\right) \sim_{\operatorname{word}(s)} \operatorname{word}\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)
$$

- for all $n>1, e \in \mathbb{F} \mathbb{T}(S, B S), f:[n] \xrightarrow{\sim}[n]$ and $t_{i}, t_{i}^{\prime} \in T_{\Sigma, e}, 1 \leq i \leq n$,

$$
t_{1} \sim_{e} t_{1}^{\prime} \wedge \cdots \wedge t_{n} \sim_{e} t_{n}^{\prime} \quad \text { implies } \operatorname{bag}\left(f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right) \sim_{b a g(s)} \operatorname{bag}\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)
$$

- for all $m, n>0, e \in \mathbb{F} \mathbb{T}(S, B S), t_{i} \in T_{\Sigma, e}, i \in[m]$, and $t_{i}^{\prime} \in T_{\Sigma, e}, 1 \leq i \leq n$,

$$
\begin{aligned}
\forall 1 \leq i \leq m \exists 1 \leq j \leq & n: t_{i} \sim_{e} t_{j}^{\prime} \wedge \forall 1 \leq j \leq n \exists 1 \leq i \leq m: t_{i} \sim_{e} t_{j}^{\prime} \\
& \text { implies } \operatorname{set}\left(t_{1}, \ldots, t_{m}\right) \sim_{\operatorname{set}(s)} \operatorname{set}\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right),
\end{aligned}
$$

- for all $s \in S, f: e \rightarrow s \in F$ and $t, t^{\prime} \in T_{\Sigma, e}, t \sim_{e} t^{\prime}$ implies $f t \sim_{s} f t^{\prime}$,
- for all $X \in B S, \sim_{X}=\Delta_{X}$.

For simplicity, we identify T_{Σ} with T_{Σ} / \sim.
T_{Σ} is initial in $A l g_{\Sigma}$.
For all Σ-algebras A, the unique Σ-homomorphism

$$
\text { fold }^{A}: T_{\Sigma} \rightarrow A
$$

is defined inductively as follows:
For all $f: e \rightarrow s \in F, t \in T_{\Sigma, e}, c \in\{$ word, bag, set $\}, e^{\prime} \in S \cup B S$ and $t^{\prime} \in T_{\Sigma, e^{\prime}}^{*}$,

$$
\begin{aligned}
f o l d_{s}^{A}(f t) & =f^{A}\left(\operatorname{fold}_{e}^{A}(t)\right) \\
f o l d_{c\left(e^{\prime}\right)}^{A}\left(c\left(t^{\prime}\right)\right) & =\left[\text { fold }_{e^{\prime}}^{A}\left(t^{\prime}\right)\right]_{=_{c}}
\end{aligned}
$$

Haskell implementation of T_{Σ} and fold
All collection types are implemented by Haskell's list type.
Let $B S=\left\{X_{1}, \ldots, X_{k}\right\}, S=\left\{s_{1}, \ldots, s_{m}\right\}$ and

$$
F=\left\{c_{i j}: e_{i j} \rightarrow s_{i} \mid 1 \leq i \leq m, 1 \leq j \leq n_{i}\right\}
$$

i.e., $A l g_{\Sigma}$ is implemented by the following datatype:

```
data Sigma x1 ... xk s1 ... sm =
    Sigma {c11 :: e11 -> s1,...,c1n_1 :: e1n_1 -> s1,
        cm1 :: em1 -> sm,...,cmn_m :: emn_m -> sm}
```

The following datatypes provide the carriers of T_{Σ} :

```
data S1T x1 ... xk = C11 E11T | ... | C1n_1 E1n_1T
data SmT x1 ... xk = Cm1 Em1T | ... | Cmn_m Emn_mT
```

The algebra T_{Σ} is then defined as follows:

```
sigmaT :: Sigma x1 ... xk (S1T x1 ... xk) ... (SmT x1 ... xk)
sigmaT = Sigma C11 ... C1n_1 ... Cm1 ... Cmn_m
```

Let $1 \leq i \leq m$.
foldSi :: Sigma x1 ... xk s1 ... sm -> SiT x1 ... xk -> si
foldSi alg ti = case ti of Ci1 t -> ci1 alg \$ foldEi1 alg t Cin_i t -> cin_i alg \$ foldEin_i alg t
foldWordSi,foldBagSi,foldSetSi : : Sigma x1 ... xk s1 ... sm -> [SiT x1 ... xk] -> [si]
foldWordSi = map . foldSi
foldBagSi = map . foldSi
foldSetSi = map . foldSi

Let $1 \leq i \leq k$.

```
foldxi :: Sigma x1 ... xk s1 ... sm -> xi -> xi
foldxi _ = id
```

foldE1x...xEn : : Sigma x1 ... xk s1 ... sm -> (E1T,..., EnT)
-> (E1,..., En)
foldE1x...xEn alg (t1,...,tn) = (foldE1 alg t1,...,foldEn alg tn)

Examples

```
data NatT = Zero | Succ NatT
natT :: Nat NatT
natT = Nat Zero Succ
foldNat :: Nat nat -> NatT -> nat
foldNat alg t = case t of Zero -> zero alg
    Succ t -> succ alg $ foldNat alg t
```

```
data ListT x = Nil | Cons x (ListT x)
listT :: List x (ListT x)
listT = List Nil Cons
foldList :: List x list -> ListT x -> list
foldList alg t = case t of Nil -> nil alg
    Cons x t -> cons alg x $ foldList alg t
data RegT cs = Eps | Mt | Con cs | Par (RegT cs) (RegT cs) |
    Seq (RegT cs) (RegT cs) | Iter (RegT cs)
regT :: Reg cs (RegT cs)
regT cs = Reg Eps Mt Con Var Par Seq Iter
```

```
foldReg :: Reg cs reg -> RegT cs -> reg
foldReg alg t = case t of
    Eps -> eps alg
    Mt -> mt alg
    Con c -> con alg c
    Par t u -> par alg (foldReg alg t) $ foldReg alg u
    Seq t u -> seq alg (foldReg alg t) $ foldReg alg u
    Iter t -> iter alg $ foldReg alg t
```

Coterms for destructive signatures
Let $\Sigma=(S, B S, B F, F)$ be a destructive signature and

$$
L a b_{\Sigma}=\left\{(d, x, i) \mid d: s \rightarrow\left(e_{1}+\cdots+e_{n}\right)^{X} \in F, x \in X, 1 \leq i \leq n\right\} \cup \mathbb{N} .
$$

For all $d: s \rightarrow e^{X}, a \in A_{s}$ and $x \in X, d_{x}^{A}(a)={ }_{d e f} d^{A}(a)(x)$.
$c o T_{\Sigma}$ denotes the greatest $\mathbb{F} \mathbb{T}(S, B S)$-sorted set of prefix closed partial functions

$$
t: L a b_{\Sigma}^{*} \multimap 1+\{\text { word }, \text { bag }, \text { set }\}+\cup B S
$$

such that the following conditions hold true:

- For all $s \in S, t \in \operatorname{co} T_{\Sigma, s}, d: s \rightarrow\left(e_{1}+\cdots+e_{n}\right)^{X} \in F$ and $x \in X, t(\epsilon)=\epsilon$ and there is $1 \leq i \leq n$ such that $(d, x, i) \in \operatorname{def}(t), \lambda w \cdot t((d, x, i) w) \in c o T_{\Sigma, e_{i}}$ and for all $(d, x, i),(d, x, j) \in \operatorname{def}(t), \operatorname{dom}(d)=s$ and $i=j$.
- For all $c \in\{$ word, bag, set $\}, s \in S \cup B S$ and $t \in c o T_{\Sigma, c(s)}, t(\epsilon)=c$ and there is $n \in \mathbb{N}$ such that for all $1 \leq i \leq n$, $\lambda w . t(i w) \in c o T_{\Sigma, s}$, and $\operatorname{def}(t) \cap L a b_{\Sigma}=[n]$.
- For all $X \in B S, \operatorname{co} T_{\Sigma, X}=X$ (here identified with the set $1 \rightarrow X$ of functions).

The elements of $c o T_{\Sigma}$ are called Σ-coterms.

A Σ-coterm with destructors f_{1}, \ldots, f_{8} that map into sum types.
Each root of a subcoterm is labelled with its sort.
Each leaf is labelled with a base element. Three dots stand for an infinite coterm.

