Dialgebraic Specification and Modeling

Abstract

Dialgebraic specifications combine algebraic with coalgebraic ones. We present a uniform syntax, semantics and proof system for chains of signatures and axioms such that presentations of visible data types may alternate with those of hidden state types. Each element in the chain matches a design pattern that reflects some least/initial or greatest/final model construction over the respective predecessor in the chain. We sort out twelve such design patterns. Six of them lead to least models, the other six to greatest models. Each construction of the first group has its dual in the second group. All categories used in this approach are classes of structures with many-sorted carrier sets. The model constructions could be generalized to other categories, but this is not a goal of our approach. On the contrary, we aim at applications in software (and, maybe, also hardware) design and will show that for describing and solving problems in this area one need not go beyond categories of sets. Consequently, a fairly simple, though sufficiently powerful, syntax of dialgebraic specifications that builds upon classical algebraic notations as much as possible is crucial here. It captures the main constructions of both universal (co)algebra and relational fixpoint semantics and thereby extends "Lawvere-style" algebraic theories from product to arbitrary polynomial types and modal logics from one- to many-sorted Kripke frames.

Contents

1 Introduction 1
2 Set-theoretical preliminaries 2
3 Types, terms and formulas, and their interpretations 3
4 Semantics of specifications 13
5 Swinging types 22
6 Data and states 25
7 Recursion and corecursion 29
8 Relations 31
9 Finitely branching swinging types 39
10 Abstraction and restriction 41
11 Conservative extension 49
12 The perfect model 52
13 Deductive semantics 58
14 Constructor-based algebras 60
15 Constructor-based coalgebras 66
16 Destructor-based coalgebras 74
17 More on final coalgebras 78
18 Algebraic types with cospecifications 84
19 Examples 90

21 Appendix: Category-theoretical foundations 100
References

1 Introduction

??? Swinging types provide a one-tiered approach to the axiomatic specification of systems: static and dynamic components as well as structural and behavioral aspects are treated within the same (many-sorted) logic. A swinging type (ST) as defined in [89] is non-hierarchical. Standard hidden constructors are the tupling operators for product sorts and injections for sum sorts. In this paper, we drop the implicit assumption of [89] that only countable, term-generated data domains are specified in terms of swinging types.

The elements of the standard models are easy to conceive: those of the Herbrand $S P$-model are the ground Σ-terms. If $S P$ is functional, the initial $S P$-model is isomorphic to the normal form model $N F(S P)$ whose elements are the ground Σ-normal forms, i.e., the Σ-terms consisting of constructors. The final $S P$-model is isomorphic to the quotient of $N F(S P)$ that identifies behaviorally equivalent normal forms.

If $S P$ is the domain completion of a coalgebraic swinging type (see Section 4.2), most nullary constructors are (names of) elements of a final coalgebra and thus each of them denotes the "behavior" of an object in a certain state (see Section 4.1). In this case, non-nullary constructors describe state modifiers, in object-oriented terminology: methods. In other cases, they just build up static data structures.

Hence a normal form may represent
$>$ the static structure of an object or
$>$ the history of an object or
> a set of attribute values or
$>$ a composition of substates or
$>$ possible actions on an object or
$>$ an "infinite" data structure or
$>$ an element of another uncountable domain.
The most common hidden constructors are injections into sum sorts. Sum sorts are crucial for integrating coalgebraic specifications into STs because are based on destructors and the most interesting destructors map into sum sorts (see Sections 4 and 5). Hidden constructors can be regarded as the algebraic counterpart to destructors whose nature is coalgebraic. As injections into sum sorts are implicit constructors, so are projections into the factors of a product sort implicit destructors. Other common destructors are the apply operators that occur implicitly in axioms for higher-order defined functions (cf., e.g., Example 14.2).

Section 3 summarizes the crucial notions and results from category theory and universal algebra that justify the initial algebra/final coalgebra semantics of data types. We focus on the category $S e t^{S}$ of S-sorted sets. Some connections to swinging types are already drawn in this section. The new approach, however, is presented in Sections 4 and 5 and can be followed even if one has not read all details of Section 3.

Section 4 introduces notions of coalgebraic signatures and specifications, called cosignatures and cospecifications, respectively. A cosignature Δ starts out from a swinging signature vis Σ as the syntactical basis for hidden sorts and destructors for them. Given a vis Σ-structure C, a (Δ, C)-coalgebra is merely a Δ-algebra whose vis Σ reduct agrees with $C . \Delta$ induces coterms and contexts. Each element of the final (Δ, C)-coalgebra is a sequence
of functions each of which interprets a context. A cospecification $C S P$ adds to Δ and C auxiliary functions, cofunctions, copredicates, inductive axiomatizations for the auxiliary functions, coinductive axiomatizations for the cofunctions, co-Horn axioms for the copredicates and assertions. The final CSP-model, Fin $(C S P)$, is the subcoalgebra of the final (Δ, C)-coalgebra consisting of all data satisfying the assertions.those elements that

In Section 5, swinging types are combined with cospecifications. A swinging type $S P$ becomes dialgebraic if $S P$ is extended by a cospecification $C S P$ such that $S P$ and $C S P$ have the same visible subsignature, the same hidden sorts, the same destructors for these sorts and the same axioms for the auxiliary functions and copredicates of $C S P$. Hence cofunctions and assertions are the only actual contributions of a cospecification to a dialgebraic ST. Semantically, however, there is a difference between a dialgebraic type CST and an algebraic one even if the cospecification $C S P$ that is part of $C S T$ lacks assertions and cofunctions. While the standard model of an algebraic ST is an -always countable - quotient of a Herbrand model, the standard model of CST should be given by $\operatorname{Fin}(C S P)$ and thus may have uncountable carriers (see above). Fortunately, the main result of Section 5 (Thm. 18.5) tells us that, under certain weak conditions, $\operatorname{Fin}(C S P)$ is isomorphic to the standard model of an algebraic ST, called the domain completion of $C S T$. By replacing $C S T$ with its domain completion, we may keep to the hierarchical notion of a swinging type, both syntactically and semantically.

2 Set-theoretical preliminaries

At first, we recall some basic notions of set theory and relation algebra. Let S be a set. $i d_{S}: S \rightarrow S$ denotes the identity on S.

Given a product $A=\prod_{i \in I} A_{i}=_{\text {def }}\left\{\left(a_{i}\right)_{i \in I} \mid \forall i \in I: a_{i} \in A_{i}\right\}$ and $i \in I, a_{i}$ denotes the i-th component of $a \in A$ and $\pi_{i}: A \rightarrow A_{1}$ denotes the i-th projection from A, i.e., for all $\pi_{i}(a)=a_{i}$. Moreover, for all $a, b \in A$,

$$
\langle a, b\rangle \in \prod_{i \in I} A_{i}^{2} \quad=_{d e f} \quad\left(a_{i}, b_{i}\right)_{i \in I}
$$

If I is a singleton, say $I=\{k\}$, we write k instead of I and A_{k} instead of A. A function $f: C \rightarrow A$ is well-defined iff for all $i \in I, \pi_{i} \circ f$ is well-defined. Given functions $f_{i}: C \rightarrow A_{i}, i \in I$, the product extension $\left\langle f_{i}\right\rangle_{i \in I}: C \rightarrow A$ of $\left\{f_{i} \mid i \in I\right\}$ is defined as follows: For all $c \in C,\left\langle f_{i}\right\rangle_{i \in I}(c)=\left(f_{i}(c)\right)_{i \in I}$.

Relational update. Let $R \subseteq A=\prod_{i \in I} A_{i}, k \in I, a \in A$ and $b \in A_{k} a[b / k] \in A$ and $R[b / k] \subseteq A$ are defined as follows:

$$
\begin{aligned}
& (a[b / k])_{i}= \begin{cases}b & \text { if } i=k \\
a_{i} & \text { otherwise }\end{cases} \\
& R[b / k]=\{a[b / k] \mid a \in R\}
\end{aligned}
$$

Analogously, let $R \subseteq A=\coprod_{i \in I} A_{i}, k \in I,(a, i) \in A$ and $b \in A_{k} .(a, i)[b / k] \in A, i \in I$ and $R[b / k] \subseteq A$ are defined as follows:

$$
\begin{aligned}
& ((a, i)[b / k])= \begin{cases}(b, i) & \text { if } i=k \\
(a, i) & \text { otherwise }\end{cases} \\
& R[b / k]=\{a[b / k] \mid a \in R\} .
\end{aligned}
$$

Relational product. Let $R \subseteq \prod_{i \in I} A_{i}$ and $R \subseteq \prod_{i \in J} A_{i}$ such that $I \cap J=\emptyset$.

$$
R \times R^{\prime}=\operatorname{def} \quad\left\{\left(a_{i}\right)_{i \in I} \in \prod_{i \in I \cup J} A_{i} \mid\left(a_{i}\right)_{i \in I} \in R,\left(a_{i}\right)_{i \in J} \in R^{\prime}\right\}
$$

Given a sum or coproduct $A=\coprod_{i \in I} A_{i}={ }_{\operatorname{def}}\left\{(a, i) \mid i \in I, a \in A_{i}\right\}$ and $i \in I, \iota_{i}: A_{i} \rightarrow A$ denotes the i-th injection into A, i.e., $\iota_{i}(a)=(a, i)$. If I is a singleton, say $I=\{k\}$, we write k instead of I and A_{k} instead of A. A function $f: A \rightarrow C$ is well-defined iff for all $i \in I, f \circ \iota_{i}$ is well-defined. Given functions $f_{i}: A_{i} \rightarrow C$,
$i \in I$, the sum extension $\left[f_{i}\right]_{i \in I}: A \rightarrow C$ of $\left\{f_{i} \mid i \in I\right\}$ is defined as follows: For all $i \in I$ and $a \in A_{i}$, $\left[f_{i}\right]_{i \in I}(a)=f_{i}(a)$.

For all $f: \prod_{i \in I} A_{i} \rightarrow A, k \in I$ and $g: B \rightarrow A_{k}, f \circ_{k} g=_{d e f} f \circ\left\langle g_{i}\right\rangle_{i \in I}: \prod_{i \in I} B_{i} \rightarrow A$ where

$$
g_{i}=\left\{\begin{array}{ll}
g & \text { if } i=k \\
\pi_{i} & \text { otherwise }
\end{array} \quad B_{i}= \begin{cases}B & \text { if } i=k \\
A_{i} & \text { otherwise }\end{cases}\right.
$$

For all $f: A \rightarrow \coprod_{i \in I} A_{i}, k \in I$ and $g: A_{k} \rightarrow B, g \circ^{k} f={ }_{d e f}\left[g_{i}\right]_{i \in I} \circ f: A \rightarrow \coprod_{i \in I} B_{i}$ where

$$
g_{i}=\left\{\begin{array}{ll}
g & \text { if } i=k \\
\iota_{i} & \text { otherwise }
\end{array} \quad B_{i}= \begin{cases}B & \text { if } i=k \\
A_{i} & \text { otherwise }\end{cases}\right.
$$

For all functions $f_{i}: A_{i} \rightarrow B_{i}, i \in I$,

$$
\begin{aligned}
& \prod_{i \in I} f_{i}=\text { def }\left\langle f_{i} \circ \pi_{i}\right\rangle_{i \in I}: \prod_{i \in I} A_{i} \rightarrow \prod_{i \in I} B_{i} \\
& \coprod_{i \in I} f_{i}=d_{\text {def }}\left[\iota_{i} \circ f_{i}\right]_{i \in I}: \coprod_{i \in I} A_{i} \rightarrow \coprod_{i \in I} B_{i}
\end{aligned}
$$

For all sets or functions $A_{1}, \ldots, A_{n}, \prod_{i=1}^{n} A_{i}$ and $\coprod_{i=1}^{n} A_{i}$ are also written as $A_{1} \times \cdots \times A_{n}$ and $A_{1}+\cdots+A_{n}$, respectively. Some notations used above will re-appear in the following syntax of types, terms and formulas.

3 Types, terms and formulas, and their interpretations

Definition 3.1 (types) Let S be a finite set of sorts (type constants) and X be a finite set of type variables. The set $\mathbb{T}_{S}(X)$ of (polynomial) types over S and X are the sets of expressions generated by the following rules:

$$
\mathbb{T}_{S}(X)
$$

sorts and type variables

$$
\bar{s} \quad s \in S \cup\{1\} \quad \bar{x} \quad x \in X
$$

product and sum

$$
\frac{e_{1}, \ldots, e_{n}}{e_{1} \times \cdots \times e_{n}} \quad \frac{e_{1}, \ldots, e_{n}}{e_{1}+\cdots+e_{n}}
$$

powers

$$
\frac{e}{s \rightarrow e} \quad s \in S
$$

constructive and destructive types over $Y \subseteq X$

$$
\begin{gathered}
\overline{\coprod_{i=1}^{n} \prod_{j=1}^{n_{i}} e_{i j}} \quad \forall 1 \leq i \leq n: \forall 1 \leq j \leq n_{i}: e_{i j} \in S \cup Y \\
\overline{\prod_{i=1}^{n}\left(s_{i} \rightarrow \coprod_{j=1}^{n_{i}} e_{i j}\right)} \quad \forall 1 \leq i \leq n: s_{i} \in S \wedge \forall 1 \leq j \leq n_{i}: e_{i j} \in S \cup Y
\end{gathered}
$$

recursive and corecursive types

$$
\begin{gathered}
\frac{e_{1}, \ldots, e_{n}}{\mu x_{1} \ldots x_{n} \cdot\left(e_{1}, \ldots, e_{n}\right)} \quad e_{1}, \ldots, e_{n} \text { are constructive over }\left\{x_{1}, \ldots, x_{n}\right\} \subseteq X \\
\frac{e_{1}, \ldots, e_{n}}{\nu x_{1} \ldots x_{n} \cdot\left(e_{1}, \ldots, e_{n}\right)} \quad e_{1}, \ldots, e_{n} \text { are destructive over }\left\{x_{1}, \ldots, x_{n}\right\} \subseteq X
\end{gathered}
$$

\times and + are regarded as associative operators. \times binds stronger than,++ stronger than \rightarrow.
$\operatorname{var}(\mathbf{e})$ denotes the set of free type variables of e. Given $e, e^{\prime} \in \mathbb{T}_{S}(X)$, expressions of the form $e \rightarrow e^{\prime}$ are called (first-order) functional types over S and $X, \mathbb{F}_{S}(X)$ denotes the set of functional types over S. A (functional) type is ground or monomorphic if it does not contain type variables. The set of ground (functional) types over S is denoted by \mathbb{T}_{S} and \mathbb{F}_{S}, respectively.
e is a subtype of e^{\prime} if $e=e^{\prime}$ or there are types e_{1}, \ldots, e_{n}, s such that

- $e=e_{1} \times \cdots \times e_{n}$ and e_{i} is a subtype of e^{\prime}, or
- $e=e_{i}$ and $e_{1}+\cdots+e_{n}$ is a subtype of e^{\prime}, or
- $e=s \rightarrow e_{1}, e^{\prime}=s \rightarrow e_{2}$ and e_{1} is a subtype of e_{2}.

If there is $s \in \mathbb{T}(S)$ such that $s_{i}=s$ for all $1 \leq i \leq n, e_{1} \times \cdots \times e_{n}$ is also written as s^{n}.
Sum types are particularly useful for specifying partial functions, exceptions and inheritance. In contrast to subsorting approaches [30] sum typing keeps to the syntax and semantics of many-sorted logic. Sum typing is also a way of avoiding the classical theory of complete partial orders (cpos) for modeling recursive functions, similarly to partially-additive semantics [70] that also uses sums terms. The coalgebraic interpretation of λ definable functions [39] is another way of handling recursive functions without employing cpos.

Definition 3.2 (sorted sets and functions) Let Set be the category of (small) sets and functions between sets. Let S be a set. Then $S e t^{S}$ denotes the category of S-sorted sets $A=\left\{s^{A} \mid s \in S\right\}$ and S-sorted functions $f: A \rightarrow B=\left\{s^{f}: s^{A} \rightarrow s^{B} \mid s \in S\right\}$.

Given $s \in S, \Delta_{s}^{A}$ denotes the diagonal relation on s^{A}, i.e., $\Delta_{s}^{A}=\left\{(a, a) \mid a \in s^{A}\right\}$. An S-sorted set B is an S-sorted subset of A, written as $B \subseteq A$, if for all $s \in S, s^{B}$ is a subset of s^{A}. Consequently, A and B are equal iff A and B are sortwise equal:

$$
A=B \quad \Longleftrightarrow_{\text {def }} \quad \forall s \in S: s^{A}=s^{B}
$$

Definition 3.3 (interpretation of types by functors) Each type $e \in \mathbb{T}_{S}(X)$ and each S-sorted set A yield a functor $F_{e, A}: S e t^{X} \rightarrow$ Set that is defined as follows: Let $B, C \in S e t^{X}$ and $f: B \rightarrow C$ be an X-sorted function.

- For all $s \in S, F_{s, A}(B)=s^{A}$ and $F_{s, A}(f)=i d_{s^{A}}$.
- $F_{1, A}(B)=\{()\}$ and $F_{1, A}(f)=i d_{\{()\}}$.
- For all $x \in X, F_{x, A}(B)=x^{B}$ and $F_{x, A}(f)=x^{f}$.
- $F_{e_{1} \times \cdots \times e_{n}, A}(B)=F_{e_{1}, A}(B) \times \ldots \times F_{e_{n}, A}(B)$ and $F_{e_{1} \times \cdots \times e_{n}, A}(f)=F_{e_{1}, A}(f) \times \ldots \times F_{e_{n}, A}(f)$.
- $F_{e_{1}+\cdots+e_{n}, A}(B)=F_{e_{1}, A}(B)+\cdots+F_{e_{n}, A}(B)$ and $F_{e_{1}+\cdots+e_{n}, A}(f)=F_{e_{1}, A}(f)+\cdots+F_{e_{n}, A}(f)$.
- $F_{s \rightarrow e, A}(B)=\left[s^{A} \rightarrow F_{e, A}(B)\right]$ and for all $g: s^{A} \rightarrow F_{e}(B), F_{s \rightarrow e, A}(f)(g)=F_{e, A}(f) \circ g: s^{A} \rightarrow F_{e, A}(C)$.
- Let $Y=\left\{x_{1}, \ldots, x_{n}\right\}$ and $F: \operatorname{Set}^{Y} \rightarrow \operatorname{Set}^{Y}$ be defined by $x_{i}^{F(D)}=F_{e_{i}, A}(D)$ for all $1 \leq i \leq n$ and $D \in \operatorname{Set}^{Y}$. Then $F_{\mu x_{1} \ldots x_{n} .\left(e_{1}, \ldots, e_{n}\right), A}(B)=\operatorname{Ini}\left(A l g_{F}\right), F_{\mu x_{1} \ldots x_{n} .\left(e_{1}, \ldots, e_{n}\right), A}(f)=i d_{\operatorname{Ini}\left(A l g_{F}\right)}$, $F_{\nu x_{1} \ldots x_{n} \cdot\left(e_{1}, \ldots, e_{n}\right), A}(B)=\operatorname{Fin}\left(\operatorname{Coalg}_{F}\right)$ and $F_{\nu x_{1} \ldots x_{n} \cdot\left(e_{1}, \ldots, e_{n}\right), A}(f)=i d_{F i n\left(C o a l g_{F}\right)}$.

A straightforward structural induction shows that F_{e} is indeed a functor, i.e., the follwing diagram $(*)$
commutes:

Definition 3.4 (substitution of type variables by types) Let X be a finite set of type variables. A function $\sigma: X \rightarrow \mathbb{T}_{S}(X)$ extends to a function $\sigma^{*}: \mathbb{T}_{S}(X) \rightarrow \mathbb{T}_{S}(X)$ as follows:

- For all $x \in X, \sigma^{*}(x)=\sigma(x)$.
- For all $s \in S \cup\{1\}, \sigma^{*}(s)=s$.
- For all $e_{1}, \ldots, e_{n} \in \mathbb{T}_{S}(X)$, $\sigma^{*}\left(e_{1} \times \cdots \times e_{n}\right)=\sigma^{*}\left(e_{1}\right) \times \ldots \times \sigma^{*}\left(e_{n}\right)$ and $\sigma^{*}\left(e_{1}+\cdots+e_{n}\right)=\sigma^{*}\left(e_{1}\right)+\cdots+\sigma^{*}\left(e_{n}\right)$.
- For all $s \in S$ and $e \in \mathbb{T}_{S}(X), \sigma^{*}(s \rightarrow e)=s \rightarrow \sigma^{*}(e)$.
- $\sigma^{*}\left(\mu x_{1} \ldots x_{n} .\left(e_{1}, \ldots, e_{n}\right)=\mu x_{1} \ldots x_{n} \cdot\left(\tau^{*}\left(e_{1}\right), \ldots, \tau^{*}\left(e_{n}\right)\right)\right.$ where $\tau: X \rightarrow \mathbb{T}_{S}(X)$ is defined by $\tau(x)= \begin{cases}x_{i} & \text { if } x=x_{i} \text { for some } 1 \leq i \leq n \\ \sigma(x) & \text { otherwise } .\end{cases}$

Given $e \in \mathbb{T}_{S}(X)$ and $A \in S e t^{S}$, the functor property of $F_{e, A}$ implies the following
Proposition 3.5 Let e be a type over S and $X, \sigma: X \rightarrow \mathbb{T}_{S}, A \in S e t^{S}$ and $B \in S e t^{X}$. Then

$$
F_{\sigma^{*}(e), A}(B)=F_{e, A}(\sigma(B))
$$

where for all $x \in X, x^{\sigma(B)}=\operatorname{def} \begin{cases}F_{\sigma(x), A}(B) & \text { if } x \in \operatorname{var}(e), \\ x^{B} & \text { otherwise } .\end{cases}$
Definition 3.6 (signatures, structures and homomorphisms) Let X be a set of type variables. A signature $\Sigma=(S, O p, R e l)$ over X consists of a set S of sorts, an S^{2}-sorted set $O p$ of function symbols and an S^{+}-sorted set Rel of relation symbols. We write $f: s_{1} \rightarrow s_{2} \in \Sigma$ instead of $f \in\left(s_{1}, s_{2}\right)^{O p}$ and $r: w \in \Sigma$ instead of $r \in w^{\text {Rel }} . \operatorname{dom}(f)=s_{1}$ and $\operatorname{ran}(f)=s_{2}$ are called the domain resp. range of f.

For all $s \in S$, Rel implicitly includes the s-equality $=_{s}: s s$ and the s-membership $\in_{s}: s$. A relation is logical if it is neither a membership nor an equality.

A signature $\Sigma^{\prime}=\left(S^{\prime}, O p^{\prime}, R e l^{\prime}\right)$ is a subsignature of Σ if $S^{\prime} \subseteq S, O p^{\prime} \subseteq O p$ and Rel \subseteq Rel.
A Σ-structure A consists of an S-sorted set, the carrier of A, also denoted by A, for all $f: s_{1} \rightarrow s_{2} \in \Sigma$, a function $f^{A}: s_{1}^{A} \rightarrow s_{2}^{A}$ and for all $r: s \in \Sigma$, a relation $r^{A} \subseteq s^{A}$. A is a Σ-structure with equality if for all $s \in S,={ }_{s}^{A}=\Delta_{s}^{A} . A$ is a Σ-structure with membership if for all $s \in S, \in_{s}^{A}=s^{A}$.

Given Σ-structures A and B, an S-sorted function $h: A \rightarrow B$ is a Σ-homomorphism if for all $f: s_{1} \rightarrow s_{2} \in$ $\Sigma, s_{2}^{h} \circ f^{A}=f^{B} \circ s_{1}^{h}$. If, in addition, f is surjective or injective, f is a Σ-epimorphism or a Σ-monomorphism, respectively. A Σ-homomorphism $h: A \rightarrow B$ is a Σ-isomorphism if there is a Σ-homomorphism $g: B \rightarrow A$ such that $g \circ h=i d_{A}$ and $h \circ g=i d_{B}$. Then we write $A \cong B$ and say that A and B are Σ-isomorphic.
$\operatorname{Mod}(\Sigma)$ denotes the category of Σ-structures and Σ-homomorphisms. $\operatorname{Mod}_{E M}(\Sigma)$ denotes the full subcat-
egory of $\operatorname{Mod}(\Sigma)$ whose objects are Σ-structures with equality and membership. ${ }^{1}$
Given a subsignature $\Sigma^{\prime}=\left(S^{\prime}, O p^{\prime}\right.$, Rel $\left.^{\prime}\right)$ of Σ and a Σ^{\prime}-structure $A, \operatorname{Mod}(\Sigma, A)$ denotes the category of all Σ-structures over A, i.e., all Σ-structures B and Σ-homomorphisms h such that for all $s \in S^{\prime}, s^{B}=s^{A}$ and $s^{h}=i d_{s^{A}} . \operatorname{Mod}_{E M}(\Sigma, A)={ }_{d e f} \operatorname{Mod}(\Sigma, A) \cap \operatorname{Mod}_{E M}(\Sigma)$.

A Σ-homomorphism is a Σ-isomorphism iff it is bijective.
Definition 3.7 (terms) Let $\Sigma=(S, O p$, Rel $)$ be a signature over $X . I d_{S}(X)={ }_{\text {def }}\left\{i d_{e} \mid e \in \mathbb{T}_{S}(X)\right\}$. The $\mathbb{F}_{S}(X)$-sorted set $T_{\Sigma}(X)$ of Σ-terms over X is the set of expressions generated by following rules:

$T_{\Sigma}(X)$

functions of Σ and identities

$$
\overline{o p: s_{1} \rightarrow s_{2}} \text { op } \in O p \quad \overline{i d_{e}: e \rightarrow e} \quad e \in \mathbb{T}_{S}(X)
$$

product and sum

$$
\frac{t_{1}: e \rightarrow e_{1}, \ldots, t_{n}: e \rightarrow e_{n}}{\left\langle t_{1}, \ldots, t_{n}\right\rangle: e \rightarrow e_{1} \times \cdots \times e_{n}} \quad \frac{t_{1}: e_{1} \rightarrow e, \ldots, t_{n}: e_{n} \rightarrow e}{\left[t_{1}, \ldots, t_{n}\right]: e_{1}+\cdots+e_{n} \rightarrow e}
$$

projections and injections

$$
\overline{\pi_{i}: e_{1} \times \cdots \times e_{n} \rightarrow e_{i}} \quad \overline{\iota_{i}: e_{i} \rightarrow e_{1}+\cdots+e_{n}} \quad 1 \leq i \leq n
$$

rooting and branching

$$
\begin{array}{cc}
\frac{t: e \rightarrow e_{1}, t_{1}: e_{1} \rightarrow e_{2}}{t_{1} \circ t: e \rightarrow e_{2}}
\end{array} \frac{t_{2}: e \rightarrow e_{1}, t: e_{1} \rightarrow e_{2}}{t \circ t_{2}: e \rightarrow e_{2}} \quad t \notin I d_{S}(X), \quad \begin{aligned}
& t_{1} \in O p \cup \Sigma \iota \cup \Sigma j o i n, \\
& t_{2} \in O p \cup \Sigma \pi \cup \Sigma \text { fork }
\end{aligned}
$$

sub- and supertyping

$$
\frac{t: e_{1} \rightarrow e}{t \times e_{2}: e_{1} \times e_{2} \rightarrow e} \quad \frac{t: e \rightarrow e_{1}}{t+e_{2}: e \rightarrow e_{1}+e_{2}}
$$

left and right distribution

$$
\begin{aligned}
& \overline{\operatorname{dist}_{L}: e \times\left(e_{1}+\cdots+e_{n}\right) \rightarrow e \times e_{1}+\cdots+e \times e_{n}} \\
& \overline{\operatorname{dist}_{R}:\left(e_{1}+\cdots+e_{n}\right) \times e \rightarrow e_{1} \times e+\cdots+e_{n} \times e}
\end{aligned}
$$

abstraction and application
fork and join

$$
\frac{\varphi: e}{\operatorname{fork}(\varphi): e \rightarrow e+e} \quad \frac{\varphi: e}{\operatorname{join}(\varphi): e \times e \rightarrow e} \quad \varphi \in \operatorname{Form}_{\Sigma}(X) \text { (see Def. 3.12) }
$$

$\Sigma \pi, \Sigma \iota, \Sigma$ fork and Σ join denote the sets of projections, injections, forks and joins, respectively. A term is ground or monomorphic if it does not contain type variables. The set of ground Σ-terms is denoted by T_{Σ}. If $\mathbb{T}_{S}(X)$ is restricted to either products or sums, T_{Σ} is an algebraic theory in the sense of $[64,109,23,107]$.

Given a Σ-term $t: e \rightarrow e^{\prime}, \operatorname{dom}(t)=_{d e f} e$ and $\operatorname{ran}(t)=_{d e f} e^{\prime}$ are called the domain resp. range of t.
We sometimes omit \circ and write $t\left\langle t_{1}, \ldots, t_{n}\right\rangle$ and $\left[t_{1}, \ldots, t_{n}\right] t$ instead of $t \circ\left\langle t_{1}, \ldots, t_{n}\right\rangle$ and $\left[t_{1}, \ldots, t_{n}\right] \circ t$, respectively. If $\operatorname{dom}(t)$ is a binary product, $t\langle u, v\rangle$ is sometimes written as $u t v$.

[^0]Given terms $t_{1}: e_{1} \rightarrow e_{1}^{\prime}, \ldots, t_{n}: e_{n} \rightarrow e_{n}^{\prime}, t_{1} \times \cdots \times t_{n}$ and $t_{1}+\cdots+t_{n}$ denote the product $\left\langle t_{1} \circ \pi_{1}, \ldots, t_{n} \circ \pi_{n}\right\rangle$ and sum $\left[\iota_{1} \circ t_{1}, \ldots, \iota_{n} \circ t_{n}\right]$, respectively.
$u \in T_{\Sigma}(X)$ is a subterm of $t \in T_{\Sigma}(X)$ if $t=u$ or there are $f \in O p, t_{1}, \ldots, t_{n} \in T_{\Sigma}(X)$ and $1 \leq i \leq n$ such that

- $t=f \circ\left\langle t_{1}, \ldots, t_{n}\right\rangle$ and u is a subterm of t_{i} or
- $t=\left[t_{1}, \ldots, t_{n}\right] \circ f, u=\left[u_{1}, \ldots, u_{n}\right] \circ f, u_{i}$ is a subterm of t_{i} and $u_{k}=t_{k}$ for all $1 \leq k \leq n$ with $k \neq i$.
$u \in T_{\Sigma}(X)$ is a superterm of $t \in T_{\Sigma}(X)$ if $t=u$ or there are $f \in F, t_{1}, \ldots, t_{n} \in T_{\Sigma}(X)$ and $1 \leq i \leq n$ such that
- $t=\left[t_{1}, \ldots, t_{n}\right] \circ f$ and u is a superterm of t_{i} or
- $t=f \circ\left\langle t_{1}, \ldots, t_{n}\right\rangle, u=f \circ\left\langle u_{1}, \ldots, u_{n}\right\rangle, u_{i}$ is a superterm of t_{i} and $u_{k}=t_{k}$ for all $1 \leq k \leq n$ with $k \neq i$.

It is easy to see that for each Σ-term $t: e \rightarrow e_{1} \times \cdots \times e_{n}$ there are $t_{1}, \ldots, t_{n} \in T_{\Sigma}(X)$ such that $t=\left\langle t_{1}, \ldots, t_{n}\right\rangle$, while for each Σ-term $t: e_{1}+\cdots+e_{n} \rightarrow e$ there are $t_{1}, \ldots, t_{n} \in T_{\Sigma}(X)$ such that $t=\left[t_{1}, \ldots, t_{n}\right]$.

Terms built up of products or sums can be visualized as trees growing downwards or upwards, respectively:

Figure 1. Tree representations of the terms $c_{1}\left\langle c_{2}\left\langle c_{5}, c_{6}\right\rangle, c_{3}, c_{4}\left\langle c_{7}, c_{8}\right\rangle\right\rangle: e_{1} \rightarrow e_{2}$

$$
\text { and }\left[\left[d_{5}, d_{6}\right] d_{2}, d_{3},\left[d_{7}, d_{8}\right] d_{4}\right] d_{1}: e_{1} \rightarrow e_{2} .
$$

As types denote functors (see Def. 3.2), terms denote natural transformations:
Definition 3.8 (interpretation of terms by natural transformations) Each $t: e_{1} \rightarrow e_{2} \in T_{\Sigma}(X)$ and each $A \in \operatorname{Mod}(\Sigma)$ yield a natural transformation $T_{t, A}: F_{e_{1}, A} \rightarrow F_{e_{2}, A}$, i.e., a set

$$
\left\{T_{t, A}(B): F_{e_{1}, A}(B) \rightarrow F_{e_{2}, A}(B) \mid B \in \operatorname{Set}^{X}\right\}
$$

of functions such that for all $B, C \in \operatorname{Set}^{X}$ and X-sorted functions $f: B \rightarrow C$, the following diagram commutes:

$$
\begin{gathered}
F_{e_{1}, A}(B) \xrightarrow{T_{t, A}(B)} F_{e_{2}, A}(B) \\
F_{e_{1}, A}(f) \mid \\
F_{e_{1}, A}(C) \xrightarrow{T_{t, A}(C)} F_{e_{2}, A}(C)
\end{gathered}
$$

$T_{t, A}$ is defined as follows: Let $B, C \in \operatorname{Set}^{X}$ and $f: B \rightarrow C$ be an X-sorted function. The set-theoretical operators on the right-hand sides of the following equations are defined in section 2 .

- For all $o p: s_{1} \rightarrow s_{2} \in \Sigma, T_{o p, A}(B)=o p^{A}$.
- For all $e \in \mathbb{T}_{S}(X), T_{i d_{e}, A}(B)=i d_{F_{e, A}(B)}$.
- For all $t_{1}: e \rightarrow e_{1}, \ldots, t_{n}: e \rightarrow e_{n} \in T_{\Sigma}(X)$,
$T_{\left\langle e_{1}, \ldots, e_{n}\right\rangle, A}(B)=\left\langle T_{e_{1}, A}(B), \ldots, T_{e_{n}, A}(B)\right\rangle$ and $T_{\left[e_{1}, \ldots, e_{n}\right], A}(B)=\left[T_{e_{1}, A}(B), \ldots, T_{e_{n}, A}(B)\right]$.
- For all $e_{1}, \ldots, e_{n} \in \mathbb{T}_{S}(X)$ and $1 \leq i \leq n, T_{\pi_{i}, A}(B)=\pi_{i}$ and $T_{\iota_{i}, A}(B)=\iota_{i}$.
- For all $t_{1}: e_{1} \rightarrow e_{2}, t_{2}: e_{2} \rightarrow e_{3}, T_{t_{2} \circ t_{1}, A}(B)=T_{t_{2}, A}(B) \circ T_{t_{1}, A}(B)$.
- For all $t: e \rightarrow e_{1}, e_{2} \in \mathbb{T}_{S}(X)$ and $(c, d) \in F_{e \times e_{2}, A}(B), T_{t \times e_{2}, A}(B)(c, d)=T_{t, A}(B)(c)$.
- For all $t: e \rightarrow e_{1}, e_{2} \in \mathbb{T}_{S}(X)$ and $c \in F_{e, A}(B), T_{t+e_{2}, A}(B)(c)=T_{t, A}(B)(c)$.
- For all $e, e_{1}, \ldots, e_{n} \in \mathbb{T}_{S}(X), 1 \leq i \leq n$ and $\left(c, \iota_{i}(d)\right) \in F_{e \times\left(e_{1}+\cdots+e_{n}\right), A}(B), T_{d i s t_{L}, A}(B)\left(c, \iota_{i}(d)\right)=\iota_{i}(c, d)$.
- For all $e, e_{1}, \ldots, e_{n} \in \mathbb{T}_{S}(X), 1 \leq i \leq n$ and $\left(\iota_{i}(c), d\right) \in F_{e \times\left(e_{1}+\cdots+e_{n}\right), A}(B), T_{d i s t_{R}, A}(B)\left(\iota_{i}(c), d\right)=\iota_{i}(c, d)$.
- For all $t: e_{1} \times \ldots \times e_{n} \rightarrow e$ with $e_{i} \in S, f: e_{i}^{A} \rightarrow\left(F_{e_{1} \times \ldots \times e_{i-1} \times e_{i+1} \ldots \times e_{n}, A}(B) \rightarrow F_{e, A}(B)\right)$ and $\left(c_{1}, \ldots, c_{n}\right) \in F_{e_{1} \times \ldots \times e_{n}, A}(B), T_{\lambda i . t, A}(B)\left(c_{1}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n}\right)\left(c_{i}\right)=T_{t, A}(B)\left(c_{1}, \ldots, c_{n}\right)$.
- For all $s \in S, e \in \mathbb{T}_{S}(X), f: s^{A} \rightarrow F_{e, A}(B)$ and $a \in s^{A}, T_{\$, A}(B)(f, a)=f(a)$.
- For all $\varphi: e \in \operatorname{Form}_{\Sigma}$ and $a \in F_{e, A}(B), T_{\text {fork }(\varphi), A}(B)(a)= \begin{cases}(a, 1) & \text { if } a \in \varphi^{A}, \\ (a, 2) & \text { if } a \notin \varphi^{A} .\end{cases}$
- For all $\varphi: e \in \operatorname{Form}_{\Sigma}$ and $(a, b) \in F_{e \times e, A}(B), T_{j o i n(\varphi), A}(B)(a, b)=\left\{\begin{array}{ll}a & \text { if } a \in \varphi^{A}, \\ b & \text { if } a \notin \varphi^{A}\end{array}\right.$.

Definition 3.9 Let $\Sigma=(S, O p$, Rel $)$ be a signature over X and $Y=\left\{x_{1}, \ldots, x_{n}\right\}$.
For all $1 \leq i \leq n$, let $e_{i}=\coprod_{j=1}^{k_{i}} e_{i j}$ be a constructive type over Y and $C_{i}=\left\{\iota_{i j}: e_{i j} \rightarrow e_{i} \mid 1 \leq j \leq k_{i}\right\}$ be the set of injections into e_{i}. Then the signature

$$
\Sigma^{\prime}=\left(S \cup Y, O p \cup C_{1} \cup \cdots \cup C_{n}, \text { Rel }\right)
$$

over $X \backslash Y$ is called a constructor signature with base signature Σ.
For all $1 \leq i \leq n$, let $e_{i}=\prod_{j=1}^{k_{i}} e_{i j}$ be a destructive type over Y and $D_{i}=\left\{\pi_{i j}: e_{i} \rightarrow e_{i j} \mid 1 \leq j \leq k_{i}\right\}$ be the set of projections from e_{i}. Then the signature

$$
\Sigma^{\prime}=\left(S \cup Y, O p \cup D_{1} \cup \cdots \cup D_{n}, \text { Rel }\right)
$$

over $X \backslash Y$ is called a destructor signature with base signature Σ.
???? Σ is algebraic if for all $f: e \rightarrow e^{\prime} \in O p$ and $r: e \in R e l, e$ and e^{\prime} are products of sorts.
Definition 3.10 (term composition) Let $\Sigma=(S, O p$, Rel) be a signature over X. The term category $\mathcal{T}_{\Sigma}(X)$ has all types over S and X as objects and all Σ-terms over X as morphisms. The composition \odot of $\mathcal{T}_{\Sigma}(X)$-morphisms is defined inductively on the structure of Σ-terms:

- For all $t: e_{1} \rightarrow e_{2} \in T_{\Sigma}(X), i d_{e_{2}} \odot t=t \odot i d_{e_{1}}=t$.
- For all $\left\langle t_{1}, \ldots, t_{n}\right\rangle \in T_{\Sigma}(X)$ and $1 \leq i \leq n, \pi_{i} \odot\left\langle t_{1}, \ldots, t_{n}\right\rangle=t_{i}$.
- For all $\left[t_{1}, \ldots, t_{n}\right] \in T_{\Sigma}(X)$ and $1 \leq i \leq n,\left[t_{1}, \ldots, t_{n}\right] \odot \iota_{i}=t_{i}$.
- For all $t: e \rightarrow e_{1} \in T_{\Sigma}(X) \backslash I d_{S}(X)$ and $t_{1}: e_{1} \rightarrow e_{2} \in O p \cup \Sigma \iota \cup \Sigma j o i n, t_{1} \odot t=t_{1} \circ t$.
- For all $t_{2}: e \rightarrow e_{1} \in O p \cup \Sigma \pi \cup \Sigma$ fork and $t: e_{1} \rightarrow e_{2} \in T_{\Sigma}(X) \backslash I d_{S}(X), t \odot t_{2}=t \circ t_{2}$.
- For all $t: e_{1} \rightarrow e \in T_{\Sigma}(X), e_{2} \in \mathbb{T}_{S}(X)$ and $t^{\prime}: e \rightarrow e_{3} \in T_{\Sigma}(X), t^{\prime} \odot\left(t \times e_{2}\right)=\left(t^{\prime} \odot t\right) \times e_{2}$.
- For all $t: e \rightarrow e_{1} \in T_{\Sigma}(X), e_{2} \in \mathbb{T}_{S}(X)$ and $t^{\prime}: e_{3} \rightarrow e \in T_{\Sigma},\left(t+e_{2}\right) \odot t^{\prime}=\left(t \odot t^{\prime}\right)+e_{2}$.
- For all $t: e \rightarrow e_{1} \in T_{\Sigma}(X)$ and $\left\langle t_{1}, \ldots, t_{n}\right\rangle: e_{1} \rightarrow e_{2} \in T_{\Sigma}(X),\left\langle t_{1}, \ldots, t_{n}\right\rangle \odot t=\left\langle t_{1} \odot t, \ldots, t_{n} \odot t\right\rangle$.
- For all $\left[t_{1}, \ldots, t_{n}\right]: e \rightarrow e_{1} \in T_{\Sigma}(X)$ and $t: e_{1} \rightarrow e_{2} \in T_{\Sigma}(X), t \odot\left[t_{1}, \ldots, t_{n}\right]=\left[t \odot t_{1}, \ldots, t \odot t_{n}\right]$. *******
- For all $t: s \rightarrow s^{\prime} \in T_{\Sigma}$ and $\varphi: s^{\prime} \in \operatorname{Form}_{\Sigma}$, $\operatorname{fork}(\varphi) \odot t=(t+t) \odot \operatorname{fork}(\varphi \odot t)$ (see Def. 3.12).
- For all $\varphi: s \in \operatorname{Form}_{\Sigma}$ and $t: s \rightarrow s^{\prime} \in T_{\Sigma}, t \odot j o i n(\varphi)=j o i n(t \odot \varphi) \odot(t \times t)$ (see Def. 3.12).

For all $t: \prod_{i \in I} s_{i} \rightarrow s \in T_{\Sigma}, k \in I$ and $u: s^{\prime} \rightarrow s_{k} \in T_{\Sigma}, t \odot_{k} u={ }_{d e f} t \odot\left\langle u_{i}\right\rangle_{i \in I}: \prod_{i \in I} s_{i}^{\prime} \rightarrow s$ where

$$
u_{i}=\left\{\begin{array}{ll}
u \odot \pi_{i} & \text { if } i=k \\
\pi_{i} & \text { otherwise }
\end{array} \quad s_{i}^{\prime}= \begin{cases}s^{\prime} & \text { if } i=k \\
s_{i} & \text { otherwise }\end{cases}\right.
$$

For all $t: s \rightarrow \coprod_{i \in I} s_{i} \in T_{\Sigma}, k \in I$ and $u: s_{k} \rightarrow s^{\prime} \in T_{\Sigma}, u \odot{ }^{k} t={ }_{d e f}\left[u_{i}\right]_{i \in I} \odot t: s \rightarrow \coprod_{i \in I} s_{i}^{\prime}$ where

$$
u_{i}=\left\{\begin{array}{ll}
\iota_{i} \odot u & \text { if } i=k \\
\iota_{i} & \text { otherwise }
\end{array} \quad s_{i}^{\prime}= \begin{cases}s^{\prime} & \text { if } i=k \\
s_{i} & \text { otherwise }\end{cases}\right.
$$

Since the indices of projections replace the logical variables used in applicative logical syntax, we sometimes write i instead of π_{i}. Conversely, a term t in applicative syntax can be turned into a (purely functional) Σ-term by regarding the set X of variables occurring in t as a set of indices and replacing each $x: s_{x} \in X$ with the projection $\pi_{x}: \prod_{i \in I} s_{i} \rightarrow s_{x}$. For instance, let $I=\left\{x: s_{x}, y: s_{y}, z: s_{z}\right\}$. Then the applicative term $f(x, g(y, x), z): s$ becomes the Σ-term

$$
f \circ\left\langle\pi_{x}, g \circ\left\langle\pi_{y}, \pi_{x}\right\rangle, \pi_{z}\right\rangle: s_{x} \times s_{y} \times s_{z} \rightarrow s
$$

T_{Σ} covers both applicative terms and substitutions into such terms. For instance, the substitution $\sigma=$ $\left\{t_{x} / x, t_{y} / y, t_{z} / z\right\}$ that maps variables x, y, z to terms $t: d o m_{x} \rightarrow s_{x}, u: d o m_{y} \rightarrow s_{y}, v: d o m_{z} \rightarrow s_{z}$, respectively, represents the Σ-term $\vec{t}=t \times u \times v$. Hence the instance $f(t, g(u, t), v)$ of $f(x, g(y, x), z)$ by σ becomes the composition $f(x, g(y, x), z) \odot \vec{t}$ that represents a single term of type $d o m_{x} \times d o m_{y} \times d o m_{z} \rightarrow s$:

$$
\begin{gathered}
f(x, g(y, x), z) \odot \vec{t}=\left(f \circ\left\langle\pi_{x}, g \circ\left\langle\pi_{y}, \pi_{x}\right), \pi_{z}\right\rangle\right\rangle \odot \vec{t}=f \circ\left\langle\pi_{x} \odot \vec{t}, g \circ\left\langle\pi_{y}, \pi_{x}\right\rangle \odot \vec{t}, \pi_{z} \odot \vec{t}\right\rangle \\
=f\left(t, g \circ\left\langle\pi_{y} \circ \vec{t}, \pi_{x} \circ \vec{t}\right\rangle, v\right)=f(t, g \circ\langle u, t\rangle, v)=f(t, g(u, t), v) .
\end{gathered}
$$

To sum up this translation, let T_{s} be the set of applicative terms of sort s and $T=\left\{T_{s}\right\}_{s \in S}$. The following function comp : $T \rightarrow T_{\Sigma}$ turns each applicative term t with variables $x_{1}: s_{1}, \ldots, x_{m}: s_{m}$ and constants $c_{1}: s_{1}^{\prime}, \ldots, c_{n}: s_{n}^{\prime}$ into a Σ-term $\operatorname{comp}(t): s_{1} \times \cdots \times s_{n} \times 1 \rightarrow s:$

- For all $1 \leq i \leq m, \operatorname{comp}\left(x_{i}\right)=\pi_{i}$.
- For all $1 \leq i \leq n, \operatorname{comp}\left(c_{i}\right)=c_{i} \circ \pi_{n+1}$.
- For all $k>0,1 \leq i \leq k$, functions $f: s_{1} \times \cdots \times s_{k} \rightarrow s \in \Sigma$ and $t_{i} \in T_{s_{i}}$, $\operatorname{comp}\left(f\left(t_{1}, \ldots, t_{k}\right)\right)=f \circ\left\langle\operatorname{comp}\left(t_{1}\right), \ldots, \operatorname{comp}\left(t_{k}\right)\right\rangle$.

Definition 3.11 (substitution of sorts by terms) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature. A function sub:S \rightarrow T_{Σ} extends to a function $s u b^{*}: \mathbb{T}_{S} \rightarrow T_{\Sigma}$ as follows:

- For all $s \in S, \operatorname{sub}^{*}(s)=\operatorname{sub}(s)$.
- For all $\left\{s_{i}\right\}_{i \in I} \subseteq \mathbb{T}_{S}, \operatorname{sub}^{*}\left(\prod_{i \in I} s_{i}\right)=\prod_{i \in I}\left(s u b^{*}\left(s_{i}\right)\right)$ and $s u b^{*}\left(\coprod_{i \in I} s_{i}\right)=\coprod_{i \in I}\left(s u b^{*}\left(s_{i}\right)\right)$.

As terms represent functions, formulas represent relations:

Definition 3.12 (formulas) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature and I, J be nonempty sets. The \mathbb{T}_{S}-sorted set $\operatorname{Form}_{\Sigma}$ of Σ-formulas is the least set of typed expressions φ generated by the following rules:
relations of Σ and truth values
$\overline{r: s} \quad r: s \in R \quad \overline{\text { True }: \coprod_{s \in S} s} \quad \overline{\text { False }: \coprod_{s \in S} s}$
Σ-atoms and -coatoms

$$
\frac{t: s \rightarrow s^{\prime}}{r \circ t: s} \quad \frac{t: s^{\prime} \rightarrow s}{t \circ r: s} \quad r: s^{\prime} \in R, t \in T_{\Sigma} \backslash\left\{i d_{s}\right\}
$$

negation, conjunction and disjunction

$$
\frac{\varphi: s}{\neg \varphi: s} \quad \frac{\varphi: s, \psi: s}{\varphi \wedge \psi: s} \quad \frac{\varphi: s, \psi: s}{\varphi \vee \psi: s}
$$

quantification

$$
\frac{\varphi: \prod_{i \in I} s_{i}}{\forall k \varphi: \prod_{i \in I} s_{i}} \quad \frac{\varphi: \prod_{i \in I} s_{i}}{\exists k \varphi: \prod_{i \in I} s_{i}} \quad k \in I
$$

sub- and supertyping
$\frac{\varphi: s_{1}}{\varphi \times s_{2}: s_{1} \times s_{2}} \quad \frac{\varphi: s_{1}}{\varphi+s_{2}: s_{1}+s_{2}}$

We sometimes omit \circ and write $r\left\langle t_{1}, \ldots, t_{n}\right\rangle$ and $\left[t_{1}, \ldots, t_{n}\right] q$ instead of $r \circ\left\langle t_{1}, \ldots, t_{n}\right\rangle$ and $\left[t_{1}, \ldots, t_{n}\right] \circ q$, respectively. If $d o m_{r}$ is a binary product, $r\langle t, u\rangle$ may be written as $t r u$. Moreover, $\varphi \Rightarrow \psi$ and $\psi \Leftarrow \varphi$ stand for $\neg \varphi \vee \psi$ and $\varphi \Leftrightarrow \psi$ stands for $(\varphi \Rightarrow \psi) \wedge(\psi \Rightarrow \varphi)$.

Given a Σ-formula $\varphi: s, \operatorname{dom}_{\varphi}={ }_{d e f} s$ is called the domain of $\varphi . \varphi$ is a ground formula if $s=1$.
The component formulas φ_{i} of a conjunction $\varphi=\varphi_{1} \wedge \cdots \wedge \varphi_{n}$ or disjunction $\psi=\varphi_{1} \vee \cdots \vee \varphi_{n}$ are called factors resp. summands of φ.

Given a Σ-atom p, p and $\neg p$ are called a Σ-literals. If r is logical, then p is logical. A Σ-formula $\equiv \circ\langle t, u\rangle$ is called a Σ-equation and usually written as $t \equiv u$. A Σ-formula all \circ tis called a Σ-membership and usually written as $\operatorname{all}(t)$.

Given a Σ-atom $p: s$ and a Σ-formula $\varphi: s, p \Leftarrow \varphi$ and $p \Rightarrow \varphi$ are called a Horn resp. co-Horn clause over $\Sigma .^{2}$ Given terms $t: s$ and $u: s$, a Horn clause $t \equiv u \Leftarrow \varphi$ is also called a conditional equation.

A Σ-formula φ is normalized if φ consists of literals, quantifiers and conjunction or disjunction symbols. Given a set R^{\prime} of relations, a normalized Σ-formula φ is R-positive if for all literals $\neg r \circ t$ of $\varphi, r \notin R$. A Horn clause $p \Leftarrow \varphi$ and a co-Horn clause $p \Rightarrow \varphi$ is R-positive if φ is R-positive.
$r \circ t \Leftarrow \varphi$ or $r \circ t \Rightarrow \varphi$ is called a Horn resp. co-Horn clause for r and all sets of relations that include r. Given a constructur $f, f \circ t \equiv u \Leftarrow \varphi$ is called a Horn clause for f and all sets of functions that include f. Given a destructur $f, t \circ f \equiv u \Leftarrow \varphi$ is called a Horn clause for f and all sets of functions that include f.

A Σ-formula φ is restricted if

- for all subformulas $\forall k \psi$ of $\varphi, s_{k} \in S_{0}$ or $\neg a l l_{s_{k}} \circ \pi_{k}$ is a summand of ψ,
- for all subformulas $\exists k \psi$ of $\varphi, s_{k} \in S_{0}$ or $a l l_{s_{k}} \circ \pi_{k}$ is a factor of ψ.

[^1]A Σ-formula φ is implicational if φ can be constructed by applying the above rules except for negation, disjunction and existential quantification and by the following additional rule:

simple implication

$$
\frac{\psi: s, \varphi: s}{\psi \Rightarrow \varphi: s} \quad \psi \text { is a conjunction of universally quantified atoms }
$$

A Horn clause $p \Leftarrow T r u e_{s}$ is identified with p. A co-Horn clause $p \Rightarrow$ False $_{s}$ is identified with $\neg p$.
Definition 3.13 (term rewriting) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature and E be a set of Σ-equations. \longrightarrow_{E} denotes the least binary relation on T_{Σ} such that

- for all $t \equiv u \in E, t \longrightarrow_{E} u$,
- for all and $v: \prod_{i \in I} s_{i} \rightarrow s \in T_{\Sigma}, k \in I$ and $t, u: s^{\prime} \rightarrow s_{k} \in T_{\Sigma}, t \longrightarrow_{E} u$ implies $v \odot_{k} t \longrightarrow_{E} v \odot_{k} u$.
- for all and $t, u: \prod_{i \in I} s_{i} \rightarrow s \in T_{\Sigma}, k \in I$ and $v: s^{\prime} \rightarrow s_{k} \in T_{\Sigma}, t \longrightarrow_{E} u$ implies $t \odot_{k} v \longrightarrow_{E} u \odot_{k} v$.
- for all and $v: s \rightarrow \coprod_{i \in I} s_{i} \in T_{\Sigma}, k \in I$ and $t, u: s_{k} \rightarrow s^{\prime} \in T_{\Sigma}, t \longrightarrow_{E} u$ implies $t \odot^{k} v \longrightarrow_{E} u \odot^{k} v$.
- for all and $t, u: s \rightarrow \coprod_{i \in I} s_{i} \in T_{\Sigma}, k \in I$ and $v: s_{k} \rightarrow s \in T_{\Sigma}, t \longrightarrow_{E} u$ implies $v \odot^{k} t \longrightarrow_{E} v \odot^{k} u$.
$\xrightarrow{*}_{E}$ and $\stackrel{*}{\longleftrightarrow} E$ denote the reflexive-transitive resp. equivalence closure of \longrightarrow_{E}.
Definition 3.14 (signature morphism) Let $\Sigma=\left(S_{0}, S, F, R\right)$ and $\Sigma^{\prime}=\left(S_{0}^{\prime}, S^{\prime}, F^{\prime}, R^{\prime}\right)$ be signatures. A signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ consists of a function from S to $\mathbb{T}_{S^{\prime}}$ and S-sorted functions $\left\{\sigma_{s}: F_{s} \rightarrow\right.$ $\left.T_{\Sigma, \sigma(s)}\right\}_{s \in S}$ and $\left\{\sigma_{s}: R_{s} \rightarrow \operatorname{Form}_{\Sigma, \sigma(s)}\right\}_{s \in S}$. The domain of σ, dom (σ), is the set of symbols of Σ such that $\sigma(s) \neq s$.
 and $\left\{\sigma_{s}: \operatorname{Form}_{\Sigma, s} \rightarrow \operatorname{Form}_{\Sigma, \sigma(s)}\right\}_{s \in \mathbb{T}_{S}}$. Given a Σ-term or -formula $t, \sigma(t)$ is also witten as $t[\sigma(s) / s \mid s \in \operatorname{dom}(\sigma)]$.

For all $s \in S \cup F, \sigma^{*}(s)=_{\operatorname{def}} \sigma(s)$ and for all $r \in R, \sigma^{*}(r)={ }_{d e f} \bigvee_{i \in \mathbb{N}} \sigma^{i}(r)$.
Definition 3.15 (formula-term composition) Let the assumptions of Def. 3.12 hold true. Formula-term composition is a function $\odot: \operatorname{Form}_{\Sigma} \times T_{\Sigma} \rightarrow \operatorname{Form}_{\Sigma}$ that extends the composition of morphisms in \mathcal{T}_{S} (see Def. 3.10) inductively on the structure of Σ-formulas:

- For all $t: s \rightarrow s^{\prime} \in T_{\Sigma} \backslash\left\{i d_{s}\right\}$ and $r: s^{\prime} \in R, r \odot t=r \circ t$.
- For all $r: s^{\prime} \in R$ and $t: s^{\prime} \rightarrow s \in T_{\Sigma} \backslash\left\{i d_{s}\right\}, t \odot r=t \circ r$.
- For all $t: s \rightarrow s^{\prime}, t^{\prime}: s^{\prime} \rightarrow s^{\prime \prime} \in T_{\Sigma}$ and $\varphi: s^{\prime \prime} \in \operatorname{Form}_{\Sigma},(\varphi \circ t) \odot t^{\prime}=\varphi \odot\left(t \odot t^{\prime}\right)$.
- For all $\varphi: s \in$ Form $_{\Sigma}$ and $t: s \rightarrow s^{\prime}, t^{\prime}: s^{\prime} \rightarrow s^{\prime \prime} \in T_{\Sigma}, t^{\prime} \odot(t \odot \varphi)=\left(t^{\prime} \odot t\right) \odot \varphi$.
- For all $\varphi: s \in$ Form $_{\Sigma}$ and $t: s^{\prime} \rightarrow s \in T_{\Sigma},(\neg \varphi) \odot t=\neg(\varphi \odot t)$.
- For all $\varphi: s, \psi: s \in$ Form $_{\Sigma}$ and $t: s^{\prime} \rightarrow s \in T_{\Sigma}$, $(\varphi \wedge \psi) \odot t=(\varphi \odot t) \wedge(\psi \odot t)$ and $(\varphi \vee \psi) \odot t=(\varphi \odot t) \vee(\psi \odot t)$.
- For all $\varphi: s, \psi: s \in$ Form $_{\Sigma}$ and $t: s \rightarrow s^{\prime} \in T_{\Sigma}$, $t \odot(\varphi \wedge \psi)=(t \odot \varphi) \wedge(t \odot \psi)$ and $t \odot(\varphi \vee \psi)=(t \odot \varphi) \vee(t \odot \psi)$.
- For all $t: s \rightarrow s^{\prime} \in T_{\Sigma}, \varphi: s^{\prime} \in$ Form $_{\Sigma}$ and $k \in I$ such that π_{k} does not occur in t, $(\forall k \varphi) \odot t=\forall k(\varphi \odot t)$ and $(\exists k \varphi) \odot t=\exists k(\varphi \odot t)$.
- For all $\varphi: s \in \operatorname{Form}_{\Sigma}, t: s \rightarrow s^{\prime} \in T_{\Sigma}$ and $k \in I$ such that ι_{k} does not occur in t, $t \odot \forall k \varphi=\forall k(t \odot \varphi)$ and $t \odot \exists k \varphi=\exists k(t \odot \varphi)$.
- For all $t: s_{1} \rightarrow s \in T_{\Sigma}, s_{2} \in \mathbb{T}_{S}$ and $\varphi: s \in$ Form $_{\Sigma}, \varphi \odot t \times s_{2}=(\varphi \odot t) \times s_{2}$.
- For all $t: s \rightarrow s_{1} \in T_{\Sigma}, s_{2} \in \mathbb{T}_{S}$ and $\varphi: s \in \operatorname{Form}_{\Sigma}, t+s_{2} \odot \varphi=(t \odot \varphi)+s_{2}$.

For all $\varphi: \prod_{i \in I} s_{i} \in \operatorname{Form}_{\Sigma}, k \in I$ and $t: s \rightarrow s_{k} \in T_{\Sigma}, \varphi \odot_{k} t={ }_{\text {def }} \varphi \odot\left\langle t_{i}\right\rangle_{i \in I}: \prod_{i \in I} s_{i}^{\prime} \rightarrow s$ where

$$
t_{i}=\left\{\begin{array}{ll}
t \odot \pi_{i} & \text { if } i=k \\
\pi_{i} & \text { otherwise }
\end{array} \quad s_{i}^{\prime}= \begin{cases}s & \text { if } i=k \\
s_{i} & \text { otherwise }\end{cases}\right.
$$

For all $\varphi: \coprod_{i \in I} s_{i} \in \operatorname{Form}_{\Sigma}, k \in I$ and $t: s_{k} \rightarrow s \in T_{\Sigma}, t \odot^{k} \varphi={ }_{d e f}\left[t_{i}\right]_{i \in I} \odot \varphi: \coprod_{i \in I} s_{i}^{\prime}$ where

$$
t_{i}=\left\{\begin{array}{ll}
\iota_{i} \odot t & \text { if } i=k \\
\iota_{i} & \text { otherwise }
\end{array} \quad s_{i}^{\prime}= \begin{cases}s & \text { if } i=k \\
s_{i} & \text { otherwise }\end{cases}\right.
$$

For all $\varphi: \prod_{i \in I} s_{i} \in \operatorname{Form}_{\Sigma}, k \in I$ and $t: s \rightarrow s_{k} \in T_{\Sigma}, \varphi \odot_{k} t={ }_{d e f} \varphi \odot\left(t \odot_{k} i d_{s}\right)$.
For all $\varphi: \coprod_{i \in I} s_{i} \in$ Form $_{\Sigma}, k \in I$ and $t: s_{k} \rightarrow s \in T_{\Sigma}, t \odot^{k} \varphi={ }_{d e f}\left(t \odot^{k} i d\right) \odot \varphi$.
For all $s \in S$, let F be the set of usual first-order formulas over Σ. The function $\operatorname{comp}: T \rightarrow T_{\Sigma}$ given in section 2 extends to a function comp : $F \rightarrow \operatorname{Form}_{\Sigma}$ that turns each first-order formula φ with free variables $x_{1}: s_{1}, \ldots, x_{n}: s_{n}$ into a Σ-formula $\operatorname{comp}(\varphi): s_{1} \times \cdots \times s_{n} \times 1$:

- $\operatorname{comp}($ True $)=$ True and $\operatorname{comp(False)}=$ False.
- For all $k>0,1 \leq i \leq k$, relations $r: s_{1} \times \cdots \times s_{k} \in \Sigma$ and $t_{i} \in T_{s_{i}}$,
$\operatorname{comp}\left(r\left(t_{1}, \ldots, t_{k}\right)\right)=r \circ\left\langle\operatorname{comp}\left(t_{1}\right), \ldots, \operatorname{comp}\left(t_{k}\right)\right\rangle$.
- For all $\varphi \in F, \operatorname{comp}(\neg \varphi)=\neg \operatorname{comp}(\varphi)$.
- For all $\varphi, \psi \in F, \operatorname{comp}(\varphi \wedge \psi)=\operatorname{comp}(\varphi) \wedge \operatorname{comp}(\psi)$.
- For all $\varphi \in F$ and $1 \leq i \leq n, \operatorname{comp}\left(\forall x_{i} \varphi\right)=\forall i \operatorname{comp}(\varphi)$.

4 Semantics of specifications

Definition 4.1 (generator, observer, complete axiomatization) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature and $S_{1}=$ $S \backslash S_{0}$. The S-sorted sets $G e n_{\Sigma}$ of Σ-generators and $O b s_{\Sigma}$ of Σ-observers are defined as follows (see Def. 3.7):

- For all $s \in S_{0}, \operatorname{Gen}_{\Sigma, s}=O b s_{\Sigma, s}=\left\{i d_{s}\right\}$.
- For all $s \in S_{1}, G e n_{\Sigma, s}$ consists of all Σ-terms $t: d o m \rightarrow s$ built up of S_{1}-constructors and variables, i.e., Σ-projections occurring in leaves of the tree representation of t.
- For all $s \in S_{1}, O b s_{\Sigma, s}$ consists of all Σ-terms $t: s \rightarrow$ ran built up of S_{1}-destructors and covariables, i.e., Σ-injections that occur only in leaves of the tree representation of t.
$t \in G e n_{\Sigma}$ is a maximal generator if $\operatorname{dom}_{t} \in \mathbb{T}_{S_{0}} . t \in O b s_{\Sigma}$ is a maximal observer if $\operatorname{ran}_{t} \in \mathbb{T}_{S_{0}} . M G e n_{\Sigma}$ and $M O b s_{\Sigma}$ denote the S-sorted sets of maximal Σ-generators and Σ-observers, respectively.

Since generators do not involve sums $\left[t_{i}\right]_{i \in I}$ of terms and observers do not involve products $\left\langle t_{i}\right\rangle_{i \in I}$ of terms, the domain of each subterm of a generator agrees with generator's domain, while the range of each superterm of an observer agrees with the observer's range. Still, generators may involve sum types as observers may involve product types. For instance, some proper (!) subtype of a constructor's domains may be a sum, or some proper subtype of a destructor's range may be a product - and often has to be (see Example 15.2).

As products of terms are crucial for building up generators, so are sums of terms for building up observers. In many previous papers on coalgebraic specification, sums do not play the prominent rôle they seem to have here. The simple reason is that the sample signatures used in those papers lack destructors with sum ranges. However, in practice, such destructors emerge as quickly as constructors with product domains do (see, e.g., Examples 14.2 and 15.2). Only Corina Cîrstea [15] pays the special attention to sums of terms that they deserve.

Her notion of a coterm almost agrees with our notion of an observer. As we compile variables of applicative terms into projections, so, dually, Cîrstea calls the injections at the leaves of observers covariables.

CoCASL [83] does not allow sums in the range of destructors. For instance, CoCASL would replace the destructor $h t: \operatorname{clist}(s) \rightarrow 1+s \times \operatorname{clist}(s)$ of COLIST (see Example 15.2) by two partial (!) destructors head : clist $(s) \rightarrow s$ and tail : clist $(s) \rightarrow \operatorname{clist}(s)$ (see [83], Fig. 4). However, it is well-known that the involvement of partial functions makes most algebraic and logic reasoning very complicated. Sum types are a better choice: they cover partiality and stay within usual algebraic frameworks.

Since generators lack sums and observers lack products, these two kinds of terms admit a simple graphical representation (see Figs. 1 and 2). Signatures all of whose functions involving non-primitive sorts are either constructors or destructors admit initial resp. final models (see Section 5). They are called algebraic resp. coalgebraic. The term "dialgebraic" is usually associated with functions that are neither constructors nor destructors, i.e., both their domains and their ranges are complex types. They do not initial or final models (see [99]) and thus cannot be treated inductively or coinductively. Besides this proof-theoretical drawback the question is whether purely dialgebraic functions are needed in a framework for specifying data types. The motivating example of [99] is hardly convincing: the function split that takes a list L of numbers and a number n and returns the lists of elements of L that are smaller resp. greater than n framework is simply the product $\langle f, g\rangle$ of a function f that returns the smaller elements and a function g that returns the greater elements. Dually, a function of type $\coprod_{i \in I} s_{i} \rightarrow s$ is the sum of functions $f_{i}: s_{i} \rightarrow s, i \in I$. The third kind of purely dialgebraic functions has types of the form $\prod_{i \in I} s_{i} \rightarrow \coprod_{i \in I} s_{i}^{\prime}$. To make them algebraic (or coalgebraic) one may introduce a new sort s for $\coprod_{i \in I} s_{i}$ (or $\prod_{i \in I} s_{i}^{\prime}$) with the injections $\iota_{i}, i \in I$, as constructors or the projections $\pi_{i}, i \in I$, as destructors.

Figure 2. The LIST-generator : $\circ\left\langle\pi_{1},: \circ\left\langle\pi_{2}: \circ\left\langle\pi_{3},[] \circ \pi_{4}\right\rangle\right\rangle\right\rangle: s \times s \times s \times 1 \rightarrow$ list (s)
that represents lists with exactly three elements (see Example 14.2) and the COLIST-observer $\left[\iota_{1},\left[\iota_{1},\left[\iota_{1}, \iota_{2} \circ \pi_{1}\right] \circ h t \circ \pi_{2}\right] \circ h t \circ \pi_{2}\right] \circ h t: \operatorname{clist}(s) \rightarrow 1+s$
that, given a colist L, returns 1 if $|L|<3$ and the third element of L otherwise (see Example 15.2).

Proposition 4.2 Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature, A be an S_{0}-sorted set and B be an S-sorted set such that $A_{s}=B_{s}$ for all $s \in S_{0}$.

- If for all $s \in S$,

$$
\begin{equation*}
s^{B}=\coprod_{t: d o m \rightarrow s \in G e n_{\Sigma}} d o m^{A}, \tag{1}
\end{equation*}
$$

then (1) holds true for all $s \in \mathbb{T}_{S}$ as well.

- If for all $s \in S$,

$$
\begin{equation*}
s^{B}=\prod_{t: s \rightarrow r a n \in O b s_{\Sigma}} r a n^{A} \tag{2}
\end{equation*}
$$

then (2) holds true for all $s \in \mathbb{T}_{S}$ as well.
Proof. Let $\left\{s_{i} \mid i \in I\right\} \subseteq \mathbb{T}_{S}$.
Suppose that (1) holds true for all $s \in S$. Then by induction on the structure of $s=\prod_{i \in I} s_{i}$,

$$
\begin{gathered}
s^{B}=\prod_{i \in I} s_{i}^{B}=\prod_{i \in I} \coprod_{t: d o m \rightarrow s_{i} \in G e n_{\Sigma}} d o m^{A}=\coprod_{\left\{t_{i}: \operatorname{dom}_{i} \rightarrow s_{i} \in G e n_{\Sigma} \mid i \in I\right\}} \prod_{i \in I} d o m_{i}^{A}= \\
\prod_{i \in I} t_{i}:\left(\prod_{i \in I} \text { dom }_{i}\right) \rightarrow s \in G e n_{\Sigma} \\
\left(\prod_{i \in I} d o m_{i}\right)^{A}=\coprod_{t: d o m \rightarrow s \in G e n_{\Sigma}} d o m^{A} .
\end{gathered}
$$

Moreover, by induction on the structure of $s=\coprod_{i \in I} s_{i}$,

$$
\begin{gathered}
s^{B}=\coprod_{i \in I} s_{i}^{B}=\coprod_{i \in I} \coprod_{t: d o m \rightarrow s_{i} \in G e n_{\Sigma}} d o m^{A}=\coprod_{i \in I} \coprod_{\iota_{i} \circ t: d o m^{2} \rightarrow s \in G e n_{\Sigma}} d o m^{A}= \\
\coprod_{\left\{\iota_{i} \circ t: d o m \rightarrow s \in G e n_{\Sigma} \mid i \in I\right\}} d o m^{A}=\coprod_{t: d o m \rightarrow s \in G e n_{\Sigma}} d o m^{A} .
\end{gathered}
$$

Suppose that (2) holds true for all $s \in S$. Then by induction on the structure of $s=\prod_{i \in I} s_{i}$,

$$
\begin{gathered}
\left(s^{B}=\prod_{i \in I} s_{i}^{B}=\prod_{i \in I} \prod_{t: s_{i} \rightarrow r a n \in O b s_{\Sigma}} \operatorname{ran}^{A}=\prod_{i \in I} \prod_{t \circ \pi_{i}: s \rightarrow r a n \in O b s_{\Sigma}} \operatorname{ran}^{A}=\right. \\
\prod_{\left\{t o \pi_{i}: s \rightarrow r a n \in O b s_{\Sigma} \mid i \in I\right\}} r a n^{A}=\prod_{t: s \rightarrow \text { ran }^{\prime} \in s_{\Sigma}} \operatorname{ran}^{A} .
\end{gathered}
$$

Moreover, by induction on the structure of $s=\coprod_{i \in I} s_{i}$,

$$
\begin{aligned}
& s^{B}=\coprod_{i \in I} s_{i}^{B}=\coprod_{i \in I} \prod_{t: s_{i} \rightarrow{\operatorname{ran} \in \text { Obs }_{\Sigma}} \operatorname{ran}^{A}=\prod_{\left\{t_{i}: s_{i} \rightarrow \operatorname{ran}_{i} \in O b s_{\Sigma} \mid i \in I\right\}} \coprod_{i \in I} \operatorname{ran}_{i}^{A}=} \\
& \prod_{i \in I} \coprod_{i}: s \rightarrow \coprod_{i \in I} \operatorname{ran}_{i} \in \text { Obs }_{\Sigma}\left(\coprod_{i \in I} \operatorname{ran}_{i}\right)^{A}=\prod_{t: s \rightarrow \text { ran }^{\prime} \text { Obs }_{\Sigma}} \operatorname{ran}^{A}
\end{aligned}
$$

Figure 3. Thick edges in the term resp. coterm of Fig. 1 denote possible flows of data when it is evaluated. In a term, each function (= node label) collects its arguments from a product domain. In a coterm, each function selects a summand of a sum range where it passes the resulting value to.

Definition 4.3 (interpretation of terms and formulas; models) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature and A be a Σ-structure. The interpretation of a Σ-term $t: s_{1} \rightarrow s_{2}$ in A is a function $t^{A}: s_{1}^{A} \rightarrow s_{2}^{A}$ whose definition extends the interpretation of F in A inductively on the structure of Σ-terms (see Def. 3.7):

The interpretation of a Σ-formula $\varphi: s$ in A is a subset of s^{A} that is defined inductively on the structure of Σ-formulas:

- For all $t: s \rightarrow s^{\prime} \in T_{\Sigma}$ and $r: s^{\prime} \in R,(r \circ t)^{A}=\left(t^{A}\right)^{-1}\left(r^{A}\right)$.
- For all $r: s \in R$ and $t: s \rightarrow s^{\prime} \in T_{\Sigma},(t \circ r)^{A}=t^{A}\left(r^{A}\right)$.
- $\operatorname{True}^{A}=\coprod_{s \in S} s^{A}$ and False ${ }^{A}=\emptyset$.
- For all $\varphi: s \in$ Form $_{\Sigma},(\neg \varphi)^{A}=s^{A} \backslash \varphi^{A}$.
- For all $\varphi: s, \psi: s \in \operatorname{Form}_{\Sigma},(\varphi \wedge \psi)^{A}=\varphi^{A} \cap \psi^{A}$ and $(\varphi \vee \psi)^{A}=\varphi^{A} \cup \psi^{A}$.
- For all $\varphi: s \in$ Form $_{\Sigma}$ and $k \in I,(\forall k \varphi)^{A}=\bigcap\left\{\varphi^{A}[b / k] \mid b \in s_{k}^{A}\right\}$ and $(\exists k \varphi)^{A}=\bigcup\left\{\varphi^{A}[b / k] \mid b \in s_{k}^{A}\right\}$.
- For all $\varphi: s_{1} \in \operatorname{Form}_{\Sigma}$ and $s_{2} \in \mathbb{T}_{S}, \varphi \times s_{2}^{A}=\varphi^{A} \times s_{2}^{A}$ and $\varphi+s_{2}^{A}=\varphi^{A}$.
$a \in s^{A}$ satisfies $\varphi: s$ if $a \in \varphi^{A}$. A satisfies $\varphi: s$, written as $A \models \varphi$, if $s^{A} \subseteq \varphi^{A} .^{3} A$ satisfies a set F of Σ-formula, written as $A \models F$, if for all $\varphi \in F, A \models \varphi$.

