
Dialgebraic Specification and Modeling

Peter Padawitz

http://padawitz.de

University of Dortmund, Germany

January 12, 2024

constructors destructors

data
model

state
model

visible
abstraction

visible
restriction

hidden
abstraction

hidden
restriction

corecursive
functions

recursive
functions

invariantscongruences

ALGEBRA

COALGEBRA

observable

reachable

!e Swinging Cube
of Universal Dial"bra



CONTENTS 1

Abstract

Dialgebraic specifications combine algebraic with coalgebraic ones. We present a uniform syntax, se-
mantics and proof system for chains of signatures and axioms such that presentations of visible data types
may alternate with those of hidden state types. Each element in the chain matches a design pattern that
reflects some least/initial or greatest/final model construction over the respective predecessor in the chain.
We sort out twelve such design patterns. Six of them lead to least models, the other six to greatest models.
Each construction of the first group has its dual in the second group. All categories used in this approach
are classes of structures with many-sorted carrier sets. The model constructions could be generalized to
other categories, but this is not a goal of our approach. On the contrary, we aim at applications in software
(and, maybe, also hardware) design and will show that for describing and solving problems in this area one
need not go beyond categories of sets. Consequently, a fairly simple, though sufficiently powerful, syntax of
dialgebraic specifications that builds upon classical algebraic notations as much as possible is crucial here. It
captures the main constructions of both universal (co)algebra and relational fixpoint semantics and thereby
extends ”Lawvere-style” algebraic theories from product to arbitrary polynomial types and modal logics
from one- to many-sorted Kripke frames.
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1 Introduction

??? Swinging types provide a one-tiered approach to the axiomatic specification of systems: static and dynamic

components as well as structural and behavioral aspects are treated within the same (many-sorted) logic. A

swinging type (ST) as defined in [89] is non-hierarchical. Standard hidden constructors are the tupling operators

for product sorts and injections for sum sorts. In this paper, we drop the implicit assumption of [89] that only

countable, term-generated data domains are specified in terms of swinging types.

The elements of the standard models are easy to conceive: those of the Herbrand SP -model are the ground

Σ-terms. If SP is functional, the initial SP -model is isomorphic to the normal form model NF(SP ) whose

elements are the ground Σ-normal forms, i.e., the Σ-terms consisting of constructors. The final SP -model is

isomorphic to the quotient of NF(SP ) that identifies behaviorally equivalent normal forms.

If SP is the domain completion of a coalgebraic swinging type (see Section 4.2), most nullary constructors

are (names of) elements of a final coalgebra and thus each of them denotes the “behavior” of an object in a

certain state (see Section 4.1). In this case, non-nullary constructors describe state modifiers, in object-oriented

terminology: methods. In other cases, they just build up static data structures.

Hence a normal form may represent

â the static structure of an object or

â the history of an object or

â a set of attribute values or

â a composition of substates or

â possible actions on an object or

â an “infinite” data structure or

â an element of another uncountable domain.

The most common hidden constructors are injections into sum sorts. Sum sorts are crucial for integrating

coalgebraic specifications into STs because are based on destructors and the most interesting destructors map

into sum sorts (see Sections 4 and 5). Hidden constructors can be regarded as the algebraic counterpart to

destructors whose nature is coalgebraic. As injections into sum sorts are implicit constructors, so are projections

into the factors of a product sort implicit destructors. Other common destructors are the apply operators that

occur implicitly in axioms for higher-order defined functions (cf., e.g., Example 14.2).

Section 3 summarizes the crucial notions and results from category theory and universal algebra that justify

the initial algebra/final coalgebra semantics of data types. We focus on the category SetS of S-sorted sets.

Some connections to swinging types are already drawn in this section. The new approach, however, is presented

in Sections 4 and 5 and can be followed even if one has not read all details of Section 3.

Section 4 introduces notions of coalgebraic signatures and specifications, called cosignatures and cospecifica-

tions, respectively. A cosignature ∆ starts out from a swinging signature visΣ as the syntactical basis for hidden

sorts and destructors for them. Given a visΣ-structure C, a (∆, C)-coalgebra is merely a ∆-algebra whose visΣ-

reduct agrees with C. ∆ induces coterms and contexts. Each element of the final (∆, C)-coalgebra is a sequence



2 Set-theoretical preliminaries 3

of functions each of which interprets a context. A cospecification CSP adds to ∆ and C auxiliary functions,

cofunctions, copredicates, inductive axiomatizations for the auxiliary functions, coinductive axiomatizations for

the cofunctions, co-Horn axioms for the copredicates and assertions. The final CSP -model , Fin(CSP ), is the

subcoalgebra of the final (∆, C)-coalgebra consisting of all data satisfying the assertions.those elements that

In Section 5, swinging types are combined with cospecifications. A swinging type SP becomes dialgebraic

if SP is extended by a cospecification CSP such that SP and CSP have the same visible subsignature, the

same hidden sorts, the same destructors for these sorts and the same axioms for the auxiliary functions and

copredicates of CSP . Hence cofunctions and assertions are the only actual contributions of a cospecification to

a dialgebraic ST. Semantically, however, there is a difference between a dialgebraic type CST and an algebraic

one even if the cospecification CSP that is part of CST lacks assertions and cofunctions. While the standard

model of an algebraic ST is an—always countable—quotient of a Herbrand model, the standard model of CST

should be given by Fin(CSP ) and thus may have uncountable carriers (see above). Fortunately, the main

result of Section 5 (Thm. 18.5) tells us that, under certain weak conditions, Fin(CSP ) is isomorphic to the

standard model of an algebraic ST, called the domain completion of CST . By replacing CST with its domain

completion, we may keep to the hierarchical notion of a swinging type, both syntactically and semantically.

2 Set-theoretical preliminaries

At first, we recall some basic notions of set theory and relation algebra. Let S be a set. idS : S → S denotes

the identity on S.

Given a product A =
∏
i∈I Ai =def {(ai)i∈I | ∀i ∈ I : ai ∈ Ai} and i ∈ I, ai denotes the i-th component of

a ∈ A and πi : A→ A1 denotes the i-th projection from A, i.e., for all πi(a) = ai. Moreover, for all a, b ∈ A,

〈a, b〉 ∈
∏
i∈I

A2
i =def (ai, bi)i∈I .

If I is a singleton, say I = {k}, we write k instead of I and Ak instead of A. A function f : C → A is

well-defined iff for all i ∈ I, πi ◦ f is well-defined. Given functions fi : C → Ai, i ∈ I, the product extension

〈fi〉i∈I : C → A of {fi | i ∈ I} is defined as follows: For all c ∈ C, 〈fi〉i∈I(c) = (fi(c))i∈I .

Relational update. Let R ⊆ A =
∏
i∈I Ai, k ∈ I, a ∈ A and b ∈ Ak a[b/k] ∈ A and R[b/k] ⊆ A are defined

as follows:

(a[b/k])i =

{
b if i = k

ai otherwise

R[b/k] = {a[b/k] | a ∈ R}.

Analogously, let R ⊆ A =
∐
i∈I Ai, k ∈ I, (a, i) ∈ A and b ∈ Ak. (a, i)[b/k] ∈ A, i ∈ I and R[b/k] ⊆ A are

defined as follows:

((a, i)[b/k]) =

{
(b, i) if i = k

(a, i) otherwise

R[b/k] = {a[b/k] | a ∈ R}.

Relational product. Let R ⊆
∏
i∈I Ai and R ⊆

∏
i∈J Ai such that I ∩ J = ∅.

R×R′ =def {(ai)i∈I ∈
∏
i∈I∪J

Ai | (ai)i∈I ∈ R, (ai)i∈J ∈ R′}.

Given a sum or coproduct A =
∐
i∈I Ai =def {(a, i) | i ∈ I, a ∈ Ai} and i ∈ I, ιi : Ai → A denotes the

i-th injection into A, i.e., ιi(a) = (a, i). If I is a singleton, say I = {k}, we write k instead of I and Ak instead

of A. A function f : A → C is well-defined iff for all i ∈ I, f ◦ ιi is well-defined. Given functions fi : Ai → C,
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i ∈ I, the sum extension [fi]i∈I : A → C of {fi | i ∈ I} is defined as follows: For all i ∈ I and a ∈ Ai,

[fi]i∈I(a) = fi(a).

For all f :
∏
i∈I Ai → A, k ∈ I and g : B → Ak, f ◦k g =def f ◦ 〈gi〉i∈I :

∏
i∈I Bi → A where

gi =

{
g if i = k

πi otherwise
Bi =

{
B if i = k

Ai otherwise

For all f : A→
∐
i∈I Ai, k ∈ I and g : Ak → B, g ◦k f =def [gi]i∈I ◦ f : A→

∐
i∈I Bi where

gi =

{
g if i = k

ιi otherwise
Bi =

{
B if i = k

Ai otherwise o

For all functions fi : Ai → Bi, i ∈ I,∏
i∈I fi =def 〈fi ◦ πi〉i∈I :

∏
i∈I Ai →

∏
i∈I Bi,∐

i∈I fi =def [ιi ◦ fi]i∈I :
∐
i∈I Ai →

∐
i∈I Bi.

For all sets or functions A1, . . . , An,
∏n
i=1Ai and

∐n
i=1Ai are also written as A1×· · ·×An and A1 + · · ·+An,

respectively. Some notations used above will re-appear in the following syntax of types, terms and formulas.

3 Types, terms and formulas, and their interpretations

Definition 3.1 (types) Let S be a finite set of sorts (type constants) and X be a finite set of type variables.

