
AIST-PS-2004-003

Modal Logics for Coalgebras
‐A Survey
Ichiro HASUO

Tokyo Institute of Technology and AIST

Modal Logics for Coalgebras – A Survey

Ichiro HASUO∗

Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology.

hasuo2@is.titech.ac.jp, http://www.is.titech.ac.jp/˜hasuo2

August 2003

Abstract
The notion of coalgebra is an abstraction of state-based systems such as automata, labelled

transition systems and Kripke models. It has proved that in order to state about behaviors of coal-
gebras, some kinds of modal logics are useful. This survey is to summarize several different ways
of defining such modal languages.

Contents

1 Introduction 2

2 Coalgebras and other basic notions 2
2.1 Coalgebras and morphisms . 2
2.2 Behavioral equivalence and bisimilarity . 5
2.3 Simplicity, extensivity and finality . 7
2.4 Terminal sequence . 8

3 Modal logics for coalgebras 9

4 Moss’s coalgebraic logic 11

5 Logics designed for specific signatures 15
5.1 Overview . 15
5.2 Kurz, 2001 TCS . 16

6 Modalities induced by predicate liftings 18
6.1 Overview . 18
6.2 Predicate liftings . 19
6.3 Syntax, semantics, adequacy and expressivity . 21
6.4 Proof system, soundness and completeness . 25
∗This report was written during the author’s stay at Laboratory for Verification and Semantics, National Institute of Ad-

vanced Industrial Science and Technology, Japan (AIST).

1

1 Introduction

The notion of coalgebra is an abstraction of state-based systems, such as automata, labelled transition
systems and Kripke models. We can give some properties common in them:

• Behaviors of the system depends on its internal state which is, however, invisible to the user (the
black-box view).

• The system is reactive, not necessarily terminating, and interacts with its environment.

• The system comes with a set of operations, through which this interaction takes place.

The notion of coalgebras offers a general theory to consider a large class of such systems.
What is also interesting about coalgebras is that the notion is the dual of the well-known structure

algebra, hence many results and insights in the well-studied area of universal algebra can be applied
to the theory of coalgebras.

To state about algebras, we usually make usage of equational logic. For coalgebras it has proved
that some kinds of modal languages are useful,1 and several authors have introduced different ways to
obtain modal languages for coalgebras. This survey is to summarize those approaches.

In the second section, we make a brief review on basic notions around coalgebras, accompanied
with some examples of coalgebras. The third section is an introduction to modal logics for coalgebras.
There we do not go into concrete modal languages, but we will see what modal logics for coalgebras are
all about, and two desirable properties of modal logics for coalgebras, namely adequacy and expressiv-
ity, and two desirable properties of proof systems for those logics, namely soundness and completeness,
are introduced. In the remaining sections we summarize some authors’ approaches to modal logics for
coalgebras and compare them with one another.

There are a number of research topics involving coalgebras; introductions and pointers to literatures
can be found in (Rutten, 2000), (Kurz, 2001a) and (Pattinson, 2003c).

2 Coalgebras and other basic notions

The materials in this section are mostly from (Hasuo, 2003), which is based on (Pattinson, 2003c).

2.1 Coalgebras and morphisms

Definition 2.1 (Coalgebras) Let C be a category, T : C → C an endofunctor on C. A T-coalgebra is
a pair of a C-object C and a C-arrow γ : C → TC, i.e. (C, γ). T is said to be its signature functor or
type, C its carrier, C its base category and γ its transition map or coalgebraic structure.

In this paper our focus is set on coalgebras whose base category is Set. Later we will make usage
of some properties unique to Set, such as another characterization of accessibility of functors.

1“Modal logic is to coalgebras what equational logic is to algebras” (Kurz, 2001a).

2

Definition 2.2 (Morphisms of coalgebras) Let (C, γ) and (D, δ) be T -coalgebras, and f : C → D a
C-arrow. f is said to be a morphism of T-coalgebras or T-morphism, if δ◦ f = T f ◦γ, i.e. the following
diagram of C commutes.

C
f � D

TC

γ
�

T f
� T D

δ
�

We see by the functoriality of T that:

• an identity arrow is a morphism;

• composition of two morphisms is again a morphism.

Hence T -coalgebras and T -morphisms again forms a category, which we denote by CoAlg(T).

Example 2.3 (Stream Automata) A stream automaton is a very simple machine, with only a button
and a display. One letter is indicated on the display every time the button is pressed down.

Such a class of machines can be formalized as follows, at first sight. Let L be a (fixed) set of letters
that can be on the display. Then a stream automaton is nothing but a triple2

〈S , hd : S → L, tl : S → S 〉
where S is a nonempty set of its internal states, and on pressing the button with the machine’s state
s ∈ S , we see hd(s) on the display, and the state now changes into tl(s).

S

L �
pr1

�

hd

L × S

〈hd, tl〉
�

pr2

� S

tl
�

By taking a Cartesian product, we can now regard this as a coalgebra

(S , 〈hd, tl〉 : S → L × S)

for the signature functor3

T X := L × X,

T f := L × f = idL × f .

Again at first sight we can define a morphism of stream automata as follows:

2hd is for “head” and tl is for “tail”, as an observation later shows.
3The identity arrow idA associated to A is often denoted by A itself.

3

Let 〈S , hd, tl〉 and 〈S ′, hd, tl〉 be stream automata with a common set of outputs L, and
f : S → S ′. f is a morphism if for every s ∈ S ,

hd(s) = hd′ ◦ f (s),

f ◦ tl(s) = tl′ ◦ f (s).

This exactly coincides with the definition of morphisms of coalgebras, i.e.

〈hd′, tl′〉 ◦ f (s) = (idL × f) ◦ 〈hd, tl〉(s).

Example 2.4 (Labelled transition systems) A labeled transition system with the set of actions (or
labels) L is formalized as a pair of the set of states S and the three-place relation R ⊆ S × L × S , i.e.

〈S ,R〉. This can be rewritten as 〈S , (l→)l∈L〉, where
l→ is a binary relation defined by

s
l→ s′ iff (s, l, s′) ∈ R.

Now using the trick of ‘relation into function’, we obtain a coalgebraic formulation of labelled
transition system. Define σ : S → P(L × S) by

σ(s) := {(l, s′) ∈ L × S | (s, l, s′) ∈ R, i.e. s
l→ s′},

then a labelled transition system (S , σ) is a coalgebra for the signature functor

T X := P(L × X),

T f := P(L × f),

where, for g : A→ B, Pg : PA → PB is defined by

(Pg)(a) := g[a] = (the direct image of a by g).

Example 2.5 (Kripke models) A Kripke model for a set of atomic formulas A is a triple 〈S ,R,V〉,
where S is the set of possible worlds (or states), R(⊆ S ×S) is an accessibility relation, and V : A→ PS
is a valuation of atomic formulas (V(a) is the set of states where a is true).

Again by making a similar trick as above, we obtain a coalgebraic formalization of Kripke models.
For a Kripke model 〈S ,R,V〉, define next : S → PS and prop : S → PA by:

next(s) := {s′ ∈ S | sRs′} = (states that are possibly the next of s),

prop(s) := {a ∈ A | s ∈ V(a)} = (formulas true at s).

Taking a Cartesian product,
(S , 〈next, prop〉 : S → PS × PA)

4

is a coalgebra for the signature functor

T X := PX × PA,

T f := P f × PA.

Consider a morphism of Kripke models, which are now considered as T (= P id × PA)-coalgebras.
Let (S , 〈next, prop〉) = 〈S ,R,V〉 and (S ′, 〈next′, prop′〉) = 〈S ′,R′,V ′〉 be Kripke models, and f : S →
S ′. Relaxing the above definition, we obtain that f is a morphism (w.r.t. T -coalgebras) iff for every
s ∈ S ,

• prop(s) = prop′ ◦ f (s), that is,

– for every a ∈ A, s |=〈S ,R,V〉 a iff f (s) |=〈S ′,R′,V ′〉 a, and

• f [next(s)] = next′ ◦ f (s), that is,

– s1Rs2 implies f (s1)R′ f (s2), and
– if f (s1)R′s′2, then there exists s2 ∈ S such that s1Rs2 and f (s2) = s′2,

which is nothing but the condition of p-morphism or pseudo epimorphism (Segerberg, 1971).

2.2 Behavioral equivalence and bisimilarity

As stated in the introduction, the theory of coalgebras is to study such systems whose internal states we
users cannot see, but whose outputs (or behaviors) we can see. Hence we are concerned with not a state
itself, but a class of states which share the same behaviors, i.e. an equivalence class modulo a certain
relation.