Let $S P=(\Sigma, A X)$ be a specification. A is an $S P$-model if A satisfies $A X . \operatorname{Mod}(S P)$ denotes the full subcategory of $\operatorname{Mod}(\Sigma)$ whose objects are $S P$-models. $\operatorname{Mod}_{E U}(S P)$ denotes the full subcategory of $\operatorname{Mod} d_{E U}(\Sigma)$ whose objects are $S P$-models.

Given $S_{1} \subseteq S$ and an S_{1}-sorted set $A, \operatorname{Mod}(S P, A)=d_{\operatorname{def}} \operatorname{Mod}(\Sigma, A) \cap \operatorname{Mod}(S P)$ and $\operatorname{Mod} d_{E U}(S P, A)=d_{d e f}$ $\operatorname{Mod}(\Sigma, A) \cap \operatorname{Mod}_{E U}(S P)$.

Proposition 4.4 Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature, sub : $S \rightarrow T_{\Sigma}$, A be a Σ-structure and $h: A \rightarrow B$ be an S-sorted function such that for all $s \in S, h_{s}=\operatorname{sub}(s)^{A}$. Then for all dom $\in \mathbb{T}_{S}, h_{\text {dom }}=s u b^{*}($ dom $)$.

Definition 4.5 (reduct) Let $\Sigma=\left(S_{0}, S, F, R\right), \Sigma=\left(S_{0}^{\prime}, S^{\prime}, F^{\prime}, R^{\prime}\right)$ be signatures and A be a Σ^{\prime}-structure. Given a signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, the σ-reduct of $A,\left.A\right|_{\sigma}$, is the Σ-structure defined by $\left(\left.A\right|_{\sigma}\right)_{s}=A_{\sigma(s)}$ for all $s \in \mathbb{T}_{S}$ and $f^{\left.A\right|_{\sigma}}=\sigma(f)^{A}$ for all $F \cup R$.

Given a Σ^{\prime}-homomorphism $h: A \rightarrow B,\left.h\right|_{\sigma}:\left.\left.A\right|_{\sigma} \rightarrow B\right|_{\sigma}$ denotes the Σ^{\prime}-homomorphism defined by $\left.h\right|_{\sigma}(a)=$ $h(a)$ for all $\left.a \in A\right|_{\sigma}$.

If $\Sigma \subseteq \Sigma^{\prime}$ and σ is the inclusion, then we write $\left.A\right|_{\Sigma}$ instead of $\left.A\right|_{\sigma}$ and call $\left.A\right|_{\Sigma}$ the Σ-reduct of A.
Proposition 4.6 Let $\Sigma=(S, F, R)$ and $\Sigma=\left(S^{\prime}, F^{\prime}, R^{\prime}\right)$ be signatures, A be $a \Sigma$-structure and B be a Σ^{\prime}-structure.
(1) For all Σ-terms or -coterms $t: s \rightarrow s^{\prime}, t^{\prime}: s^{\prime} \rightarrow s^{\prime \prime},\left(t^{\prime} \odot t\right)^{A}=\left(t^{\prime}\right)^{A} \circ t^{A}$.
(2) For all signature morphisms $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ and Σ-terms $t, t^{\left.B\right|_{\sigma}}=\sigma(t)^{B}$.
(3) For all Σ-homomorphisms $h: A \rightarrow B$ and Σ-terms $t: s \rightarrow s^{\prime}, h_{s} \circ t^{A}=t^{B} \circ h_{s^{\prime}}$.
(4) For all Σ-homomorphisms $h: A \rightarrow B, s \in S$ and $t \in M_{\text {(}}$ ($_{\Sigma, s}, h_{s} \circ t^{A}=t^{B}$.
(5) For all Σ-homomorphisms $h: A \rightarrow B, s \in S$ and $t \in \operatorname{MObs}_{\Sigma, s}, t^{B} \circ h_{s}=t^{A}$.

Proposition $4.6(1)$ tells us that each Σ-structure A provides a functor from the term category \mathcal{T}_{Σ} to $S e t{ }^{S}$

[^2](see section 2):

By Proposition 4.6(3), each Σ-term $t: s \rightarrow s^{\prime}$ yields a natural transformation from the functor $-s$ to the functor ${ }_{-s^{\prime}}$ (see section 2) in the case that these functors are restricted from Set^{S} to the subcategory $\operatorname{Mod}(\Sigma)$ of Σ-structure and -homomorphisms (see above):

Proposition 4.7 Let $\Sigma=\left(S_{0}, S, F, R\right)$ and $\Sigma=\left(S_{0}^{\prime}, S^{\prime}, F^{\prime}, R^{\prime}\right)$ be signatures, A be $a \Sigma$-structure and B be a Σ^{\prime}-structure.
(1) For all $t: s \rightarrow s^{\prime} \in T_{\Sigma}$ and $\varphi: s^{\prime} \in \operatorname{Form}_{\Sigma},(\varphi \odot t)^{A}=\left(t^{A}\right)^{-1}\left(\varphi^{A}\right)$.
(2) For all $\varphi: s \in$ Form $_{\Sigma}$ and $t: s \rightarrow s^{\prime} \in T_{\Sigma},(t \odot \varphi)^{A}=t^{A}\left(\varphi^{A}\right)$.
(3) For all signature morphisms $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ and Σ-formulas $\varphi,\left.B\right|_{\sigma} \models \varphi$ iff $B \models \sigma(\varphi)$. If for all $s \in \mathbb{T}_{S}, \sigma(s)=s$, then $\varphi^{\left.B\right|_{\sigma}}=\sigma(\varphi)^{B}$.
(4) For all Σ-formulas $\varphi: s$ and $\psi: s, A \models(\varphi \Rightarrow \psi)$ iff $\varphi^{A} \subseteq \psi^{A}$.
(5) Let A be a Σ-structure with equality. For all Σ-terms $t, u: s \rightarrow s^{\prime}$, $(t \equiv u)^{A}=\left\{a \in s^{A} \mid t^{A}(a)=u^{A}(a)\right\}$.
(6) For all $\varphi: \prod_{i \in I} s_{i} \in$ Form $_{\Sigma}$ and $k \in I$,

$$
\begin{aligned}
& (\forall k \varphi)^{A}=\left\{a \in \prod_{i \in I} s_{i}^{A} \mid \forall b \in s_{k}^{A}: a[b / k] \in \varphi^{A}\right\}, \\
& (\exists k \varphi)^{A}=\left\{a \in \prod_{i \in I} s_{i}^{A} \mid \exists b \in s_{k}^{A}: a[b / k] \in \varphi^{A}\right\} .
\end{aligned}
$$

(7) Let A be a Σ-structure with equality. For all Σ-terms $t: s_{x} \rightarrow s_{y}$ and Σ-formulas $\varphi: s_{y}$,

$$
A \models \varphi \odot t \quad \text { iff } \quad A \models \exists y\left(\varphi \times s_{x} \wedge \pi_{y} \equiv t \odot \pi_{x}\right)
$$

Proof. (1) to (6) are easy to show. The proof of (7) is also straightforward. We present it here in detail for illustrating how logical equivalences known from applicative first-order logic carry over to our variable-free
logic.

$$
\begin{array}{ll}
& A \models \varphi \odot t \Longleftrightarrow(\varphi \odot t)^{A}=s_{x}^{A} \Longleftrightarrow(1) \\
\Longleftrightarrow & \left\{a \in s_{x}^{A} \mid t^{A}\right)^{-1}\left(\varphi^{A}\right)=s_{x}^{A} \\
\Longleftrightarrow & \left\{a \in s_{x}^{A} \mid \exists b \in s_{y}^{A}: b \in \varphi^{A} \wedge \pi_{y}(a, b)=t^{A}\left(\pi_{x}(a, b)\right)\right\}=s_{x}^{A} \\
\Longleftrightarrow & \left\{a \in s_{x}^{A} \mid \exists b \in s_{y}^{A}:(a, b) \in s_{x}^{A} \times \varphi^{A} \wedge(a, b) \in\left(\pi_{y} \equiv t \circ \pi_{x}\right)^{A}\right\}=s_{x}^{A} \\
\Longleftrightarrow & \left\{a \in s_{x}^{A} \mid \exists b \in s_{y}^{A}:(a, b) \in \varphi \times s_{x}^{A} \wedge(a, b) \in\left(\pi_{y} \equiv t \circ \pi_{x}\right)^{A}\right\}=s_{x}^{A} \\
\Longleftrightarrow & \left\{a \in s_{x}^{A} \mid \exists b \in s_{y}^{A}:(a, b) \in\left(\varphi \times s_{x} \wedge \pi_{y} \equiv t \circ \pi_{x}\right)^{A}\right\}=s_{x}^{A} \\
\Longleftrightarrow & \left\{(a, c) \in s_{x}^{A} \times s_{y}^{A} \mid \exists b \in s_{y}^{A}:(a, b) \in\left(\varphi \times s_{x} \wedge \pi_{y} \equiv t \circ \pi_{x}\right)^{A}\right\}=s_{x}^{A} \times s_{y}^{A} \\
\Longleftrightarrow & \left\{(a, c) \in s_{x}^{A} \times s_{y}^{A} \mid \exists b \in s_{y}^{A}:(a, c)[b / y] \in\left(\varphi \times s_{x} \wedge \pi_{y} \equiv t \circ \pi_{x}\right)^{A}\right\}=s_{x}^{A} \times s_{y}^{A} \\
\Longleftrightarrow(6) \\
& \left(\exists y\left(\varphi \times s_{x} \wedge \pi_{y} \equiv t \circ \pi_{x}\right)\right)^{A}=s_{x}^{A} \times s_{y}^{A} \quad \Longleftrightarrow A \models \exists y\left(\varphi \times s_{x} \wedge \pi_{y} \equiv t \odot \pi_{x}\right) .
\end{array}
$$

If $t: s \rightarrow s^{\prime}$ represents an "action" transforming "states" of type s to states of type s^{\prime}, then Proposition 4.7(1) reflects the forward-reasoning semantics of nexttime modal-, temporal- or coalgebraic-logic operators [47, 55, 60]: $\varphi \odot t$ holds true in state st iff φ holds true in state $t(s t)$. Conversely, Proposition 4.7(2) reflects the backward-reasoning of lasttime temporal-logic operators (see [55], section 4.3.1): $t \odot \varphi$ holds true in state $t(s t)$ iff φ holds true in state st.

Proposition 4.8 Let A and B be isomorphic Σ-structures and φ be a Σ-formula. A satisfies φ iff B satisfies $\sigma(\varphi)$.

Proposition 4.9 Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ be a signature morphism, A be a Σ^{\prime}-structure and φ be a Σ-formula. $\left.A\right|_{\sigma}$ satisfies φ iff A satisfies $\sigma(\varphi)$.

Definition 4.10 (special structures, kernel, image and product) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature. A is a Σ-structure with equality if for all $s \in S, \equiv_{s}^{A}=\Delta_{s}^{A}$. A is a Σ-structure with universe if for all $s \in S$, all $s_{s}^{A}=s^{A}$. Given a relation $r: s \in R$, a relation $\bar{r}: s \in R$ is called the A-complement of r if $\bar{r}^{A}=s^{A} \backslash r^{A}$.

The kernel of $h, \operatorname{ker}(h)$, is the S-sorted binary relation

$$
\left\{\left\{(a, b) \in s^{A} \times s^{A} \mid h_{s}(a)=h_{s}(b)\right\} \mid s \in S\right\}
$$

Let $h: A \rightarrow B$ be an S-sorted function. The image of $h, \operatorname{img}(h)$ (or $h(A))$, is the S-sorted set $\left\{h\left(s^{A}\right) \mid s \in S\right\}$. Let h be Σ-homomorphic. Then $\operatorname{img}(h)$ can be extended to a Σ-structure:

- for all $\left.s \in S, s^{i m g(h)}=h\left(s^{A}\right)={ }_{\text {def }}\left\{b \in B \mid \exists a \in s^{A}: h(a)=b\right)\right\}$,
- for all $f: s \rightarrow s^{\prime} \in F$ and $b \in s^{i m g(h)}, f^{i m g(h)}(b)=f^{B}(b)$,
- for all $r \in R, r^{i m g(h)}=h\left(r^{A}\right)$.

Let Σ be algebraic and A, B be Σ-structures. The following interpretation of Σ extends $A \times B$ to a Σ structure:

- for all $s \in S, s^{A \times B}=s^{A} \times s^{B}$,
- for all $f: s \rightarrow s^{\prime} \in F, a \in s^{A}$ and $b \in s^{B}, f^{A \times B}(\langle a, b\rangle)=\left\langle f^{A}(a), f^{A}(b)\right\rangle$,
- for all $r: s \in R, r^{A \times B}=\left\{\langle a, b\rangle \mid a \in r^{A}, b \in r^{B}\right\}$.

Definition 21.7 (free and cofree structures) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature, A be an S_{0}-sorted set and $S_{1}=S \backslash S_{0}$.

Suppose that for all $f: s \rightarrow s^{\prime} \in F, s, s^{\prime} \in \mathbb{T}_{S_{0}}$ or $s^{\prime} \in S_{1}$. The free Σ-structure over A, Free (Σ, A), is the Σ-structure B with equality and universe that is defined as follows:

- for all $s \in S_{0}, s^{B}=s^{A}$,

- for all $f \in F$ and $a \in \operatorname{dom}_{f}^{B}$,

$$
f^{B}(a)= \begin{cases}(b, f \circ t) & \text { if } d o m_{f} \in S \text { and } a=(b, t) \\ \left(\left(b_{i}\right)_{i \in I}, f \circ \prod_{i \in I} t_{i}\right) & \text { if } d o m_{f}=\prod_{i \in I} s_{i} \text { and } a=\left(b_{i}, t_{i}\right)_{i \in I} \\ \left(b, f \circ \iota_{i} \circ t\right) & \text { if } \operatorname{dom}_{f}=\coprod_{i \in I} s_{i} \text { and } a=((b, t), i)\end{cases}
$$

Suppose that for all $f: s \rightarrow s^{\prime} \in F, s, s^{\prime} \in \mathbb{T}_{S_{0}}$ or $s \in S_{1}$. The set $B e h^{\Sigma, A}$ of Σ-behaviours is the greatest S-sorted subset ${ }^{4}$ of all $a \in \prod_{t: s \rightarrow \operatorname{ran}^{\prime} \in \text { MObs }_{\Sigma}}$ ran A such that
(1) for all $s \in S_{0}, B e h_{s}^{\Sigma, A}=s^{A}$,
(2) for all $f: s \rightarrow \coprod_{i \in I} s_{i} \in F$ there is $i_{a, f} \in I$ such that for all $T=\coprod_{i \in I} t_{i} \in \coprod_{i \in I} M O b s_{\Sigma, s_{i}}, a_{T \circ f} \in \operatorname{ran}_{i_{a, f}}^{A}$,
(3) for all $f: s \rightarrow s^{\prime} \in F,\left(a_{t}\right)_{t \in M O b s_{\Sigma, s^{\prime}}} \in \operatorname{Beh}_{s^{\prime}}^{\Sigma, A}$ implies $\left(a_{t \circ f}\right)_{t \in M O b s_{\Sigma, s^{\prime}}} \in \operatorname{Beh}_{s}^{\Sigma, A}$.

The cofree Σ-structure over $A, \operatorname{Cofree}(\Sigma, A)$, is the Σ-structure B with equality and universe that is defined as follows:

- for all $s \in S, s^{B}=B e h_{s}^{\Sigma, A}$,
- for all $f \in F$ and $a \in \operatorname{dom}_{f}^{B}$,

$$
f^{B}(a)= \begin{cases}\left(a_{t \circ f}\right)_{t: r a n_{f} \rightarrow s \in M O b s_{\Sigma}} & \text { if } \operatorname{ran}_{f} \in S \\ \left(\left(a_{t_{i} \circ \pi_{i} \circ f}\right)_{t_{i} \in M O b s_{\Sigma, s_{i}}}\right)_{i \in I} & \text { if } \operatorname{ran}_{f}=\prod_{i \in I} s_{i} \\ \left(\left(a_{T \circ f}\right)_{T \in \coprod_{i \in I} \text { MObs }_{\Sigma, s_{i}}}, i_{a, f}\right) & \text { if } \operatorname{ran}_{f}=\coprod_{i \in I} s_{i} . .^{5}\end{cases}
$$

Hence, roughly said, the free Σ-structure is a sum over the set of maximal Σ-generators, while the cofree Σ-structure is a product over the set of maximal Σ-observers.

By Proposition 4.2, for all types s over $S, \operatorname{Free}(\Sigma, A)_{s}=\coprod_{t: d o m \rightarrow s \in M G e n_{\Sigma}} \operatorname{dom}^{A}$ and $\operatorname{Cofree}(\Sigma, A)_{s} \subseteq$ $\prod_{t: s \rightarrow r a n \in \operatorname{MObs}\left(\Sigma^{\prime}, S\right)} \operatorname{ran}^{A}$. This is needed for the implicit assumption about the structure of the domain of $f^{\text {Free }(\Sigma, A)}$ and the range of $f^{\operatorname{Cofree}(\Sigma, A)}$.

Figure 6.1. Two elements of a free structure (left) and a cofree structure (right), respectively.
At the first sight, one might define s^{B} for $s \in S_{1}$ as the entire product P that represents, for each s-object a, the set of all possible tuples of observations of a. However, a closer look at such a tuple reveals that some of

[^3]its components depend on each other whenever their indices (generators), say t and t^{\prime}, have a common prefix into a coproduct, say $u: \operatorname{dom} \rightarrow \coprod_{i \in I} s_{i}$. Then t and t^{\prime} also map to coproducts, say $\operatorname{ran}_{t}=\coprod_{i \in I}$ ran $_{i}$ and $r a n_{t^{\prime}} \coprod_{i \in I} r a n_{i}^{\prime}$. Since t and t^{\prime} observe the same object a, the resulting observations belong to two summands of $r a n_{t}$ resp. $r a n_{t}^{\prime}$ with the same index, which is determined by the branch that—intuitively speaking-a takes when passing u. The actual definition of s^{B} selects exactly those tuples from P that take into account this dependency between observers into coproducts. If F does not include destructors into coproducts, s^{B} coincides with the entire product.

Given a sets S of sorts and an S-sorted set A, an S-sorted relation $\sim \subseteq A^{2}$ and an S-sorted set $B \subseteq A$ extend to \mathbb{T}_{S}-sorted sets as follows: Let $\left\{s_{i}\right\}_{i \in I} \subseteq \mathbb{T}_{S}$.

- For all $a, b \in \prod_{i \in I} s_{i}^{A}, a \prod_{i \in I} s_{i} b \Longleftrightarrow d_{\text {def }} \quad \forall i \in I: a_{i} \sim_{s_{i}} b_{i}$.
- For all $i \in I, a \in s_{i}^{A}$ and $b \in A_{s_{j}},(a, i) \simeq_{i \in I} s_{i}(b, j) \Longleftrightarrow d_{d e f} \quad i=j \wedge a \sim_{s_{i}} b$.
- For all $a \in \prod_{i \in I} s_{i}^{A}, a \in\left(\prod_{i \in I} s_{i}\right)^{B} \Longleftrightarrow{ }_{\text {def }} \quad \forall i \in I: a_{i} \in s_{i}^{B}$.
- For all $i \in I, a \in s_{i}^{A},(a, i) \in\left(\coprod_{i \in I} s_{i}\right)^{B} \Longleftrightarrow{ }_{\text {def }} \quad a \in s_{i}^{B}$.

Extending \sim and B to products or sums is called relation resp. predicate lifting (see [55], §3.1 resp. 4.1). If liftings are regarded as mere extensions, the usual difference between a congruence and a bisimulation becomes obsolete. The former stands for compatibility with constructors, the latter for compatibility with destructors (see [55], Def. 3.1.2). Hence we subsume bisimulations under congruences. In contrast to binary ones, a notional difference between the two kinds of compatibility has never been made in the case of unary relations: both are called invariants (see [55], Def. 4.2.1).

Definition 4.12 (congruences and invariants) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature, $F_{1} \subseteq F$ and A be an S-sorted set.

An S-sorted binary relation on A is a family $\sim=\left\{\sim_{s} \subseteq s^{A} \times s^{A} \mid s \in S\right\}$ of binary relations. \sim is F_{1}-compatible if for all $f: s \rightarrow s^{\prime} \in F_{1}$ and $a, b \in s^{A}, a \sim_{s} b$ implies $f^{A}(a) \sim_{s^{\prime}} f^{A}(b)$. \sim is Σ-congruent or a Σ-congruence if \sim is F-compatible and for all $s \in S_{0}, \sim_{s}=\Delta_{s}^{A}$. \sim is R-compatible if for all $r: s \in R$ and $a, b \in s^{A}, a \in r^{A}$ and $a \sim b$ imply $b \in r^{A}$.

Given an S-sorted binary relation \sim on A, the least equivalence relation including \sim is called the equivalence closure of \sim and denoted by $\sim{ }^{e q}$. If \sim is Σ-congruent, then the \sim-quotient of $A, A / \sim$, is the Σ-structure that is defined as follows: For all $a \in A,[a]={ }_{\operatorname{def}}\left\{b \in A \mid a \sim^{e q} b\right\}$ is the equivalence class of a.

- For all $s \in S,(A / \sim)_{s}=\left\{[a] \mid a \in s^{A}\right\}$,
- for all $f: s \rightarrow s^{\prime} \in F$ and $a \in s^{A}, f^{A ん}([a])=\left[f^{A}(a)\right]$,
- for all $r: s \in R, r^{A ん}=\left\{c \in(A / \sim)_{s} \mid c \cap r^{A} \neq \emptyset\right\}$.

The function nat : $A \rightarrow A / \sim$ that maps $a \in A$ to its equivalence class $[a]$ w.r.t. \sim is called a natural mapping.
An S-sorted subset inv of A is F_{1}-compatible if for all $f: s \rightarrow s^{\prime} \in F$ and $a \in i n v_{s}, f^{A}(a) \in i n v_{s^{\prime}}$. inv is a Σ-invariant (on A) if $i n v$ is F-compatible and for all $s \in S_{0}, i n v_{s}=s^{A}$. If $i n v$ is Σ-invariant, then the $i n v$-substructure of $A, A \mid i n v$, is the Σ-structure that is defined as follows:

- For all $s \in S,(A \mid i n v)_{s}=i n v_{s}$,
- for all $f: s \rightarrow s^{\prime} \in F$ and $a \in(A \mid i n v)_{s}, f^{A \mid i n v}(a)=f^{A}(a)$,
- for all $r: s \in R, r^{A \mid i n v}=r^{A} \cap i n v_{s}$.

The function $i n c: A \mid i n v \rightarrow A$ that maps $a \in i n v$ to itself is called an inclusion mapping.
A quotient resp. substructure B of A is a proper quotient resp. proper substructure of A if A and B
are not isomorphic.
Proposition 4.13 Given a Σ-homomorphism $h: A \rightarrow B$, the image of h is a Σ-invariant and the kernel of h is a Σ-congruence. If Σ is algebraic, then a Σ-congruence on A is a Σ-invariant on $A \times A$ and thus extends to a Σ-structure. The equivalence closure of a Σ-congruence is Σ-congruent. Natural mappings, inclusion mappings and the projections on the components of a product are Σ-homomorphic.

Proposition 4.14 Let Σ be a signature, A, B be Σ-structures, \sim be a Σ-congruence on A and inv be a Σ-invariant on A.

- For all $t: s \rightarrow s^{\prime} \in T_{\Sigma}$ and $a \in s^{A}, t^{A म}([a])=\left[t^{A}(a)\right]$.
- For all $t: s \rightarrow s^{\prime} \in T_{\Sigma}$ and $a \in i n v_{s}, t^{A \mid i n v}(a)=t^{A}(a)$.
- If Σ is algebraic, then for all products s, s^{\prime} of sorts, $t: s \rightarrow s^{\prime} \in T_{\Sigma}, a \in s^{A}$ and $b \in s^{B}$, $s^{A \times B}=\left\{\langle a, b\rangle \mid a \in s^{A}, b \in s^{B}\right\}$ and $t^{A \times B}(\langle a, b\rangle)=\left\langle t^{A}(a), t^{A}(b)\right\rangle$.

Proposition 4.15 Let A be an SP-model that interprets \equiv as a Σ-congruence. Then for all Horn or co-Horn clauses φ there is a normalized Horn resp. co-Horn clause ψ such that A satisfies φ iff A satisfies ψ.

Proof. Let $\varphi=(r \circ t \Leftarrow \theta), \prod_{i \in I} s_{i}$ be the type of r and $\prod_{i \in J} s_{i}^{\prime}$ be the type of φ. W.l.o.g. I and J are disjoint. The conjecture holds true for $\left.\psi=\left(r \Leftarrow \exists J:\langle\pi\rangle_{i \in J} \equiv t \wedge \theta^{\prime}\right)\right)$ where θ^{\prime} is constructed from θ by driving all negation symbols innermost until they directly precede atomic formulas. If $\varphi=(r \Rightarrow \theta)$, then the conjecture holds true for $\psi=\left(r \circ t \Rightarrow \forall I:\left(\neg\left(\pi_{s} \equiv t\right) \vee \theta^{\prime}\right)\right)$.

The congruence property of \equiv is essential for the validity of Proposition 4.15.
Lemma 4.16 (homomorphism criteria) Let $h: A \rightarrow C$ be a Σ-homomorphism.
(1) Let $g: A \rightarrow B$ be a Σ-epimorphism and $h^{\prime}: B \rightarrow C$ be a function such that $h=h^{\prime} \circ g$. Then h^{\prime} is a Σ-homomorphism and the only one satisfying $h=h^{\prime} \circ g$.
(2) Let $g: B \rightarrow C$ be a Σ-monomorphism and $h^{\prime}: A \rightarrow B$ be a function such that $h=g \circ h^{\prime}$. Then h^{\prime} is a Σ-homomorphism and the only one satisfying $h=g \circ h^{\prime}$.

Proof. (1) h^{\prime} is homomorphic: Let $f: s \rightarrow s^{\prime} \in F$. Then

$$
f^{C} \circ h^{\prime} \circ g=f^{C} \circ h=h \circ f^{A}=h^{\prime} \circ g \circ f^{A}=h^{\prime} \circ f^{B} \circ g
$$

and thus $f^{C} \circ h^{\prime}=h^{\prime} \circ f^{B}$ because g is surjective. Suppose that $h^{\prime \prime} \circ g=h$ for some Σ-homomorphism $h^{\prime \prime}: B \rightarrow C$. Then $h^{\prime \prime} \circ g=h=h^{\prime} \circ g$ and thus $h^{\prime \prime}=h^{\prime}$ because g is surjective.
(2) h^{\prime} is homomorphic: Let $f: s \rightarrow s^{\prime} \in F$. Then

$$
g \circ h^{\prime} \circ f^{A}=h \circ f^{A}=f^{C} \circ h=f^{C} \circ g \circ h^{\prime}=g \circ f^{B} \circ h^{\prime}
$$

and thus $h^{\prime} \circ f^{A}=f^{B} \circ h^{\prime}$ because g is injective. Suppose that $g \circ h^{\prime \prime}=h$ for some Σ-homomorphism $h^{\prime \prime}: A \rightarrow B$. Then $g \circ h^{\prime \prime}=h=g \circ h^{\prime}$ and thus $h^{\prime \prime}=h^{\prime}$ because g is injective.

Theorem 4.17 (homomorphism theorems) Let $h: A \rightarrow C$ be a Σ-homomorphism.
(1) Let nat : $A \rightarrow A / \operatorname{ker}(h)$ be the corresponding natural mapping. Then there is a unique Σ-homomorphism $h^{\prime}: A / k e r(h) \rightarrow C$ such that $h^{\prime} \circ$ nat $=h$. Moreover, C is (isomorphic to) a quotient of A iff there is a Σ-epimorphism from A to C.
(2) Let inc: $\operatorname{img}(h) \rightarrow C$ be the corresponding inclusion mapping. Then there is a unique Σ-homomorphism $h^{\prime}: A \rightarrow i m g(h)$ such that $h=i n c \circ h^{\prime}$. Moreover, A is (isomorphic to) a substructure of C iff there is a Σ-monomorphism from A to C.

Proof.

(1) nat is a Σ-epimorphism. By the definition of $\operatorname{ker}(h)$, the function $h^{\prime}: A / \operatorname{ker}(h) \rightarrow C$ sending $[a] \in$ $A / \operatorname{ker}(h)$ to $h(a)$ is well-defined and injective. Hence $h=h^{\prime} \circ$ nat and thus by Lemma 4.16(1), h^{\prime} is a Σ homomorphism and the only one with $h=h^{\prime} \circ$ nat.

If h is surjective, then h^{\prime} is also surjective and thus bijective, i.e., $A / \operatorname{ker}(h)$ and C are isomorphic. Conversely, let \sim be a Σ-congruence on A and $h^{\prime}: A / \operatorname{ker}(h) \rightarrow C$ be a Σ-isomorphism. Define $h: A \rightarrow C$ by $h=h^{\prime} \circ$ nat . Since nat and h^{\prime} are Σ-epimorphisms, h is a Σ-epimorphism, too.

(2) inc is a Σ-monomorphism. By the definition of $i m g(h)$, the function $h^{\prime}: A \rightarrow i m g(h)$ sending $a \in A$ to $h(a)$ is well-defined and surjective. Hence $h=i n c \circ h^{\prime}$ and thus by Lemma 4.16(2), h^{\prime} is a Σ-homomorphism and the only one with $h=i n c \circ h^{\prime}$.

If h is injective, then h^{\prime} is also injective and thus bijective, i.e., A and $\operatorname{img}(h)$ are isomorphic. Conversely, let C^{\prime} be a Σ-substructure of C and $h^{\prime}: A \rightarrow A^{\prime}$ be a Σ-isomorphism. Define $h: A \rightarrow C$ by $h=i n c \circ h^{\prime}$. Since inc and h^{\prime} are Σ-monomorphisms, h is a Σ-monomorphism, too.

5 Swinging types

Definition 5.1 (specification, swinging type) Given a signature Σ and a set $A X$ of Horn or co-Horn clauses over Σ, called axioms, the pair $S P=(\Sigma, A X)$ is a specification if each relation $r \in \Sigma$ is a predicate or a copredicate, i.e., occurs only in the heads of Horn clauses or only in the heads of co-Horn clauses.

Given signatures $\Sigma=\left(S_{0}, S, F, R\right)$ and $\Sigma^{\prime}=\left(S_{0}^{\prime}, S^{\prime}, F^{\prime}, R^{\prime}\right)$, a specification $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ is a swinging type (ST) with base type $S P=(\Sigma, A X)$ and primitive sort set S_{0}^{\prime} if $S P$ is a swinging type and either $S P^{\prime}=S P=(\emptyset, \emptyset)$ or one of the following conditions (1) to (8) holds true.

Let $S_{1}=S^{\prime} \backslash S$, equals $=\left\{\equiv_{s} \mid s \in S_{1}\right\}$ and univs $=\left\{\right.$ all $\left._{s} \mid s \in S_{1}\right\}$.
(1) Data model. $S_{0}^{\prime}=\mathbb{T}_{S}, R^{\prime}=R$ and $A X^{\prime}=A X . F^{\prime} \backslash F$ is a set of S_{1}-constructors (see Def. 3.6). The sorts of S_{1} are called visible sorts of $S P^{\prime}$.
(2) State model. $S_{0}^{\prime}=\mathbb{T}_{S}, R^{\prime}=R$ and $A X^{\prime}=A X . F^{\prime} \backslash F$ is a set of S_{1}-destructors (see Def. 3.6). The sorts of S_{1} are called hidden sorts of $S P^{\prime}$.
(3) Recursive functions. $S P$ satisfies (1). $\Sigma^{\prime} \backslash \Sigma$ is a set of S_{1}-destructors, called recursive functions. Define the S^{\prime}-sorted set rec and the substitutions sub $b_{1}: S^{\prime} \rightarrow \mathbb{T}_{S^{\prime}}$ and $s u b_{2}: S^{\prime} \rightarrow T_{\Sigma^{\prime}}$ as follows: For all $s \in S, \operatorname{rec}(s)=\left\{i d_{s}\right\}$, for all $s \in S_{1}, \operatorname{rec}(s)=\left\{f \in F^{\prime} \backslash F \mid \operatorname{dom}_{f}=s\right\}$, and for all $s \in S^{\prime}, \operatorname{sub}_{1}(s)=$ $\prod_{f \in \operatorname{rec}(s)} \operatorname{ran}_{f}$ and $\operatorname{sub}_{2}(s)=\langle\operatorname{rec}(s)\rangle$. For all $f \in \Sigma^{\prime} \backslash \Sigma$ and all S_{1}-constructors $c: d o m \rightarrow d o m_{f}$ there
is a Σ-term

$$
t_{f, c}: s u b_{1}^{*}(d o m) \rightarrow \operatorname{ran}_{f}
$$

such that $A X^{\prime} \backslash A X$ contains the equation

$$
f \circ c \equiv t_{f, c} \odot s u b_{2}^{*}(d o m) .
$$

These are the only axioms of $A X^{\prime} \backslash A X .{ }^{6}$
(4) Corecursive functions. $S P$ satisfies (2). $\Sigma^{\prime} \backslash \Sigma$ is a set of S_{1}-constructors, called corecursive functions. Define the S^{\prime}-sorted set cor and the substitutions sub ${ }_{1}: S^{\prime} \rightarrow \mathbb{T}_{S^{\prime}}$ and $\operatorname{sub}_{2}: S^{\prime} \rightarrow T_{\Sigma^{\prime}}$ as follows: For all $s \in S, \operatorname{cor}(s)=\left\{i d_{s}\right\}$, for all $s \in S_{1}, \operatorname{cor}(s)=\left\{f \in F^{\prime} \backslash F \mid \operatorname{ran}_{f}=s\right\}$, and for all $s \in S^{\prime}$, $\operatorname{sub}_{1}(s)=\coprod_{f \in \operatorname{cor}(s)} d o m_{f}$ and $\operatorname{sub}_{2}(s)=[\operatorname{cor}(s)]$. For all $f \in \Sigma^{\prime} \backslash \Sigma$ and all Σ-destructors $d: r a n_{f} \rightarrow$ ran there is a Σ-term

$$
t_{f, d}: \operatorname{dom}_{f} \rightarrow \operatorname{sub}_{1}^{*}(\text { ran })
$$

such that $A X^{\prime} \backslash A X$ contains the equation

$$
d \circ f \equiv s u b_{2}^{*}(r a n) \odot t_{f, d}
$$

These are the only axioms of $A X^{\prime} \backslash A X .^{7}$
(5) Visible abstraction. $S P$ is visible. $\Sigma^{\prime} \backslash \Sigma$ is a set of S_{1}-constructors and logical relations. $A X^{\prime} \backslash A X$ consists of ($R_{1} \cup$ equals)-positive Horn clauses for $R^{\prime} \backslash R \cup$ equals and includes CONH (see Def. 10.1).
(6) Hidden abstraction. $\Sigma^{\prime} \backslash \Sigma$ is a set of logical relations. $A X^{\prime} \backslash A X$ consists of ($R_{1} \cup$ equals)-positive co-Horn clauses for $R^{\prime} \backslash R \cup$ equals and includes CONC (see Def. 10.1).
(7) Visible restriction. $\Sigma^{\prime} \backslash \Sigma$ is a set of logical relations. $A X^{\prime} \backslash A X$ consists of ($R_{1} \cup$ univs $)$-positive and restricted Horn clauses for $R^{\prime} \backslash R \cup$ univs and includes INVH (see Def. 10.1).
(8) Hidden restriction. $S P$ is hidden. $\Sigma^{\prime} \backslash \Sigma$ is a set of S_{1}-destructors and logical relations. $A X^{\prime} \backslash A X$ consists of ($R_{1} \cup$ univs $)$-positive and restricted co-Horn clauses for $R^{\prime} \backslash R \cup$ univs and includes INVC (see Def. 10.1).

In cases (5) and (6), $S P^{\prime}$ is an abstraction. In cases (7) and (8), $S P^{\prime}$ is a restriction. In cases (1), (3), (5) and (7), $S P^{\prime}$ is visible. In cases (2), (4), (6) and (8), $S P^{\prime}$ is hidden.

A predecessor of $S P^{\prime}$ is a swinging type $S P_{0}$ such that there are swinging types $S P_{1}, \ldots, S P_{n}=S P^{\prime}$ and for all $1 \leq i \leq n, S P_{i-1}$ is the base type of $S P_{i}$. The sort-building predecessor of $S P^{\prime}$ is the least ${ }^{8}$ predecessor $S P$ of $S P^{\prime}$ such that both specifications have the same set of sorts.

The sort-building predecessor of $S P^{\prime}$ always satisfies $5.1(1)$ or (2).
Example 5.2 A visible type of Boolean arithmetic reads as follows.

BOOL

```
vissorts bool
constructs true, false: \(1 \rightarrow\) bool
defuncts not \(:\) bool \(\rightarrow\) bool
            and, or, eq : bool \(\times\) bool \(\rightarrow\) bool
preds \(\quad-\not \equiv\) - \(^{\text {: bool } \times \text { bool }}\)
vars \(\quad b, c\) : bool
axioms \(\quad\) not \(\circ\) true \(\equiv\) false \(\quad\) true and \(b \equiv b\)
```

[^4]\[

$$
\begin{array}{ll}
\text { not } \circ \text { false } \equiv \text { true } & \text { false and } b \equiv \text { false } \\
\text { or } \circ\langle\text { true }, \text { id }\rangle \equiv \text { true } & \text { eq }(\text { true }, b) \equiv b \\
\text { false or } b \equiv b & \text { eq }(\text { false }, b) \equiv \operatorname{not}(b) \\
\text { true } \not \equiv \text { false } & \text { false } \not \equiv \text { true }
\end{array}
$$
\]

Several swinging types given later have BOOL as a visible subtype.
Definition 5.3 (model-based specification, parameterized type) Let $S P=(\Sigma, A X)$ be a specification, $\Sigma=$ $\left(S_{0}, S, F, R\right), \Sigma_{1} \subseteq \Sigma$ and A be a Σ_{1}-structure. The pair $S P(A)=(\Sigma(A), A X(A))$ with

$$
\begin{aligned}
& \Sigma(A)=\Sigma \cup\left\{a: 1 \rightarrow s \mid a \in s^{A}\right\} \\
& A X(A)=A X \cup\left\{f \circ a \equiv f^{A}(a) \mid f: s \rightarrow s^{\prime} \in F, a \in s^{A}\right\} \cup\left\{r \circ a \mid r \in R, a \in r^{A}\right\}
\end{aligned}
$$

is the specification based on $(S P, A)$.
A parameter type $P A R=(P \Sigma, P A X)\left[S P_{1}, \ldots, S P_{k}\right]$ consists of a set $P \Sigma$ of signature elements, a set $P A X$ of formulas and $k \geq 0$ swinging types $S P_{i}=\left(\Sigma_{i}, A X_{i}\right), 1 \leq i \leq k$, called constant subtypes of $P A R$, such that

$$
\Sigma(P A R)=\operatorname{def} P \Sigma \cup \bigcup_{i=1}^{k} \Sigma_{i}
$$

is a signature and

$$
A X(P A R)={ }_{\operatorname{def}} P A X \cup \bigcup_{i=1}^{k} A X_{i}
$$

is a set of $\Sigma(P A R)$-formulas. A parameterized (swinging) type $P S P=(\Sigma, A X)\left[P A R_{1}, \ldots, P A R_{n}\right]$ consists of a set Σ of signature elements, a set $A X$ of Horn or co-Horn clauses and $n \geq 0$ parameter types $P A R_{1}, \ldots, P A R_{n}$ such that

$$
\Sigma(P S P)={ }_{d e f} \Sigma \cup \bigcup_{i=1}^{n} \Sigma\left(P A R_{i}\right)
$$

is the signature and $A X$ is the set of axioms of a swinging type.
Given a parameter type $P A R=(P \Sigma, P A X)\left[S P_{1}, \ldots, S P_{k}\right]$, a $\Sigma(P A R)$-structure A with equality is a parameter model of $P A R$ if A satisfies $A X(P A R)$ and for all $1 \leq i \leq k,\left.A\right|_{\Sigma\left(S P_{i}\right)} \cong \operatorname{Ini}\left(S P_{i}\right)$.

Given a parameterized type $P S P=(\Sigma, A X)\left[P A R_{1}, \ldots, P A R_{n}\right]$ and parameter models A_{1}, \ldots, A_{n} of $P A R_{1}, \ldots, P A R_{n}$, respectively, the actualization of $P S P$ by $\left(A_{1}, \ldots, A_{n}\right)$ is the swinging type

$$
(\Sigma, A X)\left[A_{1}, \ldots, A_{n}\right]={ }_{d e f}\left(\Sigma\left(A_{1}\right) \cup \cdots \cup \Sigma\left(A_{n}\right), A X\left(A_{1}\right) \cup \cdots \cup A X\left(A_{n}\right)\right) .
$$

Example 5.4 The simplest parameter type consists of a single sort with equality and inequality:

```
NEQ(s)
    sorts s
    preds - \not= - :s\timess
    axioms }\quadx\not\equivy\Leftrightarrow\neg(x\equivy
```

Since s is a type variable, s may be instantiated by any other type. For example, NEQ(bool) is the parameter type that agrees with NEQ (s) except for the replacement of all occurrences of s in NEQ (s) by bool. Here is a parameterized type using $\operatorname{NEQ}(s)$ as parameter:

STACK[NEQ(s)] where STACK =

```
vissorts stack(s)
constructs empty: \(1 \rightarrow \operatorname{stack}(s)\)
    push : s \(\times\) stack \(\rightarrow \operatorname{stack}(s)\)
defuncts pop: \(\operatorname{stack}(s) \rightarrow \operatorname{stack}(s)\)
    top : \(\operatorname{stack}(s) \rightarrow 1+s\)
preds \(\quad-\not \equiv \mathcal{E}_{-}: \operatorname{stack}(s) \times \operatorname{stack}(s)\)
vars \(\quad x, y: s L, L^{\prime}: \operatorname{stack}(s)\)
axioms \(\quad\) top \(\circ\) empty \(\equiv \iota_{1}\)
    top \(\circ\) push \(\equiv \iota_{2} \circ \pi_{1}\)
    pop \(\circ\) empty \(\equiv\) empty
    pop \(\circ\) push \(\equiv \pi_{2}\)
    empty \(\not \equiv \operatorname{push}(x, L)\)
    push \((x, L) \not \equiv\) empty
    \(\operatorname{push}(x, L) \not \equiv \operatorname{push}\left(x, L^{\prime}\right) \Leftarrow L \not \equiv L^{\prime}\)
```

Finally, we extend NEQ (s) to a parameter type with a constant subtype: ${ }^{9}$
$\operatorname{TRIV}(s)[\mathrm{BOOL}]$ where $\operatorname{TRIV}(s)=\operatorname{NEQ}(s)$ and

$$
\begin{array}{ll}
\text { functs } & e q, \text { neq }: s \times s \rightarrow \text { bool } \\
\text { axioms } & e q(x, y) \equiv \text { true } \Leftarrow x \equiv y \\
& e q(x, y) \equiv \text { false } \Leftarrow x \not \equiv y \\
& n e q(x, y) \equiv \text { true } \Leftarrow x \not \equiv y \\
& \text { neq }(x, y) \equiv \text { false } \Leftarrow x \equiv y
\end{array}
$$

hidden abstraction $* * * * *$ final algebra semantics [109, 57, 78]
Labelled transition systems may be integrated into swinging types by declaring them as ternary relations. Although Def. 5.1 excludes the specification of alternating fixpoints [84], it is sufficient for axiomatizing all common modal- or temporal-logic operators in terms of swinging types (see also [89], Example 2.7). General results that have been drawn from the incorporation of modal into many-sorted logic and that may be fruitful for modal logic itself deal with bisimulation invariant formulas and their syntactic characterization (see [89], Theorems 3.8 and 7.9).

6 Data and states

Definition 6.1 (initial, final) Let Σ be a signature and \mathcal{C} be a class of Σ-structures.
Ini $\in \operatorname{Mod}(\Sigma)$ is initial in \mathcal{C} or the initial object of \mathcal{C} if $\operatorname{Ini} \in \mathcal{C}$ and for all $B \in \mathcal{C}$ there is a unique Σ^{\prime}-homomorphism from $I n i$ to B.

Fin $\in \operatorname{Mod}(\Sigma)$ is final in \mathcal{C} or the final object of \mathcal{C} if $\operatorname{Fin} \in \mathcal{C}$ and for all $B \in \mathcal{C}$ there is a unique Σ^{\prime}-homomorphism from B to Fin.

Lemma 6.2 Let Σ be a signature and \mathcal{C} be a class of Σ-structures.
(1) All initial objects of \mathcal{C} are Σ-isomorphic.
(2) All final objects of \mathcal{C} are Σ-isomorphic.
(3) Initial objects of \mathcal{C} do not have proper substructures in \mathcal{C}. Consequently, for all initial objects $A \in \mathcal{C}$ and Σ-invariants inv on A, inv $^{A}=A$.

[^5](4) Final objects of \mathcal{C} do not have proper quotients in \mathcal{C}.

Consequently, for all final objects $A \in \mathcal{C}$ and Σ-congruences \sim on $A, \sim^{A}=\Delta^{A}$.
(5) Let Ini be initial in \mathcal{C}. Then for all $A \in \mathcal{C}$, the image of the unique Σ-homomorphism $h:$ Ini $\rightarrow A$ is the least Σ-invariant of A that belongs to \mathcal{C}.
(6) Let Fin be final in \mathcal{C}. Then for all $A \in \mathcal{C}$, the kernel of the unique Σ-homomorphism $h: A \rightarrow$ Fin is the greatest Σ-congruence \sim on A such that $A / \sim \in \mathcal{C}$.

Proof. (1) Let A, B be initial in \mathcal{C}. Then there are Σ-homomorphisms $g: A \rightarrow B$ and $h: B \rightarrow A$. Hence $h \circ g$ and $i d^{A}$ are Σ-homomorphisms from A to A, and $g \circ h$ and $i d^{B}$ are Σ-homomorphisms from B to B. By uniqueness, $h \circ g=i d^{A}$ and $g \circ h=i d^{B}$.
(2) Analogously.
(3) Let Ini be initial in \mathcal{C}, A be a substructure of Ini, h be the unique Σ-homomorphism from Ini to A and $i n c$ be the Σ-homomorphic inclusion mapping from A to Ini. By (1), incoh $=i d^{I n i}$. Hence inc is surjective and thus bijective, i.e., A and $I n i$ are Σ-isomorphic.
(4) Let Fin be final in \mathcal{C}, A be a quotient of Fin, h be the unique Σ-homomorphism from A to $F i n$ and nat be the Σ-homomorphic natural mapping from Fin to A. By (2), $h \circ n a t=i d^{F i n}$. Hence nat is injective and thus bijective, i.e., A and F in are Σ-isomorphic.
(5) Of course, $h($ Ini $)$ is a Σ-invariant of A. Let $i n v$ be a Σ-invariant of A such that $i n v \in \mathcal{C}$. Then there is a Σ-homomorphism $g: I n i \rightarrow i n v$. Moreover, the inclusion mapping inc $: i n v \rightarrow A$ is Σ-homomorphic. Hence by uniqueness, $h=i n c \circ g$ and thus for all $b \in \operatorname{Ini}, h(b)=i n c(g(b))=g(b) \in i n v$, i.e., $h($ Ini $) \subseteq i n v$.
(6) Of course, $\operatorname{ker}(h)$ is a Σ-congruence on A. Let \sim be a Σ-congruence on A such that $A / \sim \in \mathcal{C}$. Then there is a Σ-homomorphism $g: A / \sim \rightarrow$ Fin. Moreover, the natural mapping nat: $A \rightarrow A / \sim$ is Σ-homomorphic. Hence by uniqueness, $h=g \circ n a t$ and thus for all $(a, b) \in A^{2}, a \sim b$ implies $h(a)=g(n a t(a))=g(n a t(b))=h(b)$, i.e., $\sim \subseteq \operatorname{ker}(h)$.

Theorem 6.3 Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature, A be an S_{0}-sorted set and $S_{1}=S \backslash S_{0}$. Suppose that for all $f: s \rightarrow s^{\prime} \in F, s, s^{\prime} \in \mathbb{T}_{S_{0}}$ or $s^{\prime} \in S_{1}$. The free Σ-structure Ini over A is initial in $\operatorname{Mod}_{E U}(\Sigma, A)$. Moreover, for all $t \in \operatorname{MGen}_{\Sigma}, t^{\text {Free }(\Sigma, A)}=\iota_{t}$.

Proof. Let $C \in \operatorname{Mod}_{E U}(\Sigma, A)$ and $h:$ Ini $\rightarrow C$ be the S-sorted function defined by $h_{s}=i d_{s}$ for all $s \in S_{0}$ and

$$
\begin{equation*}
h_{s} \circ \iota_{t}=t^{C} \tag{1}
\end{equation*}
$$

for all $s \in S_{1}$ and $t: d o m \rightarrow s \in M G e n_{\Sigma}$. First we show by induction on the structure of s that (1) holds true for all $s \in \mathbb{T}_{S}$. Let $t: d o m \rightarrow s \in M G e n_{\Sigma}$. If s is a product, say $s=\prod_{i \in I} s_{i}$, then for all $i \in I$ there is $t_{i}: \operatorname{dom}_{i} \rightarrow s_{i} \in \operatorname{MGen}_{\Sigma}$ such that $t=\prod_{i \in I} t_{i}$. Hence for all $a \in \operatorname{dom}^{A}$ and $i \in I$,

$$
\begin{gathered}
\pi_{i}\left(h_{s}\left(\iota_{t}(a)\right)\right)=\pi_{i}\left(h_{i \in I}{s_{i}}_{i}\left(\iota_{t}(a)\right)\right)=h_{s_{i}}\left(\pi_{i}\left(\iota_{t}(a)\right)\right)=h_{s_{i}}\left(\pi_{i}\left(\iota \prod_{i \in I} t_{i}(a)\right)\right)=h_{s_{i}}\left(\iota_{t_{i}}\left(\pi_{i}(a)\right)\right) \stackrel{i . h .}{=} t_{i}^{C}\left(\pi_{i}(a)\right)= \\
\pi_{i}\left(\left(t_{i}^{C}\left(\pi_{i}(a)\right)\right)_{i \in I}\right)=\pi_{i}\left(\left(\prod_{i \in I} t_{i}^{C}\right)(a)\right)=\pi_{i}\left(t^{C}(a)\right)
\end{gathered}
$$

If s is a sum, say $s=\coprod_{i \in I} s_{i}$, then there are $i \in I$ and $u: d o m \rightarrow s_{i} \in M G e n_{\Sigma}$ such that $t=\iota_{i} \circ u$ and thus, by the isomorphism in the proof of Proposition 4.2(1), $\iota_{t}=\iota_{i} \circ \iota_{u}$. Hence for all $a \in \operatorname{dom}^{A}$,

$$
h_{s}\left(\iota_{t}(a)\right)=h_{\coprod_{i \in I} s_{i}}\left(\iota_{i}\left(\iota_{u}(a)\right)\right)=\iota_{i}\left(h_{s_{i}}\left(\iota_{u}(a)\right) \stackrel{i . h .}{=} \iota_{i}\left(u^{C}(a)\right)=\left(\iota_{i} \circ u\right)^{C}(a)=t^{C}(a)\right.
$$

Next we show that h is Σ-homomorphic, i.e., for all $f: s \rightarrow \operatorname{ran} \in F^{\prime}, h_{r a n} \circ f^{I n i}=f^{C} \circ h_{s}$. Let $s \in S^{\prime}$ and $a \in s^{\text {Ini }}$. If ran $\in \mathbb{T}_{S}$, then $f \in F$ and thus by Proposition 4.6(4),

$$
h_{r a n}\left(f^{I n i}(a)\right)=h_{r a n}\left(f^{A}(a)\right)=f^{A}(a)=f^{A}\left(h_{s}(a)\right)=f^{C}\left(h_{s}(a)\right)
$$

Otherwise $f \in F^{\prime} \backslash F$ and $r a n \in S^{\prime} \backslash S$. If $s \in S^{\prime}$, then for all $a=(b, t) \in s^{I n i}$,
$h_{r a n}\left(f^{I n i}(a)\right)=h_{r a n}(b, f \circ t)=h_{r a n}\left(\iota_{f \circ t}(b)\right) \stackrel{(1)}{=}(f \circ t)^{C}(b)=f^{C}\left(t^{C}(b)\right) \stackrel{(1)}{=} f^{C}\left(h_{s}\left(\iota_{t}(b)\right)\right)=f^{C}\left(h_{s}(b, t)\right)=f^{C}\left(h_{s}(a)\right)$.
If $s=\prod_{i \in I} s_{i}$, then for all $a=\left(b_{i}, t_{i}\right)_{i \in I} \in \prod_{i \in I} s_{i}^{I n i}$,

$$
\begin{gathered}
h_{r a n}\left(f^{I n i}(a)\right)=h_{r a n}\left(\left(b_{i}\right)_{i \in I}, f \circ \prod_{i \in I} t_{i}\right)=h_{r a n}\left(\iota_{f \circ \prod_{i \in I} t_{i}}\left(\left(b_{i}\right)_{i \in I}\right) \stackrel{(1)}{=}\left(f \circ \prod_{i \in I} t_{i}\right)^{C}\left(\left(b_{i}\right)_{i \in I}\right)=\right. \\
f^{C}\left(\left(\prod_{i \in I} t_{i}\right)^{C}\left(\left(b_{i}\right)_{i \in I}\right)\right)=f^{C}\left(\left(t_{i}^{C}\left(b_{i}\right)\right)_{i \in I}\right) \stackrel{(1)}{=} f^{C}\left(\left(h_{s}\left(\iota_{t_{i}}\left(b_{i}\right)\right)\right)_{i \in I}\right)=f^{C}\left(\left(h_{s}\left(b_{i}, t_{i}\right)\right)_{i \in I}\right)=f^{C}\left(h_{s}(a)\right)
\end{gathered}
$$

If $s=\coprod_{i \in I} s_{i}$, then for all $a=((b, t), i) \in \coprod_{i \in I} s_{i}^{I n i}$,

$$
\begin{gathered}
h_{r a n}\left(f^{I n i}(a)\right)=h_{r a n}\left(b, f \circ \iota_{i} \circ t\right)=h_{r a n}\left(\iota_{f \circ \iota_{i} \circ t}(b)\right) \stackrel{(1)}{=}\left(f \circ \iota_{i} \circ t\right)^{C}(b)=f^{C}\left(\iota_{i}\left(t^{C}(b)\right)\right) \stackrel{(1)}{=} \\
f^{C}\left(\iota_{i}\left(h_{s}\left(\iota_{t}(b)\right)\right)\right)=f^{C}\left(\iota_{i}\left(h_{s}(b, t)\right)\right)=f^{C}\left(h\left(\iota_{i}(b, t)\right)\right)=f^{C}\left(h_{s}((b, t), i)\right)=f^{C}\left(h_{s}(a)\right) .
\end{gathered}
$$

A suitable re-arrangement of the equations in this proof leads to a proof that h is the only Σ-homomorphism from Ini to C. In particular, if $C=I n i$, then $h=i d^{I n i}$ and thus (1) implies $t^{F r e e(\Sigma, A)}=\iota_{t}$ for all $t \in M G e n_{\Sigma}$.

Theorem 6.4 Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature, A be an S_{0}-sorted set and $S_{1}=S \backslash S_{0}$. Suppose that for all $f: s \rightarrow s^{\prime} \in F, s, s^{\prime} \in \mathbb{T}_{S_{0}}$ or $s \in S_{1}$. The cofree Σ-structure Ini over A is final in $\operatorname{Mod} d_{E U}(\Sigma, A)$. Moreover, for all $t \in \operatorname{MOb} s_{\Sigma}, t^{\operatorname{Cofree}(\Sigma, A)}=\pi_{t}$.

Proof. Let $C \in \operatorname{Mod}_{E U}(\Sigma, A)$ and $h: C \rightarrow$ Fin be the S-sorted function defined by $h_{s}=i d_{s}$ for all $s \in S_{0}$ and

$$
\begin{equation*}
\pi_{t} \circ h_{s}=t^{C} \tag{2}
\end{equation*}
$$

for all $s \in S_{1}$ and $t: s \rightarrow \operatorname{ran} \in \operatorname{MObs}_{\Sigma}$. First we show by induction on the structure of s that (2) holds true for all $s \in \mathbb{T}_{S}$. Let $t: s \rightarrow r a n \in \operatorname{MObs}_{\Sigma}$. If s is a product, say $s=\prod_{i \in I} s_{i}$, then there are $i \in I$ and $u: s_{i} \rightarrow r a n \in M O b s_{\Sigma}$ such that $t=u \circ \pi_{i}$ and thus, by the isomorphism in the proof of Proposition 4.2(2), $\pi_{t}=\pi_{u} \circ \pi_{i}$. Hence for all $a \in s^{F i n}$,

$$
\pi_{t}\left(h_{s}(a)\right)=\pi_{u}\left(\pi_{i}\left(h_{s}(a)\right)\right)=\pi_{u}\left(\pi_{i}\left(h_{i \in I} s_{i}(a)\right)\right)=\pi_{u}\left(h_{s_{i}}\left(\pi_{i}(a)\right)\right) \stackrel{i . h .}{=} u^{C}\left(\pi_{i}(a)\right)=\left(u \circ \pi_{i}\right)^{C}(a)=t^{C}(a)
$$

If s is a sum, say $s=\coprod_{i \in I} s_{i}$, then for all $i \in I$ there is $t_{i}: s_{i} \rightarrow \operatorname{ran}_{i} \in M O b s_{\Sigma}$ such that $t=\coprod_{i \in I} t_{i}$. Hence for all $i \in I$ and $a \in s_{i}^{F i n}$,

$$
\begin{aligned}
\pi_{t}\left(h_{s}\left(\iota_{i}(a)\right)\right)=\pi_{t}\left(h_{\coprod_{i \in I} s_{i}}\left(\iota_{i}(a)\right)\right)= & \pi_{t}\left(\iota_{i}\left(h_{s_{i}}(a)\right)\right)=\pi_{\coprod_{i \in I} t_{i}}\left(\iota_{i}\left(h_{s_{i}}(a)\right)\right)=\pi_{t_{i}}\left(h_{s_{i}}(a)\right) \stackrel{i . h .}{=} t_{i}^{C}(a)= \\
& \left(\coprod_{i \in I} t_{i}^{C}\right)\left(\iota_{i}(a)\right)=t^{C}\left(\iota_{i}(a)\right)
\end{aligned}
$$

Next we show that h is Σ-homomorphic, i.e., for all $f: d o m \rightarrow s \in F^{\prime}, h_{s} \circ f^{C}=f^{F i n} \circ h_{d o m}$. Let $s \in S^{\prime}$ and $a \in s^{C}$. If dom $\in \mathbb{T}_{S}$, then $f \in F$ and thus by Proposition 4.6(5),

$$
h_{s}\left(f^{C}(a)\right)=h_{s}\left(f^{A}(a)\right)=f^{A}(a)=f^{A}\left(h_{d o m}(a)\right)=f^{F i n}\left(h_{d o m}(a)\right)
$$

Otherwise $f \in F^{\prime} \backslash F$ and $d o m \in S^{\prime} \backslash S$. If $s \in S^{\prime}$, then for all $a \in d o m^{C}$ and $t: s \rightarrow r a n \in M O b s_{\Sigma}$,

$$
\pi_{t}\left(h_{s}\left(f^{C}(a)\right)\right) \stackrel{(2)}{=} t^{C}\left(f^{C}(a)\right)=(t \circ f)^{C}(a) \stackrel{(2)}{=} \pi_{t \circ f}\left(h_{d o m}(a)\right)=h_{d o m}(a)_{t \circ f}=\pi_{t}\left(f^{F i n}\left(h_{d o m}(a)\right)\right)
$$

If $s=\prod_{i \in I} s_{i}$, then for all $a \in \operatorname{dom}^{C}, i \in I$ and $t_{i}: s_{i} \rightarrow \operatorname{ran}_{i} \in M O b s_{\Sigma}$,

$$
\begin{gathered}
\pi_{t_{i}}\left(\pi_{i}\left(h_{s}\left(f^{C}(a)\right)\right)\right)=\pi_{t_{i}}\left(h_{s_{i}}\left(\pi_{i}\left(f^{C}(a)\right)\right)\right) \stackrel{(2)}{=} t_{i}^{C}\left(\pi_{i}\left(f^{C}(a)\right)\right)=\left(t_{i} \circ \pi_{i} \circ f\right)^{C}(a) \stackrel{(2)}{=} \pi_{t_{i} \circ \pi_{i} \circ f}\left(h_{d o m}(a)\right)= \\
h_{\text {dom }}(a)_{t_{i} \circ \pi_{i} \circ f}=\pi_{t_{i}}\left(\pi_{i}\left(f^{F i n}\left(h_{d o m}(a)\right)\right)\right) .
\end{gathered}
$$

If $s=\coprod_{i \in I} s_{i}$, then for all $a \in \operatorname{dom}^{C}$ and $T=\coprod_{i \in I}\left(t_{i}: s_{i} \rightarrow \operatorname{ran}_{i}\right) \in \coprod_{i \in I}$ MObs $_{\Sigma}$,

$$
\pi_{T}\left(h_{s}\left(f^{C}(a)\right)\right) \stackrel{(2)}{=} T^{C}\left(f^{C}(a)\right)=(T \circ f)^{C}(a) \stackrel{(2)}{=} \pi_{T \circ f}\left(h_{\text {dom }}(a)\right)=h_{\text {dom }}(a)_{T \circ f}=\pi_{T}\left(f^{F i n}\left(h_{\text {dom }}(a)\right)\right) .
$$

A suitable re-arrangement of the equations in this proof leads to a proof that h is the only Σ^{\prime}-homomorphism from C to Fin. In particular, if $C=F i n$, then $h=i d^{F i n}$ and thus (2) implies $t^{\operatorname{Cofree}(\Sigma, A)}=\pi_{t}$ for all $t \in$ MObs $_{\Sigma}$.

If $S P^{\prime}$ satisfies Def. 5.1(1), then the sum of all constructors of $S P^{\prime} \backslash S P$ is an isomorphism:
Theorem 6.5 Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$ such that $S P^{\prime}$ satisfies 5.1(1). There is a Σ^{\prime}-isomorphism h from the initial object Ini of $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$ to the Σ^{\prime}-structure B with equality and universe that is defined as follows: Let $S_{1}=S^{\prime} \backslash S$ and for all $s \in S_{1}, C(s)=\left\{c \in F^{\prime} \backslash F \mid s_{c}=s\right\}$.

- $\left.B\right|_{\Sigma}=\left.I n i\right|_{\Sigma}$,
- for all $s \in S_{1}, s^{B}=\coprod_{c \in C(s)}$ dom $_{c}^{\text {Ini }}$,
- for all $c: \operatorname{dom}_{c} \rightarrow s \in F^{\prime} \backslash F, c^{B}=\iota_{c} \circ \operatorname{dom}_{c}\left[\left[C(s)^{I n i}\right) / s \mid s \in S_{1}\right]$.

Moreover, for all $s \in S_{1}$ and s-constructors $c: \operatorname{dom} \rightarrow s, c^{I n i}=h^{-1} \circ \iota_{c}$.
Proof. Since $S P$ satisfies 5.1(1), $B \in \operatorname{Mod}_{E U}\left(S P^{\prime}\right)$ and thus there is a unique Σ^{\prime}-homomorphism $h: \operatorname{Ini} \rightarrow B$. First we show that $g: I n i \rightarrow$ Ini defined by $g_{s}=i d_{s}^{\left.I n i\right|_{\Sigma}}$ for all $s \in S$ and $g_{s}=\left[C(s)^{I n i}\right) \circ h_{s}$ for all $s \in S_{1}$ is a Σ^{\prime}-homomorphism: For all $c: \operatorname{dom}_{c} \rightarrow s \in F^{\prime} \backslash F$,

$$
\begin{gathered}
g_{s} \circ \circ^{I n i}=\left[C(s)^{I n i}\right) \circ h_{s} \circ c^{I n i}=\left[C(s)^{I n i}\right) \circ c^{B} \circ h_{d o m_{c}} \\
=\left[C(s)^{I n i}\right) \circ \iota_{c} \circ \operatorname{dom}_{c}\left[\left[C(s)^{I n i}\right) / s \mid s \in S_{1}\right] \circ h_{d o m_{c}} \\
=c^{I n i} \circ \operatorname{dom}_{c}\left[\left[C\left(s(s)^{I n i}\right) \circ h_{s} / s \mid s \in S_{1}\right]=c^{I n i} \circ \operatorname{dom}_{c}\left[g_{s} / s \mid s \in S_{1}\right]=c^{I n i} \circ g_{d o m_{c}}\right.
\end{gathered}
$$

Since $I n i$ is initial in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$, there is only one Σ^{\prime}-homomorphism from Ini to Ini. Hence $g=i d^{I n i}$.
Next we show that $h^{\prime}: B \rightarrow$ Ini defined by $h_{s}^{\prime}=i d_{s}^{\left.I n i\right|_{\Sigma}}$ for all $s \in S$ and $h_{s}^{\prime}=\left[C(s)^{I n i}\right)$ for all $s \in S_{1}$ is an inverse of h. For all $s \in S, h_{s}^{\prime}$ is an inverse of h_{s} because $h_{s}=i d_{s}^{\left.I n i\right|_{\Sigma}}$. Let $s \in S_{1}$. Then

$$
h_{s}^{\prime} \circ h_{s}=\left[C(s)^{I n i}\right) \circ h_{s}=g_{s}=i d_{s}^{I n i} .
$$

Moreover, for all s-constructors $c: \operatorname{dom}_{c} \rightarrow s$,

$$
\begin{gathered}
h_{s} \circ h_{s}^{\prime} \circ \iota_{c}=h_{s} \circ\left[C(s)^{I n i}\right) \circ \iota_{c}=h_{s} \circ c^{I n i}=c^{B} \circ h_{d o m_{c}} \\
=\iota_{c} \circ \operatorname{dom}_{c}\left[\left[C(s)^{I n i}\right) / s \mid s \in S_{1}\right] \circ h_{d o m_{c}}=\iota_{c} \circ \operatorname{dom}_{c}\left[\left[C\left(s s^{I n i}\right) \circ h_{s} / s \mid s \in S_{1}\right]\right. \\
=\iota_{c} \circ \operatorname{dom}_{c}\left[g_{s} / s \mid s \in S_{1}\right]=\iota_{c} \circ \operatorname{dom}_{c}\left[i d_{s}^{I n i} / s \mid s \in S_{1}\right]=\iota_{c} \circ d_{d o m_{c}}^{I n i}=\iota_{c}
\end{gathered}
$$

and thus $h_{s} \circ h_{s}^{\prime}=i d_{s}^{I n i}$. This finishes the proof that h is an isomorphism with inverse h^{\prime}.
For all $c: d o m \rightarrow s \in F^{\prime} \backslash F, c^{I n i}=\left[C(s)^{I n i}\right) \circ \iota_{c}=h_{s}^{\prime} \circ \iota_{c}=h^{-1} \circ \iota_{c}$.
If $S P^{\prime}$ satisfies Def. 5.1(2), then the product of all destructors of $S P^{\prime} \backslash S P$ is an isomorphism:
Theorem 6.6 Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$ such that $S P^{\prime}$ satisfies 5.1(2). There is a Σ^{\prime}-isomorphism h from the Σ^{\prime}-structure B with equality and universe to the final object Fin of $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$ that is defined as follows: Let $S_{1}=S^{\prime} \backslash S$ and for all $s \in S_{1}, D(s)=\left\{d \in F^{\prime} \backslash F \mid s_{d}=s\right\}$.

- $\left.B\right|_{\Sigma}=\left.F i n\right|_{\Sigma}$,
- for all $s \in S_{1}, s^{B}=\prod_{d \in D(s)} r a n_{d}^{F i n}$,
- for all $d: s \rightarrow \operatorname{ran}_{d} \in F^{\prime} \backslash F, d^{B}=\operatorname{ran}_{d}\left[\left\langle D(s)^{F i n}\right\rangle / s \mid s \in S_{1}\right] \circ \pi_{d}$.

Moreover, for all $d: s \rightarrow$ ran $\in F^{\prime} \backslash F, d^{F i n}=\pi_{d} \circ h^{-1}$.
Proof. Since $S P$ satisfies $5.1(2), B \in \operatorname{Mod}_{E U}(S P)$ and thus there is a unique Σ^{\prime}-homomorphism $h: B \rightarrow$ Fin. The statement of the lemma follows by dualizing the proof of Theorem 6.5.

7 Recursion and corecursion

Theorem 7.1 Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$ such that $S P^{\prime}$ satisfies 5.1(3). The initial object of $\operatorname{Mod}_{E U}(S P)$ can be extended to the initial object of $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$.

Proof. Let $A \in \operatorname{Mod}_{E U}(S P)$ and $f \in F^{\prime} \backslash F$. Using the notations of Def. 5.1(3) we define a Σ-structure A^{\prime} as follows:

- for all $s \in S_{1}, s^{A^{\prime}}=\prod_{f \in \operatorname{rec}(s)} \operatorname{ran}_{f}^{A}\left(=\operatorname{sub_{1}}(s)^{A}\right)$,
- for all $s \in S_{1}$ and constructors $c: d o m \rightarrow s, c^{A^{\prime}}=\left\langle t_{f, c}^{A}\right\rangle_{f \in \operatorname{rec}(s)}$,
- for all other symbols $s \in \Sigma, s^{A^{\prime}}=s^{A}$.

Let $I n i$ be initial in $\operatorname{Mod}_{E U}(S P)$. Since $S P$ satifies $5.1(1)$, $\operatorname{Ini}^{\prime} \in \operatorname{Mod}_{E U}(S P)$. Since Ini is initial in $\operatorname{Mod}_{E U}(S P)$, there is a unique Σ-homomorphism $h: I n i \rightarrow I n i^{\prime}$. Hence for all $s \in S_{1}$ and constructors $c: d o m \rightarrow s$,

$$
\begin{equation*}
h_{s} \circ c^{I n i}=c^{I n i^{\prime}} \circ h_{d o m}=\left\langle t_{f, c}^{I n i}\right\rangle_{f \in r e c(s)} \circ h_{d o m} . \tag{1}
\end{equation*}
$$

Let $s \in S_{1} . f: s \rightarrow r a n \in \operatorname{rec}(s)$ can be interpreted in Ini as the composition $s^{I n i} \xrightarrow{h_{s}} s^{I n i^{\prime}} \xrightarrow{\pi_{f}} r a n n^{I n i}$, i.e., $f^{I n i}=\pi_{f} \circ h_{s}$. Consequently,

$$
\begin{equation*}
h_{s}=\left\langle f^{I n i}\right\rangle_{f \in \operatorname{rec}(s)}=\langle\operatorname{rec}(s)\rangle^{I n i} \tag{2}
\end{equation*}
$$

and thus by Proposition 4.4, for all constructors $c: \operatorname{dom} \rightarrow s$,

$$
f^{I n i} \circ c^{I n i}=\pi_{f} \circ h_{s} \circ c^{I n i} \stackrel{(1)}{=} \pi_{f} \circ\left\langle t_{f, c}^{I n i}\right\rangle_{f \in r e c(s)} \circ h_{d o m}=t_{f, c}^{I n i} \circ h_{d o m} \stackrel{(2)}{=} t_{f, c}^{I n i} \circ s u b_{2}^{\#}(d o m)^{I n i},
$$

i.e., Ini satisfies the equation

$$
\begin{equation*}
f \circ c \equiv t_{f, c} \odot s u b_{2}^{\#}(d o m) \tag{3}
\end{equation*}
$$

of $A X^{\prime} \backslash A X$ (see Def. 5.1(3)). To sum up, we have concluded the validity of $A X^{\prime} \backslash A X$ in $I n i$ from the fact that h is Σ-homomorphic.

It remains to show that $I n i$ is initial in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. So let $B \in \operatorname{Mod}_{E U}\left(S P^{\prime}\right)$ and $A=\left.B\right|_{\Sigma}$. Conversely to the preceding proof step, let us now conclude from the validity of $A X^{\prime} \backslash A X$ in B that $h^{\prime}: A \rightarrow A^{\prime}$, defined by $\pi_{f} \circ h_{s}^{\prime}=f^{B}$ for all $s \in S$, is Σ-homomorphic. Let $s \in S_{1}$ and $c: d o m \rightarrow s$ be a constructor. Then

$$
\pi_{f} \circ h_{s}^{\prime} \circ c^{A}=f^{B} \circ c^{B} \stackrel{(3)}{=} t_{f, c}^{B} \circ s u b_{2}^{\#}(d o m)^{B}=\pi_{f} \circ\left\langle t_{f, c}^{A}\right\rangle_{f \in r e c(s)} \circ s u b_{2}^{\#}(d o m)^{B}=\pi_{f} \circ c^{A^{\prime}} \circ h_{d o m}^{\prime}
$$

and thus $h_{s}^{\prime} \circ c^{A}=c^{A^{\prime}} \circ h_{\text {dom }_{c}}^{\prime}$, i.e., h^{\prime} is Σ-homomorphic.
Since $A \in \operatorname{Mod}_{E U}(S P)$, there is a unique Σ-homomorphism $g: \operatorname{Ini} \rightarrow A$. Define $g^{\prime}: \operatorname{Ini} i^{\prime} \rightarrow A^{\prime}$ by $\pi_{f} \circ g_{s}^{\prime}=g_{r a n_{f}} \circ \pi_{f}$ for all $s \in S_{1}$ and $f \in \operatorname{rec}(s)$ and by $g_{s}^{\prime}=g_{s}$ for all $s \in S_{0}$. Let $s \in S_{1}$ and $c: d o m \rightarrow s$ be a constructor. Since $t_{f, c}: s u b_{1}^{\#}(d o m) \rightarrow r a n_{f}$ is a Σ-term, g is Σ-homomorphic and $g_{s}^{\prime}=\prod_{f \in \operatorname{rec}(s)} g_{r a n_{f}}=$ $g_{\text {sub }_{1}(s)}$, Proposition 3.5 implies

$$
\begin{equation*}
g_{r a n_{f}} \circ t_{f, c}^{I n i}=t_{f, c}^{A} \circ g_{s u b_{1}^{\#}(d o m)}=t_{f, c}^{A} \circ g_{d o m}^{\prime} \tag{4}
\end{equation*}
$$

and thus
$\pi_{f} \circ g_{s}^{\prime} \circ c^{I n i^{\prime}}=g_{r a n_{f}} \circ \pi_{f} \circ\left\langle t_{f, c}^{I n i}\right\rangle_{f \in r e c(s)}=g_{r a n_{f}} \circ t_{f, c}^{I n i} \stackrel{(4)}{=} t_{f, c}^{A} \circ g_{d o m}^{\prime}=\pi_{f} \circ\left\langle t_{f, c}^{A}\right\rangle_{f \in r e c(s)} \circ g_{d o m}^{\prime}=\pi_{f} \circ c^{A^{\prime}} \circ g_{d o m}^{\prime}$.