The set TS(X) of (polynomial) types over S and X are the sets of expressions generated by the following rules:

TS(X)

sorts and type variables

s
s ∈ S ∪ {1}

x
x ∈ X

product and sum

e1, . . . , en
e1 × · · · × en

e1, . . . , en
e1 + · · ·+ en

powers

e

s→ e
s ∈ S

constructive and destructive types over Y ⊆ X

∐n
i=1

∏ni
j=1 eij

∀ 1 ≤ i ≤ n : ∀ 1 ≤ j ≤ ni : eij ∈ S ∪ Y

∏n
i=1(si →

∐ni
j=1 eij)

∀ 1 ≤ i ≤ n : si ∈ S ∧ ∀ 1 ≤ j ≤ ni : eij ∈ S ∪ Y

recursive and corecursive types

e1, . . . , en
µx1 . . . xn.(e1, . . . , en)

e1, . . . , en are constructive over {x1, . . . , xn} ⊆ X

e1, . . . , en
νx1 . . . xn.(e1, . . . , en)

e1, . . . , en are destructive over {x1, . . . , xn} ⊆ X

× and + are regarded as associative operators. × binds stronger than +, + stronger than →.
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var(e) denotes the set of free type variables of e. Given e, e′ ∈ TS(X), expressions of the form e → e′

are called (first-order) functional types over S and X. FS(X) denotes the set of functional types over

S. A (functional) type is ground or monomorphic if it does not contain type variables. The set of ground

(functional) types over S is denoted by TS and FS , respectively.

e is a subtype of e′ if e = e′ or there are types e1, . . . , en, s such that

• e = e1 × · · · × en and ei is a subtype of e′, or

• e = ei and e1 + · · ·+ en is a subtype of e′, or

• e = s→ e1, e′ = s→ e2 and e1 is a subtype of e2. o

If there is s ∈ T(S) such that si = s for all 1 ≤ i ≤ n, e1 × · · · × en is also written as sn.

Sum types are particularly useful for specifying partial functions, exceptions and inheritance. In contrast to

subsorting approaches [30] sum typing keeps to the syntax and semantics of many-sorted logic. Sum typing is

also a way of avoiding the classical theory of complete partial orders (cpos) for modeling recursive functions,

similarly to partially-additive semantics [70] that also uses sums terms. The coalgebraic interpretation of λ-

definable functions [39] is another way of handling recursive functions without employing cpos.

Definition 3.2 (sorted sets and functions) Let Set be the category of (small) sets and functions between

sets. Let S be a set. Then SetS denotes the category of S-sorted sets A = {sA | s ∈ S} and S-sorted

functions f : A→ B = {sf : sA → sB | s ∈ S}.

Given s ∈ S, ∆A
s denotes the diagonal relation on sA, i.e., ∆A

s = {(a, a) | a ∈ sA}. An S-sorted set B is

an S-sorted subset of A, written as B ⊆ A, if for all s ∈ S, sB is a subset of sA. Consequently, A and B are

equal iff A and B are sortwise equal:

A = B ⇐⇒def ∀s ∈ S : sA = sB . o

Definition 3.3 (interpretation of types by functors) Each type e ∈ TS(X) and each S-sorted set A

yield a functor Fe,A : SetX → Set that is defined as follows: Let B,C ∈ SetX and f : B → C be an X-sorted

function.

• For all s ∈ S, Fs,A(B) = sA and Fs,A(f) = idsA .

• F1,A(B) = {()} and F1,A(f) = id{()}.

• For all x ∈ X, Fx,A(B) = xB and Fx,A(f) = xf .

• Fe1×···×en,A(B) = Fe1,A(B)× . . .× Fen,A(B) and Fe1×···×en,A(f) = Fe1,A(f)× . . .× Fen,A(f).

• Fe1+···+en,A(B) = Fe1,A(B) + · · ·+ Fen,A(B) and Fe1+···+en,A(f) = Fe1,A(f) + · · ·+ Fen,A(f).

• Fs→e,A(B) = [sA → Fe,A(B)] and for all g : sA → Fe(B), Fs→e,A(f)(g) = Fe,A(f) ◦ g : sA → Fe,A(C).

• Let Y = {x1, . . . , xn} and F : SetY → SetY be defined by x
F (D)
i = Fei,A(D) for all 1 ≤ i ≤ n and

D ∈ SetY . Then Fµx1...xn.(e1,...,en),A(B) = Ini(AlgF ), Fµx1...xn.(e1,...,en),A(f) = idIni(AlgF ),

Fνx1...xn.(e1,...,en),A(B) = Fin(CoalgF ) and Fνx1...xn.(e1,...,en),A(f) = idFin(CoalgF ). o

A straightforward structural induction shows that Fe is indeed a functor, i.e., the follwing diagram (∗)
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commutes:

• B
Fe,A - B′ •

= C

f

? Fe,A - C ′

Fe,A(f)

?
(∗)

•

g ◦ f

- D

g

? Fe,A - D′

Fe,A(g)

?
� •

Fe,A(g ◦ f)

Definition 3.4 (substitution of type variables by types) Let X be a finite set of type variables. A

function σ : X → TS(X) extends to a function σ∗ : TS(X)→ TS(X) as follows:

• For all x ∈ X, σ∗(x) = σ(x).

• For all s ∈ S ∪ {1}, σ∗(s) = s.

• For all e1, . . . , en ∈ TS(X),

σ∗(e1 × · · · × en) = σ∗(e1)× . . .× σ∗(en) and σ∗(e1 + · · ·+ en) = σ∗(e1) + · · ·+ σ∗(en).

• For all s ∈ S and e ∈ TS(X), σ∗(s→ e) = s→ σ∗(e).

• σ∗(µx1 . . . xn.(e1, . . . , en) = µx1 . . . xn.(τ
∗(e1), . . . , τ∗(en)) where τ : X → TS(X) is defined by

τ(x) =

{
xi if x = xi for some 1 ≤ i ≤ n
σ(x) otherwise. o

Given e ∈ TS(X) and A ∈ SetS , the functor property of Fe,A implies the following

Proposition 3.5 Let e be a type over S and X, σ : X → TS, A ∈ SetS and B ∈ SetX . Then

Fσ∗(e),A(B) = Fe,A(σ(B))

where for all x ∈ X, xσ(B) =def

{
Fσ(x),A(B) if x ∈ var(e),

xB otherwise. o

Definition 3.6 (signatures, structures and homomorphisms) Let X be a set of type variables. A signature

Σ = (S,Op,Rel) over X consists of a set S of sorts, an S2-sorted set Op of function symbols and an S+-sorted

set Rel of relation symbols. We write f : s1 → s2 ∈ Σ instead of f ∈ (s1, s2)Op and r : w ∈ Σ instead of

r ∈ wRel. dom(f) = s1 and ran(f) = s2 are called the domain resp. range of f .

For all s ∈ S, Rel implicitly includes the s-equality =s: ss and the s-membership ∈s: s. A relation is

logical if it is neither a membership nor an equality.

A signature Σ′ = (S′, Op′, Rel′) is a subsignature of Σ if S′ ⊆ S, Op′ ⊆ Op and Rel′ ⊆ Rel.

A Σ-structure A consists of an S-sorted set, the carrier of A, also denoted by A, for all f : s1 → s2 ∈ Σ,

a function fA : sA1 → sA2 and for all r : s ∈ Σ, a relation rA ⊆ sA. A is a Σ-structure with equality if for all

s ∈ S, =A
s = ∆A

s . A is a Σ-structure with membership if for all s ∈ S, ∈As = sA.

Given Σ-structures A and B, an S-sorted function h : A→ B is a Σ-homomorphism if for all f : s1 → s2 ∈
Σ, sh2 ◦fA = fB◦sh1 . If, in addition, f is surjective or injective, f is a Σ-epimorphism or a Σ-monomorphism,

respectively. A Σ-homomorphism h : A → B is a Σ-isomorphism if there is a Σ-homomorphism g : B → A

such that g ◦ h = idA and h ◦ g = idB . Then we write A ∼= B and say that A and B are Σ-isomorphic.

Mod(Σ) denotes the category of Σ-structures and Σ-homomorphisms. ModEM (Σ) denotes the full subcat-
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egory of Mod(Σ) whose objects are Σ-structures with equality and membership.1

Given a subsignature Σ′ = (S′, Op′, Rel′) of Σ and a Σ′-structure A, Mod(Σ, A) denotes the category of all

Σ-structures over A, i.e., all Σ-structures B and Σ-homomorphisms h such that for all s ∈ S′, sB = sA and

sh = idsA . ModEM (Σ, A) =def Mod(Σ, A) ∩ModEM (Σ). o

A Σ-homomorphism is a Σ-isomorphism iff it is bijective.