For all $t \in c o T_{\Sigma}$, let $\operatorname{def}_{1}(t)=\operatorname{def}(t) \cap L a b_{\Sigma}$.
Let \sim be the greatest $\mathbb{F} \mathbb{T}(S, B S)$-sorted equivalence relation on $c o T_{\Sigma}$ such that

- for all $s \in S, t \sim_{s} t^{\prime}$ and $d \in \operatorname{def}_{1}(t)$, $\lambda w . t(d w) \sim \lambda w . t^{\prime}(d w)$,
- for all $s \in S \cup B S$ and $t \sim_{\text {word }(s)} t^{\prime}, D={ }_{\text {def }} \operatorname{def}_{1}(t)=\operatorname{def}_{1}\left(t^{\prime}\right)$ and for all $i \in D$, $\lambda w . t(i w) \sim_{s} \lambda w \cdot t^{\prime}(i w)$,
- for all $s \in S \cup B S$ and $t \sim_{\text {bag(s) }} t^{\prime}, D=_{\text {def }} \operatorname{def} f_{1}(t)=\operatorname{def}_{1}\left(t^{\prime}\right)$ and there is $f:[n] \xrightarrow{\sim}[n]$ such that for all $i \in D, \lambda w . t(i w) \sim_{s} \lambda w \cdot t^{\prime}(f(i) w)$,
- for all $s \in S \cup B S, t \sim_{\operatorname{set}(s)} t^{\prime}$ and $i \in \operatorname{def} f_{1}(t)$ there is $j \in \operatorname{def} f_{1}\left(t^{\prime}\right)$ such that $\lambda w . t(i w) \sim_{s} \lambda w . t^{\prime}(j w)$, for all $s \in S \cup B S, t \sim_{s e t(s)} t^{\prime}$ and $j \in \operatorname{def}_{1}\left(t^{\prime}\right)$ there is $i \in \operatorname{def}_{1}(t)$ such that $\lambda w . t(i w) \sim_{s} \lambda w . t^{\prime}(j w)$,
- for all $X \in B S, \sim_{X}=\Delta_{X}$.

For simplicity, we identify $\operatorname{co} T_{\Sigma}$ with $c o T_{\Sigma} / \sim$.
$c o T_{\Sigma}$ is a Σ-algebra:
For all $s \in S, t \in \operatorname{co} T_{\Sigma, s}, d: s \rightarrow\left(e_{1}+\cdots+e_{n}\right)^{X} \in F, x \in X$ and $w \in L a b_{\Sigma}^{*}$,

$$
(d, x, i) \in \operatorname{def}(t) \quad \Rightarrow \quad d^{c o T_{\Sigma}}(t)(x)(w)=t((d, i, x) w)
$$

Example 1

Let $L=\{(\delta, x) \mid x \in X\} . \operatorname{co} T_{D A u t(X, Y)}$ consists of all functions from $L^{*}+L^{*} \beta$ to $1+Y$, that for all $w \in L^{*}$ map w to ϵ and $w \beta$ to an element of Y :

$$
\operatorname{co} T_{D A u t(X, Y)} \cong 1^{L^{*}} \times Y^{L^{*} \beta} \cong Y^{L^{*} \beta} \stackrel{L^{*} \beta \cong X^{*}}{\cong} Y^{X^{*}}
$$

Hence co $T_{D A u t(X, Y)}$ is $\operatorname{DAut}(X, Y)$-isomorphic to the $\operatorname{DAut}(X, Y)$-algebra $\operatorname{Beh}(X, Y)$ of behavior functions that is defined as follows:

$$
\operatorname{Beh}(X, Y)_{\text {state }}=Y^{X^{*}}
$$

For all $f: X^{*} \rightarrow Y, x \in X$ und $w \in X^{*}$,

$$
\delta^{\operatorname{Beh}(X, Y)}(f)(x)(w)=f(x w) \quad \text { and } \quad \beta^{\operatorname{Beh}(X, Y)}(f)=f(\epsilon)
$$

$$
\text { A DAut }(\{x, y, z\}, Y) \text {-coterm of sort state }
$$

$c o T_{\Sigma}$ is final in $A l g_{\Sigma}$.
For all Σ-algebras A, the unique Σ-homomorphism unfold ${ }^{A}: A \rightarrow c o T_{\Sigma}$ is defined as follows: For all $s \in \mathbb{F} \mathbb{T}(S, B S), a \in A_{s},(d, x, i) \in L a b_{\Sigma}, w \in \operatorname{Lab}_{\Sigma}^{*}$ and $k \in \mathbb{N}$,

$$
\begin{aligned}
& \text { unfold }_{s}^{A}(a)(\epsilon)= \epsilon, \\
& \text { unfold }_{s}^{A}(a)((d, x, i) w)= \begin{cases}\text { unfold }_{e_{i}}^{A}(b)(w) & \text { if } d: s \rightarrow\left(e_{1}+\cdots+e_{n}\right)^{X} \in F \\
\text { andefined } d^{A}(a)(x)=(b, i), \\
\text { otherwise, }\end{cases} \\
& \text { unfold }_{s}^{A}(a)(k w)= \begin{cases}\text { unfold }_{s}^{A}\left(a_{k}\right)(w) & \text { if } \exists c \in\{w o r d, \text { bag, set }\}, e \in S \cup B S: \\
s=c(e), a=\left[\left(a_{1}, \ldots, a_{n}\right)\right]_{=c} \\
\text { undefined } & \text { otherwise. }\end{cases}
\end{aligned}
$$

Example 2

Let A be a $\operatorname{DAut}(X, Y)$-algebra, $\xi: \operatorname{Beh}(X, Y) \rightarrow c o T_{D A u t(X, Y)}$ be the isomorphism of Example 1 and unfold $B: A \rightarrow B e h(X, Y)$ be defined as follows:

For all $a \in A_{\text {state }}, x \in X$ and $w \in X^{*}$,

$$
\begin{aligned}
\text { unfold } B^{A}(a)(\epsilon) & =\beta^{A}(a) \\
\text { unfold } B^{A}(a)(x w) & =\text { unfold } B^{A}\left(\delta^{A}(a)(x)\right)(w)
\end{aligned}
$$

Since unfold B is $\operatorname{DAut}(X, Y)$-homomorphic,

$$
\text { unfold }^{A}=\xi \circ \operatorname{unfold}^{A}
$$

Haskell implementation of $c o T_{\Sigma}$ and unfold
Again, all collection types are implemented by Haskell's list type.

Let $B S=\left\{X_{1}, \ldots, X_{k}\right\}, S=\left\{s_{1}, \ldots, s_{m}\right\}$ and

$$
F=\left\{d_{i j}: s_{i} \rightarrow e_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq n_{i}\right\}
$$

i.e., $A l g_{\Sigma}$ is implemented by the following datatype:

```
data Sigma x1 ... xk s1 ... sm =
    Sigma {d11 :: s1 -> e11,...,d1n_1 :: s1 -> e1n_1,
        dm1 :: sm -> em1,...,dmn_m :: sm -> emn_m}
```

The following datatypes provide the carriers of $\operatorname{co} T_{\Sigma}$:

```
data S1C x1 ... xk = S1C {d11C :: E11C | ... | d1n_1C :: E1n_1C}
```

data SmC x1 ... xk = SmC \{dm1C :: Em1C | ... | dmn_mC :: Emn_mC\}

The algebra $c o T_{\Sigma}$ is then defined as follows:

```
sigmaC :: Sigma x1 ... xk (S1C x1 ... xk) ... (SmC x1 ... xk)
sigmaC = Sigma d11C ... d1n_1C ... dm1C ... dmn_mC
```

Let $1 \leq i \leq m$.

```
unfoldSi :: Sigma x1 ... xk s1 ... sm -> si -> SiC x1 ... xk
unfoldSi alg ai = SiC (unfoldEi1 alg $ di1 alg ai)
    (unfoldEin_i alg $ din_i alg ai)
```

unfoldWordSi,foldBagSi,foldSetSi : : Sigma x1 ... xk s1 ... sm
-> [si] -> [SiT x1 ... xk]
unfoldWordSi = map . unfoldSi
unfoldBagSi = map . unfoldSi
unfoldSetSi = map . unfoldSi
Let $1 \leq i \leq k$ and $n>1$.

```
unfoldxi :: Sigma x1 ... xk s1 ... sm -> xi -> xi
unfoldxi _ = id
unfoldE^xi :: Sigma x1 ... xk s1 ... sm -> (xi -> E) -> xi -> EC
unfoldE^xi alg f = unfoldE alg . f
```

data Sum_n e1 ... en = S1 e1 | ... | Sn en

Let $1 \leq i \leq n$.

unfoldE1+...+En : : Sigma x1 ... xk s1 ... sm | | $->$ Sum_n E1 ... En |
| ---: | :--- |
| | $->$ Sum_n E1C ... EnC |

unfoldE1+...+En alg $a=$ case a of $S 1$ a -> unfoldE1 alg a

Sn a -> unfoldEn alg a

Examples

```
data ConatC = ConatC {predC :: Maybe ConatC}
conatC :: Conat ConatC
conatC = Conat predC
unfoldConat :: Conat nat -> nat -> ConatC
unfoldConat alg nat = ConatC $ do nat <- pred alg nat
                        Just $ unfoldConat alg nat
```

```
data ColistC x = ColistC {splitC :: Maybe (x,ColistC x)}
colistC :: Colist x (ColistC x)
colistC = Colist splitC
unfoldColist :: Colist x list -> list -> ColistC x
unfoldColist alg list = ColistC $ do (x,list) <- split alg list
                                    Just (x,unfoldColist alg list)
data StateC x y = StateC {deltaC :: x -> StateC x y, betaC :: y}
dAutC :: DAut x y (StateC x y)
dAutCot = DAut deltaC betaC
unfoldDAut :: DAut x y state -> state -> StateC x y
unfoldDAut alg state = StateC (unfoldDAut alg . delta alg state)
    (beta alg state)
```


Realization of elements of final algebras

Given a Σ-algebra A, a final Σ-algebra Fin, $a \in A$ and $f \in$ Fin, (A, a) realizes f iff unfold ${ }^{A}(a)=f$.