Hence $g_{s}^{\prime} \circ c^{I n i^{\prime}}=c^{A^{\prime}} \circ g_{d o m}^{\prime}$, i.e., g^{\prime} is Σ-homomorphic.
Consequently, there are two Σ-homomorphisms from $I n i$ to $A^{\prime}: h^{\prime} \circ g$ and $g^{\prime} \circ h$. Since Ini is initial in $\operatorname{Mod}_{E U}(S P)$, they are equal. Hence for all $s \in S_{1}$ and $f \in \operatorname{rec}(s)$,

$$
f^{B} \circ g_{s}=\pi_{f} \circ h_{s}^{\prime} \circ g_{s}=\pi_{f} \circ g_{s}^{\prime} \circ h_{s}=g_{r a n_{f}} \circ \pi_{f} \circ h_{s}=g_{r a n_{f}} \circ f^{I n i}
$$

i.e., g extends to a Σ^{\prime}-homomorphism from $I n i$ to B. Since each Σ^{\prime}-homomorphism from $I n i$ to B reduces to a Σ-homomorphism from Ini to A, Ini is initial in $\operatorname{Mod}_{E U}(S P)$ and $S^{\prime}=S, g$ is the only Σ^{\prime}-homomorphism from Ini to B. We conclude that $I n i$ is initial in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$.

Theorem 7.2 Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$ such that $S P^{\prime}$ satisfies 5.1(4). The final object of $\operatorname{Mod}_{E U}(S P)$ can be extended to the final object of $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$.

Proof. Let $A \in \operatorname{Mod}_{E U}(S P)$. Using the notations of Def. 5.1(4) we define a Σ-structure A^{\prime} as follows:

- for all $s \in S_{1}, s^{A^{\prime}}=\coprod_{f \in \operatorname{cor}(s)} \operatorname{dom}_{f}^{A}\left(=\operatorname{sub_{1}}(s)^{A}\right)$,
- for all $s \in S_{1}$ and destructors $d: s \rightarrow r a n, d^{A^{\prime}}=\left[t_{f, d}^{A}\right]_{f \in \operatorname{cor}(s)}$,
- for all other symbols $s \in \Sigma, s^{A^{\prime}}=s^{A}$.

Let $F i n$ be final in $\operatorname{Mod}_{E U}(S P)$. Since $S P$ satifies $5.1(2)$, $F i n^{\prime} \in \operatorname{Mod}_{E U}(S P)$. Since $F i n$ is final in $\operatorname{Mod}_{E U}(S P)$, there is a unique Σ-homomorphism $h:$ Fin $^{\prime} \rightarrow$ Fin. Hence for all $s \in S_{1}$ and destructors $d: s \rightarrow$ ran ,

$$
\begin{equation*}
d^{F i n} \circ h_{s}=h_{r a n} \circ d^{F i n^{\prime}}=h_{r a n} \circ\left[t_{f, d}^{F i n}\right]_{f \in \operatorname{cor}(s)} \tag{1}
\end{equation*}
$$

Let $s \in S_{1} . f: \operatorname{dom} \rightarrow s \in \operatorname{cor}(s)$ can be interpreted in Fin as the composition $\operatorname{dom}^{F i n} \xrightarrow{\iota_{f}} s^{F i n^{\prime}} \xrightarrow{h_{s}} s^{F i n}$, i.e., $f^{F i n}=h_{s} \circ \iota_{f}$. Consequently,

$$
\begin{equation*}
h_{s}=\left[f^{F i n}\right]_{f \in \operatorname{cor}(s)}=[\operatorname{cor}(s))^{F i n} \tag{2}
\end{equation*}
$$

and thus by Proposition 4.4, for all destructors $d: s \rightarrow$ ran,

$$
d^{F i n} \circ f^{F i n}=d^{F i n} \circ h_{s} \circ \iota_{f} \stackrel{(1)}{=} h_{r a n} \circ\left[t_{f, d}^{F i n}\right]_{f \in \operatorname{cor}(s)} \circ \iota_{f}=h_{r a n} \circ t_{f, d}^{F i n} \stackrel{(2)}{=} s u b_{2}^{*}(r a n)^{F i n} \circ t_{f, d}^{F i n},
$$

i.e., Fin satisfies the equation

$$
\begin{equation*}
d \circ f \equiv s u b_{2}^{*}(r a n) \odot t_{f, d} \tag{3}
\end{equation*}
$$

of $A X^{\prime} \backslash A X$ (see Def. 5.1(4)). To sum up, we have concluded the validity of $A X^{\prime} \backslash A X$ in Fin from the fact that h is Σ-homomorphic.

It remains to show that $F i n$ is final in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. So let $B \in \operatorname{Mod}_{E U}\left(S P^{\prime}\right)$ and $A=\left.B\right|_{\Sigma}$. Conversely to the preceding proof step, let us now conclude from the validity of $A X^{\prime} \backslash A X$ in B that $h^{\prime}: A^{\prime} \rightarrow A$, defined by $h_{s}^{\prime} \circ \iota_{f}=f^{B}$ for all $s \in S$, is Σ-homomorphic. Let $s \in S_{1}$ and $d: s \rightarrow$ ran be a destructor. Then

$$
d^{A} \circ h_{s}^{\prime} \circ \iota_{f}=d^{B} \circ f^{B} \stackrel{(3)}{=} s u b_{2}^{*}(r a n)^{B} \circ t_{f, d}^{B}=s u b_{2}^{*}(r a n)^{B} \circ\left[t_{f, d}^{A}\right]_{f \in \operatorname{cor}(s)} \circ \iota_{f}=h_{r a n}^{\prime} \circ d^{A^{\prime}} \circ \iota_{f}
$$

and thus $d^{A} \circ h_{s}^{\prime}=h_{r a n}^{\prime} \circ d^{A^{\prime}}$, i.e., h^{\prime} is Σ-homomorphic.
Since $A \in \operatorname{Mod}_{E U}(S P)$, there is a unique Σ-homomorphism $g: A \rightarrow$ Fin. Define $g^{\prime}: A^{\prime} \rightarrow$ Fin' by $g_{s}^{\prime} \circ \iota_{f}=\iota_{f} \circ g_{d o m_{f}}$ for all $s \in S_{1}$ and $f \in \operatorname{cor}(s)$ and by $g_{s}^{\prime}=g_{s}$ for all $s \in S_{0}$. Let $s \in S_{1}$ and $d: s \rightarrow$ ran be a destructor. Since $t_{f, d}: \operatorname{dom}_{f} \rightarrow s u b_{1}^{*}($ ran $)$ is a Σ-term, g is Σ-homomorphic and $g_{s}^{\prime}=\coprod_{f \in \operatorname{cor}(s)} g_{d o m_{f}}=g_{\text {sub } b_{1}(s)}$, Proposition 3.5 implies

$$
\begin{equation*}
t_{f, d}^{F i n} \circ g_{d o m_{f}}=g_{s u b_{1}^{*}(r a n)} \circ t_{f, d}^{A}=g_{r a n}^{\prime} \circ t_{f, d}^{A} \tag{4}
\end{equation*}
$$

and thus
$d^{F i n^{\prime}} \circ g_{s}^{\prime} \circ \iota_{f}=\left[t_{f, d}^{F i n}\right]_{f \in \operatorname{cor}(s)} \circ \iota_{f} \circ g_{d o m_{f}}=t_{f, d}^{F i n} \circ g_{d o m_{f}} \stackrel{(4)}{=} g_{r a n}^{\prime} \circ t_{f, d}^{A}=g_{r a n}^{\prime} \circ\left[t_{f, d}^{A}\right]_{f \in \operatorname{cor}(s)} \circ \iota_{f}=g_{r a n}^{\prime} \circ d^{A^{\prime}} \circ \iota_{f}$.

Hence $d^{F i n^{\prime}} \circ g_{s}^{\prime}=g_{r a n}^{\prime} \circ d^{A^{\prime}}$, i.e., g^{\prime} is Σ-homomorphic.
Consequently, there are two Σ-homomorphisms from A^{\prime} to Fin: $g \circ h^{\prime}$ and $h \circ g^{\prime}$. Since Fin is final in $\operatorname{Mod}_{E U}(S P)$, they are equal. Hence for all $s \in S_{1}$ and $f \in \operatorname{cor}(s)$,

$$
g_{s} \circ f^{B}=g_{s} \circ h_{s}^{\prime} \circ \iota_{f}=h_{s} \circ g_{s}^{\prime} \circ \iota_{f}=h_{s} \circ \iota_{f} \circ g_{d o m_{f}}=f^{F i n} \circ g_{d o m_{f}}
$$

i.e., g extends to a Σ^{\prime}-homomorphism from B to Fin. Since each Σ^{\prime}-homomorphism from B to $F i n$ reduces to a Σ-homomorphism from A to Fin, Fin is final in $\operatorname{Mod}_{E U}(S P)$ and $S^{\prime}=S, g$ is the only Σ^{\prime}-homomorphism from B to Fin. We conclude that Fin is final in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$.

8 Relations

Definition 8.1 (μ - and ν-extensions) Let $\Sigma^{\prime}=\left(S_{0}, S, F^{\prime}, R^{\prime}\right)$ be a signature, $\Sigma=\left(S_{0}, S, F, R\right)$ be a subsignature of $\Sigma^{\prime}, S P=(\Sigma, A X), S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be specifications with $A X \subseteq A X^{\prime}$ such that $A X_{1}=\operatorname{def} A X^{\prime} \backslash A X$ consists of
(1) $\quad R_{1}$-positive Horn clauses for $R_{1}={ }_{\operatorname{def}}\left(R^{\prime} \backslash R\right) \cup\left\{\equiv_{s} \mid s \in S_{1}\right\}$ or
(2) restricted R_{1}-positive Horn clauses for $R_{1}={ }_{\operatorname{def}}\left(R^{\prime} \backslash R\right) \cup\left\{a l l_{s} \mid s \in S_{1}\right\}$ or
(3) restricted R_{1}-positive co-Horn clauses for $R_{1}={ }_{\text {def }}\left(R^{\prime} \backslash R\right) \cup\left\{a l l_{s} \mid s \in S_{1}\right\}$ or
(4) $\quad R_{1}$-positive co-Horn clauses for $R_{1}={ }_{d e f}\left(R^{\prime} \backslash R\right) \cup\left\{\equiv \equiv_{s} \mid s \in S_{1}\right\}$
where $S_{1}=S \backslash S_{0} . R_{1}$ is called the set of relations defined by $A X_{1}$. In cases (1) and (2), SP is a μ-extension of $S P$ and thus R_{1} is a set of predicates. In cases (3) and (4), $S P^{\prime}$ is a ν-extension of $S P$ and thus R_{1} is a set of copredicates (see Def. 5.1).

Proposition 8.2 Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$.
If $S P^{\prime}$ is an abstraction, then $S P^{\prime}$ is a μ-extension of $S P$.
If $S P^{\prime}$ is a restriction, then $S P^{\prime}$ is a ν-extension of $S P$.
We recapitulate the classical fixpoint theorems for monotone resp. continuous functions for complete lattices:
Definition and Theorem 8.3 (fixpoints, continuity) Let L be a complete lattice with partial order \leq, least element \perp and greatest element T. Given a set A, the lattice structure of L induces a lattice structure on the function space L^{A} as usual.

Let $F: L \rightarrow L$ be a function. $F^{*}={ }_{d e f} \sqcup_{i \in \mathbb{N}} F^{i}$ and $F_{*}={ }_{d e f} \sqcap_{i \in \mathbb{N}} F^{i}$.
$a \in L$ is F-closed if $F(a) \leq a . a$ is F-dense if $a \leq F(a) . a$ is a fixpoint of F if a is F-closed and F-dense. F is monotone if for all $a, b \in L, a \leq b$ implies $F(a) \leq F(b)$. F is continuous if for all increasing chains $a_{0} \leq a_{1} \leq a_{2} \leq \ldots$ of elements of $L, F\left(\sqcup_{i \in \mathbb{N}} a_{i}\right) \leq \sqcup_{i \in \mathbb{N}} F\left(a_{i}\right) . F$ is cocontinuous if for all decreasing chains $a_{0} \geq a_{1} \geq a_{2} \geq \ldots$ of elements of $L, \sqcap_{i \in \mathbb{N}} F\left(a_{i}\right) \leq F\left(\sqcap_{i \in \mathbb{N}} a_{i}\right)$.

Let F be monotone.
(1) (Knaster-Tarski) lfp $(F)=\sqcap\{a \in L \mid F(a) \leq a\}$ is the least fixpoint of F and a superset of $F^{*}(\perp)$. $\operatorname{gfp}(F)=\sqcup\{a \in L \mid a \leq F(a)\}$ is the greatest fixpoint of F and a subset of $F_{*}(T)$.
(2) (Kleene) If F is continuous, then $F\left(F^{*}(\perp)\right) \leq F^{*}(\perp)$ and thus by (1), lfp $(F)=F^{*}(\perp)$. If F is cocontinuous, then $F_{*}(\top) \leq F\left(F_{*}(\top)\right)$ and thus by (1), gfp $(F)=F_{*}(\top)$.

The following lemma is fundamental for the most important proof rules for reasoning about extensions by predicates or copredicates, respectively (see Theorem 8.15).

Theorem 8.4 Let L be a complete lattice, $F, G: L \rightarrow L$ be monotone functions and $a \in L$.
(1) Induction. lfp $(F) \leq a$ if $F^{n}(a) \leq a$ for some $n>0$.
(2) Strong induction. $l f p(F) \leq a$ if $F^{n}(a \sqcap l f p(F)) \leq a$ for some $n>0$.
(3) Coinduction. $a \leq g f p(F)$ if $a \leq F^{n}(a)$ for some $n>0$.
(4) Strong coinduction. $a \leq g f p(F)$ if $a \leq F^{n}(a \sqcup g f p(F))$ for some $n>0$.
(5) Extended strong coinduction. Suppose that all $b \in L$ are G-dense and for all $b \in L$ and $n>0$,

$$
\begin{equation*}
b \leq F^{n}\left(G^{*}(b)\right) \text { implies } G^{*}(b) \leq F^{n}\left(G^{*}(b)\right) . \tag{5.1}
\end{equation*}
$$

$a \leq g f p(F)$ if (5.2) $a \leq F^{n}\left(G^{*}(a \sqcup g f p(F))\right)$ for some $n>0$.
Proof. (1) Let $F^{n}(a) \leq a$ for some $n>0$, i.e., a is F^{n}-closed. Let $b={ }_{d e f} \sqcap_{i>0} F^{i}(a)$. Then

$$
\begin{equation*}
b \leq F^{n}(a) \leq a=F^{0}(a) \tag{*}
\end{equation*}
$$

Moreover, by the definition of $b, b \leq F^{i}(a)$ for all $i>0$. Hence for all $i>0, b \leq F^{i-1}(a)$ and thus $F(b) \leq F^{i}(a)$ because F is monotone. We conclude that $F(b)$ is a lower bound of $\left\{F^{i}(a) \mid i>0\right\}$. Hence $F(b) \leq b$, i.e., b is F-closed. By Theorem 8.3(1), lfp $(F)=\sqcap\{c \in L \mid F(c) \leq c\}$ and thus $l f p(F) \leq b \leq a$ by $(*)$ and because $l f p(F)$ is the least F-closed element of L.
(2) Let $F^{n}(a \sqcap l f p(F)) \leq a$ for some $n>0$. Then

$$
\begin{aligned}
& F^{n}(a \sqcap l f p(F))=F^{n}(a \sqcap l f p(F)) \sqcap F^{n}(a \sqcap l f p(F)) \\
& \leq F^{n}(a \sqcap l f p(F)) \sqcap F^{n}(l f p(F)) \quad \text { (since } F^{n} \text { is monotone) } \\
& \leq a \sqcap F^{n}(l f p(F)) \quad \text { (by assumption) } \\
& \leq a \sqcap l f p(F) . \quad \text { (since } l f p(F) \text { is } F \text { - and thus } F^{n} \text {-closed because } F \text { is monotone) }
\end{aligned}
$$

Hence $a \sqcap l f p(F)$ is F^{n}-closed. Let $b={ }_{d e f} \sqcap_{i>0} F^{i}(a \sqcap l f p(F))$. Then

$$
\begin{equation*}
b \leq F^{n}(a \sqcap l f p(F)) \leq a \sqcap l f p(F)=F^{0}(a \sqcap l f p(F)) \tag{*}
\end{equation*}
$$

Moreover, by the definition of $b, b \leq F^{i}(a \sqcap l f p(F))$ for all $i>0$. Hence for all $i>0, b \leq F^{i-1}(a \sqcap l f p(F))$ and thus $F(b) \leq F^{i}(a \sqcap l f p(F))$ because F is monotone. We conclude that $F(b)$ is a lower bound of $\left\{F^{i}(a \sqcap l f p(F)) \mid i>0\right\}$. Hence $F(b) \leq b$, i.e. b is F-closed. By Theorem 8.3(1), lfp $(F)=\sqcap\{c \in L \mid F(c) \leq c\}$ and thus $l f p(F) \leq b \leq$ $a \sqcap l f p(F) \leq a$ by $(*)$ and because $l f p(F)$ is the least F-closed element of L.
(3) Let $a \leq F^{n}(a)$ for some $n>0$, i.e., a is F^{n}-dense. Let $b={ }_{d e f} \sqcup_{i>0} F^{i}(a)$. Then

$$
\begin{equation*}
b \geq F^{n}(a) \geq a=F^{0}(a) \tag{*}
\end{equation*}
$$

Moreover, by the definition of $b, b \geq F^{i}(a)$ for all $i>0$. Hence for all $i>0, b \geq F^{i-1}(a)$ and thus $F(b) \geq F^{i}(a)$ because F is monotone. We conclude that $F(b)$ is an upper bound of $\left\{F^{i}(a) \mid i>0\right\}$. Hence $b \leq F(b)$, i.e. b is F-dense. By Theorem 8.3(1), gfp $(F)=\sqcup\{c \in L \mid F(c) \geq c\}$ and thus $g f p(F) \geq b \geq a$ by (*) and because $g f p(F)$ is the greatest F-dense element of L.
(4) Let $a \leq F^{n}(a \sqcup g f p(F)) \leq a$ for some $n>0$. Then
$F^{n}(a \sqcup g f p(F))=F^{n}(a \sqcup g f p(F)) \sqcup F^{n}(a \sqcup g f p(F))$
$\geq F^{n}(a \sqcup g f p(F)) \sqcup F^{n}(g f p(F)) \quad\left(\right.$ since F^{n} is monotone)
$\geq a \sqcup F^{n}(g f p(F)) \quad$ (by assumption)
$\geq a \sqcup g f p(F) . \quad\left(\right.$ since $g f p(F)$ is F - and thus F^{n}-dense because F is monotone)

Hence $a \sqcup g f p(F)$ is F^{n}-dense. Let $b={ }_{d e f} \sqcup_{i>0} F^{i}(a \sqcup g f p(F))$. Then

$$
\begin{equation*}
b \geq F^{n}(a \sqcup g f p(F)) \geq a \sqcup g f p(F)=F^{0}(a \sqcup g f p(F)) . \tag{*}
\end{equation*}
$$

Moreover, by the definition of $b, b \geq F^{i}(a \sqcup g f p(F))$ for all $i>0$. Hence for all $i>0, b \geq F^{i-1}(a \sqcup g f p(F))$ and thus $F(b) \geq F^{i}(a \sqcup g f p(F))$ because F is monotone. We conclude that $F(b)$ is an upper bound of $\left\{F^{i}(a \sqcup l f p(F)) \mid i>\right.$ $0\}$. Hence $b \leq F(b)$, i.e. b is F-dense. By Theorem 8.3(1), gfp $(F)=\sqcup\{c \in L \mid c \leq F(c)\}$ and thus $g f p(F) \geq b \geq a \sqcup g f p(F) \geq a$ by $(*)$ and because $g f p(F)$ is the greatest F-dense element of L.
(5) Let $a \leq F^{n}\left(G^{*}(a \sqcup g f p(F))\right) \leq a$ for some $n>0$. Then
$F^{n}\left(G^{*}(a \sqcup g f p(F))\right)=F^{n}\left(G^{*}(a \sqcup g f p(F))\right) \sqcup F^{n}\left(G^{*}(a \sqcup g f p(F))\right)$
$\geq F^{n}\left(G^{*}(a \sqcup g f p(F))\right) \sqcup F^{n}(a \sqcup g f p(F)) \quad\left(\right.$ since $a \sqcup g f p(F) \leq G^{*}(a \sqcup g f p(F))$ and F^{n} is monotone)
$\geq F^{n}\left(G^{*}(a \sqcup g f p(F))\right) \sqcup F^{n}(g f p(F)) \quad\left(\right.$ since F^{n} is monotone)
$\geq a \sqcup F^{n}(g f p(F)) \quad$ (by assumption 5.2)
$\geq a \sqcup g f p(F) . \quad$ (since $g f p(F)$ is F - and thus F^{n}-dense because F is monotone)
By assumption 5.2, we conclude that $G^{*}(a \sqcup g f p(F))$ is F^{n}-dense. Let $b={ }_{d e f} \sqcup_{i>0} F^{i}\left(G^{*}(a \sqcup g f p(F))\right)$. Then

$$
\begin{equation*}
b \geq F^{n}\left(G^{*}(a \sqcup g f p(F))\right) \geq G^{*}(a \sqcup g f p(F))=F^{0}\left(G^{*}(a \sqcup g f p(F))\right) \tag{*}
\end{equation*}
$$

Moreover, by the definition of $b, b \geq F^{i}\left(G^{*}(a \sqcup g f p(F))\right)$ for all $i>0$. Hence for all $i>0, b \geq F^{i-1}\left(G^{*}(a \sqcup\right.$ $g f p(F))$) and thus $F(b) \geq F^{i}\left(G^{*}(a \sqcup g f p(F))\right)$ because F is monotone. We conclude that $F(b)$ is an upper bound of $\left\{F^{i}\left(G^{*}(a \sqcup l f p(F))\right) \mid i>0\right\}$. Hence $b \leq F(b)$, i.e. b is F-dense. By Theorem 8.3(1), gfp $(F)=\sqcup\{c \in$ $L \mid c \leq F(c)\}$ and thus $g f p(F) \geq b \geq G^{*}(a \sqcup g f p(F)) \geq a \sqcup g f p(F) \geq a$ by $(*)$ and because $g f p(F)$ is the greatest F-dense element of L.

Lemma 8.5 (not used) Let L be a complete lattice and $F, G: L \rightarrow L$ be monotone functions.
(1) $l f p(F) \leq l f p(F \sqcup G)$.
(2) $g f p(F \sqcap G) \leq g f p(F)$.
(3) If $l f p(F) \sqcap l f p(G)$ is F-closed, then $l f p(F) \leq l f p(G)$.
(4) If $g f p(F) \sqcup l f p(G)$ is F-dense, then $g f p(G) \leq g f p(F)$.
(5) If $G(l f p(F \circ G))$ is F-closed and $G \leq i d$, then $l f p(F) \leq l f p(F \circ G)$.
(6) If $G(g f p(F \circ G))$ is F-dense and $i d \leq G$, then $g f p(F \circ G) \leq g f p(F)$.

Proof. (1) We show that $l f p$ is a monotone function from the lattice $[L \rightarrow L]$ of monotone functions on L to $L . \leq$ and \sqcup are lifted as usually from L to $[L \rightarrow L]$. Let $F^{\prime}, G^{\prime} \in[L \rightarrow L]$ such that $F^{\prime} \leq G^{\prime}$. By Theorem 8.3(1),

$$
l f p\left(F^{\prime}\right)=\sqcap\left\{a \in L \mid F^{\prime}(a) \leq a\right\} \leq \sqcap\left\{a \in L \mid G^{\prime}(a) \leq a\right\}=l f p\left(G^{\prime}\right)
$$

Hence in particular, lfp $(F) \leq l f p(F \sqcup G)$.
(2) We show that $g f p$ is a monotone function from the lattice $[L \rightarrow L]$ of monotone functions on L to L. \leq and \sqcap are lifted as usually from L to $[L \rightarrow L]$. Let $F^{\prime}, G^{\prime} \in[L \rightarrow L]$ such that $F^{\prime} \leq G^{\prime}$. By Theorem 8.3(1),

$$
g f p\left(F^{\prime}\right)=\sqcup\left\{a \in L \mid a \leq F^{\prime}(a)\right\} \leq \sqcup\left\{a \in L \mid a \leq G^{\prime}(a)\right\}=g f p\left(G^{\prime}\right)
$$

Hence in particular, $g f p(F \sqcap G) \leq g f p(F)$.
(3) If $l f p(F) \sqcap l f p(G)$ is F-closed, then $l f p(F)=\sqcap\{a \in L \mid F(a) \leq a\} \leq l f p(F) \sqcap l f p(G) \leq l f p(G)$.
(4) If $g f p(F) \sqcup l f p(G)$ is F-dense, then $g f p(G) \leq g f p(F) \sqcup l f p(G) \leq \sqcup\{a \in L \mid F(a) \leq a\}=g f p(F)$.
(5) If $G(l f p(F \circ G))$ is F-closed and $G \leq i d, l f p(F)=\sqcap\{a \in L \mid F(a) \leq a\} \leq G(l f p(F \circ G)) \leq l f p(F \circ G)$.
(6) If $G(g f p(F \circ G))$ is F-dense and $i d \leq G, g f p(F \circ G) \leq G(g f p(F \circ G)) \leq \sqcup\{a \in L \mid F(a) \leq a\}=g f p(F) . \square$

Given the assumptions of Def. 8.1 and an $\left(S P \cup F^{\prime}\right)$-model A, the class $\operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ of Σ^{\prime}-structures over A forms a complete lattice: The partial order \leq and the corresponding least element \perp, greatest element \top, suprema and infima are defined as follows. For all $B, C \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$,

$$
B \leq C \quad \Longleftrightarrow \quad \forall r \in R_{1}: r^{B} \subseteq r^{C}
$$

For all $r: s \in R_{1}$ and $\mathcal{B} \subseteq \operatorname{Mod}\left(\Sigma^{\prime}, A\right), r^{\perp}=\emptyset, r^{\top}=s^{A}, r^{\sqcup \mathcal{B}}=\bigcup_{B \in \mathcal{B}} r^{B}$ and $r^{\sqcap \mathcal{B}}=\bigcap_{B \in \mathcal{B}} r^{B}$. Moreover, if R_{1} is an S-sorted set of binary relations $r_{s}: s \times s$, then for all $B, C \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right), B \cdot C \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ is defined as follows: For all $r \in R_{1}, r^{B \cdot C}=r^{B} \cdot r^{C}$ (see Section 1).

The monotone function on $\operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ we are interested in here is the functor $\|_{\sigma}$ induced by the signature morphism σ that maps each $r \in R_{1}$ to the $A X_{1}$-definition of r (see Definition 4.5):

Definition and Proposition 8.6 (AX-definition) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature, $A X$ be a finite set of either only Horn or only co-Horn clauses over Σ, A be a Σ-structure and $r: s \in R$.
(1) Let $A X_{r}=\left\{\left(r \circ t_{i} \Leftarrow \varphi_{i}\right): s_{i}\right\}_{i=1}^{n}$ be the set of Horn clauses for r among the clauses of $A X$. The Σ-formula

$$
\varphi_{r, A X}(x)={ }_{d e f} \quad \bigvee_{i=1}^{n} \exists i\left(x \equiv t_{i}(i) \wedge \varphi_{i}\right): s
$$

is called the $A X$-definition of r. A satisfies $A X_{r}$ iff A satisfies $r(x) \Leftarrow \varphi_{r, A X}(x)$.
(2) Let $A X_{r}=\left\{\left(r \circ t_{i} \Rightarrow \varphi_{i}\right): s_{i}\right\}_{i=1}^{n}$ be the set of co-Horn clauses for r among the clauses of $A X$. The Σ-formula

$$
\varphi_{r, A X}(x) \quad=_{\operatorname{def}} \quad \bigwedge_{i=1}^{n} \forall i\left(\neg x \equiv t_{i}(i) \vee \varphi_{i}\right): s
$$

is called the $A X$-definition of r. A satisfies $A X_{r}$ iff A satisfies $r(x) \Rightarrow \varphi_{r, A X}(x)$.
Proof. Proposition 4.7 and a couple of simple logical transformations.
Definition 8.7 (step functor) Let the assumptions of Def. 8.1 hold true. The signature morphism $\sigma: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ that is the identity on Σ and maps each relation r defined by $S P^{\prime}$ wrt $S P$ to $\varphi_{r, A X_{1}}$ is called the relation transformer defined by $A X^{\prime} \backslash A X$.

Let $\Sigma_{1}=\left(S_{0}, S, F^{\prime}, R\right)$ and A be a Σ_{1}-structure. The (A, σ)-step functor maps each $B \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ to $\left.B\right|_{\sigma}$.

Proposition 8.8 Let the assumptions of Def. 8.7 hold true and F be the (A, σ)-step functor.
(1) For all $B \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right), \varphi \in \operatorname{Form}_{\Sigma^{\prime}}$ and $i \in \mathbb{N}$, $r^{F^{i}(B)}=\sigma^{i}(r)^{B}$ and $r^{F^{*}(B)}=\sigma^{*}(r)^{B}$.
(2) Let $S P^{\prime}$ be a μ-extension of $S P$. $B \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ satisfies $A X_{1}$ iff for all $r \in R_{1}, B$ satisfies $r \Leftarrow \sigma(r)$, iff B is F-closed.
(3) Let $S P^{\prime}$ be a ν-extension of $S P B \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ satisfies $A X_{1}$ iff for all $r \in R_{1}, B$ satisfies $r \Rightarrow \sigma(r)$, iff B is F-dense.
(4) Let $S P^{\prime}$ be a μ - or ν-extension of $S P$. B is a fixpoint of F iff for all $r \in R_{1}, B \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ satisfies $r \Leftrightarrow \sigma(r)$, iff for all Σ^{\prime}-formulas φ, B satisfies $\varphi \Leftrightarrow \sigma(\varphi)$.

Proof. (1) follows by induction on i : Assume that for all $B \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ and $\varphi \in \operatorname{Form}_{\Sigma^{\prime}}, r^{F^{i}(B)}=\sigma^{i}(r)^{B}$. Then $r^{F^{i+1}(B)}=r^{F\left(F^{i}(B)\right)}=r^{\left.F^{i}(B) \mid \sigma\right)}=\sigma(r)^{F^{i}(B)}=\sigma^{i}(\sigma(r))^{B}=\sigma^{i+1}(r)^{B}$.
(2) follows from Propositions 8.6 and 4.7(4). (3) follows from Propositions 8.6 and 4.7(4). (4) follows from Proposition 4.7(4).

Moreover, given a fixpoint B of $\Phi_{A, \sigma}, \bar{r}^{B}$ is the B-complement of r^{B} if the $A X_{1}$-definition of \bar{r} is the negation of the $A X_{1}$-definition of r :

Proposition 8.9 Let the assumptions of Def. 8.7 hold true, F be the (A, σ)-step functor and B be a fixpoint of F. Suppose that for each relation $r: s$ defined by $S P^{\prime}$ wrt $S P$ there is a relation $\bar{r}: s$ defined by $A X_{1}$ such that B satisfies $\sigma(\bar{r}) \Leftrightarrow \neg \sigma(r)$. Then \bar{r}^{B} is the B-complement of r^{B} (see Def. 3.6).

Proof. Let $r: s$ be a relation defined by $A X_{1}$. Since B is a fixpoint of F, we obtain

$$
\bar{r}^{B}=\sigma(\bar{r})^{B}=(\neg \sigma(r))^{B}=s^{B} \backslash \sigma(r)^{B}=s^{B} \backslash r^{B}
$$

by Proposition 8.8(4) and the assumption.
Example 8.10 The parameter type $\operatorname{TRIV}(s)[B O O L]$ (see Example 5.4) is extended by binary relations on s :

$$
\begin{array}{cl}
\text { ORD }(s)[\mathrm{BOOL}] \text { where } \operatorname{ORD}(s)=\operatorname{TRIV}(s) \text { and } \\
\text { preds } & <,>, \leq, \geq, \not \equiv: s \times s \\
\text { vars } & x, y: s \\
\text { axioms } & x<y \Longleftrightarrow y>x \\
& x \leq y \Longleftrightarrow \neg x>y \\
& x \geq y \Longleftrightarrow \neg x<y \\
& x \not \equiv y \Longleftrightarrow \neg x \equiv y
\end{array}
$$

The following swinging type extends $\operatorname{LIST}[\operatorname{ORD}(s)[\mathrm{BOOL}]]$ (see Example 14.2) by the relations sorted and \in for list membership and their complements unsorted and \notin :

```
\(\operatorname{COMPL}[\operatorname{ORD}(s)[\mathrm{BOOL}]]\) where \(\mathrm{COMPL}=\mathrm{LIST}\) and
    preds \(\in, \notin: s \times \operatorname{list}(s)\)
    sorted, unsorted : list(s)
    vars \(\quad x, y: s L, L^{\prime}: \operatorname{list}(s)\)
    axioms \(\quad x \in y: L \Leftarrow x \equiv y \vee x \in L\)
        sorted([])
        \(\operatorname{sorted}(x:[])\)
        \(\operatorname{sorted}(x: y: L) \Leftarrow x \leq y \wedge \operatorname{sorted}(y: L)\)
        \(x \notin y: L \quad \Rightarrow \quad x \not \equiv y \wedge x \notin L\)
        unsorted \(([]) \Rightarrow\) False
        unsorted ( \(x:[]\) ) \(\Rightarrow\) False
        \(\operatorname{unsorted}(x: y: L) \quad \Rightarrow \quad x>y \vee \operatorname{unsorted}(y: L)\)
```

Let σ be the relation transformer defined by the axioms for COMPL \backslash LIST. In fact, $\sigma($ unsorted $)$ and $\sigma(\notin)$ are the negations of $\sigma($ sorted $)$ and $\sigma(\in)$, respectively (see Def. 8.6). Hence for all LIST[TRIV $(s)[B O O L]]-m o d e l s$ A and fixpoints B of $\Phi_{A, \sigma}$, unsorted ${ }^{B}$ and $\not \not^{B}$ are the B-complements of sorted ${ }^{B}$ and \in^{B}, respectively.

Definition 8.11 (monotone, (co)compact formula) Given the assumptions of Def. 8.7, a Σ^{\prime}-formula φ is Σ^{\prime}-monotone over A if for all $B, C \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$,

$$
\begin{equation*}
B \leq C \quad \text { implies } \quad \varphi^{B} \subseteq \varphi^{C} \tag{1}
\end{equation*}
$$

φ is Σ^{\prime}-compact over A if for all increasing chains $B_{0} \leq B_{1} \leq B_{2} \leq \ldots$ of $\operatorname{Mod}\left(\Sigma^{\prime}, A\right)$,

$$
\begin{equation*}
\varphi^{\sqcup_{i \in \mathbb{N}} B_{i}} \quad \subseteq \bigcup_{i \in \mathbb{N}} \varphi^{B_{i}} \tag{2}
\end{equation*}
$$

φ is Σ^{\prime}-cocompact over A if for all decreasing chains $B_{0} \geq B_{1} \geq B_{2} \geq \ldots$ of $\operatorname{Mod}\left(\Sigma^{\prime}, A\right)$,

$$
\begin{equation*}
\bigcap_{i \in \mathbb{N}} \varphi^{B_{i}} \subseteq \varphi^{\prod_{i \in \mathbb{N}} B_{i}} \tag{3}
\end{equation*}
$$

Proposition 8.12 Let the assumptions of Def. 8.7 hold true. $\Phi_{A, \sigma}$ is monotone iff the premises of all Horn clauses and the conclusions of all co-Horn clauses of $A X_{1}$ are Σ^{\prime}-monotone over $A . \Phi_{A, \sigma}$ is continuous over A iff the premises of all Horn clauses $A X_{1}$ are Σ^{\prime}-compact over $A . \Phi_{A, \sigma}$ is cocontinuous over A iff the conclusions of all co-Horn clauses $A X_{1}$ are Σ^{\prime}-cocompact over A.

Theorems 8.13 and 9.1 given below are shown by transfinite induction on ordinal numbers. Remember the principle of transfinite induction: A property P holds true for all ordinals if for all ordinals β, if $P(\beta)$ can be concluded from the assumption that P holds true for all ordinals $\alpha<\beta$. The correctness of transfinite induction rule follows from the fact that ordinal numbers form a well-ordered set \mathcal{O}, i.e., \mathcal{O} is a totally ordered set such that each nonempty subset M of \mathcal{O} has a least element (see [106], §13). The least element of the entire set \mathcal{O} is denoted by 0 . An ordinal is either 0 , a successor ordinal β, i.e., β has an immediate predecessor α w.r.t. $<$, or a limit ordinal denoted by $\sup (M)$ where M is the set of all predecessors of $\sup (M)$ w.r.t. $<.{ }^{10}$

For proving Theorems 8.13 and 9.1 by transfinite induction, we use the following \mathcal{O}-sorted set M of pairs (φ, a) consisting of an R_{1}-positive Σ^{\prime}-formula $\varphi: s$ and some $a \in s^{A}$: Let I be a nonempty set.

- For all Σ-atoms $\varphi: s$ and $a \in s^{A},(\varphi, a) \in M_{0}$.
- Let $(\varphi, a) \in M_{\alpha}$ and β be the least ordinal that is greater than α. Then $(\neg \varphi, a) \in M_{\beta}$.
- Let $a \in \prod_{i \in \cup\left\{I_{j} \mid j \in J\right\}} s_{i}^{A}$, for all $j \in J,\left(\varphi_{j}: \prod_{i \in I_{j}} s_{i}, \pi_{I_{j}}(a)\right) \in M_{\alpha_{j}}$ and β be the least ordinal that is greater than $\alpha_{j}, j \in J$. Then $\left(\bigwedge \varphi_{j}, a\right),\left(\bigvee \varphi_{j}, a\right) \in M_{\beta}$.
- Let $k \in I, a \in \prod_{i \in I \backslash\{k\}} s_{i}^{A}$, for all $b \in s_{k}^{A},\left(\varphi: \prod_{i \in I} s_{i}, a *_{k} b\right) \in M_{\alpha_{b}}$ and β be the least ordinal that is greater than all $\alpha_{b}, b \in s_{k}^{A}$. Then $(\forall k \varphi, a),(\exists k \varphi, a) \in M_{\beta}$.

Theorem 8.13 Given the assumptions of Def. 8.7, R_{1}-positive Σ^{\prime}-formulas are Σ^{\prime}-monotone over A.
Proof. Let $B, C \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ with $B \leq C$. We show $8.11(1)$ for all R_{1}-positive Σ^{\prime}-formulas φ. Let $(\varphi, a) \in M_{\alpha}, a \in \varphi^{B}$ and I be a nonempty set.

- Let $\varphi=r(t)$ be a Σ^{\prime}-atom. If $r \in R$, then φ is a Σ-formula and thus $a \in \varphi^{B}=\varphi^{A}=\varphi^{C}$. If $r \in R_{1}$, then $a \in \varphi^{B}$ implies $t^{A}(a) \in r^{B} \subseteq r^{C}$ because $B \leq C$. Hence $a \in \varphi^{C}$.
- Let $\varphi=\neg \psi$ for some Σ-atom $\psi: s$. Hence $\psi^{B}=\psi^{A}=\psi^{C}$ and thus $a \in \varphi^{B}=s^{A} \backslash \psi^{B}=s^{A} \backslash \psi^{C}=\varphi^{C}$.
- Let $\varphi=\psi \wedge \vartheta($ resp. $\varphi=\psi \vee \vartheta)$. Then there are $\beta<\alpha$ and $\gamma<\alpha$ such that $\left(\varphi, \pi_{I}(a)\right) \in M_{\beta}$ and $\left(\psi, \pi_{J}(a)\right) \in M_{\gamma} . a \in \varphi^{B}$ implies $\pi_{I}(a) \in \psi^{B}$ and (resp. or) $\pi_{J}(a) \in \vartheta^{B}$. Hence by induction hypothesis, $\pi_{I}(a) \in \psi^{C}$ and $\pi_{J}(a) \in \vartheta^{C}$ and thus $a \in \varphi^{C}$.
- Let $\varphi=\forall k \psi($ resp. $\varphi=\exists k \psi)$ for some $k \in I$. Then for all $b \in s_{k}^{A}$ there is $\alpha_{b}<\beta$ such that $\left(\psi, a *_{k} b\right) \in M_{\alpha_{b}}$. $a \in \varphi^{B}$ implies $a *_{k} b \in \psi^{B}$ for all (resp. some) $b \in s_{k}^{A}$. Hence by induction hypothesis, $a *_{k} b \in \psi^{C}$ and thus $a \in \varphi^{C}$.

Proposition 8.8 and Theorems 8.13 and 8.3 (Knaster-Tarski) immediately imply:
Theorem 8.14 (fixpoint semantics of μ - and ν-extensions) Let the assumptions of Def. 8.7 hold true and F be the (A, σ)-step functor.

- If $S P^{\prime}$ is a μ-extension of $S P$, then F has a least fixpoint, which agrees with the least $S P^{\prime}$-model over A (with respect to \leq).

[^6]- If $S P^{\prime}$ is a ν-extension of $S P$, then F has a greatest fixpoint, which agrees with the greatest $S P^{\prime}$-model over A.

Let us reformulate Theorem 8.4 in terms of a μ - or ν-extension $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ and the lattice $\operatorname{Mod}\left(\Sigma^{\prime}, A\right)$:
Theorem 8.15 Let the assumptions of Def. 8.7 hold true, $S P^{\prime}$ be a μ-or ν-extension of $S P, \sigma$ be the relation transformer defined by $A X^{\prime} \backslash A X$ and F be the (A, σ)-step functor. Moreover, let $\tau, \tau_{1}, \tau_{2}: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ be signature morphisms such that for all $r \in \Sigma, \tau(r)=r$, and for all $r \in R_{1}, \tau_{1}(r)=\tau(r) \wedge r$ and $\tau_{2}(r)=\tau(r) \vee r$.
(1) Induction. lfp (F) satisfies $\bigwedge_{r \in R_{1}}(r \Rightarrow \tau(r))$ if $l f p(F)$ satisfies $\bigwedge_{r \in R_{1}}\left(\tau\left(\sigma^{n}(r)\right) \Rightarrow \tau(r)\right)$ for some $n>0$.
(2) Strong induction.
$l f p(F)$ satisfies $\bigwedge_{r \in R_{1}}(r \Rightarrow \tau(r))$ if $l f p(F)$ satisfies $\bigwedge_{r \in R_{1}}\left(\tau_{1}\left(\sigma^{n}(r)\right) \Rightarrow \tau(r)\right)$ for some $n>0$.
(3) Coinduction.
$g f p(F)$ satisfies $\bigwedge_{r \in R_{1}}(\tau(r) \Rightarrow r)$ if $g f p(F)$ satisfies $\bigwedge_{r \in R_{1}}\left(\tau(r) \Rightarrow \tau\left(\sigma^{n}(r)\right)\right)$ for some $n>0$.
(4) Strong coinduction.
$g f p(F)$ satisfies $\bigwedge_{r \in R_{1}}(\tau(r) \Rightarrow r)$ if $g f p(F)$ satisfies $\bigwedge_{r \in R_{1}}\left(\tau(r) \Rightarrow \tau_{2}\left(\sigma^{n}(r)\right)\right)$ for some $n>0$.
(5) Extended strong coinduction. Let $\gamma: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ be a further signature morphism ${ }^{11}$ such that for all $r \in \Sigma_{1}, \gamma(r)=r$ or r is binary and

$$
\gamma(r)=r \vee \equiv \vee r \circ\left\langle\pi_{2}, \pi_{1}\right\rangle \vee \exists 3\left(r \circ\left\langle\pi_{1}, \pi_{3}\right\rangle \wedge r \circ\left\langle\pi_{3}, \pi_{2}\right\rangle\right)
$$

$g f p(F)$ satisfies $\bigwedge_{r \in R_{1}}(\tau(r) \Rightarrow r)$ if $g f p(F)$ satisfies $\bigwedge_{r \in R_{1}}\left(\tau(r) \Rightarrow \gamma^{*}\left(\tau_{2}\left(\sigma^{n}(r)\right)\right)\right)$ for some $n>0$.
Proof. (1) Suppose that for some $n>0$ and all $r \in R_{1}$, lfp (F) satisfies $\tau\left(\sigma^{n}(r)\right) \Rightarrow \tau(r)$, i.e., $\tau\left(\sigma^{n}(r)\right)^{l f p(F)} \subseteq$ $\tau(r)^{l f p(F)}$. Let B be the τ-reduct of $l f p(F)$. By the definition of F and Proposition 4.7(3), $r^{F^{n}(B)=r^{\left.B\right|_{\sigma^{n}}}=, ~=~=~}$ $\sigma^{n}(r)^{B}=\tau\left(\sigma^{n}(r)\right)^{l f p(F)} \subseteq \tau(r)^{l f p(F)}=r^{B}$. Hence $F^{n}(B) \leq B$. By Theorem 8.4(1), lfp $(F) \leq B$ and thus $r^{l f p(F)} \subseteq r^{B}=\tau(r)^{l f p(F)}$, i.e., lfp (F) satisfies $r \Rightarrow \tau(r)$.
(2) Suppose that for some $n>0$ and all $r \in R_{1}$, lfp (F) satisfies $\tau_{1}\left(\sigma^{n}(r)\right) \Rightarrow \tau(r)$, i.e., $\tau_{1}\left(\sigma^{n}(r)\right)^{l f p(F)} \subseteq$ $\tau(r)^{l f p(F)}$. Let B be the τ-reduct of $l f p(F)$. By the definition of F and Proposition 4.7(3), $r^{F^{n}(B \sqcap l f p(F))}=$ $r^{\left.(B \sqcap l f p(F))\right|_{\sigma^{n}}}=\sigma^{n}(r)^{B \sqcap l f p(F)}=\sigma^{n}(r)^{B} \cap \sigma^{n}(r)^{l f p(F)}=\tau\left(\sigma^{n}(r)\right)^{l f p(F)} \cap \sigma^{n}(r)^{l f p(F)}=\left(\tau\left(\sigma^{n}(r)\right) \wedge \sigma^{n}(r)\right)^{l f p(F)}=$ $\tau_{1}\left(\sigma^{n}(r)\right)^{l f p(F)} \subseteq \tau(r)^{l f p(F)}=r^{B}$. Hence $F^{n}(B \sqcap l f p(F)) \leq B$. By Theorem 8.4(2), lfp $(F) \leq B$ and thus $r^{l f p(F)} \subseteq r^{B}=\tau(r)^{l f p(F)}$, i.e., lfp (F) satisfies $r \Rightarrow \tau(r)$.
(3) Suppose that for some $n>0$ and all $r \in R_{1}, g f p(F)$ satisfies $\tau(r) \Rightarrow \tau\left(\sigma^{n}(r)\right)$, i.e., $\tau(r)^{g f p(F)} \subseteq$ $\tau\left(\sigma^{n}(r)\right)^{g f p(F)}$. Let B be the τ-reduct of $g f p(F)$. By Proposition 4.7(3), $r^{B}=\tau(r)^{g f p(F)} \subseteq \tau\left(\sigma^{n}(r)\right)^{g f p(F)}=$ $\sigma^{n}(r)^{B}=r^{\left.B\right|_{\sigma} n}=r^{F^{n}(B)}$. Hence $B \leq F^{n}(B)$. By Theorem 8.4(3), B $\leq g f p(F)$ and thus $\tau(r)^{g f p(F)}=r^{B} \subseteq$ $r^{g f p(F)}$, i.e., $g f p(F)$ satisfies $\tau(r) \Rightarrow r$.
(4) Suppose that for some $n>0$ and all $r \in R_{1}, g f p(F)$ satisfies $\tau(r) \Rightarrow \tau_{2}\left(\sigma^{n}(r)\right)$, i.e., $\tau(r)^{g f p(F)} \subseteq$ $\tau_{2}\left(\sigma^{n}(r)\right)^{g f p(F)}$. Let B be the τ-reduct of $g f p(F)$. By Proposition $4.7(3)$ and the definition of $F, r^{B}=$ $\tau(r)^{g f p(F)} \subseteq \tau_{2}\left(\sigma^{n}(r)\right)^{g f p(F)}=\left(\tau\left(\sigma^{n}(r)\right) \vee \sigma^{n}(r)\right)^{g f p(F)}=\tau\left(\sigma^{n}(r)\right)^{g f p(F)} \cup \sigma^{n}(r)^{g f p(F)}=\sigma^{n}(r)^{B} \cup \sigma^{n}(r)^{g f p(F)}=$ $\sigma^{n}(r)^{B \sqcup g f p(F)}=r^{\left.(B \sqcup g f p(F))\right|_{\sigma^{n}}}=r^{F^{n}(B \sqcup g f p(F))}$. Hence $B \leq F^{n}(B \sqcup g f p(F))$. By Theorem 8.4(4), $B \leq g f p(F)$ and thus $\tau(r)^{g f p(F)}=r^{B} \subseteq r^{g f p(F)}$, i.e., gfp (F) satisfies $\tau(r) \Rightarrow r$.
(5) Suppose that for some $n>0$ and all $r \in R_{1}, g f p(F)$ satisfies $\tau(r) \Rightarrow \gamma^{*}\left(\tau_{2}\left(\sigma^{n}(r)\right)\right)$, i.e., $\tau(r)^{g f p(F)} \subseteq$ $\gamma^{*}\left(\tau_{2}\left(\sigma^{n}(r)\right)\right)^{g f p(F)}$. Let B, C be the τ-reducts of $g f p(F)$ and $G^{*}(g f p(F))$, respectively, and G be the $(A, \gamma)-$ step functor. By Propositions 4.7(3) and 8.8(1), $r^{B}=\tau(r)^{g f p(F)} \subseteq \gamma^{*}\left(\tau_{2}\left(\sigma^{n}(r)\right)\right)^{g f p(F)}=\tau_{2}\left(\sigma^{n}(r)\right)^{G^{*}(g f p(F))}=$ $\left(\tau\left(\sigma^{n}(r)\right) \vee \sigma^{n}(r)\right)^{G^{*}(g f p(F))}=\tau\left(\sigma^{n}(r)\right)^{G^{*}(g f p(F))} \cup \sigma^{n}(r)^{G^{*}(g f p(F))}=\sigma^{n}(r)^{C} \cup \sigma^{n}(r)^{G^{*}(g f p(F))}=\sigma^{n}(r)^{C \sqcup G^{*}(g f p(F))}=$ $? ? ? \sigma^{n}(r)^{G^{*}(B) \sqcup G^{*}(g f p(F))} \subseteq r^{\left.F^{n}\left(G^{*}(B \sqcup g f p(F))\right) \text {. Hence } B \leq F^{n}\left(B \sqcup G^{*}(g f p(F))\right) \text {. By Theorem } 8.4(5), B \leq g f p(F)\right) ~(F) ~}$ and thus $\tau(r)^{g f p(F)}=r^{B} \subseteq r^{g f p(F)}$, i.e., $g f p(F)$ satisfies $\tau(r) \Rightarrow r$.
${ }^{11} \gamma$ is the relation transformer defined by axioms for the equivalence closure of r.

Here are some alternative axiomatizations of relations that satisfy the induction or coinduction assumption of Theorem 8.15. [39]

Corollary 8.16 Let the assumptions of Theorem 8.15 hold true.
(1) Suppose that $S P_{1}$ and $S P_{2}$ are μ-extensions of $S P, R_{2}=R_{1} \cup\left\{r^{\prime}: s \mid r: s \in R_{1}\right\}$ and

$$
A X_{2}=\left\{r \Leftarrow\left(\sigma_{1}(r) \wedge r^{\prime}\right) \mid r \in R_{1}\right\} \cup\left\{r^{\prime} \Leftarrow \sigma_{1}(r)\left[r^{\prime} / r \mid r \in R_{1}\right] \mid r \in R_{1}\right\}
$$

Then lfp $\left(\Phi_{A, \sigma_{1}}\right) \leq l f p\left(\Phi_{A, \sigma_{2}}\right)$.
(2) Suppose that $S P_{1}$ and $S P_{2}$ are ν-extensions of $S P, R_{2}=R_{1} \cup\left\{r^{\prime}: s \mid r: s \in R_{1}\right\}$ and

$$
A X_{2}=\left\{r \Rightarrow\left(\sigma_{1}(r) \vee r^{\prime}\right) \mid r \in R_{1}\right\} \cup\left\{r^{\prime} \Rightarrow \sigma_{1}(r)\left[r^{\prime} / r \mid r \in R_{1}\right] \mid r \in R_{1}\right\}
$$

Then $g f p\left(\Phi_{A, \sigma_{2}}\right) \leq g f p\left(\Phi_{A, \sigma_{1}}\right)$.
(3) Suppose that $S P_{1}$ and $S P_{2}$ are μ-extensions of $S P, R_{1}$ is an S-sorted set of binary relations $\sim_{s}: s \times s$, $R_{2}=R_{1} \cup\left\{\approx_{s}: s \times s \mid s \in S\right\}$,

$$
\begin{aligned}
& A X_{1}=\left\{f(x) \sim_{s^{\prime}} f(y) \Leftarrow x \sim_{s} y \mid f: s \rightarrow s^{\prime} \in F\right\} \\
& A X_{2}=\left\{\sim_{s} \Leftarrow \approx_{s} \cdot \sigma_{1}\left(\sim_{s}\right) \cdot \approx_{s} \mid s \in S\right\} \cup\left\{\approx_{s} \Leftarrow \sigma_{1}\left(\sim_{s}\right)\left[\approx_{s} / \sim_{s} \mid s \in S\right] \mid s \in S\right\}
\end{aligned}
$$

and $\operatorname{lfp}\left(\Phi_{A, \sigma_{1}}\right) \cdot \operatorname{lfp}\left(\Phi_{A, \sigma_{1}}\right) \leq \operatorname{lfp}\left(\Phi_{A, \sigma_{1}}\right)$. Then $\operatorname{lfp}\left(\Phi_{A, \sigma_{1}}\right) \leq l f p\left(\Phi_{A, \sigma_{2}}\right)$.
(4) Suppose that $S P_{1}$ and $S P_{2}$ are ν-extensions of $S P, R_{1}$ is an S-sorted set of binary relations \sim_{s} : $s \times s$, $R_{2}=R_{1} \cup\left\{\approx_{s}: s \times s \mid s \in S\right\}$,

$$
\begin{aligned}
& A X_{1}=\left\{x \sim_{s} y \Rightarrow f(x) \sim_{s^{\prime}} f(y) \mid f: s \rightarrow s^{\prime} \in F\right\} \\
& A X_{2}=\left\{\sim_{s} \Rightarrow \approx_{s} \cdot \sigma_{1}\left(\sim_{s}\right) \cdot \approx_{s} \mid s \in S\right\} \cup\left\{\approx_{s} \Rightarrow \sigma_{1}\left(\sim_{s}\right)\left[\approx_{s} / \sim_{s} \mid s \in S\right] \mid s \in S\right\}
\end{aligned}
$$

and $g f p\left(\Phi_{A, \sigma_{1}}\right) \cdot g f p\left(\Phi_{A, \sigma_{1}}\right) \leq g f p\left(\Phi_{A, \sigma_{1}}\right)$. Then $g f p\left(\Phi_{A, \sigma_{2}}\right) \leq g f p\left(\Phi_{A, \sigma_{1}}\right)$.
Proof. (1) Let $l f p_{i}=l f p\left(\Phi_{\sigma_{i}, A}\right), i=1,2$. Define a function $F: \operatorname{Mod}\left(\Sigma_{1}, A\right) \rightarrow \operatorname{Mod}\left(\Sigma_{1}, A\right)$ by $F(B)=$ $B \sqcap l f p_{1}$. Let $B \in \operatorname{Mod}\left(\Sigma_{1}, A\right)$ and $r \in R_{1}$. The construction of $A X_{2}$ from $A X_{1}$ implies $\sigma_{2}(r)^{B}=\sigma_{1}(r)^{B} \cap r^{l f p_{1}}$. Hence

$$
r^{\sigma_{2}(B)}=\sigma_{2}(r)^{B}=\sigma_{1}(r)^{B} \cap r^{l f p_{1}}=\sigma_{1}(r)^{B} \cap r^{\sigma_{1}\left(l f p_{1}\right)}=\sigma_{1}(r)^{B} \cap \sigma_{1}(r)^{l f p_{1}}=\sigma_{1}(r)^{F(B)}=r^{\sigma_{1}(F(B))}
$$

i.e., $\sigma_{2}=\sigma_{1} \circ F$. By Lemma $8.5(3)$, it remains to show that $l f p_{1} \sqcap l f p_{2}$ is σ_{1}-closed. Since σ_{1} is monotone, $\sigma_{1}\left(l f p_{1} \sqcap l f p_{2}\right) \leq \sigma_{1}\left(l f p_{1}\right)=l f p_{1}$. Moreover, $\sigma_{1}\left(l f p_{1} \sqcap l f p_{2}\right)=\sigma_{1}\left(F\left(l f p_{2}\right)\right)=\sigma_{2}\left(l f p_{2}\right)=l f p_{2}$. Hence $\sigma_{1}\left(l f p_{1} \sqcap l f p_{2}\right) \leq$ $l f p_{1} \sqcap l f p_{2}$.
(2) Let $g f p_{i}=g f p\left(\Phi_{\sigma_{i}, A}\right), i=1,2$. Define a function $F: \operatorname{Mod}\left(\Sigma_{1}, A\right) \rightarrow \operatorname{Mod}\left(\Sigma_{1}, A\right)$ by $F(B)=B \sqcup g f p_{1}$. Let $B \in \operatorname{Mod}\left(\Sigma_{1}, A\right)$ and $r \in R_{1}$. The construction of $A X_{2}$ from $A X_{1}$ implies $\sigma_{2}(r)^{B}=\sigma_{1}(r)^{B} \cup r^{g f p_{1}}$. Hence

$$
r^{\sigma_{2}(B)}=\sigma_{2}(r)^{B}=\sigma_{1}(r)^{B} \cup r^{g f p_{1}}=\sigma_{1}(r)^{B} \cup r^{\sigma_{1}\left(g f p_{1}\right)}=\sigma_{1}(r)^{B} \cup \sigma_{1}(r)^{g f p_{1}}=\sigma_{1}(r)^{F(B)}=r^{\sigma_{1}(F(B))}
$$

i.e., $\sigma_{2}=\sigma_{1} \circ F$. By Lemma 8.5(4), it remains to show that $g f p_{1} \sqcup g f p_{2}$ is σ_{1}-dense. Since σ_{1} is monotone, $g f p_{1}=\sigma_{1}\left(g f p_{1}\right) \leq \sigma_{1}\left(g f p_{1} \sqcup g f p_{2}\right)$. Moreover, $g f p_{2}=\sigma_{2}\left(g f p_{2}\right)=\sigma_{1}\left(F\left(g f p_{2}\right)\right)=\sigma_{1}\left(g f p_{1} \sqcup g f p_{2}\right)$. Hence $g f p_{1} \sqcup g f p_{2} \leq \sigma_{1}\left(g f p_{1} \sqcup g f p_{2}\right)$.
(3) Let $l f p_{i}=l f p\left(\Phi_{\sigma_{i}, A}\right), i=1,2$.
(4) Let $g f p_{i}=g f p\left(\Phi_{\sigma_{i}, A}\right), i=1,2$. Define a function $F: \operatorname{Mod}\left(\Sigma_{1}, A\right) \rightarrow \operatorname{Mod}\left(\Sigma_{1}, A\right)$ by $F(B)=g f p_{1} \cdot B \cdot g f p_{1}$. Let $B \in \operatorname{Mod}\left(\Sigma_{1}, A\right)$ and $s \in S$. The construction of $A X_{2}$ from $A X_{1}$ implies $\sigma_{2}\left(\sim_{s}\right)^{B}=\sim_{s}^{g f p_{1}} \cdot \sigma_{1}\left(\sim_{s}\right)^{B} . \sim_{s}^{g f p_{1}}$. Hence

$$
\begin{gathered}
\sim_{s}^{\sigma_{2}(B)}=\sigma_{2}\left(\sim_{s}\right)^{B}=\sim_{s}^{g f p_{1}} \cdot \sigma_{1}\left(\sim_{s}\right)^{B} \cdot \sim_{s}^{g f p_{1}}=\sim_{s}^{\sigma_{1}\left(g f p_{1}\right)} \cdot \sigma_{1}\left(\sim_{s}\right)^{B} \cdot \sim_{s}^{\sigma_{1}\left(g f p_{1}\right)} \\
=\sigma_{1}\left(\sim_{s}\right)^{g f p_{1}} \cdot \sigma_{1}\left(\sim_{s}\right)^{B} \cdot \sigma_{1}\left(\sim_{s}\right)^{g f p_{1}}=\sigma_{1}\left(\sim_{s}\right)^{F(B)}=\sim_{s}^{\sigma_{1}(F(B))}
\end{gathered}
$$

i.e., $\sigma_{2}=\sigma_{1} \circ F$. By Lemma 8.5(6), it remains to show that $F\left(g f p_{2}\right)$ is σ_{1}-dense. Let $s \in S$. Since $\sigma_{2}=\sigma_{1} \circ F$ and $g f p_{1} \cdot g f p_{1} \leq g f p_{1}$,

$$
\begin{gathered}
\sim_{s}^{F\left(g f p_{2}\right)}=\sim_{s}^{g f p_{1}} \cdot \sim_{s}^{g f p_{2}} \cdot \sim_{s}^{g f p_{1}}=\sim_{s}^{g f p_{1}} \cdot \sim_{s}^{\sigma_{2}\left(g f p_{2}\right)} \cdot \sim_{s}^{g f p_{1}} \\
=\sim_{s}^{g f p_{1}} \cdot \sigma_{1}\left(\sim_{s}\right)^{F\left(g f p_{2}\right)} \cdot \sim_{s}^{g f p_{1}}=\sim_{s}^{g f p_{1}} \cdot \sim_{s}^{g f p_{1}} \cdot \sigma_{1}\left(\sim_{s}\right)^{g f p_{2}} \cdot \sim_{s}^{g f p_{1}} \cdot \sim_{s}^{g f p_{1}} \\
=\sim_{s}^{g f p_{1}} \cdot \sigma_{1}\left(\sim_{s}\right)^{g f p_{2}} \cdot \sim_{s}^{g f p_{1}}=\sim_{s}^{\sigma_{1}\left(g f p_{1}\right)} \cdot \sigma_{1}\left(\sim_{s}\right)^{g f p_{2}} \cdot \sim_{s}^{\sigma_{1}\left(g f p_{1}\right)} \\
=\sigma_{1}\left(\sim_{s}\right)^{g f p_{1}} \cdot \sigma_{1}\left(\sim_{s}\right)^{g f p_{2}} \cdot \sigma_{1}\left(\sim_{s}\right)^{g f p_{1}}=\sigma_{1}\left(\sim_{s}\right)^{F\left(g f p_{2}\right)}=\sim_{s}^{\sigma_{1}\left(F\left(g f p_{2}\right)\right)} .
\end{gathered}
$$

9 Finitely branching swinging types

Theorem 9.1 Given the assumptions of Def. 8.1, an R_{1}-positive Σ^{\prime}-formula φ is Σ^{\prime}-compact over A iff for all increasing chains $B_{0} \leq B_{1} \leq B_{2} \leq \ldots$ of $\operatorname{Mod}\left(\Sigma^{\prime}, A\right)$,
(1) sets $\left\{\psi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J}$ of Σ^{\prime}-formulas and $a \in \prod_{i \in \cup\left\{I_{j} \mid j \in J\right\}} s_{i}^{A}$ such that $\bigwedge_{j \in J} \psi_{j}$ is a subformula of φ,

$$
\begin{equation*}
\forall j \in J \exists i \in \mathbb{N}: \pi_{I_{j}}(a) \in \psi_{j}^{B_{i}} \quad \text { implies } \quad \exists i \in \mathbb{N} \forall j \in J: \pi_{I_{j}}(a) \in \psi_{j}^{B_{i}} \tag{3}
\end{equation*}
$$

(2) Σ^{\prime}-formulas $\psi: \prod_{i \in I} s_{i}, k \in I$ and $a \in \prod_{i \in I \backslash\{k\}} s_{i}^{A}$ such that $\forall k \psi$ is a subformula of φ,

$$
\begin{equation*}
\forall b \in s_{k}^{A} \exists i \in \mathbb{N}: a *_{k} b \in \psi^{B_{i}} \quad \text { implies } \quad \exists i \in \mathbb{N} \forall b \in s_{k}^{A}: a *_{k} b \in \psi^{B_{i}} \tag{4}
\end{equation*}
$$

Proof. Let $B_{0} \leq B_{1} \leq B_{2} \leq \ldots$ be an increasing chain of $\operatorname{Mod}\left(\Sigma^{\prime}, A\right)$. We show $8.11(2)$ for all R_{1}-positive Σ^{\prime}-formulas φ. Let $B=\sqcup_{i \in \mathbb{N}} B_{i},(\varphi, a) \in M_{\alpha}, a \in \varphi^{B}$ and I be a nonempty set.

- Let $\varphi=r(t)$ be a Σ^{\prime}-atom. If $r \in R$, then φ is a Σ-formula and thus $a \in \varphi^{B}=\varphi^{A}=\bigcup_{i \in \mathbb{N}} \varphi^{B_{i}}$. If $r \in R_{1}$, then $a \in \varphi^{B}=\bigcup_{i \in \mathbb{N}} \varphi^{B_{i}}$.
- Let $\varphi=\neg \psi$ for some Σ-atom $\psi: s$. Hence $\psi^{B}=\psi^{A}=\bigcap_{i \in \mathbb{N}} \psi^{B_{i}}$ and thus

$$
a \in \varphi^{B}=s^{A} \backslash \psi^{B}=s^{A} \backslash \bigcap_{i \in \mathbb{N}} \psi^{B_{i}}=\bigcup_{i \in \mathbb{N}}\left(s^{A} \backslash \psi^{B_{i}}\right)=\bigcup_{i \in \mathbb{N}} \varphi^{B_{i}} .
$$

- Let $\varphi=\bigwedge_{j \in J} \psi_{j}: \prod_{i \in I_{j}} s_{i}$. Then for all $j \in J$ there is $\alpha_{j}<\alpha$ such that $\left(\psi_{j}, \pi_{I_{j}}(a)\right) \in M_{\alpha_{j}}$. $a \in \varphi^{B}$ implies $\pi_{I_{j}}(a) \in \psi_{j}^{B}$ for all $j \in J$. Hence by induction hypothesis, $\pi_{I_{j}}(a) \in \bigcup_{i \in \mathbb{N}} \psi_{j}^{B_{i}}$, i.e., there is $i \in \mathbb{N}$ such that $\pi_{I_{j}}(a) \in \psi^{B_{i}}$. By (3), there is $i \in \mathbb{N}$ such that for all $j \in J, \pi_{I_{j}}(a) \in \psi_{j}^{B_{i}}$. Hence $a \in \varphi^{B_{i}} \subseteq \bigcup_{i \in \mathbb{N}} \varphi^{B_{i}}$.
- Let $\varphi=\bigvee_{j \in J} \psi_{j}: \prod_{i \in I_{j}} s_{i}$. Then for all $j \in J$ there is $\alpha_{j}<\alpha$ such that $\left(\psi_{j}, \pi_{I_{j}}(a)\right) \in M_{\alpha_{j}}$. Hence by induction hypothesis, $\pi_{I_{j}}(a) \in \bigcup_{i \in \mathbb{N}} \psi_{j}^{B_{i}}$, i.e., there is $i \in \mathbb{N}$ such that $\pi_{I_{j}}(a) \in \psi^{B_{i}}$. Hence $a \in \varphi^{B_{i}} \subseteq$ $\bigcup_{i \in \mathbb{N}} \varphi^{B_{i}}$.
- Let $\varphi=\forall k \psi$ for some $k \in I$. Then for all $b \in s_{k}^{A}$ there is $\alpha_{b}<\alpha$ such that $\left(\psi, a *_{k} b\right) \in M_{\alpha_{b}}$. $a \in \varphi^{B}$ implies $a *_{k} b \in \psi^{B}$ for all $b \in s_{k}^{A}$. Hence by induction hypothesis, $a *_{k} b \in \bigcup_{i \in \mathbb{N}} \psi^{B_{i}}$, i.e., there is $i \in \mathbb{N}$ such that $a *_{k} b \in \psi^{B_{i}}$. By (4), there is $i \in \mathbb{N}$ such that for all $b \in s_{k}^{A}, a *_{k} b \in \psi^{B_{i}}$. Hence $a \in \varphi^{B_{i}} \subseteq \bigcup_{i \in \mathbb{N}} \varphi^{B_{i}}$.
- Let $\varphi=\exists k \psi$ for some $k \in I$. Then for all $b \in s_{k}^{A}$ there is $\alpha_{b}<\alpha$ such that $\left(\psi, a *_{k} b\right) \in M_{\alpha_{b}}$. $a \in \varphi^{B}$ implies $a *_{k} b \in \psi^{B}$ for some $b \in s_{k}^{A}$. Hence by induction hypothesis, $a *_{k} b \in \bigcup_{i \in \mathbb{N}} \psi^{B_{i}}$, i.e., there is $i \in \mathbb{N}$ such that $a *_{k} b \in \psi^{B_{i}}$. Hence $a \in \varphi^{B_{i}} \subseteq \bigcup_{i \in \mathbb{N}} \varphi^{B_{i}}$.

By dualizing the preceding proof, one obtains:
Theorem 9.2 Given the assumptions of Def. 8.1, an R_{1}-positive Σ^{\prime}-formula φ is Σ^{\prime}-cocompact over A iff for all decreasing chains $B_{0} \geq B_{1} \geq B_{2} \geq \ldots$ of $\operatorname{Mod}\left(\Sigma^{\prime}, A\right)$,
(1) sets $\left\{\psi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J}$ of Σ^{\prime}-formulas and $a \in \prod_{i \in \cup\left\{I_{j} \mid j \in J\right\}} s_{i}^{A}$ such that $\bigvee_{j \in J} \psi_{j}$ is a subformula of φ,

$$
\forall i \in \mathbb{N} \exists j \in J: \pi_{I_{j}}(a) \in \psi_{j}^{B_{i}} \quad \text { implies } \quad \exists j \in J \forall i \in \mathbb{N}: \pi_{I_{j}}(a) \in \psi_{j}^{B_{i}}
$$

(2) Σ^{\prime}-formulas $\psi: \prod_{i \in I} s_{i}, k \in I$ and $a \in \prod_{i \in I \backslash\{k\}} s_{i}^{A}$ such that $\exists k \psi$ is a subformula of φ,

$$
\forall i \in \mathbb{N} \exists b \in s_{k}^{A}: a *_{k} b \in \psi^{B_{i}} \quad \text { implies } \quad \exists b \in s_{k}^{A} \forall i \in \mathbb{N}: a *_{k} b \in \psi^{B_{i}}
$$

Theorems 9.1 and 9.2 lead to the following criterion for compactness resp. cocompactness:
Definition 9.3 (finitely branching) Let the assumptions of Def. 8.1 hold true and $B \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$.
A set $\left\{\varphi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J}$ is finitely B-solvable if for all $a \in \prod_{i \in \cup\left\{I_{j} \mid j \in J\right\}} s_{i}^{B}$, the set of $j \in J$ such that $\pi_{I_{j}}(a) \in \varphi_{j}^{B}$ is finite.

A Σ^{\prime}-formula $\varphi: \prod_{i \in I} s_{i}$ is finitely B-solvable in $k \in I$ if for all $a \in \prod_{i \in I \backslash\{k\}} s_{i}^{B}$, the set of $b \in s_{k}^{B}$ such that $a *_{k} b \in \varphi^{B}$ is finite.
$S P^{\prime}$ is finitely branching in B if for all Horn clauses $p \Leftarrow \varphi \in A X_{1}$, co-Horn clauses $q \Rightarrow \psi \in A X_{1}$, subformulas $\bigwedge_{j \in J} \varphi_{j}$ and $\forall k: \vartheta$ of φ and subformulas $\bigvee_{j \in J} \varphi_{j}$ and $\exists k: \vartheta$ of $\psi,\left\{\varphi_{j}\right\}_{j \in J}$ is finitely B-solvable and ϑ is finitely B-solvable in k.

Modal logic achieves continuity by restricting the bodies of modal operators like \square and \diamond to propositions about finitely branching transition systems. Roughly said, the restriction implies that the set of solutions of these bodies in the quantified variables is finite. The following example may illustrate the connection between finitely branching transition systems and (co)compact formulas.