Definition 3.7 (terms) Let Σ = (S,Op,Rel) be a signature over X. IdS(X) =def {ide | e ∈ TS(X)}. The

FS(X)-sorted set TΣ(X) of Σ-terms over X is the set of expressions generated by following rules:

TΣ(X)

functions of Σ and identities

op : s1 → s2
op ∈ Op

ide : e→ e
e ∈ TS(X)

product and sum

t1 : e→ e1, . . . , tn : e→ en
〈t1, . . . , tn〉 : e→ e1 × · · · × en

t1 : e1 → e, . . . , tn : en → e

[t1, . . . , tn] : e1 + · · ·+ en → e

projections and injections

πi : e1 × · · · × en → ei ιi : ei → e1 + · · ·+ en
1 ≤ i ≤ n

rooting and branching

t : e→ e1, t1 : e1 → e2

t1 ◦ t : e→ e2

t2 : e→ e1, t : e1 → e2

t ◦ t2 : e→ e2
t 6∈ IdS(X),

t1 ∈ Op ∪ Σι ∪ Σjoin,

t2 ∈ Op ∪ Σπ ∪ Σfork

sub- and supertyping

t : e1 → e

t× e2 : e1 × e2 → e

t : e→ e1

t+ e2 : e→ e1 + e2

left and right distribution

distL : e× (e1 + · · ·+ en)→ e× e1 + · · ·+ e× en

distR : (e1 + · · ·+ en)× e→ e1 × e+ · · ·+ en × e

abstraction and application

t : e1 × . . .× en → e

λi.t : e1 × . . .× ei−1 × ei+1 . . .× en → (ei → e) $ : (s→ e)× s→ e

s, ei ∈ S,
1 ≤ i ≤ n

fork and join

ϕ : e

fork(ϕ) : e→ e+ e

ϕ : e

join(ϕ) : e× e→ e
ϕ ∈ FormΣ(X) (see Def. 3.12)

Σπ, Σι, Σfork and Σjoin denote the sets of projections, injections, forks and joins, respectively. A term is

ground or monomorphic if it does not contain type variables. The set of ground Σ-terms is denoted by TΣ.

If TS(X) is restricted to either products or sums, TΣ is an algebraic theory in the sense of [64, 109, 23, 107].

Given a Σ-term t : e→ e′, dom(t) =def e and ran(t) =def e
′ are called the domain resp. range of t.

We sometimes omit ◦ and write t〈t1, . . . , tn〉 and [t1, . . . , tn]t instead of t ◦ 〈t1, . . . , tn〉 and [t1, . . . , tn] ◦ t,
respectively. If dom(t) is a binary product, t〈u, v〉 is sometimes written as u t v.

1A subcategory D of a category C is full if all C-morphisms between D-objects are also D-morphisms.
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Given terms t1 : e1 → e′1, . . . , tn : en → e′n, t1×· · ·×tn and t1+· · ·+tn denote the product 〈t1◦π1, . . . , tn◦πn〉
and sum [ι1 ◦ t1, . . . , ιn ◦ tn], respectively.

u ∈ TΣ(X) is a subterm of t ∈ TΣ(X) if t = u or there are f ∈ Op, t1, . . . , tn ∈ TΣ(X) and 1 ≤ i ≤ n such

that

• t = f ◦ 〈t1, . . . , tn〉 and u is a subterm of ti or

• t = [t1, . . . , tn] ◦ f , u = [u1, . . . , un] ◦ f , ui is a subterm of ti and uk = tk for all 1 ≤ k ≤ n with k 6= i.

u ∈ TΣ(X) is a superterm of t ∈ TΣ(X) if t = u or there are f ∈ F , t1, . . . , tn ∈ TΣ(X) and 1 ≤ i ≤ n such

that

• t = [t1, . . . , tn] ◦ f and u is a superterm of ti or

• t = f ◦ 〈t1, . . . , tn〉, u = f ◦ 〈u1, . . . , un〉, ui is a superterm of ti and uk = tk for all 1 ≤ k ≤ n with k 6= i.o

It is easy to see that for each Σ-term t : e→ e1×· · ·×en there are t1, . . . , tn ∈ TΣ(X) such that t = 〈t1, . . . , tn〉,
while for each Σ-term t : e1 + · · ·+ en → e there are t1, . . . , tn ∈ TΣ(X) such that t = [t1, . . . , tn].

Terms built up of products or sums can be visualized as trees growing downwards or upwards, respectively:

c1

c5

c2 c4

c8c6 c7

c3

><

<

> <

>

d1

d5

d2 d4

d8d6 d7

d3

][

]

[

[

]

e1

e2

e1

e2

Figure 1. Tree representations of the terms c1〈c2〈c5, c6〉, c3, c4〈c7, c8〉〉 : e1 → e2

and [[d5, d6]d2, d3, [d7, d8]d4]d1 : e1 → e2.

As types denote functors (see Def. 3.2), terms denote natural transformations:

Definition 3.8 (interpretation of terms by natural transformations) Each t : e1 → e2 ∈ TΣ(X) and

each A ∈Mod(Σ) yield a natural transformation Tt,A : Fe1,A → Fe2,A, i.e., a set

{Tt,A(B) : Fe1,A(B)→ Fe2,A(B) | B ∈ SetX}

of functions such that for all B,C ∈ SetX and X-sorted functions f : B → C, the following diagram commutes:

Fe1,A(B)
Tt,A(B)- Fe2,A(B)

Fe1,A(C)

Fe1,A(f)

? Tt,A(C)- Fe2,A(C)

Fe2,A(f)

?
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Tt,A is defined as follows: Let B,C ∈ SetX and f : B → C be an X-sorted function. The set-theoretical

operators on the right-hand sides of the following equations are defined in section 2.

• For all op : s1 → s2 ∈ Σ, Top,A(B) = opA.

• For all e ∈ TS(X), Tide,A(B) = idFe,A(B).

• For all t1 : e→ e1, . . . , tn : e→ en ∈ TΣ(X),

T〈e1,...,en〉,A(B) = 〈Te1,A(B), . . . , Ten,A(B)〉 and T[e1,...,en],A(B) = [Te1,A(B), . . . , Ten,A(B)].

• For all e1, . . . , en ∈ TS(X) and 1 ≤ i ≤ n, Tπi,A(B) = πi and Tιi,A(B) = ιi.

• For all t1 : e1 → e2, t2 : e2 → e3, Tt2◦t1,A(B) = Tt2,A(B) ◦ Tt1,A(B).

• For all t : e→ e1, e2 ∈ TS(X) and (c, d) ∈ Fe×e2,A(B), Tt×e2,A(B)(c, d) = Tt,A(B)(c).

• For all t : e→ e1, e2 ∈ TS(X) and c ∈ Fe,A(B), Tt+e2,A(B)(c) = Tt,A(B)(c).

• For all e, e1, . . . , en ∈ TS(X), 1 ≤ i ≤ n and (c, ιi(d)) ∈ Fe×(e1+···+en),A(B), TdistL,A(B)(c, ιi(d)) = ιi(c, d).

• For all e, e1, . . . , en ∈ TS(X), 1 ≤ i ≤ n and (ιi(c), d) ∈ Fe×(e1+···+en),A(B), TdistR,A(B)(ιi(c), d) = ιi(c, d).

• For all t : e1 × . . . × en → e with ei ∈ S, f : eAi → (Fe1×...×ei−1×ei+1...×en,A(B) → Fe,A(B)) and

(c1, . . . , cn) ∈ Fe1×...×en,A(B), Tλi.t,A(B)(c1, . . . , ci−1, ci+1, . . . , cn)(ci) = Tt,A(B)(c1, . . . , cn).

• For all s ∈ S, e ∈ TS(X), f : sA → Fe,A(B) and a ∈ sA, T$,A(B)(f, a) = f(a).

• For all ϕ : e ∈ FormΣ and a ∈ Fe,A(B), Tfork(ϕ),A(B)(a) =

{
(a, 1) if a ∈ ϕA,
(a, 2) if a /∈ ϕA.

• For all ϕ : e ∈ FormΣ and (a, b) ∈ Fe×e,A(B), Tjoin(ϕ),A(B)(a, b) =

{
a if a ∈ ϕA,
b if a /∈ ϕA. o

Definition 3.9 Let Σ = (S,Op,Rel) be a signature over X and Y = {x1, . . . , xn}.

For all 1 ≤ i ≤ n, let ei =
∐ki
j=1 eij be a constructive type over Y and Ci = {ιij : eij → ei | 1 ≤ j ≤ ki} be

the set of injections into ei. Then the signature

Σ′ = (S ∪ Y,Op ∪ C1 ∪ · · · ∪ Cn, Rel)

over X \ Y is called a constructor signature with base signature Σ.

For all 1 ≤ i ≤ n, let ei =
∏ki
j=1 eij be a destructive type over Y and Di = {πij : ei → eij | 1 ≤ j ≤ ki} be

the set of projections from ei. Then the signature

Σ′ = (S ∪ Y,Op ∪D1 ∪ · · · ∪Dn, Rel)

over X \ Y is called a destructor signature with base signature Σ. o

???? Σ is algebraic if for all f : e→ e′ ∈ Op and r : e ∈ Rel, e and e′ are products of sorts.

Definition 3.10 (term composition) Let Σ = (S,Op,Rel) be a signature over X. The term category

TΣ(X) has all types over S and X as objects and all Σ-terms over X as morphisms. The composition � of

TΣ(X)-morphisms is defined inductively on the structure of Σ-terms:

• For all t : e1 → e2 ∈ TΣ(X), ide2 � t = t� ide1 = t.

• For all 〈t1, . . . , tn〉 ∈ TΣ(X) and 1 ≤ i ≤ n, πi � 〈t1, . . . , tn〉 = ti.

• For all [t1, . . . , tn] ∈ TΣ(X) and 1 ≤ i ≤ n, [t1, . . . , tn]� ιi = ti.

• For all t : e→ e1 ∈ TΣ(X) \ IdS(X) and t1 : e1 → e2 ∈ Op ∪ Σι ∪ Σjoin, t1 � t = t1 ◦ t.
• For all t2 : e→ e1 ∈ Op ∪ Σπ ∪ Σfork and t : e1 → e2 ∈ TΣ(X) \ IdS(X), t� t2 = t ◦ t2.