There are two candidates for the relation: behavioral equivalence (Kurz, 2000) and bisimilarity. It
is noted again that the base category is supposed to be Set in this paper.

Definition 2.6 (Behavioral equivalence) Let (C, γ) and (D, δ) be T -coalgebras, c ∈ C and d ∈ D. c
and d are behaviorally equivalent, which is denoted by c ≈ d, if there exist a T -coalgebra (E, ε) and
T -morphisms f : (C, γ)→ (E, ε), g : (D, δ)→ (E, ε) such that f (c) = g(d).

(C, γ) (D, δ)

(E, ε)

�

gf
�

Definition 2.7 (Bisimilarity) Let (C, γ) and (D, δ) be T -coalgebras, and B ⊆ C × D a binary relation
on C and D. B is said to be a bisimulation if there exists a transition map β : B→ T B which makes the
projections pr1 : B→ C and pr2 : B→ D both T -morphisms.

(B, β)

(C, γ)

�

pr 1

(D, δ)

pr2
�

5

c ∈ C and d ∈ D are bisimilar if for some bisimulation B, cBd.

It is not trivial that behavioral equivalence is an equivalence relation in fact; the question is in
its transitivity. It is easily shown that if the base category has pushouts then so does the category of
T -coalgebras and morphisms (the forgetful functor preserves pushouts, moreover). This is the case
here since Set has pushouts. Then the transitivity of behavioral equivalence is easily established using
pushouts.4

Having established that behavioral equivalence is actually an equivalence relation, it is easy that
bisimilarity yields behavioral equivalence. Moreover, if the signature functor T preserves weak pull-
backs (Rutten, 2000), then the converse also holds, i.e. behavioral equivalence exactly coincides with
bisimilarity.5

The definition of behavioral equivalence seems natural if we think of a morphism as behavior-
preserving map, and since it is the more general notion6 we will mainly work with it.

Example 2.8 (Behavioral equivalence of stream automata) Given a stream automaton (S , 〈hd, tl〉) and
a state s ∈ S , it seems obvious that the behavior of s is the stream of letters

(hd(s), hd ◦ tl(s), hd ◦ tl ◦ tl(s), . . .)

which will appear in pressing the button repeatedly. Hence we obtain a mapping of a state into its
behavior, beh(S ,〈hd,tl〉) : S → Lω, given by beh(S ,〈hd,tl〉)(s) := (hd ◦ tln(s))n∈ω, where tln(s) := tl ◦ tln−1(s)
is defined inductively.

B

A B

A

The above figure designates one stream automaton, each circle being a state, and each arrow designating
transition. It is easy to see that both states labelled with A are behaviorally equivalent, with theie
behaviors A, B, A, B, On the other hand, those labelled with B are not.

Now it is easy to verify that

If f : (S , 〈hd, tl〉)→ (S ′, 〈hd′, tl′〉) is a morphism of stream automata, then beh(S ,〈hd,tl〉)(s) =
beh(S ′,〈hd′,tl′〉) ◦ f (s).

Hence if two states s ∈ (S , 〈hd, tl〉) and s′ ∈ (S ′, 〈hd′, tl′〉) are behaviorally equivalent in the sense
defined above (s ≈ s′), then beh(S ,〈hd,tl〉)(s) = beh(S ′,〈hd′,tl′〉)(s′).

Here is another easy observasion; the set of all streams over the alphabet L forms a stream automa-
ton. Defining

hdω((an)n∈ω) := a0, and

tlω((an)n∈ω) := (an+1)n∈ω,

4See e.g. (Hasuo, 2003).
5The proof is easy, taking a pullback as a bisimulation.
6Examples where behavioral equivalence is in fact the more appropriate is given in (Kurz, 2000).

6

(Lω, 〈hdω, tlω〉) is a stream automaton. Moreover, for every stream automaton (S , hd, tl), beh : (S , hd, tl)→
(Lω, 〈hdω, tlω〉) is a morphism. Hence if two states s ∈ (S , 〈hd, tl〉) and s′ ∈ (S ′, 〈hd′, tl′〉) share the
same behavior in common in the sense that beh(S ,〈hd,tl〉)(s) = beh(S ′,〈hd′,tl′〉)(s′), then s ≈ s′, with
(Lω, 〈hdω, tlω〉) their confluence.

The two observations establish that s ≈ s′ iff beh(S ,〈hd,tl〉)(s) = beh(S ′,〈hd′,tl′〉)(s′).

Example 2.9 (Behavioral equivalence in Kripke models) For Kripke models which are thought of
as (P id × PA)-coalgebras, behavioral equivalence coincides with bisimilarity which is defined above,
and moreover with bisimilarity in its original form introduced in (van Benthem, 1976). For the proof
see (Pattinson, 2003c).

2.3 Simplicity, extensivity and finality

Definition 2.10 (Simple coalgebra, extensive coalgebra) A T -coalgebra (C, γ) is simple if for all c, c′ ∈
C, c ≈ c′ implies c = c′. It is also said to satisfy the coinduction proof principle, in the sense that to
show that two states are equal, we have only to show that they are behaviorally equivalent. A simple
coalgebra is one without any redundant internal states.

(C, γ) is extensive if for every T -coalgebra (D, δ) and d ∈ D, there exists c ∈ C such that c ≈ d. We
can say that an extensive coalgebra has every possible behavior (as to T) in it.

A coalgebra which is both simple and extensive can be thought of as a system consisting of all
possible behaviors. What is interesting is that this property can be stated in purely category-theoretical
terms.

Definition 2.11 (Final coalgebra) (C, γ) is final if it is the final (or terminal) object in the category
CoAlg(T), i.e. for each T -coalgebra (D, δ) there exists exactly one morphism from (D, δ) to (C, γ).7

The proofs for claims in this subsection can be found in (Hasuo, 2003).

Proposition 2.12 A coalgebra (Z, ζ) is both simple and extensive, if and only if it is final.

Example 2.13 (Stream automata) For stream automata, i.e. T -coalgebras with T = L×id, (Lω, 〈hdω, tlω〉)
is the final coalgebra.

Theorem 2.14 (Lambek’s lemma) For the final T-coalgebra (Z, ζ), ζ : Z → TZ is a bijection.

In the above we have not mentioned whether the final coalgebra for a signature functor T actually
exists or not; the theorem gives a negative example.

Corollary 2.15 There is no final P-coalgebra, where P is the powerset functor.

7Of course, the final coalgebra is unique up to isomorphism.

7

2.4 Terminal sequence

Under some condition on the signature functor, we can establish the existence of the final T -coalgebra.
For the proof we use the notion of terminal sequence, whose α-th object Tα1 designates the set of all
behaviors that can appear in α-step transitions. Moreover, it also gives rise to the proof method called
induction along the terminal sequence, which we will use again and again later.

Definition 2.16 (Terminal sequence)

1 � !
T1 �T !

T 21 �T
2! · · · �T

α−1!
Tα1 �T

α! · · ·
Let T be an endofunctor on Set. The terminal sequence associated with T is a transfinitely long sequen-
tial diagram in Set, consisting of Set-objects Tα1 for every ordinal α and Set-arrows ζαβ : Tα1 → T β1
for all ordinals β ≤ α, satisfying

• ζβγ ◦ ζαβ = ζαγ for all γ ≤ β ≤ α, and

• ζα+1
β+1 = Tζαβ for all β ≤ α.

Intuitively ζαβ (β ≤ α) maps an α-step behavior to its prefixing β-step behavior.
We can construct the terminal sequence for every endofunctor T ; the detailed construction is de-

scribed in (Hasuo, 2003).

Proposition 2.17 A T-coalgebra (C, γ) induces a cone (C, (γα : C → Tα1)α∈Ord) over the terminal
sequence associated with T .

The map γα : C → Tα1 maps a state c ∈ C to its behavior within α-step transitions.

Example 2.18 (Stream automata) For stream automata over an alphabet L, which is thought of as
(L × id)-coalgebras, the terminal sequence associated with L × id is as follows:

1 � !
L �L×!

L2 �L
2×! · · · �L

n−1×!
Ln �L

n×! · · ·
where the arrow ζn

m (m ≤ n) maps an n-length word over L to its m-length prefix. Given a stream
automaton (C, γ = 〈hd, tl〉), it induces a cone (C, (γα : C → Tα1)α∈Ord). Here the arrow γn : C →
T n1 (= Ln) maps c ∈ C to (hd(c), hd ◦ tl(c), . . . , hd ◦ tln−1(c)).