Example 3

Let A be the following $\operatorname{Acc}(\mathbb{Z})$-algebra:

```
eo :: DAut Int Bool Bool
eo = DAut (\state -> if state then even else not . even) id
```

and

$$
\begin{array}{rlrl}
f: \mathbb{Z}^{*} & \rightarrow 2 & g: \mathbb{Z}^{*} & \rightarrow 2 \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto \sum_{i=1}^{n} x_{i} \text { is even } & \left(x_{1}, \ldots, x_{n}\right) & \mapsto \sum_{i=1}^{n} x_{i} \text { is odd }
\end{array}
$$

Since $h: A \rightarrow \operatorname{Beh}(\mathbb{Z}, 2)$ with $h(1)=f$ and $h(0)=g$ is $\operatorname{Acc}(\mathbb{Z})$-homomorphic,

$$
h=\text { unfold }{ }^{e o} .
$$

Hence $(A, 1)$ realizes f and $(A, 0)$ realizes g.

Recursive equations

Given a constructive signature $C \Sigma=(S, B S, B F, C)$ and a destructive signature $D \Sigma=\left(S, B S^{\prime}, B F^{\prime}, D\right), \Psi=(C \Sigma, D \Sigma)$ is called a bisignature.

Let $\Sigma=C \Sigma \cup D \Sigma$. A set

$$
E=\left\{d c\left(x_{1}, \ldots, x_{n_{c}}\right)=t_{d, c} \mid c: e_{1} \times \cdots \times e_{n_{c}} \rightarrow s \in C, d: s \rightarrow e \in D\right\}
$$

of Σ-equations is a system of recursive Ψ-equations if the following conditions hold true:

- For all $d \in D$ and $c \in C$, $\operatorname{free} \operatorname{Vars}\left(t_{d, c}\right) \subseteq\left\{x_{1}, \ldots, x_{n_{c}}\right\}$.
- C is the union of disjoint sets C_{1} and C_{2}.
- For all $d \in D, c \in C_{1}$ and subterms $d u$ of $t_{d, c}, u$ is a variable and $t_{d, c}$ is a term without elements of C_{2}.
\Rightarrow no nesting of destructors, but possible nestings of constructors of C_{1}
- For all $d \in D, c \in C_{2}$, subterms $d u$ of $t_{d, c}$ and paths p of (the tree representation of) $t_{d, c}, u$ consists of destructors and a variable and p contains at most one occurrence of an element of C_{2}.
\Rightarrow no nesting of constructors of C_{2}, but possible nestings of destructors

Let E be a system of recursive Ψ-equations and A be a $C \Sigma$-algebra. An inductive solution of E in A is a Σ-algebra B with $\left.B\right|_{C \Sigma}=A$ that satisfies E.
(1) If C_{2} is empty, then E has a unique inductive solution in every initial $C \sum$-algebra.

Let E be a system of recursive Ψ-equations and A be a $D \Sigma$-algebra. A coinductive solution of E in A is a Σ-algebra B with $\left.B\right|_{D \Sigma}=A$ that satisfies E.
(2) E has a unique coinductive solution in every final $D \Sigma$-algebra. Moreover, $T_{C \Sigma} \in A l g_{D \Sigma}, c o T_{D \Sigma} \in A l g_{C \Sigma}$ and fold $^{c o T_{D \Sigma}}=u n f o l d^{T_{C \Sigma}}$.

Example 4

Let

$$
C \Sigma=\left(\{\text { list }\}, \emptyset, \emptyset,\left\{\text { evens }, \text { odds }, \text { exchange }, \text { exchange }{ }^{\prime}: \text { list } \rightarrow \text { list }\right\}\right)
$$

$\Psi=(C \Sigma, \operatorname{Stream}(X))$ and $s \in V$. The equations

$$
\begin{aligned}
& \operatorname{head}(\operatorname{evens}(s)) \quad=\operatorname{head}(s), \quad \operatorname{tail}(\operatorname{evens}(s)) \quad=\operatorname{evens}(\operatorname{tail}(\operatorname{tail}(s))) \text {, } \\
& \text { head }(\operatorname{odds}(s))=\operatorname{head}(\operatorname{tail}(s)), \operatorname{tail}(\operatorname{odds}(s)) \quad=\operatorname{odds}(\operatorname{tail}(\operatorname{tail}(s))) \text {, } \\
& \operatorname{head}(\operatorname{exchange}(s))=\operatorname{head}(\operatorname{tail}(s)), \quad \operatorname{tail}(\operatorname{exchange}(s))=\operatorname{exchange}^{\prime}(s) \text {, } \\
& \left.\operatorname{head}^{(\operatorname{exchange}}(s)\right)=\operatorname{head}(s), \quad \operatorname{tail}\left(\operatorname{exchange}^{\prime}(s)\right)=\operatorname{exchange}(\operatorname{tail}(\operatorname{tail}(s)))
\end{aligned}
$$

form a system E of recursive Ψ-equations.
evens (s) und $o d d s(s)$ list the elements of s at even resp. odd positions. exchange (s) exchanges the elements at even positions with those at odd positions.
$(2) \Longrightarrow E$ has a unique coinductive solution in the final $\operatorname{Stream}(X)$-algebra.

Example 5

Let $C S$ be a set of nonempty sets of constants, $X=\bigcup C S$,

$$
\begin{aligned}
& D \Sigma=(\{r e g\},\{2, X\}, \\
&\{\max , *: 2 \times 2 \rightarrow 2\} \cup\{-\in C: X \rightarrow 2 \mid C \in C S\}, \\
&\left.\left\{\delta: r e g \rightarrow r e g^{X}, \beta: r e g \rightarrow 2\right\}\right), \\
& \Psi=(\operatorname{Reg}(C S), D \Sigma), C \in C S \text { and } t, u \in V . \text { The equations }
\end{aligned}
$$

$$
\begin{aligned}
& \delta(e p s)=\lambda x \cdot m t \\
& \delta(m t)=\lambda x \cdot m t \\
& \delta(\bar{C})=\lambda x \cdot i t e(\chi(C)(x), e p s, m t) \\
& \delta(\operatorname{par}(t, u))=\lambda x \cdot p a r(\delta(t)(x), \delta(u)(x)), \\
& \delta(\operatorname{seq}(t, u))=\lambda x \cdot i t e(\beta(t), \operatorname{par}(\operatorname{seq}(\delta(t)(x), u), \delta(u)(x)) \\
&\quad \operatorname{seq}(\delta(t)(x), u)), \\
& \delta(i \operatorname{ter}(t))=\lambda x \cdot \operatorname{seq}(\delta(t)(x), i t e r(t)), \\
& \beta(e p s)=1, \\
& \beta(m t)=0 \\
& \beta(\bar{C})=0
\end{aligned}
$$

$$
\begin{aligned}
\beta(\operatorname{par}(t, u)) & =\max \{\beta(t), \beta(u)\} \\
\beta(\operatorname{seq}(t, u)) & =\beta(t) * \beta(u) \\
\beta(\text { iter }(t)) & =1
\end{aligned}
$$

form the system $B R E$ of recursive Ψ-equations.
$(1) \Longrightarrow B R E$ has a unique inductive solution A in the initial $\operatorname{Reg}(C S)$-algebra $T_{R e g(C S)}$. $\operatorname{Bro}(C S)=\left.\operatorname{def} A\right|_{A c c(X)}$ is called the Brzozowski automaton.
$(2) \Longrightarrow B R E$ has a unique coinductive solution B in the final $\operatorname{Acc}(X))$-algebra $\operatorname{Pow}(X)$,
which is defined as follows:
For all $L \subseteq X^{*}$ and $x \in X$,

$$
\begin{aligned}
\operatorname{Pow}(X)_{\text {state }} & =\mathcal{P}\left(X^{*}\right), \\
\delta^{\text {Pow }(X)}(L)(x) & =\left\{w \in X^{*} \mid x w \in L\right\}, \\
\beta^{\text {Pow }(X)}(L) & = \begin{cases}0 & \text { falls } \epsilon \in L \\
1 & \text { sonst. }\end{cases}
\end{aligned}
$$

$\operatorname{Lang}(X)=\left.B\right|_{\operatorname{Reg}(C S)}$ is defined as follows:
For all $L, L^{\prime} \subseteq X^{*}$ and $C \in C S$,

$$
\begin{aligned}
e p s^{\operatorname{Lang}(X)} & =\{\epsilon\}, \\
m t^{\operatorname{Lang}(X)} & =\emptyset, \\
\bar{C}^{\operatorname{Lang}(X)} & =C, \\
\operatorname{par}^{\operatorname{Lang}(X)}\left(L, L^{\prime}\right) & =L \cup L^{\prime}, \\
\operatorname{seq}^{\operatorname{Lang}(X)}\left(L, L^{\prime}\right) & =L \cdot L^{\prime}, \\
\operatorname{iter}^{\operatorname{Lang}(X)}(L) & =L^{*} .
\end{aligned}
$$

$$
(2) \Longrightarrow \text { fold }^{\operatorname{Lang}(X)}=\text { unfold }^{\operatorname{Bro}(C S)}: T_{\operatorname{Reg}(C S)} \rightarrow \mathcal{P}\left(X^{*}\right)
$$

\Longrightarrow For all $t \in T_{\operatorname{Reg}(C S)},(\operatorname{Bro}(C S), t)$ realizes the characteristic function of the language fold ${ }^{\operatorname{Lang}(X)}(t)$ of t.