• For all t : e1 → e ∈ TΣ(X), e2 ∈ TS(X) and t′ : e→ e3 ∈ TΣ(X), t′ � (t× e2) = (t′ � t)× e2.
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• For all t : e→ e1 ∈ TΣ(X), e2 ∈ TS(X) and t′ : e3 → e ∈ TΣ, (t+ e2)� t′ = (t� t′) + e2.

• For all t : e→ e1 ∈ TΣ(X) and 〈t1, . . . , tn〉 : e1 → e2 ∈ TΣ(X), 〈t1, . . . , tn〉 � t = 〈t1 � t, . . . , tn � t〉.
• For all [t1, . . . , tn] : e→ e1 ∈ TΣ(X) and t : e1 → e2 ∈ TΣ(X), t� [t1, . . . , tn] = [t� t1, . . . , t� tn].

*******

• For all t : s→ s′ ∈ TΣ and ϕ : s′ ∈ FormΣ, fork(ϕ)� t = (t+ t)� fork(ϕ� t) (see Def. 3.12).

• For all ϕ : s ∈ FormΣ and t : s→ s′ ∈ TΣ, t� join(ϕ) = join(t� ϕ)� (t× t) (see Def. 3.12).

For all t :
∏
i∈I si → s ∈ TΣ, k ∈ I and u : s′ → sk ∈ TΣ, t�k u =def t� 〈ui〉i∈I :

∏
i∈I s

′
i → s where

ui =

{
u� πi if i = k

πi otherwise
s′i =

{
s′ if i = k

si otherwise

For all t : s→
∐
i∈I si ∈ TΣ, k ∈ I and u : sk → s′ ∈ TΣ, u�k t =def [ui]i∈I � t : s→

∐
i∈I s

′
i where

ui =

{
ιi � u if i = k

ιi otherwise
s′i =

{
s′ if i = k

si otherwise o

Since the indices of projections replace the logical variables used in applicative logical syntax, we sometimes

write i instead of πi. Conversely, a term t in applicative syntax can be turned into a (purely functional) Σ-term

by regarding the set X of variables occurring in t as a set of indices and replacing each x : sx ∈ X with

the projection πx :
∏
i∈I si → sx. For instance, let I = {x : sx, y : sy, z : sz}. Then the applicative term

f(x, g(y, x), z) : s becomes the Σ-term

f ◦ 〈πx, g ◦ 〈πy, πx〉, πz〉 : sx × sy × sz → s.

TΣ covers both applicative terms and substitutions into such terms. For instance, the substitution σ =

{tx/x, ty/y, tz/z} that maps variables x, y, z to terms t : domx → sx, u : domy → sy, v : domz → sz, re-

spectively, represents the Σ-term ~t = t×u×v. Hence the instance f(t, g(u, t), v) of f(x, g(y, x), z) by σ becomes

the composition f(x, g(y, x), z)� ~t that represents a single term of type domx × domy × domz → s:

f(x, g(y, x), z)� ~t = (f ◦ 〈πx, g ◦ 〈πy, πx), πz〉〉 � ~t = f ◦ 〈πx � ~t, g ◦ 〈πy, πx〉 � ~t, πz � ~t〉
= f(t, g ◦ 〈πy ◦ ~t, πx ◦ ~t〉, v) = f(t, g ◦ 〈u, t〉, v) = f(t, g(u, t), v).

To sum up this translation, let Ts be the set of applicative terms of sort s and T = {Ts}s∈S . The following

function comp : T → TΣ turns each applicative term t with variables x1 : s1, . . . , xm : sm and constants

c1 : s′1, . . . , cn : s′n into a Σ-term comp(t) : s1 × · · · × sn × 1→ s:

• For all 1 ≤ i ≤ m, comp(xi) = πi.

• For all 1 ≤ i ≤ n, comp(ci) = ci ◦ πn+1.

• For all k > 0, 1 ≤ i ≤ k, functions f : s1 × · · · × sk → s ∈ Σ and ti ∈ Tsi ,
comp(f(t1, . . . , tk)) = f ◦ 〈comp(t1), . . . , comp(tk)〉.

Definition 3.11 (substitution of sorts by terms) Let Σ = (S0, S, F,R) be a signature. A function sub : S →
TΣ extends to a function sub∗ : TS → TΣ as follows:

• For all s ∈ S, sub∗(s) = sub(s).

• For all {si}i∈I ⊆ TS , sub∗(
∏
i∈I si) =

∏
i∈I(sub

∗(si)) and sub∗(
∐
i∈I si) =

∐
i∈I(sub

∗(si)).

As terms represent functions, formulas represent relations:
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Definition 3.12 (formulas) Let Σ = (S0, S, F,R) be a signature and I, J be nonempty sets. The TS-sorted

set FormΣ of Σ-formulas is the least set of typed expressions ϕ generated by the following rules:

relations of Σ and truth values

r : s
r : s ∈ R

True :
∐
s∈S s False :

∐
s∈S s

Σ-atoms and -coatoms

t : s→ s′

r ◦ t : s

t : s′ → s

t ◦ r : s
r : s′ ∈ R, t ∈ TΣ \ {ids}

negation, conjunction and disjunction

ϕ : s

¬ϕ : s

ϕ : s, ψ : s

ϕ ∧ ψ : s

ϕ : s, ψ : s

ϕ ∨ ψ : s

quantification

ϕ :
∏
i∈I si

∀kϕ :
∏
i∈I si

ϕ :
∏
i∈I si

∃kϕ :
∏
i∈I si

k ∈ I

sub- and supertyping

ϕ : s1

ϕ× s2 : s1 × s2

ϕ : s1

ϕ+ s2 : s1 + s2

We sometimes omit ◦ and write r〈t1, . . . , tn〉 and [t1, . . . , tn]q instead of r ◦ 〈t1, . . . , tn〉 and [t1, . . . , tn] ◦ q,
respectively. If domr is a binary product, r〈t, u〉 may be written as t r u. Moreover, ϕ ⇒ ψ and ψ ⇐ ϕ stand

for ¬ϕ ∨ ψ and ϕ⇔ ψ stands for (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ).

Given a Σ-formula ϕ : s, domϕ =def s is called the domain of ϕ. ϕ is a ground formula if s = 1.

The component formulas ϕi of a conjunction ϕ = ϕ1 ∧ · · · ∧ ϕn or disjunction ψ = ϕ1 ∨ · · · ∨ ϕn are called

factors resp. summands of ϕ.

Given a Σ-atom p, p and ¬p are called a Σ-literals. If r is logical, then p is logical. A Σ-formula ≡ ◦〈t, u〉
is called a Σ-equation and usually written as t ≡ u. A Σ-formula all◦ t is called a Σ-membership and usually

written as all(t).

Given a Σ-atom p : s and a Σ-formula ϕ : s, p ⇐ ϕ and p ⇒ ϕ are called a Horn resp. co-Horn clause

over Σ.2 Given terms t : s and u : s, a Horn clause t ≡ u⇐ ϕ is also called a conditional equation.

A Σ-formula ϕ is normalized if ϕ consists of literals, quantifiers and conjunction or disjunction symbols.

Given a set R′ of relations, a normalized Σ-formula ϕ is R-positive if for all literals ¬r ◦ t of ϕ, r 6∈ R. A Horn

clause p⇐ ϕ and a co-Horn clause p⇒ ϕ is R-positive if ϕ is R-positive.

r ◦ t ⇐ ϕ or r ◦ t ⇒ ϕ is called a Horn resp. co-Horn clause for r and all sets of relations that include r.

Given a constructur f , f ◦ t ≡ u ⇐ ϕ is called a Horn clause for f and all sets of functions that include f .

Given a destructur f , t ◦ f ≡ u⇐ ϕ is called a Horn clause for f and all sets of functions that include f .

A Σ-formula ϕ is restricted if

• for all subformulas ∀kψ of ϕ, sk ∈ S0 or ¬allsk ◦ πk is a summand of ψ,

• for all subformulas ∃kψ of ϕ, sk ∈ S0 or allsk ◦ πk is a factor of ψ.

2Since ϕ is not confined to finite conjunctions of atoms, our notion of a Horn clause deviates from the classical one. It also
does not coincide with the notion of a hereditary Harrop formula [80]. Premises with universal quantifiers, which do not occur
in classical Horn clauses, are allowed both in Harrop formulas and in Horn clauses as defined here. But Harrop formulas impose
further restrictions on their premises.



3 Types, terms and formulas, and their interpretations 12

A Σ-formula ϕ is implicational if ϕ can be constructed by applying the above rules except for negation,

disjunction and existential quantification and by the following additional rule:

simple implication

ψ : s, ϕ : s

ψ ⇒ ϕ : s
ψ is a conjunction of universally quantified atoms

o

A Horn clause p⇐ Trues is identified with p. A co-Horn clause p⇒ Falses is identified with ¬p.

Definition 3.13 (term rewriting) Let Σ = (S0, S, F,R) be a signature and E be a set of Σ-equations. −→E
denotes the least binary relation on TΣ such that

• for all t ≡ u ∈ E, t −→E u,

• for all and v :
∏
i∈I si → s ∈ TΣ, k ∈ I and t, u : s′ → sk ∈ TΣ, t −→E u implies v �k t −→E v �k u.

• for all and t, u :
∏
i∈I si → s ∈ TΣ, k ∈ I and v : s′ → sk ∈ TΣ, t −→E u implies t�k v −→E u�k v.