Using the terminal sequence, we can establish the existence result of the final coalgebra, if the type
T is accessible. The notion of accessibility is usually defined in terms of filtered colimits; however,
since our focus here is on endofunctors on Set, we can go another way.

Definition 2.19 (Accessibility) Let κ a regular cardinal, and T : Set→ Set. T is said to be κ-accessible
if:

8

for every set X and every t ∈ T X, there exists xt ⊆ X such that #xt < κ and t ∈ (Ti)[Txt],8

where i : xt → X is the inclusion map.

T is accessible if it is κ-accessible for some κ.

Intuitively, a functor is accessible if its action on a large set can be determined by that on small subsets.

Theorem 2.20 (Existence of final coalgebra) If T is accessible, then there exists the final T-coalgebra.

Proof. The key observation is as follows. If T is κ-accessible, then the arrow ζκ+1
κ : T κ+11 → T κ1 in

the terminal sequence is monic. Taking its left inverse ζ : T κ1→ T κ+11 (= T (T κ1)), we obtain the final
coalgebra (T κ1, ζ). Again the detailed proof is found in (Hasuo, 2003).

We can extract a proof principle from the proof of the above theorem:

Theorem 2.21 (Induction along the terminal sequence) Let T : Set→ Set be a κ-accessible functor,
(C, γ), (D, δ) T-coalgebras, c ∈ C and d ∈ D. Then the following are equivalent:

1. c ≈ d;

2. !C(c) =!D(d), where !C : (C, γ) → (Z, ζ) is the morphism to the final coalgebra uniquely deter-
mined by the finality, and so is !D;

3. for all α < κ, γα(c) = δα(d), where (C, (γα : C → Tα1)α∈Ord) is a cone over the terminal sequence
induced by the T-coalgebra (C, γ), and so is (D, (δα : D→ Tα1)α∈Ord).

The proof of Theorem 2.20 implies that for κ-accessible type T only behaviors within κ steps make
sense; the condition 3. says that c and d have the same behavior in common within κ steps. If we are to
establish c ≈ d, then it suffices to show that γα(c) = δα(d) for all α < κ by transfinite induction.

3 Modal logics for coalgebras

Modal languages have proved to be useful for specification languages for behaviors of coalgebras. This
idea easily comes to our mind if we consider coalgebras as a generalization of Kripke models. In this
section we describe what modal logics for coalgebras are all about, and some properties which a modal
language, or a proof system for it, is expected to possess. Here we do not stick on one certain language.

Let L be a modal language for T -coalgebras, which is the collection of modal formulas. Several
of those will be introduced in the next section.9 A modal formula in L is interpreted in a T -coalgebra;
that is, given a T -coalgebra (C, γ) and a modal formula φ of L, we define the semantics of φ in (C, γ)
as a subset of C, denoted by �φ�(C,γ), which is the collection of states of C where φ is true. We put
c |=(C,γ) φ for c ∈ �φ�(C,γ). We omit subscripts (C, γ) if no confusion comes about.

Given a modal language (or syntax)L and its interpretation in T -coalgebras, there are two properties
which they are expected to enjoy, when we take L for a specification language for T -coalgebras and

8Note that f [−] denotes a direct image.
9In fact, one of those introduced in the next section does not obey the custom of modal languages; an argument of its

modal operator is not a formula, but what is obtained by, so to speak, lifting a formula by the type T .

9

moreover we adopt the black-box view as to coalgebras, i.e. we are concerned with their behaviors
rather than their internal states. Many authors call those properties in different ways. Here we will
follow the terminology in (Pattinson, 2003c).

Definition 3.1 (Adequacy, expressivity) Suppose that L be a modal language for T -coalgebras and
�φ�(C,γ) (⊆ C) be defined for every φ ∈ L and every T -coalgebra (C, γ).
L is said to be adequate if behavioral equivalence yields logical equivalence; that is, for c ∈ (C, γ)

and d ∈ (D, δ) with c ≈ d, c |=(C,γ) φ iff d |=(D,δ) φ for all φ ∈ L.
L is said to be expressive if the converse holds, i.e. every two states which are logically equivalent

with respect to L are behaviorally equivalent.

The adequacy of L means that L (the logical equivalence w.r.t. L, to be precise) is not too fine, and
it does not distinguish behaviorally equivalent states. On the other hand, the expressivity of L means
that L is fine enough, distinguishing the smallest difference in behaviors of coalgebras. We can say
that, for L to be a specification language, L must be adequate, and it is better if L is expressive. The
case seen here is like what is seen about soundness and completeness of a proof system.

In most cases the adequacy of L is shown by means of the following lemma:

Lemma 3.2 Suppose that the following holds as to a modal language L for T-coalgebras and its
semantics � �:

Let f : (C, γ) → (D, δ) be a morphism of T-coalgebras and φ ∈ L. Then for every c ∈ C,
c |=(C,γ) φ iff f (c) |=(D,δ) φ; or equivalently, �φ�(C,γ) = f −1(�φ�(D,δ)).

Then L is adequate.

Proof. Let c ∈ (C, γ) and d ∈ (D, δ) be behaviorally equivalent, having T -morphisms f : (C, γ) →
(E, ε) and g : (D, δ) → (E, ε) with f (c) = g(d). Then the assumption yields that c |= φ iff f (c) |= φ iff
g(d) |= φ iff d |= φ for every φ ∈ L, hence c and d are logically equivalent.

On the other hand, to prove expressivity the following lemma which makes usage of induction along
terminal sequence will often prove to be useful. Let T be a κ-accessible endofunctor on Set. Consider
the terminal sequence associated with T , with ζκα : T κ1 → Tα1 an arrow in it. Here ζκα can also be
considered as an arrow in the cone over the terminal sequence induced by the final T -coalgebra (Z, ζ),
in the way of Proposition 2.17 (Note that we can assume Z = T κ1).

Lemma 3.3 Let T be a κ-accessible endofunctor on Set, and L a modal language for T-coalgebras
which is adequate. Suppose that for each α < κ and z ∈ Tα1 we have a formula φαz ∈ L which satisfies
�φαz �(Z,ζ) = (ζκα)−1({z}) where (Z, ζ) and ζκα are as described above. Then L is expressive.

Proof. Take two states c ∈ (C, γ) and d ∈ (D, δ) of T -coalgebras which are not behaviorally equivalent.
It suffices to give a formula φ ∈ L such that c |= φ and d �|= φ. Let !(C,γ) : (C, γ) → (Z, ζ) the unique
arrow into the final T -coalgebra and so is !(D,δ). Then the adequacy of L yields that c and !(C,γ)(c) are
logically equivalent and so are d and !(D,δ)(d). Hence we can assume that c and d are both states in
(Z, ζ).

The proof principle of induction along the terminal sequence (Theorem 2.21) shows that c �≈ d with
c, d ∈ (Z, ζ) implies the existence of α (< κ) such that ζκα(c) � ζκα(d). Take φ := φα

ζκα(c). Then by the

assumption �φ�(Z,ζ) = (ζκα)−1({ζκα(c)}), to which c belongs but d does not.

10

Once we have obtained a modal language L for T -coalgebras (which must be adequate and is
expected to be expressive), we are then concerned with a proof system (which we denote by Π here)
for L, which will deduce only valid formulas, and preferably every valid formulas. The first property is
called soundness, and the second completeness.

Definition 3.4 (Soundness, completeness) A proof system Π is said to be sound if every formula φ
deduced by Π is valid, that is, �φ�(C,γ) = C for every T -coalgebra (C, γ). Π is said to be complete if
every valid formula in L can be deduced by Π.

We will denote by |=(C,γ) φ the fact that a formula φ is valid in a T -coalgebra (C, γ). If φ is valid in
every T -coalgebra, we will put just |=T φ.

In the following sections we will introduce some approaches taken by different authors, and sum-
marize them, considering

• the class of Set-endofunctors which each method can handle;

• how syntax and semantics are given;

• the results on adequacy or expressivity;

• whether a proof system is given or not, and if it is, the results on its soundness or completeness.

The order of appearance is basically in accordance with the historical development. Remark that nota-
tions which appear in each section is ad hoc, valid only in that very section.

4 Moss’s coalgebraic logic

(Moss, 1999) discusses a generalization of infinirary modal logic to a logic for coalgebras, which he
calls coalgebraic logic. Here we will follow the line presented in (Pattinson, 2003c) which makes usage
of induction along the terminal sequence for the expressivity result.