Bro $(C S)$ can be optimized to $\operatorname{Norm}(C S)$ by simplifying its states with respect to semiring axioms between each two transition steps:
For all $t \in T_{\text {Reg }(C S)}, \delta^{\operatorname{Norm}(C S)}(t)=_{\text {def }}$ reduce $\circ \delta^{\operatorname{Bro}(C S)}(t)$.

Let $\Psi=(C \Sigma, D \Sigma)$ be a bisignature, $C \Sigma=(S, B S, B F, C), D \Sigma=\left(S, B S^{\prime}, B F^{\prime}, D\right)$, A be a $(C \Sigma \cup D \Sigma)$-algebra and \sim be an S-sorted relation on A.

The C-equivalence closure \sim_{C} of \sim is the least S-sorted equivalence relation on A that contains \sim and satisfies the following condition: For all $c: e \rightarrow s \in C$ and $a, b \in A_{e}$,

$$
a \sim_{C} b \quad \text { implies } \quad c^{A}(a) \sim_{C} c^{A}(b)
$$

\sim is a $D \Sigma$-congruence up to C if for all $d: s \rightarrow e \in D$ and $a, b \in A_{s}$,

$$
a \sim b \quad \text { implies } \quad d^{A}(a) \sim_{C} d^{A}(b)
$$

$\left.\begin{array}{l}\left.A\right|_{D \Sigma} \text { is final in } A l g_{D \Sigma}, \\ \sim \text { is a } D \Sigma \text {-congruence up to } C \text {, } \\ \text { there is a system of recursive } \Psi \text {-equations }\end{array}\right\} \Longrightarrow \sim_{C}$ is a $D \Sigma$-congruence.

Example 6

Let Ψ be as in Example 5 and $V=\{x, y, z\}$,

$$
\sim=\left\{\left(g^{*}(\operatorname{seq}(x, \operatorname{par}(y, z))), g^{*}(\operatorname{par}(\operatorname{seq}(x, y), \operatorname{seq}(x, z))) \mid g: T_{\operatorname{Reg}(C S)}(V) \rightarrow \operatorname{Pow}(X)\right\}\right.
$$ is an $\operatorname{Acc}(X)$-congruence up to C.

\Longrightarrow Since $\operatorname{Pow}(X)$ is final in $\operatorname{Alg} g_{\operatorname{Acc}(X)}$, (3) implies that \sim_{C} is $\operatorname{Acc}(X)$-congruence.
\Longrightarrow Since $\operatorname{Pow}(X)$ satisfies the coinduction principle, $\sim \subseteq \Delta_{\operatorname{Pow}(X)}$ and thus

$$
\operatorname{Pow}(X) \models \operatorname{seq}(x, \operatorname{par}(y, z))=\operatorname{par}(\operatorname{seq}(x, y), \operatorname{seq}(x, z)) .
$$

Given a bisignature Ψ, we have seen that a system E of recursive Ψ-equations defines

- destructors on constructors inductively or
- constructors on destructors coinductively.

Similarly,

- the rules of a structural operational semantics (SOS) or a transition system specification
- or a distributive law $\lambda: T D \rightarrow D T$ of an endofunctor T over an endofunctor D provide both
- an inductive definition of a semantics (destructors; D) of the syntax (constructors; T) of some language and
- a coinductive definition of the constructors on the language's behavioral model, given by the destructors.

Can λ be derived from Ψ such that $(C \Sigma \cup D \Sigma)$-algebras satisfying E correspond to λ bialgebras?

With regard to their domain and range types, functions that come as inductive or coinductive solutions of systems of recursive Ψ-equations are destructors or constructors, respectively.

Recursion schemas that define functions with more general domain or range types have been studied mainly in category-theoretical settings like distributive laws or adjunctions. For instance, in Ralf Hinze, Adjoint Folds and Unfolds, functions are defined as adjoint (co)extensions of folds or unfolds.

We think that most examples investigated in category-theoretical settings can be presented as systems of recursive Ψ-equations. Maybe, in some cases, the syntactic conditions given here must be weakened, but in many cases, they will already be weak enough - due to our powerful term language that involves polynomial as well as power and collection types.

Here are some modeling formalisms where coinductive definability has already been studied in detail:

- basic process algebra
\cdots Rutten, Processes as Terms: Non-well-founded Models for Bisimulation
- stream expressions and infinite sequences
\rightarrow Rutten, A Coinductive Calculus of Streams
- tree expressions and infinite trees
\cdots Silva, Rutten, A Coinductive Calculus of Binary Trees
- arithmetic expressions and valuations, CCS and transition trees ∞ Hutton, Fold and Unfold for Program Semantics
- stream function expressions and causal stream functions
∞ Hansen, Rutten, Symbolic Synthesis of Mealy Machines from Arithmetic Bitstream Functions

Iterative equations

Let $\Sigma=(S, B S, B F, F)$ be a constructive signature and V be an S-sorted set.
An S-sorted function

$$
E: V \rightarrow T_{\Sigma}(V)
$$

with $\operatorname{img}(E) \cap V=\emptyset$ is called a system of iterative Σ-equations.
Let A be a Σ-algebra and A^{V} be the set of S-sorted functions from V to A.
$g \in A^{V}$ solves E in A if $g^{*} \circ E=g$.

Iterative equations are uniquely solvable in the following tree model:
$C T_{\Sigma}$ denotes the greatest $\mathbb{F T}(S, B S)$-sorted set of prefix closed partial functions

$$
t: \mathbb{N}^{*} \multimap F+\{\text { word, bag, set }\}+\cup B S
$$

such that

- for all $s \in S$ and $t \in C T_{\Sigma, s}$ there are $n>0$ and $e_{1}, \ldots, e_{n} \in \mathbb{F} \mathbb{T}(S, B S)$ with $t(\epsilon): e_{1} \times \cdots \times e_{n} \rightarrow s \in F, \operatorname{def}(t) \cap \mathbb{N}=[n]$ and $\lambda w \cdot t(i w) \in C T_{\Sigma, e_{i}}$ for all $1 \leq i \leq n$,
- for all $c \in\{$ word, bag, set $\}, s \in S \cup B S$ and $t \in C T_{\Sigma, c(s)}$ there is $n_{t} \in \mathbb{N}$ with $t(\epsilon)=c, \operatorname{def}(t) \cap \mathbb{N}=\left[n_{t}\right]$ and $\lambda w . t(i w) \in C T_{\Sigma, s}$ for all $1 \leq i \leq n_{t}$,
- for all $X \in B S, C T_{\Sigma, X}=X$ (again identified with the set $1 \rightarrow X$ of functions).

Let \sim be the greatest $\mathbb{F T}(S, B S)$-sorted equivalence relation on $C T_{\Sigma}$ such that

- for all $s \in S$ and $t \sim_{s} t^{\prime}, t(\epsilon)=t^{\prime}(\epsilon)$ and for all $i \in \mathbb{N}, \lambda w \cdot t(i w) \sim \lambda w \cdot t^{\prime}(i w)$,
- for all $s \in S \cup B S$ and $t \sim_{\text {word }(s)} t^{\prime}, n_{t}=n_{t^{\prime}}$ and for all $i \in\left[n_{t}\right]$, $\lambda w . t(i w) \sim_{s} \lambda w . t^{\prime}(i w)$,
- for all $s \in S \cup B S, t \sim_{\text {bag(s) }} t^{\prime}$ and $f:\left[n_{t}\right] \rightarrow\left[n_{t}\right], n_{t}=n_{t^{\prime}}$ and for all $i \in\left[n_{t}\right]$, $\lambda w . t(f(i) w) \sim_{s} \lambda w . t^{\prime}(i w)$,
- for all $s \in S \cup B S, t \sim_{\text {set }(s)} t^{\prime}, i \in\left[n_{t}\right]$ and $j \in\left[n_{t^{\prime}}\right]$ there are $k \in\left[n_{t^{\prime}}\right]$ and $l \in\left[n_{t}\right]$ such that $\lambda w . t(i w) \sim_{s} \lambda w . t^{\prime}(k w)$ and $\lambda w . t(l w) \sim_{s} \lambda w \cdot t^{\prime}(j w)$,
- for all $X \in B S, \sim_{X}=\Delta_{X}$.

For simplicity, we identify $C T_{\Sigma}$ with $C T_{\Sigma} / \sim$.
The elements of $C T_{\Sigma}$ are called Σ-trees.

$C T_{\Sigma}$ is a Σ-algebra:

For all $f: e \rightarrow s \in F, t=\left(t_{1}, \ldots, t_{n}\right) \in C T_{\Sigma, e}$ and $w \in \mathbb{N}^{*}$,

$$
f^{C T_{\Sigma}}(t)(w)=\operatorname{def} \begin{cases}f & \text { if } w=\epsilon \\ t_{i}(v) & \text { if } \exists i \in \mathbb{N}: i v=w\end{cases}
$$

$f^{C T_{\Sigma}}(t)$ is also written as $f t$ and $f^{C T_{\Sigma}}(\epsilon)$ as f.