Given a specification of a set State of states and a transition system \rightarrow on State, the least relation $r \subseteq$ State that satisfies the Horn clause

$$
\begin{equation*}
r(s) \Leftarrow \forall s^{\prime}:\left(s \rightarrow s^{\prime} \Rightarrow q\left(s^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

consists of all states that admit only finite runs w.r.t. \rightarrow. Since, in this example, the models B_{i} in Def. 8.11 reduce to sets S_{i} of states (i.e., the different interpretations of r), the premise of (1) is compact iff for all increasing chains $S_{0} \subseteq S_{1} \subseteq S_{2} \subseteq \ldots$ of sets of states,

$$
\begin{equation*}
\forall s^{\prime} \exists i_{s^{\prime}}:\left(s \rightarrow s^{\prime} \Rightarrow s^{\prime} \in S_{i_{s^{\prime}}}\right) \quad \text { implies } \quad \exists i \forall s^{\prime}:\left(s \rightarrow s^{\prime} \Rightarrow s^{\prime} \in S_{i}\right) \tag{2}
\end{equation*}
$$

Now suppose that the premise of (2) holds true and \rightarrow is finitely branching. If the chain becomes stationary, i.e., there is $n \in \mathbb{N}$ such that $S_{j}=S_{n}$ for all $j \geq n$, then the conclusion of (2) holds true for $i=n$. Otherwise there is $n \in \mathbb{N}$ such that S_{n} consists of all direct successors of s w.r.t. \rightarrow. Again $i=n$ satisfies the conclusion of (2). Duality suggests that a finitely branching transition system \rightarrow also entails that the conclusion of the co-Horn clause that results from negating (1):

$$
\begin{equation*}
r(s) \quad \Rightarrow \quad \exists s^{\prime}:\left(s \rightarrow s^{\prime} \wedge q\left(s^{\prime}\right)\right) \tag{3}
\end{equation*}
$$

is cocompact. Indeed, (3) is cocompact iff for all decreasing chains $S_{0} \supseteq S_{1} \supseteq S_{2} \supseteq \ldots$ of sets of states,

$$
\begin{equation*}
\forall i \exists s_{i}^{\prime}:\left(s \rightarrow s^{\prime} \wedge s_{i}^{\prime} \in S_{i}\right) \quad \text { implies } \quad \exists s^{\prime} \forall i:\left(s \rightarrow s^{\prime} \wedge s^{\prime} \in S_{i}\right) \tag{4}
\end{equation*}
$$

Suppose that the premise of (4) holds true and \rightarrow is finitely branching. Then there is a state s^{\prime} such that $s \rightarrow s^{\prime}$ and $s^{\prime}=s_{i}^{\prime}$ for infinitely many $i \in \mathbb{N}$. Hence for all $i \in \mathbb{N}$ there is $n_{i} \geq i$ with $s_{n_{i}}^{\prime}=s^{\prime}$. Since $s^{\prime}=s_{n_{i}}^{\prime} \in S_{n_{i}} \subseteq S_{i}$, we obtain the conclusion of (4).

Moreover, the invariance and congruence axioms of Definition 10.1 are finitely branching.
Lemma 9.4 Let the assumptions of Def. 8.1 hold true. If $S P^{\prime}$ is finitely branching in all $B \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$, then the premises of all Horn clauses of $A X_{1}$ are Σ^{\prime}-compact over A and the conclusions of all co-Horn clauses of $A X_{1}$ are Σ^{\prime}-cocompact over A.

Proof. Let $p \Leftarrow \varphi \in A X_{1}$ and $B_{0} \leq B_{1} \leq B_{2} \leq \ldots$ be an increasing chain of $\operatorname{Mod}\left(\Sigma^{\prime}, A\right)$.

Let $\left\{\varphi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J}$ be a set of Σ^{\prime}-formulas and $a \in \prod_{i \in \cup\left\{I_{j} \mid j \in J\right\}} s_{i}^{B}$ such that $\bigwedge_{j \in J} \varphi_{j}$ is a subformula of φ. Suppose that for all $j \in J$ there is $i \in \mathbb{N}$ such that $\pi_{I_{j}}(a) \in \varphi_{j}^{B_{i}}$. Since $S P^{\prime}$ is finitely branching in B_{i}, the set of $j \in J$ such that $\pi_{I_{j}}(a) \in \varphi_{j}^{B}$ is finite. Hence there is $n \in \mathbb{N}$ such that for all $j \in J, \pi_{I_{j}}(a) \in \varphi_{j}^{B_{i}}$ for some $i \leq n$. Since $B_{i} \leq B_{n}$ and thus, by Theorem 8.13, $\varphi_{j}^{B_{i}} \subseteq \varphi_{j}^{B_{n}}$, we conclude that for all $j \in J, \pi_{I_{j}}(a) \in \varphi_{j}^{B_{n}}$.

Let $\psi: \prod_{i \in I} s_{i}$ be a Σ^{\prime}-formula, $k \in I$ and $a \in \prod_{i \in I \backslash\{k\}} s_{i}^{A}$ such that $\forall k \psi$ is a subformula of φ. Suppose that for all $b \in s_{k}^{A}$ there is $i \in \mathbb{N}$ such that $a *_{k} b \in \psi^{B_{i}}$. Since $S P^{\prime}$ is finitely branching in B_{i}, the set of $b \in s_{k}^{B_{i}}$ such that $a *_{k} b \in \psi^{B_{i}}$ is finite. Hence there is $n \in \mathbb{N}$ such that for all $b \in s_{k}^{B}, a *_{k} b \in \psi^{B_{i}}$ for some $i \leq n$. Since $B_{i} \leq B_{n}$ and thus, by Theorem 8.13, $\psi^{B_{i}} \subseteq \psi^{B_{n}}$, we conclude that for all $b \in s_{k}^{B_{i}}, a *_{k} b \in \psi^{B_{n}}$.

Let $p \Rightarrow \varphi \in A X_{1}$ and $B_{0} \geq B_{1} \geq B_{2} \geq \ldots$ be a decreasing chain of $\operatorname{Mod}\left(\Sigma^{\prime}, A\right)$.
Let $\left\{\varphi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J}$ be a set of Σ^{\prime}-formulas and $a \in \prod_{i \in \cup\left\{I_{j} \mid j \in J\right\}} s_{i}^{B}$ such that $\bigvee_{j \in J} \varphi_{j}$ is a subformula of φ. Suppose that for all $i \in \mathbb{N}$ there is $j_{i} \in J$ such that $\pi_{I_{j_{i}}}(a) \in \varphi_{j_{i}}^{B_{i}}$. Since $S P^{\prime}$ is finitely branching in B_{i}, the set of $j \in J$ such that $\pi_{I_{j}}(a) \in \varphi_{j}^{B_{i}}$ is finite. Hence there are $j \in J$ and infinitely many $i \in \mathbb{N}$ such that $j_{i}=j$. Consequently, for all $i \in \mathbb{N}$ there is $n_{i} \geq i$ such that $j_{n_{i}}=j$ and thus $\pi_{I_{j}}(a)=\pi_{I_{j_{n_{i}}}}(a) \in \varphi_{j_{n_{i}}}^{B_{n_{i}}}=\varphi_{j}^{B_{n_{i}}}$. Since $B_{i} \geq B_{n_{i}}$ and thus, by Theorem 8.13, $\varphi_{j}^{B_{i}} \supseteq \varphi_{j}^{B_{n_{i}}}$, we conlude that for all $i \in \mathbb{N}, \pi_{I_{j}}(a) \in \varphi_{j}^{B_{i}}$.

Let $\psi: \prod_{i \in I} s_{i}$ be a Σ^{\prime}-formula, $k \in I$ and $a \in \prod_{i \in I \backslash\{k\}} s_{i}^{A}$ such that $\exists k \psi$ is a subformula of φ. Suppose that for all $i \in \mathbb{N}$ there is $b_{i} \in s_{k}^{A}$ such that $a *_{k} b_{i} \in \psi^{B_{i}}$. Since $S P^{\prime}$ is finitely branching in B_{i}, the set of $b \in s_{k}^{B_{i}}$ such that $a *_{k} b \in \psi^{B_{i}}$ is finite. Hence there are $b \in s_{k}^{B}$ and infinitely many $i \in \mathbb{N}$ such that $b_{i}=b$. Consequently, for all $i \in \mathbb{N}$ there is $n_{i} \geq i$ such that $b_{n_{i}}=b$ and thus $a *_{k} b=a *_{k} b_{n_{i}} \in \psi^{B_{n_{i}}}$. Since $B_{i} \geq B_{n_{i}}$ and thus, by Theorem 8.13, $\psi^{B_{i}} \supseteq \psi^{B_{n_{i}}}$, we conlude that for all $i \in \mathbb{N}, a *_{k} b \in \psi^{B_{i}}$.

Proposition 8.12, Theorems 9.1 and 9.2 and Lemma 9.4 immediately imply:
Theorem 9.5 Let the assumptions of Def. 8.1 hold true, $\Sigma_{1}=\left(S_{0}, S, F^{\prime}, R\right)$ and A be a Σ_{1}-structure. $\Phi_{A, \sigma}$ is continuous resp. cocontinuous over A iff $S P^{\prime}$ is finitely branching over A.

If the clauses of $A X^{\prime} \backslash A X$ are Σ^{\prime}-compact resp. -cocompact over A, then by Proposition 8.12, $\Phi_{A, \sigma}$ is continuous resp. cocontinuous over A. Hence Theorem 8.3 (Kleene) provides us with an inductive construction of the least resp. greatest fixpoint of σ : for all $r \in R^{\prime} \backslash R$,

$$
r^{l f p\left(\Phi_{A, \sigma}\right)}=\bigcup_{i \in \mathbb{N}} r^{\Phi_{A, \sigma}^{i}(\perp)} \quad \text { resp. } \quad r^{g f p\left(\Phi_{A, \sigma}\right)}=\bigcap_{i \in \mathbb{N}} r^{\Phi_{A, \sigma}^{i}(\top)}
$$

Consequently, a property P holds true for $l f p\left(\Phi_{A, \sigma}\right)$ iff there is $i \in \mathbb{N}$ such that P is valid for $\Phi_{A, \sigma}^{i}(\perp)$, while P holds true for $g f p\left(\Phi_{A, \sigma}\right)$ iff for all $i \in \mathbb{N}, P$ is valid for $\Phi_{A, \sigma}^{i}(\mathrm{~T})$.

10 Abstraction and restriction

Definition 10.1 (congruence and invariant axioms) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature. The congruence property of equalities can be axiomatized either by Horn clauses (CONH) or by co-Horn clauses (CONC):

$$
\begin{array}{|ll|l|}
\hline f(x) \equiv_{s^{\prime}} f(y) \Leftarrow x \equiv_{s} y & \text { for all } f: s \rightarrow s^{\prime} \in F & \text { CONH1 } \\
r(x) \Leftarrow x \equiv_{s} y \wedge r(y) & \text { for all } r: s \in R & \text { CONH2 } \\
\left(x_{i}\right)_{i \in I} \equiv_{\prod_{i \in I} s_{i}}\left(y_{i}\right)_{i \in I} \Leftarrow \bigwedge_{i \in I} x_{i} \equiv_{s_{i}} y_{i} & \text { for all }\left\{s_{i}\right\}_{i \in I} \subseteq \mathbb{T}_{S} & \text { CONH3 } \\
\iota_{i}(x) \equiv_{\coprod_{i \in I} s_{i}} \iota_{i}(y) \Leftarrow x \equiv_{s_{i}} y & \text { for all }\left\{s_{i}\right\}_{i \in I} \subseteq \mathbb{T}_{S} \text { and } i \in I & \text { CONH4 } \\
\hline
\end{array}
$$

$x \equiv_{s} y \Rightarrow f(x) \equiv_{s^{\prime}} f(y)$	for all $f: s \rightarrow s^{\prime} \in F$	CONC1
$r(x) \Rightarrow\left(x \equiv_{s} y \Rightarrow r(y)\right)$	for all $r: s \in R$	CONC2
$\left(x_{i}\right)_{i \in I} \equiv_{\prod_{i \in I}}\left(y_{i}\right)_{i \in I} \Rightarrow x_{i} \equiv_{s_{i}} y_{i}$	for all $\left\{s_{i}\right\}_{i \in I} \subseteq \mathbb{T}_{S}$ and $i \in I$	CONC3
$\iota_{i}(x) \equiv_{\coprod_{i \in I} s_{i}} i_{i}(y) \Rightarrow x \equiv_{s_{i}} y$	for all $\left\{s_{i}\right\}_{i \in I} \subseteq \mathbb{T}_{S}$ and $i \in I$	CONC4
$\iota_{i}(x) \equiv_{i \in I} s_{i} \iota_{j}(y) \Rightarrow$ False	for all $\left\{s_{i}\right\}_{i \in I} \subseteq \mathbb{T}_{S}$ and $i, j \in I$ with $i \neq j$	CONC4

Analogously, the invariant property of universes can be axiomatized either by Horn clauses (INVH) or by co-Horn clauses (INVC):

$\operatorname{all}_{s^{\prime}}(f(x)) \Leftarrow \operatorname{all}_{s}(x)$ for all $f: s \rightarrow s^{\prime} \in F$ all $^{\text {al }} \prod_{i \in I} s_{i}\left(x_{i}\right)_{i \in I} \Leftarrow \bigwedge_{i \in I}$ all $_{s_{i}}\left(x_{i}\right)$ for all $\left\{s_{i}\right\}_{i \in I} \subseteq \mathbb{T}_{S}$ ${ }^{\text {all }} \coprod_{i \in I} s_{i}$ $s_{i}\left(L_{i}(x)\right) \Leftarrow$ all $_{s_{i}}(x)$ for all $\left\{s_{i}\right\}_{i \in I} \subseteq \mathbb{T}_{S}$ and $i \in I$	INVH1 INVH2 INVH3
$\operatorname{all}_{s}(x) \Rightarrow \operatorname{all}_{s^{\prime}}(f(x))$ for all $f: s \rightarrow s^{\prime} \in F$ ${ }^{\text {all }} \prod_{i \in I} s_{i}\left(x_{i}\right)_{i \in I} \Rightarrow \operatorname{all}_{s_{i}}\left(x_{i}\right)$ for all $s_{1}, \ldots, s_{n} \in \mathbb{T}_{S}$ and $1 \leq i \leq n$ ${ }^{\text {all }} \coprod_{i \in I} s_{i}\left(L_{i}(x)\right) \Rightarrow \operatorname{all}_{s_{i}}(x)$ for all $s_{1}, \ldots, s_{n} \in \mathbb{T}_{S}$ and $1 \leq i \leq n$	INVC1 INVC2 INVC3

These axioms include the extensions of \equiv and all to products and sums that are also called relation resp. predicate liftings (see section 4).

Lemma 10.2 Let the assumptions of Def. 8.1 hold true, $A \in \operatorname{Mod}(S P)$ and $B \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$.
(1) If $S P^{\prime}$ is a μ-extension of $S P$ and $C O N H \subseteq A X_{1}$, then \equiv^{B} is an R^{\prime}-compatible Σ^{\prime}-congruence.
(2) If $S P^{\prime}$ is a ν-extension of $S P$ and $C O N C \subseteq A X_{1}$, then \equiv^{B} is an R^{\prime}-compatible Σ^{\prime}-congruence.
(3) If $S P^{\prime}$ is a μ-extension of $S P$ and $I N V H \subseteq A X_{1}$, then all ${ }^{B}$ is a Σ^{\prime}-invariant.
(4) If $S P^{\prime}$ is a ν-extension of $S P$ and $I N V C \subseteq A X_{1}$, then all ${ }^{B}$ is a Σ^{\prime}-invariant.
(5) If $S P^{\prime}$ is a ν-extension of $S P, C O N C \subseteq A X_{1}$ and $B=g f p\left(\Phi_{A, \sigma}\right)$, then \equiv^{B} is an R^{\prime}-compatible equivalence relation.

Proof. (1)-(4) hold true trivially.
(5) Let $B^{*}=\sqcup_{i \in \mathbb{N}} B_{i}$ where $B_{i} \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ is defined as follows: Let $s \in \mathbb{T}_{S}$ and $r: s^{\prime} \in R^{\prime} \backslash R$.

- $\equiv_{s}^{B_{0}}=\Delta_{s}^{B} \cup \equiv_{s}^{B} \cup\left(\equiv_{s}^{B}\right)^{-1}$ and $r^{B_{0}}=r^{B}$.
- For all $i>0, \equiv_{s}^{B_{i+1}}=\left\{(a, b) \in s^{A} \times s^{A} \mid \exists c:\left(a \equiv_{s}^{B_{i}} c \wedge c \equiv_{s}^{B_{i}} b\right)\right\}$.
- For all $i>0, r^{B_{i+1}}=\left\{a \in A_{s^{\prime}} \mid \exists b:\left(a \equiv_{s^{\prime}}^{B} b \wedge b \in r^{B_{i}}\right)\right\}$.

Suppose that B^{*} satisfies CONC. Since B is the greatest Σ^{\prime}-structure over A that satisfies CONC, $B^{*} \leq B$ and thus $B^{*}=B$ because $B \leq B^{*}$. Since B^{*} is an R^{\prime}-compatible equivalence relation, the proof is complete.

It remains to prove $B^{*} \models$ CONC. we show $B_{i} \models$ CONC for all $i \in \mathbb{N}$. Let $s \in S_{1}$ and $r: s \in R^{\prime} \backslash R$. Since $\equiv{ }^{B_{0}}$ is a Σ^{\prime}-congruence, $B_{0} \models$ CONC. Let $i>0$. By induction hypothesis, B_{i-1} satisfies CONC.

We show that B_{i} satisfies CONC1. Let $f: s \rightarrow s^{\prime} \in F \backslash F_{0}$ and $a \equiv_{s}^{B_{i}} b$. Then there is $c \in s^{A}$ such that $a \equiv_{s}^{B_{i-1}} c$ and $c \equiv_{s}^{B_{i-1}} b$. Since B_{i-1} satisfies CONC1, $f^{A}(a) \equiv_{s}^{B_{i-1}} f^{A}(c)$ and $f^{A}(c) \equiv_{s}^{B_{i-1}} f^{A}(b)$. Hence $f^{A}(a) \equiv_{s}^{B_{i}} f^{A}(b)$.

We show that B_{i} satisfies CONC2. Let $s=\prod_{i \in I} s_{i} \in \mathbb{T}_{S}$ and $\left(a_{j}\right)_{j \in I} \equiv_{s}^{B_{i}}\left(b_{j}\right)_{j \in I}$. Then there is $\left\{c_{j}\right\}_{j \in I} \subseteq s^{A}$ such that $\left(a_{j}\right)_{j \in I} \equiv^{B}\left(c_{j}\right)_{j \in I}$ and $\left(c_{j}\right)_{j \in I} \equiv_{s}^{B_{i-1}}\left(b_{j}\right)_{j \in I}$. Since B satisfies CONC2, for all $j \in I, a_{j} \equiv_{s_{j}}^{B_{i-1}} c_{j}$
and $c_{j} \equiv_{s_{j}}^{B_{i-1}} b_{j}$. Hence $a_{j} \equiv_{s_{j}}^{B_{i}} b_{j}$.
Analogously, B_{i} satisfies CONC3-CONC9.
Theorem 10.3 Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature, $A \in \operatorname{Mod}(\Sigma)$, \sim be a Σ-congruent and R-compatible equivalence relation on A and φ be a Σ-formula. Then $B={ }_{\operatorname{def}} A / \sim$ satisfies φ iff A satisfies φ.

Proof. The conjecture holds true if

$$
\begin{equation*}
\left\{[a] \in B \mid a \in \varphi^{A}\right\}=\varphi^{A ん} \tag{1}
\end{equation*}
$$

(1) is shown by induction on the structure of φ : Let $r(t)$ be a Σ-atom. Then by Proposition 4.14,

$$
\begin{aligned}
a \in(r \circ t)^{A}=\left(t^{A}\right)^{-1}\left(r^{A}\right) \Longleftrightarrow t^{A}(a) \in r^{A} \Longleftrightarrow t^{B}([a])=\left[t^{A}(a)\right] \in r^{B} \\
\Longleftrightarrow[a] \in\left(t^{B}\right)^{-1}\left(r^{A}\right)=(r \circ t)^{B}
\end{aligned}
$$

Let $\varphi: s$ be a Σ-formula. By induction hypothesis,

$$
a \in(\neg \varphi)^{A}=s^{A} \backslash \varphi^{A} \Longleftrightarrow[a] \in B_{s} \backslash \varphi^{A ん}=(\neg \varphi)^{B}
$$

Let $\left\{\varphi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J}$ be a set of Σ-formulas. Then, by induction hypothesis,

$$
\begin{gathered}
a \in\left(\bigwedge_{j \in J} \varphi_{j}\right)^{A}=\bigcap_{j \in J} \pi_{I_{j}}^{-1}\left(\varphi_{j}^{A}\right) \Longleftrightarrow \forall j \in J: \pi_{I_{j}}(a) \in \varphi_{j}^{A} \Longleftrightarrow \forall j \in J: \pi_{I_{j}}([a])=\left[\pi_{I_{j}}(a)\right] \in \varphi_{j}^{B} \\
\Longleftrightarrow[a] \in \bigcap_{j \in J} \pi_{I_{j}}^{-1}\left(\varphi_{j}^{B}\right)=\left(\bigwedge_{j \in J} \varphi_{j}\right)^{B} .
\end{gathered}
$$

Let $\varphi: \prod_{i \in I} s_{i}$ be a Σ-formula and $k \in I$. By induction hypothesis,

$$
\begin{gathered}
a \in(\forall k \varphi)^{A}=\bigcap_{b \in s_{k}^{A}}\left(\varphi^{A} \div{ }_{k} b\right) \Longleftrightarrow \forall b \in s_{k}^{A}: a \in \varphi^{A} \div{ }_{k} b \\
\Longleftrightarrow \forall b \in s_{k}^{A}: a *_{k} b \in \varphi^{A} \Longleftrightarrow \forall[b] \in s_{k}^{B}:[a] *_{k}[b]=\left[a *_{k} b\right] \in \varphi^{B} \\
\Longleftrightarrow \forall[b] \in s_{k}^{B}:[a] \in \varphi^{B} \div{ }_{k}[b] \Longleftrightarrow[a] \in \bigcap_{[b] \in s_{k}^{B}}\left(\varphi^{B} \div{ }_{k}[b]\right)=(\forall k \varphi)^{B} .
\end{gathered}
$$

Theorem 10.4 Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a signature, $A \in \operatorname{Mod}(\Sigma)$, inv $={ }_{\text {def }}$ all ${ }^{A}$ be a Σ-invariant on A, $S_{1}=S \backslash S_{0}$ and $\varphi:$ s be a restricted Σ-formula. Then $B=_{\operatorname{def}} A \mid$ inv satisfies φ if A satisfies φ.

Proof. The conjecture holds true if

$$
\begin{equation*}
\varphi^{A} \cap i n v_{s}=\varphi^{B} \tag{1}
\end{equation*}
$$

(1) is shown by induction on the structure of φ : Let $r(t): s$ be a Σ-atom and $a \in i n v_{s}$. Since $i n v$ is Σ-invariant, $t^{A}(a) \in i n v$ and thus by Proposition 4.14,

$$
\begin{aligned}
& a \in(r \circ t)^{A}=\left(t^{A}\right)^{-1}\left(r^{A}\right) \Longleftrightarrow t^{A}(a) \in r^{A} \Longleftrightarrow t^{B}(a)=t^{A}(a) \in r^{A} \cap i n v=r^{B} \\
& \Longleftrightarrow a \in\left(t^{B}\right)^{-1}\left(r^{B}\right)=(r \circ t)^{B}
\end{aligned}
$$

Let $\varphi: s$ be an restricted Σ-formula and $a \in i n v_{s}$. By induction hypothesis,

$$
a \in(\neg \varphi)^{A}=s^{A} \backslash \varphi^{A} \Longleftrightarrow a \in i n v_{s} \backslash \varphi^{A}=i n v_{s} \backslash\left(\varphi^{A} \cap i n v_{s}\right)=i n v_{s} \backslash \varphi^{B}=(\neg \varphi)^{B}
$$

Let $\left\{\varphi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J}$ be a set of Σ-formulas and $s=\prod_{i \in \cup\left\{I_{j} \mid j \in J\right\}}$ such that $\varphi=\bigwedge_{j \in J} \varphi_{j}$ is restricted and $a \in i n v_{s}$. Then for all $j \in J, \pi_{I_{j}}(a) \in i n v_{\prod_{i \in I_{j}}} s_{i}$, and thus by induction hypothesis,

$$
\begin{gathered}
a \in\left(\bigwedge_{j \in J} \varphi_{j}\right)^{A}=\bigcap_{j \in J} \pi_{I_{j}}^{-1}\left(\varphi_{j}^{A}\right) \Longleftrightarrow \forall j \in J: \pi_{I_{j}}(a) \in \varphi_{j}^{A} \\
\Longleftrightarrow \forall j \in J: \pi_{I_{j}}(a) \in \varphi_{j}^{A} \cap i n v \prod_{i \in I_{j}} s_{i}=\varphi_{j}^{B} \Longleftrightarrow a \in \bigcap_{j \in J} \pi_{I_{j}}^{-1}\left(\varphi_{j}^{B}\right)=\left(\bigwedge_{j \in J} \varphi_{j}\right)^{B}
\end{gathered}
$$

Let $\varphi: \prod_{i \in I} s_{i}$ be a Σ-formula, $k \in I$ and $s=\prod_{i \in I \backslash\{k\}} s_{i}$ such that $\forall k \varphi$ is restricted and $a \in i n v_{s}$. Let $s_{k} \in S_{0}$. Then $i n v_{s_{k}}=A_{s_{k}}$. Hence for all $b \in A_{s_{k}}, a *_{k} b \in i n v_{\prod_{i \in I} s_{i}}$, and thus by induction hypothesis,

$$
\begin{gathered}
a \in(\forall k \varphi)^{A}=\bigcap_{b \in s_{k}^{A}}\left(\varphi^{A} \div{ }_{k} b\right)=\bigcap_{b \in i n v_{s_{k}}}\left(\varphi^{A} \div{ }_{k} b\right) \Longleftrightarrow \forall b \in i n v_{s_{k}}: a \in \varphi^{A} \div_{k} b \\
\Longleftrightarrow \forall b \in i n v_{s_{k}}: a *_{k} b \in \varphi^{A} \Longleftrightarrow \forall b \in i n v_{s_{k}}: a *_{k} b \in \varphi^{A} \cap i n v \prod_{i \in I} s_{i}=\varphi^{B} \\
\Longleftrightarrow \forall b \in i n v_{s_{k}}: a \in \varphi^{B} \div{ }_{k} b \Longleftrightarrow a \in \bigcap_{b \in i n v_{s_{k}}}\left(\varphi^{B} \div{ }_{k} b\right)=(\forall k \varphi)^{B} .
\end{gathered}
$$

Let $s_{k} \in S_{1}$. Since $\forall k \varphi$ is restricted, w.l.o.g. $\varphi=\neg a l l_{s_{k}}(k) \vee \psi$ for some Σ-formula ψ. Hence $a \in i n v_{s}$ and the induction hypothesis imply

$$
\begin{gathered}
a \in(\forall k \varphi)^{A}=\bigcap_{b \in s_{k}^{A}}\left(\varphi^{A} \div{ }_{k} b\right) \Longleftrightarrow \forall b \in s_{k}^{A}: a \in \varphi^{A} \div{ }_{k} b \Longleftrightarrow \forall b \in s_{k}^{A}: a *_{k} b \in \varphi^{A}=\left(\neg a l l_{s_{k}}(k) \vee \psi\right)^{A} \\
\Longleftrightarrow \forall b \in s_{k}^{A}:\left(b \notin a l l_{s_{k}}^{A}=i n v_{s_{k}} \vee a *_{k} b \in \psi^{A}\right) \Longleftrightarrow \forall b \in i n v_{s_{k}}: a *_{k} b \in \psi^{A} \\
\Longleftrightarrow \not \Longleftrightarrow b \in i n v_{s_{k}}: a *_{k} b \in \psi^{A} \cap i n v \prod_{i \in I} s_{i}=\psi^{B} \\
\Longleftrightarrow \forall b \in i n v_{s_{k}}:\left(a *_{k} b=b \notin i n v_{s_{k}}=a l l_{s_{k}}^{B} \vee a *_{k} b \in \psi^{B}\right) \\
\Longleftrightarrow \forall b \in i n v_{s_{k}}: a *_{k} b \in\left(\neg a l l_{s_{k}}(k) \vee \psi\right)^{B}=\varphi^{B} \Longleftrightarrow \forall b \in i n v_{s_{k}}: a \in \varphi^{B} \div{ }_{k} b \\
\Longleftrightarrow a \in \bigcap_{b \in i n v_{s_{k}}}\left(\varphi^{B} \div{ }_{k} b\right)=(\forall k \varphi)^{B} .
\end{gathered}
$$

Theorem 10.5 Let $\Sigma=(S, F, R)$ be an algebraic signature, $A, B \in \operatorname{Mod}(\Sigma)$ and $\varphi: s$ be an implicational Σ-formula. Then $A \times B$ satisfies φ if A and B satisfy $\varphi .{ }^{12}$

Proof. Note that s is a product of sorts because Σ is algebraic. The conjecture holds true if

$$
\begin{equation*}
\left\{\langle a, b\rangle \mid a \in \varphi^{A} \wedge b \in \varphi^{B}\right\} \subseteq \varphi^{A \times B} \tag{1}
\end{equation*}
$$

At first we show

$$
\begin{equation*}
\left\{\langle a, b\rangle \mid a \in \varphi^{A} \wedge b \in \varphi^{B}\right\}=\varphi^{A \times B} \tag{2}
\end{equation*}
$$

for all universally quantified conjunctions φ of Σ-atoms by induction on the structure of φ : Let $r(t): s$ be a Σ-atom, $a \in s^{A}$ and $b \in s^{B}$. Then by Proposition 4.14,

$$
\begin{aligned}
a \in r(t)^{A} & =(r \circ t)^{A}=\left(t^{A}\right)^{-1}\left(r^{A}\right) \wedge b \in r(t)^{B}=(r \circ t)^{B}=\left(t^{B}\right)^{-1}\left(r^{B}\right) \Longleftrightarrow t^{A}(a) \in r^{A} \wedge t^{B}(b) \in r^{B} \\
& \Longleftrightarrow\left\langle t^{A}(a), t^{B}(b)\right\rangle \in r^{A \times B} \Longleftrightarrow\langle a, b\rangle \in\left(t^{A \times B}\right)^{-1}\left(r^{A \times B}\right)=(r \circ t)^{A \times B}=r(t)^{A \times B}
\end{aligned}
$$

Let $\left\{\varphi_{j}: \prod_{i \in I_{j}} s_{i}\right\}_{j \in J}$ be a set of implicational Σ-formulas. Then, by induction hypothesis,

$$
\begin{gathered}
a \in\left(\bigwedge_{j \in J} \varphi_{j}\right)^{A}=\bigcap_{j \in J} \pi_{I_{j}}^{-1}\left(\varphi_{j}^{A}\right) \wedge b \in\left(\bigwedge_{j \in J} \varphi_{j}\right)^{B}=\bigcap_{j \in J} \pi_{I_{j}}^{-1}\left(\varphi_{j}^{B}\right) \\
\Longleftrightarrow \forall j \in J: \pi_{I_{j}}(a) \in \varphi_{j}^{A} \wedge \forall j \in J: \pi_{I_{j}}(b) \in \varphi_{j}^{B} \Longleftrightarrow \forall j \in J: \pi_{I_{j}}(\langle a, b\rangle)=\left\langle\pi_{I_{j}}(a), \pi_{I_{j}}(b)\right\rangle \in \varphi_{j}^{A \times B} \\
\Longleftrightarrow\langle a, b\rangle \in \bigcap_{j \in J} \pi_{I_{j}}^{-1}\left(\varphi_{j}^{A \times B}\right)=\left(\bigwedge_{j \in J} \varphi_{j}\right)^{A \times B} .
\end{gathered}
$$

Let $\varphi: \prod_{i \in I} s_{i}$ be an implicational Σ-formula and $k \in I$. By induction hypothesis,

$$
\begin{gathered}
a \in(\forall k \varphi)^{A}=\bigcap_{c \in s_{k}^{A}}\left(\varphi^{A} \div{ }_{k} c\right) \wedge b \in(\forall k \varphi)^{B}=\bigcap_{d \in s_{k}^{B}}\left(\varphi^{B} \div_{k} d\right) \\
\Longleftrightarrow \forall c \in s_{k}^{A}: a \in \varphi^{A} \div{ }_{k} c \wedge \forall d \in s_{k}^{B}: b \in \varphi^{B} \div{ }_{k} d \Longleftrightarrow \forall c \in s_{k}^{A}: a *_{k} c \in \varphi^{A} \wedge \forall d \in s_{k}^{B}: b *_{k} d \in \varphi^{B} \\
\Longleftrightarrow \forall\langle c, d\rangle \in s_{k}^{A \times B}:\langle a, b\rangle *_{k}\langle c, d\rangle=\left\langle a *_{k} c, b *_{k} d\right\rangle \in \varphi^{A \times B} \\
\Longleftrightarrow \forall\langle c, d\rangle \in s_{k}^{A \times B}:\langle a, b\rangle \in \varphi^{A \times B} \div{ }_{k}\langle c, d\rangle \Longleftrightarrow\langle c, d\rangle \in \bigcap_{\langle c, d\rangle \in s_{k}^{A \times B}}\left(\varphi^{A \times B} \div{ }_{k}\langle c, d\rangle\right)=(\forall k \varphi)^{A \times B} .
\end{gathered}
$$

Secondly, we show (1) by induction on the structure of an implicational Σ-formula φ : If φ is an atom, a conjunction or a universally quantified formula, the proof proceeds analogously to the above proof of (2): just

[^7]replace "universally quantified conjunction of atoms" by implicational formula". It remains to derive (1) for simple implications $\psi \Rightarrow \varphi$ (see Def. 3.12) from the validity of (1) for φ : Let $\varphi: \prod_{i \in J} s_{i}$ be an implicational Σ-formula and $\psi: \prod_{i \in I} s_{i}$ be a universally quantified conjunction of atoms. By (2) and induction hypothesis,
\[

$$
\begin{gathered}
a \in(\psi \Rightarrow \varphi)^{A} \wedge b \in(\psi \Rightarrow \varphi)^{B} \Longleftrightarrow\left(a \notin \psi^{A} \vee a \in \varphi^{A}\right) \wedge\left(b \notin \psi^{B} \vee b \in \varphi^{B}\right) \\
\Longleftrightarrow\left(a \notin \psi^{A} \wedge b \notin \psi^{B}\right) \vee\left(a \notin \psi^{A} \wedge b \in \varphi^{B}\right) \vee\left(a \in \varphi^{A} \wedge b \notin \psi^{B}\right) \vee\left(a \in \varphi^{A} \wedge b \in \varphi^{B}\right) \\
\left.\Longrightarrow a \notin \psi^{A} \vee b \notin \psi^{B}\right) \vee\left(a \in \varphi^{A} \wedge b \in \varphi^{B}\right) \\
\Longrightarrow\langle a, b\rangle \notin \psi^{A \times B} \vee\langle a, b\rangle \in \varphi^{A \times B} \Longleftrightarrow\langle a, b\rangle \in(\psi \Rightarrow \varphi)^{A \times B} .
\end{gathered}
$$
\]

Definition 10.6 (reachable, observable, consistent, complete) Let $\Sigma=\left(S_{0}, S, F, R\right)$ be a subsignature of a signature $\Sigma^{\prime}=\left(S_{0}, S, F^{\prime}, R^{\prime}\right), S_{1}=S \backslash S_{0}, B \in \operatorname{Mod}\left(\Sigma^{\prime}, A\right)$ for some S_{0}-sorted set A. The Σ-reachability invariant of B, reach \sum_{Σ}^{B}, is the image of the S-sorted function reach ${ }^{B}$ with

$$
\operatorname{reach}_{s}^{B}=[t]_{t \in M G e n_{\Sigma, s}}:\left(\coprod_{t \in M G e n_{\Sigma, s}} d o m_{t}^{A}\right) \rightarrow s^{B} .
$$

The Σ-observability congruence of B, obs Σ_{Σ}^{B}, is the kernel of the S-sorted function obs ${ }^{B}$ with

$$
o b s_{s}^{B}=\langle t\rangle_{t \in M O s_{\Sigma, s}}: s^{B} \rightarrow \prod_{t \in M O b s_{\Sigma, s}} \operatorname{ran}_{t}^{A} .
$$

B is Σ-reachable or Σ-generated ${ }^{13}$ if reach ${ }_{\Sigma}^{B}=B$.
B is Σ-observable or Σ-cogenerated ${ }^{14}$ if obs $\Sigma_{\Sigma}^{B}=\Delta^{B}$.
B is Σ-consistent if for all $t, u \in \operatorname{MGen}_{\Sigma}$ and $a, b \in A, t^{B}(a)=u^{B}(b)$ implies $t^{\text {Free }(\Sigma, A)}(a)=u^{\text {Free }(\Sigma, A)}(b)$.
B is Σ-complete if for all $a \in \operatorname{Cofree}(\Sigma, A), o b s^{B}(b)=a$ for some $b \in B$.
Given a class \mathcal{C} of Σ^{\prime}-structures, $\mathbf{R C}$ and $\mathbf{O C}$ denote the subclasses of Σ^{\prime}-reachable and Σ^{\prime}-observable structures of \mathcal{C}, respectively.

In [83], both Σ-reachable and Σ-consistent structures are called free, while both Σ-observable and Σ-complete structures are called cofree.

Lemma 10.7 Let the assumptions of Def. 10.6 hold true and $\Sigma=\Sigma^{\prime}$.
(1) Suppose that for all $f: s \rightarrow s^{\prime} \in F, s, s^{\prime} \in \mathbb{T}_{S_{0}}$ or $s^{\prime} \in S_{1}$. Then the Σ-reachability invariant of B is a Σ-invariant.
(2) Suppose that for all $f: s \rightarrow s^{\prime} \in F, s, s^{\prime} \in \mathbb{T}_{S_{0}}$ or $s \in S_{1}$. Then the Σ-observability congruence of B is a Σ-congruence.
(3) Let $h: B \rightarrow C$ be a Σ-homomorphism. C is Σ-complete if B is Σ-complete. B is Σ-consistent if C is Σ-consistent.
(4) Let $h: B \rightarrow C$ be a Σ-epimorphism. C is Σ-reachable resp. Σ-observable if B is Σ-reachable resp. Σ-observable. B is Σ-complete if C is Σ-complete.
(5) Let $h: B \rightarrow C$ be a Σ-monomorphism. C is Σ-consistent if B is Σ-consistent. B is Σ-reachable resp. Σ-observable if C is Σ-reachable resp. Σ-observable.

Proof. (1) Let $s \in S, f: s \rightarrow s^{\prime} \in F$ and $b \in \operatorname{reach}_{\Sigma, s}^{B}$. Then $b=t^{B}(a)$ for some $t \in M G e n_{\Sigma, s}$ and $a \in \operatorname{dom}_{t}^{A}$. If $s, s^{\prime} \in S_{0}$, then $i d_{s^{\prime}}$ is a maximal Σ-generator and thus $f^{B}(b)=i d_{s^{\prime}}^{B}\left(f^{B}(b)\right) \in \operatorname{reach}_{\sum, s^{\prime}}^{B}$. If $s^{\prime} \in S_{1}$, then f is an S_{1}-constructor and thus $f \circ t: d o m \rightarrow s^{\prime}$ is a maximal Σ-generator. Hence $f^{B}(b)=f\left(t^{B}(a)\right)=(f \circ t)^{B}(a) \in$ reach $\sum_{\Sigma, s^{\prime}}^{B}$.

[^8](2) Let $s \in S, f: s \rightarrow s^{\prime} \in F$ and $(a, b) \in o b s_{\Sigma, s}^{B}$. Then for all $t: s \rightarrow r a n \in \operatorname{MObs}_{\Sigma}, t^{B}(a)=t^{B}(b)$. If $s, s^{\prime} \in S_{0}$, then $i d_{s}$ is a maximal Σ-observer and thus $a=i d_{s}^{B}(a)=i d_{s}^{B}(b)=b$. Hence $f^{B}(a)=f^{B}(b)$ and thus $\left(f^{B}(a), f^{B}(b)\right) \in o b s_{\Sigma, s^{\prime}}^{B}$ because kernels are reflexive. If $s^{\prime} \in S_{1}$, then f is an S_{1}-destructor and thus for all $t: s^{\prime} \rightarrow$ ran $\in \operatorname{MObs}_{\Sigma}, t \circ f: s \rightarrow$ ran is a maximal Σ-observer. Hence $t^{B}\left(f^{B}(a)\right)=(t \circ f)^{B}(a)=(t \circ f)^{B}(b)=$ $t^{B}\left(f^{B}(b)\right)$ and thus $\left(f^{B}(a), f^{B}(b)\right) \in o b s_{\Sigma, s^{\prime}}^{B}$.
(3) Let B be Σ-complete and $a \in s^{\operatorname{Cofree}(\Sigma, A)}$. Hence $o b s_{s}^{B}(b)=a$ for some $b \in B$ and thus by Proposition 4.6(5),
$$
o b s_{s}^{C}(h(b))=\left\langle t^{C}\right\rangle_{t \in M O b s_{\Sigma, s}}(h(b))=\left\langle t^{C} \circ h\right\rangle_{t \in M O b s_{\Sigma, s}}(b)=\left\langle t^{B}\right\rangle_{t \in M O b s_{\Sigma, s}}(b)=o b s_{s}^{B}(b)=a
$$

Hence C is Σ-complete.
Let C be Σ-consistent, $t: s_{1} \rightarrow s, u: s_{2} \rightarrow s \in \operatorname{MGen}_{\Sigma}, a \in s_{1}^{A}$ and $b \in s_{2}^{A}$ such that $t^{B}(a)=u^{B}(b)$. By Proposition 4.6(4), $t^{C}(a)=h\left(t^{B}(a)\right)=h\left(u^{B}(b)=u^{C}(b)\right.$ and thus $t^{F r e e(\Sigma, A)}(a)=u^{\text {Free }(\Sigma, A)}(b)$ because C is Σ-consistent. We conclude that B be Σ-consistent.
(4) Let B be Σ-reachable and $c \in s^{C}$. Since h is surjective, $c=h(b)$ for some $b \in s^{B}$. Since B is Σ-reachable, $b=u^{B}(a)$ for some $u: d o m \rightarrow s \in M G e n_{\Sigma}$ and $a \in \operatorname{dom}^{A}$. Hence by Proposition 4.6(4), $c=h(b)=h\left(u^{B}(a)\right)=u^{C}(a)$ and thus C is Σ-reachable.

Let B be Σ-observable and $a, b \in s^{C}$ such that $o b s_{s}^{C}(a)=o b s_{s}^{C}(b)$. Since h is surjective, $a=h\left(a^{\prime}\right)$ and $b=h\left(b^{\prime}\right)$ for some $a^{\prime}, b^{\prime} \in s^{B}$. Hence by Proposition 4.6(5),

$$
\begin{gathered}
o b s_{s}^{B}\left(a^{\prime}\right)=\left\langle t^{B}\right\rangle_{t \in M O b s_{\Sigma, s}}\left(a^{\prime}\right)=\left\langle t^{C} \circ h\right\rangle_{t \in M O b s_{\Sigma, s}}\left(a^{\prime}\right)=\left\langle t^{C}\right\rangle_{t \in M O b s_{\Sigma, s}}(a)=o b s_{s}^{C}(a)= \\
o b s_{s}^{C}(b)=\left\langle t^{C}\right\rangle_{t \in M O b s_{\Sigma, s}}(b)=\left\langle t^{C} \circ h\right\rangle_{t \in M O b s_{\Sigma, s}}\left(b^{\prime}\right)=\left\langle t^{B}\right\rangle_{t \in M O b s_{\Sigma, s}}\left(b^{\prime}\right)=o b s_{s}^{B}\left(b^{\prime}\right)
\end{gathered}
$$

and thus $a^{\prime}=b^{\prime}$ because B be Σ-observable.
Let C be Σ-complete and $a \in s^{\operatorname{Cofree}(\Sigma, A)}$. Hence $o b s_{s}^{C}(c)=a$ for some $c \in C$. Since h is surjective, $c=h(b)$ for some $b \in s^{B}$, and thus by Proposition 4.6(5),

$$
o b s_{s}^{B}(b)=\left\langle t^{B}\right\rangle_{t \in M O b s_{\Sigma, s}}(b)=\left\langle t^{C} \circ h\right\rangle_{t \in M O b s_{\Sigma, s}}(b)=\left\langle t^{C}\right\rangle_{t \in M O b s_{\Sigma, s}}(c)=a
$$

Hence B is Σ-complete.
(5) Let B be Σ-consistent, $t: s_{1} \rightarrow s, u: s_{2} \rightarrow s \in \operatorname{MGen}_{\Sigma}, a \in s_{1}^{A}$ and $b \in s_{2}^{A}$ such that $t^{C}(a)=u^{C}(b)$. By Proposition 4.6(4), $h\left(t^{B}(a)\right)=t^{C}(a)=u^{C}(b)=h\left(u^{B}(b)\right)$ and thus $t^{B}(a)=u^{B}(b)$ because h is injective. Hence $t^{\text {Free }(\Sigma, A)}(a)=u^{\operatorname{Free}(\Sigma, A)}(b)$ because B is Σ-consistent. We conclude that C be Σ-consistent.

Let C be Σ-reachable and $b \in s^{B}$. Then $h(b)=u^{C}(a)$ for some $u: d o m \rightarrow s \in M G e n_{\Sigma}$ and $a \in \operatorname{dom}^{A}$. Hence by Proposition 4.6(4), h(b) $=u^{C}(a)=h\left(u^{B}(a)\right)$ and thus $b=u^{B}(a)$ because h is injective. We conlude that B is Σ-reachable.

Let C be Σ-observable and $a, b \in s^{B}$ such that $o b s_{s}^{B}(a)=o b s_{s}^{B}(b)$. Hence by Proposition 4.6(5),

$$
\begin{gathered}
o b s_{s}^{C}(h(a))=\left\langle t^{C}\right\rangle_{t \in M O b s_{\Sigma, s}}(h(a))=\left\langle t^{C} \circ h\right\rangle_{t \in M O b s_{\Sigma, s}}(a)=\left\langle t^{B}\right\rangle_{t \in M O b s_{\Sigma, s}}(a)=\operatorname{obs}_{s}^{B}(a)= \\
o b s_{s}^{B}(b)=\left\langle t^{B}\right\rangle_{t \in M O b s_{\Sigma, s}}(b)=\left\langle t^{C} \circ h\right\rangle_{t \in M O b s_{\Sigma, s}}(b)=\left\langle t^{C}\right\rangle_{t \in M O b s_{\Sigma, s}}(h(b))=o b s_{s}^{C}(h(b))
\end{gathered}
$$

and thus $h(a)=h(b)$ because C is Σ-observable. Since h is injective, $a=b$, and we conclude that B is Σ-observable.

Lemma 10.8 Let the assumptions of Def. 10.6 hold true, $\Sigma=\Sigma^{\prime}, \mathcal{C}$ be a class of Σ-structures and Ini be initial in \mathcal{C} or Fin be final in \mathcal{C}. Let $B \in \mathcal{C}, g$ be the unique Σ-homomorphism from Ini to B or h be the unique Σ-homomorphism B to Fin, respectively.
(1) $\operatorname{reach}_{\Sigma}^{B} \subseteq i m g(g)$.
(2) $\operatorname{ker}(h) \subseteq o b s{ }_{\Sigma}^{B}$.
(3) Ini is Σ-reachable. B is Σ-reachable iff g is surjective. If B is Σ-consistent, then g is injective. If g is injective and $\mathcal{C}=\operatorname{Mod}_{E U}(\Sigma, A)$ for some set A, then B is Σ-consistent.
(4) Fin is Σ-observable. B is Σ-observable iff h is injective. If B is Σ-complete, then h is surjective. If h is surjective and $\mathcal{C}=\operatorname{Mod}_{E U}(\Sigma, A)$ for some set A, then B is Σ-complete.

Proof. (1) Let $b \in \operatorname{reach}_{\Sigma}^{B}$. Then $b=t^{A}(a)$ for some $t: d o m \rightarrow s \in M G e n_{\Sigma}$ and $a \in d o m{ }^{A}$. Hence by Proposition 4.6(4), $b=t^{A}(a)=g\left(t^{I n i}(a)\right) \in i m g(g)$.
(2) Let $(a, b) \in \operatorname{ker}(h)$ and $t: s \rightarrow \operatorname{ran} \in \operatorname{MObs}_{\Sigma}$. Then $h(a)=h(b)$ and thus by Proposition 4.6(5), $t^{A}(a)=t^{\text {Fin }}(h(a))=t^{\text {Fin }}(h(b))=t^{A}(b)$. Hence $(a, b) \in o b s_{\Sigma}^{B}$.
(3) By Lemma $10.7(1)$, reach $\Sigma^{I n i}$ is a Σ-invariant and thus $B=I_{n i} \mid r e a c h h^{I n i}$ is a substructure of Ini. By Lemma $6.2(3), B$ is not a proper substructure of Ini. Hence for all $s \in S$, reachs ${ }_{s}^{I n i}=s^{I n i}$ and thus Ini is Σ-reachable. If B is Σ-reachable, then by (1), B=B|reach ${ }^{B} \subseteq \operatorname{img}(g)$ and thus g is surjective. If g is surjective, then by Lemma $10.7(3), B$ is Σ-reachable because Ini is Σ-reachable.

Suppose that B is Σ-consistent. By Proposition 4.6(4), for all $t \in M G e n_{\Sigma}, g \circ t^{I n i}=t^{B}$. Since Ini is Σ-reachable, this equation defines g. Hence g is injective iff for all $t, u \in M G e n_{\Sigma}$ and $a, b \in A, t^{B}(a)=u^{B}(b)$ implies $t^{I n i}(a)=u^{I n i}(b)$. So let $t, u \in M G e n_{\Sigma}$ and $a, b \in A$ such that $t^{B}(a)=u^{B}(b)$. Since B is Σ-consistent, $t^{\operatorname{Free}(\Sigma, A)}(a)=u^{\operatorname{Free}(\Sigma, A)}(b)$. By Theorem 6.3, $\operatorname{Free}(\Sigma, A)$ is initial in $\operatorname{Mod}_{E U}(\Sigma, A)$. Hence there is a unique Σ-homomorphism $g^{\prime}: \operatorname{Free}(\Sigma, A) \rightarrow$ Ini. By Proposition 4.6(4),

$$
t^{\operatorname{Ini}}(a)=g^{\prime}\left(t^{\operatorname{Free}(\Sigma, A)}(a)\right)=g^{\prime}\left(u^{\operatorname{Free}(\Sigma, A)}(b)\right)=u^{\operatorname{Ini}}(b)
$$

We have shown that g is injective.
Conversely, suppose that g is injective and $\mathcal{C}=\operatorname{Mod}_{E U}(\Sigma, A)$. Then by Theorem $6.3, \operatorname{Ini}=\operatorname{Free}(\Sigma, A)$ and thus $t^{B}(a)=u^{B}(b)$ implies

$$
t^{\operatorname{Free}(\Sigma, A)}(a)=t^{\operatorname{Ini}}(a)=u^{\operatorname{Ini}}(b)=u^{\operatorname{Free}(\Sigma, A)}(b)
$$

because g is injective. Hence B is Σ-consistent.
(4) By Lemma $10.7(2)$, obs $s_{\Sigma}^{F i n}$ is a Σ-congruence and thus a $B=F i n / o b s_{\Sigma}^{F i n}$ is a quotient of Fin. By Lemma $6.2(4), B$ is not a proper quotient of Fin. Hence $o b s_{\Sigma}^{F i n}=\Delta^{F i n}$ and thus Fin is Σ-observable. If B is Σ-observable, then by (2), $\operatorname{ker}(h) \subseteq o b s_{\Sigma}^{B}=\Delta^{B}$ and thus h is injective. If h is injective, then by Lemma 10.7(2), B is Σ-observable because Fin is Σ-observable.

Suppose that B is Σ-complete. By Proposition 4.6(5), for all $t \in O b s_{\Sigma}, t^{F i n} \circ h=t^{B}$. Since Fin is Σ-observable, this equation defines h. Hence h is surjective iff for all $c \in F i n$ there is $b \in B$ such that for all $t \in \operatorname{MObs}_{\Sigma}, t^{B}(b)\left(=t^{\text {Fin }}(h(b))\right)=t^{\text {Fin }}(c)$. So let $c \in \operatorname{Fin}$. By Theorem 6.4, $\operatorname{Cofree}(\Sigma, A)$ is final in $\operatorname{Mod}_{E U}(\Sigma, A)$. Hence there is a unique Σ-homomorphism $h^{\prime}: \operatorname{Fin} \rightarrow \operatorname{Cofree}(\Sigma, A)$. Since B is Σ-complete, there is $b \in B$ such that for all $t: s \rightarrow \operatorname{ran}_{\operatorname{MOb}}^{\Sigma}, t^{B}(b)=h^{\prime}(c)_{t}=\pi_{t}\left(h^{\prime}(c)\right)=t^{F i n}(c)$ (see Theorem 6.4(2)). We have shown that h is surjective.

Conversely, suppose that h is surjective and $\mathcal{C}=\operatorname{Mod}_{E U}(\Sigma, A)$. Then by Theorem 6.4, Fin $=\operatorname{Cofree}(\Sigma, A)$. Let $s \in S$ and $c=\left(a_{t}\right)_{t: s \rightarrow \text { ran } \in \operatorname{MObs}_{\Sigma}} \in s^{\operatorname{Cofree}(\Sigma, A)}=s^{F i n}$. Since h is surjective, $c=h(b)$ for some $b \in B$. Hence by Proposition 4.6(5) and Theorem 6.4(2), $t^{B}(b)=t^{\text {Fin }}(c)=t^{\operatorname{Cofree}(\Sigma, A)}(c)=\pi_{t}(c)=a_{t}$ for all $t: s \rightarrow$ ran $\in \operatorname{MObs}_{\Sigma}$. Hence B is Σ-complete.

Theorem 10.9 (abstraction models) Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$, $\Sigma=\left(S_{0}, S, F, R\right), \Sigma^{\prime}=\left(S_{0}, S, F^{\prime}, R^{\prime}\right)$, σ be the relation transformer defined by $A X^{\prime} \backslash A X$, Ini i^{\prime} be initial in $\operatorname{Mod}\left(\Sigma^{\prime}, A X\right)$ and Φ be the $\left(\right.$ Ini $\left.^{\prime}, \sigma\right)$-step functor.
(1) If $S P^{\prime}$ is a visible abstraction, then $l f p(\Phi) / \equiv^{l f p(\Phi)}$ is initial in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$.
(2) If $S P^{\prime}$ is a hidden abstraction, then $\operatorname{gfp}(\Phi) / \equiv^{g f p(\Phi)}$ is final in $\operatorname{RMod}_{E U}\left(S P^{\prime}\right)$.

Proof. Let equals $=\left\{\equiv_{s} \mid s \in S_{1}\right\}$.
(1) By Lemma 10.2(1) and Theorem 10.3, lfp $(\Phi) \models A X^{\prime}$ implies $l f p(\Phi) / \equiv^{l f p(\Phi)} \models A X^{\prime}$ and thus $l f p(\Phi) / \equiv^{l f p(\Phi)} \in$ $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. Let $B \in \operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. Hence $B \in \operatorname{Mod}\left(\Sigma^{\prime}, A X\right)$ and thus there is a unique Σ^{\prime}-homomorphism $h:$ Ini $^{\prime} \rightarrow B$.

Let A be the Σ^{\prime}-structure that agrees with Ini except for the interpretation of $R_{1} \cup$ equals: for all $r: s \in$ $R_{1} \cup$ equals, $r^{A}=_{\text {def }}\left\{a \in \operatorname{Ini} i_{s}^{\prime} \mid h(a) \in r^{B}\right\}$. Hence for all $s \in S, \equiv^{A}=\operatorname{ker}(h)$ because B is a structure with equality.

Suppose that for all $r \in R_{1} \cup$ equals, $r^{l f p(\Phi)}$ is a subset of r^{A}. In particular, for all $s \in S_{1}, \equiv_{s}^{l f p(\Phi)} \subseteq \equiv_{s}^{A}$ and thus for all $a, b \in \operatorname{Ini} i_{s}^{\prime}, a \equiv^{l f p(\Phi)} b$ implies $h(a)=h(b)$. Hence $g: l f p(\Phi) / \equiv^{l f p}(\Phi) \rightarrow B$ with $g([a])={ }_{\text {def }} h(a)$ for all $a \in I n i^{\prime}$ is well-defined. Therefore, $h=g \circ$ nat. Since nat is epimorphic and h is homomorphic, Lemma 4.16(1) implies that g is homomorphic, too. Moreover, let g^{\prime} be any Σ-homomorphism from lfp $(\Phi) / \equiv^{l f p(\Phi)}$ to B. Since h is the only Σ-homomorphism from Ini i^{\prime} to B, we obtain $g^{\prime} \circ$ nat $=h=g \circ$ nat and thus $g^{\prime}=g$ because nat is surjective. Hence $l f p(\Phi) / \equiv^{l f p(\Phi)}$ is initial in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$.

It remains to show that for all $r: s \in R_{1} \cup$ equals, $r^{l f p(\Phi)}$ is a subset of r^{A}. By Theorem $8.4(1), r^{l f p(\Phi)} \subseteq r^{A}$ follows from $r^{\Phi(A)} \subseteq r^{A}$. So let $a \in r^{\Phi(A)}=\sigma(r)^{A}$. Since for all $q \in R^{\prime}, q^{A}=\left\{a \in \operatorname{Ini} i_{s}^{\prime} \mid h(a) \in q^{B}\right\}, a \in \sigma(r)^{A}$ implies $h(a) \in \sigma(r)^{B}$. Since B satisfies $r \Leftarrow \sigma(r), h(a) \in \sigma(r)^{B}$ implies $h(a) \in r^{B}$, i.e., $a \in r^{A}$.
(2) By Lemma 10.2(2) and (5) and Theorem 10.3, gfp $(\Phi) \models A X^{\prime}$ implies $B=g f p(\Phi) / \equiv g f p(\Phi) \vDash A X^{\prime}$ and thus $B \in \operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. Since $I n i^{\prime}$ is initial in $\operatorname{Mod}\left(\Sigma^{\prime}, A X\right), g f p(\Phi)$ is so, too, and thus by Lemma 10.8(3), $g f p(\Phi)$ is Σ^{\prime}-reachable. Hence there is unique Σ^{\prime}-homomorphism h from $g f p(\Phi)$ to B that must agree with the natural mapping. Therefore, h is surjective and thus, again by Lemma 10.8(3), B is Σ^{\prime}-reachable. We conclude that $B \in \operatorname{RMod}_{E U}\left(S P^{\prime}\right)$.

Let $B \in \operatorname{RMod}_{E U}\left(S P^{\prime}\right)$. Hence $B \in \operatorname{Mod}_{E U}(S P)$ and thus there is a unique Σ-homomorphism $h: \operatorname{Ini}^{\prime} \rightarrow B$. Let A be the Σ^{\prime}-structure that agrees with Ini' except for the interpretation of $R_{1} \cup$ equals: for all $r: s \in$ $R_{1} \cup$ equals, $r^{A}=_{\text {def }}\left\{a \in \operatorname{Ini} i_{s}^{\prime} \mid h(a) \in r^{B}\right\}$. Hence for all $s \in S, \equiv^{A}=\operatorname{ker}(h)$ because B is a Σ-structure with equality.

Suppose that for all $r \in R_{1} \cup$ equals, r^{A} is a subset of $r^{g f p(\Phi)}$. In particular, for all $s \in S_{1}, \equiv_{s}^{A} \subseteq \equiv_{s}^{g f p(\Phi)}$ and thus for all $a, b \in \operatorname{Ini} i_{s}^{\prime}, h(a)=h(b)$ implies $a \equiv g f p(\Phi) b$. By Lemma $10.8(3), h$ is surjective because B is reachable. Hence $g: B \rightarrow g f p(\Phi) / \equiv^{g f p(\Phi)}$ with $g(h(a))={ }_{\text {def }}[a]$ for all $a \in I n i^{\prime}$ is well-defined. Therefore, $g \circ h=n a t$. Since h is epimorphic and nat is homomorphic, Lemma 4.16(1) implies that g is homomorphic, too. Moreover, let g^{\prime} be any Σ-homomorphism from B to $g f p(\Phi) / \equiv g f p(\Phi)$. Since nat is the only Σ-homomorphism from Ini to $g f p(\Phi) / \equiv^{g f p}(\Phi)$, we obtain $g^{\prime} \circ h=n a t=g \circ h$ and thus $g^{\prime}=g$ because h is surjective. Hence $g f p(\Phi) / \equiv g \rho_{p}(\Phi)$ is final in $\operatorname{RMod}_{E U}\left(S P^{\prime}\right)$.

It remains to show that for all $r: s \in R_{1} \cup e q u a l s, r^{A}$ is a subset of $r^{g f p(\Phi)}$. By Theorem 8.4(2), $r^{A} \subseteq r^{g f p(\Phi)}$ follows from $r^{A} \subseteq r^{\Phi(A)}$. So let $a \in r^{A}$. Hence $h(a) \in r^{B}$ and thus $h(a) \in \sigma(r)^{B}$ because B satisfies $r \Rightarrow \sigma(r)$. Since for all $q \in R^{\prime}, q^{A}=\left\{a \in\right.$ Ini $\left._{s}^{\prime} \mid h(a) \in q^{B}\right\}, h(a) \in \sigma(r)^{B}$ implies $a \in \sigma(r)^{A}=r^{\Phi(A)}$.

Theorem 10.10 (restriction models) Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X)$, $\Sigma=\left(S_{0}, S, F, R\right), \Sigma^{\prime}=\left(S_{0}, S, F^{\prime}, R^{\prime}\right)$, σ be the relation transformer defined by $A X^{\prime} \backslash A X$, Fin be final in $\operatorname{Mod}\left(\Sigma^{\prime}, A X\right)$ and Φ be the $\left(F_{i n}, \sigma\right)$-step functor.
(1) If $S P^{\prime}$ is a hidden restriction, then $\operatorname{gfp}(\Phi) \mid a \operatorname{ll} g^{\text {ffp }(\Phi)}$ is final in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$.
(2) If $S P^{\prime}$ is a visible restriction, then $l f p(\Phi) \mid a l l^{l f p(\Phi)}$ is initial in $O M o d_{E U}\left(S P^{\prime}\right)$.

Proof. Let univs $=\left\{\right.$ all $\left._{s} \mid s \in S_{1}\right\}$.
(1) By Lemma 10.2(4) and Theorem 10.4, $g f p(\Phi) \models A X^{\prime}$ implies $g f p(\Phi) \mid \operatorname{all} l^{g f p}(\Phi) \models A X^{\prime}$ and thus $g f p(\Phi) \mid \operatorname{all} l^{g f p(\Phi)} \in$ $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. Let $B \in \operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. Hence $B \in \operatorname{Mod}\left(\Sigma^{\prime}, A X\right)$ and thus there is a unique Σ^{\prime}-homomorphism $h: B \rightarrow$ Fin $^{\prime}$.

Let A be the Σ^{\prime}-structure that agrees with Fin $^{\prime}$ except for the interpretation of $R_{1} \cup$ univs: for all $r \in$ $R_{1} \cup$ univs, $r^{A}={ }_{\text {def }} h\left(r^{B}\right)$. Hence for all $s \in S$, all $l_{s}^{A}=h\left(a l l_{s}^{B}\right)=h\left(s^{B}\right)$ because B is a structure with universe.

Suppose that for all $r \in R_{1} \cup$ univs, r^{A} is a subset of $r^{g f p(\Phi)}$. In particular, for all $s \in S_{1}, h\left(s^{B}\right)=a l l_{s}^{A} \subseteq$ $a_{l l} l_{s}^{g f p(\Phi)}$. Hence $g: B \rightarrow g f p(\Phi) \mid a_{\text {all }}{ }^{g f p(\Phi)}$ with $g(a)={ }_{\text {def }} h(a)$ for all $a \in B$ is well-defined. Therefore, $h=i n c \circ g$. Since $i n c$ is monomorphic and h is homomorphic, Lemma 4.17(1) implies that g is homomorphic, too. Moreover, let g^{\prime} be any Σ-homomorphism from B to $g f p(\Phi) \mid a l l g f p(\Phi)$. Since h is the only Σ-homomorphism from B to Fin', we obtain inc $\circ g^{\prime}=h=i n c \circ g$ and thus $g^{\prime}=g$ because inc is injective. Hence $g f p(\Phi) \mid a l l^{g f p}(\Phi)$ is final in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$.

It remains to show that for all $r: s \in R_{1} \cup$ univs, r^{A} is a subset of $r^{g f p(\Phi)}$. By Theorem $8.4(2), r^{A} \subseteq r^{g f p(\Phi)}$ follows from $r^{A} \subseteq r^{\Phi(A)}$. So let $a \in r^{A}$. Hence $a=h(b)$ for some $b \in r^{B}$ and thus $b \in \sigma(r)^{B}$ because B satisfies $r \Rightarrow \sigma(r)$. Since for all $q \in R^{\prime}, q^{A}=h\left(q^{B}\right), b \in \sigma(r)^{B}$ implies $a=h(b) \in \sigma(r)^{A}=r^{\Phi(A)}$.
(2) By Lemma 10.2(3) and Theorem 10.4, lfp $(\Phi) \vDash A X^{\prime}$ implies $B=l f p(\Phi) \mid a l l^{l f p(\Phi)} \vDash A X^{\prime}$ and thus $B \in \operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. Since $F i n^{\prime}$ is final in $\operatorname{Mod}\left(\Sigma^{\prime}, A X\right)$, lfp (Φ) is so, too, and thus by Lemma 10.8(4), lfp (Φ) is Σ^{\prime}-observable. Hence there is unique Σ^{\prime}-homomorphism h from B to $l f p(\Phi)$ that must agree with the inclusion mapping. Therefore, h is injective and thus, again by Lemma $10.8(4), B$ is Σ^{\prime}-observable. We conclude that $B \in O M o d_{E U}\left(S P^{\prime}\right)$.

Let $B \in \operatorname{OMod}_{E U}\left(S P^{\prime}\right)$. Hence $B \in \operatorname{Mod}_{E U}\left(S P^{\prime}\right)$ and thus there is a unique Σ-homomorphism $h: B \rightarrow$ Fin'. Let A be the Σ^{\prime}-structure that agrees with Fin' except for the interpretation of $R_{1} \cup$ univs: for all $r \in R_{1} \cup$ univs, $r^{A}={ }_{\text {def }} h\left(r^{B}\right)$. Hence for all $s \in S$, all ${ }_{s}^{A}=h\left(a l l_{s}^{B}\right)=h\left(s^{B}\right)$ because B is a Σ-structure with universe.

Suppose that for all $r \in R_{1} \cup$ univs, $r^{l f p(\Phi)}$ is a subset of r^{A}. In particular, for all $s \in S_{1}$, all $l_{s}^{l f p(\Phi)} \subseteq$ $a l l_{s}^{A}=h\left(s^{B}\right) \subseteq F_{i n}{ }^{\prime}$. By Lemma 10.8(4), h is injective because B is observable. Hence $g: l f p(\Phi) \mid a l l l l^{l f p}(\Phi) \rightarrow B$ with $g(h(b))={ }_{\text {def }} b$ for all $b \in h^{-1}\left(a l l^{l f p}(\Phi)\right)$ is well-defined. Therefore, $h \circ g=i n c$. Since h is monomorphic and inc is homomorphic, Lemma $4.16(2)$ implies that g is homomorphic, too. Moreover, let g^{\prime} be any Σ homomorphism from $l f p(\Phi) \mid \operatorname{all}^{l f p(\Phi)}$ to B. Since $i n c$ is the only Σ-homomorphism from $\operatorname{all}_{s}^{l f p(\Phi)}$ to Fin' $^{\prime}$, we obtain $h \circ g^{\prime}=i n c=h \circ g$ and thus $g^{\prime}=g$ because h is injective. Hence $l f p(\Phi) \mid \operatorname{all} l^{l f p}(\Phi)$ is initial in $O M o d_{E U}\left(S P^{\prime}\right)$.

It remains to show that for all $r: s \in R_{1} \cup u n i v s, r^{l f p(\Phi)}$ is a subset of r^{A}. By Theorem $8.4(1), r^{l f p(\Phi)} \subseteq r^{A}$ follows from $r^{\Phi(A)} \subseteq r^{A}$. So let $a \in r^{\Phi(A)}=\sigma(r)^{A}$. Since for all $q \in R^{\prime}, q^{A}=h\left(q^{B}\right), a \in \sigma(r)^{A}$ implies $b \in \sigma(r)^{B}$ for some $b \in B$ with $h(b)=a$. Hence $b \in r^{B}$ and thus $a=h(b) \in r^{A}$ because B satisfies $r \Leftarrow \sigma(r)$.

11 Conservative extension

Lemma 11.1 Let the assumptions of Def. 10.6 hold true, \mathcal{C} be a class of Σ-structures and B be $a \Sigma^{\prime}$-structure.
(1) Let Ini be initial in \mathcal{C}. If B is Σ-reachable and Σ-consistent, then the S-sorted function abs : $B \rightarrow$ Ini mapping $b \in B$ to $t^{I n i}(a)$ for some $t \in M G e n_{\Sigma}$ with $t^{B}(a)=b$ is well-defined and surjective. Moreover, Ini can be extended to a Σ^{\prime}-structure such that abs becomes Σ^{\prime}-homomorphic. If $\left.B\right|_{\Sigma} \in \mathcal{C}$, then abs is also injective and thus a Σ^{\prime}-isomorphism.
(2) Let Fin be final in \mathcal{C}. If B is Σ-observable and Σ-complete, then the S-sorted function rep $:$ Fin $\rightarrow B$ mapping $a \in$ Fin to $b \in B$ with obs $s_{s}^{B}(b)=o b s_{s}^{F i n}(a)$ is well-defined and injective. Moreover, Fin can be
extended to a Σ^{\prime}-structure such that rep becomes Σ^{\prime}-homomorphic. If $\left.B\right|_{\Sigma} \in \mathcal{C}$, then rep is also surjective and thus a Σ^{\prime}-isomorphism.

Proof. (1) Let $b \in B$. Since B is Σ-reachable, there are $t \in M G e n_{\Sigma}$ and $a \in A$ such that $t^{B}(a)=b$. Suppose that $t^{B}(a)=u^{B}(b)$ for some $t, u \in M G e n_{\Sigma}$ and $a, b \in A$. Since B is Σ-consistent, $t^{\text {Free }(\Sigma, A)}(a)=$ $u^{\text {Free }(\Sigma, A)}(b)$. By Theorem 6.3, $\operatorname{Free}(\Sigma, A)$ is initial in $\operatorname{Mod}_{E U}(\Sigma, A)$. Hence by Proposition 4.6(4), the unique Σ-homomorphism from $\operatorname{Free}(\Sigma, A)$ to Ini maps $t^{\operatorname{Free}(\Sigma, A)}(a)$ to $t^{\operatorname{Ini}}(a)$. Hence $t^{\operatorname{Free}(\Sigma, A)}(a)=u^{\text {Free }(\Sigma, A)}(b)$ implies $t^{I n i}(a)=u^{I n i}(b)$. We conclude that $a b s$ is well-defined. By Lemma 10.8(3), Ini is Σ-reachable. Hence for all $c \in I n i$ there are $t \in M G e n_{\Sigma}$ and $a \in A$ such that $t^{I n i}(a)=c$ and thus $a b s$ is surjective.
$f: \operatorname{dom} \rightarrow s \in F_{1}$ is interpreted in Ini as follows. Since Ini is Σ-reachable, $f^{I n i}$ is well-defined by $f^{I n i}\left(t^{I n i}(a)\right)=a b s\left((f \circ t)^{B}(a)\right)$ for all $t: s_{0} \rightarrow d o m \in M G e n_{\Sigma}$ and $a \in s_{0}^{A}$. Let $b \in B$. Since B is Σ-reachable, there are $t \in M G e n_{\Sigma}$ and $a \in A$ such that $t^{B}(a)=b$. Hence $a b s$ is compatible with f :

$$
a b s\left(f^{B}(b)\right)=a b s\left(f^{B}\left(t^{B}(a)\right)\right)=a b s\left((f \circ t)^{B}(a)\right)=f^{I n i}\left(t^{I n i}(a)\right)=f^{I n i}\left(a b s\left(t^{B}(a)\right)\right)=f^{I n i}(a b s(b)) .
$$

We conclude that $a b s$ is Σ^{\prime}-homomorphic. For all $r \in R^{\prime} \backslash R, r^{I n i}=a b s\left(r^{B}\right)$.
Suppose that $\left.B\right|_{\Sigma} \in \mathcal{C}$ and $a b s(b)=a b s(c)$ for some $b, c \in B$. Then $t^{I n i}(a)=t^{I n i}\left(a^{\prime}\right)$ for some $a, a^{\prime} \in A$ with $t^{B}(a)=b$ and $t^{B}\left(a^{\prime}\right)=c$. By assumption, there is a unique Σ-homomorphism h from Ini to $\left.B\right|_{\Sigma}$. Hence by Proposition 4.6(4), $b=t^{B}(a)=h\left(t^{I n i}(a)\right)=h\left(t^{I n i}\left(a^{\prime}\right)\right)=t^{B}\left(a^{\prime}\right)=c$ and thus $a b s$ is injective.
(2) Let $s \in S$ and $c \in s^{F i n}$. By Theorem 6.4, $\operatorname{Cofree}(\Sigma, A)$ is final in $\operatorname{Mod}_{E U}(\Sigma, A)$. Let h be the unique Σ-homomorphism from Fin to $\operatorname{Cofree}(\Sigma, A)$. Since B is Σ-complete, $o b s_{s}^{B}(b)=h(c)$ for some $b \in B$. Hence by Proposition 4.6(5), for all $t \in \operatorname{MObs}_{\Sigma, s}$,

$$
\pi_{t}\left(o b s_{s}^{B}(b)\right)=\pi_{t}(h(c))=t^{\operatorname{Cofree}(\Sigma, A)}(h(c))=t^{\text {Fin }}(a)=\pi_{t}\left(o b s_{s}^{\text {Fin }}(c)\right)
$$

and thus $o b s_{s}^{B}(b)=o b s_{s}^{F i n}(c)$. Suppose that $o b s_{s}^{B}(b)=o b s_{s}^{B}(c)$ for some $b, c \in s^{B}$. Since B is Σ-observable, $b=c$. We conclude that rep is well-defined. By Lemma 10.8(4), Fin is Σ-observable. Hence for all $b, c \in$ Fin, $o b s_{s}^{F i n}(b)=o b s_{s}^{F i n}(c)$ implies $b=c$, and thus rep is injective.
$f: s \rightarrow r a n \in F_{1}$ is interpreted in Fin as follows. Since Fin is Σ-observable, $f^{F i n}$ is well-defined by $t^{\text {Fin }}\left(f^{F i n}(c)\right)=(t \circ f)^{B}(r e p(c))$ for all $t \in \operatorname{MObs}_{\Sigma, r a n}$ and $c \in s^{\text {Fin }}$. Hence for all $c \in s^{\text {Fin }}$,

$$
o b s_{r a n}^{B}\left(r e p\left(f^{F i n}(c)\right)\right)=t^{F i n}\left(f^{F i n}(c)\right)=(t \circ f)^{B}(r e p(c))=o b s_{r a n}^{B}\left(f^{B}(r e p(c))\right)
$$

and thus $\operatorname{rep}\left(f^{F i n}(c)\right)=f^{B}(\operatorname{rep}(c))$ because B is Σ-observable. We conclude that rep is Σ^{\prime}-homomorphic. For all $r: s \in R^{\prime} \backslash R, r^{F i n}=\left\{c \in s^{F i n} \mid r e p(c) \in r^{B}\right\}$.