Its syntax, as is already mentioned, does not follow the custom of standard modal languages in
which a modality is a unary operator whose argument is a formula. The language LαT is parametrized
by the signature functor T and the degree of conjunction α.

Definition 4.1 (Syntax) Let T be a Set-endofunctor and α a regular cardinal. The language LαT is
defined by the following inductive BNF definition:

LαT � φ ::=
∧
Φ | ∇t

where Φ ⊆ LαT , #Φ < α and t ∈ T (LαT).

The definition can be put differently as follows. Consider the α-bounded powerset functor Pα : Set →
Set defined by:

PαX := {x ⊆ X | #x < α};
Pα f : PαA → PαB

a �→ f [a]

11

where f : A → B. And let the functor L := Pα + T . Then LαT is nothing but the carrier set of the
initial L-algebra, with its structure map [

∧
,∇] : PαLαT + TLαT → LαT . In this section we are concerned

only with an accessible functor T (Definition 2.19), which makes L also accessible and hence yields the
existence of the initial L-algebra, i.e. the validity of the above definition. It is notable that the language
cannot be even defined in this way for the covariant powerset functor P, which is not accessible.

It is noted that LαT is an infinitary language unless α = ω, and � :=
∧ ∅ is a formula in LαT .

It seems to be the key of Moss’s approach that the behavior of the next state is designated in terms of
the functor application to LαT , and in order to give its semantics, we consider extending T and applying
it to relations, not only to sets or functions.

Definition 4.2 (Relator) The category Rel is that of sets and relations, i.e. its object is a (small) set
and its arrow is a relation between sets. An identity arrow is given by the diagonal relation, i.e.

idS = �S = {(s, s) | s ∈ S }.
Set can be embedded into Rel by taking the graph G f of each function f .

A relator is an endofunctor on Rel.
Let T : Set → Set and T̂ : Rel → Rel both functors. A relator T̂ is said to be the extension of T if

T̂S = TS for each small set S and T̂G f = GT f for each function f : A→ B, where G f is an Rel-arrow
from A to B (not a Rel-object as a subset of A × B).

We use the extention of the signature functor T to a relator in order to give semantics. The following
theorem, due to (Carboni, Kelly, and Wood, 1990), ensures that it is possible:

Theorem 4.3 Let T : Set → Set. T can be extended to a relator if and only if T preserves weak
pullbacks. In that case, the extension T̂ of T is given by:

T̂R = GTπ2 ◦ (GTπ1)op,

where R : A→ B is a Rel-arrow, π1 : R→ A and π2 : R→ B are projections (here R is thought of as a
subset of A × B). −op designates the converse of a relation. In other words,

T̂ R = {(Tπ1(t), Tπ2(t)) ∈ T A × T B | t ∈ TR},
where TR is a functor T applied to a Set-object R.

In fact, the word relator is used by different authors in different ways. Another application of the notion
of relator in a coalgebraic setting can be found in (Rutten, 1998). The book (Bird and de Moor, 1997)
gives a good insight and examples of applications to algebraic approaches to programming.

Proposition 4.4 Let T be a Set-endofunctor which preserves weak pullbacks, hence the extension of T
to a relator is given by T̂ (R) = GTπ2 ◦ (GTπ1)op as above. Then T̂

• preserves converse, i.e. T̂ (Rop) = (T̂ R)op;

• is order-preserving, i.e. if R ⊆ S for Rel-arrows R and S , then T̂R ⊆ T̂S .

12

The semantics in a T -coalgebra (C, γ) is now given by the universal arrow from the initial L(=
Pα + T)-algebra (LαT , [

∧
,∇]) to an L-algebra which is induced by (C, γ) in terms of the extension of T

to a relator:

Definition 4.5 (Semantics) Let T be an accessible Set-endofunctor which preserves weak pullbacks,
and (C, γ) a T -coalgebra. We have an extension T̂ of T to a relator. Let an L-algebra (PC, [d, e]) given
by

d : PαPC → PC
C �→ ⋂

c∈C c
e : TPC → PC

t �→ {c ∈ C | (γ(c), t) ∈ T̂∈C}
where ∈C (⊆ C × PC) is the membership relation of C, conceived as a Rel-arrow from C to PC.
Then the semantics � �(C,γ) of LαT in (C, γ) is defined by the unique morphism of L-algebras from

(LαT , [
∧
,∇]) to (PC, [d, e]), which maps a formula φ to �φ�(C,γ).

PαLαT Pα� �(C,γ)

� PαPC

LLαT L� �(C,γ)

�

�

LPC
�

TLαT T� �(C,γ)

�

�

TPC

�

LαT

[
∧
,∇]

�

� �(C,γ)

�

� ∇
PC

[d, e]

�
e �

∧
d

Proposition 4.6 Suppose that the semantics � �(C,γ) in (C, γ) is given for the language LαT . Then

c |=(C,γ)

∧
Φ iff c |=(C,γ) φ for all φ ∈ Φ,

c |=(C,γ) ∇t iff (γ(c), t) ∈ T̂ |=(C,γ),

where T̂ |=(C,γ) is a relator T̂ applied to a Rel-arrow |=(C,γ) from C to LαT .

Proof. The first clause immediately follows from the commutativity � �(C,γ) ◦∧ = d ◦ Pα� �(C,γ).
For the second, the key observation is that |=(C,γ)= (G� �(C,γ))

op ◦ ∈C as a Rel-arrow, which yields that
T̂ (|=(C,γ)) = (GT� �(C,γ))

op ◦ T̂∈C by the functoriality of T̂ . Now suppose c |=(C,γ) ∇t, which is equivalent
to c ∈ e ◦ (T� �(C,γ))(t). This is rewritten as (γ(c), (T� �(C,γ))(t)) ∈ T̂∈C by the definition of e, hence the
observation establishes the claim.

13

Example 4.7 (Stream automata) Consider stream automata over an alphabet L which can be thought
of as (T = L × id)-coalgebras. Then T is ω-accessible which preserves weak pullbacks. Here we are
concerned with the language LωT and its semantics.

Relaxing the definition, we obtain the BNF definition of a formula in LωT :

LωT � φ, ψ ::= φ ∧ ψ | ∇(l, φ),

where l ∈ L.
Given a stream automaton (C, 〈hd, tl〉), c |=(C,〈hd,tl〉) ∇(l, φ) iff ((hd(c), tl(c)), (l, φ)) ∈ T̂ (|=(C,〈hd,tl〉))

by the proposition above. It is equivalent to say that there exists some (l′, (c′, φ′)) ∈ T (|=(C,〈hd,tl〉)) =
L× |=(C,〈hd,tl〉) such that (Tpr1)(l′, (c′, φ′)) = (hd(c), tl(c)) and (Tpr2)(l′, (c′, φ′)) = (l, φ). Since T = L×id,
this means that l′ ∈ L, c′ |=(C,〈hd,tl〉) φ′, (idL × pr1)(l′, (c′, φ′)) = (hd(c), tl(c)) and (idL × pr2)(l′, (c′, φ′)) =
(l, φ). Hence we have established that: c |=(C,〈hd,tl〉) ∇(l, φ) iff hd(c) = l and tl(c) |=(C,〈hd,tl〉) φ.

Adequacy of the language LαT is easy using Lemma 3.2.

Theorem 4.8 (Adequacy) The language LαT is adequate with respect to T-coalgebras.

Proof. It suffices to show that � �(C,γ) = f −1 ◦ � �(D,δ) for a morphism f : (C, γ) → (D, δ). By the
definition of � � as a universal arrow from the initial algebra, we need only to show that f−1 : PD →
PC is a morphism of (L = Pα + T)-algebras from (PD, [d′, e′]) to (PC, [d, e]) which are induced
by T -coalgebras (D, δ) and (C, γ), respectively. Hence we are to show that e ◦ T (f −1) = f −1 ◦ e′ and
d◦T (f −1) = f −1◦d′. Both are shown by easy calculation; for the first the key is that G f −1◦∈D◦G f ⊆ ∈C ,
(G f −1)op ◦ ∈C ◦ (G f)op ⊆ ∈D, and T̂ is order-preserving (Proposition 4.4).

LαT becomes expressive if α is no less than the accessibility of T ;

Theorem 4.9 (Expressivity) Let T be a κ-accessible Set-endofunctor which preserves weak pullbacks.
Then the language LκT is expressive.

Proof. It suffices to give a formula φαz for each ordinal α < κ and each z ∈ Tα1 such that �φαz �(Z,ζ) =

(ζκα)−1({z}) where (Z, ζ) is the final T -coalgebra and ζκα : Z → Tα1 (Lemma 3.3). The definition is by
transfinite induction. In the following ζκα is also designated by ζα.