Let $\Sigma_{\perp}=\left(S, B S, B F, F \cup\left\{\perp_{s}: 1 \rightarrow s \mid s \in S\right\}\right)$ and \leq be the least reflexive, transitive and Σ-congruent S-sorted relation on $C T_{\Sigma_{\perp}}$ such that for all $s \in S$ and $t \in C T_{\Sigma_{\perp}, s}$, $\perp_{s} \leq t$.

Kleene's fixpoint theorem \Longrightarrow

 $C T_{\Sigma_{\perp}}$ is initial in $C A l g_{\Sigma}$,the category of ω-continuous Σ-algebras as objects and strict and ω-continuous Σ-homomorphisms.

Elgot's Theorem (see Goguen et al., Initial Algebra Semantics and Continuous Algebras)
Each system of iterative Σ-equations has a unique solution in $C T_{\Sigma}$.
Σ induces the destructive signature co Σ with $H_{\Sigma}=H_{c o \Sigma}$:

$$
\begin{aligned}
c o \Sigma=(S, B S, B F, & \left\{d_{s}: s \rightarrow \coprod_{f: e \rightarrow s \in F} e \mid s \in S\right\} \cup \\
& \left\{\pi_{i}: e_{1} \times \cdots \times e_{n} \rightarrow e_{i} \mid n>1, e_{1}, \ldots, e_{n} \in \mathbb{F} \mathbb{T}(S, B S),\right. \\
& 1 \leq i \leq n\})
\end{aligned}
$$

Here each product type $e_{1} \times \cdots \times e_{n}$ is regarded as an additional sort. The projections $\pi_{i}: e_{1} \times \cdots \times e_{n} \rightarrow e_{i}, 1 \leq i \leq n$, provide its destructors.
$C T_{\Sigma}$ is a co ${ }^{\Sigma}$-algebra:
For all $s \in S$ and $t \in C T_{\Sigma, s}$ such that $t(\epsilon)$ is n-ary,

$$
d_{s}^{C T_{\Sigma}}(t)={ }_{d e f}((\lambda w \cdot t(1 w), \ldots, \lambda w \cdot t(n w)), t(\epsilon))
$$

$C T_{\Sigma}$ is final in $A l g_{c o \Sigma}$.

For all co Σ-algebras A, the unique Σ-homomorphism unfold ${ }^{A}: A \rightarrow C T_{\Sigma}$ is defined as follows: For all $s \in S, a \in A_{s}, i \in \mathbb{N}$ and $w \in \mathbb{N}^{*}$,

$$
\begin{aligned}
\text { unfold }^{A}(a)(\epsilon) & =f, \\
\text { unfold }^{A}(a)(i w) & = \begin{cases}\operatorname{unfold}^{A}\left(a_{i}\right)(w) & \text { if } \pi_{1}\left(d_{s}^{A}(a)\right)=\left(a_{1}, \ldots, a_{n}\right) \wedge 1 \leq i \leq n \\
\text { undefined } & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
C T_{\Sigma} \cong c o T_{c o \Sigma}
$$

A co $\mathrm{\Sigma}$-coterm
\ldots and the corresponding Σ-tree:

Let $E: V \rightarrow T_{\Sigma}(V)$ be a system of iterative Σ-equations.
The co Σ-algebra T^{E}
is defined as follows: For all $s \in S, f: e \rightarrow s \in F, t \in T_{\Sigma}(V)_{e}$ and $x \in V_{s}$,

$$
\begin{aligned}
T_{s}^{E} & =T_{\Sigma}(V)_{s}, \\
d_{s}^{T^{E}}(f t) & =(t, f), \\
d_{s}^{T E}(x) & =d_{s}^{T E}(E(x)) .
\end{aligned}
$$

unfold $^{T^{E}} \circ i n c_{V}: V \rightarrow C T_{\Sigma}$ solves E in $C T_{\Sigma}$.
$g: V \rightarrow C T_{\Sigma}$ solves E in $C T_{\Sigma}$ iff $g^{*}: T^{E} \rightarrow C T_{\Sigma}$ is co Σ-homomorphic.
$(4) \wedge(5) \Longrightarrow$ Each system of iterative Σ-equations has a unique solution in $C T_{\Sigma}$.
An alternative proof of this result is given in Example 8 below.

Example $7 \Psi=(\Sigma, c o \Sigma)$
For all $e \in \mathbb{T}(S, B S)$, let x_{e} be a variable that is not contained in V.

$$
D C=\left\{d_{s}(f(x))=\iota_{f}(x) \mid s \in S, f: e \rightarrow s \in F\right\}
$$

is a system of recursive Ψ-equations.
$(2) \Longrightarrow D C$ has a unique coinductive solution in $C T_{\Sigma}$.

A context-free grammar $G=(S, B S, R)$

consists of

- a set S of sorts (also called nonterminals),
- a set $B S$ of nonempty base sets whose singletons are called terminals and are identified with their respective unique element,
- a set R of rules $s \rightarrow w$ with $s \in S$ and $w \in(S \cup B S)^{*}$.

Let Z be the set of terminals of G. The following function typ : $(S \cup B S)^{*} \rightarrow \mathcal{T}(S, B S)$ removes all elements of Z from words over $S \cup B S$ and translates the latter into the corresponding product types:

- $\operatorname{typ}(\epsilon)=1$.
- For all $s \in S \cup B S \backslash Z$ and $w \in(S \cup B S)^{*}$, $\operatorname{typ}(s w)=s \times \operatorname{typ}(w)$.
- For all $x \in Z$ and $w \in(S \cup B S)^{*}, \operatorname{typ}(x w)=\operatorname{typ}(w)$.

The constructive signature

$$
\Sigma(G)=\left(S, B S,\left\{f_{s \rightarrow w}: \operatorname{typ}(w) \rightarrow s \mid s \rightarrow w \in R\right\}\right)
$$

is called the abstract syntax of G of G.
Finite ground $\Sigma(G)$-terms are called syntax trees of G.

Let $X=\bigcup B S$.
The $\Sigma(G)$-word algebra $\operatorname{Word}(G)$ recovers the concrete from the abstract syntax:

- For all $s \in S, \operatorname{Word}(G)_{s}={ }_{\text {def }} X^{*}$.
- For all $w \in Z^{*}$ and $r=(s \rightarrow w) \in R, f_{r}^{W o r d}(G)(\epsilon)={ }_{\text {def }} w$.
- For all $n>0, w_{0} \ldots w_{n} \in Z^{*}, e_{1}, \ldots, e_{n} \in S \cup B S \backslash Z$,

$$
\begin{aligned}
r=\left(s \rightarrow w_{0} e_{1} w_{1} \ldots e_{n} w_{n}\right) \in R & \text { and }\left(v_{1}, \ldots, v_{n}\right) \in\left(X^{*}\right)^{n} \\
& f_{r}^{\text {Word }^{(G)}}\left(v_{1}, \ldots, v_{n}\right)=\text { def } w_{0} v_{1} w_{1} \ldots v_{n} w_{n} .
\end{aligned}
$$

The language $L(G)$ of G is the set of words over X that result from folding syntax trees in $\operatorname{Word}(G)$:

$$
L(G)={ }_{\text {def }} \operatorname{fold}^{\operatorname{Word}(G)}\left(T_{\Sigma(G)}\right)
$$

According to [2], generic compilers for G can be formulated in category-theoretic terms as follows:

Let $\left(M: \operatorname{Set}^{S} \rightarrow \operatorname{Set}^{S}, \eta, \epsilon\right)$ be a monad that encapsulates the compiler output or, in the case of incorrect input, returns error messages, $\mathcal{P}: S e t^{S} \rightarrow S e t^{S}$ be the (S-sorted) powerset functor, $M \times M={ }_{-} \times{ }_{-} \circ \Delta \circ M$,

$$
\oplus: M \times M \rightarrow M \text { and set }: M \rightarrow \mathcal{P}
$$

be natural transformations and

$$
E=\{m \in \operatorname{img}(M) \mid \operatorname{set}(m)=\emptyset\}
$$

such that for all sets $A, B, m, m^{\prime}, m^{\prime \prime} \in M(A), e \in E, f: A \rightarrow M(B), h: A \rightarrow B$ and $a \in A$,

$$
\begin{aligned}
\left(m \oplus m^{\prime}\right) \oplus m^{\prime \prime} & =m \oplus\left(m^{\prime} \oplus m^{\prime \prime}\right) \\
M(h)(e) & =e \\
M(h)\left(m \oplus m^{\prime}\right) & =M(h)(m) \oplus M(h)\left(m^{\prime}\right) \\
\operatorname{set}_{A}\left(m \oplus m^{\prime}\right) & =\operatorname{set}_{A}(m) \cup \operatorname{set}_{A}\left(m^{\prime}\right) \\
\operatorname{set}_{A}\left(\eta_{A}(a)\right) & =\{a\} \\
\operatorname{set}_{B}(m \gg f) & =\bigcup\left\{\operatorname{set}_{B}(f(a)) \mid a \in \operatorname{set}_{A}(m)\right\}
\end{aligned}
$$

Let const $\left(X^{*}\right)$ be the functor that maps each object and morphism of $A l g_{\Sigma(G)}$ to the S-sorted set $\left(X^{*}\right)_{s \in S}$ and the S-sorted function $\left(i d_{X^{*}}\right)_{s \in S}$, respectively, U be the forgetful functor from $A l g_{\Sigma(G)}$ to $S e t^{S}$ and $W=\operatorname{Word}(G)$.