• for all and v : s→
∐
i∈I si ∈ TΣ, k ∈ I and t, u : sk → s′ ∈ TΣ, t −→E u implies t�k v −→E u�k v.

• for all and t, u : s→
∐
i∈I si ∈ TΣ, k ∈ I and v : sk → s ∈ TΣ, t −→E u implies v �k t −→E v �k u.

∗−→E and
∗←→E denote the reflexive-transitive resp. equivalence closure of −→E . o

Definition 3.14 (signature morphism) Let Σ = (S0, S, F,R) and Σ′ = (S′0, S
′, F ′, R′) be signatures. A

signature morphism σ : Σ → Σ′ consists of a function from S to TS′ and S-sorted functions {σs : Fs →
TΣ,σ(s)}s∈S and {σs : Rs → FormΣ,σ(s)}s∈S . The domain of σ, dom(σ), is the set of symbols of Σ such that

σ(s) 6= s.

It is obvious how σ extends to a function from TS to TS′ and TS-sorted functions {σs : TΣ,s → TΣ,σ(s)}s∈TS
and {σs : FormΣ,s → FormΣ,σ(s)}s∈TS . Given a Σ-term or -formula t, σ(t) is also witten as t[σ(s)/s|s ∈ dom(σ)].

For all s ∈ S ∪ F , σ∗(s) =def σ(s) and for all r ∈ R, σ∗(r) =def

∨
i∈N σ

i(r). o

Definition 3.15 (formula-term composition) Let the assumptions of Def. 3.12 hold true. Formula-term

composition is a function � : FormΣ×TΣ → FormΣ that extends the composition of morphisms in TS (see Def.

3.10) inductively on the structure of Σ-formulas:

• For all t : s→ s′ ∈ TΣ \ {ids} and r : s′ ∈ R, r � t = r ◦ t.
• For all r : s′ ∈ R and t : s′ → s ∈ TΣ \ {ids}, t� r = t ◦ r.
• For all t : s→ s′, t′ : s′ → s′′ ∈ TΣ and ϕ : s′′ ∈ FormΣ, (ϕ ◦ t)� t′ = ϕ� (t� t′).
• For all ϕ : s ∈ FormΣ and t : s→ s′, t′ : s′ → s′′ ∈ TΣ, t′ � (t� ϕ) = (t′ � t)� ϕ.

• For all ϕ : s ∈ FormΣ and t : s′ → s ∈ TΣ, (¬ϕ)� t = ¬(ϕ� t).
• For all ϕ : s, ψ : s ∈ FormΣ and t : s′ → s ∈ TΣ,

(ϕ ∧ ψ)� t = (ϕ� t) ∧ (ψ � t) and (ϕ ∨ ψ)� t = (ϕ� t) ∨ (ψ � t).
• For all ϕ : s, ψ : s ∈ FormΣ and t : s→ s′ ∈ TΣ,

t� (ϕ ∧ ψ) = (t� ϕ) ∧ (t� ψ) and t� (ϕ ∨ ψ) = (t� ϕ) ∨ (t� ψ).

• For all t : s→ s′ ∈ TΣ, ϕ : s′ ∈ FormΣ and k ∈ I such that πk does not occur in t,

(∀kϕ)� t = ∀k(ϕ� t) and (∃kϕ)� t = ∃k(ϕ� t).
• For all ϕ : s ∈ FormΣ, t : s→ s′ ∈ TΣ and k ∈ I such that ιk does not occur in t,

t� ∀kϕ = ∀k(t� ϕ) and t� ∃kϕ = ∃k(t� ϕ).

• For all t : s1 → s ∈ TΣ, s2 ∈ TS and ϕ : s ∈ FormΣ, ϕ� t× s2 = (ϕ� t)× s2.

• For all t : s→ s1 ∈ TΣ, s2 ∈ TS and ϕ : s ∈ FormΣ, t+ s2 � ϕ = (t� ϕ) + s2.
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For all ϕ :
∏
i∈I si ∈ FormΣ, k ∈ I and t : s→ sk ∈ TΣ, ϕ�k t =def ϕ� 〈ti〉i∈I :

∏
i∈I s

′
i → s where

ti =

{
t� πi if i = k

πi otherwise
s′i =

{
s if i = k

si otherwise

For all ϕ :
∐
i∈I si ∈ FormΣ, k ∈ I and t : sk → s ∈ TΣ, t�k ϕ =def [ti]i∈I � ϕ :

∐
i∈I s

′
i where

ti =

{
ιi � t if i = k

ιi otherwise
s′i =

{
s if i = k

si otherwise

For all ϕ :
∏
i∈I si ∈ FormΣ, k ∈ I and t : s→ sk ∈ TΣ, ϕ�k t =def ϕ� (t�k ids).

For all ϕ :
∐
i∈I si ∈ FormΣ, k ∈ I and t : sk → s ∈ TΣ, t�k ϕ =def (t�k id)� ϕ. o

For all s ∈ S, let F be the set of usual first-order formulas over Σ. The function comp : T → TΣ given in

section 2 extends to a function comp : F → FormΣ that turns each first-order formula ϕ with free variables

x1 : s1, . . . , xn : sn into a Σ-formula comp(ϕ) : s1 × · · · × sn × 1:

• comp(True) = True and comp(False) = False.

• For all k > 0, 1 ≤ i ≤ k, relations r : s1 × · · · × sk ∈ Σ and ti ∈ Tsi ,
comp(r(t1, . . . , tk)) = r ◦ 〈comp(t1), . . . , comp(tk)〉.

• For all ϕ ∈ F , comp(¬ϕ) = ¬comp(ϕ).

• For all ϕ,ψ ∈ F , comp(ϕ ∧ ψ) = comp(ϕ) ∧ comp(ψ).

• For all ϕ ∈ F and 1 ≤ i ≤ n, comp(∀xiϕ) = ∀i comp(ϕ).

4 Semantics of specifications

Definition 4.1 (generator, observer, complete axiomatization) Let Σ = (S0, S, F,R) be a signature and S1 =

S \ S0. The S-sorted sets GenΣ of Σ-generators and ObsΣ of Σ-observers are defined as follows (see Def.

3.7):

• For all s ∈ S0, GenΣ,s = ObsΣ,s = {ids}.
• For all s ∈ S1, GenΣ,s consists of all Σ-terms t : dom→ s built up of S1-constructors and variables, i.e.,

Σ-projections occurring in leaves of the tree representation of t.

• For all s ∈ S1, ObsΣ,s consists of all Σ-terms t : s→ ran built up of S1-destructors and covariables, i.e.,

Σ-injections that occur only in leaves of the tree representation of t.

t ∈ GenΣ is a maximal generator if domt ∈ TS0
. t ∈ ObsΣ is a maximal observer if rant ∈ TS0

. MGenΣ

and MObsΣ denote the S-sorted sets of maximal Σ-generators and Σ-observers, respectively. o

Since generators do not involve sums [ti]i∈I of terms and observers do not involve products 〈ti〉i∈I of terms,

the domain of each subterm of a generator agrees with generator’s domain, while the range of each superterm of

an observer agrees with the observer’s range. Still, generators may involve sum types as observers may involve

product types. For instance, some proper (!) subtype of a constructor’s domains may be a sum, or some proper

subtype of a destructor’s range may be a product—and often has to be (see Example 15.2).

As products of terms are crucial for building up generators, so are sums of terms for building up observers.

In many previous papers on coalgebraic specification, sums do not play the prominent rôle they seem to have

here. The simple reason is that the sample signatures used in those papers lack destructors with sum ranges.

However, in practice, such destructors emerge as quickly as constructors with product domains do (see, e.g.,

Examples 14.2 and 15.2). Only Corina Ĉırstea [15] pays the special attention to sums of terms that they deserve.
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Her notion of a coterm almost agrees with our notion of an observer. As we compile variables of applicative

terms into projections, so, dually, Ĉırstea calls the injections at the leaves of observers covariables.

CoCASL [83] does not allow sums in the range of destructors. For instance, CoCASL would replace the

destructor ht : clist(s) → 1 + s × clist(s) of COLIST (see Example 15.2) by two partial (!) destructors

head : clist(s) → s and tail : clist(s) → clist(s) (see [83], Fig. 4). However, it is well-known that the

involvement of partial functions makes most algebraic and logic reasoning very complicated. Sum types are a

better choice: they cover partiality and stay within usual algebraic frameworks.

Since generators lack sums and observers lack products, these two kinds of terms admit a simple graphical

representation (see Figs. 1 and 2). Signatures all of whose functions involving non-primitive sorts are either

constructors or destructors admit initial resp. final models (see Section 5). They are called algebraic resp.

coalgebraic. The term “dialgebraic” is usually associated with functions that are neither constructors nor

destructors, i.e., both their domains and their ranges are complex types. They do not initial or final models

(see [99]) and thus cannot be treated inductively or coinductively. Besides this proof-theoretical drawback the

question is whether purely dialgebraic functions are needed in a framework for specifying data types. The

motivating example of [99] is hardly convincing: the function split that takes a list L of numbers and a number

n and returns the lists of elements of L that are smaller resp. greater than n framework is simply the product

〈f, g〉 of a function f that returns the smaller elements and a function g that returns the greater elements.

Dually, a function of type
∐
i∈I si → s is the sum of functions fi : si → s, i ∈ I. The third kind of purely

dialgebraic functions has types of the form
∏
i∈I si →

∐
i∈I s

′
i. To make them algebraic (or coalgebraic) one may

introduce a new sort s for
∐
i∈I si (or

∏
i∈I s

′
i) with the injections ιi, i ∈ I, as constructors or the projections

πi, i ∈ I, as destructors.