For a limit ordinal α, let φαz :=
∧
β<α φ

β
ζαβ (z). It is easy seen that this formula satisfies the condition.

For a successor ordinal α = β + 1, by the induction hypothesis, we have a map f : T β1→ LκT such
that for each w ∈ T β1, � f (w)�(Z,ζ) = ζβ

−1({w}), i.e. � �(Z,ζ) ◦ f = (ζβ)−1 ◦ {·}β where {·}β : T β1→ PT β1
maps w to the singleton {w}. We define φβ+1

z := ∇(T f (z)). Then, (here ∈Z is the membership relation, a

14

Rel-arrow from Z to PZ)

u ∈ �∇T f (z)�(Z,ζ) iff u ∈ e ◦ T� �(Z,ζ) ◦ T f (z)

iff (ζ(u), T (ζ−1
β ◦ {·}β)(z)) ∈ T̂∈Z � �(Z,ζ) ◦ f = (ζβ)−1 ◦ {·}β

iff (ζ(u), z) ∈ (GT (ζ−1
β ◦{·}β))

op ◦ T̂∈Z

iff (ζ(u), z) ∈ T̂ ((Gζ−1
β ◦{·}β)

op ◦ ∈Z) T̂ extends T

iff (ζ(u), z) ∈ T̂Gζβ = GTζβ (Gζ−1
β ◦{·}β)

op ◦ ∈Z = Gζβ
iff z = Tζβ ◦ ζ(u)

iff u ∈ (ζβ+1)−1({z}), ζβ+1 = Tζβ ◦ ζ
hence we have �φβ+1

z �(Z,ζ) = (ζβ+1)−1({z}).
For now it seems that no proof systems or general frameworks for giving proof systems have been

introduced. We conclude this section by summarizing the above observations in the following table:

Signature functor accessible and preserves weak pullbacks

Syntax LαT � φ ::=
∧
Φ | ∇t, where Φ ⊆ LαT , #Φ < α and t ∈ T (LαT)

Adequacy holds

Expressivity holds, if the degree of conjunction is no less than

the accessibility of the signature functor

5 Logics designed for specific signatures

5.1 Overview

Another kind of approaches are introduced in (Kurz, 2001b), (Rößiger, 2001) and (Rößiger, 2000);
they are focused on rather small classes of signature functors, for which coalgebras do not jump far
from Kripke models. Hence many of the results on expressivity or completeness of proof systems
are obtained by transferring the results in the well-studied area of standard modal logics and Kripke
semantics. Here modal languages and proof systems are designed through a syntactical investigation of
a signature functor.

(Kurz, 2001b) considers signature functors of the form

T = (E1 + O1 × id)I1 × · · · × (En + On × id)In .

A functor of this form can be thought of as representing the number and the types of methods of a class
in object-oriented languages. Then a coalgebra for the functor is a class equipped with this type of
methods, and a state of a coalgebra is an object of the class.

(Rößiger, 2001) considers the cases where signatures are polynomial functors inductively defined
by

T1, T2 ::= id | C | T1 + T2 | T1 × T2 | T E
1 ,

15

where E is a set and C is a constant functor mapping any set to a set C. (Rößiger, 2000), in addition,
considers Kripke polynomial signature functors defined by

T ::= (polynomial functor) | PT,

which now includes the functor Pid×PA, the signature of Kripke models over the set of atomic formulas
A.

In all of the three papers above modal languages and their semantics are given in a concrete way by
investigating signatures syntactically, the results on adequacy and expressivity are established,10 and
complete proof systems are presented. The proofs for the completeness of proof systems are basically
based on the well-known method of canonical model construction, where maximal consistent sets of
formulas make up the set of possible worlds. In the latter two papers by Rößiger the method is modified
to construct a canonical coalgebra, whose state is a maximal consistent set. Moreover in (Rößiger,
2001), hence for (not Kripke) polynomial functors, it is shown that a canonical coalgebra coincides
with a final coalgebra; this observation leads to another characterization (which is functional) of final
coalgebras.

5.2 Kurz, 2001 TCS

In the rest of this section we take a glance at a method taken in (Kurz, 2001b), which is the most simple
among the three but suffices to show the essence common in them.

The signatures considered here is of the form

T = (E1 + O1 × id)I1 × · · · × (En + On × id)In ,

where all of Ek, Ok and Ik are all constant functors which can be thought of as the set of error messeges,
outputs, and inputs of the k-th method, respectively.

Example 5.1 (Buffers) Consider a buffer over the set L which have two methods, store and read.
Let S be the set of its internal states, then the two methods are formalized as functions

store : L × S → S , read : S → {error} + L × S ,

where, if s is the state which designates that the buffer is empty, then read(s) = error. Hence a buffer
is a coalgebra for the signature functor T = idL × ({error} + L × id).

The language, denoted by LT , is parametrized only by a signature functor. It is noted that functors
considered here are all ω-accessible.

Definition 5.2 (Syntax) Let T = (E1 + O1 × id)I1 × · · · × (En + On × id)In . The language LT for
T -coalgebras is given by the following inductive BNF definition:

LT � φ, ψ ::= ⊥ | φ→ ψ | (k, i) = a | [k, i]φ,
where k ∈ [1, n], i ∈ Ik and d ∈ Ek + Ok. Boolean connectives are defined as usual in terms of ⊥ and
→. 〈k, i〉φ is an abbreviation for ¬[k, i]¬φ.

10Since the languages given are finite, when considering Kripke polynomial functors expressivity holds only for image-
finite coalgebras. In the other cases where the powerset functor P is not considered, a coalgebra is always image-finite, hence
it seems natural that we obtain the expressiveness result in view of the result by Hennessy and Milner.

16

LT is a finitary multi-modal language whose atomic formula is of the form (k, i) = a and whose
modality is given by [k, i] for each k ∈ [1, n] and i ∈ Ik.

The semantics for LT is given in terms of the relation |=(C,γ), which can immediately be translated
to the definition of � �(C,γ):

Definition 5.3 (Semantics) Given a T -coalgebra (C, γ), the relation |=(C,γ) between an element of C
and a formula in LT is defined inductively by:

c �|=(C,γ) ⊥;

c |=(C,γ) φ→ ψ iff c �|=(C,γ) φ or c |=(C,γ) ψ;

c |=(C,γ) (k, i) = a iff (prk ◦ γ(c))(i) = a;

c |=(C,γ) [k, i]φ iff (prk ◦ γ(c))(i) ∈ Ek or pr2((prk ◦ γ(c))(i)) |=(C,γ) φ.

(k, i) = a is read as the output of the k-th method with an input i is a, and [k, i]φ as the updated
object (or the next state) produced by the k-th method with an input i, if it exists, satisfies a formula
φ. Note that if the k-th method with an input i outputs an error message, then [k, i]φ is true for every
formula φ; this follows the custom of standard modal logic where � is read as in all the next states ... It
immediately follows from the definition that c |=(C,γ) 〈k, i〉� iff (prk ◦ γ(c))(i) � Ek, and c |=(C,γ) [k, i]⊥
iff (prk ◦ γ(c))(i) ∈ Ek.

Example 5.4 (Buffers) Example 5.1 shows that a buffer over L can be thought of as a T -coalgebra
where T = idL × ({error}+ L× id). For them the language is given by atomic propositions (read) = a
where a ∈ {error} + L, and modalities [store, l] and [read] where l ∈ L.

Theorem 5.5 (Adequacy) The language LT is adequate.

Proof. It suffices to show that validity of formulas is invariant under morphisms (Lemma 3.2); this is
easy by the induction on the construction of formulas.

The expressivity result is obtained using the translation of a T -coalgebra into a Kripke model and
applying the result (Goldblatt, 1995), (Hollenberg, 1995) as to Kripke models with Hennessy-Milner
property.

Theorem 5.6 (Expressivity) The language LT is expressive.

A complete proof system for LT is given considering a T -coalgebra as a Kripke model which
satisfies several extra conditions, i.e. by adding some extra axioms to the normal modal logic K. Here
we assume an extra condition on the signature functor T .