A natural transformation

$$
\text { compile }_{G}: \operatorname{const}\left(X^{*}\right) \rightarrow M U
$$

is a generic compiler for G if $\operatorname{set}_{W} \circ \operatorname{compile}_{G}^{W}$ is the following coproduct extension:

Such a compiler is generic because it has two parameters: a $\Sigma(G)$-algebra \mathcal{A} that represents a target language and the monad M (together with \oplus and set) that determines which target objects and error messages, respectively, are to be returned.

Let parse $_{G}=$ compile $_{G}^{T_{\Sigma(G)}}$ and unparse $_{G}={ }_{\text {def }}$ fold $^{W o r d(G)}$.
Since compile ${ }_{G}$ is a natural transformation and for all $\Sigma(G)$-algebras \mathcal{A},

$$
\text { fold }^{\mathcal{A}}: T_{\Sigma(G)} \rightarrow \mathcal{A}
$$

is $\Sigma(G)$-homomorphic,

$$
\begin{equation*}
\text { compile }_{G}^{\mathcal{A}}=X^{*} \xrightarrow{\text { parse }_{G}} M\left(T_{\Sigma(G)}\right) \xrightarrow{M\left(\text { fold }^{\mathcal{A}}\right)} M(\mathcal{A}) . \tag{8}
\end{equation*}
$$

Hence the restriction of parse_{G} to $L(G)$ is a right inverse of unparse ${ }_{G}$:

$$
\begin{aligned}
& \operatorname{set}_{W} \circ M\left(\text { unparse }_{G}\right) \circ \operatorname{parse}_{G} \circ i n c_{L(G)}=\operatorname{set}_{W} \circ M\left(f^{\prime} d^{W}\right) \circ \operatorname{parse}_{G} \circ i n c_{L(G)} \\
& \stackrel{(8)}{=} \operatorname{set}_{W} \circ \operatorname{compile}_{G}^{W} \circ i n c_{L(G)} \stackrel{(7)}{=} \lambda w \cdot\{w\} .
\end{aligned}
$$

Following the classical notion of compiler correctness [1,3], we call compile $e_{G}^{\mathcal{A}}$ correct w.r.t. a source model Sem and a target model Mach ("abstract machine") if there are functions execute : $\mathcal{A} \rightarrow$ Mach and encode : Sem \rightarrow Mach such that the following diagram commutes:

evaluate runs a "target program" $a \in A$ on the abstract machine $M a c h$, while encode expresses the source model in terms of the target model.

The initiality of $T_{\Sigma(G)}$ allows us to reduce the proof that (9) commutes to the extension of encode and evaluate to $\Sigma(G)$-homomorphisms. For this purpose, Mach must be extended to a $\Sigma(G)$-algebra. This can often be done by establishing a target signature Σ^{\prime} such that $T_{\Sigma^{\prime}}$ concides with \mathcal{A}, each constructor of $\Sigma(G)$ corresponds to a Σ^{\prime}-term, Sem is a Σ^{\prime}-algebra and evaluate folds Σ^{\prime}-terms in $S e m$. The mapping of $\Sigma(G)$-constructors to Σ^{\prime}-terms may then determine a definition encode such that both encode and evaluate become $\Sigma(G)$-homomorphic. In this way, [3] shows the correctness of a compiler that translates imperative programs into data flow graphs.

In the sequel, we regard the constructors par and seq of $\operatorname{Reg}(C S)$ as operations of mutable arity and thus write

- $\operatorname{par}\left(t_{1}, \ldots, t_{n}\right)$ instead of $\operatorname{par}\left(t_{1}, \operatorname{par}\left(t_{2}, \ldots, \operatorname{par}\left(t_{n-1}, t_{n}\right) \ldots\right)\right)$ and
- $\operatorname{seq}\left(t_{1}, \ldots, t_{n}\right)$ instead of $\operatorname{seq}\left(t_{1}, \operatorname{seq}\left(t_{2}, \ldots, \operatorname{seq}\left(t_{n-1}, t_{n}\right) \ldots\right)\right)$.
$\operatorname{par}(t)$ and $\operatorname{seq}(t)$ stand for t.
G induces an iterative system of $\operatorname{Reg}(C S)$-equations:

$$
\begin{aligned}
E_{G}: S & \rightarrow T_{\operatorname{Reg}(C S)}(S) \\
s & \mapsto \operatorname{par}\left(\overline{w_{1}}, \ldots, \overline{w_{k}}\right)
\end{aligned}
$$

where $\left\{w_{1}, \ldots, w_{k}\right\}=\left\{w \in(S \cup C S)^{*} \mid s \rightarrow w \in R\right\}$ and for all $n>1, e_{1}, \ldots, e_{n} \in S \cup C S$ and $s \in S$,

$$
\begin{aligned}
\overline{e_{1} \ldots e_{n}} & =\operatorname{seq}\left(\overline{e_{1}}, \ldots, \overline{e_{n}}\right) \\
\bar{s} & =s
\end{aligned}
$$

E_{G} is called the system of equations for G.
The function $\operatorname{sol}_{G}: S \rightarrow \mathcal{P}\left(X^{*}\right)$ with $\operatorname{sol}_{G}(s)=L(G)_{S}$ for all $s \in S$ solves E_{G} in
$\operatorname{Lang}(X)$.
sol ${ }_{G}$ is the least solution of E_{G} in $\operatorname{Lang}(X)$, i.e., for all solutions g of E_{G} in $\operatorname{Lang}(X)$ and all $s \in S, \operatorname{sol}_{G}(s) \subseteq g(s)$.

Constructing recursive from iterative equations

$$
\begin{aligned}
& \text { Let } \Psi=(C \Sigma, D \Sigma), C \Sigma=(S, B S, B F, C), \Sigma=C \Sigma \cup D \Sigma \text { and } V \in S e t^{S} . \\
& \qquad \begin{array}{l}
C \Sigma_{V}=\left(S, B S \cup\left\{V_{s} \mid s \in S\right\}, B F, C \cup\left\{i n_{s}: V_{s} \rightarrow s \mid s \in S\right\}\right), \\
\Psi_{V}=\left(C \Sigma_{V}, D \Sigma\right) \\
\Sigma_{V}=C \Sigma_{V} \cup D \Sigma .
\end{array}
\end{aligned}
$$

Let $E: V \rightarrow T_{C \Sigma}(V)$ be a system of iterative $C \Sigma$-equations, $\operatorname{rec}(E)$ be a system of recursive Ψ_{V}-equations and A be a Σ-algebra.
$\operatorname{rec}(E)$ simulates E in A if for all solutions $g: V \rightarrow A$ of E, the Σ_{V}-algebra A_{g} with $\left.A_{g}\right|_{\Sigma}=A$ and $i n_{s}^{A_{g}}=g_{s}$ for all $s \in S$ satisfies $\operatorname{rec}(E)$.

Suppose that $\operatorname{rec}(E)$ simulates E in A and A is final in $A l g_{D \Sigma}$. Then E has a unique solution in A.

Proof. Let $g, h: V \rightarrow A$ solve E in A. We extend A to Σ_{V}-algebras A_{1}, A_{2} by defining $i n_{s}^{A_{1}}=g_{s}$ and $i n_{s}^{A_{2}}=h_{s}$ for all $s \in S$. By assumption, both A_{1} and A_{2} satisfy $\operatorname{rec}(E)$. Since $\left.A\right|_{D \Sigma}$ is final in $A l g_{D \Sigma}$, (2) implies that the coinductive solution of $\operatorname{rec}(E)$ in $\left.A\right|_{D \Sigma}$ is unique. Hence $A_{1}=A_{2}$ and thus for all $s \in S, g_{s}=i n_{s}^{A_{1}}=i n_{s}^{A_{2}}=h_{s}$.
$\sigma_{V}: V \rightarrow T_{\Sigma_{V}}$ denotes the substitution with $\sigma_{V}(x)=i n_{s} x$ for all $x \in V_{s}$ und $s \in S$. For all Σ_{V}-algebras A,

$$
\begin{equation*}
\left(i n^{A}\right)^{*}=\text { fold }{ }^{A} \circ \sigma_{V}^{*}: T_{\Sigma}(V) \rightarrow A \tag{12}
\end{equation*}
$$

where $i n^{A}=\left(i n_{s}^{A}: V_{s} \rightarrow A_{s}\right)_{s \in S}$.

Example $8 \quad \Psi=(C \Sigma, c o C \Sigma)$
Let $C \Sigma=(S, B S, B F, C)$ be a constructive signature, $D \Sigma=c o \Sigma$ and $E: V \rightarrow T_{C \Sigma}(V)$ be a system of iterative $C \Sigma$-equations.

$$
\operatorname{rec}(E)=\left\{d_{s}\left(\operatorname{in}_{s}(x)\right)=\iota_{c}\left(\sigma_{V}^{*}(t)\right) \mid s \in S, x \in V_{s}, E(x)=c t\right\}
$$

is a system of recursive $\Psi_{V^{-}}$-equations.
By (6), the system $D C$ of recursive ψ-equations has a unique coinductive solution A in $C T_{C \Sigma}$.