:

π1< >:

π2< :

π3

>

>< []

ι1 ι2

π2

π1

ht

ι1

ht

[

[

]

]

π2ι1

ht

[ ]

s x s x s

list(s)
1 + s

colist(s)

Figure 2. The LIST-generator : ◦〈π1, : ◦〈π2 : ◦〈π3, [] ◦ π4〉〉〉 : s× s× s× 1→ list(s)

that represents lists with exactly three elements (see Example 14.2)

and the COLIST-observer [ι1, [ι1, [ι1, ι2 ◦ π1] ◦ ht ◦ π2] ◦ ht ◦ π2] ◦ ht : clist(s)→ 1 + s

that, given a colist L, returns 1 if |L| < 3 and the third element of L otherwise (see Example 15.2).
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Proposition 4.2 Let Σ = (S0, S, F,R) be a signature, A be an S0-sorted set and B be an S-sorted set such

that As = Bs for all s ∈ S0.

• If for all s ∈ S,

sB =
∐

t:dom→s∈GenΣ

domA, (1)

then (1) holds true for all s ∈ TS as well.

• If for all s ∈ S,

sB =
∏

t:s→ran∈ObsΣ

ranA, (2)

then (2) holds true for all s ∈ TS as well.

Proof. Let {si | i ∈ I} ⊆ TS .

Suppose that (1) holds true for all s ∈ S. Then by induction on the structure of s =
∏
i∈I si,

sB =
∏
i∈I s

B
i =

∏
i∈I

∐
t:dom→si∈GenΣ

domA =
∐
{ti:domi→si∈GenΣ | i∈I}

∏
i∈I dom

A
i =∐∏

i∈I
ti:(

∏
i∈I

domi)→s∈GenΣ
(
∏
i∈I domi)

A =
∐
t:dom→s∈GenΣ

domA.

Moreover, by induction on the structure of s =
∐
i∈I si,

sB =
∐
i∈I s

B
i =

∐
i∈I

∐
t:dom→si∈GenΣ

domA =
∐
i∈I

∐
ιi◦t:dom→s∈GenΣ

domA =∐
{ιi◦t:dom→s∈GenΣ | i∈I} dom

A =
∐
t:dom→s∈GenΣ

domA.

Suppose that (2) holds true for all s ∈ S. Then by induction on the structure of s =
∏
i∈I si,

(sB =
∏
i∈I s

B
i =

∏
i∈I

∏
t:si→ran∈ObsΣ ran

A =
∏
i∈I

∏
t◦πi:s→ran∈ObsΣ ran

A =∏
{t◦πi:s→ran∈ObsΣ | i∈I} ran

A =
∏
t:s→ran∈ObsΣ ran

A.

Moreover, by induction on the structure of s =
∐
i∈I si,

sB =
∐
i∈I s

B
i =

∐
i∈I

∏
t:si→ran∈ObsΣ ran

A =
∏
{ti:si→rani∈ObsΣ | i∈I}

∐
i∈I ran

A
i =∏∐

i∈I
ti:s→

∐
i∈I

rani∈ObsΣ(
∐
i∈I rani)

A =
∏
t:s→ran∈ObsΣ ran

A. o

c

c9

c2 c4

c8c10

c3

<

<

>

>

d

d5

d2 d4

d8d7

d3 ]

[

[

]

>

[

c7<

d6 ]

Figure 3. Thick edges in the term resp. coterm of Fig. 1 denote possible flows of data when it is evaluated. In

a term, each function (= node label) collects its arguments from a product domain. In a coterm, each

function selects a summand of a sum range where it passes the resulting value to.

Definition 4.3 (interpretation of terms and formulas; models) Let Σ = (S0, S, F,R) be a signature and A

be a Σ-structure. The interpretation of a Σ-term t : s1 → s2 in A is a function tA : sA1 → sA2 whose definition

extends the interpretation of F in A inductively on the structure of Σ-terms (see Def. 3.7):

The interpretation of a Σ-formula ϕ : s in A is a subset of sA that is defined inductively on the structure of

Σ-formulas:
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• For all t : s→ s′ ∈ TΣ and r : s′ ∈ R, (r ◦ t)A = (tA)−1(rA).

• For all r : s ∈ R and t : s→ s′ ∈ TΣ, (t ◦ r)A = tA(rA).

• TrueA =
∐
s∈S s

A and FalseA = ∅.
• For all ϕ : s ∈ FormΣ, (¬ϕ)A = sA \ ϕA.

• For all ϕ : s, ψ : s ∈ FormΣ, (ϕ ∧ ψ)A = ϕA ∩ ψA and (ϕ ∨ ψ)A = ϕA ∪ ψA.

• For all ϕ : s ∈ FormΣ and k ∈ I, (∀kϕ)A =
⋂
{ϕA[b/k] | b ∈ sAk } and (∃kϕ)A =

⋃
{ϕA[b/k] | b ∈ sAk }.

• For all ϕ : s1 ∈ FormΣ and s2 ∈ TS , ϕ× sA2 = ϕA × sA2 and ϕ+ sA2 = ϕA.

a ∈ sA satisfies ϕ : s if a ∈ ϕA. A satisfies ϕ : s, written as A |= ϕ, if sA ⊆ ϕA.3 A satisfies a set F of

Σ-formula, written as A |= F , if for all ϕ ∈ F , A |= ϕ.

Let SP = (Σ, AX) be a specification. A is an SP -model if A satisfies AX. Mod(SP ) denotes the full

subcategory of Mod(Σ) whose objects are SP -models. ModEU (SP ) denotes the full subcategory of ModEU (Σ)

whose objects are SP -models.

Given S1 ⊆ S and an S1-sorted set A, Mod(SP,A) =def Mod(Σ, A) ∩Mod(SP ) and ModEU (SP,A) =def

Mod(Σ, A) ∩ModEU (SP ). o

Proposition 4.4 Let Σ = (S0, S, F,R) be a signature, sub : S → TΣ, A be a Σ-structure and h : A→ B be

an S-sorted function such that for all s ∈ S, hs = sub(s)A. Then for all dom ∈ TS, hdom = sub∗(dom). o

Definition 4.5 (reduct) Let Σ = (S0, S, F,R), Σ = (S′0, S
′, F ′, R′) be signatures and A be a Σ′-structure.

Given a signature morphism σ : Σ→ Σ′, the σ-reduct of A, A|σ, is the Σ-structure defined by (A|σ)s = Aσ(s)

for all s ∈ TS and fA|σ = σ(f)A for all F ∪R.

Given a Σ′-homomorphism h : A→ B, h|σ : A|σ → B|σ denotes the Σ′-homomorphism defined by h|σ(a) =

h(a) for all a ∈ A|σ.

If Σ ⊆ Σ′ and σ is the inclusion, then we write A|Σ instead of A|σ and call A|Σ the Σ-reduct of A. o

Proposition 4.6 Let Σ = (S, F,R) and Σ = (S′, F ′, R′) be signatures, A be a Σ-structure and B be a

Σ′-structure.

(1) For all Σ-terms or -coterms t : s→ s′, t′ : s′ → s′′, (t′ � t)A = (t′)A ◦ tA.

(2) For all signature morphisms σ : Σ→ Σ′ and Σ-terms t, tB|σ = σ(t)B.

(3) For all Σ-homomorphisms h : A→ B and Σ-terms t : s→ s′, hs ◦ tA = tB ◦ hs′ .
(4) For all Σ-homomorphisms h : A→ B, s ∈ S and t ∈MGenΣ,s, hs ◦ tA = tB.

(5) For all Σ-homomorphisms h : A→ B, s ∈ S and t ∈MObsΣ,s, t
B ◦ hs = tA. o

Proposition 4.6(1) tells us that each Σ-structure A provides a functor from the term category TΣ to SetS

3The inverse inclusion is always valid.
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(see section 2):

• s
A
- sA •

= s′

t

? A
- (s′)A

tA

?

=

•

t′ � t

- s′′

t′

? A
- (s′′)A

(t′)A

?
� •

(t′ � t)A

By Proposition 4.6(3), each Σ-term t : s→ s′ yields a natural transformation from the functor s to the

functor s′ (see section 2) in the case that these functors are restricted from SetS to the subcategory Mod(Σ)

of Σ-structure and -homomorphisms (see above):

As
tA - As′

=

Bs

hs

? tB - Bs′

hs′

?

Proposition 4.7 Let Σ = (S0, S, F,R) and Σ = (S′0, S
′, F ′, R′) be signatures, A be a Σ-structure and B be

a Σ′-structure.

(1) For all t : s→ s′ ∈ TΣ and ϕ : s′ ∈ FormΣ, (ϕ� t)A = (tA)−1(ϕA).

(2) For all ϕ : s ∈ FormΣ and t : s→ s′ ∈ TΣ, (t� ϕ)A = tA(ϕA).

(3) For all signature morphisms σ : Σ→ Σ′ and Σ-formulas ϕ, B|σ |= ϕ iff B |= σ(ϕ).

If for all s ∈ TS, σ(s) = s, then ϕB|σ = σ(ϕ)B.

(4) For all Σ-formulas ϕ : s and ψ : s, A |= (ϕ⇒ ψ) iff ϕA ⊆ ψA.

(5) Let A be a Σ-structure with equality. For all Σ-terms t, u : s→ s′,

(t ≡ u)A = {a ∈ sA | tA(a) = uA(a)}.