Suppose that $\left.B\right|_{\Sigma} \in \mathcal{C}, s \in S$ and $b \in s^{B}$. By assumption, there is a unique Σ-homomorphism h from $\left.B\right|_{\Sigma}$ to Fin. Hence by Proposition 4.6(5), for all $t \in M O b s_{\Sigma, s}$,

$$
\pi_{t}\left(o b s_{s}^{B}(b)\right)=t^{B}(b)=t^{F i n}(h(b))=\pi_{t}\left(o b s_{s}^{F i n}(h(b))\right)
$$

and thus $o b s_{s}^{B}(b)=o b s_{s}^{F i n}(h(b))$. Hence $b=r e p(h(b))$ and thus rep is surjective.
Theorem 11.2 Let the assumptions of Def. 10.6 hold true and $F_{1}=F^{\prime} \backslash F$.
(1) Suppose that F_{1} consists of S_{1}-constructors and B is Σ^{\prime}-reachable. B is Σ-reachable iff reach Σ_{Σ}^{B} is F_{1}-compatible.
(2) Suppose that F_{1} consists of S_{1}-destructors and B is Σ^{\prime}-observable.
B is Σ-observable iff obs ${ }_{\Sigma}^{B}$ is F_{1}-compatible.
Proof. (1) The "only-if"-direction is trivial. Let $s \in S$ and $b \in s^{B}$. Since B is Σ^{\prime}-reachable, $b=t^{B}(a)$ for some $t: d o m \rightarrow s \in M G e n_{\Sigma^{\prime}}$ and $a \in \operatorname{dom}^{A}$. We show $b \in \operatorname{reach}_{\Sigma}^{B}$ by induction on (m, n) where m and n are
the numbers of occurrences of F_{1}-symbols resp. F^{\prime}-symbols in t. We start with two basic cases: (a) t consists of F-symbols and (b) $t=f \circ u$ for some $f \in F_{1}$ and $u \in M G e n_{\Sigma}$. In case (a), t is a Σ-generator and thus the proof is complete. In case (b), $u^{B}(a) \in \operatorname{reach}_{\Sigma}^{B}$. Hence by assumption, $(f \circ u)^{B}(a)=f^{B}\left(u^{B}(a)\right) \in \operatorname{reach}_{\Sigma}^{B}$ and thus $t^{B}(a)=(f \circ u)^{B}(a)=w^{B}(c)$ for some $w \in M G e n_{\Sigma}$ and $c \in \operatorname{dom}_{w}^{A}$. Again, the proof is complete.

If neither case (a) nor case (b) holds true, then $t=v \circ\left\langle u_{i}\right\rangle_{i \in I}$ for some $\{v\} \cup\left\{u_{i}: d o m \rightarrow s_{i}\right\}_{i \in I} \subseteq G e n_{\Sigma^{\prime}}$ such that for some $k \in I, u_{k}$ contains at least one F_{1}-symbol. Since u_{k} is a subterm of t, the induction hypothesis implies $u_{k}^{B}(a) \in \operatorname{reach}_{\Sigma}^{B}$, i.e., $u_{k}^{B}(a)=w^{B}(c)$ for some $w \in M G e n_{\Sigma, s_{k}}$ and $c \in \operatorname{dom}_{w}^{A}$. Hence

$$
\begin{gather*}
b=t^{B}(a)=\left(v \circ\left\langle u_{i}\right\rangle_{i \in I}\right)^{B}(a)=v^{B}\left(\left\langle u_{i}^{B}\right\rangle_{i \in I}(a)\right)=v^{B}\left(\left(u_{i}^{B}(a)\right)_{i \in I}\right)= \\
v^{B}\left(\left(v_{i}^{B}(a, c)\right)_{i \in I}\right)=v^{B}\left(\left\langle v_{i}^{B}\right\rangle_{i \in I}(a, c)\right)=\left(v \circ\left\langle v_{i}\right\rangle_{i \in I}\right)^{B}(a, c) \tag{3}
\end{gather*}
$$

where for all $i \in I$,

$$
v_{i}= \begin{cases}w \circ \pi_{2}: \operatorname{dom} \times \operatorname{dom}_{w} \rightarrow s_{k} & \text { if } i=k \\ u_{i} \circ \pi_{1}: \operatorname{dom} \times \operatorname{dom}_{w} \rightarrow s_{i} & \text { if } i \neq k\end{cases}
$$

Since $v \circ\left\langle v_{i}\right\rangle_{i \in I}$ contains less occurrences of F_{1}-symbols than t, the induction hypothesis implies $b=(v \circ$ $\left.\left\langle v_{i}\right\rangle_{i \in I}\right)^{B}(a, c) \in \operatorname{reach}_{\Sigma}^{B}$. We conclude that B is Σ-reachable.
(2) The "only-if"-direction is trivial. Let $s \in S$ and $a, b \in s^{B}$ such that $a \neq b$. Since B is Σ^{\prime}-observable, there are $t: s \rightarrow r a n \in \operatorname{MObs}_{\Sigma^{\prime}}$ such that $t^{B}(a) \neq t^{B}(b)$. We show $(a, b) \notin o b s_{\Sigma}^{B}$ by induction on (m, n) where m and n are the numbers of occurrences of F_{1}-symbols resp. F^{\prime}-symbols in t. We start with two basic cases: (a) t consists of F-symbols and (b) $t=u \circ f$ for some $f \in F_{1}$ and $u \in M O b s_{\Sigma}$. In case (a), t is a Σ-observer and thus the proof is complete. In case (b), $u^{B}\left(f^{B}(a)\right)=(u \circ f)^{B}(a)=t^{B}(a) \neq t^{B}(b)=(u \circ f)^{B}(b)=u^{B}\left(f^{B}(b)\right)$. Hence $u \in M O b s_{\Sigma}$ implies $\left(f^{B}(a), f^{B}(b)\right) \notin o b s_{\Sigma}^{B}$ and thus by assumption, $(a, b) \notin o b s_{\Sigma}^{B}$. Again, the proof is complete.

If neither case (a) nor case (b) holds true, then $t=\left[u_{i}\right]_{i \in I} \circ v$ for some $\left\{u_{i}: s_{i} \rightarrow \operatorname{ran}\right\}_{i \in I} \cup\{v\} \subseteq O b s_{\Sigma^{\prime}}$ such that for some $k \in I, u_{k}$ contains at least one F_{1}-symbol. Since $t^{B}(a) \neq t^{B}(b)$, there are $i, j \in I, c \in s_{i}^{B}$ and $d \in s_{j}^{B}$ such that $r a n_{v}=\coprod_{i \in I} s_{i}, v^{B}(a)=(c, i), v^{B}(b)=(d, j), c \neq d$ and $u_{i}^{B}(c) \neq u_{j}^{B}(d)$.

Case 1: $i=j=k$. Then $u_{k}^{B}(c) \neq u_{k}^{B}(d)$. Since u_{k} is a superterm of t, the induction hypothesis implies $(c, d) \notin o b s_{\Sigma^{\prime}}^{B}$, i.e., $w^{B}(c) \neq w^{B}(d)$ for some $w \in M O b s_{\Sigma, s_{k}}$. Hence

$$
\begin{align*}
\left(\left[v_{i}\right]_{i \in I} \circ v\right)^{B}(a) & =\left(\left[v_{i}^{B}\right]_{i \in I}\right)\left(v^{B}(a)\right)=\left(\left[v_{i}^{B}\right]_{i \in I}\right)(c, k)=v_{k}^{B}(c)=w^{B}(c) \neq w^{B}(d)= \tag{4}\\
v_{k}^{B}(d) & =\left(\left[v_{i}^{B}\right]_{i \in I}\right)(d, k)=\left(\left[v_{i}^{B}\right]_{i \in I}\right)\left(v^{B}(b)\right)=\left(\left[v_{i}\right]_{i \in I} \circ v\right)^{B}(b)
\end{align*}
$$

where for all $i \in I$,

$$
v_{i}= \begin{cases}w: s_{k} \rightarrow \operatorname{ran}_{w} & \text { if } i=k, \\ u_{i}: s_{i} \rightarrow \operatorname{ran}_{w} & \text { if } i \neq k\end{cases}
$$

Case 2: $i \neq k$ or $j \neq k$. For all $i \in I$, let

$$
v_{i}= \begin{cases}\iota_{1}: s_{k} \rightarrow 1+\operatorname{ran}_{w} & \text { if } i=k \\ \iota_{2} \circ u_{i}: s_{i} \rightarrow 1+\text { ran }_{w} & \text { if } i \neq k\end{cases}
$$

Hence

$$
\begin{cases}v_{i}^{B}(c)=\iota_{2}\left(u_{i}^{B}(c)\right) \neq \iota_{2}\left(u_{j}^{B}(d)\right)=v_{j}^{B}(d) & \text { if } i \neq k \text { and } j \neq k, \\ v_{i}^{B}(c)=\iota_{1}(c) \neq \iota_{2}\left(u_{j}^{B}(d)\right)=v_{j}^{B}(d) & \text { if } i=k, \\ v_{i}^{B}(c)=\iota_{2}\left(u_{i}^{B}(c)\right) \neq \iota_{1}(d)=v_{j}^{B}(d) & \text { if } j=k,\end{cases}
$$

and thus

$$
\begin{gather*}
\left(\left[v_{i}\right]_{i \in I} \circ v\right)^{B}(a)=\left(\left[v_{i}^{B}\right]_{i \in I}\right)\left(v^{B}(a)\right)=\left(\left[v_{i}^{B}\right]_{i \in I}\right)(c, i)=v_{i}^{B}(c) \neq v_{j}^{B}(d)= \tag{5}\\
\left(\left[v_{i}^{B}\right]_{i \in I}\right)(d, j)=\left(\left[v_{i}^{B}\right]_{i \in I}\right)\left(v^{B}(b)\right)=\left(\left[v_{i}\right]_{i \in I} \circ v\right)^{B}(b) .
\end{gather*}
$$

Since, in both cases, $\left[v_{i}\right]_{i \in I} \circ v$ contains less occurrences of F_{1}-symbols than t, the induction hypothesis implies $(a, b) \notin o b s_{\Sigma}^{B}$. We conclude that B is Σ-observable.

Theorem 11.3 (conservative model extension)
(1) Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a visible abstraction with base type $S P=(\Sigma, A X)$, Ini be initial in $M o d_{E U}(S P)$, Ini i^{\prime} be initial in $\operatorname{Mod}\left(\Sigma^{\prime}, A X\right), \sigma$ be the relation transformer defined by $A X^{\prime} \backslash A X$ and Φ be the ($\left.\operatorname{Ini} i^{\prime}, \sigma\right)$ step functor. Ini can be extended to an initial object of $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$ if $B=l f p(\Phi) / \equiv^{l f p(\Phi)}$ is Σ-consistent and reach \sum_{Σ}^{B} is F_{1}-compatible. The converse holds true if $S P$ satisfies 5.1(1).
(2) Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a hidden restriction with base type $S P=(\Sigma, A X)$, Fin be final in $M o d_{E U}(S P)$, Fin' be final in $\operatorname{Mod}\left(\Sigma^{\prime}, A X\right), \sigma$ be the relation transformer defined by $A X^{\prime} \backslash A X$ and Φ be the $\left(F i n^{\prime}, \sigma\right)$ step functor. Fin can be extended to a final object of $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$ if $B=g f p(\Phi) \mid a l l{ }^{g f p}(\Phi)$ is Σ-complete and obs s_{Σ}^{B} is F_{1}-compatible. The converse holds true if $S P$ satisfies 5.1(2).

Proof. (1) By Theorem $10.9(1), B$ is initial in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. Suppose that B is Σ-consistent and reach Σ_{Σ}^{B} is F_{1}-compatible. By Lemma $10.8(3), B$ is Σ^{\prime}-reachable and thus by Theorem $11.2(1), B$ is Σ-reachable because reach $_{\Sigma}^{B}$ is F_{1}-compatible. Since $\left.B\right|_{\Sigma} \in \operatorname{Mod}_{E U}(S P)$, Lemma 11.1(1) implies that Ini can be extended to a Σ^{\prime}-structure that is Σ^{\prime}-isomorphic to B and thus initial in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$.

Suppose that $S P$ satisfies $5.1(1)$ and Ini is initial in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. Then $\operatorname{Mod}_{E U}(S P)=\operatorname{Mod}(\Sigma, A)$ for some set A. Moreover, B and $I n i$ are Σ^{\prime}-isomorphic. Since Ini is initial in $\operatorname{Mod}_{E U}(S P)=M o d_{E U}(\Sigma, A)$, Lemma $10.8(3)$ implies that $I n i$ is Σ-reachable and Σ-consistent. Since $I n i$ and B are Σ^{\prime}-isomorphic, Lemma $10.7(4 / 5)$ implies that B is also Σ-consistent and Σ-reachable, and thus reach ${ }_{\Sigma}^{B}$ is F_{1}-compatible.
(2) By Theorem $10.10(1), B$ is final in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. Suppose that B is Σ-complete and obs Σ_{Σ}^{B} is $F_{1^{-}}$ compatible. By Lemma $10.8(4), B$ is Σ^{\prime}-observable and thus by Theorem $11.2(2), B$ is Σ-observable because $o b s_{\Sigma}^{B}$ is F_{1}-compatible. Since $\left.B\right|_{\Sigma} \in \operatorname{Mod}_{E U}(S P)$, Lemma $11.1(2)$ implies that Fin can be extended to a Σ^{\prime}-structure that is Σ^{\prime}-isomorphic to B and thus final in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$.

Suppose that $S P$ satisfies 5.1(2) and Fin is final in $\operatorname{Mod}_{E U}\left(S P^{\prime}\right)$. Then $\operatorname{Mod}_{E U}(S P)=\operatorname{Mod}_{E U}(\Sigma, A)$ for some set A. Moreover, B and Fin are Σ^{\prime}-isomorphic. Since Fin is final in $\operatorname{Mod}_{E U}(S P)=\operatorname{Mod}_{E U}(\Sigma, A)$, Lemma 10.8(4) implies that Fin is Σ-observable and Σ-complete. Since F in and B are Σ^{\prime}-isomorphic, Lemma $10.7(4 / 5)$ implies that B is also Σ-complete and Σ-observable, and thus obs Σ_{Σ}^{B} is F_{1}-compatible.

12 The perfect model

Definition 12.1 (perfect model of a swinging type) Let $S P=(\Sigma, A X)$ be a swinging type. The perfect model of $S P, \operatorname{Per}(S P)$, is defined inductively as follows: If $S P=(\emptyset, \emptyset)$, then $\operatorname{Per}(S P)$ is the empty Σ-structure. Otherwise

- $\operatorname{Per}(S P)$ is the initial object of $\operatorname{Mod}_{E U}(S P)$ if $S P$ is visible, but not a visible restriction.
- $\operatorname{Per}(S P)$ is the initial object of $\operatorname{OMod}_{E U}(S P)$ if $S P$ is a hidden abstraction.
- $\operatorname{Per}(S P)$ is the final object of $R M o d_{E U}(S P)$ if $S P$ is a visible restriction.
- $\operatorname{Per}(S P)$ is the final object of $\operatorname{Mod}_{E U}(S P)$ if $S P$ is hidden, but not a hidden abstraction.

Theorems $6.3,6.4,7.1,7.2,10.9$ and 10.10 ensure the existence of the perfect model. The following two lemmas provide conditions under which the quotients in Theorem 10.9 and the substructures in Theorem 10.10 are not proper:

Lemma 12.2 (trivial quotients) Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a μ-extension of a swinging type $S P=(\Sigma, A X)$. Let Ini be initial in $\operatorname{Mod}_{E U}(S P)$.
(1) If CONH is the set of all axioms of $A X_{1}=A X^{\prime} \backslash A X$ that do not include \equiv_{s} for some $s \in S_{1}$, then for all $s \in S_{1}$, the least $S P^{\prime}$-model over Ini interprets \equiv_{s} as the diagonal of $I n i_{s}^{2}$.
(2) If INVH $\subseteq A X^{\prime}$, then for all $s \in S_{1}$, the least (and only) $S P^{\prime}$-model over Ini interprets all as Ini $_{s}$.

Proof. By Theorem 8.14, the least $S P^{\prime}$-model B over Ini exists. Let $\Sigma=\left(S, F, R, S_{0}, C\right)$.
(1) Let D be the S-sorted set of all $a \in \operatorname{Ini}$ such that $a \equiv^{B} a$. Since B satisfies $C O N H, \equiv^{B}$ is Σ-congruent and thus D is a substructure of Ini: Let $f: s \rightarrow s^{\prime} \in \Sigma$ and $a \in D_{s}$, i.e., $a \equiv^{B} a$. Then $f(a) \equiv^{B} f(a)$, i.e., $f(a) \in D_{s^{\prime}}$. By Theorem 10.4, $D \in \operatorname{Mod}_{E U}(S P)$. Hence by Lemma $6.2(3), D=$ Ini and thus for all $a \in \operatorname{Ini}$, $a \equiv^{B} a$, i.e., $\Delta^{I n i}$ is a subset of \equiv^{B}. Since $\Delta^{I n i}$ yields an interpretation of \equiv in $I n i$ that satisfies $C O N H$ and \equiv^{B} is the least one, \equiv^{B} is a subset $\Delta^{I n i}$. We conclude that both relations are equal, i.e., B interprets \equiv_{s} as the diagonal of $I n i_{s}^{2}$.
(2) Since $\operatorname{Ini} \in \operatorname{Mod}_{E U}(S P)$ and B satisfies $I N V H$, all ${ }^{B}$ is Σ-invariant and thus, by Theorem 10.4, can be turned into an $S P$-model over A with equality and universe such that the inclusion mapping inc from all ${ }^{B}$ to Ini is Σ-homomorphic. Since Ini is initial in $\operatorname{Mod}_{E U}(S P)$, there are unique Σ-homomorphisms $h: \operatorname{Ini} \rightarrow$ all B and $h^{\prime}:$ Ini \rightarrow Ini. Hence $i n c \circ h=i d^{I n i}$, i.e., for all $a \in \operatorname{Ini}, a=h(a) \in$ all B. Of course, all ${ }^{B}$ is a subset Ini. We conclude that both relations are equal, i.e., B interprets all as Ini.

Lemma 12.3 (trivial substructures) Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a ν-extension of a swinging type $S P=(\Sigma, A X)$ Let Fin be final in $\operatorname{Mod}_{E U}(S P)$.
(1) If $C O N C \subseteq A X^{\prime}$, then for all $s \in S_{1}$, the greatest (and only) $S P^{\prime}$-model over Fin interprets \equiv_{s} as the diagonal of Fin_{s}^{2}.
(2) If INVC is the set of all axioms of $A X_{1}=A X^{\prime} \backslash A X$ that do not include alls for some $s \in S_{1}$, then for all $s \in S_{1}$, the greatest $S P^{\prime}$-model over Fin interprets alls as Fin $_{s}$.

Proof. By Theorem 8.14, the greatest $S P^{\prime}$-model B over Fin exists. Let $\Sigma=\left(S, F, R, S_{0}, C\right)$.
(1) Since B satisfies $C O N C, \equiv^{B}$ is Σ-congruent. By Lemma $10.2(5), \equiv^{B}$ is an R^{\prime}-compatible equivalence relation. Hence $\Delta^{F i n}$ is a subset of \equiv^{B} and the quotient $D=_{\text {def }} F i n / \equiv^{B}$ is well-defined. By Theorem 10.3, $D \in \operatorname{Mod}_{E U}(S P)$. Hence by Lemma 6.2(4), $D \cong$ Fin, i.e., \equiv^{B} is contained in $\Delta^{F i n}$. We conclude that both relations are equal, i.e., B interprets \equiv_{s} as the diagonal of Fin $_{s}^{2}$.
(2) Since $F i n \in \operatorname{Mod}_{E U}(S P)$ and B satisfies $I N V C$, all ${ }^{B}$ is Σ-invariant and thus, by Theorem 10.4, can be turned into an $S P$-model over A with equality and universe such that the inclusion mapping inc from all ${ }^{B}$ to Fin is Σ-homomorphic. Since F in is final in $\operatorname{Mod}_{E U}(S P)$, there is a unique Σ-homomorphism $h:$ all ${ }^{B} \rightarrow$ Fin. Of course, all ${ }^{B}$ is contained in Fin. Since Fin yields an interpretation of all in Fin that satisfies INVC and ${ }^{a l l} l^{B}$ is the greatest one, $F i n$ is a subset of all B. We conclude that both relations are equal, i.e., B interprets all as Fin.

Successive abstractions/restrictions induced by least or greatest congruences/invariants specified by Horn or co-Horn clauses can be combined to a single one:

Lemma 12.4 (composition of abstractions) Let $S P_{1}=\left(\Sigma_{1}, A X_{1}\right)$ and $S P_{2}=\left(\Sigma_{2}, A X_{1} \cup A X_{2}\right)$ be swinging types with base type $S P=(\Sigma, A X)$ resp. $S P_{1}=\left(\Sigma_{1}, A X_{1}\right)$ such that $S P_{1}$ and $S P_{2}$ are (1) μ-extensions or (2) ν-extensions of $S P$ resp. $S P_{1}$. Let σ_{1}, σ_{2} and σ_{3} be the relation transformers defined by $A X_{1} \backslash A X, A X_{2} \backslash A X_{1}$ and $A X_{2} \backslash A X$, respectively. Let R be the relations defined by $A X_{2} \backslash A X, A$ be $a\left(\Sigma_{2} \backslash R\right)$-structure and for $i=1,3$, let Φ_{i} be the $\left(A, \sigma_{i}\right)$-step functor, Φ_{2} be the $\left(B_{1} / \equiv^{B_{1}}, \sigma_{2}\right)$-step functor and for $i=1,2,3$, let (1) $B_{i}=l f p\left(\Phi_{i}\right)$ or (2) $B_{i}=g f p\left(\Phi_{i}\right)$.
(1) If for $i=1,2,3, \Phi_{i}$ is continuous, then $B_{2} / \equiv^{B_{2}}$ and $B_{3} / \equiv^{B_{3}}$ are Σ_{2}-isomorphic.
(2) If for $i=1,2,3, \Phi_{i}$ is cocontinuous, then $B_{2} / \equiv^{B_{2}}$ and $B_{3} / \equiv^{B_{3}}$ are Σ_{2}-isomorphic.

Proof. (1) Let $n a t_{1}$, nat t_{2} and $n a t_{3}$ be the natural mappings from A to $B_{1} / \equiv^{B_{1}}$, from $B_{1} / \equiv^{B_{1}}$ to $B_{2} / \equiv^{B_{2}}$ and from A to $B_{3} / \equiv^{B_{3}}$, respectively.

Suppose that the function $h: B_{2} / \equiv^{B_{2}} \rightarrow B_{3} / \equiv^{B_{3}}$ with $h \circ n a t_{2} \circ$ nat $_{1}={ }_{\text {def }} n a t_{3}$ is bijective. Since $n a t_{2} \circ n a t_{1}$ is Σ_{2}-epimorphic and $n a t_{3}$ is Σ_{2}-homomorphic, Lemma $4.16(1)$ implies that h is a Σ_{2}-isomorphism. For the bijectivity of h we must show that for all $a, b \in A$,

$$
[a]_{\equiv^{B_{1}}} \equiv{ }^{B_{2}}[b]_{\equiv^{B}} \quad \text { iff } \quad a \equiv^{B_{3}} b,
$$

or, more generally, for all $r: s \in R$ and $a \in s^{A}$,

$$
\begin{equation*}
[a]_{\equiv^{B_{1}}} \in r^{B_{2}} \quad \text { iff } \quad a \in r^{B_{3}} . \tag{3}
\end{equation*}
$$

Let $i=1,2,3$. Since Φ_{i} is continuous, Theorem 8.3(2) implies $B_{i}=\sqcup_{j \in \mathbb{N}} \Phi_{i}^{j}(\perp)$. We start with the "only-if"-direction of (3) and show by induction on j that for all $j \in \mathbb{N}$,

$$
\begin{equation*}
[a]_{\equiv B_{1}} \in r^{\Phi_{2}^{j}(\perp)} \quad \text { implies } \quad a \in r^{\Phi_{3}^{k}(\perp)} \tag{4}
\end{equation*}
$$

for some $k \in \mathbb{N}$. Suppose that

$$
\begin{equation*}
a \in r^{B_{1}} \quad \text { implies } \quad a \in r^{\Phi_{3}^{k}(\perp)} \tag{5}
\end{equation*}
$$

for some $k \in \mathbb{N}$. Let $[a]_{\equiv_{B_{1}}} \in r^{\Phi_{2}^{j}(\perp)}$. If $j=0$, then $[a] \in r^{\perp}=r^{B_{1} \equiv^{B_{1}}}$ and thus $a \in r^{B_{1}}$. Hence by (5), $a \in r^{\Phi_{3}^{k}(\perp)}$ for some $k \in \mathbb{N}$. If $j>0$, then by the definition of Φ_{2},

$$
[a] \in \varphi_{r, A X_{2}}^{\Phi_{2}^{j-1}(\perp)}
$$

By induction hypothesis, for all relations q occurring in $\varphi_{r, A X_{2}},[b]_{\equiv_{B_{1}}} \in q^{\Phi_{2}^{j-1}(\perp)}$ implies $b \in q^{\Phi_{3}^{k}(\perp)}$ for some $k \in \mathbb{N}$. Hence by the monotonicity of Φ_{2},

$$
a \in \varphi_{r, A X_{2}}^{\Phi_{3}^{k}(\perp)} \subseteq \varphi_{r, A X_{3}}^{\Phi_{3}^{k}(\perp)}
$$

for some $k \in \mathbb{N}$ because $A X_{2} \subseteq A X_{3}$ and thus for all Σ_{2}-structures $C, \varphi_{r, A X_{2}}^{C} \subseteq \varphi_{r, A X_{3}}^{C}$. By the definition of Φ_{3}, we conclude that $a \in r^{\Phi_{3}^{k+1}(\perp)}$. This finishes the proof of (4). It remains to show (5), i.e., that for all $j \in \mathbb{N}$,

$$
\begin{equation*}
a \in r^{\Phi_{1}^{j}(\perp)} \quad \text { implies } \quad a \in r^{\Phi_{3}^{k}(\perp)} \tag{6}
\end{equation*}
$$

for some $k \in \mathbb{N}$. Let $a \in r^{\Phi_{1}^{j}(\perp)}$. If $j=0$, then $a \in r^{\perp}=r^{A}=r^{\Phi_{3}^{j}(\perp)}$. If $j>0$, then by the definition of Φ_{1},

$$
a \in \varphi_{r, A X_{1}}^{\Phi_{1}^{j-1}(\perp)}
$$

By induction hypothesis, for all relations q occurring in $\varphi_{r, A X_{1}}, b \in q^{\Phi_{1}^{j-1}(\perp)}$ implies $b \in q^{\Phi_{3}^{k}(\perp)}$ for some $k \in \mathbb{N}$. Hence by the monotonicity of Φ_{1},

$$
a \in \varphi_{r, A X_{1}}^{\Phi_{3}^{k}(\perp)} \subseteq \varphi_{r, A X_{3}}^{\Phi_{3}^{k}(\perp)}
$$

for some $k \in \mathbb{N}$ because $A X_{1} \subseteq A X_{3}$ and thus for all Σ_{2}-structures $C, \varphi_{r, A X_{1}}^{C} \subseteq \varphi_{r, A X_{3}}^{C}$. By the definition of Φ_{3}, we conclude that $a \in r^{\Phi^{k+1}(\perp)}$. This finishes the proof of (6) and thus of (5).

We proceed with the "if"-direction of (3) and show by induction on j that for all $j \in \mathbb{N}$,

$$
\begin{equation*}
a \in r^{\Phi_{3}^{j}(\perp)} \quad \text { implies } \quad[a]_{\equiv B_{1}} \in r^{\Phi_{2}^{k}(\perp)} \tag{7}
\end{equation*}
$$

for some $k \in \mathbb{N}$. Let $a \in r^{\Phi_{3}^{j}(\perp)}$. If $j=0$, then $a \in r^{\perp}=r^{A} \subseteq r^{B_{1}}$ and thus $[a] \in r^{B_{1} \vDash^{B_{1}}}=r^{\Phi_{2}^{j}(\perp)}$. If $j>0$, then by the definition of Φ_{3},

$$
a \in \varphi_{r, A X_{3}}^{\Phi_{3}^{j-1}(\perp)}
$$

Since $A X_{3}=A X_{1} \cup A X_{2}$, there are two cases: (i) $a \in \varphi_{r, A X_{1}}^{\Phi_{3}^{j-1}(\perp)}$ and (ii) $a \in \varphi_{r, A X_{2}}^{\Phi_{3}^{j-1}(\perp)}$.
(i) By induction hypothesis, for all relations q occurring in $\varphi_{r, A X_{1}}, b \in q^{\Phi_{3}^{j-1}(\perp)}$ implies $[b] \in q^{\Phi_{2}^{k}(\perp)}$ for some $k \in \mathbb{N}$. Hence by the monotonicity of $\Phi_{1},[a] \in \varphi_{r, A X_{1}}^{\Phi_{2}^{k}(\perp)}$ and thus $[a] \in r^{\Phi_{2}^{k}(\perp)}$ because by Theorem 10.3 , $B_{1} \models r \Leftarrow \varphi_{r, A X_{1}}$ implies $\perp=B_{1} / \equiv^{B_{1}} \models r \Leftarrow \varphi_{r, A X_{1}}$ and thus $\Phi_{2}^{k}(\perp) \models r \Leftarrow \varphi_{r, A X_{1}}$.
(ii) By induction hypothesis, for all relations q occurring in $\varphi_{r, A X_{2}}, b \in q^{\Phi_{3}^{j-1}(\perp)}$ implies $[b] \in q^{\Phi_{2}^{k}(\perp)}$ for some $k \in \mathbb{N}$. Hence by the monotonicity of $\Phi_{2},[a] \in \varphi_{r, A X_{2}}^{\Phi_{2}^{k}(\perp)}$ for some $k \in \mathbb{N}$. By the definition of Φ_{2}, we conclude that $[a] \in r^{\Phi_{2}^{k+1}(\perp)}$. This finishes the proof of (7).
(2) can be shown analogously.

Lemma 12.5 (composition of restrictions) Let $S P_{1}=\left(\Sigma_{1}, A X_{1}\right)$ and $S P_{2}=\left(\Sigma_{2}, A X_{1} \cup A X_{2}\right)$ be swinging types with base type $S P=(\Sigma, A X)$ resp. $S P_{1}=\left(\Sigma_{1}, A X_{1}\right)$ such that $S P_{1}$ and $S P_{2}$ are (1) ν-extensions or (2) μ-extensions of $S P$ resp. $S P_{1}$. Let σ_{1}, σ_{2} and σ_{3} be the relation transformers defined by $A X_{1} \backslash A X, A X_{2} \backslash A X_{1}$ and $A X_{2} \backslash A X$, respectively. Let R be the relations defined by $A X_{2} \backslash A X$ and A be a $\left(\Sigma_{2} \backslash R\right)$-structure. For $i=1,3$, let Φ_{i} be the $\left(A, \sigma_{i}\right)$-step functor, Φ_{2} be the $\left(B_{1} \mid\right.$ all $\left.^{B_{1}}, \sigma_{2}\right)$-step functor and for $i=1,2,3$, let (1) $B_{i}=g f p\left(\Phi_{i}\right)$ or (2) $B_{i}=l f p\left(\Phi_{i}\right)$.
(1) If for $i=1,2,3, \Phi_{i}$ is cocontinuous, then $B_{2} \mid$ all ${ }^{B_{2}}$ and $B_{3} \mid$ all ${ }^{B_{3}}$ are Σ_{2}-isomorphic.
(2) If for $i=1,2,3, \Phi_{i}$ is continuous, then $B_{2} \mid$ all ${ }^{B_{2}}$ and $B_{3} \mid$ all ${ }^{B_{3}}$ are Σ_{2}-isomorphic.

Proof. (1) Let $i n c_{1}$, $i n c_{2}$ and $i n c_{3}$ be the inclusion mappings from $B_{1} \mid a l l^{B_{1}}$ to A, from $B_{2} \mid a l l^{B_{2}}$ to $B_{1} \mid$ all $b^{B_{1}}$ and from $B_{3} \mid a^{B_{3}}$ to A, respectively.

Suppose that the function $h: B_{3} \mid$ all $^{B_{3}} \rightarrow B_{2} \mid$ all ${ }^{B_{2}}$ with $i n c_{1} \circ i n c_{2} \circ h=i n c_{3}$ is bijective. Since $i n c_{1} \circ i n c_{2}$ is Σ_{2}-monomorphic and inc $_{3}$ is Σ_{2}-homomorphic, Lemma 4.16(2) implies that h is a Σ_{2}-isomorphism. For the bijectivity of h we must show all $^{B_{2}}=$ all $^{B_{3}}$ or, more generally, for all $r: s \in R$,

$$
\begin{equation*}
r^{B_{2}} \cap a l l^{B_{2}}=r^{B_{3}} \cap a l l^{B_{3}} \tag{8}
\end{equation*}
$$

Let $i=1,2,3$. Since Φ_{i} is cocontinuous, Theorem 8.3(2) implies $B_{i}=\sqcap_{j \in \mathbb{N}} \Phi_{i}^{j}(\top)$. We start with the left-to-right inclusion of (8) and show by induction on j that for all $j \in \mathbb{N}$,

$$
\begin{equation*}
a \in s^{A} \backslash r^{\Phi_{3}^{j}(T)} \quad \text { implies } \quad a \in s^{A} \backslash r^{\Phi_{2}^{k}(T)} \tag{9}
\end{equation*}
$$

for some $k \in \mathbb{N}$. Let $a \in s^{A} \backslash r^{\Phi_{3}^{j}(T)} \cdot j=0$ implies

$$
s^{A} \backslash r^{\Phi_{3}^{j}(T)}=s^{A} \backslash r^{\top}=s^{A} \backslash r^{A}=s^{A} \backslash s^{A}=\emptyset
$$

Hence $j>0$ and thus by the definition of Φ_{3},

$$
a \in s^{A} \backslash \varphi_{r, A X_{3}}^{\Phi_{3}^{j-1}(T)}
$$

Since $A X_{3}=A X_{1} \cup A X_{2}$, there are two cases: (i) $a \in s^{A} \backslash \varphi_{r, A X_{1}}^{\Phi_{3}^{j-1}(T)}$ and (ii) $a \in s^{A} \backslash \varphi_{r, A X_{2}}^{\Phi_{1}^{j-1}(T)}$.
(i) By induction hypothesis, for all relations $q: s^{\prime}$ occurring in $\varphi_{r, A X_{1}}, b \in\left(s^{\prime}\right)^{A} \backslash q^{\Phi_{3}^{j-1}}(\mathrm{~T})$ implies $b \in$ $\left(s^{\prime}\right)^{A} \backslash q^{\Phi_{2}^{k}(T)}$ for some $k \in \mathbb{N}$. Hence by the monotonicity of $\Phi_{3}, a \in s^{A} \backslash \varphi_{r, A X_{1}}^{\Phi_{2}^{k}(T)}$ and thus $a \in s^{A} \backslash r^{\Phi_{2}^{k}(T)}$ for some $k \in \mathbb{N}$ because by Theorem 9.4, $B_{1} \models r \Rightarrow \varphi_{r, A X_{1}}$ implies $T=B_{1} \mid a l l^{B_{1}} \models r \Rightarrow \varphi_{r, A X_{1}}$ and thus $\Phi_{2}^{k}(\top) \models r \Rightarrow \varphi_{r, A X_{1}}$.
(ii) By induction hypothesis, for all relations $q: s^{\prime}$ occurring in $\varphi_{r, A X_{2}}, b \in\left(s^{\prime}\right)^{A} \backslash q^{\Phi_{3}^{j-1}}(\mathrm{~T})$ implies $b \in$ $\left(s^{\prime}\right)^{A} \backslash q^{\Phi_{2}^{k}(T)}$ for some $k \in \mathbb{N}$. Hence by the monotonicity of $\Phi_{3}, a \in s^{A} \backslash \varphi_{r, A X_{2}}^{\Phi_{2}^{k}\left(T^{\prime}\right)}$ for some $k \in \mathbb{N}$. By the definition of Φ_{2}, we conclude that $a \in s^{A} \backslash r^{\Phi_{2}^{k+1}(T)}$. This finishes the proof of (9).

We proceed with the right-to-left inclusion of (8) and show by induction on j that for all $j \in \mathbb{N}$,

$$
\begin{equation*}
a \in s^{A} \backslash r^{\Phi_{2}^{j}(T)} \quad \text { implies } \quad a \in s^{A} \backslash r^{\Phi_{3}^{k}(T)} \tag{10}
\end{equation*}
$$

for some $k \in \mathbb{N}$. Suppose that

$$
\begin{equation*}
a \in s^{A} \backslash r^{B_{1} \mid a l l^{B_{1}}} \quad \text { implies } \quad a \in s^{A} \backslash r^{\Phi_{3}^{k}(\top)} \tag{11}
\end{equation*}
$$

for some $k \in \mathbb{N}$. Let $a \in s^{A} \backslash r^{\Phi_{2}^{j}(T)}$. If $j=0$ then $a \in s^{A} \backslash r^{\top}=s^{A} \backslash r^{B_{1} \mid a l l^{B_{1}}}$. Hence by (11), $a \in s^{A} \backslash r^{\Phi_{3}^{k}(T)}$ for some $k \in \mathbb{N}$. If $j>0$, then by the definition of Φ_{2},

$$
a \in s^{A} \backslash \varphi_{r, A X_{2}}^{\Phi_{2}^{j}(\mathrm{~T})}
$$

By induction hypothesis, for all relations $q: s^{\prime}$ occurring in $\varphi_{r, A X_{2}}, b \in\left(s^{\prime}\right)^{A} \backslash q^{\Phi_{2}^{j-1}(T)}$ implies $b \in\left(s^{\prime}\right)^{A} \backslash q^{\Phi_{3}^{k}(T)}$ for some $k \in \mathbb{N}$. Hence by the monotonicity of Φ_{2},

$$
a \in s^{A} \backslash \varphi_{r, A X_{2}}^{\Phi_{3}^{k}(\top)} \subseteq \varphi_{r, A X_{3}}^{\Phi_{3}^{k}(\perp)}
$$

for some $k \in \mathbb{N}$ because $A X_{2} \subseteq A X_{3}$ and thus for all Σ_{2}-structures $C, \varphi_{r, A X_{3}}^{C} \subseteq \varphi_{r, A X_{2}}^{C}$. By the definition of Φ_{3}, we conclude that $a \in s^{A} \backslash r^{\Phi_{3}^{k+1}(T)}$. This finishes the proof of (10). It remains to show (11), i.e., that for all $j \in \mathbb{N}$,

$$
\begin{equation*}
a \in s^{A} \backslash r^{\Phi_{1}^{j}(T)} \quad \text { implies } \quad a \in s^{A} \backslash r^{\Phi_{3}^{k}(T)} \tag{12}
\end{equation*}
$$

for some $k \in \mathbb{N}$. Let $a \in s^{A} \backslash r^{\Phi_{1}^{j}(T)}$. If $j=0$, then $a \in s^{A} \backslash r^{\top}=r^{A}=r^{\Phi_{3}^{j}(T)}$. If $j>0$, then by the definition of Φ_{1},

$$
a \in s^{A} \backslash \varphi_{r, A X_{1}}^{\Phi_{1}^{j-1}(T)}
$$

By induction hypothesis, for all relations $q: s^{\prime}$ occurring in $\varphi_{r, A X_{1}}, b \in\left(s^{\prime}\right)^{A} \backslash q^{\Phi_{1}^{j-1}(T)}$ implies $b \in\left(s^{\prime}\right)^{A} \backslash q^{\Phi_{3}^{k}(T)}$ for some $k \in \mathbb{N}$. Hence by the monotonicity of Φ_{1},

$$
a \in s^{A} \backslash \varphi_{r, A X_{1}}^{\Phi_{3}^{k}(T)} \subseteq s^{A} \backslash \varphi_{r, A X_{3}}^{\Phi_{3}^{k}(T)}
$$

for some $k \in \mathbb{N}$ because $A X_{1} \subseteq A X_{3}$ and thus for all Σ_{2}-structures $C, \varphi_{r, A X_{3}}^{C} \subseteq \varphi_{r, A X_{1}}^{C}$. By the definition of Φ_{3}, we conclude that $a \in s^{A} \backslash r^{\Phi_{3}^{k+1}(T)}$. This finishes the proof of (12) and thus of (11).
(2) can be shown analogously.

By Theorems 6.3, 6.4, 7.1, 7.2, 10.9 and 10.10 and Lemmas 12.4 and 12.5, the perfect model of a swinging type $(\Sigma, A X)$ is always a (maybe trivial) quotient of a free Σ-structure or a (maybe trivial) substructure of a cofree Σ-structure:

Theorem 12.6 Let $S P=(\Sigma, A X)$ be a swinging type with primitive sort set S_{0} and sort-building predecessor $S P_{1}$.
(1) Let $S P$ be an abstraction. Then there are a unique S_{0}-sorted set A and a μ-extension $S P_{2}$ of $S P_{1}$ such that $S P$ is a ν-extension of $S P_{2}$ and

$$
\operatorname{Per}(S P)=\left(\operatorname{Free}(\Sigma, A) / \equiv^{l f p\left(\Phi_{1}\right)}\right) / \equiv^{g f p\left(\Phi_{2}\right)}
$$

where $\Phi_{i}, i=1,2$, is the $\left(A, \sigma_{i}\right)$-step functor and σ_{1}, σ_{2} are the relation transformers defined by $A X_{2} \backslash A X_{1}$ and $A X \backslash A X_{2}$, respectively. If $S P$ is a hidden abstraction, then $S P_{2}=S P$.
(2) Let $S P$ be a restriction. Then there are a unique S_{0}-sorted set A and a ν-extension $S P_{2}$ of $S P_{1}$ such that $S P$ is a μ-extension of $S P_{2}$ and

$$
\operatorname{Per}(S P)=\left(\operatorname{Cofree}(\Sigma, A) \mid \operatorname{all}^{g f p\left(\Phi_{1}\right)}\right) \mid \operatorname{all}^{l f p\left(\Phi_{2}\right)}
$$

where $\Phi_{i}, i=1,2$, is the $\left(A, \sigma_{i}\right)$-step functor and σ_{1}, σ_{2} are the relation transformers defined by $A X_{2} \backslash A X_{1}$ and $A X \backslash A X_{2}$, respectively. If $S P$ is a visible restriction, then $S P_{2}=S P$.

Theorem 12.6 allows us to characterize conservative model extensions in terms of congruences on free structures and invariants on cofree structures, respectively:

Lemma 12.7 Let $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be a swinging type with base type $S P=(\Sigma, A X), F_{1}$ be the set of function symbols of $\Sigma^{\prime} \backslash \Sigma$ and $A=\operatorname{prim}\left(S P^{\prime}\right)$.
(1) Let $S P^{\prime}$ be a visible abstraction and $\sim=^{l f p\left(\Phi\left(S P^{\prime}\right)\right)}$,
(i) for all $f: s \rightarrow s^{\prime} \in F_{1}, t \in \operatorname{MGen}_{\Sigma, s}$ and $a \in \operatorname{dom}_{t}^{A}$ there are $\iota_{u}(b) \in \operatorname{Free}\left(\Sigma^{\prime}, A\right)$ such that $\iota_{f \circ t}(a) \sim \iota_{u}(b)$,
(ii) for all $\iota_{t}(a), \iota_{u}(b) \in \operatorname{Free}\left(\Sigma^{\prime}, A\right), \iota_{t}(a) \sim \iota_{u}(b)$ implies $t=u$ and $a=b$.

Then $\operatorname{Per}\left(S P^{\prime}\right)$ is Σ-reachable and Σ-consistent.
(2) Let $S P^{\prime}$ be a hidden restriction, inv $=\operatorname{all} \operatorname{gfp}\left(\Phi\left(S P^{\prime}\right)\right)$,
(iii) for all $f: s \rightarrow s^{\prime} \in F_{1}$ and $a, b \in s^{i n v}$, if $\pi_{t}(a)=\pi_{t}(b)$ for all $t \in M O b s_{\Sigma, s}$, then $\pi_{t \circ f}(a)=\pi_{t \circ f}(b)$ for all $t \in \mathrm{MObs}_{\Sigma, s^{\prime}}$,
(iv) for all sorts $s \in \Sigma$ and $a \in s^{\operatorname{Cofree}\left(\Sigma^{\prime}, A\right)}$ there is $b \in s^{i} n v$ such that for all $t \in \operatorname{MObs}_{\Sigma, s}, \pi_{t}(a)=\pi_{t}(b)$.

Then $\operatorname{Per}\left(S P^{\prime}\right)$ is Σ-observable and Σ-complete.
 $t^{\text {Free }\left(\Sigma^{\prime}, A\right)}=\iota_{t}$. Hence by (ii), B is Σ-consistent. Since by Lemma $10.7(3), B$ is Σ-reachable, Theorem 11.2(1) implies that B is Σ-reachable if $r e a c h \Sigma_{\Sigma}^{B}$ is F_{1}-compatible. So let $f: s \rightarrow s^{\prime} \in F_{1}, t \in M G e n_{\Sigma^{\prime}, s}$ and $a \in d o m_{t}^{A}$ such that

$$
t^{B}(a)=\operatorname{nat}\left(t^{\operatorname{Free}\left(\Sigma^{\prime}, A\right)}(a)\right)=\operatorname{nat}\left(\iota_{t}(a)\right) \in \operatorname{reach}_{\Sigma}^{B} .
$$

Then there are $u \in M G e n_{\Sigma}$ and $b \in \operatorname{dom}_{u}^{A}$ such that

$$
\operatorname{nat}\left(\iota_{t}(a)\right)=t^{B}(a)=u^{B}(b)=\operatorname{nat}\left(u^{\text {Free }\left(\Sigma^{\prime}, A\right)}(b)\right)=\operatorname{nat}\left(\iota_{u}(b)\right)
$$

and thus $\iota_{t}(a) \sim \iota_{u}(b)$. By (i), there are $v \in \operatorname{MGen}_{\Sigma}$ and $c \in d o m_{v}^{A}$ such that $\iota_{f \circ u}(b) \sim \iota_{v}(c)$. Hence

$$
\begin{gathered}
f^{B}\left(\operatorname{nat}\left(\iota_{t}(a)\right)\right)=f^{B}\left(\operatorname{nat}\left(\iota_{u}(b)\right)\right)=\operatorname{nat}\left(f^{\operatorname{Free}\left(\Sigma^{\prime}, A\right)}\left(\iota_{u}(b)\right)\right)=\operatorname{nat}\left(f^{\operatorname{Free}\left(\Sigma^{\prime}, A\right)}\left(u^{\operatorname{Free}\left(\Sigma^{\prime}, A\right)}(b)\right)\right) \\
=\operatorname{nat}\left((f \circ u)^{\operatorname{Free}\left(\Sigma^{\prime}, A\right)}(b)\right)=\operatorname{nat}\left(\iota_{f \circ u}(b)\right)=\operatorname{nat}\left(\iota_{v}(c)\right) \in \operatorname{reach}_{\Sigma}^{B} .
\end{gathered}
$$

We conclude that reach Σ_{Σ}^{B} is F_{1}-compatible.
(2) By Theorem 12.6(2), $B={ }_{d e f} \operatorname{Per}\left(S P^{\prime}\right)=\operatorname{Cofree}\left(\Sigma^{\prime}, A\right) \mid i n v$. By Theorem 6.4, for all $t \in M O b s_{\Sigma^{\prime}}$, $t^{\text {Cofree }\left(\Sigma^{\prime}, A\right)}=\pi_{t}$. Hence by (iv), B is Σ-complete. Since by Lemma $10.7(4), B$ is Σ-observable, Theorem 11.2(2) implies that B is Σ-observable if $o b s_{\Sigma}^{B}$ is F_{1}-compatible. So let $f: s \rightarrow s^{\prime} \in F_{1}$ and $a, b \in s^{B} \subseteq s^{i n v}$ such
that $(a, b) \in o b s_{\Sigma}^{B}$, i.e., for all $t \in \operatorname{MObs}_{\Sigma, s}, \pi_{t}(a)=\pi_{t}(b)$. Then by (iii), for all $t \in M O b s_{\Sigma, s^{\prime}}, \pi_{t \circ f}(a)=\pi_{t \circ f}(b)$. Hence

$$
\begin{gathered}
\pi_{t}\left(f^{B}(a)\right)=\pi_{t}\left(\operatorname{inc}\left(f^{B}(a)\right)\right)=\pi_{t}\left(f^{\operatorname{Cofree}\left(\Sigma^{\prime}, A\right)}(\operatorname{inc}(a))\right)=t^{\operatorname{Cofree}\left(\Sigma^{\prime}, A\right)}\left(f^{\operatorname{Cofree}\left(\Sigma^{\prime}, A\right)}(a)\right) \\
=(t \circ f)^{\operatorname{Cofree}\left(\Sigma^{\prime}, A\right)}(a)=\pi_{t \circ f}(a)=\pi_{t \circ f}(b)=(t \circ f)^{\operatorname{Cofree}\left(\Sigma^{\prime}, A\right)}(b)=t^{\operatorname{Cofree}\left(\Sigma^{\prime}, A\right)}\left(f^{\operatorname{Cofree}\left(\Sigma^{\prime}, A\right)}(b)\right) \\
=\pi_{t}\left(f^{\operatorname{Cofree}\left(\Sigma^{\prime}, A\right)}(\operatorname{inc}(b))\right)=\pi_{t}\left(\operatorname{inc}\left(f^{B}(b)\right)\right)=\pi_{t}\left(f^{B}(b)\right),
\end{gathered}
$$

i.e., $\left(f^{B}(a), f^{B}(b)\right) \in o b s_{\Sigma}^{B}$. We conclude that $o b s_{\Sigma}^{B}$ is F_{1}-compatible.

Definition 12.8 (covering, defining) A set T of Σ-generators is $M G e n_{\Sigma}$-covering if for all $t \in M G e n_{\Sigma}$ some term of T is a superterm of t. A set T of Σ-observers is is $M O b s_{\Sigma}$-covering if for all $t \in M O b s_{\Sigma}$ some term of T is a subterm of t.

Given a set $F_{1}=\left\{f_{1}, \ldots, f_{n}\right\}$ of S_{1}-constructors such that $F_{1} \cap F=\emptyset$, a set $A X$ of Horn clauses

$$
\left\{f_{i} \circ c_{i j} \equiv c_{i j}^{\prime} \Leftarrow \varphi_{i j} \wedge \bigwedge_{k=1}^{n_{i j}} f_{i j k} \circ c_{i j k} \equiv c_{i j k}^{\prime} \mid 1 \leq i \leq n, 1 \leq j \leq n_{i}\right\}
$$

for F_{1} is F_{1}-defining if $\left\{c_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq n_{i}\right\}$ is an $M G e n_{\Sigma}$-covering set and there is a well-founded ordering $>$ such that for all $1 \leq i \leq n, 1 \leq j \leq n_{i}$ and $1 \leq k \leq n_{i j}, f_{i j k} \in F$ and $c_{i j}^{\prime}, c_{i j k}$ and $c_{i j k}^{\prime}$ are Σ-generators, $\left(c_{i j}, c_{i j}^{\prime}\right)>\left(c_{i j k}, c_{i j k}^{\prime}\right)$ and neither the terms $c_{i j}, c_{i j}^{\prime}, c_{i j k}, c_{i j k}^{\prime}$ nor the formula $\varphi_{i j}$ contain symbols of F.

Given a set $F_{1}=\left\{f_{1}, \ldots, f_{n}\right\}$ of S_{1}-destructors such that $F_{1} \cap F=\emptyset$, a set $A X$ of Horn clauses

$$
\left\{d_{i j} \circ f_{i} \equiv c_{i j} \Rightarrow \varphi_{i j} \wedge \bigwedge_{k=1}^{n_{i j}} d_{i j k} \circ f_{i j k} \equiv c_{i j k} \mid 1 \leq i \leq n, 1 \leq j \leq n_{i}\right\}
$$

for F_{1} is a F_{1}-defining if $\left\{d_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq n_{i}\right\}$ is an $M O b s_{\Sigma}$-covering set and there is a well-founded ordering $>$ such that for all $1 \leq i \leq n, 1 \leq j \leq n_{i}$ and $1 \leq i \leq n_{i j}, f_{i j k} \in F, c_{i j}$ and $c_{i j k}$ are Σ-generators and $d_{i j k}$ is a Σ-observer, $\left(d_{i j}, c_{i j}\right)>\left(d_{i j k}, c_{i j k}\right)$ and neither the terms $d_{i j}, c_{i j}, d_{i j k}, c_{i j k}$ nor the formula $\varphi_{i j}$ contain symbols of F.

Theorem $12.9^{* * * * *}$

(1) $F_{1}=\left\{f_{1}, \ldots, f_{n}\right\} S_{1}$-constructors. AX F_{1}-defining implies Lemma 12.7(i/ii).
(1) $F_{1}=\left\{f_{1}, \ldots, f_{n}\right\} S_{1}$-destructors. AX F_{1}-defining implies Lemma 12.7(iii/iv).

13 Deductive semantics

Given a swinging type $S P=(\Sigma, A X)$, Theorem 8.14 implies that the least/greatest $S P$-model over $B=$ Free/Cofree (Σ, A) agrees with the least/greatest fixpoint of the (B, σ)-step functor where σ is the relation transformer defined by $A X$. We show that these models can also be characterized in terms of a sequent calculus based on $A X$. It is a variant of Gentzen's system LK [26]. We formulate it as a system of rules for inferring implications $\varphi \Rightarrow \psi$ and admit applications of Boolean laws in order to turn Σ-formulas into matching rule redices.

The calculus contains rules with infinitely many premises (\wedge - and \forall-introduction). Hence we must employ ordinal numbers and transfinite induction for defining the length of a proof via the calculus (see section 7). Ordinal numbers for measuring proofs rules have been used in, e.g., [106], §20, and [98], Section 1.3.

Definition 13.1 Let the assumptions of Def. 8.1 hold true, $\Sigma_{1}=\left(S_{0}, S, F^{\prime}, R\right)$ and A be a Σ_{1}-structure. The sequent calculus for $\left(A, S P^{\prime}\right)$ is given by the following rules for deriving (implications between) Σ^{\prime}-formulas. Let I be a nonempty set.

base rule	$\overline{\varphi \Longrightarrow \varphi}$ for all $\varphi \in \operatorname{Form}_{\Sigma^{\prime}(A)}$ (see Def. ??)
axiom rule	$\overline{\varphi \Longrightarrow \psi}$ for all $\varphi \Rightarrow \psi \in A X^{\prime}(A)$ (see Def. ??)
\wedge-introduction	$\frac{\varphi \Longrightarrow \psi}{\varphi \wedge \vartheta \Longrightarrow \psi} \quad \frac{\varphi \Longrightarrow \psi \vee \vartheta, \quad \varphi^{\prime} \Longrightarrow \psi^{\prime} \vee \vartheta^{\prime}}{\varphi \wedge \varphi^{\prime} \Longrightarrow\left(\psi \wedge \psi^{\prime}\right) \vee \vartheta \vee \vartheta^{\prime}}$
V-introduction	$\frac{\varphi \Longrightarrow \psi}{\varphi \Longrightarrow \psi \vee \vartheta} \quad \frac{\varphi \wedge \psi \Longrightarrow \vartheta, \quad \varphi^{\prime} \wedge \psi^{\prime} \Longrightarrow \vartheta^{\prime}}{\left(\varphi \vee \varphi^{\prime}\right) \wedge \psi \wedge \psi^{\prime} \Longrightarrow \vartheta \vee \vartheta^{\prime}}$
\neg-introduction	$\frac{\varphi \Longrightarrow \psi \vee \vartheta}{\varphi \wedge \neg \psi \Longrightarrow \vartheta} \quad \frac{\varphi \wedge \psi \Longrightarrow \vartheta}{\varphi \Longrightarrow \neg \psi \vee \vartheta}$
\Rightarrow-introduction	$\frac{\varphi \wedge \vartheta \Longrightarrow \vartheta^{\prime} \vee \psi}{\varphi \Longrightarrow\left(\vartheta \Rightarrow \vartheta^{\prime}\right) \vee \psi} \quad \frac{\varphi \Longrightarrow \psi \vee \vartheta, \quad \varphi^{\prime} \wedge \psi^{\prime} \Longrightarrow \vartheta^{\prime}}{\left(\psi \Rightarrow \varphi^{\prime}\right) \wedge \varphi \wedge \psi^{\prime} \Longrightarrow \vartheta \vee \vartheta^{\prime}}$
\forall-introduction	$\frac{\varphi \wedge \psi \odot_{k} a \Longrightarrow \vartheta}{\varphi \wedge \forall k \psi \Longrightarrow \vartheta} \quad$ for all $a \in s_{k}^{A}$ and $k \in I$ (see Def. 3.15)
	$\frac{\left\{\varphi \Longrightarrow \psi \odot_{k} a \vee \vartheta \mid a \in s_{k}^{A}\right\}}{\varphi \Longrightarrow \forall k \psi \vee \vartheta} \quad \text { for all } k \in I$
\exists-introduction	$\frac{\varphi \Longrightarrow \psi \odot_{k} a \vee \vartheta}{\varphi \Longrightarrow \exists k \psi \vee \vartheta} \quad$ for all $a \in s_{k}^{A}$ and $k \in I$
	$\frac{\left\{\varphi \wedge \psi \odot_{k} a \Longrightarrow \vartheta \mid a \in s_{k}^{A}\right\}}{\varphi \wedge \exists k \psi \Longrightarrow \vartheta} \quad$ for all $k \in I$
***	$\frac{\varphi}{t \odot \varphi} \Downarrow \quad$ for all $t: s \rightarrow s^{\prime} \in T_{\Sigma^{\prime}}$ and $\varphi: s \in \operatorname{Form}_{\Sigma}$ such that t^{A} is surjective
***	$\frac{t \odot \varphi}{\varphi} \Downarrow \quad$ for all $t: s \rightarrow s^{\prime} \in T_{\Sigma^{\prime}}$ and $\varphi: s \in$ Form $_{\Sigma}$ such that t^{A} is injective
***	$\underline{\left\{t \circ u \equiv t \circ v \mid t \in \operatorname{MObs}_{\Sigma, s}\right\}} \Downarrow \quad$ for all $s \in S$ and $u, v: \operatorname{dom} \rightarrow s \in T_{\Sigma}$

Let α be an ordinal number. The set $\vdash_{A, S P^{\prime}}^{\alpha}$ of Σ^{\prime}-formulas derivable with the sequent calculus for $\left(A, S P^{\prime}\right)$ is defined inductively as follows:

- Let $\left\{\varphi_{i}\right\}_{i \in I}$ be the premises and ψ be the conclusion of (an instance of) a rule of the sequent calculus for $\left(A, S P^{\prime}\right)$ modulo Boolean equivalences including $\varphi \times \operatorname{True} \Leftrightarrow \varphi$ and $\varphi+$ False $\Leftrightarrow \varphi$. If for all $i \in I$ there is $\alpha_{i}<\alpha$ such that $\vdash_{A, S P^{\prime}}^{\alpha_{i}} \varphi_{i}$, then $\vdash_{A, S P^{\prime}}^{\alpha} \psi$.

The length of a derivation of $\varphi \in \operatorname{Form}_{\Sigma^{\prime}}$ via the sequent calculus for $\left(A, S P^{\prime}\right)$ is the least ordinal α such that $\vdash_{A, S P^{\prime}}^{\alpha} \varphi$. We write $\vdash_{A, S P^{\prime}} \varphi$ if there is an ordinal α such that $\vdash_{A, S P^{\prime}}^{\alpha} \varphi$.

Definition 13.2 (deductive model μ - and ν-extensions) Let the assumptions of Def. 8.1 hold true, $\Sigma_{1}=$ $\left(S_{0}, S, F^{\prime}, R\right)$ and A be a Σ_{1}-structure. The deductive $\left(A, S P^{\prime}\right)$-model, $\operatorname{Ded}\left(A, S P^{\prime}\right)$, is defined as follows.

- $\left.\operatorname{Ded}\left(A, S P^{\prime}\right)\right|_{\Sigma^{\prime} \backslash R_{1}}=\left.A\right|_{\Sigma^{\prime} \backslash R_{1}}$,
- If $S P^{\prime}$ is a μ-extension of $S P$, then for all $r: s \in R_{1}$ and $t: 1 \rightarrow s \in T_{\Sigma^{\prime}}$,

$$
t^{A} \in r^{\operatorname{Ded}\left(A, S P^{\prime}\right)} \quad \text { iff } \quad \vdash_{A, S P^{\prime}} \text { True } \Rightarrow r(t)
$$

- If $S P^{\prime}$ is a ν-extension of $S P$, then for all $r: s \in R_{1}$ and $t: 1 \rightarrow s \in T_{\Sigma^{\prime}}$,

$$
t^{A} \in r^{\operatorname{Ded}\left(A, S P^{\prime}\right)} \quad \text { iff } \quad \forall_{A, S P^{\prime}} r(t) \Rightarrow \text { False }
$$

Lemma 13.3 (correctness and completeness of $\vdash_{A, S P^{\prime}}$ wrt A) Let the assumptions of Def. 8.1 hold true, $\Sigma_{1}=\left(S_{0}, S, F^{\prime}, R\right)$ and A be a Σ_{1}-structure. Then for all Σ^{\prime}-formulas $\varphi: 1$,
(1) if $S P^{\prime}$ is a μ-extension of $S P$, then $\operatorname{Ded}\left(A, S P^{\prime}\right) \vDash \varphi$ iff $\vdash_{A, S P^{\prime}} \quad \operatorname{Tr} u e \Rightarrow \varphi$,
(2) if $S P^{\prime}$ is a ν-extension of $S P$, then $\operatorname{Ded}\left(A, S P^{\prime}\right) \not \vDash \varphi$ iff $\vdash_{A, S P^{\prime}} \varphi \Rightarrow$ False.

Proof. (1) The "if"-direction (correctness) is shown by induction on the length of derivations via the sequent calculus for $\left(A, S P^{\prime}\right)$. As usually, this follows from the correctness of each rule $\frac{\left\{\varphi_{i}: s_{i}\right\}_{i \in I}}{\psi: s}$ of the calculus in the sense that for all $B \in \operatorname{Mod}\left(A, S P^{\prime}\right)$;

$$
\forall i \in I: s_{i}^{B} \subseteq \varphi_{i}^{B} \quad \text { implies } \quad s^{B} \subseteq \psi^{B}
$$

The correctness of the base rule, the axiom rule and \wedge - and \vee-introduction and -elimination is trivial. For the instance rule, suppose that $\prod_{i \in I} s_{i}^{A} \subseteq \varphi^{A}$.

The "only-if"-direction (completeness) is shown by induction on the size of Σ '-formulas.

Theorem 13.4 Let the assumptions of Def. 8.1 hold true, $\Sigma_{1}=\left(S_{0}, S, F^{\prime}, R\right)$ and A be a Σ_{1}-structure.
(1) If $S P^{\prime}$ is a μ-extension of $S P$, then $\operatorname{Ded}\left(A, S P^{\prime}\right)=l f p\left(\Phi_{A, \sigma}\right)$.
(2) If $S P^{\prime}$ is a ν-extension of $S P$, then $\operatorname{Ded}\left(A, S P^{\prime}\right)=g f p\left(\Phi_{A, \sigma}\right)$.

Proof. (1) Suppose that $B=\operatorname{Ded}\left(A, S P^{\prime}\right)$ satisfies $A X_{1}$ and $r \in R_{1}$. Since $l f p\left(\Phi_{A, \sigma}\right)$ satisfies $A X_{1}$, the cut calculus for $S P^{\prime}$ is correct w.r.t. $\operatorname{lfp}\left(\Phi_{A, \sigma}\right)$. Hence for all Σ^{\prime}-atoms $r(t): s, \operatorname{True}_{s} \vdash_{A, S P^{\prime}} r(t)$ implies $l f p\left(\Phi_{A, \sigma}\right) \models r(t)$ and thus r^{B} is a subset of $r^{l f p\left(\Phi_{A, \sigma}\right)}$. Conversely, $r^{l f p\left(\Phi_{A, \sigma}\right)}$ is a subset of r^{B} because $l f p\left(\Phi_{A, \sigma}\right)$ is the least $S P^{\prime}$-model over A. It remains to show that B satisfies $A X_{1}$.

Let $r(t) \Leftarrow \varphi \in A X_{1}$ and $B \models \varphi$. By Lemma 13.3(1), True $\vdash_{A, S P^{\prime}} \varphi$ and thus True $\vdash_{A, S P^{\prime}} r(t)$ by the definition of r^{B}. Hence $B \models r(t)$ and thus $B \models r(t) \Leftarrow \varphi$.
(2) Suppose that $B=\operatorname{Ded}\left(A, S P^{\prime}\right)$ satisfies $A X_{1}$ and $r \in R_{1}$. Since $g f p\left(\Phi_{A, \sigma}\right)$ satisfies $A X_{1}$, the cut calculus for $S P^{\prime}$ is correct w.r.t. $g f p\left(\Phi_{A, \sigma}\right)$. Hence for all Σ^{\prime}-atoms $r(t): s, r(t) \vdash_{A, S P^{\prime}}$ False ${ }_{s}$ implies $g f p\left(\Phi_{A, \sigma}\right) \models \neg r(t)$ and thus $r^{g f p\left(\Phi_{A, \sigma}\right)}$ is a subset of r^{B}. Conversely, r^{B} is a subset of $r^{g f p\left(\Phi_{A, \sigma}\right)}$ because $g f p\left(\Phi_{A, \sigma}\right)$ is the greatest $S P^{\prime}$-model over A. It remains to show that B satisfies $A X_{1}$.

Let $r(t) \Rightarrow \varphi \in A X_{1}$ and $B \models r(t)$. By the definition of $r^{B}, r(t) \nvdash_{A, S P^{\prime}}$ False. Hence $\varphi \Vdash_{A, S P^{\prime}}$ False and thus $B \models \varphi$ by Lemma 13.3(2). Hence $B \models r(t) \Rightarrow \varphi$.

14 Constructor-based algebras

Let $S P=(\Sigma, A X)$ be a visible swinging type with sort set S, constructor set $C O$, base type base $S P=$ (base Σ, base $A X$) and extension ($\Sigma^{\prime}, A X^{\prime}$).

A functor $F: S e t^{S} \rightarrow S e t^{S}$ is defined as follows: for all $A \in S e t^{S}$ and $s \in S$,

$$
F(A)_{s}= \begin{cases}s^{B} & \text { if } s \in \text { base } \Sigma \\ \coprod_{f: w \rightarrow s \in C O} A_{w} & \text { otherwise }\end{cases}
$$

By Theorem 21.3, F is continuous and thus by Theorem 21.2, $\operatorname{Alg}(F)$ has an initial object ini $: F(\operatorname{Ini}(F)) \rightarrow$ $\operatorname{Ini}(F)$. $\operatorname{Ini}(F)$ can be represented as the algebra $T_{B \cup C O}$ of finite ground terms over $B \cup C O$.

Proof!
The free F-algebra over an S-sorted set X is given by the algebra $T_{B \cup C O}(X)$ of finite terms over $B \cup C O$ with variables in X. This complies with Theorem 21.8 because X just forms a set of additional constants, in other words: $T_{B \cup C O \cup X}$ coincides with $T_{B \cup C O}(X)$.
Σ-structures are F-algebras: $\alpha: F(A) \rightarrow A$ is obtained from a Σ-structure A by combining the interpretations in A of all constructors $f: w \rightarrow s \in C O$ into a single morphism α such that for all $A \in S e t^{S}$ and $a \in A_{w}$,

$$
\alpha\left(\iota_{f}(a)\right)=\operatorname{def} f^{A}(a)
$$

where ι_{f} is the injection from A_{w} to $\coprod_{f: w \rightarrow s \in C O} A_{w}$. Conversely, decomposing an F-algebra α into an interpretation of $C O$ defines a Σ-algebra: for all $a \in A_{w}$,

$$
f^{A}(a)={ }_{\operatorname{def}} \alpha\left(\iota_{f}(a)\right)
$$

Example 14.1

NAT
vissorts nat
constructs $0: \rightarrow$ nat
suc : nat \rightarrow nat
defuncts pred: nat $\rightarrow 1+$ nat
$1: 1 \rightarrow$ nat
${ }_{-}+_{-}$, - _ 1 nat $\times n a t \rightarrow n a t$
min, max : nat \times nat \rightarrow nat
preds $\quad-\leq _$: nat \timesnat

- $\neq 三_{-}: n a t \times n a t$
vars $\quad x, y:$ nat
axioms $\quad \operatorname{pred}(0) \equiv \iota_{1}$
$\operatorname{pred}(\operatorname{suc}(x)) \equiv \iota_{2}(x)$
$1 \equiv \operatorname{suc}(0)$
$0+x \equiv x$
$\operatorname{suc}(x)+y \equiv \operatorname{suc}(x+y)$
$0-x \equiv 0$
$\operatorname{suc}(x)-y \equiv \operatorname{suc}(x-y)$
$\min (0, x) \equiv 0$
$\min (\operatorname{suc}(x), 0) \equiv 0$
$\min (\operatorname{suc}(x), \operatorname{suc}(y)) \equiv \min (x, y)$
$\max (0, x) \equiv x$
$\max (\operatorname{suc}(x), 0) \equiv \operatorname{suc}(x)$
$\min (\operatorname{suc}(x), \operatorname{suc}(y)) \equiv \max (x, y)$
$0 \leq x$
$\operatorname{suc}(x) \leq \operatorname{suc}(y) \Leftarrow x \leq y$
$0 \not \equiv \operatorname{suc}(x)$
$\operatorname{suc}(x) \not \equiv 0$
$\operatorname{suc}(x) \not \equiv \operatorname{suc}(y) \Leftarrow x \not \equiv y$

In terms of Def. 5.1, SP is empty, $S^{\prime}=\{n a t\}$ and $F^{\prime}=\{0, s u c\}$. By Theorem 6.3,

$$
n a t^{I n i}=\left\{\operatorname{suc}^{n}(0) \mid n \in \mathbb{N}\right\}
$$

SUPERTYPE! By ???, $F(A)_{n a t}=1+A_{n a t}$. The initial NAT-model is isomorphic to the initial F-algebra (see Def. 3.3). In particular, $\alpha_{\text {nat }}$ is the unique sum extension of $0^{\operatorname{Ini(F)}}$ and $s u c^{\operatorname{Ini(F)}}$.

Example 14.2 The following specification of finite lists is a parameterized ST that extends the parameter type $\operatorname{TRIV}(s)$ (see Example 5.4):

```
\(\operatorname{LIST}[\operatorname{TRIV}(s)[B O O L]]\) where LIST \(=\) NAT and
    vissorts list(s)
    constructs []: \(1 \rightarrow \operatorname{list}(s)\)
    - : _ : \(s \times \operatorname{list}(s) \rightarrow \operatorname{list}(s)\)
    \(\lambda y . \_(x, y):((s \times s) \rightarrow\) bool \() \rightarrow(s \rightarrow\) bool \()\)
recfuncts head: list \((s) \rightarrow 1+s\)
    tail: \(\operatorname{list}(s) \rightarrow 1+\operatorname{list}(s)\)
    length \(: \operatorname{list}(s) \rightarrow\) nat
defuncts [-]:s \(\rightarrow\) list \((s)\)
    take, drop : nat \(\times \operatorname{list}(s) \rightarrow \operatorname{list}(s)\)
    reverse \(: \operatorname{list}(s) \rightarrow \operatorname{list}(s)\)
    odds, evens \(: \operatorname{list}(s) \rightarrow \operatorname{list}(s)\)
    \({ }_{-}++_{-}, z i p: \operatorname{list}(s) \times \operatorname{list}(s) \rightarrow \operatorname{list}(s)\)
    length \({ }^{\prime}: \operatorname{list}(s) \rightarrow\) nat
    \(n t h: \operatorname{list}(s) \rightarrow 1+s\)
    exists, forall : \((s \rightarrow\) bool \() \times\) list \((s) \rightarrow\) bool
    filter : \((s \rightarrow\) bool \() \times \operatorname{list}(s) \rightarrow \operatorname{list}(s)\)
    remove : \(s \times \operatorname{list}(s) \rightarrow \operatorname{list}(s)\)
    \$ : \(((s \rightarrow\) bool \() \times s) \rightarrow\) bool
preds \(\quad-\not \equiv ~_{-}: \operatorname{list}(s) \times \operatorname{list}(s)\)
vars \(\quad x, y: s L, L^{\prime}: \operatorname{list}(s) n:\) nat \(f: s \rightarrow\) bool \(g: s \times s \rightarrow\) bool
axioms \(\quad\) head \(\circ[] \equiv \iota_{1}\)
    head \(\circ(:) \equiv \iota_{2} \circ \pi_{1}\)
    tail \(\circ[] \equiv \iota_{1}\)
    tail \(\circ(:) \equiv \iota_{2} \circ \pi_{2}\)
    length \(\circ[] \equiv 0\)
    length \(\circ(:) \equiv\) suc \(\circ \pi_{2} \circ\left(i d_{s} \times\right.\) length \()\)
    \([x] \equiv x:[]\)
    \(\operatorname{take}(0, L) \equiv[]\)
    \(\operatorname{take}(\operatorname{suc}(n),[]) \equiv[]\)
    \(\operatorname{take}(\operatorname{suc}(n), x: L) \equiv x: \operatorname{take}(n, L)\)
    \(\operatorname{drop}(0, L) \equiv L\)
    \(\operatorname{drop}(\operatorname{suc}(n),[]) \equiv[]\)
    \(\operatorname{drop}(\operatorname{suc}(n), x: L) \equiv \operatorname{drop}(n, L)\)
    reverse \(([]) \equiv[]\)
    \(\operatorname{reverse}(x: L) \equiv \operatorname{reverse}(L)++[x]\)
    \(\operatorname{odds}([]) \equiv[]\)
    \(\operatorname{odds}(x: L) \equiv x: \operatorname{evens}(L)\)
    evens \(([]) \equiv[]\)
    \(\operatorname{evens}(x: L) \equiv o d d s(L)\)
    []\(++L \equiv L\)
    \((x: L)++L^{\prime} \equiv x:\left(L++L^{\prime}\right)\)
    \(z i p([], L) \equiv L\)
    \(z i p(L,[]) \equiv L\)
    \(z i p\left(x: L, y: L^{\prime}\right) \equiv x: y: z i p\left(L, L^{\prime}\right)\)
    length \(([]) \equiv 0\)
    length \({ }^{\prime}(x: L) \equiv\) length \(^{\prime}(L)+1\)
    \(n t h(n,[]) \equiv \iota_{1}\)
```

```
\(n t h(0, x: L) \equiv \iota_{2}(x)\)
\(n t h(\operatorname{suc}(n), x: L) \equiv n t h(n, L)\)
\(\operatorname{exists}(f,[]) \equiv\) false
\(\operatorname{exists}(f, x: L) \equiv f(x)\) or \(\operatorname{exists}(f, L)\)
forall \((f,[]) \equiv\) true
forall \((f, x: L) \equiv f(x)\) and forall \((f, L)\)
filter \((f,[]) \equiv[]\)
filter \((f, x: L) \equiv x:\) filter \((f, L) \Leftarrow f(x) \equiv\) true
filter \((f, x: L) \equiv\) filter \((f, L) \Leftarrow f(x) \equiv\) false
\(\operatorname{remove}(x, L) \equiv \operatorname{filter}(\lambda y . \operatorname{not}(e q(x, y)), L)\)
\(\$(\lambda y \cdot g(x, y), y) \equiv g(x, y)\)
[] \(\not \equiv x: L\)
\(x: L \not \equiv[]\)
\(x: L \not \equiv y: L^{\prime} \Leftarrow x \not \equiv y \vee L \not \equiv L^{\prime}\)
```

Note that a λ-abstraction is declared as a constructor mapping from the sorts of its free variables to a sort representing functions in its bounded variables. λ-abstractions as well as other higher-order functions are applied to arguments by suitable apply functions (denoted by $\$$), which are-usually implicitly - declared as defined functions (see Section 2.2).