Let $g: V \rightarrow A$ be a solution of E in A. For all $s \in S, x \in V_{s}$ with $E(x)=c t$,

$$
\begin{equation*}
i n_{s}^{A_{g}}(x)=g(x)=g^{*}(E(x))=g^{*}(c t)=c^{A}\left(g^{*}(t)\right) \tag{13}
\end{equation*}
$$

and thus for all S-sorted sets V^{\prime} of variables and $h: V^{\prime} \rightarrow A_{g}$,

$$
\begin{aligned}
& h^{*}\left(d_{s}\left(i n_{s} x\right)\right)=d_{s}^{A_{g}}\left(i n_{s}^{A_{g}}(x)\right) \stackrel{(13)}{=} d_{s}^{A}\left(c^{A}\left(g^{*}(t)\right)\right) \stackrel{(6)}{=} \iota_{c}\left(g^{*}(t)\right)=\iota_{c}\left(\left(i n_{s}^{A}\right)^{*}(t)\right) \\
& \stackrel{(12)}{=} \iota_{c}\left(\text { fold }^{A_{g}}\left(\sigma_{V}^{*}(t)\right)\right)=\iota_{c}\left(h^{*}\left(\sigma_{V}^{*}(t)\right)\right)=h^{*}\left(\iota_{c}\left(\sigma_{V}^{*}(t)\right)\right)
\end{aligned}
$$

Hence A_{g} satisfies $\operatorname{rec}(E)$, i.e.,

$$
\operatorname{rec}(E) \text { simulates } E \text { in } A
$$

Since A is final in $A l g_{c o \Sigma}$, (4) and (11) imply that E has a unique solution in A.

Example $9 \quad \Psi=(\operatorname{Reg}(C S), D \Sigma)$

Let $G=(S, B S, Z, R)$ be a non-left-recursive context-free grammar (i.e., there are no derivations of the form $\left.s \xrightarrow{+}_{G} s w\right), C S=B S \cup\{\{z\} \mid z \in Z\}$ and reduce be a function that simplifies regular expressions by applying semiring axioms.
Then for all $s \in S$ there are $k_{s}, n_{s}>0, C_{s, 1}, \ldots, C_{s, n_{s}} \in C S$ and $\operatorname{Reg}(C S)$-terms $t_{s, 1}, \ldots, t_{s, n_{s}}$ over S such that

$$
\begin{equation*}
\left(\operatorname{reduce} \circ E_{G}^{*}\right)^{k_{s}}(s)=\operatorname{par}\left(\operatorname{seq}\left(\overline{C_{s, 1}}, t_{s, 1}\right), \ldots, \operatorname{seq}\left(\overline{C_{s, n_{s}}}, t_{s, n_{s}}\right)\right) \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\left(\text { reduce } \circ E_{G}^{*}\right)^{k_{s}}(s)=\operatorname{par}\left(\operatorname{seq}\left(\overline{C_{s, 1}}, t_{s, 1}\right), \ldots, \operatorname{seq}\left(\overline{C_{s, n_{s}}}, t_{s, n_{s}}\right), e p s\right) \tag{15}
\end{equation*}
$$

$S_{\text {eps }}$ denotes the set of all $s \in S$ such that case (15) holds true.

Let $\operatorname{Reg}(C S)^{\prime}$ be the extension of $\operatorname{Reg}(C S)$ by the S of sorts of G as a further base set and the constructor $i n={ }_{\text {def }} i n_{\text {reg }}: S \rightarrow r e g$ as a further operation.
Let $D \Sigma$ be defined as in Example $5, \Psi_{S}=\left(\operatorname{Reg}(C S)^{\prime}, D \Sigma\right)$ and $\Sigma=\operatorname{Reg}(C S)^{\prime} \cup D \Sigma$. Using the notations of (14) and (15), we obtain the following system of recursive $\Psi_{S^{-}}$ equations:

$$
\begin{aligned}
\operatorname{rec}\left(E_{G}\right)= & \left\{\delta(\operatorname{in}(s))=\lambda x \cdot \sigma_{S}^{*}\left(\operatorname { p a r } \left(\text { ite }\left(\chi\left(C_{s, 1}\right)(x), t_{s, 1}, m t\right), \ldots,\right.\right.\right. \\
& \left.\left.\left.\quad \text { ite }\left(\chi\left(C_{s, n_{s}}\right)(x), t_{s, n_{s}}, m t\right)\right)\right) \mid s \in S\right\} \cup \\
& \left\{\beta(\operatorname{in}(s))=1 \mid s \in S_{\text {eps }}\right\} \cup \\
& \left\{\beta(\operatorname{in}(s))=0 \mid s \in S \backslash S_{\text {eps }}\right\}
\end{aligned}
$$

Let $X=\bigcup C S$. By Example 5 , the system $B R E$ of recursive Ψ-equations has a unique coinductive solution A in $\operatorname{Pow}(X)$.

Let $g: S \rightarrow A$ be a solution of E_{G} in A. For all $n \in \mathbb{N}$,

$$
\begin{equation*}
g^{*}=g^{*} \circ\left(\text { reduce } \circ E^{*}\right)^{n} . \tag{16}
\end{equation*}
$$

Let $h: V \rightarrow A_{g}$. Hence for all $s \in S$,

$$
\begin{equation*}
h^{*}(i n(s))=i n^{A_{g}}(s)=g(s)=g^{*}(s) \stackrel{(16)}{=} g^{*}\left(\left(\text { reduce } \circ E_{G}^{*}\right)^{k_{s}}(s)\right) \tag{17}
\end{equation*}
$$

By (12),

$$
\begin{equation*}
g^{*}=\left(i n^{A_{g}}\right)^{*}=\text { fold }^{A_{g}} \circ \sigma_{S}^{*}: T_{\operatorname{Reg}(C S)}(S) \rightarrow A \tag{18}
\end{equation*}
$$

Hence for all $s \in S \backslash S_{e p s}$,

$$
\begin{aligned}
& h^{*}(\delta(i n(s)))=\delta^{A}\left(h^{*}(\operatorname{in}(s))\right) \stackrel{(17)}{=} \delta^{A}\left(g^{*}\left(\left(\text { reduce } \circ E_{G}^{*}\right)^{k_{s}}(s)\right)\right)=\ldots \\
& =\delta^{A}\left(\bigcup_{i=1}^{n_{s}}\left(C_{s, i} \cdot g^{*}\left(t_{s, i}\right)\right)\right)=\lambda x \cdot \delta^{A}\left(\bigcup_{i=1}^{n}\left(C_{s, i} \cdot g^{*}\left(t_{s, i}\right)\right)\right)(x) \\
& \text { Def. } \delta^{A} \lambda x .\left\{w \in X^{*} \mid x w \in \bigcup_{i=1}^{n_{s}}\left(C_{s, i} \cdot g^{*}\left(t_{s, i}\right)\right)\right\}=\ldots \\
& =g^{*}\left(\lambda x \cdot p a r\left(\operatorname{ite}\left(\chi\left(C_{s, 1}\right)(x), t_{s, 1}, m t\right), \ldots, \text { ite }\left(\chi\left(C_{s, n_{s}}\right)(x), t_{s, n_{s}}, m t\right)\right)\right) \\
& \stackrel{(18)}{=} \text { fold } d_{g}\left(\sigma_{S}^{*}\left(\lambda x \cdot p a r\left(\operatorname{ite}\left(\chi\left(C_{s, 1}\right)(x), t_{s, 1}, m t\right), \ldots, i \operatorname{ite}\left(\chi\left(C_{s, n_{s}}\right)(x), t_{s, n_{s}}, m t\right)\right)\right)\right) \\
& =h^{*}\left(\sigma_{S}^{*}\left(\lambda x \cdot p a r\left(\operatorname{ite}\left(\chi\left(C_{s, 1}\right)(x), t_{s, 1}, m t\right), \ldots, \operatorname{ite}\left(\chi\left(C_{s, n_{s}}\right)(x), t_{s, n_{s}}, m t\right)\right)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& h^{*}(\beta(\text { in }(s)))=\beta^{A}\left(h^{*}(\text { in }(s))\right) \stackrel{(17)}{=} \beta^{A}\left(g^{*}\left(\left(\text { reduce } \circ E_{G}^{*}\right)^{k_{s}}(s)\right)\right)=\ldots \\
& =\beta^{A}\left(\bigcup_{i=1}^{n_{s}}\left(C_{s, i} \cdot g^{*}\left(t_{s, i}\right)\right)\right) \stackrel{\text { Def. } \beta^{A}}{=} 0=h^{*}(0),
\end{aligned}
$$