(6) For all ϕ :
∏
i∈I si ∈ FormΣ and k ∈ I,

(∀kϕ)A = {a ∈
∏
i∈I s

A
i | ∀ b ∈ sAk : a[b/k] ∈ ϕA},

(∃kϕ)A = {a ∈
∏
i∈I s

A
i | ∃ b ∈ sAk : a[b/k] ∈ ϕA}.

(7) Let A be a Σ-structure with equality. For all Σ-terms t : sx → sy and Σ-formulas ϕ : sy,

A |= ϕ� t iff A |= ∃y(ϕ× sx ∧ πy ≡ t� πx).

Proof. (1) to (6) are easy to show. The proof of (7) is also straightforward. We present it here in detail

for illustrating how logical equivalences known from applicative first-order logic carry over to our variable-free
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logic.

A |= ϕ� t ⇐⇒ (ϕ� t)A = sAx
(1)⇐⇒ (tA)−1(ϕA) = sAx

⇐⇒ {a ∈ sAx | tA(a) ∈ ϕA} = sAx ⇐⇒ {a ∈ sAx | ∃ b ∈ sAy : b ∈ ϕA ∧ b = tA(a)} = sAx

⇐⇒ {a ∈ sAx | ∃ b ∈ sAy : b ∈ ϕA ∧ πy(a, b) = tA(πx(a, b))} = sAx
(5)⇐⇒ {a ∈ sAx | ∃ b ∈ sAy : (a, b) ∈ sAx × ϕA ∧ (a, b) ∈ (πy ≡ t ◦ πx)A} = sAx

⇐⇒ {a ∈ sAx | ∃ b ∈ sAy : (a, b) ∈ ϕ× sAx ∧ (a, b) ∈ (πy ≡ t ◦ πx)A} = sAx

⇐⇒ {a ∈ sAx | ∃ b ∈ sAy : (a, b) ∈ (ϕ× sx ∧ πy ≡ t ◦ πx)A} = sAx

⇐⇒ {(a, c) ∈ sAx × sAy | ∃ b ∈ sAy : (a, b) ∈ (ϕ× sx ∧ πy ≡ t ◦ πx)A} = sAx × sAy
⇐⇒ {(a, c) ∈ sAx × sAy | ∃ b ∈ sAy : (a, c)[b/y] ∈ (ϕ× sx ∧ πy ≡ t ◦ πx)A} = sAx × sAy
(6)⇐⇒ (∃y(ϕ× sx ∧ πy ≡ t ◦ πx))A = sAx × sAy ⇐⇒ A |= ∃y(ϕ× sx ∧ πy ≡ t� πx). o

If t : s → s′ represents an “action” transforming “states” of type s to states of type s′, then Proposition

4.7(1) reflects the forward-reasoning semantics of nexttime modal-, temporal- or coalgebraic-logic operators

[47, 55, 60]: ϕ � t holds true in state st iff ϕ holds true in state t(st). Conversely, Proposition 4.7(2) reflects

the backward-reasoning of lasttime temporal-logic operators (see [55], section 4.3.1): t � ϕ holds true in state

t(st) iff ϕ holds true in state st.

Proposition 4.8 Let A and B be isomorphic Σ-structures and ϕ be a Σ-formula. A satisfies ϕ iff B satisfies

σ(ϕ). o

Proposition 4.9 Let σ : Σ→ Σ′ be a signature morphism, A be a Σ′-structure and ϕ be a Σ-formula. A|σ
satisfies ϕ iff A satisfies σ(ϕ). o

Definition 4.10 (special structures, kernel, image and product) Let Σ = (S0, S, F,R) be a signature. A is

a Σ-structure with equality if for all s ∈ S, ≡As = ∆A
s . A is a Σ-structure with universe if for all s ∈ S,

allAs = sA. Given a relation r : s ∈ R, a relation r : s ∈ R is called the A-complement of r if rA = sA \ rA.

The kernel of h, ker(h), is the S-sorted binary relation

{{(a, b) ∈ sA × sA | hs(a) = hs(b)} | s ∈ S}.

Let h : A→ B be an S-sorted function. The image of h, img(h) (or h(A)), is the S-sorted set {h(sA) | s ∈ S}.
Let h be Σ-homomorphic. Then img(h) can be extended to a Σ-structure:

• for all s ∈ S, simg(h) = h(sA) =def {b ∈ B | ∃ a ∈ sA : h(a) = b)},
• for all f : s→ s′ ∈ F and b ∈ simg(h), f img(h)(b) = fB(b),

• for all r ∈ R, rimg(h) = h(rA).

Let Σ be algebraic and A,B be Σ-structures. The following interpretation of Σ extends A × B to a Σ-

structure:

• for all s ∈ S, sA×B = sA × sB ,

• for all f : s→ s′ ∈ F , a ∈ sA and b ∈ sB , fA×B(〈a, b〉) = 〈fA(a), fA(b)〉,
• for all r : s ∈ R, rA×B = {〈a, b〉 | a ∈ rA, b ∈ rB}. o

Definition 21.7 (free and cofree structures) Let Σ = (S0, S, F,R) be a signature, A be an S0-sorted set and

S1 = S \ S0.

Suppose that for all f : s → s′ ∈ F , s, s′ ∈ TS0 or s′ ∈ S1. The free Σ-structure over A, Free(Σ, A), is

the Σ-structure B with equality and universe that is defined as follows:

• for all s ∈ S0, sB = sA,
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• for all s ∈ S1, sB =
∐
t:dom→s∈MGenΣ

domA,

• for all f ∈ F and a ∈ domB
f ,

fB(a) =


(b, f ◦ t) if domf ∈ S and a = (b, t),

((bi)i∈I , f ◦
∏
i∈I ti) if domf =

∏
i∈I si and a = (bi, ti)i∈I ,

(b, f ◦ ιi ◦ t) if domf =
∐
i∈I si and a = ((b, t), i).

Suppose that for all f : s→ s′ ∈ F , s, s′ ∈ TS0
or s ∈ S1. The set BehΣ,A of Σ-behaviours is the greatest

S-sorted subset4 of all a ∈
∏
t:s→ran∈MObsΣ

ranA such that

(1) for all s ∈ S0, BehΣ,A
s = sA,

(2) for all f : s→
∐
i∈I si ∈ F there is ia,f ∈ I such that for all T =

∐
i∈I ti ∈

∐
i∈IMObsΣ,si , aT◦f ∈ ranAia,f ,

(3) for all f : s→ s′ ∈ F , (at)t∈MObsΣ,s′ ∈ Beh
Σ,A
s′ implies (at◦f )t∈MObsΣ,s′ ∈ Beh

Σ,A
s .

The cofree Σ-structure over A, Cofree(Σ, A), is the Σ-structure B with equality and universe that is defined

as follows:

• for all s ∈ S, sB = BehΣ,A
s ,

• for all f ∈ F and a ∈ domB
f ,

fB(a) =


(at◦f )t:ranf→s∈MObsΣ if ranf ∈ S,
((ati◦πi◦f )ti∈MObsΣ,si

)i∈I if ranf =
∏
i∈I si,

((aT◦f )T∈
∐

i∈I
MObsΣ,si

, ia,f ) if ranf =
∐
i∈I si.

5

o

Hence, roughly said, the free Σ-structure is a sum over the set of maximal Σ-generators, while the cofree

Σ-structure is a product over the set of maximal Σ-observers.

By Proposition 4.2, for all types s over S, Free(Σ, A)s =
∐
t:dom→s∈MGenΣ

domA and Cofree(Σ, A)s ⊆∏
t:s→ran∈MObs(Σ′,S) ran

A. This is needed for the implicit assumption about the structure of the domain of

fFree(Σ,A) and the range of fCofree(Σ,A).
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Figure 6.1. Two elements of a free structure (left) and a cofree structure (right), respectively.

At the first sight, one might define sB for s ∈ S1 as the entire product P that represents, for each s-object

a, the set of all possible tuples of observations of a. However, a closer look at such a tuple reveals that some of

4The existence of this subset follows from Theorem 8.3(1).
5ia,f refers to (2).
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its components depend on each other whenever their indices (generators), say t and t′, have a common prefix

into a coproduct, say u : dom →
∐
i∈I si. Then t and t′ also map to coproducts, say rant =

∐
i∈I rani and

rant′
∐
i∈I ran

′
i. Since t and t′ observe the same object a, the resulting observations belong to two summands

of rant resp. ran′t with the same index, which is determined by the branch that—intuitively speaking—a takes

when passing u. The actual definition of sB selects exactly those tuples from P that take into account this

dependency between observers into coproducts. If F does not include destructors into coproducts, sB coincides

with the entire product.

Given a sets S of sorts and an S-sorted set A, an S-sorted relation ∼⊆ A2 and an S-sorted set B ⊆ A extend

to TS-sorted sets as follows: Let {si}i∈I ⊆ TS .

• For all a, b ∈
∏
i∈I s

A
i , a ∼∏

i∈I
si
b ⇐⇒def ∀ i ∈ I : ai ∼si bi.

• For all i ∈ I, a ∈ sAi and b ∈ Asj , (a, i) ∼∐
i∈I

si
(b, j) ⇐⇒def i = j ∧ a ∼si b.

• For all a ∈
∏
i∈I s

A
i , a ∈ (

∏
i∈I si)

B ⇐⇒def ∀ i ∈ I : ai ∈ sBi .