In terms of Def. 5.1, $S P=\operatorname{TRIV}(s) \cup N A T, S^{\prime} \backslash S=\{\operatorname{list}(s)\}$ and $F^{\prime} \backslash F=\left\{[],_{-}:{ }_{-}\right\}$. Let B be a parameter model of $\operatorname{TRIV}(s)$. Hence $T_{B \cup C O, l i s t(s)}$ is the set of finite lists with entries in s^{B} and

$$
F(A)_{l i s t(s)}=1+s^{B} \times A_{l i s t(s)}
$$

The initial $\operatorname{LIST}(B)$-model is isomorphic to the initial F-algebra $\alpha: F(\operatorname{Ini}(F)) \rightarrow \operatorname{Ini}(F)$ (see Def. 3.3). In particular, $\alpha_{l i s t(s)}$ is the unique sum extension of []$^{\operatorname{Ini}(F)}$ and (_: _) ${ }^{\operatorname{Ini}(F)}$.

Definition 14.3 Let $S P=(\Sigma, A X)$ and

$$
P S P=S P\left[P A R_{1}, \ldots, P A R_{k}, P A R_{k+1}, \ldots, P A R_{n}\right], P S P_{1}, \ldots, P S P_{k}
$$

be parameterized types. For all $1 \leq i \leq k$ let $P \Sigma_{i}$ be the set of signature symbols of $P A R_{i}$ that do not belong to a constant subtype of $P A R_{i}$ (see Def. 5.3). Let $\sigma_{i}: P \Sigma_{i} \rightarrow \Sigma\left(P S P_{i}\right)$ be a signature morphism. The parameterized type

$$
S P_{\sigma_{1}, \ldots, \sigma_{k}}\left[P S P_{1}, \ldots, P S P_{k}\right]\left[P A R_{k+1}, \ldots, P A R_{n}\right]=_{\operatorname{def}}\left(\Sigma^{\prime}, A X^{\prime}\right)\left[P A R_{k+1}, \ldots, P A R_{n}\right]
$$

with

$$
\Sigma^{\prime}=\operatorname{def} \bigcup_{i=1}^{k}\left(\Sigma\left(P S P_{i}\right) \cup \sigma_{i}(\Sigma)\right) \text { und } A X^{\prime}={ }_{\operatorname{def}} \bigcup_{i=1}^{k}\left(A X\left(P S P_{i}\right) \cup \sigma_{i}(A X)\right)
$$

is called the amalgamation of $P S P$ with $P S P_{1} \ldots, P S P_{k}$ along $\sigma_{1} \ldots, \sigma_{k}$ where $\sigma_{i}, 1 \leq i \leq k$, is extended to Σ as follows:

- $\sigma_{i}(s)=s$ for all unstructured sorts $s \in \Sigma$,
- $\sigma_{i}\left(s\left(s_{1}, \ldots, s_{n}\right)\right)=s\left(\sigma_{i}\left(s_{1}\right), \ldots, \sigma_{i}\left(s_{n}\right)\right)$ for all structured sorts $s \in \Sigma$,
- $\sigma_{i}(f: w \rightarrow s)=f: \sigma_{i}(w) \rightarrow \sigma_{i}(s)$ for all functions $f \in \Sigma$,
- $\sigma_{i}(r: w)=r: \sigma_{i}(w)$ for alle relations $r \in \Sigma$.

Example 14.4 The following specification of finite binary trees is a further parameterized swinging type that extends the parameter type $\operatorname{TRIV}(s)$:

```
\(\operatorname{BINTREE[TRIV}(s)[B O O L]]\) where BINTREE \(=\) NAT and \(\operatorname{LIST}_{b o o l / s}[B O O L]\) ??? and
vissorts bintree(s)
constructs \(\quad m t: 1 \rightarrow\) bintree \((s)\)
    -\#-\#_ : bintree \((s) \times s \times\) bintree \(\rightarrow\) bintree \((s)\)
    \(\lambda y . \_(x, y):((s \times s) \rightarrow\) bool \() \rightarrow(s \rightarrow\) bool \()\)
defuncts size \(: \operatorname{bintree}(s) \rightarrow\) nat
    \(<_{-}>: s \rightarrow\) bintree \((s)\)
    mirror : bintree \((s) \rightarrow\) bintree \((s)\)
    subtree : \(\operatorname{bintree}(s) \times \operatorname{list}(\) bool \() \rightarrow 1+\operatorname{bintree}(s)\)
    exists, forall : \((s \rightarrow\) bool \() \times\) bintree \((s) \rightarrow\) bool
    \(\__{-} \epsilon: s \times \operatorname{bintree}(s) \rightarrow\) bool
preds \(\quad-\not \equiv \mathcal{-}_{-}\)bintree \((s) \times \operatorname{bintree}(s)\)
vars \(\quad x, y: s T, T^{\prime}: \operatorname{bintree}(s) b: b o o l\) bL:list(bool) \(f: s \rightarrow\) bool \(g: s \times s \rightarrow\) bool
axioms \(\quad \operatorname{size}(m t) \equiv 0\)
    \(\operatorname{size}\left(T \# x \# T^{\prime}\right) \equiv \operatorname{size}(T)+\operatorname{size}\left(T^{\prime}\right)+1\)
    \(<x>\equiv m t \# x \# m t\)
    \(\operatorname{mirror}(m t)) \equiv m t\)
    \(\operatorname{mirror}\left(T \# x \# T^{\prime}\right) \equiv \operatorname{mirror}\left(T^{\prime}\right) \# x \# \operatorname{mirror}(T)\)
    \(\operatorname{subtree}(T,[]) \equiv \iota_{2}(T)\)
    subtree \((m t, b L) \equiv \iota_{1}\)
    subtree \(\left(T \# x \# T^{\prime}\right.\), true \(\left.: b L\right) \equiv \operatorname{subtree}(T, b L)\)
    subtree \(\left(T \# x \# T^{\prime}\right.\), false \(\left.: b L\right) \equiv \operatorname{subtree}\left(T^{\prime}, b L\right)\)
    exists \((f, m t) \equiv\) false
    \(\operatorname{exists}\left(f, T \# x \# T^{\prime}\right) \equiv f(x)\) or \(\operatorname{exists}(f, T)\) or \(\operatorname{exists}\left(f, T^{\prime}\right)\)
    forall \((f, m t) \equiv\) true
    forall \(\left(f, T \# x \# T^{\prime}\right) \equiv f(x)\) and forall \((f, T)\) and forall \(\left(f, T^{\prime}\right)\)
    \(x \in T \equiv \operatorname{exists}(\lambda y \cdot e q(x, y), T)\)
    \(\$(\lambda y \cdot g(x, y), y) \equiv g(x, y)\)
    \(m t \not \equiv T \# x \# T^{\prime}\)
    \(T \# x \# T^{\prime} \not \equiv m t\)
    \(T \# x \# T^{\prime} \not \equiv T_{1} \# y \# T_{2} \Leftarrow x \not \equiv y \vee T \not \equiv T_{1} \vee T^{\prime} \not \equiv T_{2}\)
```

In terms of Def. 5.1, $S P=\operatorname{TRIV}(s) \cup N A T \cup L I S T(B O O L), ~ S^{\prime} \backslash S=\{\operatorname{bintree}(s)\}$ and $F^{\prime} \backslash F\left\{m t, Z_{\text {_ }} \#_{-}\right\}$. Let B be a parameter model of $\operatorname{TRIV}(s)$. Hence $T_{B \cup C O, b i n t r e e(s)}$ is the set of finite binary trees with entries in s^{B} and

$$
F(A)_{\text {bintree }(s)}=1+A_{\text {bintree }(s)} \times s^{B} \times A_{\text {bintree }(s)}
$$

The initial BINTREE (B)-model is isomorphic to the initial F-algebra (see Def. 3.3). In particular, $\alpha_{\text {bintree }(s)}$ is the unique sum extension of $m t^{\operatorname{Ini(F)}}$ and (-\#_\#_) ${ }^{\operatorname{Ini(F)}}$.

Example 14.5 The following specification of finite trees is a parameterized swinging type with two new (visible) sorts:
$\operatorname{TREE}[\operatorname{TRIV}(s)[\mathrm{BOOL}]]$ where $\operatorname{TREE}=\mathrm{NAT}$ and $\operatorname{LIST}_{\text {nat/s }}[\mathrm{NAT}] ? ? ?$ and

```
vissorts tree(s) trees(s)
constructs _&_:s\timestrees(s)->tree(s)
    []:1->trees(s)
    _ : _ : tree (s)\times\operatorname{trees}(s)->\operatorname{trees}(s)
    \lambday.-(x,y):((s\timess)->bool)}->(s->\mathrm{ bool }
```

```
destructs \(\quad r s: \operatorname{tree}(s) \rightarrow s \times \operatorname{trees}(s)\)
    \(h t: \operatorname{trees}(s) \rightarrow 1+s \times \operatorname{trees}(s)\)
defuncts size: \(\operatorname{tree}(s) \rightarrow\) nat
    sizeL: \(\operatorname{trees}(s) \rightarrow\) nat
    \(<_{-}>: s \rightarrow \operatorname{tree}(s)\)
    subtree \(: \operatorname{tree}(s) \times \operatorname{list}(\) bool \() \rightarrow 1+\operatorname{tree}(s)\)
    subtreeL: \(\operatorname{trees}(s) \times \operatorname{list}(\) bool \() \rightarrow 1+\operatorname{tree}(s)\)
    exists, forall : \((s \rightarrow\) bool \() \times\) tree \((s) \rightarrow\) bool
    \(\__{-} \in \mathrm{E}_{\mathrm{s}} \times \operatorname{tree}(s) \rightarrow\) bool
    \$: \(((s \rightarrow\) bool \() \times s) \rightarrow\) bool
preds \(\quad-\not \equiv ~_{-}: \operatorname{tree}(s) \times \operatorname{tree}(s)\)
    \({ }_{-} \not \equiv \equiv_{-}: \operatorname{trees}(s) \times \operatorname{trees}(s)\)
vars \(\quad x, y: s T: \operatorname{tree}(s) T L: \operatorname{trees}(s) \quad n:\) nat \(n L: l i s t(n a t)\)
    \(f: s \rightarrow\) bool \(g: s \times s \rightarrow\) bool
axioms \(\quad r s(x \& T L) \equiv(x, T L)\)
    \(h t([]) \equiv \iota_{1}\)
    \(h t(T: T L) \equiv \iota_{2}(T, T L)\)
    \(\operatorname{size}(x \& T L) \equiv \operatorname{size} L(T L)+1\)
    size \(L([]) \equiv 0\)
    \(\operatorname{size} L(T: T L) \equiv \operatorname{size}(T)+\operatorname{size} L(T L)\)
    \(<x>\equiv x \&[]\)
    \(\operatorname{subtree}(T,[]) \equiv \iota_{2}(T)\)
    subtree \((x \& T L, n: n L) \equiv \operatorname{subtree} L(T L, n: n L)\)
    subtree \(L([], n l) \equiv \iota_{1}\)
    \(\operatorname{subtree} L(T: T L,[]) \equiv \iota_{1}\)
    \(\operatorname{subtree} L(T: T L, 0: n L) \equiv \operatorname{subtree}(T, n L)\)
    \(\operatorname{subtree} L(T: T L, \operatorname{suc}(n): n L) \equiv \operatorname{subtree} L(T L, n: n L)\)
    exists \((f, x \& T L) \equiv f(x)\) or exists \(L(f, T L)\)
    existsL \((f,[]) \equiv\) false
    \(\operatorname{exists} L(f, T: T L) \equiv \operatorname{exists}(f, T)\) or exists \(L(f, T L)\)
    forall \((f, x \& T L) \equiv f(x)\) and forall \(L(f, T L)\)
    forall \(L(f,[]) \equiv\) true
    forall \(L(f, T: T L) \equiv \operatorname{forall}(f, T)\) and forall \(L(f, T L)\)
    \(x \in T \equiv \operatorname{exists}(\lambda y \cdot e q(x, y), T)\)
    \(\$(\lambda y \cdot g(x, y), y) \equiv g(x, y)\)
    \(x \& T L \not \equiv y \& T L^{\prime} \Leftarrow x \not \equiv y \vee T L \not \equiv T L^{\prime}\)
    []\(\not \equiv T: T L\)
    \(T: T L \not \equiv[]\)
    \(T: T L \not \equiv T^{\prime}: T L^{\prime} \Leftarrow T \not \equiv T^{\prime} \vee T L \not \equiv T L^{\prime}\)
```

Functional programmers, don't cry because of the introduction of a list version for each function on trees! Of course, an implementation would avoid the list versions by using the well-known map function that applies a function on s to each element of an s-list. However, this does not help when properties of a tree function f shall be proved. Then one needs has to find and prove corresponding properties of map $\circ f$. To this end, an explicit definition of map $\circ f$ will be needed anyway.

In terms of Assumption ??, $S P_{i}=\operatorname{TRIV}(s) \cup N A T \cup L I S T(N A T)$, extS $=\{\operatorname{tree}(s)$, trees $(s)\}$ and $C O=$ $\left\{\&_{-},[],,_{-}\right\}$. Let B be a parameter model of $\operatorname{TRIV}(s)$. Hence $T_{B \cup C O, \text { tree(s) }}$ is the set of nonempty finite
trees with entries in s^{B} and finite node degree, $T_{B \cup C O, t r e e s(s)}$ is the set of finite forests with entries in s^{B} and

$$
\begin{aligned}
& F(A)_{\text {tree }(s)}=s^{B} \times A_{\text {trees }(s)}, \\
& F(A)_{\text {trees }(s)}=1+A_{\text {tree }(s)} \times A_{\text {trees }(s)}
\end{aligned}
$$

The initial TREE (B)-model is isomorphic to the initial F-algebra (see Def. 3.3). In particular, $\alpha_{\text {tree }(s)}=$
 $h t^{I n i(F)}$. Hence rs ("root and successors") and $h t$ ("head and tail") are called destructors. In terms of Def. 5.1, they are defined functions (by axioms (1)-(3)).

15 Constructor-based coalgebras

Let $S P=(\Sigma, A X)$ be a hidden swinging type with sort set S, constructor set $C O$, base type base $S P=$ (base Σ, base $A X$) and extension ($\Sigma^{\prime}, A X^{\prime}$).

By Thm. 21.3, F is also cocontinuous. Hence by Thm. 21.2, $\operatorname{coAlg}(F)$ has a final object fin : Fin $(F) \rightarrow$ $F(F i n(F))$. $F i n(F)$ can be represented as the algebra $T_{B \cup C O}^{\infty}$ of finite or infinite ground terms over $B \cup C O$. The elements of $T_{B \cup C O}^{\infty}$ are usually represented as the partial functions $t: \mathbb{N}^{*} \rightarrow B \cup C O$ whose domain $\operatorname{dom}(t)$ satisfies the following conditions: for all $w \in \mathbb{N}^{*}$ and $i \in \mathbb{N}$,

$$
\begin{aligned}
& w i \in \operatorname{dom}(t) \quad \Rightarrow \quad w \in \operatorname{dom}(t), \\
& w(i+1) \in \operatorname{dom}(t) \quad \Rightarrow \quad w i \in \operatorname{dom}(t) .
\end{aligned}
$$

$f: w \rightarrow s \in C O$ is defined in $\operatorname{Fin}(F)$ as in $\operatorname{Ini}(F)$ just by placing the symbol f on top of the argument terms: for all $t \in \operatorname{Fin}(F)_{w}, f^{\operatorname{Fin}(F)}(t)={ }_{\text {def }} f(t)$.

Proof!
The cofree F-coalgebra over an S-sorted set X is given by the product $T_{B \cup C O}^{\infty} \times X$. Hence each element can be represented as a finite or infinite ground term over $B \cup C O$ whose root is colored by an element of X.
$\operatorname{Ini}(F)=T_{B \cup C O}$ is the least fixpoint, $\operatorname{Fin}(F)=T_{B \cup C O}^{\infty}$ is the greatest fixpoint of the same functor $F .{ }^{15}$ But F-algebras and F-coalgebras are usually different from each other: given an S-sorted set A, an F-algebra α maps $F(A)$ to A, while an F-coalgebra β maps A to $F(A)$. Since $F(A)$ is a sum of sets (see $\S 4.2$), α is a sum of maps that can be decomposed into several functions, one for each constructor of $C O$. Conversely, β is a single function d^{A} that maps A to a sum of sets. Since the initial α and the final β are isomorphisms, $\operatorname{Ini}(F)$ is also an F-coalgebra and $\operatorname{Fin}(F)$ is also an F-algebra, i.e., $d^{F i n(F)}$ is the inverse of the sum of constructor interpretations mapping $F(\operatorname{Fin}(F))$ to $\operatorname{Fin}(F)$. Hence $d^{F i n(F)}$ is the interpretation of the S-sorted destructor

$$
d_{s}: s \rightarrow \begin{cases}1 & \text { if } s \in \text { base } S \\ \coprod_{f: w \rightarrow s \in C O} w & \text { otherwise }\end{cases}
$$

such that for all $f: w \rightarrow s \in C O$ and $t \in \operatorname{Fin}(F)_{w}, d_{s}^{F i n(F)}(f(t))={ }_{d e f} \iota_{f}(t)$ where ι_{f} is the injection from $\operatorname{Fin}(F)_{w}$ to $\coprod_{f: w \rightarrow s \in C O} \operatorname{Fin}(F)_{w}$.

Hence for final F-coalgebras, constructors are as essential as they are for initial F-algebras. Syntactically, their different interpretation is indicated by the different mode of the sorts of extS: if extS consists of visible sorts, then they are interpreted as carriers of the initial F-algebra; if extS consists of hidden sorts, they are interpreted as carriers of the final F-coalgebra.

[^9]For all $s \in e x t S$, behavioral s-equality may be specified either in terms of $C O_{s}$ or in terms of d_{s}. In fact, the behavior axioms B1/B2 and B5/B6 (see Def. 5.1(2)) are equivalent in $\operatorname{Fin}(F)$ (but of course not in all F-coalgebras!):

$$
x \sim_{s} y \Rightarrow d_{s}(x) \sim d_{s}(y)
$$

holds true in $\operatorname{Fin}(F)$ iff for all $f, g \in C O_{s}$,

$$
f(x) \sim_{s} g(y) \Rightarrow d_{s}(f(x)) \sim d_{s}(g(y))
$$

holds true in $\operatorname{Fin}(F)$ iff for all $f, g \in C O_{s}$,

$$
f(x) \sim_{s} g(y) \Rightarrow \iota_{f}(x) \sim \iota_{g}(y)
$$

holds true in $\operatorname{Fin}(F)$ iff for all $f, g \in C O_{s}$ with $f \neq g$,

$$
\begin{aligned}
& f(x) \sim_{s} f(y) \quad \Rightarrow \quad \iota_{f}(x) \sim \iota_{f}(y), \\
& f(x) \sim_{s} g(y) \quad \Rightarrow \quad \iota_{f}(x) \sim \iota_{g}(y)
\end{aligned}
$$

hold true in $\operatorname{Fin}(F)$ iff for all $f, g \in C O_{s}$ with $f \neq g$,

$$
\begin{aligned}
& f(x) \sim_{s} f(y) \quad \Rightarrow \quad x \sim y, \\
& f(x) \sim_{s} g(y) \quad \Rightarrow \quad \text { False }
\end{aligned}
$$

holds true in $\operatorname{Fin}(F)$. In all subsequent examples, we specify behavioral equalities in terms of B5/B6.

Example 15.1

CONAT

```
hidsorts cnat
destructs \(\quad\) pred : cnat \(\rightarrow 1+\) cnat
cofuncts \(\quad 0,1, \infty: 1 \rightarrow\) cnat
    suc : cnat \(\rightarrow\) cnat
    \({ }_{-}+_{-}\), - _ \(^{:}\)cnat \(\times\)cnat \(\rightarrow\) cnat
    min, max : cnat \(\times\) cnat \(\rightarrow\) cnat
preds \(\quad-\nsim \_\): cnat \(\times\)cnat
copreds \(\quad \leq_{-}\): cnat \(\times\)cnat
    _ ~ _ : cnat \(\times\) cnat
vars \(\quad x, y, x^{\prime}, y^{\prime}:\) cnat
axioms \(\quad \operatorname{pred}(0) \equiv \iota_{1}\)
    \(\operatorname{pred}(\operatorname{suc}(x)) \equiv \iota_{2}(x)\)
    \(\operatorname{pred}(1) \equiv \iota_{2}(0)\)
    \(\operatorname{pred}(\infty) \equiv \iota_{2}(\infty)\)
    \(\operatorname{pred}(x+y) \equiv \operatorname{pred}(y) \Leftarrow \operatorname{pred}(x) \equiv \iota_{1}\)
    \(\operatorname{pred}(x+y) \equiv \iota_{2}\left(x^{\prime}+y\right) \Leftarrow \operatorname{pred}(x) \equiv \iota_{2}\left(x^{\prime}\right)\)
    \(\operatorname{pred}(x-y) \equiv \iota_{1} \Leftarrow \operatorname{pred}(x) \equiv \iota_{1}\)
    \(\operatorname{pred}(x-y) \equiv \iota_{2}\left(x^{\prime}-y\right) \Leftarrow \operatorname{pred}(x) \equiv \iota_{2}\left(x^{\prime}\right)\)
    \(x \leq y \Rightarrow \operatorname{pred}(x) \equiv \iota_{1} \vee\left(\operatorname{pred}(x) \equiv \iota_{2}\left(x^{\prime}\right) \wedge \operatorname{pred}(y) \equiv \iota_{2}\left(y^{\prime}\right) \wedge x^{\prime} \leq y^{\prime}\right)\)
    \(0 \sim \operatorname{suc}(x) \Rightarrow\) False
    \(\operatorname{suc}(x) \sim 0 \Rightarrow\) False
    \(\operatorname{suc}(x) \sim \operatorname{suc}(y) \quad \Rightarrow \quad x \sim y\)
    \(0 \nsim \operatorname{suc}(x)\)
    \(\operatorname{suc}(x) \nsim 0\)
    \(\operatorname{suc}(x) \nsim \operatorname{suc}(y) \Leftarrow x \nsim y\)
```

In terms of Assumption ??, $S P_{i}$ is empty, ext $S=\{c n a t\}, C O=\{0, s u c\}$ and $d_{\text {cnat }}=$ pred. Hence

$$
T_{C O}^{\infty}=\left\{s u c^{n}(0) \mid n \in \mathbb{N} \cup\{\infty\}\right\}
$$

and $F(A)_{\text {cnat }}=1+A_{\text {cnat }} .{ }^{16}$ Note that equations (1)-(8) present the general definition of $d_{s}^{F i n(F)}$ (see above) and the behavior axioms (see $5.1(2)$) for $s=c n a t$, respectively, and may thus be dropped.

Example 15.2 The following specification of finite or infinite lists is a parameterized ST that extends the parameter type $\operatorname{TRIV}(s)$ (see Example 5.4):

```
\(\operatorname{COLIST}[\operatorname{TRIV}(s)]=\operatorname{NAT}\) and \(\operatorname{LIST}[\operatorname{TRIV}(s)]\) and CONAT then
    hidsorts clist(s)
    constructs \(\quad[]: 1 \rightarrow \operatorname{clist}(s)\)
        _ : _ : \(s \times \operatorname{clist}(s) \rightarrow \operatorname{clist}(s)\)
    \(\lambda y .-(x, y):((s \times s) \rightarrow\) bool \() \rightarrow(s \rightarrow\) bool \()\)
destructs \(\quad h t: \operatorname{clist}(s) \rightarrow 1+s \times \operatorname{clist}(s)\)
    length: \(\operatorname{clist}(s) \rightarrow 1+\) nat
    corecfuncts length \(: \operatorname{clist}(s) \rightarrow\) cnat
    \(\min :(s \rightarrow\) bool \() \times \operatorname{clist}(s) \rightarrow 1+\) nat
cofuncts [-]: s \(\rightarrow \operatorname{clist}(s)\)
    take : nat \(\times \operatorname{clist}(s) \rightarrow \operatorname{list}(s)\)
    drop : nat \(\times \operatorname{clist}(s) \rightarrow \operatorname{clist}(s)\)
    odds, evens : clist \((s) \rightarrow \operatorname{clist}(s)\)
    \({ }_{-}+_{-}, z i p: \operatorname{clist}(s) \times \operatorname{clist}(s) \rightarrow \operatorname{clist}(s)\)
    \(n t h: n a t \times \operatorname{clist}(s) \rightarrow 1+s\)
    filter \(:(s \rightarrow\) bool \() \times \operatorname{clist}(s) \rightarrow \operatorname{clist}(s)\)
defuncts \(\quad \in_{-}: s \times \operatorname{clist}(s) \rightarrow\) bool
    remove \(: s \times \operatorname{clist}(s) \rightarrow \operatorname{clist}(s)\)
    \$: \(((s \rightarrow\) bool \() \times s) \rightarrow\) bool
preds exists \(:(s \rightarrow\) bool \() \times \operatorname{clist}(s)\)
    finite : clist(s)
    copreds forall: \((s \rightarrow\) bool \() \times \operatorname{clist}(s)\)
    infinite : clist (s)
    fair : \((s \rightarrow\) bool \() \times \operatorname{clist}(s)\)
    \(-\sim_{-}: \operatorname{clist}(s) \times \operatorname{clist}(s)\)
vars \(\quad x, y: s L, L^{\prime}, L^{\prime \prime}: \operatorname{clist}(s) m, n:\) nat \(f: s \rightarrow\) bool \(g: s \times s \rightarrow\) bool
axioms \(\quad h t([]) \equiv \iota_{1}\)
    \(h t(x: L) \equiv \iota_{2}(x, L)\)
    \(\operatorname{take}(0, L) \equiv[]\)
    \(\operatorname{take}(\operatorname{suc}(n), L) \equiv[] \Leftarrow h t(L) \equiv \iota_{1}\)
    \(\operatorname{take}(\operatorname{suc}(n), L) \equiv x: \operatorname{take}\left(n, L^{\prime}\right) \Leftarrow h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right)\)
    \(h t(\operatorname{drop}(0, L)) \equiv h t(L)\)
    \(h t\left(\operatorname{drop}(n+1, L) \equiv \iota_{1} \Leftarrow h t(L) \equiv \iota_{1}\right.\)
    \(h t\left(\operatorname{drop}(n+1, L) \equiv h t\left(\operatorname{drop}\left(n, L^{\prime}\right)\right) \Leftarrow h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right)\right.\)
    \(h t(\operatorname{odds}(L)) \equiv \iota_{2}\left(x, \operatorname{evens}\left(L^{\prime}\right)\right) \Leftarrow h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right)\)
    \(h t(\operatorname{evens}(L)) \equiv \operatorname{odds}\left(L^{\prime}\right) \Leftarrow h t(L) \equiv \iota_{( }\left(x, L^{\prime}\right)\)
    \(h t\left(L++L^{\prime}\right) \equiv \iota_{1} \Leftarrow h t(L) \equiv \iota_{1} \wedge h t\left(L^{\prime}\right) \equiv \iota_{1}\)
    \(h t\left(L++L^{\prime}\right) \equiv \iota_{2}\left(x, L^{\prime \prime}\right) \Leftarrow h t(L) \equiv \iota_{1} \wedge h t\left(L^{\prime}\right) \equiv \iota_{2}\left(x, L^{\prime \prime}\right)\)
```

[^10]```
\(h t\left(L++L^{\prime}\right) \equiv \iota_{2}\left(x, L^{\prime \prime}++L^{\prime}\right) \Leftarrow h t(L) \equiv \iota_{2}\left(x, L^{\prime \prime}\right)\)
\(h t\left(z i p\left(L, L^{\prime}\right)\right) \equiv \iota_{1} \Leftarrow h t(L) \equiv \iota_{1} \wedge h t\left(L^{\prime}\right) \equiv \iota_{1}\)
\(h t\left(z i p\left(L, L^{\prime}\right)\right) \equiv \iota_{2}\left(x, L^{\prime \prime}\right) \Leftarrow h t(L) \equiv \iota_{1} \wedge h t\left(L^{\prime}\right) \equiv \iota_{2}\left(x, L^{\prime \prime}\right)\)
\(h t\left(z i p\left(L, L^{\prime}\right)\right) \equiv \iota_{2}\left(x, z i p\left(L^{\prime}, L^{\prime \prime}\right)\right) \Leftarrow h t(L) \equiv \iota_{2}\left(x, L^{\prime \prime}\right)\)
\(n t h(n, L) \equiv \iota_{1} \Leftarrow h t(L) \equiv \iota_{1}\)
\(n t h(0, L) \equiv \iota_{2}(x) \Leftarrow h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right)\)
\(n t h(n+1, L) \equiv n t h\left(n, L^{\prime}\right) \Leftarrow h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right)\)
\(\operatorname{length}(L) \equiv \iota_{1} \Leftarrow / \Rightarrow \quad \exists x, L^{\prime}:\left(h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge \operatorname{length}\left(L^{\prime}\right) \equiv \iota_{1}\right)\)
\(\operatorname{length}(L) \equiv \iota_{2}(0) \Leftarrow / \Rightarrow h t(L) \equiv \iota_{1}\)
length \((L) \equiv \iota_{2}(\operatorname{suc}(n)) \Leftarrow / \Rightarrow \exists x, L^{\prime}:\left(h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge\right.\) length \(\left.\left(L^{\prime}\right) \equiv \iota_{2}(n)\right)\)
pred \(\circ\) length \(h^{\prime} \equiv\left(i d+\left(\right.\right.\) length \(\left.\left.{ }^{\prime} \circ \pi_{2}\right)\right) \circ h t\)
\(\min (f, L) \equiv \iota_{1} \quad \Rightarrow \quad f(n t h(n, L)) \equiv\) false
\(\min (f, L) \equiv \iota_{2}(n) \Rightarrow f(n t h(n, L)) \equiv\) true \(\wedge(n \leq m \vee f(n t h(m, L)) \equiv\) false
\(h t(\) filter \((f, L)) \equiv \iota_{1} \Leftarrow \min (f, L) \equiv \iota_{1}\)
\(h t(\) filter \((f, L)) \equiv \iota_{2}\left(x, \operatorname{filter}\left(f, L^{\prime}\right)\right)\)
 \(\Leftarrow \min (f, L) \equiv \iota_{2}(n) \wedge n t h(n, L) \equiv \iota_{2}(x) \wedge \operatorname{drop}(n+1, L) \equiv L^{\prime}\)
\(x \in L \equiv \operatorname{exists}(\lambda y \cdot e q(x, y), L)\)
\(\operatorname{remove}(x, L) \equiv \operatorname{filter}(\lambda y \cdot \operatorname{not}(e q(x, y)), L)\)
\(\$(\lambda y \cdot g(x, y), y) \equiv g(x, y)\)
\(\operatorname{exists}(f, L) \Leftarrow h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge\left(f(x) \equiv \operatorname{true} \vee \operatorname{exists}\left(f, L^{\prime}\right)\right)\)
finite \((L) \Leftarrow h t(L) \equiv \iota_{1} \vee \exists x, L^{\prime}:\left(h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge\right.\) finite \(\left.\left(L^{\prime}\right)\right)\)
forall \((f, L)\)
 \(\Rightarrow h t(L) \equiv \iota_{1} \vee \exists x, L^{\prime}:\left(h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge f(x) \equiv \operatorname{true} \wedge \operatorname{forall}\left(f, L^{\prime}\right)\right)\)
infinite \((L) \Rightarrow \exists x, L^{\prime}:\left(h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge\right.\) infinite \(\left.\left(L^{\prime}\right)\right)\)
fair \((f, L) \Rightarrow h t(L) \equiv \iota_{1} \vee\left(\operatorname{exists}(f, L) \wedge h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge \operatorname{fair}\left(f, L^{\prime}\right)\right)\)
[]\(\sim x: L \Rightarrow\) False
\(x: L \sim[] \Rightarrow\) False
\(x: L \sim y: L^{\prime} \quad \Rightarrow \quad x \equiv y \wedge L \sim L^{\prime}\)
[] \(\nsim x: L\)
\(x: L \nsim[]\)
\(x: L \nsim y: L^{\prime} \Leftarrow x \not \equiv y \vee L \nsim L^{\prime}\)
```

In terms of Assumption ??, $S P_{i}=\operatorname{TRIV}(s) \cup N A T, \operatorname{ext} S=\{\operatorname{clist}(s)\}, C O=\left\{[],,_{-}\right\}$and $d_{\text {clist }(s)}=h t$. Let $B$ be a parameter model of $\operatorname{TRIV}(s)$. Hence $T_{B \cup C O, c l i s t(s)}^{\infty}$ is the set of finite or infinite lists with entries in $s^{B}$ and

$$
F(A)_{c l i s t(s)}=1+s^{B} \times A_{\text {clist }(s)}
$$

$F$ coincides with the functor $F$ of Example 14.2. Note that equations (1)-(8) present the general definition of $d_{s}^{F i n(F)}$ (see above) and the behavior axioms (see 5.1(2)), respectively, for $s=\operatorname{clist}(s)$ and may thus be dropped.

Here is an alternative specification of exists and forall as Boolean functions, analogously to Example 14.2:

```
destructs exists, forall: \((s \rightarrow\) bool \() \times \operatorname{clist}(s) \rightarrow\) bool
axioms \(\quad \operatorname{exists}(f, L) \equiv\) true
 \(\Rightarrow \quad \exists x, L^{\prime}:\left(h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge f(x)\right.\) or \(\operatorname{exists}\left(f, L^{\prime}\right) \equiv\) true \()\)
 exists \((f, L) \equiv\) false
 \(\Rightarrow h t(L) \equiv \iota_{1} \vee \exists x, L^{\prime}:\left(h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge f(x)\right.\) and exists \(\left(f, L^{\prime}\right) \equiv\) false \()\)
 forall \((f, L) \equiv\) true
 \(\Rightarrow \quad h t(L) \equiv \iota_{1} \vee \exists x, L^{\prime}:\left(h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge f(x)\right.\) and forall \(\left.\left(f, L^{\prime}\right) \equiv \operatorname{true}\right)\)
```

$$
\begin{aligned}
& \text { forall }(f, L) \equiv \text { false } \\
& \quad \Rightarrow \quad \exists x, L^{\prime}:\left(h t(L) \equiv \iota_{2}\left(x, L^{\prime}\right) \wedge f(x) \text { or forall }\left(f, L^{\prime}\right) \equiv \text { false }\right)
\end{aligned}
$$

The reason why exists, forall and the functions length and min of COLIST are declared as destructors and the other non-constructor functions as codefined functions will be given later.

The following ST specifies infinite number sequences:

```
COLIST \(^{\prime}=\) COLIST \(_{n a t / s}[\) NAT \(]\) then
cofuncts \(\quad\) blink \(: \rightarrow \operatorname{clist}(n a t)\)
 nats : nat \(\rightarrow\) clist(nat)
vars \(\quad n\) : nat
axioms \(\quad h t(\) blink \() \equiv \iota_{2}(0,1:\) blink \()\)
 \(h t(\operatorname{nats}(n)) \equiv \iota_{2}(n, \operatorname{nats}(n+1)) \square\)
```

Example 15.3 The following specification of finite or infinite binary trees is a further parameterized swinging type that extends the parameter type $\operatorname{TRIV}(s)$ :

```
\(\operatorname{COBINTREE}[\operatorname{TRIV}(s)]=\mathrm{NAT}\) and \(\operatorname{LIST}_{\text {bool } / s}[\mathrm{BOOL}]\) then
hidsorts cbintree(s)
constructs undef: \(1 \rightarrow\) cbintree \((s)\)
 \#\#_ : cbintree \((s) \times s \times \operatorname{cbintree~}(s) \rightarrow\) cbintree \((s)\)
 \(\lambda y .-(x, y):(s \times s) \rightarrow\) bool \() \rightarrow(s \rightarrow\) bool \()\)
destructs ler: cbintree \((s) \rightarrow 1+\) cbintree \((s) \times s \times \operatorname{cbintree}(s)\)
 size : cbintree \((s) \rightarrow 1+\) nat
cofuncts \(\quad<\quad>: s \rightarrow\) cbintree \((s)\)
 mirror: cbintree \((s) \rightarrow\) cbintree \((s)\)
 subtree : cbintree \((s) \times \operatorname{list}(\) bool \() \rightarrow\) cbintree \((s)\)
defuncts \(\quad \in_{-}: s \times \operatorname{cbintree}(s) \rightarrow\) bool
 \$: \(((s \rightarrow\) bool \() \times s) \rightarrow\) bool
preds exists : \((s \rightarrow\) bool \() \times\) cbintree \((s)\)
 finite: cbintree(s)
 copreds forall: \((s \rightarrow\) bool \() \times\) cbintree \((s)\)
 infinite : cbintree (s)
 _ ~ _ cbintree \((s) \times\) cbintree \((s)\)
 \(\mathcal{L}^{\sim} \mathcal{Z}^{\prime}(\) cbintree \((s) \times\) cbintree \((s)) \times(\) cbintree \((s) \times\) cbintree \((s))\)
 vars \(\quad x, y: s T, T^{\prime}, U, U^{\prime}:\) cbintree (s) b:bool bL:list(bool) \(f: s \rightarrow\) bool \(g: s \times s \rightarrow\) bool
 \(k, m, n: n a t\)
 axioms \(\quad \operatorname{ler}\left(T \# x \# T^{\prime}\right) \equiv \iota_{2}\left(T, x, T^{\prime}\right)\)
 \(\operatorname{ler}(\) undef \() \equiv \iota_{3}\)
 \(\operatorname{size}(T) \equiv \iota_{1}\)
 \(\Rightarrow \quad \exists x, T_{1}, T_{2}:\left(\operatorname{ler}(T) \equiv \iota_{2}\left(T_{1}, x, T_{2}\right) \wedge\left(\operatorname{size}\left(T_{1}\right) \equiv \iota_{1} \vee \operatorname{size}\left(T_{2}\right) \equiv \iota_{1}\right)\right)\)
 \(\operatorname{size}(T) \equiv \iota_{2}(n)\)
 \(\Rightarrow \quad \exists x, T_{1}, T_{2}:\left(\operatorname{ler}(T) \equiv \iota_{2}\left(T_{1}, x, T_{2}\right) \wedge \operatorname{size}\left(T_{1}\right) \equiv \iota_{2}(k) \wedge \operatorname{size}\left(T_{2}\right) \equiv \iota_{2}(m) \wedge k+m+1 \equiv n\right)\)
 \(\operatorname{ler}(<x>) \equiv \iota_{2}(m t, x, m t)\)
 \(\operatorname{ler}(\operatorname{mirror}(T)) \equiv \iota_{1} \Leftarrow \operatorname{ler}(T) \equiv \iota_{1}\)
 \(\operatorname{ler}(\operatorname{mirror}(T)) \equiv \iota_{2}\left(\operatorname{mirror}\left(U^{\prime}\right), x, \operatorname{mirror}(U)\right) \Leftarrow \operatorname{ler}(T) \equiv \iota_{2}\left(U, x, U^{\prime}\right)\)
 \(\operatorname{subtree}(T,[]) \equiv T\)
 \(\operatorname{subtree}(T, b: b L)) \equiv \iota_{1} \Leftarrow \operatorname{ler}(T) \equiv \iota_{1}\)
```

$$
\begin{align*}
& \text { subtree }(T, \text { true }: b L) \equiv \operatorname{subtree}(U, b L)) \Leftarrow \operatorname{ler}(T) \equiv \iota_{2}\left(U, x, U^{\prime}\right) \\
& \text { subtree }(T, \text { false }: \operatorname{bL}) \equiv \operatorname{subtree}\left(U^{\prime}, b L\right) \Leftarrow \operatorname{ler}(T) \equiv \iota_{2}\left(U, x, U^{\prime}\right) \\
& x \in T \equiv \operatorname{exists}(\lambda y \cdot \operatorname{eq}(x, y), T) \\
& \begin{array}{l}
\$(\lambda y \cdot g(x, y), y) \equiv g(x, y) \\
\text { exists }(f, T) \Leftarrow \operatorname{ler}(T) \equiv \iota_{2}\left(U, x, U^{\prime}\right) \wedge\left(\operatorname{exists}(f, U) \vee f(x) \equiv \operatorname{true} \vee \operatorname{exists}\left(f, U^{\prime}\right)\right) \\
\text { finite }(T) \Leftarrow \operatorname{ler}(T) \equiv \iota_{1} \vee\left(\operatorname{ler}(T) \equiv \iota_{2}\left(U, x, U^{\prime}\right) \wedge \text { finite }(U) \wedge \text { finite }\left(U^{\prime}\right)\right) \\
\text { forall }(f, T) \Rightarrow \operatorname{ler}(T) \equiv \iota_{1} \vee \exists x, U, U^{\prime}:\left(\operatorname{ler}(T) \equiv \iota_{2}\left(U, x, U^{\prime}\right) \wedge \operatorname{forall}(f, U) \wedge\right. \\
\\
\left.\qquad f(x) \equiv \operatorname{true} \wedge \operatorname{forall}\left(f, U^{\prime}\right)\right) \vee \operatorname{ler}(T) \equiv \iota_{3} \\
\operatorname{infinite}(T) \Rightarrow \quad \exists x, U, U^{\prime}:\left(\operatorname{ler}(T) \equiv \iota_{2}\left(U, x, U^{\prime}\right) \wedge\left(\text { infinite }(U) \vee \operatorname{infinite}\left(U^{\prime}\right)\right)\right)
\end{array} \\
& T \equiv T^{\prime} \Rightarrow \operatorname{ler}(T) \equiv \operatorname{ler}\left(T^{\prime}\right) \\
& \iota_{2}\left(T, x, T^{\prime}\right) \sim \iota_{2}\left(U, y, U^{\prime}\right) \Rightarrow T \equiv T^{\prime} \wedge x \equiv y \wedge U \equiv U^{\prime} \\
& \iota_{2}\left(T, x, T^{\prime}\right) \sim \iota_{1} \Rightarrow \text { False } \\
& \iota_{1} \sim \iota_{2}\left(T, x, T^{\prime}\right) \Rightarrow \text { False }
\end{align*}
$$

In terms of Assumption ??, $S P_{i}=\operatorname{TRIV}(s) \cup N A T \cup L I S T(B O O L), ~ e x t S=\left\{c b i n t r e e(s), \operatorname{cbintree}_{1}(s)\right\}, C O=$ $\left\{m t, \_\# \_\#-\right.$, def, undef $\}, d_{\text {cbintree }(s)}=l e r$ and $d_{\text {cbintree }_{1}(s)}=s w i t c h$. Let $B$ be a parameter model of $\operatorname{TRIV}(s)$. Hence $T_{B \cup C O, \text { cbintree(s) }}^{\infty}$ is the set of finite or infinite binary trees with entries in $s^{B}, T_{B \cup C O, c b i n t r e e_{1}(s)}^{\infty}=$ $1+T_{B \cup C O, \text { cbintree(s) }}^{\infty}$ and

$$
\begin{aligned}
& F(A)_{\text {cbintree }(s)}=1+A_{\text {cbintree }(s)} \times s^{B} \times A_{\text {cbintree }(s)} \\
& F(A)_{\text {cbintree }_{1}(s)}=1+A_{\text {cbintree }(s)}
\end{aligned}
$$

$F$ coincides with the functor $F$ of Example 14.4. Note that equations (1)-(14) present the general definition of $d_{s}^{F i n(F)}$ (see above) and the behavior axioms (see 5.1(2)), respectively, for $s \in\left\{\right.$ cbintree $^{(s)}$ ) cbintree $\left._{1}(s)\right\}$ and may thus be dropped.

Here is an alternative specification of exists and forall as Boolean functions, analogously to Example 14.4:

$$
\begin{aligned}
& \text { destructs exists, forall: }(s \rightarrow \text { bool }) \times \text { cbintree }(s) \rightarrow \text { bool } \\
& \text { axioms } \quad \operatorname{exists}(f, T) \equiv \text { true } \\
& \Rightarrow \quad \exists x, T_{1}, T_{2}:\left(\operatorname{ler}(T) \equiv \iota_{2}\left(T_{1}, x, T_{2}\right) \wedge \operatorname{exists}\left(f, T_{1}\right) \text { or } f(x) \text { or exists }\left(f, T_{2}\right) \equiv \operatorname{true}\right) \\
& \text { exists }(f, T) \equiv \text { false } \\
& \Rightarrow \quad \operatorname{ler}(T) \equiv \iota_{1} \vee \exists x, T_{1}, T_{2}:\left(\operatorname{ler}(T) \equiv \iota_{2}\left(T_{1}, x, T_{2}\right) \wedge\right. \\
& \left.\operatorname{exists}\left(f, T_{1}\right) \text { and } f(x) \text { and } \operatorname{exists}\left(f, T_{2}\right) \equiv \text { false }\right) \\
& \text { forall }(f, T) \equiv \text { true } \\
& \Rightarrow \quad \operatorname{ler}(T) \equiv \iota_{1} \vee \exists x, T_{1}, T_{2}:\left(\operatorname{ler}(T) \equiv \iota_{2}\left(T_{1}, x, T_{2}\right) \wedge\right. \\
& \left.\operatorname{forall}\left(f, T_{1}\right) \text { and } f(x) \text { and forall }\left(f, T_{2}\right) \equiv \operatorname{true}\right) \\
& \text { forall }(f, T) \equiv \text { false } \\
& \Rightarrow \quad \exists x, T_{1}, T_{2}:\left(\operatorname{ler}(T) \equiv \iota_{2}\left(T_{1}, x, T_{2}\right) \wedge \operatorname{forall}\left(f, T_{1}\right) \text { or } f(x) \text { or forall }\left(f, T_{2}\right) \equiv \text { false }\right)
\end{aligned}
$$

The reason why exists, forall and the function size of COBINTREE are declared as destructors and the other non-constructor functions as codefined ones will be given later.

Example 15.4 The following specification of finite or infinite trees is a parameterized swinging type with three new (hidden) sorts:

```
\(\operatorname{COTREE}[\operatorname{TRIV}(s)]=\operatorname{NAT}\) and \(\operatorname{LIST}_{n a t / s}[\mathrm{NAT}]\) then
 hidsorts \(\quad \operatorname{ctree}(s) \quad \operatorname{ctrees}(s) \quad\) ctree \(_{1}(s)\)
 constructs \(\quad \&_{-}: s \times \operatorname{ctrees}(s) \rightarrow \operatorname{ctree}(s)\)
```

```
 [] : \(\rightarrow\) ctrees \((s)\)
 _ : _ : ctree \((s) \times \operatorname{ctrees}(s) \rightarrow \operatorname{ctrees}(s)\)
 undef: \(1 \rightarrow\) ctree \(_{1}(s)\)
 def \(: \operatorname{ctree}(s) \rightarrow\) ctree \(_{1}(s)\)
 \(\lambda y .-(x, y):(s \times s) \rightarrow\) bool \() \rightarrow(s \rightarrow\) bool \()\)
destructs \(\quad r s: \operatorname{ctree}(s) \rightarrow s \times \operatorname{ctrees}(s)\)
 \(h t: \operatorname{ctrees}(s) \rightarrow 1+s \times \operatorname{ctrees}(s)\)
 switch : \(\operatorname{ctree}_{1}(s) \rightarrow 1+\operatorname{ctree}(s)\)
 size : \(\operatorname{ctree}(s) \rightarrow 1+\) nat
 sizeL: \(\operatorname{ctrees}(s) \rightarrow 1+n a t\)
cofuncts \(\quad<\quad>: s \rightarrow\) ctree \((s)\)
 subtree : ctree \((s) \times \operatorname{list}(\) bool \() \rightarrow\) ctree \(_{1}(s)\)
 subtreeL: \(\operatorname{ctrees}(s) \times \operatorname{list}(\) bool \() \rightarrow \operatorname{ctree}_{1}(s)\)
 exists, forall : \((s \rightarrow\) bool \() \times\) bintree \((s) \rightarrow\) bool
defuncts \(\quad \in_{-}: s \times \operatorname{bintree}(s) \rightarrow\) bool
 \$: \(((s \rightarrow\) bool \() \times s) \rightarrow\) bool
preds exists \(:(s \rightarrow\) bool \() \times\) ctree \((s)\)
 existsL \(:(s \rightarrow\) bool \() \times\) ctrees \((s)\)
 finite : ctree(s)
 finite L, finite B: ctrees(s)
copreds forall: \((s \rightarrow\) bool \() \times\) ctree \((s)\)
 forallL : \((s \rightarrow\) bool \() \times \operatorname{ctrees}(s)\)
 infinite : ctree(s)
 infiniteL: ctrees(s)
 _ ~ _ : ctree \((s) \times \operatorname{ctree}(s)\)
 _ ~ _ :ctrees \((s) \times \operatorname{ctrees}(s)\)
 \(\sim_{\sim}^{\sim}:_{\text {_ }} \operatorname{ctree}_{1}(s) \times\) ctree \(_{1}(s)\)
vars \(\quad x, y: s \quad T, T^{\prime}: \operatorname{ctree}(s) T L, T L^{\prime}: \operatorname{ctrees(s)} m, n:\) nat \(n L: l i s t(n a t)\)
 \(f: s \rightarrow\) bool \(g: s \times s \rightarrow\) bool
axioms \(\quad r s(x \& T L) \equiv(x, T L)\)
\(h t([]) \equiv \iota_{1}\)
\(h t(T: T L) \equiv \iota_{2}(T, T L)\)
switch \((\) undef \() \equiv \iota_{1}\)
\(\operatorname{switch}(\operatorname{def}(T)) \equiv \iota_{2}(T)\)
\(\operatorname{size}(T) \equiv \iota_{1} \quad \Rightarrow \quad r s(T) \equiv \iota_{2}(x, T L) \wedge \operatorname{size} L(T L) \equiv \iota_{1}\)
\(\operatorname{size}(T) \equiv \iota_{2}(n)\)
 \(\Rightarrow \quad r s(T) \equiv \iota_{2}(x, T L) \wedge \operatorname{sizeL}(T L) \equiv \iota_{2}(m) \wedge m+1 \equiv n\)
\(\operatorname{size} L(T L) \equiv \iota_{1}\)
 \(\Rightarrow \quad h t(T L) \equiv \iota_{2}\left(T, T L^{\prime}\right) \wedge\left(\operatorname{size}(T) \equiv \iota_{1} \vee \operatorname{size} L\left(T L^{\prime}\right) \equiv \iota_{1}\right)\)
\(\operatorname{size} L(T L) \equiv \iota_{2}(0) \quad \Rightarrow \quad h t(T L) \equiv \iota_{1}\)
\(\operatorname{sizeL}(T L) \equiv \iota_{2}(\operatorname{suc}(n))\)
 \(\Rightarrow h t(T L) \equiv \iota_{2}\left(T, T L^{\prime}\right) \wedge \operatorname{size}(T) \equiv \iota_{2}(k) \wedge \operatorname{size} L(T L) \equiv \iota_{2}(m) \wedge k+m \equiv n\)
\(r s(<x>) \equiv(x,[])\)
\(\operatorname{switch}(\operatorname{subtree}(T,[])) \equiv \iota_{2}(T)\)
\(\operatorname{switch}(\operatorname{subtree}(T, n: n L)) \equiv \operatorname{switch}(\operatorname{subtreeL}(T L, n: n L)) \Leftarrow r s(T) \equiv(x, T L)\)
\(\operatorname{switch}(\operatorname{subtree} L([], n l)) \equiv \iota_{1}\)
\(\operatorname{switch}(\operatorname{subtree} L(T: T L,[])) \equiv \iota_{1}\)
switch \((\operatorname{subtree} L(T: T L, 0: n L)) \equiv \operatorname{switch}(\operatorname{subtree}(T, n L))\)
```

```
\(\operatorname{switch}(\operatorname{subtree} L(T: T L, \operatorname{suc}(n): n L)) \equiv \operatorname{switch}(\operatorname{subtreeL}(T L, n: n L))\)
\(x \in T \equiv \operatorname{exists}(\lambda y \cdot e q(x, y), T)\)
\(\$(\lambda y . g(x, y), y) \equiv g(x, y)\)
\(\operatorname{exists}(f, T) \Leftarrow r s(T) \equiv(x, T L) \wedge(f(x) \equiv \operatorname{true} \vee \operatorname{exists} L(f, T L))\)
\(\operatorname{exists} L(f, T L) \Leftarrow h t(T L) \equiv \iota_{2}\left(T, T L^{\prime}\right) \wedge\left(\operatorname{exists}(f, T) \vee \operatorname{exists} L\left(f, T L^{\prime}\right)\right)\)
finite \((T) \Leftarrow r s(T) \equiv(x, T L) \wedge\) finite \(L(T L)\)
finite \(L(T L) \Leftarrow h t(T L) \equiv \iota_{1} \vee\left(h t(T L) \equiv \iota_{2}\left(T, T L^{\prime}\right) \wedge\right.\) finite \((T) \wedge\) finite \(\left.L\left(T L^{\prime}\right)\right)\)
finite \(B(T L) \Leftarrow h t(T L) \equiv \iota_{1} \vee\left(h t(T L) \equiv \iota_{2}\left(T, T L^{\prime}\right) \wedge\right.\) finite \(\left.B\left(T L^{\prime}\right)\right)\)
\(\operatorname{forall}(f, T) \Rightarrow \exists x, T L:(r s(T) \equiv(x, T L) \wedge f(x) \equiv \operatorname{true} \wedge\) forall \(L(f, T L))\)
forall \(L(f, T L)\)
 \(\Rightarrow \quad h t(T L) \equiv \iota_{1} \vee \exists T, T L^{\prime}:\left(h t(T L) \equiv \iota_{2}\left(T, T L^{\prime}\right) \wedge \operatorname{forall}(f, T) \wedge \operatorname{forall} L\left(f, T L^{\prime}\right)\right)\)
\(\operatorname{infinite}(T) \Rightarrow \exists x, T L:(r s(T) \equiv(x, T L) \wedge \operatorname{infiniteL}(T L))\)
infinite \(L(T L)\)
 \(\Rightarrow\) finite \(B(T L) \wedge \exists x, T L^{\prime}:\left(h t(T L) \equiv \iota_{2}\left(T, T L^{\prime}\right) \wedge\left(\right.\right.\) infinite \((T) \vee\) infinite \(\left.\left.L\left(T L^{\prime}\right)\right)\right)\)
\(x \& T L \sim y \& T L^{\prime} \Rightarrow x \equiv y \wedge T L \sim T L^{\prime}\)
\(x \& T L \nsim y \& T L^{\prime} \Leftarrow x \not \equiv y \vee T L \nsim T L^{\prime}\)
[]\(\sim T: T L \Rightarrow\) False
\(T: T L \sim[] \Rightarrow\) False
\(T: T L \sim T^{\prime}: T L^{\prime} \Rightarrow T \sim T^{\prime} \wedge T L \sim T L^{\prime}\)
[] \(\nsim T: T L\)
\(T: T L \nsim[]\)
\(T: T L \nsim T^{\prime}: T L^{\prime} \Leftarrow T \nsim T^{\prime} \vee T L \nsim T L^{\prime}\)
\(\operatorname{def}(T) \sim\) undef \(\Rightarrow\) False
undef \(\sim \operatorname{def}\left(T^{\prime}\right) \Rightarrow\) False
\(\operatorname{def}(T) \sim \operatorname{def}\left(T^{\prime}\right) \Rightarrow T \sim T^{\prime}\)
\(\operatorname{def}(T) \nsim u n d e f\)
undef \(\nsim \operatorname{def}\left(T^{\prime}\right)\)
\(\operatorname{def}(T) \nsim \operatorname{def}\left(T^{\prime}\right) \Leftarrow T \nsim T^{\prime}\)
```

In terms of Assumption ??, $S P_{i}=\operatorname{TRIV}(s) \cup N A T \cup L I S T(N A T), \operatorname{extS}=\left\{c \operatorname{ctree}(s), c\right.$ trees $(s)$, ctree $\left.{ }_{1}(s)\right\}$ and $C O=\left\{\&_{-,},[],,_{--}\right.$, def, undef $\}, d_{\text {ctree }(s)}=r s, d_{\text {ctrees }(s)}=h t$ and $d_{\text {ctree }}^{1}(s)=s w i t c h$. Hence $T_{B \cup C O, \text { ctree }(s)}^{\infty}$ is the set of finite or infinite trees with entries in $s^{B}$ and finite or infinite node degree, $T_{B \cup C O, \text { trees(s) }}$ is the set of finite or infinite forests with entries in $s^{B}, T_{B \cup C O, \text { ctree }_{1}(s)}^{\infty}=1+T_{B \cup C O, c t r e e(s)}^{\infty}$ and

$$
\begin{aligned}
& F(A)_{\text {ctree }(s)}=s^{B} \times A_{\text {ctree }(s)} \\
& F(A)_{\text {ctrees }(s)}=1+A_{\text {ctree }(s)} \times A_{\text {ctrees }(s)} \\
& F(A)_{\text {ctree } 1(s)}=1+A_{\text {ctree }(s)}
\end{aligned}
$$

$F$ coincides with the functor $F$ of Example 14.5. Note that equations (1)-(19) present the general definition of $d_{s}^{F i n(F)}$ (see above) and the behavior axioms (see 5.1(2)), respectively, for $s \in\left\{\operatorname{ctree}(s), \operatorname{ctrees}(s), \operatorname{ctree}{ }_{1}(s)\right\}$ and may thus be dropped. The reason why the functions size and sizeL of COTREE are declared as destructors and the other non-constructor functions as codefined functions will be given later.
$\operatorname{Fin}(F)$ is also the initial continuous $(B \cup C O)$-algebra whose carriers are cpos and whose functions are continuous w.r.t. the cpo structure [38]. Given variables $x_{1} \in X_{s_{1}}, \ldots, x_{n} \in X_{s_{n}}$ and $f_{1}, \ldots, f_{n} \in B \cup C O$, the set

$$
E=\left\{x_{1} \equiv f_{1}\left(x_{11}, \ldots, x_{1 k_{1}}\right), \ldots, x_{n} \equiv f_{n}\left(x_{n 1}, \ldots, x_{n k_{n}}\right)\right\}
$$

of regular or $\left(f_{i^{-}}\right)$guarded equations has a unique solution in $\operatorname{Fin}(F)$ ([38], Theorem 5.2). E defines the infinite trees $t_{1}, \ldots, t_{n}$ of $\operatorname{Fin}(F)$ that arise from unfolding the graph presented by $E$. As part of a swinging
type $S P, E$ would be written as:

$$
d_{s_{1}}\left(x_{1}\right) \equiv \iota_{f_{1}}\left(x_{11}, \ldots, x_{1 k_{1}}\right), \ldots, d_{s_{n}}\left(x_{n}\right) \equiv \iota_{f_{n}}\left(x_{n 1}, \ldots, x_{n k_{n}}\right)
$$

where $d$ is the $S$-sorted destructor defined at the top of this section. The unique solvability of $E$ in $F$ in $(F)$ can be shown easily: Suppose that $\left\{t_{i}\right\}_{i=1}^{n}$ and $\left\{u_{i}\right\}_{i=1}^{n}$ are two solutions of $E$. Let $R=\left\{\left(t_{1}, u_{1}\right), \ldots,\left(t_{n}, u_{n}\right)\right\}$. Since the greatest binary relation $\sim$ on $\operatorname{Fin}(F)$ that satisfies the behavior axioms of $S P$ (see Def. 5.1(2)) coincides with the diagonal of $\operatorname{Fin}(F)^{2}$ (see Theorem ????), we only need to show that $R$ also satisfies these axioms, which read here as follows: For all $1 \leq i \leq n$,

$$
x \sim y \Rightarrow d_{s_{i}}(x) \sim d_{s_{i}}(y)
$$

So let $\left(t_{i}, u_{i}\right) \in R$. Then

$$
d_{s_{i}}\left(t_{i}\right) \equiv \iota_{f_{i}}\left(t_{i 1}, \ldots, t_{i k_{i}}\right) \quad \text { and } \quad d_{s_{i}}\left(u_{i}\right) \equiv \iota_{f_{i}}\left(u_{i 1}, \ldots, u_{i k_{i}}\right)
$$

Since for all $1 \leq j \leq k_{i},\left(t_{i j}, u_{i j}\right) \in R$, the proof is complete.

## 16 Destructor-based coalgebras

$F$ is built up of coproducts and finite products. The following functor $G: S e t^{S} \rightarrow S e t^{S}$ involves also infinite products, i.e., function spaces. In contrast to $F, G$ covers hidden data types with parameterized destructors. $G$ is cocontinuous, but not necessarily continuous. While $F$ is induced by a signature $\Sigma$ of constructors with hidden range sort, $G$ is associated with a signature $\Delta$ of destructors with a unique hidden argument. Hence w.l.o.g. for all $f: s w \rightarrow s^{\prime} \in \Delta, s \in h i d S$. Given a visS-sorted set $C, G: S^{S} t^{S} \rightarrow S e t^{S}$ is defined as follows: for all $A \in S e t^{S}$ and $s \in S$,

$$
G(A)_{s}= \begin{cases}s^{C} & \text { if } s \in v i s S \\ \prod_{f: s w \rightarrow \operatorname{ran} \in \Delta}\left[w^{C} \rightarrow \operatorname{ran}^{A}\right] & \text { if } s \in h i d S\end{cases}
$$

The Nerode or contextual $S P$-equivalence, $\sim_{S P}^{N e r}$ is the set of all ground term pairs $\left(t, t^{\prime}\right)$ such that for all $\Sigma$-contexts $c: s w \rightarrow s^{\prime}$ and $u \in T_{\Sigma, w}, c(t, u) \equiv_{S P} c\left(t^{\prime}, u\right)$.

As $\Delta$ agrees with the set $\operatorname{Obs}(\Xi)$ of observations of a $(\Omega, \Xi)$-signature ([61], Def. 6.1), so $C T_{\Sigma}$ coincides with the set $\operatorname{Cont}(\Xi)$ of $\Xi$-contexts constructed from $\operatorname{Obs}(\Xi)$ ([61], Def. 6.2).

If $A$ is a Herbrand structure, then we write $c$ for $c^{A}$ (cf. Section 2). The values of contexts determine the contextual equivalence of terms (see below). The quotient of $T_{\Sigma}$ by $\sim_{S P}^{N e r}$ is also called the final realization of the behavior of $C$ (cf. [78], Section 5).

Since $G$ is cocontinuous, Thm. 21.2 implies that $\operatorname{coAlg}(G)$ has a final object fin: $\operatorname{Fin}(G) \rightarrow G(\operatorname{Fin}(G))$. $\operatorname{Fin}(G)$ can be represented as a product of function spaces: for all $s \in S$,

$$
\operatorname{Fin}(G)_{s}= \begin{cases}s^{C} & \text { if } s \in v i s S \\ \prod_{c: s w \rightarrow s^{\prime} \in C T_{\Sigma}}\left[C_{w} \rightarrow C_{s^{\prime}}\right] & \text { if } s \in h i d S\end{cases}
$$

CoCASL [83] also admits parameterized destructors. However, the semantics of the hidden data types is not given by the final coalgebra $\operatorname{Fin}(G)$, but a-probably isomorphic-behavior algebra $B e h_{\Sigma}(C)$, which generalizes the infinite-term algebra $T_{\Sigma \cup C}^{\infty}$ of the previous section to parameterized destructors. The trees of $B e h_{\Sigma}(C)$ may not only have infinite paths, but also infinite outdegree. Inner nodes of $B e h_{\Sigma}(C)$ are labelled with hidden sorts. Let $n$ be an inner node labelled with $s$. Then for each destructor $d: s w \rightarrow s^{\prime}$ and each $c \in C_{w}$, $n$ has a direct successor with label $s^{\prime}$ and a direct successor with label $c$. Hence the out degree of $n$ is infinite if $C_{w}$ is infinite.

If $\Delta$ lacks destructors with visible range sort, then $C T_{\Sigma}$ is empty and thus $\operatorname{Fin}(G)$ is a one-element set! In Section 3.2, a signature $\Sigma$ consisting of constructors with hidden range sort was associated with a functor $F$. In Section 3.3, a cosignature $\Delta$ of unary destructors was derived from $\Sigma$.

The set of instances of a class $c l$ declared in an object-oriented program agrees with the product $\prod_{a \in A t t} V a l_{a}$ where $A t t$ is the set of attributes of $c l$ and $V a l_{a}$ is the set of possible values of $a$. If considered as a set of unary functions, Att is the set of contexts and hence usually finite. However, if, for instance, some attributes denote (references to) other object of class $c l$, we obtain infinitely many contexts and, as a final $G$-coalgebra, the semantics of $c l$ is an infinite product.

Example 16.1 Infinite sequences are specified as follows.