and for all $s \in S_{\text {eps }}$,

$$
\begin{aligned}
& h^{*}(\delta(\text { in }(s)))=\delta^{A}\left(h^{*}(\text { in }(s))\right) \stackrel{(17)}{=} \delta^{A}\left(g^{*}\left(\left(\text { reduce } \circ E_{G}^{*}\right)^{k_{s}}(s)\right)\right)=\ldots \\
& =\delta^{A}\left(\bigcup_{i=1}^{n_{s}}\left(C_{s, i} \cdot g^{*}\left(t_{s, i}\right)\right) \cup\{\epsilon\}\right)=\lambda x \cdot \delta^{A}\left(\bigcup_{i=1}^{n_{s}}\left(C_{s, i} \cdot g^{*}\left(t_{s, i}\right)\right) \cup\{\epsilon\}\right)(x) \\
& \text { Def. } \delta^{A} \\
& = \\
& =\lambda x \cdot\left\{w \in X^{*} \mid x w \in \bigcup_{i=1}^{n_{s}}\left(C_{s, i} \cdot g^{*}\left(t_{s, i}\right)\right) \cup\{\epsilon\}\right\} \\
& =g^{*}\left(\lambda x \cdot p a r\left(\text { ite }\left(\chi\left(C_{s, 1}\right)(x), t_{s, 1}, m t\right), \ldots, \text { ite }\left(\chi\left(C_{s, n_{s}}\right)(x), t_{s, n_{s}}, m t\right)\right)\right) \\
& \stackrel{(18)}{=} \text { fold } d^{A_{g}}\left(\sigma_{S}^{*}\left(\lambda x \cdot p a r\left(\text { ite }\left(\chi\left(C_{s, 1}\right)(x), t_{s, 1}, m t\right), \ldots, i t e\left(\chi\left(C_{s, n_{s}}\right)(x), t_{s, n_{s}}, m t\right)\right)\right)\right) \\
& =h^{*}\left(\sigma_{S}^{*}\left(\lambda x \cdot p a r\left(\operatorname{ite}\left(\chi\left(C_{s, 1}\right)(x), t_{s, 1}, m t\right), \ldots, \text { ite }\left(\chi\left(C_{s, n_{s}}\right)(x), t_{s, n_{s}}, m t\right)\right)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& h^{*}(\beta(\text { in }(s)))=\beta^{A}\left(h^{*}(\text { in }(s))\right) \stackrel{(17)}{=} \beta^{A}\left(g^{*}\left(\left(\text { reduce } \circ E_{G}^{*}\right)^{k_{s}}(s)\right)\right)=\ldots \\
& =\beta^{A}\left(\bigcup_{i=1}^{n_{s}}\left(C_{s, i} \cdot g^{*}\left(t_{s, i}\right)\right) \cup\{\epsilon\}\right) \stackrel{\text { Def. } \beta^{A}}{=} 1=h^{*}(1) .
\end{aligned}
$$

Hence A_{g} satisfies $\operatorname{rec}\left(E_{G}\right)$, i.e.,

$$
(10) \wedge(11) \wedge(19) \Rightarrow \operatorname{sol}_{G} \text { is the only solution of } E_{G} \text { in } A
$$

$\operatorname{rec}\left(E_{G}\right)$ suggests the following extension of $\operatorname{Bro}(C S)$ to a $\operatorname{Reg}(C S)^{\prime}$-Algebra $\operatorname{Bro}(C S)^{\prime}$: For all $s \in S$,

$$
\begin{aligned}
& \delta^{\operatorname{Bro}(C S)^{\prime}}(\operatorname{in}(s))=\lambda x \cdot \sigma_{S}^{*}\left(\operatorname{par}\left(\text { ite }\left(x \in C_{s, 1}, t_{s, 1}, m t\right), \ldots, \text { ite }\left(x \in C_{s, n_{s}}, t_{s, n_{s}}, m t\right)\right)\right), \\
& \beta^{\operatorname{Bro}(C S)^{\prime}}(\operatorname{in}(s))=\text { if } s \in S_{\text {eps }} \text { then } 1 \text { else } 0 .
\end{aligned}
$$

Let $\operatorname{Lang}(X)^{\prime}=\left.A_{\text {sol }_{G}}\right|_{\operatorname{Reg}(C S)^{\prime}}$ and $\Sigma=\operatorname{Reg}(C S)^{\prime} \cup D \Sigma$.
$\operatorname{Bro}(C S)^{\prime}$ agrees with the Σ-algebra $T_{R e g(C S)^{\prime}}$ (see (2)). Hence

$$
\text { fold }{ }^{\operatorname{Lang}(X)^{\prime}}=\text { unfold }^{\operatorname{Bro}(C S)^{\prime}}: \operatorname{Bro}(C S)^{\prime} \rightarrow \operatorname{Pow}(X)
$$

and thus fold ${ }^{\operatorname{Lang}(X)^{\prime}}$ is $\operatorname{Acc}(X)$-homomorphic. Hence for all $s \in S$,

$$
\begin{aligned}
& \text { unfold }^{\operatorname{Bro}(C S)^{\prime}}(\operatorname{in}(s))=\text { fold }^{\operatorname{Lang}(X)^{\prime}}(\operatorname{in}(s))=\operatorname{in}^{\operatorname{Lang}(X)^{\prime}}(s) \\
& =\operatorname{in}^{A_{\text {sol }}^{G}}(s)=\operatorname{sol}_{G}(s)=L(G)_{s}
\end{aligned}
$$

i.e., $\left(\operatorname{Bro}(C S)^{\prime}, i n(s)\right)$ realizes the characteristic function of the language $L(G)_{s}$ of words over X that are derivable from s via the rules of G.

(Co-)Horn Logic

(Co-)Horn clauses

Let $\Sigma=(S, B S, B F, F, P)$ and $\Sigma^{\prime}=\left(S, B S, B F, F, P \cup P^{\prime}\right)$ be signatures and C be a Σ-algebra.
$A l g_{\Sigma^{\prime}, C}$ denotes the full subcategory of $A l g_{\Sigma}$ consisting of all Σ^{\prime}-algebras A with $\left.A\right|_{\Sigma}=C$. $A l g_{\Sigma^{\prime}, C}$ is a complete lattice: For all $A, B \in A l g_{\Sigma^{\prime}, C}$,

$$
A \leq B \Leftrightarrow \text { def } \forall p \in P^{\prime}: p^{A} \subseteq p^{B} .
$$

For all $\mathcal{A} \subseteq A l g_{\Sigma^{\prime}, C}$ and $p: e \in P^{\prime}$,

$$
p^{\perp}=\emptyset, \quad p^{\top}=A_{e}, \quad p^{\sqcup \mathcal{A}}=\bigcup_{A \in \mathcal{A}} p^{A} \text { and } p^{\sqcap \mathcal{A}}=\bigcap_{A \in \mathcal{A}} p^{A} .
$$

A Σ^{\prime}-formula φ is negation-free w.r.t. Σ if φ does not contain \Rightarrow, \Leftarrow or \Leftrightarrow and all subformulas of φ with a leading negation symbol belong to $F_{O_{\Sigma}}(V)$.

A Horn clause for P^{\prime} is a Σ^{\prime}-formula $p(t) \Leftarrow \varphi$ such that $p \in P^{\prime}$ and φ is negation-free w.r.t. Σ.

Let $A X$ be a set of Horn clauses for P^{\prime}.
The $A X$-step function $\Phi: A l g_{\Sigma^{\prime}, C} \rightarrow A l g_{\Sigma^{\prime}, C}$ is defined as follows:
For all $A \in A l g_{\Sigma^{\prime}, C}$ and $p \in P^{\prime}$,

$$
p^{\Phi(A)}={ }_{\text {def }}\left\{g^{*}(t) \mid p(t) \Leftarrow \varphi \in A X, g \in \varphi^{A}\right\}
$$

Φ is monotone and thus by the Fixpoint Theorem of Knaster and Tarski, Φ has the least fixpoint

$$
l f p(\Phi)=\sqcap\left\{A \in A l g_{\Sigma^{\prime}, C} \mid \Phi(A) \leq A\right\}
$$

Consequently,

$$
l f p(\phi) \models p(x) \Leftrightarrow \bigvee_{p(t) \Leftarrow \varphi \in A X} \exists \operatorname{var}(t, \varphi):(x=t \wedge \varphi)
$$

A co-Horn clause for P^{\prime} is a Σ^{\prime}-formula $p(t) \Rightarrow \varphi$ such that $p \in P^{\prime}$ and φ is negationfree w.r.t. Σ.

Let $A X$ be a set of co-Horn clauses for P^{\prime}.
The $A X$-step function $\Phi: A l g_{\Sigma^{\prime}, C} \rightarrow A l g_{\Sigma^{\prime}, C}$ is defined as follows:
For all $A \in A l g_{\Sigma^{\prime}, C}$ and $p: e \in P^{\prime}$,

$$
p^{\Phi(A)}={ }_{\text {def }} C_{e} \backslash\left\{g^{*}(t) \mid p t \Rightarrow \varphi \in A X, g \in C^{V} \backslash \varphi^{A}\right\} .
$$

Φ is monotone and thus by the Fixpoint Theorem of Knaster and Tarski, Φ has the greatest fixpoint

$$
g f p(\Phi)=\sqcup\left\{A \in A l g_{\Sigma^{\prime}, C} \mid A \leq \Phi(A)\right\}
$$

Consequently,

$$
g f p(\phi) \models p(x) \Leftrightarrow \bigwedge_{p(t) \Rightarrow \varphi \in A X} \forall \operatorname{var}(t, \varphi):(x \neq t \vee \varphi)
$$

*** to be continued ${ }^{* * *}$

References

[1] F.L. Morris, Advice on Structuring Compilers and Proving Them Correct, Proc. ACM POPL (1973) 144-152 link
[2] P. Padawitz, Übersetzerbau, TU Dortmund 2016, link
[3] J.W. Thatcher, E.G. Wagner, J.B. Wright, More on Advice on Structuring Compilers and Proving Them Correct, Theoretical Computer Science 15 (1981) 223-249 link