Definition 5.7 (Proof system) Let T = (E1+O1×id)I1×· · ·×(En+On×id)In be a Set-endofunctor such
that each of E1,O1, . . . , En,On is a finite set, and LT the language for T -coalgebras. A proof system
ΠT is given by the following axioms and rules, as a Hilbert-style system:

17

(Taut) all Boolean tautologies
(K) [k, i](φ→ ψ)→ ([k, i]φ→ [k, i]ψ)
(Err) (k, i) = e→ [k, i]⊥ for all k ∈ [1, n], i ∈ Ik and e ∈ Ek
(Suc) (k, i) = o→ 〈k, i〉� for all k ∈ [1, n], i ∈ Ik and o ∈ Ok
(USuc) 〈k, i〉φ→ [k, i]φ
(UOP) (k, i) = a→ ¬((k, i) = a′) for all k ∈ [1, n], i ∈ Ik, a, a′ ∈ Ek + Ok and a � a′

(EOP)
∨

a∈Ek+Ok

(k, i) = a

A→ B A
B (MP)

φ

[k, i]φ
(Nec)

We put ΠT � φ if a formula φ ∈ LT is deduced by the axioms and rules above.

(Taut), Kripke’s axiom (K), modus ponens (MP) and necessitation (Nec) together form the normal
(multi-)modal logic K. The intension of each of the other axioms is as follows. (Err) is to designate that
if the output is an error message, then no updated object (or the successor state) comes about. (Suc) is
that, otherwise, there exists an updated object. It is noted that (Suc) is equivalent to the axiom

(k, i) = o→ ([k, i]φ→ 〈k, i〉φ)

since �� ↔ (�φ→ �φ) in the normal modal logic K. (USuc) is that the successor state is unique, if it
exists. (UOP) is that the value of the output, whether it is an error message or not, is unique. (EOP) is
for the existence of the output. To make the proof system finitary, we must have #(Ek + Ok) < ∞.

Soundness of the system ΠT is easy by induction.

Theorem 5.8 (Soundness) ΠT is sound with respect to T-coalgebras.

Completeness is shown by translating the result on standard modal logic and Kripke models, which
is obtained by the canonical model construction with maximal consistent sets its possible worlds.

Theorem 5.9 (Completeness) ΠT is complete with respect to T-coalgebras.

6 Modalities induced by predicate liftings

6.1 Overview

The other approach, which is first introduced in (Jacobs, 2001) and developed in e.g. (Pattinson, 2003b)
or (Pattinson, 2003a), defines modal languages by means of predicate liftings, a notion which appears
in the context of fibrations.11 The method presented in this section considers a large class of signa-
ture functors, including P which Moss’s approach cannot handle, and the syntax follows the custom of
standard modal languages. The modal languages and proof systems introduced here are parametrized
by many parameters, and the results on expressivity or completeness are given in the form that if the

11What we are interested in can be stated in terms of the fibration SubSet→ Set; the definition of predicate liftings for this
specific fibration can be put differently and more easily, which we adopt in the following. The use of predicate liftings in the
theory of coalgebra is first presented in (Hermida and Jacobs, 1998).

18

language/system is given in the good manner, i.e. the parameters satisfy certain conditions, then ex-
pressivity/completeness holds.

The section follows the line presented in (Pattinson, 2003c).

6.2 Predicate liftings

Definition 6.1 (Predicate lifting) Let T be an endofunctor on Set. A predicate lifting λ for T is a
family of Set-arrows (λX : PX → PT X)X∈Set which:

• is order-preserving, i.e. x ⊆ x′ ⊆ X implies (λX)(x) ⊆ (λX)(x′) ⊆ T X;

• is compatible with inverse images, i.e. for an arbitrary Set-arrow f : X → Y , (T f)−1 ◦ λY =

λX ◦ f −1.12

PY
λY� PTY

PX

f −1

�

λX
� PT X

(T f)−1

�

In other words, λ is an order-preserving natural transformation from P to PT , where P is the con-
travariant powerset functor.

Informally, a predicate lifting λ translates a predicate in X (i.e. a subset of X) into a predicate of
T X, with respect to a certain aspect. The following examples may be illustrative:

Example 6.2 (Predicate liftings for T = L × id) Note that a T -coalgebra is a stream automaton over
the alphabet L.

We can define a predicate lifting λ for T by

λX : PX → PT X
x �→ { (l′, x′) ∈ T X | x′ ∈ x}

It is easily verified that λ is indeed a predicate lifting. So to speak, λ extracts the aspect of location.
Another predicate lifting λl can be defined for each l ∈ L, by

(λl)X : PX → PT X
x �→ { (l′, x′) | l′ = l}

λl extracts which letter is displayed.

12This amounts to say that λ is a natural transformation P ⇒ PT , where P is considered as a contravariant functor which
maps f : A→ B to P f := f −1 : PB→ PA.

19

Example 6.3 (Predicate liftings for T = Pid × PA) A T -coalgebra is a Kripke model over the set of
atomic formulas A.

We can define a predicate lifting λ for T by

λX : PX → PT X
x �→ {(x′, a) ∈ T X | x′ ⊆ x}

λ extracts the aspect of location.
Another predicate lifting λa can be defined for each a ∈ A, by

(λa)X : PX → PT X
x �→ {(x′, a) ∈ T X | a ∈ a}

λa extracts the aspect of satisfaction of a. Note that (λa)X is a constant map.

The above two examples motivate two principles for obtaining predicate liftings, which is due to
Pattinson:

Proposition 6.4 Let µ : T ⇒ P be a natural transformation, where P is covariant. We obtain a
predicate lifting λ for T by

λX(x) := {t ∈ T X | (µX)(t) ⊆ x}.
Again λ defined in this way is focused on the location.

Proposition 6.5 Let a ⊆ T1. We obtain a predicate lifting λa by

(λa)X(x) := {t ∈ T X | (T !X)(t) ∈ a}.
Again λaX is a constant map. T1 can be considered as the set of behaviors observable in a one-step
transition, hence the map T !X : T X → T1 extracts the aspects which are independent from X.

In the following we will introduce a modality induced by a predicate lifting λ; this correspond
to �. And we will put 〈λ〉 for ¬[λ]¬ just as we put � for ¬�¬. The modality 〈λ〉 actually has the
corresponding predicate lifting, too.

Proposition 6.6 Let λ be a predicate lifting for T , and ¬λ¬ be defined by

(¬λ¬)X(x) := T X \ (λX)(X \ x).
Then ¬λ¬ is again a predicate lifting for T .

Proof. Use the fact that inverse images preserves negations.

20

6.3 Syntax, semantics, adequacy and expressivity

A functor T , a class Λ of predicate liftings for T and a regular cardinal κ give rise to a multi-modal
language Lκ(Λ) for T -coalgebras.

Definition 6.7 (Syntax) A language Lκ(Λ) associated with Λ is defined by

Lκ(Λ) � φ ::=
∧
Φ | ¬φ | [λ]φ,

where Φ ⊆ Lκ(Λ), #Φ < κ and λ ∈ Λ.

In short, Lκ(Λ) is an infinitary multi-modal language which admits conjunction of less than κ formulas
and each modality induced by λ ∈ Λ. Note that � :=

∧ ∅ is a formula.
To interpret a modality [λ] we make use of the predicate lifting λ.

Definition 6.8 (Semantics) Let (C, γ) be a T -coalgebra and φ ∈ Lκ(Λ). The semantics �φ�(C,γ) is
defined inductively by the following clauses:

�
∧
Φ� :=

⋂
φ∈Φ
�φ�;

�¬φ� := C \ �φ�;
� [λ]φ � := γ−1 ◦ λC(�φ�).

Intuitively, the formula [λ]φ is read as after one step of transition φ holds with respect to λ. This idea is
reflected in the definition above; being φ (denoted by �φ�) is translated into TC by λC (i.e. λC(�φ�)),
and then pulled back along the transition map γ.

Example 6.9 (Modal language for stream automata) Consider the language Lω({λ} ∪ {λl | l ∈ L})
where λ and λl are as defined in Example 6.2. This is a modal language for (L×id)-coalgebras. Relaxing
the definition, we have

s |=(S ,〈hd,tl〉) [λ]φ iff tl(s) |=(S ,〈hd,tl〉) φ,
s |=(S ,〈hd,tl〉) [λl]φ iff hd(s) = l.

Example 6.10 (Modal language for Kripke models) Consider Lω({λ} ∪ {λa | a ∈ A}) where λ and λa
are as defined in Example 6.3. This is a modal language for (Pid × PA)-coalgebras. Then we have

s |=(S ,〈next,prop〉) [λ]φ iff s′ |=(S ,〈next,prop〉) φ for all s′ ∈ next(s),

s |=(S ,〈next,prop〉) [λa]φ iff a ∈ prop(s).