```
STREAM \(=\operatorname{LIST}\) and \(\left.\operatorname{ENTRY(entry}{ }^{\prime}\right)\) then
hidsorts \(\quad\) stream \(=\operatorname{stream}(\) entry \() \quad\) stream \({ }^{\prime}=\operatorname{stream}\left(e^{\prime 2}\right.\) entry \(\left.^{\prime}\right)\)
destructs \(\quad\) head \(:\) stream \(\rightarrow\) entry
 tail : stream \(\rightarrow\) stream
constructs \(\quad \& \quad:\) entry \(\times\) stream \(\rightarrow\) stream \(^{\prime}\)
 blink \(: \rightarrow \operatorname{stream}(n a t)\)
 nats : nat \(\rightarrow\) stream (nat)
 zip : stream \(\times\) stream \(\rightarrow\) stream
 map : \(\left(\right.\) entry \(\rightarrow\) entry \(\left.^{\prime}\right) \times\) stream \(\rightarrow\) stream \(^{\prime}\)
defuncts \(\quad\) _\#_ : list \(\times\) stream \(\rightarrow\) stream
 nth : nat \(\times\) stream \(\rightarrow\) entry
 nthtail : nat \(\times\) stream \(\rightarrow\) stream
static preds exists: \((\) entry \(\rightarrow\) bool \() \times\) stream
copreds forall : (entry \(\rightarrow\) bool \() \times\) stream
 fair : \((\) entry \(\rightarrow\) bool \() \times\) stream
vars \(\quad n:\) nat \(x, y:\) entry \(L:\) list \(s, s^{\prime}:\) stream
 \(f:\) entry \(\rightarrow\) entry \(^{\prime} g:\) entry \(\rightarrow\) bool
axioms \(\quad h e a d(x \& s) \equiv x \quad t a i l(x \& s) \equiv s\)
 head \((\) blink \() \equiv 0 \quad\) tail \((\) blink \() \equiv 1 \& b l i n k\)
 \(\operatorname{head}(\operatorname{nats}(n)) \equiv n \quad \operatorname{tail}(\operatorname{nats}(n)) \equiv \operatorname{nats}(n+1)\)
 \(\operatorname{head}\left(z i p\left(s, s^{\prime}\right)\right) \equiv \operatorname{head}(s) \quad \operatorname{tail}\left(z \operatorname{zip}\left(s, s^{\prime}\right)\right) \equiv \operatorname{zip}\left(s^{\prime}, \operatorname{tail}(s)\right)\)
 \(\operatorname{head}(\operatorname{map}(f, s)) \equiv f(s) \quad \operatorname{tail}(\operatorname{map}(f, s)) \equiv \operatorname{map}(f, \operatorname{tail}(s))\)
 [] \(\# s \equiv s\)
 \((x: L) \# s \equiv x \&(L \# s)\)
 \(n t h(0, s) \equiv \operatorname{head}(s)\)
 \(n t h(n+1, s) \equiv n t h(n, \operatorname{tail}(s))\)
 \(n t h t a i l(0, s) \equiv s\)
 \(n t h t a i l(n+1, s) \equiv n \operatorname{thtail}(n, \operatorname{tail}(s))\)
 \(\operatorname{exists}(g, s) \Leftarrow g(\) head \((s)) \equiv\) true
 \(\operatorname{exists}(g, s) \Leftarrow \operatorname{exists}(g, \operatorname{tail}(s))\)
 \(\operatorname{forall}(g, s) \Rightarrow g(h e a d(s)) \equiv \operatorname{true} \wedge \operatorname{forall}(g, \operatorname{tail}(s))\)
 \(\operatorname{fair}(g, s) \Rightarrow \operatorname{exists}(g, s) \wedge \operatorname{fair}(g, \operatorname{tail}(s))\)
```

\& appends an entry to a stream. blink denotes a stream whose elements alternate between zeros and ones. nats $(n)$ generates the stream of all numbers starting from $n$. zip merges two streams into a single stream by alternatively appending an element of one stream to an element of the other stream. \# concatenates a list and a stream into a stream. fair $(g, s)$ holds true iff $s$ contains infinitely many elements satisfying $g$.

Let $S P=$ STREAM, vis $S=\{$ entry $\}$, hid $S=\{$ stream $\}, \Sigma=\{\&\}, \Delta=\{($ head, tail $)\}, C=$ Ini $(S P)$ and $F(A)_{\text {stream }}=C_{\text {entry }} \times A_{\text {stream }} . \operatorname{Fin}(S P)_{\text {stream }}$ is embedded in

$$
T_{\Sigma \cup C, \text { stream }}^{\infty}=\left\{a_{1} \& a_{2} \& \ldots \mid a_{1}, a_{2}, \cdots \in C_{\text {entry }}\right\}
$$

Example 16.2 The final models of the following types are embedded in final $G$-coalgebras:

```
SET = LIST then
 hidsorts \(\quad\) set \(=\) set \((\) entry \()\)
 destructs in: entry \(\times\) set \(\rightarrow\) bool
 constructs \(\quad \emptyset\), all \(: \rightarrow\) set
 \(\{-\}:\) entry \(\rightarrow\) set
 _ U _ : set \(\times\) set \(\rightarrow\) set
 - \ - : set \(\times\) set \(\rightarrow\) set
 compr \(:(\) entry \(\rightarrow\) bool \() \rightarrow\) set set comprehension
 vars \(\quad x, y:\) entry \(s, s^{\prime}:\) set \(g:\) entry \(\rightarrow\) bool
 axioms \(\quad i n(x, \emptyset) \equiv\) false
 in \((x\), all \() \equiv\) true
 \(i n(x,\{y\}) \equiv e q(x, y)\)
 \(\operatorname{in}\left(x, s \cup s^{\prime}\right) \equiv \operatorname{in}(x, s)\) or \(\operatorname{in}\left(x, s^{\prime}\right)\)
 \(\operatorname{in}\left(x, s \backslash s^{\prime}\right) \equiv \operatorname{in}(x, s)\) and \(\operatorname{not}\left(\operatorname{in}\left(x, s^{\prime}\right)\right)\)
 \(i n(x, \operatorname{compr}(g)) \equiv g(x)\)
```

$\mathrm{BAG}=$ LIST then

| hidsorts | bag $=$ bag $($ entry $)$ |
| :--- | :--- |
| destructs | card $:$ bag $\times$ entry $\rightarrow$ nat |
| constructs | empty $: \rightarrow$ bag |
|  | $[-]:$ entry $\rightarrow$ bag |
|  | $-+\ldots: b a g \times b a g \rightarrow b a g$ |
|  | $--\ldots: b a g \times b a g \rightarrow b a g$ |
| vars | $x, y:$ entry $b, b^{\prime}: b a g$ |
| axioms | $\operatorname{card}(e m p t y, x) \equiv 0$ |
|  | $\operatorname{card}([x], x) \equiv 1$ |
|  | $\operatorname{card}([x], y) \equiv 0 \Leftarrow x \neq y$ |
|  | $\operatorname{card}\left(b+b^{\prime}, x\right) \equiv \operatorname{card}(b, x)+\operatorname{card}\left(b^{\prime}, x\right)$ |
|  | $\operatorname{card}\left(b-b^{\prime}, x\right) \equiv \operatorname{card}(b, x)-\operatorname{card}\left(b^{\prime}, x\right)$ |

WSET $=$ LIST and INT $^{17}$ then

```
hidsorts \(\quad\) wset \(=w s e t(e n t r y)\)
destructs weight \(:\) wset \(\times\) entry \(\rightarrow\) int
constructs empty \(: \rightarrow\) wset
 [_] : entry \(\rightarrow\) wset
 _ + _ : wset \(\times\) wset \(\rightarrow\) wset
 _ - _ : wset \(\rightarrow\) wset
 vars \(\quad x, y:\) entry \(V, W:\) wset
 axioms \(\quad\) weight \((\) empty,\(x) \equiv 0\)
 weight \(([x], x) \equiv 1\)
 weight \(([x], y) \equiv 0 \Leftarrow x \not \equiv y\)
 weight \((V+W, x) \equiv \operatorname{weight}(V, x)+\operatorname{weight}(W, x)\)
```

$$
\text { weight }(V-W, x) \equiv w e i g h t(V, x)-\operatorname{weight}(W, x)
$$

```
MAP = ENTRY(domain) and ENTRY(range) then
 hidsorts map = map(domain,range)
 destructs get:map }\times\mathrm{ domain }->\mathrm{ range
 constructs new: range }->\mathrm{ map
 upd:domain }\times\mathrm{ range }\times\mathrm{ map }->\mathrm{ map
 vars i,j:domain x:range f:map
 axioms }\operatorname{get}(\operatorname{new}(x),i)\equiv
 get(upd(i,x,f),i)\equivx
 get(upd(i,x,f),j)\equivget(f,j)}\Leftarrowi\not\equiv
```

Let $S P=$ SET, vis $S=\{$ entry, bool $\}$, hidS $=\{$ set $\}, \Delta=\{$ in $\}, C=\operatorname{Ini}(S P), G(A)_{\text {set }}=\left[C_{\text {entry }} \rightarrow C_{b o o l}\right]$.
Let $S P=$ BAG, vis $S=\{$ entry, nat $\}, h i d S=\{b a g\}, \Delta=\{c a r d\}, C=\operatorname{Ini}(S P), C_{n a t}=\mathbb{N}$ and $G(A)_{b a g}=$ $\left[C_{\text {entry }} \rightarrow \mathbb{N}\right]$.

Let $S P=$ WSET, vis $S=\{$ entry, int $\}, h i d S=\{w s e t\}, \Delta=\{w e i g h t\}, C=\operatorname{Ini}(S P)$ and $G(A)_{w s e t}=$ $\left[C_{\text {entry }} \rightarrow \mathbb{Z}\right]$.

Let $S P=\mathrm{MAP}$, vis $S=\{$ domain, range $\}, \operatorname{hid} S=\{\operatorname{map}\}, \Delta=\{g e t\}, C=\operatorname{Ini}(S P)$ and $G(A)_{\operatorname{map}}=$ $\left[C_{\text {domain }} \rightarrow C_{\text {range }}\right]$.

Example 16.3 The classical examples of $G$-coalgebras are deterministic automata, which realize (partial) functions from the set of words over some fixed set $C_{\text {in }}$ of inputs into some fixed set $C_{\text {out }}$ of outputs. Here $\Delta$, $G$ and $\operatorname{Fin}(G)$ read as follows: Let $A \in \operatorname{Set}^{S}$.

- Moore-automata. $\Delta=\{\delta:$ state $\times$ in $\rightarrow$ state, $\beta:$ state $\rightarrow$ out $\}$, $G(A)_{\text {state }}=\left[C_{\text {in }} \rightarrow A_{\text {state }}\right] \times C_{\text {out }}, \operatorname{Fin}(G)_{\text {state }} \cong\left[C_{\text {in }}^{*} \rightarrow C_{\text {out }}\right]$.
- Mealy-automata. $\Delta=\{\delta:$ state $\times$ in $\rightarrow$ state $, \beta:$ state $\times$ in $\rightarrow$ out $\}$,
$G(A)_{\text {state }}=\left[C_{\text {in }} \rightarrow A_{\text {state }}\right] \times\left[C_{\text {in }} \rightarrow C_{\text {out }}\right], \operatorname{Fin}(G)_{\text {state }} \cong\left[C_{\text {in }}^{+} \rightarrow C_{\text {out }}\right]$.
Lemma 16.4 Let $S P$ be a continuous and behaviorally consistent specification without hidden constructors and logical predicates. Let $\Delta$ be the set of destructors of $S P$. Based on $C=\operatorname{Ini}(S P)$, define $G$ as above. Then there is an injective $\Sigma$-homomorphism from $\operatorname{Fin}(S P)$ to $\operatorname{Fin}(G)$.

Proof. Let $S P=(\Sigma, A X)$ and $A=\operatorname{Fin}(G)$. For all $t \in T_{\Sigma},[t]$ denotes the $\equiv_{S P}$-equivalence class of $t$. For all $c: w \rightarrow s \in C T_{\Sigma}, \pi_{c}$ denotes the projection of $A$ to $\left[C_{w} \rightarrow C_{s}\right]$. A function $h: \operatorname{Her}(S P) \rightarrow A$ is defined as follows: for all $s \in \operatorname{visS}$ and $t \in T_{\Sigma, s}, h(t)=[t]$, while for all $s \in h i d S, t \in T_{\Sigma, s}, c: s w \rightarrow s^{\prime} \in C T_{\Sigma}$ and $u \in T_{\Sigma, w}$,

$$
\pi_{c}(h(t))([u])=_{\operatorname{def}}[c(t, u)] .
$$

We show that the equivalence kernel $\sim_{h}$ of $h$ coincides with $\sim_{S P}$. Let $s \in S$ and $t, t^{\prime} \in T_{\Sigma, s} . h(t)=h\left(t^{\prime}\right)$ holds true iff $t \sim_{S P}^{N e r} t^{\prime}$. Analogously to the proof of Lemma 18.3 (see below) one may show that behavioral $S P$-equivalence coincides with contextual $S P$-equivalence and thus with $\sim_{h}$.

Since $S P$ is behaviorally consistent and $\sim_{S P}=\sim_{h}, \sim_{h}$ is a $\Sigma$-congruence. Hence $h(\operatorname{Her}(S P))$ becomes a $\Sigma$-structure and $h$ a $\Sigma$-homomorphism if one defines $f^{h(\operatorname{Her}(S P))}(h(t))=h(f(t))$ for all $f: w \rightarrow s \in \Sigma$ and $t \in T_{\Sigma, w}$. Consequently, $h$ induces an injective $\Sigma$-homomorphism $h^{*}: \operatorname{Her}(S P) / \sim_{h} \rightarrow A$. Hence $\operatorname{Fin}(S P)=$ $\operatorname{Her}(S P) / \sim_{S P}=\operatorname{Her}(S P) / \sim_{h}$ is embedded in $A=\operatorname{Fin}(G)$.

Data types often involve several hidden sorts whose meaning distributes over initial $F$-algebras, final $F$ coalgebras and final $G$-coalgebras. For arbitrary endofunctors $F$ and $G$ on the same category $\mathcal{K}, F, G$-objects

[^11][68], $F, G$-bialgebras [24] and $F, G$-structures [49, 61] ${ }^{18}$ deal with pairs of an $F$-algebra and a $G$-coalgebra. [25] also considers $F, G$-dialgebras, i.e., morphisms from $F(A)$ to $G(A)$ for some $A \in \mathcal{K}$. Here each hidden sort is interpreted as the object of either the initial $F$-algebra or the final $G$-algebra.

In most applications, including those discussed in the above-mentioned papers, $F$ and $G$ are instances of the schemas presented in the previous two sections. What goes beyond are non-deterministic structures where behavioral equality is determined by transition predicates, such as labelled transition systems (LTS). In the coalgebraic setting, these structures are modelled as solutions of domain equations involving powerset functors. Unfortunately, the construction of the corresponding models becomes much less elegant and useful as a semantical basis of specification if one proceeds from polynomial to powerset functors (cf., e.g., [105, 104, 19]. Given an LTS with a term-generated set of states, one may keep to presenting the LTS as a relation, in terms of swinging types: as a dynamic predicate. A relational presentation is also adequate and does not cause model- or proof-theoretical problems if the LTS is not used as a transition predicate, i.e., if it does not determine a behavioral equality (cf. Def. 5.1). As one may conclude from Section 5 , only if the state set is uncountable and the LTS determines a behavioral equality, the swinging type approach enforces us to replace the relational presentation of an LTS. In this case one should start out from a functional simulation of the LTS, say $\rightarrow$ : state $\times$ label $\times$ state, and specify a destructor sucs $:$ state $\times$ label $\rightarrow$ state ${ }^{*}$ such that for all states $s, s_{1}, \ldots, s_{n}$ and labels $x$,

$$
\operatorname{sucs}(s, x)=\left(s_{1}, \ldots, s_{n}\right) \quad \text { implies } \quad\left\{s_{1}, \ldots, s_{n}\right\}=\left\{s^{\prime} \mid s \xrightarrow{x} s^{\prime}\right\} .
$$

Of course, sucs induces a finer behavioral equivalence than $\rightarrow$ would do if $\rightarrow$ were declared as a transition predicate. But even the desired equivalence can be achieved if one extends the dialgebraic swinging type whose behavioral equality is induced by sucs to an algebraic ST:

```
LTS \(=\) SUCS then
 hidsorts state \({ }^{\prime}\)
 constructs mkstate \({ }^{\prime}\) : state \(\rightarrow\) state \(^{\prime}\)
 transpreds \(\quad \longrightarrow_{-}\): state \({ }^{\prime} \times\) label \(\times\) state \(^{\prime}\)
 vars \(\quad s, s_{1}, \ldots, s_{n}:\) state \(x:\) label
 axioms \(\quad m_{k s t a t e}(s) \xrightarrow{x} \operatorname{mkstate}^{\prime}\left(s_{i}\right) \Leftarrow \operatorname{sucs}(s, x) \equiv\left(s_{1}, \ldots, s_{n}\right) \quad\) for all \(1 \leq i \leq n\)
```

This step from a destructor to a transition predicate somewhat reflects the natural transformation from a tree constructing functor to a powerset functor given in [105], Section 3.4. It suggests that category-theoretical "weapons" like natural transformations need not be employed in order to accomplish an adequate model of a specification whose behavioral equivalence is determined by an LTS.

## 17 More on final coalgebras

Definition 17.1 (final coalgebra) Let $S P=(\Sigma, A X)$ be a coalgebraic type with cosignature $\Delta=(v i s S$, hid $S, F D)$ and visible subtype visSP and $C$ be a visSP-model with equality. The following $S$-sorted set $P$ collects the "observations" or "measurements" on hidden objects in a product:

$$
P_{s}= \begin{cases}\prod_{d: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in C T_{\Delta}}\left[C_{w} \rightarrow C_{s^{\prime}}\right] & \text { if } s \in \text { hidS } \\ C_{s} & \text { if } s \in v i s S\end{cases}
$$

For all contexts $d: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in C T_{\Delta}, \pi_{d}$ denotes the projection from $P_{s}$ to $\left[C_{w} \rightarrow C_{s^{\prime}}\right]$. d defines an "experiment", which, if performed on $a$ under the "initial condition" $c \in C_{w}$, returns the visible result $\pi_{d}(a)(c) \in C_{s^{\prime}}$.

[^12]Projections for individual contexts can be extended to sums of contexts: Let $\left\{e_{i}: s_{i} \rightarrow\left(w_{i} \rightarrow s_{i}^{\prime}\right)\right\}_{i \in I} \subseteq$ $C T_{\Delta} \cup I D$ and $e=\amalg_{i \in I} e_{i}$. Then

$$
\pi_{e}: \amalg_{i \in I} P_{s_{i}} \rightarrow \amalg_{i \in I}\left[C_{w_{i}} \rightarrow C_{s_{i}^{\prime}}\right]
$$

is defined as follows: for all $i \in I$,

$$
\pi_{e} \circ \iota_{i}= \begin{cases}\iota_{i} \circ \pi_{e_{i}} & \text { if } e_{i} \in C T_{\Delta} \\ \iota_{i} & \text { if } e_{i} \in I D\end{cases}
$$

Let $\mathcal{P}(P)$ be the set of $S$-sorted subsets of $P$. A functional $\Phi: \mathcal{P}(P) \rightarrow \mathcal{P}(P)$ is defined as follows: for all $s \in S$ and $A \subseteq P$,

$$
\Phi(A)_{s}=\left\{\begin{array}{ll} 
& \forall s^{\prime}=\amalg_{i \in I} s_{i} \in h i d S, d: s \rightarrow\left(v \rightarrow s^{\prime}\right) \in F D, c \in C_{v} \\
\left\{a \in A_{s} \mid\right. & \exists i \in I, b \in s_{i}^{A} \forall e: s^{\prime} \rightarrow\left(w \rightarrow s^{\prime \prime}\right) \in C T_{\Delta}, c^{\prime} \in C_{w}: \\
& \pi_{e}\left(\iota_{i}(b)\right)\left(c^{\prime}\right)=\pi_{d \cdot e}(a)\left(c, c^{\prime}\right)
\end{array}\right\} \quad \text { if } s \in h i d S
$$

Since $\Phi$ is monotone, $\Phi$ has a greatest fixpoint $g f p(\Phi)(c f$. Thm. 8.3). The final $(S P, C)$-coalgebra $F$ in $=$ $\operatorname{Fin}(S P, C)$ is the $(S P, C)$-coalgebra such that for all $s \in h i d S$,

- Fin $_{s}=g f p(\Phi)_{s}$,
- for all $d: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in F D, a \in F_{i n}$ and $c \in C_{w}$,

$$
d^{F i n}(a)(c)= \begin{cases}\iota_{i}(b) \text { such that }(1) \text { holds true } & \text { if } s^{\prime} \in \text { hidS } \\ \pi_{d}(a)(c) & \text { if } s^{\prime} \in \text { visS }\end{cases}
$$

Suppose that (1) has two solutions in $i$ and $b$. Then (1) implies that both solutions are identical. Hence $d^{\text {Fin }}$ is well-defined.

$$
\pi_{e}\left(d^{F i n}(a)\right)=_{d e f} \pi_{d \cdot e}(a)
$$

Beispiel: finaler Automat: $\delta(f, x)(w)=f(x w)$
Condition 17.1(1) selects those tuples $a$ among the elements of the product $P_{s}$ such that for each two contexts $e_{1}: s \rightarrow s_{1}, e_{2}: s \rightarrow s_{2}$ containing the same path $p$ that is taken when $a$ is observed by $e_{1}$, then $p$ is also taken when $a$ is observed by $e_{2}$, and both observations lead to the same result.

Contexts are dual to terms, in particular to normal forms. Contexts are composed of destructors. Normal forms are composed of constructors, while contexts are composed of destructors. The structure of a context is determined by the coarities of the destructors it is built of. The structure of a normal form is determined by the arities of the constructors it is composed of. Hence both contexts and normal forms are trees whose nodes are labelled with function symbols: destructors and constructors, respectively. In the first case, the outdegree of a node is the coarity of the node label, in the second case, it is the arity. Except for [15], contextual characterizations of final coalgebras have only been given for cosignatures where all destructors are linear (cf. [100, 34, 67, 49, 61]). Only [15] handles the important generalization to sum sorts and works out its impact on coalgebraic specifications.

If all destructors are linear, then the final $(\Delta, C)$-coalgebra is the entire product of context ranges:
Proposition 17.2 Let $S P, \Delta$ and $C$ be as in Def. 17.1 such that all destructors are linear. Then for all $s \in \operatorname{hidS}, \operatorname{Fin}(S P, C)_{s}=P_{s}$.

Proof. Let $d: s \rightarrow\left(s \rightarrow s^{\prime}\right) \in F D$. Since $s^{\prime}$ has coarity 1, we may identify $b$ with $\iota_{i}(b)$. Hence (1) amounts to a definition of $b$ : for all $e: s^{\prime} \rightarrow\left(w \rightarrow s^{\prime \prime}\right) \in C T_{\Delta}$ and $c^{\prime} \in C_{w}, \pi_{e}(b)\left(c^{\prime}\right)={ }_{\text {def }} \pi_{d \cdot e}(a)\left(c, c^{\prime}\right)$. Therefore, $g f p(\Phi)_{s}=P_{s}$.

The restriction to the linear case excludes many "properly coalgebraic" types such as COLIST (Ex. 15.2), finite and infinite trees (cf. Ex. 19.5), regular graphs ([91], Section 2.2), processes ([91], Section 4.4) and class diagrams involving inheritance relationships ([91], Section 6). The algebraic counterpart of final coalgebras with linear destructors are initial algebras with unary constructors only, i.e., sets of words. As the expressiveness of words is limited, so is the expressiveness of linear destructors.

Contexts and normal forms are also complementary with respect to the traversal of their tree representations. A normal form is evaluated bottom-up, starting from the leaves, along all paths up to the root where the value of the object itself is returned. A context is evaluated top-down, starting from the root, along a single path consisting of destructors until a leaf is reached where the result of an observation is delivered (cf. Fig. ??). Hence, from an operational point of view, contexts are flowcharts or transition systems rather than normal forms representing static objects. The evaluations of a context encompass possible worlds (states, movements, interferences, etc.). But the various possibilities can never be viewed in parallel. Once an object is observed, its multiverse contracts to a universe (cf. [13]).

A normal form is the object it denotes. An evaluation of a context only represents the behavior of an actually invisible object in a certain state. Hence a final coalgebra can be seen as a Kripke structure that may interpret the same constants, function symbols and predicates differently in different states. Just regard the set of contexts as a signature $\Sigma$. Then a $\Sigma$-algebra is both the interpretation of a state in the corresponding Kripke model and an element of a final coalgebra.

Theorem 17.3 Given the assumptions of Def. 17.1, $\operatorname{Fin}(S P, C)$ is final in coAlg $(S P, C)$. Moreover, Fin $(S P, C)$ interprets behavioral equalities as identities.

Proof. Let Fin $=\operatorname{Fin}(S P, C)$ and $B$ be an $(S P, C)$-coalgebra. A function $f i n: B \rightarrow F i n$ is defined as follows: for all $s \in S$ and $b \in s^{B}$,

$$
\begin{array}{rlrl}
f i n(b) & =b & & \text { if } s \in v i s S, \\
\pi_{e}(\operatorname{fin}(b)) & =e^{B}(b) \\
\operatorname{fin}\left(\iota_{i}(b)\right) & =\iota_{i}(\operatorname{fin}(b)) & & \text { for all } e: s \rightarrow s^{\prime} \in C T_{\Delta} \\
& \text { if } s \in h i d S, \\
& & \text { if } s=w_{i} \text { for a sum sort } \amalg_{i \in I} w_{i} .
\end{array}
$$

fin is a $\Sigma$-homomorphism: Let $s^{\prime} \in v i s S, d: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in F D, b \in s^{B}$ and $c \in C_{w}$. Hence

$$
\begin{equation*}
\operatorname{fin}\left(d^{B}(b)(c)\right)=d^{B}(b)(c)=\pi_{d}(\operatorname{fin}(b))(c)=d^{F i n}(\operatorname{fin}(b))(c) \tag{2}
\end{equation*}
$$

Let $s^{\prime}=\amalg_{i \in I} s_{i} \in \operatorname{hidS}, d: s \rightarrow\left(v \rightarrow s^{\prime}\right) \in F D, e=\amalg_{i \in I} e_{i}: s^{\prime} \rightarrow\left(w \rightarrow s^{\prime \prime}\right) \in C T_{\Delta}, b \in s^{B}, c \in C_{v}$ and $c^{\prime} \in C_{w} . d^{B}(b)(c)=\iota_{i}(a)$ implies

$$
\begin{gather*}
\pi_{e}\left(\operatorname{fin}\left(d^{B}(b)(c)\right)\right)\left(c^{\prime}\right)=\pi_{e}\left(\operatorname{fin}\left(\iota_{i}(a)\right)\right)\left(c^{\prime}\right)=\pi_{e}\left(\iota_{i}(\operatorname{fin}(a))\right)\left(c^{\prime}\right)=\iota_{i}\left(\pi_{e_{i}}(\operatorname{fin}(a))\right)\left(c^{\prime}\right) \\
=\iota_{i}\left(e_{i}^{B}(a)\right)\left(c^{\prime}\right)=e^{B}\left(\iota_{i}(a)\right)\left(c^{\prime}\right)=e^{B}\left(d^{B}(b)(c)\right)\left(c^{\prime}\right)=(d \cdot e)^{B}(b)\left(c, c^{\prime}\right)=\pi_{d \cdot e}(\operatorname{fin}(b))\left(c, c^{\prime}\right)  \tag{3}\\
\text { Def. }{ }^{17.1} \pi_{e}\left(d^{F i n}(\operatorname{fin}(b))(c)\right)\left(c^{\prime}\right)
\end{gather*}
$$

Hence $\operatorname{fin}\left(d^{B}(b)(c)\right)=d^{F i n}(\operatorname{fin}(b))(c)$. A permutation of the terms in (2) and (3) shows that $f i n$ is the only $(\Delta, C)$-homomorphism from $B$ to $F i n$.

Let $B E$ be the set of behavioral equalities if $\Sigma^{\prime}$ and $\mathcal{C}(A)$ be the class of $\Sigma$-structures $B$ such that $\left.B\right|_{\Sigma \backslash B E}=$ $A=\left.{ }_{\text {def }} F i n\right|_{\Sigma \backslash B E}$. Since Fin is canonical, the fixpoint theorem of Knaster and Tarski (Thm. 8.3) implies that for all $s \in h i d S$,

$$
\sim_{s}^{A}=\bigcup\left\{\sim_{s}^{B} \subseteq A_{w} \mid B \in \mathcal{C}(A), \sim_{s}^{B} \subseteq \sim_{s}^{\Phi(B)}\right\}
$$

Hence the diagonal of $A^{2}$ is a subset of $\sim_{s}^{A}$. Conversely, let $a \sim_{s}^{A} b$. Then there is $B \in \mathcal{C}(A)$ such that $(a, b) \in \sim_{s}^{B} \subseteq \sim_{s}^{\Phi(B)}$. Hence for all $d: s w \rightarrow s^{\prime} \in \operatorname{des}$ and $c \in B_{w}=C_{w}, d^{B}(a, c) \sim_{s^{\prime}}^{B} d^{B}(b, c)$. Consequently, for all
$e: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in C T_{\Delta}$ and $c \in C_{w}, e^{B}(a)(c) \sim_{s^{\prime}}^{B} e^{B}(b)(c)$ and thus $\pi_{e}(a)(c)=e^{B}(a)(c)=e^{B}(b)(c)=\pi_{e}(b)(c)$ because $s^{\prime}$ is visible and $\left.B\right|_{v i s \Sigma}=C$ is a structure with $\sim$-equality. Hence $a=b$.

We recapitulate the definition of the functor $G: S e t^{S} \rightarrow S e t^{S}$ given in Section 3.4 using the notation of Def. ??: for all $A \in S e t^{S}$ and $s \in S$,

$$
G(A)_{s}= \begin{cases}\prod_{d: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in F D}\left[C_{w} \rightarrow s^{\prime A}\right] & \text { if } s \in \operatorname{hidS} \\ C_{s} & \text { if } s \in \operatorname{visS}\end{cases}
$$

Each $(\Delta, C)$-coalgebra $B$ in the sense of Def. ?? induces a $G$-coalgebra $\beta_{B}: B \rightarrow G(B)$ : for all $s \in S$ and $b \in s^{B}$,

$$
\begin{aligned}
\pi_{d}(\beta(b)) & =d^{B}(b) \quad \text { for all } d: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in F D & & \text { if } s \in \text { hidS } \\
\beta(b) & =b & & \text { if } s \in v i s S
\end{aligned}
$$

Conversely, a $G$-coalgebra $\beta: B \rightarrow G(B)$ equips $B$ with an interpretation of $\Delta$ : for all $d: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in F D$ and $b \in s^{B}, d^{B}(b)=$ def $\pi_{d}(\beta(b))$. Hence $G$-coalgebras and $(\Delta, C)$-coalgebras correspond to each other. Since $G$ is cocontinuous, the limit of the chain

$$
1 \leftarrow G(1) \leftarrow G^{2}(1) \leftarrow \ldots
$$

is a final $G$-coalgebra $\operatorname{Fin}(G)(c f$. Thm. 21.2). In fact, $\beta=$ fin. The proof proceeds analogously to the proof of Thm. 17.3.

The functor $F: S e t^{S} \rightarrow S e t^{S}$ of Section 3.2 can also be adapted to the assumptions of Def. ??: for all $A \in S e t^{S}$ and $s \in S$,

$$
F(A)_{s}= \begin{cases}\coprod_{f: w \rightarrow s \in \Sigma} A_{w} & \text { if } s \in h i d S \\ C_{s} & \text { if } s \in v i s S\end{cases}
$$

The initial $F$-algebra $\operatorname{Ini}(F)$ is given by the algebra of ground $(\Sigma \cup C$ )-terms (cf. Section 3.2). Both initial $F$ algebras and final $G$-coalgebras are constructed from sums and products, but in opposite order: for all $s \in h i d S$, $\operatorname{Ini}(F)_{s}$ can be represented by the sum

$$
\coprod_{f: w \rightarrow s \in \Sigma} T_{\Sigma \cup C, w}
$$

of sets of term tuples, while $\operatorname{Fin}(G)_{s}$ is (a subset of) the product

$$
\prod_{d: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in C T_{\Delta}}\left[C_{w} \rightarrow C_{s^{\prime}}\right]
$$

of context ranges (cf. Def. 17.1).
Definition 17.4 (coinductive, coequational type and inductive type) Let $S P=(\Sigma, A X)$ be a swinging type satisfying $5.1(5)$ such that the base type base $S P$ of $S P$ is coalgebraic and has cosignature $\Delta$ and visible subtype visSP. Then $S P$ is a coinductive type with cosignature $\Delta$ and visible subtype visSP.

Theorem 17.5 Let $S P=(\Sigma, A X)$ be a coinductive type with base type baseSP $=($ base $\Sigma$, base $A X)$, extension $\left(\Sigma^{\prime}, A X^{\prime}\right)$, cosignature $\Delta=(v i s S, h i d S, F D)$ and visible subtype visSP $=(v i s \Sigma$, visAX). Let $C$ be a visSP-model with equality such that $A=\operatorname{Fin}($ base $S P, C)$ is a canonical baseSP-model. Moreover, suppose that
$>$ for all $(d(f(x))(t) \equiv u \Leftarrow \varphi) \in A X^{\prime}$ and $f, g \in \Sigma^{\prime}$, u does not contain a subterm of the form $f(\ldots, g(\ldots), \ldots)$,
$>$ for all $d: s \rightarrow\left(v \rightarrow s^{\prime}\right) \in D S, f: w \rightarrow s \in \Sigma^{\prime}, a \in A$ and $b: X \rightarrow A$ there is exactly one $(d(f(x))(t) \equiv$ $u \Leftarrow \varphi) \in A X^{\prime}$ such that $a=b^{*}(t)$ and $A \models_{b} \varphi$.

Then there is a canonical SP-model $\operatorname{Fin}(S P, C)$ with $\left.\operatorname{Fin}(S P, C)\right|_{b a s e \Sigma}=A$.
Proof. $\Sigma^{\prime}$ consists of coinductive functions. We interpret $\Sigma^{\prime}$ on $A$ and show that the axioms for $\Sigma^{\prime}$ are valid in $A$. For this purpose, we construct an (base $S P, C$ )-coalgebra $B$ such that the final morphism fin $: B \rightarrow A$
yields an interpretation of $\Sigma^{\prime}$ in $A$. Let hidS $S^{\prime}$ be the set of all $s \in$ hidS such that there is $f: w \rightarrow s \in \Sigma^{\prime} . B$ is defined as follows: for all $s \in S$,

$$
s^{B}= \begin{cases}\coprod_{f: w \rightarrow s \in \Sigma^{\prime}} A_{w} & \text { if } s \in h i d S^{\prime} \\ s^{A} & \text { otherwise }\end{cases}
$$

We interpret each $f: w \rightarrow s \in \Sigma^{\prime}$ in $B$ by the injection $\iota_{f}: A_{w} \rightarrow s^{B}$. Let $T_{\Sigma}(X)^{\prime}$ be the set of all $\Sigma$-terms $t$ such that $t$ does not contain a subterm of the form $f(\ldots, g(\ldots), \ldots)$. Let $d: s \rightarrow\left(v \rightarrow s^{\prime}\right) \in D S$, $f: w \rightarrow s \in \Sigma^{\prime}, a \in A, b: X \rightarrow A$ and $c: X \rightarrow B$ such that for all $x \in X, b(x)=c(x)$. By assumption, there is exactly one $(d(f(x))(t) \equiv u \Leftarrow \varphi) \in A X^{\prime}$ such that $a=b^{*}(t)$ and $A \models_{b} \varphi$. Hence $d^{B}$ is defined uniquely as follows:

$$
\begin{array}{ll}
d^{B}\left(\iota_{f}(b x)\right)(a)=\operatorname{def} c^{*}(u) & \text { if } s \in h i d S^{\prime} \\
d^{B}={ }_{\operatorname{def}} d^{A} & \text { otherwise }
\end{array}
$$

It is crucial that $u \in T_{\Sigma}(X)^{\prime}$. Otherwise $c^{*}(u)$ were not defined because for some $f: w \rightarrow s \in \Sigma^{\prime}$ occurring in $u, A_{w} \neq B_{w}$ and thus $f^{B}=\iota_{f}$ would not be a function from $B_{w}$ to $s^{B}$.

Of course, $B$ is a (base $S P, C$ )-coalgebra. Hence by Thm. 17.3 there is a unique base $\Sigma$-homomorphism fin $: B \rightarrow A$. Hence $A$ may interpret $f: w \rightarrow s \in \Sigma^{\prime}$ as follows: for all $a \in A_{w}$,

$$
\begin{equation*}
f^{A}(a)=\operatorname{def} \quad \operatorname{fin}_{s}\left(\iota_{f}(a)\right) \tag{1}
\end{equation*}
$$

With this interpretation of coinductive functions, $A$ satisfies $A X^{\prime}$ : Let $(d(f(x))(t) \equiv u \Leftarrow \varphi) \in A X^{\prime}, a \in A$ and $b: X \rightarrow A$ such that $a=b^{*}(t)$ and $A \models_{b} \varphi$. Hence by (1), the definition of $d^{B}$, since fin is compatible with $D F$ and since both $f i n_{s^{\prime}} \circ c^{*}$ and $b^{*}$ are $\Sigma$-homomorphic extensions of $b$ to $T_{\Sigma}(X)^{\prime}$,

$$
\begin{aligned}
& b^{*}(d(f(x))(t))=d^{A}\left(f^{A}(b x)\right)\left(b^{*}(t)\right)=d^{A}\left(f^{A}(b x)\right)(a)=d^{A}\left(\operatorname{fin}_{s}\left(\iota_{f}(b x)\right)\right)(a) \\
& =\operatorname{fin}_{s^{\prime}}\left(d^{B}\left(\iota_{f}(b x)\right)(a)\right)=\operatorname{fin}_{s^{\prime}}\left(c^{*}(u)\right)=b^{*}(u),
\end{aligned}
$$

i.e., $A=_{b} d(f(x))(t) \equiv u$.

Besides the set of destructors that is introduced by a cosignature $\Delta$, a cospecification $C S P$ with cosignature $\Delta$ allows us to axiomatize functions inductively on the structure of visible data (aux), greatest relations (coP), coinductively defined functions $(c o F)$ and subdomains of the final $(\Delta, C)$-coalgebra by assertions. The latter occur in a similar form in CCSL specifications [54]. Jacobs introduced assertions in [52] as axioms for unary predicates-we call them coequalities (cf. Def. 17.4) -, which are invariant with respect to the application of destructors and thus equip the subcarriers of coalgebra elements satisfying the assertions with their own coalgebra structure. CCSL assertions are arbitrary first-order formulas over the given cosignature. Sometimes rather complicated closure constructions are necessary for ensuring their invariance with respect to destructors [52]. Our assertions are confined to co-Horn clauses and combined with invariance axioms (see below), which ensures that a final coalgebra satisfying the assertions always exists (cf. Thm. ??(3)).

The terminal constraints of [101], the destructor specifications of [15] and the ( $\Omega, \Xi$ )-specifications of [49] represent classes of cospecifications. [15] admits only certain conditional equations, called coequations, as axioms and forbids functional codomains of destructors. The axioms of an $(\Omega, \Xi)$-specification may be arbitrary firstorder formulas, but the destructors must be linear, though they may have functional codomains. Such codomains occur also in other approaches (cf., e.g., $[18,34]$ ). They allow us to formalize parameterized observations and come quite naturally with the "cofreeness" of final coalgebras. [15] restricts the codomains to non-nested sums, but seems to be the only paper so far where final coalgebras with non-linear destructors are characterized in terms of context interpretations.
other notions of coequations in [42], [62], [114] ??

Instead of presenting a language like CCSL [54] for specifying everything coalgebraically we show in the following section how to incorporate a cospecification $C S P$ into a swinging type $S P$ such that the final model of $C S P$ is isomorphic to the final model of the domain completion of $S P$ (Def. 18.4).

In terms of object-oriented design, $s$-assertions are the invariants of the class denoted by $s$. Only coalgebraic specifications allow us to present subdomains described by invariants directly. From an algebraic specification $S P$ whose standard model $M$ consists of terms a particular subdomain can be obtained only indirectly, namely by constructing a reduct of $M$. A reduct is determined by a set $F$ of functions of $S P$ : the $F$-reduct of $M$ contains exactly those elements of $M$ that can be generated by applications of $F$. On the other hand, reducts of final coalgebras do not make sense because uncountable subdomains could never be specified in this way. Instead, the reduct construction will be integrated into the notion of a dialgebraic swinging type given in the next section.

In closing this section, let us point out a striking duality between algebraic and coalgebraic specifications:

## Algebraic specifications are function-Oriented.

A SIGNATURE $\Sigma$ defines functions on objects that are TERMS consisting of CONSTRUCTORS.
The standard model of $\Sigma$ is an initial algebra of terms, i.e., a sum of products.
The axioms of a SPECIFICATION $S P$ with signature $\Sigma$ IDENTIFY objects and specify functions inducTIVELY.

The standard model of $S P$ is a Quotient of the standard model of $\Sigma$.

## Coalgebraic specifications are object-oriented.

A COSIGNATURE $\Delta$ defines object states as interpretations of CONTEXTS consisting of DESTRUCTORS.
The standard model of $\Delta$ is a final coalgebra of object states, i.e., a product of sums.
The axioms of a COSPECIFICATION $C S P$ with cosignature $\Delta$ SELECT objects and specify functions COINDUCTIVELY.

The standard model of $C S P$ is a subcoalgebra of the standard model of $\Delta$.

A closer look at the standard models reveals further dualities between algebraic and coalgebraic specifications:

| $\Sigma$ signature | $\Delta$ cosignature |
| :---: | :---: |
| $I=\operatorname{Ini}(\Sigma) \quad \text { initial } \Sigma \text {-algebra }$ consisting of terms | $\begin{gathered} F=\operatorname{Fin}(\Delta, C) \quad \text { final }(\Delta, C) \text {-coalgebra } \\ \text { consisting of context interpretations (cf. Fig. ??) } \end{gathered}$ |
| $\mu A X \quad$ Horn clauses | $\operatorname{co} A X \quad$ co-Horn clauses |
| $S P=(\Sigma, \mu A X \cup \ldots) \quad$ algebraic swinging type | $C S P=(\Delta, C, \ldots, \operatorname{coA}$ ( $\cup \ldots) \quad$ cospecification |
| $\begin{aligned} & E M o d(S P) \\ & \quad=\left\{A \in \operatorname{Mod}(S P) \mid \forall s \in S: \equiv_{s}^{A}=\Delta_{s}^{A}\right\} \end{aligned}$ | $\begin{aligned} & \operatorname{Mod}(C S P) \\ & \quad=\left\{A \in p \operatorname{Mod}(C S P) \mid \forall s \in h i d S: i s_{s}^{A}=s^{A}\right\} \end{aligned}$ |
| ```\(I \xrightarrow{\text { ini }} A\) \(\operatorname{kernel}(\) ini \() \models \mu A X\) \(\equiv^{I}={ }_{\text {def }}\) least subset of \(I \times I\) s.t. \(I \models \mu A X\)``` | $\begin{aligned} & A \xrightarrow{\text { fin }} F \\ & \quad \text { image }(\text { fin }) \models \operatorname{co} A X \\ & i s^{F}={ }_{\text {def }} \text { greatest subset of } F \text { s.t. } F \models \operatorname{co} A X \end{aligned}$ |
| $\Longrightarrow \quad \equiv^{I} \subseteq \operatorname{kernel}($ ini $)$ | $\Longrightarrow \quad i m a g e($ fin $) \subseteq i s^{F}$ |
| $\Longleftrightarrow \quad i n i$ is compatible with $\equiv$ | $\Longleftrightarrow \quad f i n$ is compatible with $i s$ |
| $\Longrightarrow\left\{\begin{array}{rll} I \xrightarrow{n a t} I / \equiv \equiv^{I} \xrightarrow{\text { ini }} A & & \text { ini' } i^{\prime} \text { is } \\ {[t]} & \mapsto & \text { ini }(t) \end{array}\right) \text { well-defined } .$ | $\Longrightarrow\left\{\begin{array}{lll} A \xrightarrow{f i n^{\prime}} & i s^{F} \xrightarrow{i n c} F & \text { fin }^{\prime} \text { is } \\ a \xrightarrow{\mapsto} & \operatorname{fin}(a) & \\ \text { well-defined } \end{array}\right.$ |
| $\xrightarrow{I \in \operatorname{Mod}(S P)} \Longrightarrow \quad I / \equiv^{I}$ is initial in $\operatorname{EMod}(S P)$ | $\stackrel{F \in p M o d(C S P)}{\Longrightarrow} \quad i s^{F}$ is final in $\operatorname{Mod}(C S P)$ |

Another dimension of the duality between initial and final models is the topic of [10]. In the table above, we construct quotients on the left-hand initial side and subdomains on the right-hand final side, while [10] confronts initial reachability (via constructors) with final observability (via behavioral equalities). This reflects the more general duality between the initial construction of subdomains (via subsignatures) and the final construction of quotients (via greatest fixpoints), respectively.

As proof obligations are concerned, the duality leads to trade-offs. While the final specification of a subdomain in terms of assertions is automatically consistent, the initial specification in terms of generating functions requires an inductive proof that the generated objects and only these have the subdomain's desired properties. On the other hand, the initial specification of a quotient in terms of equational axioms automatically yields a congruence relation (the structural equivalence), while the final specification in terms of destructors requires the proof that the induced behavioral equality is also compatible with the other functions and relations of the specification.

## 18 Algebraic types with cospecifications

In this section, we combine a swinging type $S P$ with a cospecification $C S P$. Certain hidden sorts of $S P$ are declared as destructor sorts, which thus become the hidden sorts of $C S P$. $S P$ is then extended by the final $C S P$-model insofar as all elements of $\operatorname{Fin}(C S P)$ are added to $S P$ as additional constructor constants. Without such an extension swinging types can only represent finitely generated data domains where each object has a ground term representation. Final models of a cospecification, however, may have even uncountable carriers.

Definition 18.1 (dialgebraic swinging type) Let $S P=(\Sigma, A X)$ be an algebraic swinging type that is not basic Horn and whose components are named as in Def. 5.1. Suppose that all hidS-destructors are functional destructors with a single hidden argument and there are no hidS-constructors. Let des denote the set of hidS-destructors, $\Delta=(v i s \Sigma, h i d S, d e s), C=F i n(v i s S P)$ and

$$
C S P=(\Delta, C, a u x, c o P, c o F, C A X)
$$

be a cospecification such that the auxiliary functions of $C S P$ are defined functions of $S P$ and the axioms for aux and $\nu P$ are the same in $S P$ and $C S P$. Then

$$
C S T=\left(S P, a u x, c o F, A X_{h i d S \cup c o F}\right)
$$

is a dialgebraic swinging type. $S P$ is the algebraic part and $C S P$ is the cospecification of $C S T$. A $C S T$-context is a $\Delta$-context.

The main syntactic differences between an algebraic swinging type $S P$ and a dialgebraic swinging type $C S T$ can be summarized as follows:

- CST has no transitional destructors.
- $S P$ has neither assertions nor cofunctions.

For the later use of a dialgebraic ST as the visible subtype of an algebraic ST, the former is transformed into its domain completion (cf. Def. 18.4), which is an algebraic ST. While the hidden sorts of an algebraic ST are interpreted as quotients of term sets, the hidden sorts of a dialgebraic type will be interpreted in the final model of the type's cospecification. Each element of the model denotes a set of behaviors or context interpretations (cf. Def. 17.1). From the applications' point of view the requirement that each destructor for a hidden sort has a single hidden argument (cf. Def. 18.1) is not restrictive. For instance, in object-oriented terminology, the sort $s$ of the hidden argument corresponds to the class whose objects are "observed" by the $s$-destructors. A destructor never observes several objects simultaneously, unless they are tupled, i.e., attached to a (hidden) product sort whose projections provide the destructors into the component sorts (cf. Section 2). Further arguments of a destructor denote observation parameters and thus are always part of a visible subdomain.

Definition 18.2 (contextual equivalence) Let $S P$ be an algebraic functional swinging type. The Nerode or contextual $S P$-equivalence $\sim_{S P}^{N e r}$ is the $S$-sorted binary relation on $T_{\Sigma}$ that is defined as follows: for all $s \in S$ and $t, t^{\prime} \in T_{\Sigma, s}$,

$$
t \sim_{S P}^{\text {Ner }} t^{\prime} \Longleftrightarrow \Longleftrightarrow_{\text {def }} \begin{cases}n f(t) \sim_{v i s S P} n f\left(t^{\prime}\right) \\ \forall e: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in C T_{\Delta}, u \in T_{\Sigma, w}: n f(e(t)(u)) \sim_{v i s S P} n f\left(e\left(t^{\prime}\right)(u)\right) & \text { if } s \in \text { if } s \in \text { hidS }\end{cases}
$$

Lemma 18.3 Let $S P$ be an algebraic functional and continuous swinging type. Then contextual SPequivalence agrees with behavioral SP-equivalence.

Proof. Since $\sim_{S P}$ is the greatest relation on $T_{\Sigma}$ that satisfies the behavior axioms of $S P$ (cf. Def. 5.1), $\sim_{S P}^{N e r}$ agrees with $\sim_{S P}$ iff $\sim_{S P}^{N e r}$ is the greatest relation $\approx$ on $T_{\Sigma}$ such that for all $s \in S$ and $t, t^{\prime} \in T_{\Sigma, s}$,

$$
t \approx t^{\prime} \quad \text { implies } \quad\left\{\begin{array}{ll}
t \sim_{S P} t^{\prime} & \text { if } s \in v i s S  \tag{1}\\
\forall d: s w \rightarrow s^{\prime} \in \operatorname{des}, u \in T_{\Sigma, w}: d(t, u) \approx d\left(t^{\prime}, u\right) & \text { if } s \in h i d S .
\end{array}\right\}
$$

$\sim_{S P}^{N e r}$ is a subrelation of $\sim_{S P}$ if (1) is satisfied by $\approx=\sim_{S P}^{N e r}$. This holds true for $s \in v i s S$ because then $\sim_{S P, s}^{N e r} \subseteq \equiv_{S P} \circ \sim_{v i s S P} \circ \equiv_{S P} \subseteq \sim_{S P}$. Let $s \in h i d S, t \sim_{S P, s}^{N e r} t^{\prime}, d: s w \rightarrow s^{\prime} \in$ des and $u \in T_{\Sigma, w}$. Then for all $e: s^{\prime} \rightarrow\left(v \rightarrow s^{\prime \prime}\right) \in C T_{\Delta}$ and $u^{\prime} \in T_{\Sigma, v}$,

$$
n f\left(e(d(t, u))\left(u^{\prime}\right)\right) \sim_{v i s S P} n f\left((e \cdot d)(t)\left(u, u^{\prime}\right)\right)=n f\left((e \cdot d)\left(t^{\prime}\right)\left(u, u^{\prime}\right)\right)=n f\left(e\left(d\left(t^{\prime}, u\right)\right)\left(u^{\prime}\right)\right) .
$$

Hence $d(t, u) \sim N_{P}^{N e r} d\left(t^{\prime}, u\right)$, and we conclude that $\approx=\sim_{S P}^{N e r}$ satisfies (1).
For the converse, let $\Phi$ be the $\operatorname{coAX}$-consequence operator on $\left.\operatorname{Her}(S P)\right|_{\Sigma^{\prime}}$ (cf. Def. 12.1) and $U$ be the $\left(\Sigma^{\prime} \cup c o P\right)$-structure with $\left.U\right|_{\Sigma^{\prime}}=\operatorname{Her}\left(S P^{\prime}\right)$ and $r^{U}=T_{\Sigma, w}$ for all $r: w \in c o P$. By assumption, $\Phi$ is continuous. Hence by Kleene's fixpoint theorem (cf., e.g., [89], Thm. 4.2), $\operatorname{Her}(S P)_{\Sigma^{\prime} \cup c o P}=\cap_{i \in \mathbb{N}} \Phi^{i}(U)$.

Let $i \in \mathbb{N}$ and $C T_{\Delta}^{i}$ be the set of $\Delta$-contexts consisting of at most $i$ destructors. We define approximations of contextual equivalence: for all $s \in S$ and $t, t^{\prime} \in T_{\Sigma, s}$,

$$
t \sim^{i} t^{\prime} \Longleftrightarrow \Longleftrightarrow_{\text {def }} \begin{cases}n f(t) \sim_{v i s S P} n f\left(t^{\prime}\right) \\ \forall e: s \rightarrow s^{\prime} \in C T_{\Delta}^{i}, u \in T_{\Sigma, w}: n f(e(t)(u)) \sim_{v i s S P} n f\left(e\left(t^{\prime}\right)(u)\right) & \text { if } s \in v i s S \\ \text { if } s \in \text { hidS }\end{cases}
$$

Suppose that for all $i \in \mathbb{N}, s \in S$ and $t, t^{\prime} \in T_{\Sigma, s}$,

$$
\begin{equation*}
\Phi^{i}(U) \models t \sim t^{\prime} \quad \text { implies } \quad t \sim^{i} t^{\prime} . \tag{2}
\end{equation*}
$$

Then $\sim_{S P}=\cap_{i \in \mathbb{N}} \sim^{\Phi^{i}(U)} \subseteq \cap_{i \in \mathbb{N}} \sim^{i}=\sim_{S P}^{N e r}$, and the proof is complete. It remains to show (2).
Let $\Phi^{i}(U) \vDash t \sim t^{\prime}$. If $s \in v i s S$, then $t \sim_{S P} t^{\prime}$ and thus $n f(t) \equiv_{S P} t \sim_{S P} t^{\prime} \equiv_{S P} n f\left(t^{\prime}\right)$. Hence $n f(t) \sim_{S P} n f\left(t^{\prime}\right)$ and thus $n f(t) \sim_{v i s S P} n f\left(t^{\prime}\right)$ because $\left.\sim_{S P}\right|_{T_{v i s \Sigma}}$ satisfies the behavior axioms of visSP and $\sim_{v i s S P}$ is the greatest solution of the behavior axioms of visSP. Hence $t \sim^{i} t^{\prime}$.

Let $s \in \operatorname{hidS}$. If $i=0$, then $\sim_{s}^{\Phi^{i}(U)}=\sim_{s}^{U}=T_{\Sigma, s} \times T_{\Sigma, s}$ and $C T_{\Delta}^{i}=\emptyset$. Hence (2) holds true. Let $i>0$. By the definition of $\Phi$,

$$
\begin{equation*}
\forall d: s w \rightarrow s^{\prime} \in d e s, u \in T_{\Sigma, w}: \Phi^{i-1}(U) \quad \vDash d(t, u) \sim d\left(t^{\prime}, u\right) \tag{3}
\end{equation*}
$$

By induction hypothesis, (3) implies $d(t, u) \sim^{i-1} d\left(t^{\prime}, u\right)$. Hence for all $e: s^{\prime} \rightarrow\left(v \rightarrow s^{\prime \prime}\right) \in C T_{\Delta}^{i-1}$ and $u^{\prime} \in T_{\Sigma, v}$,

$$
n f\left((e \cdot d)(t)\left(u, u^{\prime}\right)\right)=n f\left(e(d(t, u))\left(u^{\prime}\right)\right) \sim_{v i s S P} n f\left(e(d(t, u))\left(u^{\prime}\right)\right)=n f\left((e \cdot d)(t)\left(u, u^{\prime}\right)\right)
$$

Hence $t \sim^{i} t^{\prime}$, and the proof of (2) is complete.
Let $S P^{\prime}$ be the extension of $S P$ by constructor constants denoting the elements of $\operatorname{Fin}(C S P)$. The final $S P^{\prime}$-model that is given by the quotient of the $S P^{\prime}$-Herbrand model by behavioral $S P^{\prime}$-equivalence (cf. [89], Def. 4.6) will turn out to be isomorphic to $\operatorname{Fin}(C S P)$. Hence the final-coalgebra semantics of $C S T$, which is given by $\operatorname{Fin}(C S P)$, coincides with the final-algebra semantics $F i n\left(S P^{\prime}\right)$ of a "sufficiently big" extension of $S P$.

Definition 18.4 (domain completion) Let $C S T$ be a dialgebraic swinging type as in Def. 18.1 such that $v i s S P$ is functional and head complete (cf. Def. 12.1). We regard the elements of $\operatorname{Fin}(C S P)$ as additional (nullary) constructors and the cofunctions of $C S P$ as additional defined functions and add the following sets of axioms for destructors and cofunctions, respectively:

$$
\begin{aligned}
& A X_{\text {des }}=\left\{d(a, u) \equiv t \mid \quad d: s w \rightarrow s^{\prime} \in d e s, s^{\prime} \in v i s S, a \in \operatorname{Fin}(C S P)_{s},\right. \\
& u, t \in N F_{v i s \Sigma}, t \text { is an object normal form, } \\
& \left.d^{\operatorname{Fin}(C S P)}(a,[u])=[t]\right\}^{19} \cup \\
& \left\{d(a, u) \equiv b \mid \quad d: s w \rightarrow s^{\prime} \in d e s, s^{\prime} \in h i d S, a \in \operatorname{Fin}(C S P)_{s},\right. \\
& \left.u \in N F_{v i s \Sigma}, d^{F i n(C S P)}(a,[u])=b\right\} \\
& A X_{c o F}=\left\{f\left(t_{1}, \ldots, t_{n}\right) \equiv b \mid \quad f: s_{1} \ldots s_{n} \rightarrow s \in c o F, \text { for all } 1 \leq i \leq n,\right. \\
& s_{i} \in v i s S \text { implies } t_{i} \in N F_{v i s \Sigma, s_{i}} \text { and } t_{i}^{\prime}=\left[t_{i}\right] \text {, } \\
& s_{i} \in h i d S \text { implies } t_{i}=t_{i}^{\prime} \in \operatorname{Fin}(C S P)_{s_{i}} \text {, } \\
& \left.f^{F i n(C S P)}\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)=b\right\}
\end{aligned}
$$

Let $\Sigma^{\prime}=\Sigma \cup(\emptyset, F i n(C S P) \cup c o F, \emptyset)$ and $A X^{\prime}=A X \cup A X_{d e s \cup c o F}$. Then $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ is an algebraic swinging type, called the domain completion of $C S T$. A coinductive theorem of $C S T$ is an inductive theorem of $S P^{\prime}$ (cf. Def. 12.1).

[^13]$C S T$ is cospec closed if CST has no assertions or no hidS-constructors or for all $s \in h i d S$ and $t \in s^{N F_{\Sigma^{\prime}}}$ there is $a \in \operatorname{Fin}(C S P)_{s}$ such that $t \sim_{S P^{\prime}} a . C S T$ is functional, continuous or behaviorally consistent, respectively, if $S P^{\prime}$ is functional, continuous or behaviorally consistent, respectively.

Note that $A X_{\text {des }}$ need not be the only axioms for hidS-destructors in $S P^{\prime}$. If $S P$ contains hidden constructors, then these must be specified in terms of axioms for destructors in order to make CST complete and, if $C S T$ contains assertions, cospec closed.
$S P^{\prime}$ is coinductive if $S P$ is coinductive ([89], Def. 6.1; [94], Def. 7.1). This confirms the adequacy of this criterion for behavioral consistency, especially concerning the required form of the left-hand side $t$ of a coinductive equational axiom: the leading function symbol of $t$ is a destructor, while all other symbols of $t$ are constructors or variables. Each of these axioms contributes to the specification of a single destructor. Condition 17.1(1) ensures the "context-free" interpretation of each destructor in the final ( $\Delta, C$ )-coalgebra. Hence it is not necessary to admit axioms that specify destructors in the context of other destructors (see also [89], Section $6)$.

Each dialgebraic swinging type has an algebraic part. Conversely, one build algebraic on top of dialgebraic types in the course of developing a specification hierarchically. This happens automatically when the visible subtype of an algebraic type coincides with the domain completion of a dialgebraic type (cf. Def. 5.1).

The domain completion $S P^{\prime}$ of $C S T$ may augment the algebraic part $S P$ of $C S T$ with infinitely, maybe uncountably many constants, which denote context interpretations, i.e., elements of $\operatorname{Fin}(C S P)$. These constants are and occur in the ground terms $\operatorname{Her}\left(S P^{\prime}\right)$ consists of. Since $\operatorname{Fin}(C S P)$ may be uncountable, while the rest of $\operatorname{Her}\left(S P^{\prime}\right)$ is countable, $\operatorname{Her}\left(S P^{\prime}\right)$ may be imagined as an iceberg whose main part hides in the sea (cf. Fig. ??). In contrast to $\operatorname{Fin}(C S P)$, the term structure of $\operatorname{Her}\left(S P^{\prime}\right)$ allows us to employ inference rules whose applicability relies on term unification. In fact, reasoning about (the domain completion of) CST can be reduced to reasoning about the cospecification of $C S T$ :

Theorem 18.5 Let CST be a cospec closed, functional, continuous and behaviorally consistent dialgebraic swinging type as in Def. 18.1 and $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ be the domain completion of CST such that visSP is functional and object constructor complete.
(1) If CST has no assertions, then for all $s \in \operatorname{hidS}$ and $t \in T_{\Sigma^{\prime}, s}$ there is $a \in \operatorname{Fin}(C S P)_{s}$ such that $t \sim_{S P^{\prime}} a$.
(2) For all $s \in h i d S$ and $a, b \in \operatorname{Fin}(C S P)_{s}, a \sim_{S P^{\prime}} b$ iff $a=b$.
(3) Fin $\left(S P^{\prime}\right)$ and Fin $(C S P)$ are $\Sigma^{\prime}$-isomorphic.

Proof. Let $\approx$ be the $S$-sorted relation that is defined as follows. For all $s \in v i s S, \approx_{s}=\sim_{v i s S P, s}$. For all $s \in h i d S, \approx_{s}$ is the least equivalence relation on $T_{\Sigma^{\prime}, s}$ that includes $\equiv_{S P^{\prime}, s}$ and satisfies

$$
t \approx_{s} t^{\prime} \wedge u \sim_{v i s S P, w} u^{\prime} \Rightarrow d(t, u) \approx_{s^{\prime}} d\left(t^{\prime}, u\right)
$$

for all $d: s w \rightarrow s^{\prime} \in$ des with $s^{\prime} \in h i d S$. Of course, $\approx$ is a subrelation of $\sim_{S P^{\prime}}$.
Let $C=\operatorname{Fin}(v i s S P)$. We define a $(\Delta, C)$-coalgebra $A$ :

- For all $s \in v i s S, s^{A}=C_{s}=T_{v i s \Sigma, s} / \sim_{v i s S P, s}$.
- For all $s \in h i d S, s^{A}=T_{\Sigma^{\prime}, s} / \approx_{s}$.
- For all $d: s w \rightarrow s^{\prime} \in d e s, t \in T_{\Sigma^{\prime}, s}$ and $u \in T_{v i s \Sigma, w}, d^{A}([t],[u])=[n f(d(t, u))]$.
$d^{A}$ is well-defined: Let $t \approx t^{\prime}$ and $u \sim_{v i s S P} u^{\prime}$. If $s^{\prime} \in v i s S$, then $d(t, u) \sim_{S P^{\prime}} d\left(t^{\prime}, u^{\prime}\right)$ and thus $n f(d(t, u)) \sim_{S P^{\prime}}$ $n f\left(d\left(t^{\prime}, u^{\prime}\right)\right)$. Hence $n f(d(t, u)) \sim_{v i s S P} n f\left(d\left(t^{\prime}, u^{\prime}\right)\right)$ because $\left.\sim_{S P^{\prime}}\right|_{T_{v i s \Sigma}}$ satisfies the behavior axioms of visSP and $\sim_{v i s S P}$ is the greatest solution of the behavior axioms of visSP. If $s^{\prime} \in h i d S$, then $d(t, u) \approx d\left(t^{\prime}, u^{\prime}\right)$ by the definition of $\approx$. Hence $n f(d(t, u)) \approx n f\left(d\left(t^{\prime}, u^{\prime}\right)\right)$.

By Thm. 17.3, $\operatorname{Fin}(\Delta, C)$ is final in $\operatorname{coAlg}(\Delta, C)$. Hence there is a unique $(\Delta, C)$-homomorphism $f$ in $: A \rightarrow$ Fin $(\Delta, C)$ that is defined as follows (see the proof of Thm. 17.3): for all $s \in S$ and $t \in T_{\Sigma^{\prime}, s}$,

$$
\begin{aligned}
\text { fin }([t]) & =[t] & \text { if } s \in \text { visS }, \\
\pi_{e}(\operatorname{fin}([t])) & =e^{A}([t]) \quad \text { for all } e: s \rightarrow s^{\prime} \in C T_{\Delta} & \text { if } s \in \text { hidS. } .
\end{aligned}
$$

Let nat : $N F_{\Sigma^{\prime}} \rightarrow A$ be the natural function that maps each visS- resp. hidS-sorted ground normal form $t$ to the $\sim_{v i s S P}-$ resp. $\approx$-equivalence class $[t]$. The composition nat $\circ n f$ is compatible with vis $\Sigma$ and des: Let $d: s w \rightarrow s^{\prime} \in \operatorname{des}, t \in T_{\Sigma^{\prime}, s}$ and $u \in T_{v i s \Sigma, w}$. Then

$$
(n a t \circ n f)(d(t, u))=[n f(d(t, u))]=d^{A}([t],[u])=d^{A}([n f(t)],[n f(u)])=d^{A}((n a t \circ n f)(t),(n a t \circ n f)(u)) .
$$

Next we show $\operatorname{fin}([a])=a$ for all $a \in \operatorname{Fin}(C S P)$. This holds true if for all $e: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in C T_{\Delta}$, $\pi_{e}(f i n([a]))=\pi_{e}(a)$, which is proved by induction on the size of $e$ :

Case 1. $e \in$ des. Let $u \in T_{v i s \Sigma, w}$. Since $s^{\prime} \in v i s S$, there is $t \in N F_{v i s \Sigma}$ such that $e^{F i n(C S P)}(a,[u])=[t]$. Hence $(e(a, u) \equiv t) \in A X^{\prime}$ and thus

$$
\pi_{e}(f i n([a]))([u])=e^{A}([a],[u])=[n f(e(a, u))]=[t]=e^{F i n(C S P)}(a,[u])=\pi_{e}(a)([u]) .
$$

Case 2. $e=f \cdot d$ and $w=v v^{\prime}$ for some $d: s v \rightarrow s^{\prime \prime} \in \operatorname{des}$ and $f: s^{\prime \prime} \rightarrow\left(v^{\prime} \rightarrow s^{\prime}\right) \in C T_{\Delta}$. Let $u \in T_{v i s \Sigma, v}$ and $u^{\prime} \in T_{v i s \Sigma, v^{\prime}}$. Since $s^{\prime} \in \operatorname{hidS}$, there is $b \in \operatorname{Fin}(\Delta, C)$ such that $d^{F i n(C S P)}(a,[u])=b$. Hence $(d(a, u) \equiv b) \in A X^{\prime}$ and thus

$$
\begin{aligned}
& \pi_{e}(f i n([a]))\left([u],\left[u^{\prime}\right]\right)=e^{A}([a])\left([u],\left[u^{\prime}\right]\right)=f^{A}\left(d^{A}([a],[u])\right)\left(\left[u^{\prime}\right]\right)=f^{A}([n f(d(a, u))])\left(\left[u^{\prime}\right]\right) \\
& =f^{A}([b])\left(\left[u^{\prime}\right]\right)=\pi_{f}(\operatorname{fin}([b]))\left(\left[u^{\prime}\right]\right) \stackrel{\text { ind.hyp. }}{=} \pi_{f}(b)\left(\left[u^{\prime}\right]\right)=\pi_{f}\left(d^{\text {Fin }(C S P)}(a,[u])\right)\left(\left[u^{\prime}\right]\right) \\
& =\pi_{e}(a)\left([u],\left[u^{\prime}\right]\right)
\end{aligned}
$$

where the last equation follows from the interpretation of $d$ in $\operatorname{Fin}(\Delta, C)$ (cf. Def. 17.1).
We show that the equivalence kernel of $h=_{\text {def }}$ finonatonf: $\operatorname{Her}\left(S P^{\prime}\right) \rightarrow \operatorname{Fin}(\Delta, C)$ agrees with contextual $S P^{\prime}$-equivalence (cf. Def.18.2). Let $s \in S$ and $t, t^{\prime} \in T_{\Sigma^{\prime}, s}$. If $s \in v i s S$, then

$$
h(t)=h\left(t^{\prime}\right) \Longleftrightarrow n f(t) \sim_{v i s S P} n f\left(t^{\prime}\right) \Longleftrightarrow t \sim_{S P^{\prime}}^{N^{\prime}} t^{\prime} .
$$

Let $s \in \operatorname{hidS}$. Then $h(t)=h\left(t^{\prime}\right)$ iff for all $e: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in C T_{\Delta}$,

$$
\begin{equation*}
e^{A}([t])=e^{A}([n f(t)])=\pi_{e}(f i n([n f(t)]))=\pi_{e}\left(f i n\left(\left[n f\left(t^{\prime}\right)\right]\right)\right)=e^{A}\left(\left[n f\left(t^{\prime}\right)\right]\right)=e^{A}\left(\left[t^{\prime}\right]\right) . \tag{4}
\end{equation*}
$$

We show that for all $s \in \operatorname{hidS}, t \in T_{\Sigma^{\prime}, s}, e: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in C T_{\Delta}$ and $u \in T_{v i s \Sigma, w}$,

$$
\begin{equation*}
e^{A}([t])=e^{A}\left(\left[t^{\prime}\right]\right) \Longleftrightarrow \quad n f(e(t)(u)) \sim_{v i s S P} n f\left(e\left(t^{\prime}\right)(u)\right), \tag{5}
\end{equation*}
$$

by induction on the size of $e$. If $e \in d e s$, then $s^{\prime} \in v i s S$ and (5) follows from the definition of $e^{A}$ (see above). Otherwise there are $v, v^{\prime} \in v i s S^{*}, s^{\prime \prime} \in h i d S, d: s v \rightarrow s^{\prime \prime} \in \operatorname{des}$ and $f: s^{\prime \prime} \rightarrow\left(v^{\prime} \rightarrow s^{\prime}\right) \in C T_{\Delta}$ with $e=f \cdot d$ and $w=v v^{\prime}$. Suppose that $e^{A}([t])=e^{A}\left(\left[t^{\prime}\right]\right)$ for all $u \in T_{v i s \Sigma, u}$ and $u^{\prime} \in T_{v i s \Sigma, v^{\prime}}$. Then

$$
\begin{aligned}
& f^{A}([n f(d(t, u))])\left(\left[u^{\prime}\right]\right)=f^{A}\left(d^{A}([t],[u])\right)\left(\left[u^{\prime}\right]\right)=e^{A}([t])\left([u],\left[u^{\prime}\right]\right)=e^{A}\left(\left[t^{\prime}\right]\right)\left([u],\left[u^{\prime}\right]\right) \\
& =f^{A}\left(d^{A}\left(\left[t^{\prime}\right],[u]\right)\right)\left(\left[u^{\prime}\right]\right)=f^{A}\left(\left[n f\left(d\left(t^{\prime}, u\right)\right)\right]\right)\left(\left[u^{\prime}\right]\right)
\end{aligned}
$$

and thus by induction hypothesis,

$$
n f\left(e(t)\left(u, u^{\prime}\right)\right)=n f\left(f(d(t, u))\left(u^{\prime}\right)\right) \sim_{v i s S P} n f\left(f\left(d\left(t^{\prime}, u\right)\right)\left(u^{\prime}\right)\right)=n f\left(e(t)\left(u, u^{\prime}\right)\right) .
$$

For the converse, suppose that $n f\left(e(t)\left(u, u^{\prime}\right)\right) \sim_{v i s S P} n f\left(e\left(t^{\prime}\right)\left(u, u^{\prime}\right)\right)$ for all $u \in T_{v i s \Sigma, u}$ and $u^{\prime} \in T_{v i s \Sigma, v^{\prime}}$. Then

$$
n f\left(f(d(t, u))\left(u^{\prime}\right)\right)=n f\left(e(t)\left(u, u^{\prime}\right)\right) \sim_{v i s S P} n f\left(e\left(t^{\prime}\right)\left(u, u^{\prime}\right)\right)=n f\left(f\left(d\left(t^{\prime}, u\right)\right)\left(u^{\prime}\right)\right)
$$

and thus by induction hypothesis,

$$
\begin{aligned}
& e^{A}([t])\left([u],\left[u^{\prime}\right]\right)=f^{A}\left(d^{A}([t],[u])\right)\left(\left[u^{\prime}\right]\right)=f^{A}([n f(d(t, u))])\left(\left[u^{\prime}\right]\right) \\
& =f^{A}\left(\left[n f\left(d\left(t^{\prime}, u\right)\right)\right]\right)\left(\left[u^{\prime}\right]\right)=f^{A}\left(d^{A}\left(\left[t^{\prime}\right],[u]\right)\right)\left(\left[u^{\prime}\right]\right)=e^{A}\left(\left[t^{\prime}\right]\right)\left([u],\left[u^{\prime}\right]\right) .
\end{aligned}
$$

By (4) and (5), for all $e: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in C T_{\Delta}$ and $u \in T_{v i s \Sigma, w}$,

$$
\begin{aligned}
& h(t)=h\left(t^{\prime}\right) \Longleftrightarrow \operatorname{fin}(\operatorname{nat}(n f(t)))=\operatorname{fin}\left(\operatorname{nat}\left(n f\left(t^{\prime}\right)\right)\right) \\
& \Longleftrightarrow \forall e: s \rightarrow\left(w \rightarrow s^{\prime}\right) \in C T_{\Delta}, u \in T_{v i s \Sigma, w}: n f(e(t)(u)) \sim_{v i s S P} n f\left(e\left(t^{\prime}\right)(u)\right) \Longleftrightarrow t \sim_{S P^{\prime}}^{N e r} t^{\prime} .
\end{aligned}
$$

This finishes the proof that the equivalence kernel of $h$ agrees with contextual $S P^{\prime}$-equivalence.
(1) Suppose that CST has no assertions. Then $\operatorname{Fin}(\Delta, C)=\operatorname{Fin}(C S P)$. Hence for all $t \in T_{\Sigma^{\prime}, s}$ there is $a \in \operatorname{Fin}(C S P)$ such that $h(t)=a=\operatorname{fin}([a])=\operatorname{fin}([n f(a)])=h(a)$. Since the equivalence kernel of $h$ agrees with $\sim_{S P^{\prime}}, t$ and $a$ are behaviorally $S P^{\prime}$-equivalent.
(2) Since the equivalence kernel of $h$ agrees with $\sim_{S P^{\prime}}$, for all $a, b \in \operatorname{Fin}(C S P), a \sim_{S P^{\prime}} b$ iff $a=f i n([a])=$ $\operatorname{fin}([n f(a)])=h(a)=h(b)=\operatorname{fin}([n f(b)])=\operatorname{fin}([b])=b$.

By Lemma ??, $A$ is a pre-CSP-model. Since for all $s^{\prime} \in h i d S, d: s w \rightarrow s^{\prime} \in d e s, a \in \operatorname{Fin}(C S P)_{s}$ and $u \in T_{v i s \Sigma, w}, d^{A}([a],[u])=[n f(d(a, u))]=[b]$ for some $b \in \operatorname{Fin}(C S P)_{s^{\prime}}$, $A$ has a $C S P$-submodel with $A_{s}^{\prime}=$ $\left\{[a] \in s^{A} \mid a \in \operatorname{Fin}(C S P)_{s}\right\}$ for all $s \in \operatorname{hidS}$. Since $S P^{\prime}$ is consistent, for all $s \in \operatorname{hidS}$ and $a, b \in \operatorname{Fin}(C S P)_{s}$, $a \equiv \equiv_{S P^{\prime}} b$ implies $a=b$. Hence $A^{\prime}$ and $\operatorname{Fin}(C S P)$ are $\Sigma_{0}$-isomorphic where $\Sigma_{0}=v i s \Sigma \cup(h i d S$, des $\cup a u x, c o P)$.

Let $\varphi$ be an assertion of $C S P$. We show that $A$ satisfies $\varphi$. Let $f: X \rightarrow T_{\Sigma^{\prime}}$ such that for all $x \in X_{v i s S}$, $f(x) \in T_{v i s \Sigma}$. Since $C S T$ is complete and cospec closed, there are $g: X \rightarrow T_{\Sigma^{\prime}}$ and $g^{\prime}: X \rightarrow F i n(C S P)$ such that for all $x \in X_{v i s S}, g(x)=f(x)$ and $g^{\prime}(x)=[f(x)]$, and for all $x \in X_{h i d S}, f(x) \sim_{S P^{\prime}} g(x)=g^{\prime}(x)$. Since $F i n(C S P)$ is a pre-CSP-model, $F i n(C S P)$ satisfies $\varphi$ and thus $\operatorname{Fin}(C S P) \models_{g^{\prime}} \varphi$. Since $F i n(C S P)$ and $A^{\prime}$ are $\Sigma_{0}$-isomorphic and $\varphi$ is a $\Sigma_{0}$-formula, $\operatorname{Fin}(C S P) \models_{g^{\prime}} \varphi$ implies $A^{\prime} \models_{n a t o g} \varphi$ and thus $A \models_{n a t o g} \varphi$ because $\varphi$ has no universal quantifiers. Since $\approx$ is a weak $\Sigma^{\prime}$-congruence and $\varphi$ is poly-modal, [89], Thm. 3.9(a) implies $\operatorname{Her}\left(S P^{\prime}\right) \models_{g} \varphi$. Since $S P^{\prime}$ is behaviorally consistent, [89], Thm. 3.8(3) implies $\operatorname{Her}\left(S P^{\prime}\right) \models_{f} \varphi$. Since $\approx$ is a weak $\Sigma^{\prime}$-congruence and $\varphi$ is poly-modal, [89], Thm. 3.9(a) implies $A=_{\text {natof }} \varphi$.

This finishes the proof that $A$ satisfies the assertions of $C S P$. Since $A$ interprets the copredicates of $C S P$ as the greatest solutions of $\operatorname{coA} A$ (see the proof of Lemma ??), we conclude that $A$ is a $C S P$-model.

By Thm. ?? $(3), \operatorname{Fin}(C S P)$ is final in $\operatorname{Mod}(C S P)$ and the range restriction of $f i n: A \rightarrow F i n(\Delta, C)$ to $\operatorname{Fin}(C S P)$ is the final morphism. Since for all $s \in h i d S$ and $a \in \operatorname{Fin}(C S P)_{s}, f i n([a])=a$, fin and thus $h$ are surjective.

Since the equivalence kernel of $h$ agrees with contextual $S P^{\prime}$-equivalence, Lemma 18.3 implies that it coincides with behavioral $S P^{\prime}$-equivalence, which, by assumption, is a weak $\Sigma^{\prime}$-congruence.

Let $\Sigma_{1}=v i s \Sigma \cup(h i d S$, des, $\emptyset)$. nf, nat, fin and thus $h$ are $\Sigma_{1}$-homomorphisms. Since $h$ is surjective and the equivalence kernel of $h$ is a weak $\Sigma^{\prime}$-congruence, $\operatorname{Fin}(C S P)$ becomes a $\Sigma^{\prime}$-structure and $h$ a $\Sigma^{\prime}$-homomorphism if $\Sigma^{\prime} \backslash \Sigma_{1}$ is interpreted as follows:

$$
\begin{aligned}
a^{F i n}(C S P) & =a(=\operatorname{fin}([a])=h(a)) & & \text { for all } s \in h i d S \text { and } a \in \operatorname{Fin}(C S P)_{s}, \\
f^{\operatorname{Fin}(C S P)}(h(t)) & =h(f(t)) & & \text { for all function symbols } f: w \rightarrow s \in \Sigma \backslash \Sigma_{1}, \\
h(t) \in r^{\operatorname{Fin}(C S P)} & \Leftrightarrow \operatorname{Her}\left(S P^{\prime}\right) \models r(t) & & \text { for all static predicates } r: w \in \Sigma \backslash \Sigma_{1}, \\
(h(t), h(u)) \in \delta^{\operatorname{Fin}(C S P)} & \Leftrightarrow \exists v: \operatorname{Her}\left(S P^{\prime}\right) \models u \sim v \wedge \delta(t, v) & & \text { for all dynamic predicates } \delta: w s \in \Sigma .
\end{aligned}
$$

Indeed, the interpretations are well-defined: Let $f: w \rightarrow s \in \Sigma \backslash \Sigma_{1}$ and $t, t^{\prime} \in T_{\Sigma^{\prime}, w}$ such that $h(t)=h\left(t^{\prime}\right)$. Since the equivalence kernel of $h$ is compatible with $f, h(f(t))=h\left(f\left(t^{\prime}\right)\right)$. Let $r: w \in \Sigma \backslash \Sigma_{1}$ be a static predicate and $t, t^{\prime} \in T_{\Sigma^{\prime}, w}$ such that $h(t)=h\left(t^{\prime}\right)$. Since the equivalence kernel of $h$ is compatible with $r$, $\operatorname{Her}\left(S P^{\prime}\right) \models r(t)$ iff $\operatorname{Her}\left(S P^{\prime}\right) \models r\left(t^{\prime}\right)$. Let $\delta: w s \in \Sigma$ be a dynamic predicate, $t, t^{\prime} \in T_{\Sigma^{\prime}, w}$ and $u, u^{\prime} \in T_{\Sigma^{\prime}, s}$ such that $h(t)=h\left(t^{\prime}\right)$ and $h(u)=h\left(u^{\prime}\right)$. Hence $t \sim_{S P^{\prime}} t^{\prime}, u \sim_{S P^{\prime}} u^{\prime}$ and thus

$$
\begin{aligned}
& \exists v: \operatorname{Her}\left(S P^{\prime}\right) \models u \sim v \wedge \delta(t, v) \Longrightarrow \exists v, v^{\prime}: \operatorname{Her}\left(S P^{\prime}\right) \models u \sim v \wedge \delta\left(t^{\prime}, v^{\prime}\right) \wedge v \sim v^{\prime} \\
& \Longrightarrow \exists v^{\prime}: \operatorname{Her}\left(S P^{\prime}\right) \models u^{\prime} \sim v^{\prime} \wedge \delta\left(t^{\prime}, v^{\prime}\right) .
\end{aligned}
$$

(3) We have shown that $h$ is a $\Sigma^{\prime}$-homomorphism. Since the equivalence kernel of $h$ agrees with $\sim_{S P^{\prime}}$, $h: \operatorname{Her}\left(S P^{\prime}\right) \rightarrow \operatorname{Fin}(C S P)$ induces an injective $\Sigma^{\prime}$-homomorphism $h^{\prime}: \operatorname{Fin}\left(S P^{\prime}\right) \rightarrow \operatorname{Fin}(C S P) . h^{\prime}$ is surjective because $h$ is surjective. Hence $h^{\prime}$ is an isomorphism.

Under the assumptions of Thm. 18.5, the inductive theory of CST agrees with the coinductive theory of CSP (see Definitions 18.4 and ??):

Corollary 18.6 Let CST be a cospec closed, functional, continuous and behaviorally consistent dialgebraic swinging type and $S P^{\prime}$ be the domain completion of $C S T$ such that visSP is functional and head complete. Then for all poly-modal $\Sigma^{\prime}$-formulas $\varphi$,

$$
\operatorname{Fin}(C S P) \models \varphi \quad \Longleftrightarrow \operatorname{Fin}\left(S P^{\prime}\right) \vDash \varphi \quad \Longleftrightarrow \quad \operatorname{Her}\left(S P^{\prime}\right) \models \varphi .
$$

Moreover, $\operatorname{Fin}(C S P)$ is final in the class of reachable $\Sigma^{\prime}$-structures that interpret behavioral equalities as weak $\Sigma^{\prime}$-congruences.

Proof. The statements are direct consequence of Thm. 18.5 and [89], Thm. 5.1(2) and (5).
Basic inference rules that are sound with respect to $\operatorname{Her}\left(S P^{\prime}\right)$ are discussed in [93]. In addition, Corollary 18.6 tells us that the assertions of $C S T$ are inductive theorems of $C S T$ and thus may be used as lemmas in proofs of further inductive theorems. Corollary 18.6 also implies that the following unfolding rule for a cofunction $f: w \rightarrow s$ is correct with respect to $\operatorname{Her}\left(S P^{\prime}\right)$ :

$$
\begin{aligned}
\text { unfolding of } f \in \operatorname{coF} & \frac{\varphi(d(f(t), u))}{\bigvee_{i=1}^{n}\left(\varphi\left(t_{i}[t / x, u / z]\right) \wedge \varphi_{i}[t / x, u / z]\right)} \Uparrow \\
& \text { if }\left\{d(f(x), z) \equiv t_{1} \Leftarrow \varphi_{1}, \ldots, d(f(x), z) \equiv t_{n} \Leftarrow \varphi_{n}\right\} \text { is the coinductive axiomatization } \\
& \text { of } f(c f . \text { Def. 17.4) }
\end{aligned}
$$

A number of proof samples can be found in $[85,86,90,93,94,91]$.

## 19 Examples

Dynamic Data Types and Labelled Transition Logic [20,5] incorporate transition systems as relations into specifications and axiomatize them in terms of Horn clauses, which amount to SOS ("structural operational semantics") rules, the classical syntax of transition system specifications. The logic used for reasoning about dynamic data types is a temporal one. Swinging types go a step further and admit to integrate not only transitions systems (in terms of set-valued functions), but also temporal- and modal-logic operators (in terms of predicates or copredicates; see, e.g., [89], Example 2.7). Set-valued functions are also used for expressing association multiplicities of UML class diagrams (see Example 6.6).

By modeling state transitions in terms of set-valued functions one gets rid of the distinction between compatibility and zigzag compatibility of an equivalence relation $\sim$ with static and dynamic predicates, respectively
(see [89]). For instance, zigzag compatibility of a transition relation $\delta: s \times l a b \times s$ amounts to compatibility of its functional counterpart $f: s \rightarrow(\operatorname{lab} \rightarrow \operatorname{set}(s))$ defined by $b \in f(a)(x) \Leftrightarrow \delta(a, x, b)$. Indeed $\sim$ is zigzag compatible with $\delta$ or a bisimulation, i.e.

$$
\begin{aligned}
& a \sim_{s} a^{\prime} \wedge \delta(a, x, b) \quad \Rightarrow \quad \exists b^{\prime}: \delta\left(a^{\prime}, x, b^{\prime}\right) \wedge b \sim_{s} b^{\prime}, \\
& a \sim_{s} a^{\prime} \wedge \delta\left(a^{\prime}, x, b^{\prime}\right) \quad \Rightarrow \quad \exists b: \delta(a, x, b) \wedge b \sim_{s} b^{\prime},
\end{aligned}
$$

if and only if $\sim$ is compatible with $f$, i.e.

$$
a \sim_{s} a^{\prime} \Rightarrow \forall x: f(a)(x) \sim_{\operatorname{set}(s)} f\left(a^{\prime}\right)(x)
$$

where the extension of $\sim_{s}$ to $\sim_{s e t(s)}$ is defined as above.
A third alternative for specifiying transition systems-besides zigzag compatible relations and set-valued functions - is used in Maude [16] and CafeOBJ [17]: here transition systems are presented as rewrite rules and interpreted in categories consisting of term (classes) as objects and rewrite steps as morphisms.

The presentation

$$
S P=S P_{1} \text { and } \ldots \text { and } S P_{n} \text { then hidden part }
$$

of a swinging type $S P$ indicates that $S P_{1}^{\prime} \cup \cdots \cup S P_{n}^{\prime}$ is the visible subtype of $S P$ where $S P_{i}^{\prime}=S P_{i}$ if $S P_{i}$ is algebraic and $S P_{i}^{\prime}$ is the domain completion of $S P_{i}$ is $S P_{i}$ is dialgebraic (cf. Def. 5.1). $S P$ itself is algebraic (resp. dialgebraic) if, in the hidden part, the declaration of the hidden sorts is followed directly (!) by a declaration of constructors (resp. destructors).

Example 19.1 (integers) The following specification represents integer numbers as terms constructed from $0,1,+$ and - . Hence int can be declared as the hidden sort of an algebraic swinging type (cf. Def. 5.1). Since the induced structural equivalence would be too fine for representing the equality of integers, we specify this equality as a behavioral one with three destructors: successor, predecessor and a test on zero.

```
\(\mathrm{INT}=\mathrm{BOOL}\) then
 hidsorts int
 constructs \(\quad 0,1: \rightarrow\) int
 _ + _: int \(\times i n t \rightarrow i n t\)
 -_ : int \(\rightarrow\) int
 destructs \(\quad\) pred, succ \(:\) int \(\rightarrow 1+\) int
 is0 : \(1+\) int \(\rightarrow\) bool
 vars \(\quad x, y, z:\) int
 axioms \(\operatorname{succ}(0) \equiv(1)\)
 \(\operatorname{succ}(1) \equiv(1+1)\)
 \(\operatorname{succ}(x+y) \equiv(y) \Leftarrow \operatorname{succ}(x) \equiv()\)
 \(\operatorname{succ}(x+y) \equiv(z+y) \Leftarrow \operatorname{succ}(x) \equiv(z)\)
 \(\operatorname{succ}(-x) \equiv() \Leftarrow \operatorname{pred}(x) \equiv()\)
 \(\operatorname{succ}(-x) \equiv(-y) \Leftarrow \operatorname{pred}(x) \equiv(y)\)
 \(\operatorname{pred}(0) \equiv(-1)\)
 \(\operatorname{pred}(1) \equiv()\)
 \(\operatorname{pred}(x+y) \equiv(y) \Leftarrow \operatorname{pred}(x) \equiv()\)
 \(\operatorname{pred}(x+y) \equiv(z+y) \Leftarrow \operatorname{pred}(x) \equiv(z)\)
 \(\operatorname{pred}(-x) \equiv() \Leftarrow \operatorname{succ}(x) \equiv()\)
 \(\operatorname{pred}(-x) \equiv(-y) \Leftarrow \operatorname{succ}(x) \equiv(y)\)
 \(i s 0(()) \equiv\) true
 \(i s 0((x)) \equiv\) false
```

The destructor $i s 0$ cannot be dropped. Otherwise all int-terms were behaviorally equivalent.
Example 19.2 (infinite sequences) The specification STREAM (cf. Ex. 16.1) is a dialgebraic swinging type and the sort stream denotes an uncountable domain whenever entry is interpreted by a carrier with at least two elements.

Let $\Delta$ be the cosignature and $C S P$ be the cospecification of STREAM (cf. Def. 18.1). Since head : stream $\rightarrow$ entry and tail : stream $\rightarrow$ stream are the stream-destructors, for each STREAM-context $d$ there is $n \in \mathbb{N}$ such that $d=$ head $\cdot$ tail $^{n}:$ stream $\rightarrow$ entry. Hence the stream-carrier of the final $C S P$-model consists of all infinite sequences over $C$ (cf. Def. 18.1):

$$
\operatorname{Fin}(C S P)_{\text {stream }}=\prod_{d \in C T_{\Delta}} C_{e n t r y}=\prod_{n \in \mathbb{N}} C_{\text {entry }}=\left[\mathbb{N} \rightarrow C_{\text {entry }}\right]
$$

The domain completion $S P^{\prime}$ of STREAM contains the following additional axioms for head and tail:

$$
\begin{array}{ll}
\operatorname{head}(g) \equiv g(0) & \text { and } \\
\operatorname{tail}(g) \equiv \lambda n \cdot g(n+1) & \text { for all } g: \mathbb{N} \rightarrow C_{\text {entry }}
\end{array}
$$

Since STREAM has no assertions, STREAM is cospec closed. [90], Korollar 6.1 .5 (or [94]??), and [89], Thms. 5.15 and 6.5 imply that STREAM is functional, continuous and behaviorally consistent, respectively. Hence by Thm. 18.5, $\operatorname{Fin}\left(S P^{\prime}\right)$ and $\operatorname{Fin}(C S P)$ are isomorphic.

Let $G$ be a ground normal form of sort entry $\rightarrow$ bool. We extend STREAM by the destructor

$$
\text { min }:(\text { entry } \rightarrow \text { bool }) \times \text { stream } \rightarrow 1+\text { nat },
$$

regard the defined functions $n t h$ and $n t h t a i l$ of STREAM (cf. Ex. 16.1) as auxiliary functions and the axioms for $n t h$ and $n t h t a i l$ as inductive axiomatizations and add the assertions

$$
\begin{align*}
& \exists n, s^{\prime}:\left(\min (G, s) \equiv(n) \wedge n t h t a i l(n+1, s) \equiv s^{\prime}\right)  \tag{1}\\
& \min (g, s) \equiv() \Rightarrow g(n t h(n, s)) \equiv \text { false }  \tag{2}\\
& \min (g, s) \equiv(n) \Rightarrow g(n t h(n, s) \equiv \operatorname{true}  \tag{3}\\
& (\min (g, s) \equiv(n) \wedge m<n) \Rightarrow g(n t h(m, s) \equiv \text { false. } \tag{4}
\end{align*}
$$

Let FAIR be the resulting dialgebraic swinging type and $C S P$ be the cospecification of FAIR. The stream-carrier of $\operatorname{Fin}(C S P)$ consists of all infinite sequences $s$ over $C_{\text {entry }}$ that are fair with respect to $G$, i.e., for infinitely many $n \in \mathbb{N}, \operatorname{Fin}(C S P)$ satisfies $G(n t h(n, s)) \equiv t r u e .{ }^{20}$ This is accomplished by (1). The assertions specify the function $\min$ that is used in (1). Since min cannot be defined in terms of an inductive axiomatization, $\min$ must be declared as a destructor. The required completeness of FAIR enforces axioms for min that describe the effect of min on normal forms built up of stream-constructors. For instance, the axioms

$$
\begin{aligned}
& \min \left(g, z i p\left(s, s^{\prime}\right)\right) \equiv(2 * n+1) \Leftarrow \min (g, s) \equiv() \wedge \min \left(g, s^{\prime}\right) \equiv(n) \\
& \min \left(g, z i p\left(s, s^{\prime}\right)\right) \equiv(2 * m) \Leftarrow \min (g, s) \equiv(m) \wedge \min \left(g, s^{\prime}\right) \equiv() \\
& \min \left(g, z i p\left(s, s^{\prime}\right)\right) \equiv(2 * m) \Leftarrow \min (g, s) \equiv(m) \wedge \min \left(g, s^{\prime}\right) \equiv(n) \wedge 2 * m<2 * n+1 \\
& \min \left(g, z i p\left(s, s^{\prime}\right)\right) \equiv(2 * n+1) \Leftarrow \min (g, s) \equiv(m) \wedge \min \left(g, s^{\prime}\right) \equiv(n) \wedge 2 * m \geq 2 * n+1
\end{aligned}
$$

specify the effect of min on normal forms $z i p\left(s, s^{\prime}\right)$ (cf. [91], Section 4.1). Although FAIR has assertions and hidden constructors, FAIR is cospec complete, i.e., each $t \in s t r e a m^{N F_{\Sigma^{\prime}}}$ is behaviorally $S P^{\prime}$-equivalent to some element of $\operatorname{Fin}(C S P)_{\text {stream }}$. By using the Horn axioms of $S P^{\prime}$, this can be shown easily by induction on $t$.

Example 19.3 (streams) The specification COLIST (cf. Ex. 15.2) is a dialgebraic swinging type and the sort stream denotes an uncountable domain whenever entry is interpreted by a carrier with at least two elements.

[^14]Let CSP be the cospecification of COLIST (cf. Def. 18.1). Since ht : stream $\rightarrow 1+($ entry $\times$ stream) is the only stream-destructor, for each stream-context $c$ there is $n \in \mathbb{N}$ such that

$$
\left.c=c(n)=_{\text {def }}{\left\langle\left( i d+{ }^{n}\right.\right.}^{n}\left(i d+\pi_{1}\right) \cdot h t \cdot \pi_{2}\right) \cdot h t{ }^{n}: \text { stream } \rightarrow 1+\left(^{n} 1+\text { entry }\right)^{n},
$$

i.e., for all $n \in \mathbb{N}, c(n+1)=\left(i d+c(n) \cdot \pi_{2}\right) \cdot h t$. Hence the stream-carrier of $\operatorname{Fin}(C S P)$ consists of all finite or infinite sequences over $C_{\text {entry }}$ : Let

$$
\left.P=\prod_{n \in \mathbb{N}}\left(\overline{1+( }^{n} 1+C_{\text {entry }}\right)^{n}\right)
$$

Fin $(C S P)_{\text {stream }}$ is the greatest fixpoint of the function $\Phi: \mathcal{P}(P) \rightarrow \mathcal{P}(P)$ that is defined as follows: for all $A \subseteq P$,

$$
\begin{aligned}
\Phi(A) & =\left\{a \in A \mid \exists b \in 1+\left(C_{\text {entry }} \times A\right) \forall n \in \mathbb{N}: \pi_{\left(i d+c(n) \cdot \pi_{2}\right) \cdot h t}(a)=\pi_{i d+c(n) \cdot \pi_{2}}(b)\right\} \\
& =\left\{a \in A \mid \exists b \in 1+\left(C_{\text {entry }} \times A\right) \forall n \in \mathbb{N}: \pi_{c(n+1)}(a)=\pi_{i d+c(n) \cdot \pi_{2}}(b)\right\} \\
& =\left\{a \in A \mid \forall n \in \mathbb{N}: \pi_{c(n+1)}(a)=() \vee \exists\left(x, a^{\prime}\right) \in C_{\text {entry }} \times A \forall n \in \mathbb{N}: \pi_{c(n+1)}(a)=\left(\pi_{c(n) \cdot \pi_{2}}\left(x, a^{\prime}\right)\right)\right\} \\
& =\left\{a \in A \mid \forall n \in \mathbb{N}: \pi_{c(n+1)}(a)=() \vee \exists a^{\prime} \in A \forall n \in \mathbb{N}: \pi_{c(n+1)}(a)=\left(\pi_{c(n)}\left(a^{\prime}\right)\right)\right\} .
\end{aligned}
$$

Hence for all $a \in P$,

$$
a \in \text { Fin } \Longleftrightarrow \forall n \in \mathbb{N}: \pi_{c(n+1)}(a)=() \vee \exists a^{\prime} \in \operatorname{Fin} \forall n \in \mathbb{N}: \pi_{c(n+1)}(a)=\left(\pi_{c(n)}\left(a^{\prime}\right)\right)
$$

and thus

$$
\text { Fin }=1+C_{\text {entry }} \times\left(1+C_{\text {entry }} \times\left(1+C_{\text {entry }} \times \ldots\right)\right)=C_{\text {entry }}^{*} \cup\left[\mathbb{N} \rightarrow C_{\text {entry }}\right]
$$

The domain completion $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ of COLIST contains the following additional axioms for $h t$ :

$$
\begin{array}{ll}
h t([]) \equiv() & \\
h t(x: L) \equiv(x, L) & \text { for all } x \in C_{\text {entry }} \text { and } L \in C_{\text {entry }}^{*} \\
h t(g) \equiv(g(0), \lambda n . g(n+1)) & \text { for all } g: \mathbb{N} \rightarrow C_{\text {entry }}
\end{array}
$$

Since COLIST has no assertions, COLIST is cospec closed. [90], Korollar 6.1.5 (or [94]??), and [89], Thms. 5.15 and 6.5 imply that $S P^{\prime}$ is functional, continuous and behaviorally consistent, respectively. Hence by Thm. 18.5, $\operatorname{Fin}\left(S P^{\prime}\right)$ and $\operatorname{Fin}(C S P)$ are isomorphic.

If we extend COLIST by one of the assertions

$$
\begin{aligned}
& \text { (1) } \exists x, s^{\prime}: h t(s) \equiv\left(x, s^{\prime}\right) \text {, } \\
& \text { (2) } \quad(h t(s) \equiv() \vee \\
& \exists x, s^{\prime}:\left(h t(s) \equiv\left(x, s^{\prime}\right) \wedge\right. \\
& \left(h t\left(s^{\prime}\right) \equiv() \vee\right. \\
& \left.\left.\left.\exists s^{\prime \prime}: h t\left(s^{\prime}\right) \equiv\left(x, s^{\prime \prime}\right)\right)\right)\right), \\
& \text { (3) } \quad(h t(s) \equiv() \vee \\
& \exists x, s^{\prime}:\left(h t(s) \equiv\left(x, s^{\prime}\right) \wedge\right. \\
& \left(h t\left(s^{\prime}\right) \equiv() \vee\right. \\
& \exists y, s^{\prime \prime}:\left(h t\left(s^{\prime}\right) \equiv\left(y, s^{\prime \prime}\right) \wedge\right. \\
& \left(h t\left(s^{\prime \prime}\right) \equiv() \vee\right. \\
& \exists s_{1}:\left(h t\left(s^{\prime \prime}\right) \equiv\left(x, s_{1}\right) \wedge\right. \\
& \left(h t\left(s_{1}\right) \equiv() \vee\right. \\
& \left.\left.\left.\left.\left.\left.\left.\exists s_{2}: h t\left(s_{1}\right) \equiv\left(y, s_{2}\right)\right)\right)\right)\right)\right)\right)\right),
\end{aligned}
$$

respectively, we obtain a dialgebraic type with cospecification $C S P$ such that the stream-carrier of $\operatorname{Fin}(C S P)$ consists of infinite streams (1), constant streams (2) or alternating streams (3). This example was motivated by the coequational specifications of these subcoalgebras given in [15], Section 4.

Example 19.4 (stream comprehension) The following extension of COLIST by a specification of stream comprehension (filter) is inspired by [101], Example 8. We declare filter, as a cofunction and specify filter in terms of a coinductive axiomatization in the sense of Def. 17.4. As in the previous example, some axioms involve an additional destructor min and auxiliary functions $n t h$ and $n t h t a i l$. Again, the given axioms for $n t h$ and nthtail form inductive axiomatizations, and min is specified in terms of both Horn axioms and assertions.

```
FILTER1 = COLIST then
destructs \(\quad\) min \(:(\) entry \(\rightarrow\) bool \() \times\) stream \(\rightarrow 1+\) nat
cofuncts filter : \((\) entry \(\rightarrow\) bool \() \times\) stream \(\rightarrow\) stream
vars \(\quad x:\) entry \(m, n:\) nat \(s, t:\) stream \(g:\) entry \(\rightarrow\) bool
axioms axioms for \(\min\)
assertions \(\quad \min (g, s) \equiv() \quad \Rightarrow \quad g(n t h(n, s)) \equiv\) false
 \(\min (g, s) \equiv(n) \quad \Rightarrow \quad g(n t h(n, s) \equiv\) true
 \((\min (g, s) \equiv(n) \wedge m<n) \Rightarrow g(n t h(m, s) \equiv\) false
cofaxioms \(\quad \operatorname{ht}(\operatorname{filter}(g, s)) \equiv() \Leftarrow \min (g, s) \equiv()\)
 \(h t(\operatorname{filter}(g, s)) \equiv(x, \operatorname{filter}(g, t))\)
 \(\Leftarrow \min (g, s) \equiv(n) \wedge n t h(n, s) \equiv(x) \wedge n t h t a i l(n+1, s) \equiv t\)
```

A coinductive axiomatization (Def. 17.4) should not be confused with a set of coinductive axioms ([89], Def. 6.1; [94], Def. 8.2). By [89], Thm. 6.5, coinductive axioms ensure - together with functionality and continuitybehavioral consistency. The axioms for filter both are coinductive and form a coinductive axiomatization. By Thm. 17.5, the latter establishes a functional interpretation of odds and filter in the final CSP-model where CSP is the cospecification of FILTER1.

Example 19.5 (binary trees) The following specification generalizes COLIST and specializes FTREE (cf. [91], Section 4.6). It is also a "swinging" version of the running example in [54] where finite and infinite binary trees are presented in CCSL (cf. Section 6). For LIST, see [91], Section 1.2.

```
BINTREE \(=\) ENTRY (entry \()\) and LIST then
hidsorts tree \(=\) tree \((\) entry \()\)
destructs root\&sucs \(:\) tree \(\rightarrow 1+(\) tree \(\times\) entry \(\times\) tree \()\)
 size : tree \(\rightarrow 1+\) nat
constructs mirror: tree \(\rightarrow\) tree
 leaf, fill : entry \(\rightarrow\) tree
 \(m k T r e e:\) tree \(\times\) entry \(\times\) tree \(\rightarrow\) tree
defuncts subtree: tree \(\times\) list \((\) bool \() \rightarrow 1+\) tree
static preds \(\quad \in_{-}\): entry \(\times\)tree
 finite : tree
 \(\diamond r\) : tree for all static predicates \(r\) : tree
copreds infinite: tree
 \(\square r\) :tree for all static predicates \(r\) : tree
vars \(\quad x:\) entry \(T, T^{\prime}, T_{1}, T_{2}:\) tree \(m, n:\) nat \(b:\) bool
Horn axioms \(\quad \operatorname{root}(\operatorname{mirror}(T)) \equiv \operatorname{root}(T)\)
 \(\operatorname{sucs}(\operatorname{mirror}(T)) \equiv() \Leftarrow \operatorname{sucs}(T) \equiv()\)
 \(\operatorname{sucs}(\operatorname{mirror}(T)) \equiv\left(\operatorname{mirror}\left(T_{2}\right), \operatorname{mirror}\left(T_{1}\right)\right) \Leftarrow \operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right)\)
 \(\operatorname{size}(\operatorname{mirror}(T)) \equiv \operatorname{size}(T)\)
```

```
\(\operatorname{root}(\operatorname{leaf}(x)) \equiv x\)
\(\operatorname{sucs}(\operatorname{leaf}(x)) \equiv()\)
size \((\operatorname{leaf}(x)) \equiv(1)\)
\(\operatorname{root}(\operatorname{fill}(x)) \equiv x\)
\(\operatorname{sucs}(\operatorname{fill}(x)) \equiv(\operatorname{fill}(x), \operatorname{fill}(x))\)
\(\operatorname{size}(\operatorname{fill}(x)) \equiv()\)
\(\operatorname{root}\left(m k \operatorname{Tree}\left(T_{1}, x, T_{2}\right)\right) \equiv x\)
\(\operatorname{sucs}\left(m k T r e e\left(T_{1}, x, T_{2}\right)\right) \equiv\left(T_{1}, T_{2}\right)\)
\(\operatorname{size}\left(m k T r e e\left(T_{1}, x, T_{2}\right)\right) \equiv() \Leftarrow \operatorname{size}\left(T_{1}\right) \equiv()\)
\(\operatorname{size}\left(m k \operatorname{Tree}\left(T_{1}, x, T_{2}\right)\right) \equiv() \Leftarrow \operatorname{size}\left(T_{2}\right) \equiv()\)
\(\operatorname{size}\left(m k \operatorname{Tree}\left(T_{1}, x, T_{2}\right)\right) \equiv(m+n+1) \Leftarrow \operatorname{size}\left(T_{1}\right) \equiv(m) \wedge \operatorname{size}\left(T_{2}\right) \equiv(n)\)
subtree (T, []) \(\equiv(T)\)
\(\operatorname{subtree}(T, b: L) \equiv() \Leftarrow \operatorname{subtree}(T, L) \equiv()\)
\(\operatorname{subtree}(T, b: L) \equiv() \Leftarrow \operatorname{subtree}(T, L) \equiv\left(T^{\prime}\right) \wedge \operatorname{sucs}\left(T^{\prime}\right) \equiv()\)
\(\operatorname{subtree}(T, 0: L) \equiv\left(T_{1}\right) \Leftarrow \operatorname{subtree}(T, L) \equiv\left(T^{\prime}\right) \wedge \operatorname{sucs}\left(T^{\prime}\right) \equiv\left(T_{1}, T_{2}\right)\)
\(\operatorname{subtree}(T, 1: L) \equiv\left(T_{2}\right) \Leftarrow \operatorname{subtree}(T, L) \equiv\left(T^{\prime}\right) \wedge \operatorname{sucs}\left(T^{\prime}\right) \equiv\left(T_{1}, T_{2}\right)\)
\(x \in T \Leftarrow \operatorname{root}(T) \equiv x\)
\(x \in T \Leftarrow \operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right) \wedge x \in T_{1}\)
\(x \in T \Leftarrow \operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right) \wedge x \in T_{2}\)
finite \((T) \Leftarrow \operatorname{sucs}(T) \equiv()\)
finite \((T) \Leftarrow \operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right) \wedge\) finite \(\left(T_{1}\right) \wedge\) finite \(\left(T_{2}\right)\)
\(\diamond r(T) \Leftarrow r(T)\)
\(\diamond r(T) \Leftarrow \operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right) \wedge \diamond r\left(T_{1}\right)\)
\(\diamond r(T) \Leftarrow \operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right) \wedge \diamond r\left(T_{2}\right)\)
assertions \(\quad \operatorname{sucs}(T) \equiv() \Rightarrow \operatorname{size}(T) \equiv(1)\)
\(\left(\operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right) \wedge \operatorname{size}\left(T_{1}\right) \equiv()\right) \Rightarrow \operatorname{size}(T) \equiv()\)
\(\left(\operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right) \wedge \operatorname{size}\left(T_{2}\right) \equiv()\right) \Rightarrow \operatorname{size}(T) \equiv()\)
\(\left(\operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right) \wedge \operatorname{size}\left(T_{1}\right) \equiv(m) \wedge \operatorname{size}\left(T_{2}\right) \equiv(n)\right) \Rightarrow \operatorname{size}(T) \equiv(m+n+1)\)
axioms
infinite \((T) \quad \Rightarrow \quad(\operatorname{sucs}(T) \equiv() \Rightarrow\) False \()\)
\(\operatorname{infinite}(T) \Rightarrow \quad\left(\operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right) \Rightarrow \operatorname{infinite}\left(T_{1}\right) \vee \operatorname{infinite}\left(T_{2}\right)\right)\)
\(\square r(T) \Rightarrow r(T)\)
\(\square r(T) \Rightarrow \quad\left(\operatorname{sucs}(T) \equiv\left(T_{1}, T_{2}\right) \Rightarrow \square r\left(T_{1}\right) \wedge \square r\left(T_{2}\right)\right)\)
```

The set of BINTREE-contexts is the smallest set $C T$ of coterms such that all tree- or (tree $\times$ tree)-destructors belong to $C T$ and

$$
\begin{aligned}
d: \text { tree } \rightarrow \text { entry } \in C T & \Longrightarrow \\
d: \text { tree } \times \text { tree } \rightarrow \text { entry } \in C T & \Longrightarrow \quad(i d+d) \cdot \text { sucs }: \text { tree } \rightarrow 1+\pi_{2}: \text { tree } \times \text { tree } \rightarrow \text { entry } y \in C T, \\
& \Longrightarrow T
\end{aligned}
$$

Let $C S P$ be the cospecification of BINTREE. The tree-carrier of $\operatorname{Fin}(C S P)$ consists of all finite or infinite binary trees over $C_{\text {entry }}$ : Let

$$
P=\prod_{\text {c:tree } \rightarrow s \in C T} C_{s}
$$

$F i n(C S P)_{\text {tree }}$ is the greatest fixpoint of the function $\Phi: \mathcal{P}(P) \rightarrow \mathcal{P}(P)$ that is defined as follows: for all $A \subseteq P$,

$$
\Phi(A)=\left\{a \in A \mid \exists b \in A^{2} \forall d=(i d+e) \cdot \operatorname{sucs} \in C T: \pi_{d}(a)=\left(\pi_{e}(b)\right) \wedge A \models_{a / T} A X_{\text {tree }}^{21}\right\}
$$

[^15]The domain completion $S P^{\prime}=\left(\Sigma^{\prime}, A X^{\prime}\right)$ of BINTREE contains the following additional axioms for each partial function $g:\{0,1\}^{*} \rightarrow C_{\text {entry }}$ with a binary-tree domain $D_{g}$, i.e., for all $w \in\{0,1\}^{*}$ and $i \in\{0,1\}^{*}$, $w i \in D_{g}$ implies $w, w(i+1 \bmod 2) \in D_{g}$ :

$$
\begin{aligned}
\operatorname{root}(g) & \equiv g(\varepsilon), \\
\operatorname{sucs}(g) & \equiv \begin{cases}(\lambda w \cdot g(0 w), \lambda w \cdot g(1 w)) & \text { if } g(0), g(1) \in D_{g}, \\
() & \text { otherwise },\end{cases} \\
\operatorname{size}(g) & \equiv \begin{cases}\left(\left|D_{g}\right|\right) & \text { if } D_{g} \text { is finite } \\
() & \text { otherwise. }\end{cases}
\end{aligned}
$$

In fact, each $g$ represents exactly one element of $\operatorname{Fin}(C S P)_{\text {tree }}$.
Although BINTREE has assertions and hidden cofunctions, BINTREE is cospec closed, i.e., each $t \in \operatorname{tre} e^{N F_{\Sigma^{\prime}}}$ is behaviorally $S P^{\prime}$-equivalent to some element of $\operatorname{Fin}(C S P)_{\text {tree }}$. By using the Horn axioms of $S P^{\prime}$, this can be shown easily by induction on $t$. [90], Korollar 6.1 .5 (or [94]??), and [89], Thms. 5.15 and 6.5 imply that $S P^{\prime}$ is functional, continuous and behaviorally consistent, respectively. Hence by Thm. 18.5, $\operatorname{Fin}\left(S P^{\prime}\right)$ and $\operatorname{Fin}(C S P)$ are isomorphic.
$n$ tree-constructor constants $c_{1}, \ldots, c_{n}: \rightarrow$ tree together with the axioms

$$
\begin{aligned}
\operatorname{root}\left(c_{1}\right) \equiv t_{1}, & \operatorname{sucs}\left(c_{1}\right) \equiv\left(d_{1}, e_{1}\right), \\
& \ldots \\
\operatorname{root}\left(c_{n}\right) \equiv t_{n}, & \operatorname{sucs}\left(c_{n}\right) \equiv\left(d_{n}, e_{n}\right)
\end{aligned}
$$

represent a binary graph with $n$ nodes if for all $1 \leq i \leq n, d_{i}, e_{i} \in\left\{c_{1}, \ldots, c_{n}\right\}$ and $t_{i}$ is an entry-sorted ground term. $c_{i}$ denotes a graph with root node $t_{i}$, left subgraph $d_{i}$ and right subgraph $e_{i}$ (see also Section 3.3).

The following formulas taken from [54] are inductive theorems of BINTREE (cf. Ex. 19.5). They can be derived by employing assertions of BINTREE and inference rules given in Section 2.

$$
\begin{align*}
& \operatorname{mirror}(\operatorname{mirror}(t)) \sim t,  \tag{1}\\
& \operatorname{size}(\operatorname{fill}(x)) \equiv(),  \tag{2}\\
& x \in \operatorname{fill}(y) \Rightarrow x \equiv y,  \tag{3}\\
& x \in t \Leftrightarrow x \in \operatorname{mirror}(t),  \tag{4}\\
& \text { finite }(t) \Leftrightarrow \exists n: \operatorname{size}(t) \equiv(n),  \tag{5}\\
& \operatorname{infinite}(t) \Leftrightarrow \operatorname{size}(t) \equiv() . \tag{6}
\end{align*}
$$



Figure 5. Two associated classes (Figure 3 of [50]).

Example 19.6 (UML class specifications) For dealing with object collections like the meetings and participants in Fig. 5 we refer to an algebraic swinging type FINSET of finite sets:

FINSET

```
hidsorts \(\quad\) set \(=\operatorname{set}(\) entry \()\)
constructs \(\emptyset: \rightarrow\) set
 \(\{-\}:\) entry \(\rightarrow\) set
 _ U _ : set \(\times\) set \(\rightarrow\) set
destructs in : entry \(\times\) set \(\rightarrow\) bool
defuncts remove : entry \(\times\) set \(\rightarrow\) set
 mkset : entry \({ }^{*} \rightarrow\) set
 filter : (entry \(\rightarrow\) bool \() \times\) set \(\rightarrow\) set
 |-| : set \(\rightarrow\) nat
 forall : (entry \(\rightarrow\) bool \() \times\) set \(\rightarrow\) bool
 flatten : set \((\) set \() \rightarrow\) set
vars \(\quad x, y, x_{1}, \ldots, x_{n}:\) entry \(\quad s, s^{\prime}:\) set \(\quad f:\) entry \(\rightarrow e^{\prime} t_{r y}^{\prime} \quad g:\) entry \(\rightarrow\) bool
axioms \(\quad i n(x, \emptyset) \equiv\) false
 \(i n(x,\{y\}) \equiv e q(x, y)\)
 \(\operatorname{in}\left(x, s \cup s^{\prime}\right) \equiv \operatorname{in}(x, s)\) or \(\operatorname{in}\left(x, s^{\prime}\right)\)
 \(\operatorname{remove}(x, s) \equiv s \backslash\{x\}\)
 \(m k \operatorname{set}(()) \equiv \emptyset\)
 \(m k \operatorname{set}\left(\left(x_{1}, \ldots, x_{n}\right)\right) \equiv\left\{x_{1}\right\} \cup \cdots \cup\left\{x_{n}\right\}\)
 filter \((g, \emptyset) \equiv \emptyset\)
 filter \((g,\{x\}) \equiv \emptyset \Leftarrow g(x) \equiv\) false
 filter \((g,\{x\}) \equiv\{x\} \Leftarrow g(x) \equiv\) true
 filter \(\left(g, s \cup s^{\prime}\right) \equiv \operatorname{filter}(g, s) \cup\) filter \(\left(g, s^{\prime}\right)\)
 \(|\emptyset| \equiv 0\)
 \(|\{x\}| \equiv 1\)
 \(\left|s \cup s^{\prime}\right| \equiv\left|s \backslash s^{\prime}\right|+\left|s^{\prime} \backslash s\right|\)
 forall \((g, \emptyset) \equiv\) true
 forall \((g,\{x\}) \equiv g(x)\)
 forall \(\left(g, s \cup s^{\prime}\right) \equiv \operatorname{forall}(g, s)\) and forall \(\left(g, s^{\prime}\right)\)
 flatten \((\emptyset) \equiv \emptyset\)
 flatten \((\{s\}) \equiv s\)
 flatten \(\left(s \cup s^{\prime}\right) \equiv\) flatten \((s) \cup\) flatten \(\left(s^{\prime}\right)\)
```

FINSET only specifies the functions used in the class specification given below. For more set functions and also predicates as well as other set specifications, see [91], Section 1.2.2.

The class diagram of Fig. 5 is represented as a dialgebraic swinging type whose axioms cover the multiplicity constraints of Fig. 5 and the following $O C L$ constraint [110] taken from [50]:
context Meeting :: checkDate()
post : isConfirmed $=$
self.participants ->
collect(meetings) ->
forAll(m $\mid \mathrm{m}<>$ self and m.isConfirmed implies
(after(self.end,m.start) or (after(m.end,self.start)))

PERSON\&MEETING $=$ FINSET and STRING and DATE\&TIME then
hidsorts Person Meeting
destructs name: Person $\rightarrow$ String

```
 meetings: Person \(\rightarrow\) Meeting*
 title : Meeting \(\rightarrow\) String
 participants : Meeting \(\rightarrow\) Person*
 start, end : Meeting \(\rightarrow\) Date
 isConfirmed : Meeting \(\rightarrow\) bool
constructs checkDate: Meeting \(\rightarrow\) Meeting
 cancel : Meeting \(\rightarrow\) Meeting
defuncts Meetings : Person \(\rightarrow\) set (Meeting)
 Participants: Meeting \(\rightarrow\) set(Person)
 numMeetings: Person \(\rightarrow\) nat
 numConfirmedMeetings : Person \(\rightarrow\) nat
 duration : Meeting \(\rightarrow\) Time
 consistent : Meeting \(\times\) Meeting \(\rightarrow\) bool
vars \(\quad p:\) Person \(m, m^{\prime}:\) Meeting \(m s: \operatorname{set}(\) Meeting) \(p s: \operatorname{set}(\) Person)
axioms \(\quad \operatorname{Meetings}(p) \equiv \operatorname{mkset}(\operatorname{meetings}(p))\)
 Participants \((m) \equiv \operatorname{mkset}(\) participants \((m))\)
 \(\operatorname{numMeetings}(p) \equiv|\operatorname{Meetings}(p)|\)
 numConfirmedMeetings \((p) \equiv \mid\) filter \((i s C o n f i r m e d, ~ M e e t i n g s ~(~ p ~) ~) ~ \mid ~, ~\)
 \(\operatorname{duration}(m) \equiv \operatorname{end}(m)-\operatorname{start}(m)\)
consistent \(\left(m, m^{\prime}\right) \equiv \operatorname{not}\left(i s C o n f i r m e d\left(m^{\prime}\right)\right)\)
 or \(\operatorname{end}(m)<\operatorname{start}\left(m^{\prime}\right)\) or \(\operatorname{end}\left(m^{\prime}\right)<\operatorname{start}(m)\)
isConfirmed \((\operatorname{checkDate}(m)) \equiv \operatorname{forall}\left(\lambda m^{\prime} . \operatorname{consistent}\left(m, m^{\prime}\right)\right.\), \(\left.\operatorname{remove}(m, m s)\right)\)
 \(\Leftarrow \operatorname{Participants}(m) \equiv p s \wedge\) flatten \((\operatorname{map}(\) Meetings,\(p s)) \equiv m s\)
isConfirmed \((\) cancel \((m)) \equiv\) false
assertions \(\quad \mid\) Participants \((m) \mid \geq 2\)
```

Classes come as hidden sorts, attributes and roles as destructors, roles usually as non-linear ones. Basic methods are declared as constructors, derived ones as defined functions. Let $C S P$ be the cospecification of PERSON\&MEETING. Similarly to visualizing the elements of of Fin(BINTREE) tree as finite and infinite binary trees (cf. Ex. 19.5), the elements of Fin $(C S P)_{\text {Person }}$ and Fin $(C S P)_{\text {Meeting }}$ may be regarded as infinite trees whose edges represent the relation between object states that is induced by the participates association of Fig. 5. The UML semantics of Fig. 5 requires sets rather than sequences as values of meetings and participants. This is reflected by the fact that all axioms of PERSON\&MEETING do not use these destructors directly, but only their set versions Meetings and Participants.

More details about the presentation of UML classes as swinging types can be found in [91], Section 6.1.

## 20 Conclusion

Swinging types were introduced in detail in [89]. The paper at hand is devoted to extensions that allow us to use the approach for specifying and reasoning about uncountable data domains, usually given as sets of "infinite" or "lazy" data structures like streams, processes, etc. Traditionally, such structures were treated formally within lattice or order theories. This brought forth many contributions to the model theory of basic computational structures as well as high-level programming language constructs. However, the theory of abstract data types did not gain much from those achievements, probably because the variety of data schemas and appropriate axiomatizations to be considered is much greater here than in classical language theory. Only the evolution of coalgebra theory led to sufficiently general notions for modelling domains with uncountably many elements.

Most of the work on coalgebras and its application to software specification has been done in category-
theoretical settings (see, e.g., [105, 104, 56, 10], and the proceedings of already four CMCS workshops ${ }^{22}$ ) The more restricted notion of a $\Sigma$-coalgebra as a set of unary functions into a sum sort, now called destructors, already occurs, e.g., in [69]. First approaches to the specification of coalgebras or other behavioral models can be found in $[100,101,68,34,33,15,8,49,102,52,54]$. Most of these approaches concentrate on (co)signatures with only linear destructors. Only [15] provides a coterm characterization of final coalgebras with non-linear destructors (see also Section 4). However, the way axiomatic coalgebra presentations are built upon coterms is far from traditional logics. At least, the examples of [15] can also be specified in terms of much-easier-to-comprehend (first-order) assertions (cf. Example 19.3).

Apart from pointing out certain model-theoretic dualities, previous approaches lack an integration of algebraic and coalgebraic types that is suffiently general to cope with "real-world" system models. This is achieved by swinging types, mainly because of their stepwise constructability that allows us to both extend an algebraic basis by coalgebraic components and, conversely, build algebraic structures on top of coalgebraic ones. The following case analysis should provide rough guidelines for the stepwise design of a swinging type:
$>$ All sorts $s$ of a type $T$ to be specified are freely generated, i.e., all $s$-data can be represented uniquely by ground terms over a finite set of constructors. Then there will be a functional basic Horn specification (cf. Def. 5.1) whose initial and final model coincide with $T$. Example: finite lists of natural numbers (cf. Examples 14.1, 14.2).
$>$ The type is to be extended by a permutative sort $s$, i.e., all $s$-data can be represented by ground terms over a finite set of constructors, but the representation is not unique. Then there will be destructors or transition predicates such that the induced behavioral s-equivalence captures the desired identification of data. Examples: naturals with $\infty$ (cf. Ex. 15.1), integers (cf. Ex. 19.1), finite sets, bags or maps (cf. Ex. 16.2).
$>$ The type is to be extended by an infinite sort $s$, i.e., some $s$-data may be represented by ground terms over a finite set of constructors, but most $s$-data will not because they represent "infinite" structures taken from an uncountable domain $D$. Then there will be destructors and assertions such that the final model of the induced cospecification $C S P$ coincides with D. Examples: streams (cf. Exs. 16.1, 15.2, 19.2, 19.3, 19.4), trees (cf. Ex. 19.5). Besides $C S P$, the resulting dialgebraic ST has an algebraic part for taking into account the term representations of $s$-data.
$>$ The type is to be extended by a freely generated sort $s$. Then there will be $s$-object constructors such that the induced behavioral $s$-equivalence coincides with structural s-equivalence (cf. [94], Lemma 3.8).

Destructors determine the behavioral equivalence. In the case of an infinite sort $s, s$-destructors also determine the elements of the final model. $s$-Constructors do so only in the case of a freely generated sort $s$. In the case of a permutative or an infinite sort $s$, the decision whether a function should be declared as a constructor or a defined function depends on more or less technical requirements like functionality, coinductivity ([89], Def. 6.1; [94], Def. 8.2) and cospec closedness (Def. 18.4).

Dialgebraic types offer a third possibility, namely to declare a function $f$ as a cofunction. This is suggested at least when $f$ cannot be specified inductively on normal forms. Cofunctions always map into hidden sorts (cf. Ex. 19.4). Non-inductively-specifiable functions on infinite sorts that map into visible sorts must be declared as (additional) destructors and specified in terms of assertions (cf. Exs. 19.4, 19.5). All functions used in assertions must be destructors or auxiliary functions (particular defined functions; cf. Def. 17.4).

If compared with an algebraic ST, the main additional features of a dialgebraic ST are assertions and cofunctions. Assertions are the invariants of a dialgebraic type. They allow us to specify subdomains of an uncountable domain. The algebraic counterpart of assertions are generating functions that define a subdomain

[^16]as the set of all ground terms built up from them. Such a specification of a subdomain also works for dialgebraic types, however, the domain is term-generated and thus cannot be uncountable, like, for instance, the set of all alternating streams (cf. Ex. 19.4).

On the other hand, dialgebraic types do not admit transition predicates as destructors. This lack is remedied easily by turning the dialgebraic ST into its (algebraic) domain completion and using this type as the visible subtype of an algebraic type with transition predicates on "copies" of the infinite sorts specified by the dialgebraic ST (see the end of Section 3.4). In this way, we can present uncountable domains equipped with bisimilarities, i.e., behavioral equivalences induced by transition predicates.

## 21 Appendix: Category-theoretical foundations

Algebra may be understandable and applicable without knowing the basics of category theory. Coalgebra and its dual nature in comparison with algebra is rooted in category theory. Hence the knowledge of fundamental constructions and ways of reasoning in category theory are crucial for "getting the point" of dialgebraic modeling (cf., e.g., [65, 4, 70, 97, 104, 56, 41, 60, 2, 55]).
products and sums, equalizers and coequalizers, pullbacks and pushouts, limits and colimits
Definition 21.1 Let $\mathcal{K}$ be a category and $F$ be an endofunctor on $\mathcal{K}$. An $F$-algebra or $F$-dynamics is a $\mathcal{K}$-morphism $\alpha: F(A) \rightarrow A$. Alg ${ }_{F}$ denotes the category of $F$-algebras. An $\operatorname{Alg}(F)$-morphism $h$ from $\alpha: F(A) \rightarrow A$ to $\beta: F(B) \rightarrow B$ is a $\mathcal{K}$-morphism $h: A \rightarrow B$ with $h \circ \alpha=\beta \circ F(h)$. If $\alpha$ is the initial $F$-algebra, then $h$ is called a catamorphism [79] and (because of its existence and uniqueness) said to be defined by induction.

An $F$-coalgebra or $F$-codynamics is a $\mathcal{K}$-morphism $\alpha: A \rightarrow F(A) . \operatorname{coAlg}_{F}$ denotes the category of $F$-coalgebras. A coAlg(F)-morphism $h$ from $\alpha: A \rightarrow F(A)$ to $\beta: B \rightarrow F(B)$ is a $\mathcal{K}$-morphism $h: A \rightarrow B$ with $F(h) \circ \alpha=\beta \circ h$. If $\beta$ is the final $F$-coalgebra, then $h$ is called an anamorphism [79] and (because of its existence and uniqueness) said to be defined by coinduction.

Do initial/final objects exist if $S P$ satisfies 5.1(1) resp. (2)? This depends on conditions on $\mathcal{K}$ and $F$. The main conditions and fixpoint constructions are category-theoretic generalizations of notions and results from set theory, in particular of, Kleene's fixpoint theorem for monotone functions. Given a set ("universe") $U$, the powerset $\mathcal{P}(U)$ extends to a category whose objects are the subsets of $U$ and whose morphisms are set inclusions. The identity morphism is set equality. $\emptyset$ is the initial, $U$ the final object. The union of sets is their colimit, the intersection is their limit. A function $F: \mathcal{P}(U) \rightarrow \mathcal{P}(U)$ is monotone iff $F$ is a functor. Hence, if $F$ is monotone, then least fixpoints of $F$ are initial $F$-algebras, while greatest fixpoints are final $F$-coalgebras. Ascending chains $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \ldots$ and descending chains $B_{0} \supseteq B_{1} \supseteq B_{2} \supseteq \ldots$ in $\mathcal{P}(U)$ become diagrams in an arbitrary category $\mathcal{K}$ :

$$
A_{0} \rightarrow A_{1} \rightarrow A_{2} \rightarrow \ldots \quad B_{0} \leftarrow B_{1} \leftarrow B_{2} \leftarrow \ldots
$$

These correspondences between $\mathcal{P}(U)$ and a category $\mathcal{K}$ suggest the following definitions: given an endofunctor $F$ on $\mathcal{K}$, a fixpoint of $F$ is a $\mathcal{K}$-object $A$ with $F(A) \cong A$. If $\alpha: F(A) \rightarrow A$ is initial in $A l g(F)$, then $A$ is a fixpoint of $F$, called the least fixpoint of $F$. Analogously, if $\alpha: A \rightarrow F(A)$ is final in $\operatorname{coAlg}(F)$, then $A$ is a fixpoint of $F$, called the greatest fixpoint of $F . F$ is continuous if $F$ preserves colimits of ascending chains in $\mathcal{K} . F$ is cocontinuous if $F$ preserves limits of descending chains.

Let $\mathcal{K}=\mathcal{P}(U)$. If $F$ is continuous, then Kleene's fixpoint theorem provides us with the least fixpoint $\cup_{i \in \mathbb{N}} F^{i}(\emptyset)$. If $F$ is cocontinuous, we obtain the greatest fixpoint $\cap_{i \in \mathbb{N}} F^{i}(U)$. In fact, both fixpoint constructions can be "lifted" to other categories:

Theorem 21.2 (Kleene's fixpoint theorem for functors; cf., e.g., [65]) Suppose that $\mathcal{K}$ has an initial object $I$ and colimits of ascending chains. Let $F: \mathcal{K} \rightarrow \mathcal{K}$ be an continuous functor and $A$ be the colimit of the chain $I \rightarrow F(I) \rightarrow F^{2}(I)_{-} \mid \ldots$. Then $F(A)$ is the colimit of $F(I) \rightarrow F^{2}(I) \rightarrow F^{3}(I) \rightarrow \ldots$ and the unique $\mathcal{K}$-morphism $F(A) \rightarrow A$ is initial in $\operatorname{Alg}(F)$.

Suppose that $\mathcal{K}$ has a final object $T$ and limits of descending chains. Let $F: \mathcal{K} \rightarrow \mathcal{K}$ be a cocontinuous functor and $B$ be the limit of the chain $T \leftarrow F(T) \leftarrow F^{2}(T) \leftarrow \ldots$ Then $F(B)$ is the limit of $F(T) \leftarrow F^{2}(T) \leftarrow$ $F^{3}(T) \leftarrow \ldots$ and the unique $\mathcal{K}$-morphism $B \leftarrow F(B)$ is final in $\operatorname{coAlg}(F)$.

Given a set $S$ sorts, let $S e t^{S}$ be the category of $S$-sorted sets. Morphisms are $S$-sorted functions. The initial object of $S e t^{S}$ is the empty $S$-sorted set 0 : for all $s \in S, 0_{s}$ is the empty set. The final object is the one-element $S$-sorted set 1 : for all $s \in S, 1_{s}$ is a singleton.

Theorem 21.3 (cf., e.g., [4]) All endofunctors on Set ${ }^{S}$ that are built up from the identity functor, constant functors, coproducts and finite products are continuous. All endofunctors on Set ${ }^{S}$ that are built up from the identity functor, constant functors, coproducts and products are cocontinuous.

Functors built up from the identity functor, constant functors, coproducts and products are called polynomial. Theorems 21.2 and 21.3 ensure that polynomial functors have greatest fixpoints.

The powerset functor sending a set $A$ to its powerset $\mathcal{P}(A)$ cannot have a fixpoint: Assume that $f: A \rightarrow \mathcal{P}(A)$ has an inverse $f^{-1}: \mathcal{P}(A) \rightarrow A$ and define $B=\{a \in A \mid a \notin f(a)\}$. Then we obtain the contradiction $f^{-1}(B) \in B \Leftrightarrow f^{-1}(B) \notin f\left(f^{-1}(B)\right)=B$. However, the finite-powerset functor $\mathcal{P}_{f}$ that maps a set to the set of its finite subsets has final coalgebras because it is bounded:

Definition 21.4 An endofunctor $F$ on $S e t^{S}$ is bounded by some cardinal $\kappa$ if for all $F$-coalgebras $\alpha: A \rightarrow$ $F(A)$ and all $a \in A$ there is a subcoalgebra $\beta: B \rightarrow F(B)$ of $\alpha$ such that $a \in B$ and $|B| \leq \kappa$.

Theorem 21.5 ([43], Theorem 3.5) Let $F$ be a functor bounded by $\kappa$ and $\left\{\alpha_{i}\right\}_{i \in I}$ be the family of all $F$-coalgebras with cardinality at most $\kappa$. The colimes of all homomorphisms with domain $\coprod_{i \in I} \alpha_{i}$ is final in $\operatorname{coAlg}(F)$.

Example 21.6 Given a set $L$ with cardinality $\kappa$, define a functor $F$ on $S$ et by $F(A)=\mathcal{P}_{f}(A)^{L}$. $F$ coalgebras are usually called image finite labelled transition systems. $F$ is bounded: Given an $F$-coalgebra $\alpha: A \rightarrow F(A)$ and $a \in A$, let $\langle a\rangle$ be the smallest subcoalgebra of $A$ that contains $a$. $\langle a\rangle$ consists of all elements $b \in A$ that are $\alpha$-reachable from $a$, i.e., there are $a=a_{1}, \ldots, a_{n}=b \in A$ such that $a_{1}=a, a_{n}=b$ and for all $1 \leq i<n$ there is $c \in L$ such that $a_{i+1} \in \alpha\left(a_{i}\right)(c)$. Since $\alpha\left(a_{i}\right)(c)$ is finite, $b$ can be represented uniquely by a word $w_{c}$ over $L \times \mathbb{N}$. Hence $\langle a\rangle$ is bounded by the cardinality of $(L \times \mathbb{N})^{*}$, which is given by $\sum_{i \in \mathbb{N}}(\kappa * \omega)^{i}$.

Initiality generalizes to freeness, finality generalizes to cofreeness:
Definition 21.7 Let $F$ be an endofunctor on $S e t^{S}$ and $X$ be an $S$-sorted set.
An $F$-algebra $\alpha: F(A) \rightarrow A$ together with a map $\eta_{A}: X \rightarrow A$ is free over $X$ if for all $F$-algebras $\beta: F(B) \rightarrow B$ and all maps $f: X \rightarrow B$ there is a unique $\operatorname{Alg}(F)$-morphism $f^{*}: A \rightarrow B$ with $f^{*} \circ \eta_{A}=f$.

An $F$-coalgebra $\alpha: A \rightarrow F(A)$ together with a map $\varepsilon_{A}: A \rightarrow X$ is cofree over $X$ if for all $F$-coalgebras $\beta: B \rightarrow F(B)$ and all maps $f: B \rightarrow X$ there is a unique $\operatorname{coAlg}(F)$-morphism $f^{*}: B \rightarrow A$ with $\varepsilon_{A} \circ f^{*}=f$.

Theorem 21.8 Let $F$ be an endofunctor on Set ${ }^{S}$. An $F$-algebra $\alpha: F(A) \rightarrow A$ together with a map $\eta_{A}: X \rightarrow A$ is free over $X$ iff the unique coproduct extension $\left[\eta_{A}, \alpha\right]: X+F(A) \rightarrow A$ of $\eta_{A}$ and $\alpha$ is the initial $X+F(-)$-algebra. In particular, if the initial $F$-algebra exists, it is the free $F$-algebra over the empty $S$-sorted set.

An $F$-coalgebra $\alpha: A \rightarrow F(A)$ together with a map $\varepsilon_{A}: A \rightarrow X$ is cofree over $X$ iff the unique product extension $\left(\varepsilon_{A}, \alpha\right): A \rightarrow X \times F(A)$ of $\varepsilon_{A}$ and $\alpha$ is the final $X \times F(-)$-coalgebra. In particular, if the final
$F$-coalgebra exists, it is the cofree $F$-coalgebra over the one-element $S$-sorted set.

## References

[1] P. Aczel, An Introduction to Inductive Definitions, in: J. Barwise, ed., Handbook of Mathematical Logic, North-Holland (1977) 739-781
[2] J. Adamek, Introduction to Coalgebra, Theory and Applications of Categories 14 (2005) 157-199
[3] M.A. Arbib, E.G. Manes, Arrows, Structures, Functors: The Categorical Imperative, Academic Press 1975
[4] M.A. Arbib, E.G. Manes, Parametrized Data Types Do Not Need Highly Constrained Parameters, Information and Control 52 (1982) 139-158
[5] E. Astesiano, M. Broy, G. Reggio, Algebraic Specification of Concurrent Systems, in [6]
[6] E. Astesiano, H.-J. Kreowski, B. Krieg-Brückner, eds., Algebraic Foundations of Systems Specification, IFIP State-of-the-Art Report, Springer 1999
[7] M. Barr, Terminal Coalgebras in Well-founded Set Theory, Theoretical Computer Science 114 (1993) 299-315
[8] M. Bidoit, R. Hennicker, Observer Complete Definitions are Behaviourally Coherent, Report, University of Munich (1999)
[9] M. Bidoit, R. Hennicker, Constructor-Based Observational Logic, to appear in: J. of Logic and Algebraic Programming (2005)
[10] M. Bidoit, R. Hennicker, A. Kurz, On the Duality between Observability and Reachability, Proc. FOSSACS 2001, Springer LNCS 2030 (2001) 72-87
[11] M. Bidoit, R. Hennicker, A. Kurz, Observational Logic, Constructor-Based Logic, and their Duality, Theoretical Computer Science 298 (2003) 471-510
[12] M. Bidoit, P.D. Mosses, CASL User Manual, Springer LNCS 2900 (2004)
[13] J. Brown, Minds, Machines, and the Multiverse: The Quest for the Quantum Computer, Simon\&Schuster 2000
[14] M. Broy, M. Wirsing, Partial Abstract Types, Acta Informatica 18 (1982) 47-64
[15] C. Cîrstea, A Coalgebraic Equational Approach to Specifying Observational Structures, Theoretical Computer Science 280 (2002) 35-68
[16] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martî-Oliet, J. Meseguer, J.F. Quesada, A Maude Tutorial, SRI International 2000, http://maude.csl.sri.com
[17] R. Diaconescu, K. Futatsugi, CafeOBJ Report, World Scientific 1998
[18] A. Corradini, A Completeness Result for Equational Deduction in Coalgebraic Specification, Proc. WADT 1997, Springer LNCS 1376 (1997) 190-205
[19] A. Corradini, R. Heckel, U. Montanari, From SOS Specifications to Structured Coalgebras: How to Make a Bisimulation a Congruence, Proc. CMCS 1999, Elsevier ENTCS 19 (1999) 118-141
[20] G. Costa, G. Reggio, Specification of Abstract Dynamic Data Types: A Temporal Logic Approach, Theoretical Computer Science 173 (1997) 513-554
[21] H. Ehrig, H.J. Kreowski, Refinement and Implementation, in [6]
[22] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1, Springer 1985
[23] C.C. Elgot, Monadic Computation and Iterative Algebrac Theories, Logic Colloquium 1973 (North-Holland 1975) 175-230
[24] M. Erwig, Categorical Programming with Abstract Data Types, Proc. AMAST 1998, Springer LNCS 1548 (1998) 406-421
[25] M.M. Fokkinga, Datatype Laws without Signatures, Math. Structures in Comp. Sci. 6 (1996) 1-32
[26] G. Gentzen, Untersuchungen ber das logische Schlieen, Mathematische Zeitschrift 39 (1934) 405-431 (see en.wikipedia.org/wiki/Sequent_calculus)
[27] J. Gibbons, G. Hutton, Proof Methods for Corecursive Programs, Fundamenta Informaticae (2004) 1-13
[28] E. Giménez, P. Castéran, A Tutorial on (Co-)Inductive Types in Coq, Report, INRIA (2006)
[29] J.A. Goguen, Stretching First Order Equational Logic: Proofs with Partiality, Subtypes and Retracts, UCSD Report, San Diego 1997, www-cse.ucsd.edu/users/goguen/ps/ftp97.ps.gz
[30] J.A. Goguen, R. Diaconescu, An Oxford Survey of Order Sorted Algebra, Mathematical Structures in Computer Science 4 (1994) 363-392
[31] J.A. Goguen, K. Lin, Behavioral Verification of Distributed Concurrent Systems with BOBJ, Proc. Conf. on Quality Software, IEEE Press (2003) 216-235
[32] J.A. Goguen, K. Lin, G. Rosu, Conditional Circular Coinductive Rewriting with Case Analysis, Proc. WADT 2002, Springer LNCS 2755 (2004) 216-232
[33] J.A. Goguen, G. Malcolm, Hidden Coinduction, Mathematical Structures in Computer Science 9 (1999) 287-319
[34] J.A. Goguen, G. Malcolm, A Hidden Agenda, Theoretical Computer Science 245 (2000) 55-101
[35] J.A. Goguen, J. Meseguer, Correctness of Recursive Parallel Nondeterministic Program Schemes, J. of Computer and System Sciences 27 (1983) 268-290
[36] J.A. Goguen, J. Meseguer, Unifying Functional, Object-Oriented and Relational Programming with Logical Semantics, in: B. Shriver, P. Wegner, eds., Research Directions in Object-Oriented Programming, MIT Press (1987) 417-477
[37] J.A. Goguen, J.W. Thatcher, E.G. Wagner, An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types, in: R. Yeh, ed., Current Trends in Programming Methodology 4, Prentice-Hall (1978) 80-149
[38] J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright, Initial Algebra Semantics and Continuous Algebras, J. ACM 24 (1977) 68-95
[39] Andrew D. Gordon, Bisimilarity as a Theory of Functional Programming, Theoretical Computer Science 228 (1999) 5-47
[40] J.F. Groote, F. Vaandrager, Structured Operational Semantics and Bisimulation as a Congruence, Information and Computation 100 (1992) 202-260
[41] H. P. Gumm, Elements of the general theory of coalgebras, Proc. LUATCS 1999, Rand Africaans University, Johannesburg
[42] H. P. Gumm, Equational and implicational classes of coalgebras, Theoretical Computer Science 260 (2001) 57-69 Rand Africaans University, Johannesburg
[43] H. P. Gumm, State based systems are coalgebras, Cubo - Matematica Educacional 5 (2003) 239-262
[44] H. P. Gumm, Universelle Coalgebra, in: Th. Ihringer, Allgemeine Algebra, Heldermann Verlag 2003
[45] H. P. Gumm, T. Schröder, Coalgebras of Bounded Type, Mathematical Structures in Computer Science 12 (2002) 565-578
[46] T. Hagino, Codatatypes in ML, J. Symbolic Computation 8 (1989) 629-650
[47] I. Hasuo, Modal Logics for Coalgebras - A Survey, Report, Tokyo Institute of Technology (2003)
[48] D. Hausmann, T. Mossakowski, L. Schröder, Iterative Circular Coinduction for CoCASL in Isabelle/HOL, Proc. FASE 2005, Springer LNCS 3442 (2005) 341-356
[49] R. Hennicker, A. Kurz, ( $\Omega, \Xi$ )-Logic: On the Algebraic Extension of Coalgebraic Specifications, Proc. CMCS 1999, Elsevier ENTCS 19 (1999) 164-180
[50] H. Hußmann, M. Cerioli, G. Reggio, F. Tort, Abstract Data Types and UML Models, Report DISI-TR-9915, University of Genova 1999
[51] B. Jacobs, Mongruences and Cofree Coalgebras, Proc. AMAST 1995, Springer LNCS 936 (1995) 245-260
[52] B. Jacobs, Behaviour-Refinement of Coalgebraic Specifications with Coinductive Correctness Proofs, Proc. TAPSOFT 1997, Springer LNCS 1214 (1997) 787-802
[53] B. Jacobs, Invariants, Bisimulations and the Correctness of Coalgebraic Refinements, Proc. AMAST 1997, Springer LNCS 1349 (1997) 276-291
[54] B. Jacobs, Exercises in Coalgebraic Specification, in: R. Backhouse, R. Crole, J. Gibbons, eds., Algebraic and Coalgebraic Methods in the Mathematics of Program Construction, Springer LNCS 2297 (2002) 237280
[55] B. Jacobs, Introduction to Coalgebra. Towards Mathematics of States and Observations, book draft, Radboud University Nijmegen 2005
[56] B. Jacobs, J. Rutten, A Tutorial on (Co)Algebras and (Co)Induction, EATCS Bulletin 62 (1997) 222-259
[57] S. Kamin, Final Data Type Specifications: A New Data Type Specification Method, ACM TOPLAS 5 (1983) 97-123
[58] U. Kühler, C.-P. Wirth, Conditional Equational Specifications of Data Types with Partial Operations for Inductive Theorem Proving, Proc. RTA 1997, Springer LNCS 1232 (1997) 38-52
[59] A. Kurz, Specifying Coalgebras with Modal Logic, Proc. CMCS 1998, Elsevier ENTCS 11 (1998) 56-70
[60] A. Kurz, Coalgebras and Modal Logic, Course Notes for ESSLLI 2001, CWI Amsterdam
[61] A. Kurz, R. Hennicker, On Institutions for Modular Coalgebraic Specifications, Report, University of Munich 2000
[62] A. Kurz, J. Rosický, Modal Predicates and Coequations, Proc. CMCS 2002, Elsevier ENTCS 65 (2002) 1-20
[63] J. Lambek, A Fixpoint Theorem for Complete Categories, Mathematische Zeitschrift 103 (1968) 151-161
[64] F.W. Lawvere, Functorial Semantics of Algebraic Theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963) 869-872
[65] D.J. Lehmann, M.B. Smyth, Algebraic Specification of Data Types: A Synthetic Approach, Mathematical Systems Theory 14 (1981) 97-139
[66] K. Lin, J.A. Goguen, A Hidden Proof of the Alternating Bit Protocol, Dept. of CS and Engineering, UCSD 2003
[67] D. Lucanu, O. Gheorgies, A. Apetrei, Bisimulation and Hidden Algebra, Proc. CMCS 1999, Elsevier ENTCS 19 (1999) 181-200
[68] G. Malcolm, Behavioural Equivalence, Bisimulation, and Minimal Realisation, Proc. WADT 1995, Springer LNCS 1130 (1996) 359-378
[69] E.G. Manes, Algebraic Theories, Springer 1976
[70] E.G. Manes, M.A. Arbib, Algebraic Approaches to Program Semantics, Springer 1986
[71] K. Meinke, J.V. Tucker, Universal Algebra, in: S. Abramsky et al., eds., Handbook of Logic in Computer Science, Vol. 1, Clarendon Press (1992) 188-411
[72] S. Meng, B.K. Aichernig, Component-Based Coalgebraic Specification and Verification in RSL, UNU/IIST Report No. 267, Macau 2002
[73] S. Meng, B.K. Aichernig, Coalg-KPF: Towards a Coalgebraic Calculus for Component-Based Systems, UNU/IIST Report No. 271, Macau 2003
[74] S. Meng, B.K. Aichernig, Towards a Coalgebraic Semantics of UML: Class Diagrams and Use Cases, UNU/IIST Report No. 272, Macau 2003
[75] S. Meng, L.S. Barbosa, On Refinements of Generic Software Components, UNU/IIST Report No. 281, Macau 2003
[76] S. Meng, Z. Naixiao, B.K. Aichernig, The Formal Foundations in RSL for UML Statechart Diagrams, UNU/IIST Report No. 299, Macau 2004
[77] J. Meseguer, Membership Algebra as a Logical Framework for Equational Specification, Proc. WADT 1997, Springer LNCS 1376 (1998) 18-61
[78] J. Meseguer, J.A. Goguen, Initiality, Induction and Computability, in: M. Nivat, J. Reynolds, eds., Algebraic Methods in Semantics, Cambridge University Press (1985) 459-541
[79] E. Meijer, M. Fokkinga, R. Paterson, Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire, Proc. FPCA 1991, Springer LNCS 523 (1991) 124-144
[80] D. Miller, G. Nadathur, F. Pfenning, A. Scedrov, Uniform Proofs as a Foundation for Logic Programming, Annals of Pure and Applied Logic 51 (1991) 125-157
[81] R. Milner, Communication and Concurrency, Prentice-Hall 1989
[82] R. Milner, A Communicating and Mobile Systems: the $\pi$-Calculus, Cambridge University Press 1999
[83] Till Mossakowski, Horst Reichel, Markus Roggenbach, Lutz Schröder, Algebraic-coalgebraic specification in CoCASL, to appear in: J. of Logic and Algebraic Programming 67 (2006) 121-143
[84] M. Müller-Olm, D. Schmidt, B. Steffen, Model Checking: A Tutorial Introduction, Proc. SAS 1999, Springer LNCS 1694 (1999) 330-394
[85] P. Padawitz, Inductive Expansion: A Calculus for Verifing and Synthesizing Functional and Logic Programs, J. Automated Reasoning 7 (1991) 27-103
[86] P. Padawitz, Deduction and Declarative Programming, Cambridge University Press 1992
[87] P. Padawitz, Inductive Theorem Proving for Design Specifications, J. Symbolic Computation 21 (1996) 41-99
[88] P. Padawitz, Proof in Flat Specifications, in [6]
[89] P. Padawitz, Swinging Types $=$ Functions + Relations + Transition Systems, Theoretical Computer Science 243 (2000) 93-165
[90] P. Padawitz, Formale Methoden des Systementwurfs, Course Notes, University of Dortmund, padawitz.de/TdP96.pdf
[91] P. Padawitz, Swinging Types At Work, Report, University of Dortmund 2000, ls5-www.cs.uni-dortmund.de/~peter/BehExa.ps.gz
[92] P. Padawitz, Swinging UML: How to Make Class Diagrams and State Machines Amenable to Constraint Solving and Proving, Proc. $\langle\langle\mathrm{UML}\rangle\rangle 2000$, Springer LNCS 1939 (2000) 162-177
[93] P. Padawitz, Basic Inference Rules for Algebraic and Coalgebraic Specifications, Report, University of Dortmund 2001, ls5-www.cs.uni-dortmund.de/~peter/WADT01.ps.gz
[94] P. Padawitz, Structured Swinging Types, Report, University of Dortmund 2004, ls5-www.cs.uni-dortmund.de/~peter/SST.ps
[95] P. Padawitz, Expander2: A Formal Methods Presenter and Animator, ls5-www.cs.uni-dortmund.de/~peter/Expander2.html
[96] P. Padawitz, Expander2: Towards a Workbench for Interactive Formal Reasoning, ls5-www.cs.uni-dortmund.de/~peter/Expander2/Chiemsee.ps
[97] B.C. Pierce, Basic Category Theory for Computer Scientists, MIT Press 1991
[98] W. Pohlers, Subsystems of set Theory and Second Order Number Theory, in: S.R. Buss, ed., Handbook of Proof Theory, Elsevier (1998) 209-335
[99] E. Poll, J. Zwanenburg, From Algebras and Coalgebras to Dialgebras, Proc. CMCS 2001, Elsevier ENTCS 44 (2001) 1-19
[100] H. Reichel, An Approach to Object Semantics based on Terminal Coalgebras, Mathematic Structures in Computer Science 5 (1995) 129-152
[101] H. Reichel, Unifying ADT- and Evolving Algebra Specifications, EATCS Bulletin 59 (1996) 112-126
[102] G. Roşu, J.A. Goguen, Hidden Congruent Deduction, Proc. FTP 1998, Springer LNAI 1761 (2000) 252-266
[103] J. Rothe, H. Tews, B. Jacobs, The Coalgebraic Class Specification Language CCSL, J. of Universal Computer Science 7 (2001) 175-193
[104] J.J.M.M. Rutten, Universal Coalgebra: A Theory of Systems, Theoretical Computer Science 249 (2000) 3-80
[105] J.J.M.M. Rutten, D. Turi, Initial Algebra and Final Coalgebra Semantics for Concurrency, Report CSR9409, CWI, SMC Amsterdam 1994
[106] K. Schütte, Proof Theory, Springer 1977 An algebraic theory of recursive definitions and recursive languages
[107] E.G. Wagner, An algebraic theory of recursive definitions and recursive languages, Proc. STOC 1971, http://portal.acm.org/citation.cfm?id=805034
[108] E.G. Wagner, J.W. Thatcher, J.B. Wright, Programming Languages as Mathematical Objects, Proc. MFCS 1978, Springer LNCS 64 (1978) 84-101
[109] M. Wand, Final Algebra Semantics and Data Type Extensions, J. Computer and System Sciences 19 (1979) 27-44
[110] J.B. Warmer, A.G. Kleppe, The Object Constraint Language, Addison-Wesley 1999
[111] W. Wechler, Universal Algebra for Computer Scientists, Springer 1992
[112] P. Wegner, Why Interaction Is More Powerful Than Algorithms, Communications of the ACM 40 (1997) May, 80-91
[113] M. Wirsing, Algebraic Specification, in: J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Elsevier (1990) 675-788
[114] U. Wolter, On Corelations, Cokernels, and Coequations, Proc. CMCS 2000, Elsevier ENTCS 33 (2000) 347-366


[^0]:    ${ }^{1}$ A subcategory $\mathcal{D}$ of a category $\mathcal{C}$ is full if all $\mathcal{C}$-morphisms between $\mathcal{D}$-objects are also $\mathcal{D}$-morphisms.

[^1]:    ${ }^{2}$ Since $\varphi$ is not confined to finite conjunctions of atoms, our notion of a Horn clause deviates from the classical one. It also does not coincide with the notion of a hereditary Harrop formula [80]. Premises with universal quantifiers, which do not occur in classical Horn clauses, are allowed both in Harrop formulas and in Horn clauses as defined here. But Harrop formulas impose further restrictions on their premises.

[^2]:    ${ }^{3}$ The inverse inclusion is always valid.

[^3]:    ${ }^{4}$ The existence of this subset follows from Theorem 8.3(1).
    ${ }^{5} i_{a, f}$ refers to (2).

[^4]:    ${ }^{6}$ For the category-theoretic presentation of recursion, see, e.g., [65], Section 5.
    ${ }^{7}$ For the category-theoretic presentation of corecursion, see, e.g., [2], §§5.11-5.14.
    ${ }^{8}$ with respect to set inclusion

[^5]:    ${ }^{9}$ The operator and denotes the componentwise union of its arguments. It is adopted from the algebraic specification language CASL [12].

[^6]:    ${ }^{10} 0, \beta$ and $\sup (M)$ are usually interpreted as follows: $0=\emptyset, \beta=\alpha \cup\{\alpha\}$ and $\sup (M)=\cup M$. Consequently, < is strict set inclusion and thus $\mathcal{O}$ is well-ordered.

[^7]:    ${ }^{12}$ Counterexamples showing that this theorem cannot be generalized to non-algebraic signatures or non-implicational formulas are obtained easily from the study of products and implicational classes in universal algebra. See, e.g., [71], Section 5.3, and [111], Section 3.3.

[^8]:    ${ }^{13}$ This notion is used in [83].
    ${ }^{14}$ dto.

[^9]:    ${ }^{15} \mathrm{By}[7]$, Thm. 3.2, the fixpoints of other both continuous and cocontinuous functors $F$ on $S e t$ (and thus on $S e t^{S}$ ) are related to each other in the same way: the final $F$-coalgebra is the Cauchy completion of the initial $F$-algebra.

[^10]:    ${ }^{16} \operatorname{suc}^{\infty}(0)$ denotes the infinite term $t$ with $\operatorname{dom}(t)=0^{*}$ and $t(w)=s u c$ for all $w \in \operatorname{dom}(t)$.

[^11]:    ${ }^{17}$ For a specification of integer numbers, see Example 19.1.

[^12]:    ${ }^{18}$ In terms of [49, 61], $F=\Omega$ and $G=\Xi$.

[^13]:    ${ }^{19}$ Since visSP is head complete and functional, [94], Lemma 3.7 implies that all behaviorally visSP-equivalent object normal forms are equal. Hence the $\sim_{v i s S P}$-equivalence $d^{F i n(C S P)}(a,[u])$ contains exactly one object normal form $t$.

[^14]:    ${ }^{20}$ [101], Example 8, provides a related specification.

[^15]:    ${ }^{21} A X_{\text {tree }}$ is the set of assertions of BINTREE.

[^16]:    ${ }^{22}$ Coalgebraic Methods in Computer Science 1998-2001, published electronically in Elsevier's ENTCS series.