Hence [λ] correspond to �, and [λa]φ to the atomic formula a.

21

Adequacy is easily shown using Lemma 3.2.

Theorem 6.11 (Adequacy) Lκ(Λ) is adequate.

Proof. It suffices to show that �φ�(C,γ) = f −1 ◦ �φ�(D,δ) for a morphism f : (C, γ) → (D, δ) and
φ ∈ Lκ(Λ), which is by induction on the construction of φ.

For expressivity, we must recall that the language is parametrized by the degree of conjunction κ

and the set of predicate liftings Λ. The larger κ is, or the richer Λ is, the more descriptive Lκ(Λ) is.
Hence we are to consider under what condition on κ and Λ the language Lκ(Λ) becomes expressive.
(Pattinson, 2003b) gives one answer, namely separating property.

Definition 6.12 (Separating system of subsets) Let S a set, S ⊆ PS , and define a map b : S → PS
by

b(s) := {s ∈ S | s ∈ s}.
S is said to be separating if b is an injection.

In the above, S is a system of subsets of S and b(s) is the collection of sets in S to which s belongs. S
is separating iff we can separate elements in S (i.e. distinguish an element in S) in terms of S.

Definition 6.13 (Separating system of predicate liftings) A class Λ of predicate liftings for T is said
to be separating if for any set X, the system

{λX(x) | λ ∈ Λ, x ∈ PX}
is a separating system of subsets of T X.

Example 6.14 (Kripke models) Let T = Pid×PA, λ and λa (a ∈ A) defined by Example 6.3; that is, λ
is for the next state and λa is for the satisfaction of a. Then it is easily verified thatΛ := {λ}∪{λa | a ∈ A}
is separating.13

Now we are to establish that if T is accessible and Λ is separating, then Lσ(Λ) is expressive for a
sufficiently large cardinal σ. This can be understood intuitively as follows. Let T be κ-accessible, which
means that we have only to see behaviors of T -coalgebras within less than κ-steps. The separating Λ
gifts us with a set of modalities which is rich enough to express one-step transition. Taking conjunction
of formulas each of which expresses the behavior within 1-step, 2-steps, ... , we obtain a formula which
specifies a behavior within κ-steps.

In view of the sketch of proof stated above, it seems necessary that we can specify one element of
T X by taking intersection (which corresponds to conjunction) of the system of subsets induced by Λ. In
the general case of separating systems of subsets this is not true; consider S = {x, y} andS = {{x, y}, {y}},
where we cannot take {x} as an intersection of sets in S. However, in this case of predicate liftings, this
specification by intersection can be done, with the help of predicate liftings ¬λ¬.

13Nevertheless, the separating property of Λ does not imply expressivity since T is not accessible.

22

Lemma 6.15 Let X be a set, Λ a separating set of predicate liftings for T ,

Λ̄ := Λ ∪ {¬λ¬ | λ ∈ Λ},
S := {λX(x) | λ ∈ Λ̄, x ∈ PX},

b : T X → PS
t �→ {s ∈ S | t ∈ s}

Then for all t ∈ T X, {t} = ⋂
b(t).

Proof. It is obvious that Λ̄(⊇ Λ) is also separating. We argue by contradiction.
Assume t′ ∈ ⋂

b(t) and t′ � t. t′ ∈ ⋂
b(t) immediately yields that b(t) ⊆ b(t′), and since b is monic,

b(t) � b(t′). Take λ ∈ Λ̄ and x ∈ PX such that λX(x) ∈ b(t′) \ b(t), i.e. t′ ∈ λX(x) and t � λX(x) (†).
t′ ∈ λX(x) can be rewritten as t′ � (¬λ¬)X(X \x), i.e. (¬λ¬)X(X \x) � b(t′), which shows (¬λ¬)X(X \

x) � b(t) by b(t) � b(t′). Hence we obtain t ∈ λX(x) which contradicts (†).
However, the lemma is not enough in that the degree of intersection (i.e. conjunction, on the logical

side) is not bounded above. Fortunately, if T is κ-accessible we can do better:

Lemma 6.16 Let T be κ-accessible, Λ separating, X a set and t ∈ T X. Then there exists xt(⊆ X) such
that #xt < κ and

{t} =
⋂
{λX(x) | λ ∈ Λ̄, x ⊆ xt, t ∈ λX(x)}.

Proof. Take xt (with the inclusion map i : xt � X) as t ∈ (Ti)[Txt], which is possible by the
accessibility of T . We are to show that this xt satisfies the condition.

Lemma 6.15 above shows that {t} = ⋂{λX(x) | λ ∈ Λ̄, x ⊆ X, t ∈ λX(x)}, and note that the statement
can be put as {t} = ⋂{λX(x ∩ xt) | λ ∈ Λ̄, x ⊆ X, t ∈ λX(x ∩ xt)}. The order-preserving property of
predicate liftings yields λX(x ∩ xt) ⊆ λX(x), hence it suffices to show that for every x ⊆ X, if t ∈ λX(x)
then t ∈ λX(x ∩ xt).

Let s ∈ Txt be such that t = (Ti)(s). Then (Ti)(s) ∈ λX(x) i.e. s ∈ (Ti)−1 ◦ λX(x), hence by the
compatibility of predicate liftings s ∈ λxt ◦ i−1(x). Using i−1(x) = i−1(x ∩ xt) and going up along the
same argument, we have t ∈ λX(x ∩ xt).

Theorem 6.17 (Expressivity) Let T be κ-accessible, Λ separating and σ a regular cardinal which is:
σ > #Λ, and σ > 2α for all α < κ. Then the modal language Lσ(Λ) is expressive.

Proof. We construct a formula φαz for each α < κ and z ∈ Tα1 in Lemma 3.3, and then use the lemma.
For a limit ordinal α, z ∈ Tα1 can be written as z = (zβ)β<α by the set-theoretical characterization

of the limit Tα1. Take φαz as
φαz :=

∧
β<α

φ
β
zβ .

Then by the induction hypothesis �φαz �(Z,ζ) =
⋂
β<α ζ

−1
β (zβ), which is equal to ζ−1

α ({z}).
For a successor ordinal α = β + 1, apply Lemma 6.16 to z ∈ T (T β1) and obtain bz ⊆ T β1 such that:

#bz < κ and
{z} =

⋂
{λT β1(b) | λ ∈ Λ̄, b ⊆ bz, z ∈ λT β1(b)}.

23

Let Bλ := {b ⊆ bz | z ∈ λT β1(b)} and B′λ := {b ⊆ bz | z ∈ (¬λ¬)T β1(b)} for each λ ∈ Λ. Then the
equation above can be put as

{z} =
[⋂
λ∈Λ

⋂
b∈Bλ

λT β1(b)
]
∩

[⋂
λ∈Λ

⋂
b∈B′λ

(¬λ¬)T β1(b)
]
.

Now let

φαz :=
[∧
λ∈Λ

∧
b∈Bλ

[λ]
(∨

b∈b
φ
β
b

)]
∧

[∧
λ∈Λ

∧
b∈B′λ
〈λ〉

(∨
b∈b

φ
β
b

)]
.

This is admitted to be a formula in Lσ(Λ) since σ is larger than #Λ, #Bλ and #b, and it is easy to see
that �φαz �(Z,ζ) = ζ

−1
α ({z}).

The degree of intersection σ in the theorem seems much larger than κ; however, even finitary modal
languages are expressive in some settings:

Corollary 6.18 If T is ω-accessible and Λ is a separating set of predicate liftings with #Λ < ω, then
Lω(Λ) is expressive.

If T is well-behaved in the sense defined below, we can reduce σ to κ.

Definition 6.19 (Intersection preserving predicate lifting) A predicate lifting λ for T is intersection
preserving if for any set X and any X ⊆ PX,

λX(
⋂
X) =

⋂
x∈X

λX(x).

Λ is intersection preserving if so is every λ ∈ Λ.

Proposition 6.20 Predicate liftings defined by the principles in Proposition 6.4, 6.5 are intersection
preserving.

Proof. Easy.

Theorem 6.21 Let T be κ-accessible, Λ separating, intersection preserving and #Λ < κ. Then the
modal language Lκ(Λ) is expressive.

Proof. We modify the proof of Theorem 6.17, reducing the degree of conjunction or disjunction. The
problem lies in defining φαz for a successor ordinal α.

By the intersection preserving property of λ ∈ Λ, we have⋂
λ∈Λ

⋂
b∈Bλ

λT β1(b) =
⋂
λ∈Λ

λT β1(
⋂
Bλ),

and since, as easily seen, ¬λ¬ preserves unions for intersection preserving λ, we have⋂
λ∈Λ

⋂
b∈B′λ

(¬λ¬)T β1(b) =
⋂
λ∈Λ

⋂
b∈B′λ

⋃
b∈b

(¬λ¬)T β1({b})

=
⋂
λ∈Λ

⋂
{b}∈B′λ

(¬λ¬)T β1({b}).

24

Hence we can define

φαz :=
[∧
λ∈Λ

[λ]
(∨

b∈⋂Bλ
φ
β
b

)]
∧

[∧
λ∈Λ

∧
{b}∈B′λ

〈λ〉φβb
]
,

which is a formula in Lκ(Λ) since #
⋃
Bλ and #

⋃
B′λ are smaller than κ.

Example 6.22 (Finitely branching labelled transition systems) Let L be a finite set of labels and
T := Pω(L × id), where Pω is the powerset functor bounded by ω. Then a T -coalgebra is a finitely
branching labelled transition system with the set of labels L.

Consider a natural transformation µl : T ⇒ P for each l ∈ L defined by

(µl)X((li, xi)i∈[1,n]) := {xi | li = l}.
Then the principle presented in Proposition 6.4 induces a predicate lifting λl for each l ∈ L. The
modality [λl] is quite natural in that c |=(C,γ) [λl]φ holds iff c′ |=(C,γ) φ holds for all c′ ∈ C such that

c
l→ c′.
Now it is easy to see that T is ω-accessible, Λ := {λl | l ∈ L} separating and #Λ < ω, hence

Corollary 6.18 yields the expressivity of Lω(Λ); this re-proves the result in (Hennessy and Milner,
1980) in the coalgebraic framework.

6.4 Proof system, soundness and completeness

Now we are concerned with proof systems for the modal logics introduced in the previous subsection.
(Pattinson, 2003a) introduces results on soundness and completeness of proof systems which

• are parametrized by a set of axiom schema, and

• handle only one-step transitions, i.e. axiom schema do not have nesting modalities,

under certain conditions on a set of axiom schema.
The conditions under which soundness or completeness holds are rather complicated, so here we

present only the sketch of the results and the proofs for them.
We are focused only on finitary modal languages (which, of course, may fail to be expressive).
The key is that both validity of a formula (denoted by |= φ) and deducibility by the system of a

formula (denoted by � φ) can be decomposed into n-step versions of each. For example, if the degree
of nesting modalities in a formula φ is n, then φ refers only to behaviors within n-step transitions,
hence we can know the validity of φ by the n-step validity (denoted by |=n φ). For deducibility, the
decomposition into n-step versions is possible since axiom schema refer only to one-step transitions,
and the deducibility of φ whose degree of nesting modalities is n is reduced to the n-step deducibility
of φ (denoted by �n φ).

Then the results on completeness and soundness are given in the form that if the set of axiom schema
is sound/complete as to one-step transitions, then the proof system is sound/complete. The proofs are
made by showing |=n φ iff �n φ for every n ∈ ω, using induction on n.

It may seem that the statement be tautological; if the system is sound/complete, then it is sound/complete.
However, at least in an example presented by Pattinson it really works. In the example a proof system

25

for the language Lω({λ}∪ {λa | a ∈ A}) as given in Example 6.10 is introduced, the set of axiom schema
is shown to be sound and complete with respect to one-step transitions (which is considerably easy),
and then the results are applied to obtain soundness and completeness of the system. This provides
another proof (by induction) for Kripke-completeness of normal modal logic K. It is obvious that this
method cannot be applied to modal logics such as S4, with nesting modalities in their axiom schema.

Acknowledgement

This report was written during the author’s stay at Laboratory for Verification and Semantics, Na-
tional Institute of Advanced Industrial Science and Technology, Japan (AIST). He is grateful to Hiroshi
WATANABE for making the stay possible and a lot of invaluable comments, Dirk PATTINSON for a
series of instructive lectures on coalgebras at NASSLLI 2003, Izumi TAKEUTI for advising the author
to visit AIST, and last but not least, Ryo KASHIMA for his supervision.

References

Bird, Richard and Oege de Moor. 1997. Algebra of Programming. Prentice Hall.

Carboni, A., G.M. Kelly, and R.J. Wood. 1990. A 2-categorical approach to change of base and
geometric morphisms I. Technical Report 90-1, Department of Pure Mathematics, University of
Sydney. ISSN 1033-2359.

Goldblatt, Robert. 1995. Saturation and the Hennessy-Milner property. In A. Ponse, M. de Rijke, and
Y. Venema, editors, Modal Logic and Process Algebra, volume 53 of CSLI Lecture Notes. Center
for the Study of Language and Information, Stanford University.

Hasuo, Ichiro. 2003. Modal logics for coalgebras. manuscript, July.
http://www.is.titech.ac.jp/˜hasuo2.

Hennessy, Matthew and Robin Milner. 1980. On observing nondeterminism and concurrency. In J.W.
de Bakker and J. van Leeuwen, editors, Automata, Languages and Programming, 7th Colloquium,
volume 85 of Lecture Notes in Computer Science, pages 299–309. Springer-Verlag.

Hermida, Claudio and Bart Jacobs. 1998. Structural induction and coinduction in a fibrational setting.
Information and Computation, 145:107–152.

Hollenberg, Marco. 1995. Hennessy-Milner classes and process algebra. In A. Ponse, M. de Rijke, and
Y. Venema, editors, Modal Logic and Process Algebra, volume 53 of CSLI Lecture Notes. Center
for the Study of Language and Information, Stanford University.

Jacobs, Bart. 2001. Many-sorted coalgebraic modal logic: a model-theoretic study. Theoretical Infor-
matics and Applications, 35(1):31–59.

Kurz, Alexander. 2000. Logics for Coalgebras and Applications to Computer Science. Ph.D. thesis,
Universität München, April.

26

Kurz, Alexander. 2001a. Coalgebras and modal logic. Lecture notes of ESSLLI 2001.
http://www.helsinki.fi/esslli/.

Kurz, Alexander. 2001b. Specifying coalgebras with modal logic. Theoretical Computer Science,
260(1-2):119–138.

Moss, Lawrence S. 1999. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317.

Pattinson, Dirk. 2003a. Coalgebraic modal logic: Soundness, completeness and decidability of local
consequence. Theoretical Computer Science, to appear.

Pattinson, Dirk. 2003b. Expressive logics for coalgebras via terminal sequence induction. Notre Dame
Journal of Formal Logic, to appear.

Pattinson, Dirk. 2003c. An introduction to the theory of coalgebras. Lecture notes of NASSLLI 2003.
http://www.indiana.edu/˜nasslli/.

Rößiger, Martin. 2000. Coalgebras and modal logic. In Horst Reichel, editor, Coalgebraic Methods in
Computer Science (CMCS 2000), volume 33 of Electronic Notes in Theoretical Computer Science.

Rößiger, Martin. 2001. From modal logic to terminal coalgebras. Theoretical Computer Science,
260:209–228.

Rutten, J.J.M.M. 1998. Relators and metric bisimulations. In B. Jacobs, L. Moss, H. Reichel, and
J. Rutten, editors, Coalgebraic Methods in Computer Science (CMCS ’98), volume 11 of Electronic
Notes in Theoretical Computer Science, pages 1–7.

Rutten, J.J.M.M. 2000. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249:3–80.

Segerberg, Krister. 1971. An essay in classical modal logic. Filosofiska Studier, 13.

van Benthem, Johan. 1976. Modal Correspondence Theory. Ph.D. thesis, University of Amsterdam.

27

余代数と様相論理の総合報告 (in English)
(産業技術総合研究所算譜科学グループ研究速報)
発行日：2004 年 2 月 13 日
編集・発行：独立行政法人産業技術総合研究所関西センター尼崎事業所

 システム検証研究ラボ
同連絡先：〒661-0974 兵庫県尼崎市若王寺 3-11-46
e-mail：informatics-inquiry@m.aist.go.jp
本掲載記事の無断転載を禁じます

Modal Logics for Coalgebras – A Survey

 (AIST Programming Science Group Technical Report)
February 13, 2004
Laboratory for Verification and Semantics
AIST Kansai, Amagasaki Site
National Institute of Advanced Industrial Science and Technology (AIST)
3-11-46 Nakoji, Amagasaki, Hyogo, 661-0974, Japan
e-mail : informatics- inquiry@m.aist.go.jp

・Reproduction in whole or in part without written permission is prohibited.