• For all i ∈ I, a ∈ sAi , (a, i) ∈ (
∐
i∈I si)

B ⇐⇒def a ∈ sBi .

Extending ∼ and B to products or sums is called relation resp. predicate lifting (see [55], §3.1 resp. 4.1). If

liftings are regarded as mere extensions, the usual difference between a congruence and a bisimulation becomes

obsolete. The former stands for compatibility with constructors, the latter for compatibility with destructors

(see [55], Def. 3.1.2). Hence we subsume bisimulations under congruences. In contrast to binary ones, a notional

difference between the two kinds of compatibility has never been made in the case of unary relations: both are

called invariants (see [55], Def. 4.2.1).

Definition 4.12 (congruences and invariants) Let Σ = (S0, S, F,R) be a signature, F1 ⊆ F and A be an

S-sorted set.

An S-sorted binary relation on A is a family ∼= {∼s⊆ sA × sA | s ∈ S} of binary relations. ∼ is

F1-compatible if for all f : s→ s′ ∈ F1 and a, b ∈ sA, a ∼s b implies fA(a) ∼s′ fA(b). ∼ is Σ-congruent or

a Σ-congruence if ∼ is F -compatible and for all s ∈ S0, ∼s= ∆A
s . ∼ is R-compatible if for all r : s ∈ R and

a, b ∈ sA, a ∈ rA and a ∼ b imply b ∈ rA.

Given an S-sorted binary relation∼ on A, the least equivalence relation including∼ is called the equivalence

closure of ∼ and denoted by ∼eq. If ∼ is Σ-congruent, then the ∼-quotient of A, A/∼, is the Σ-structure

that is defined as follows: For all a ∈ A, [a] =def {b ∈ A | a ∼eq b} is the equivalence class of a.

• For all s ∈ S, (A/∼)s = {[a] | a ∈ sA},
• for all f : s→ s′ ∈ F and a ∈ sA, fA/∼([a]) = [fA(a)],

• for all r : s ∈ R, rA/∼ = {c ∈ (A/∼)s | c ∩ rA 6= ∅}.

The function nat : A→ A/∼ that maps a ∈ A to its equivalence class [a] w.r.t. ∼ is called a natural mapping.

An S-sorted subset inv of A is F1-compatible if for all f : s → s′ ∈ F and a ∈ invs, fA(a) ∈ invs′ . inv
is a Σ-invariant (on A) if inv is F -compatible and for all s ∈ S0, invs = sA. If inv is Σ-invariant, then the

inv-substructure of A, A|inv, is the Σ-structure that is defined as follows:

• For all s ∈ S, (A|inv)s = invs,

• for all f : s→ s′ ∈ F and a ∈ (A|inv)s, f
A|inv(a) = fA(a),

• for all r : s ∈ R, rA|inv = rA ∩ invs.

The function inc : A|inv → A that maps a ∈ inv to itself is called an inclusion mapping.

A quotient resp. substructure B of A is a proper quotient resp. proper substructure of A if A and B
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are not isomorphic. o

Proposition 4.13 Given a Σ-homomorphism h : A→ B, the image of h is a Σ-invariant and the kernel of h

is a Σ-congruence. If Σ is algebraic, then a Σ-congruence on A is a Σ-invariant on A×A and thus extends to a

Σ-structure. The equivalence closure of a Σ-congruence is Σ-congruent. Natural mappings, inclusion mappings

and the projections on the components of a product are Σ-homomorphic. o

Proposition 4.14 Let Σ be a signature, A,B be Σ-structures, ∼ be a Σ-congruence on A and inv be a

Σ-invariant on A.

• For all t : s→ s′ ∈ TΣ and a ∈ sA, tA/∼([a]) = [tA(a)].

• For all t : s→ s′ ∈ TΣ and a ∈ invs, tA|inv(a) = tA(a).

• If Σ is algebraic, then for all products s, s′ of sorts, t : s→ s′ ∈ TΣ, a ∈ sA and b ∈ sB,

sA×B = {〈a, b〉 | a ∈ sA, b ∈ sB} and tA×B(〈a, b〉) = 〈tA(a), tA(b)〉. o

Proposition 4.15 Let A be an SP -model that interprets ≡ as a Σ-congruence. Then for all Horn or co-Horn

clauses ϕ there is a normalized Horn resp. co-Horn clause ψ such that A satisfies ϕ iff A satisfies ψ.

Proof. Let ϕ = (r ◦ t ⇐ θ),
∏
i∈I si be the type of r and

∏
i∈J s

′
i be the type of ϕ. W.l.o.g. I and J are

disjoint. The conjecture holds true for ψ = (r ⇐ ∃J : 〈π〉i∈J ≡ t∧θ′)) where θ′ is constructed from θ by driving

all negation symbols innermost until they directly precede atomic formulas. If ϕ = (r ⇒ θ), then the conjecture

holds true for ψ = (r ◦ t⇒ ∀I : (¬(πs ≡ t) ∨ θ′)). o

The congruence property of ≡ is essential for the validity of Proposition 4.15.

Lemma 4.16 (homomorphism criteria) Let h : A→ C be a Σ-homomorphism.

(1) Let g : A → B be a Σ-epimorphism and h′ : B → C be a function such that h = h′ ◦ g. Then h′ is a

Σ-homomorphism and the only one satisfying h = h′ ◦ g.

(2) Let g : B → C be a Σ-monomorphism and h′ : A → B be a function such that h = g ◦ h′. Then h′ is a

Σ-homomorphism and the only one satisfying h = g ◦ h′.

Proof. (1) h′ is homomorphic: Let f : s→ s′ ∈ F . Then

fC ◦ h′ ◦ g = fC ◦ h = h ◦ fA = h′ ◦ g ◦ fA = h′ ◦ fB ◦ g

and thus fC ◦ h′ = h′ ◦ fB because g is surjective. Suppose that h′′ ◦ g = h for some Σ-homomorphism

h′′ : B → C. Then h′′ ◦ g = h = h′ ◦ g and thus h′′ = h′ because g is surjective.

(2) h′ is homomorphic: Let f : s→ s′ ∈ F . Then

g ◦ h′ ◦ fA = h ◦ fA = fC ◦ h = fC ◦ g ◦ h′ = g ◦ fB ◦ h′

and thus h′◦fA = fB ◦h′ because g is injective. Suppose that g◦h′′ = h for some Σ-homomorphism h′′ : A→ B.

Then g ◦ h′′ = h = g ◦ h′ and thus h′′ = h′ because g is injective. o

Theorem 4.17 (homomorphism theorems) Let h : A→ C be a Σ-homomorphism.

(1) Let nat : A→ A/ker(h) be the corresponding natural mapping. Then there is a unique Σ-homomorphism

h′ : A/ker(h) → C such that h′ ◦ nat = h. Moreover, C is (isomorphic to) a quotient of A iff there is a

Σ-epimorphism from A to C.

(2) Let inc : img(h)→ C be the corresponding inclusion mapping. Then there is a unique Σ-homomorphism

h′ : A→ img(h) such that h = inc ◦ h′. Moreover, A is (isomorphic to) a substructure of C iff there is a

Σ-monomorphism from A to C.
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Proof.

A
h - C

=

A/ker(h)

h′

-

nat --

(1) nat is a Σ-epimorphism. By the definition of ker(h), the function h′ : A/ker(h) → C sending [a] ∈
A/ker(h) to h(a) is well-defined and injective. Hence h = h′ ◦ nat and thus by Lemma 4.16(1), h′ is a Σ-

homomorphism and the only one with h = h′ ◦ nat.

If h is surjective, then h′ is also surjective and thus bijective, i.e., A/ker(h) and C are isomorphic. Conversely,

let ∼ be a Σ-congruence on A and h′ : A/ker(h)→ C be a Σ-isomorphism. Define h : A→ C by h = h′ ◦ nat.
Since nat and h′ are Σ-epimorphisms, h is a Σ-epimorphism, too.

A
h - C

=

img(h)

inc

-

-

h′
-

(2) inc is a Σ-monomorphism. By the definition of img(h), the function h′ : A→ img(h) sending a ∈ A to

h(a) is well-defined and surjective. Hence h = inc ◦ h′ and thus by Lemma 4.16(2), h′ is a Σ-homomorphism

and the only one with h = inc ◦ h′.

If h is injective, then h′ is also injective and thus bijective, i.e., A and img(h) are isomorphic. Conversely,

let C ′ be a Σ-substructure of C and h′ : A→ A′ be a Σ-isomorphism. Define h : A→ C by h = inc ◦ h′. Since

inc and h′ are Σ-monomorphisms, h is a Σ-monomorphism, too. o

5 Swinging types

Definition 5.1 (specification, swinging type) Given a signature Σ and a set AX of Horn or co-Horn clauses

over Σ, called axioms, the pair SP = (Σ, AX) is a specification if each relation r ∈ Σ is a predicate or a

copredicate, i.e., occurs only in the heads of Horn clauses or only in the heads of co-Horn clauses.

Given signatures Σ = (S0, S, F,R) and Σ′ = (S′0, S
′, F ′, R′), a specification SP ′ = (Σ′, AX ′) is a swinging

type (ST) with base type SP = (Σ, AX) and primitive sort set S′0 if SP is a swinging type and either

SP ′ = SP = (∅, ∅) or one of the following conditions (1) to (8) holds true.

Let S1 = S′ \ S, equals = {≡s | s ∈ S1} and univs = {alls | s ∈ S1}.

(1) Data model. S′0 = TS , R′ = R and AX ′ = AX. F ′ \F is a set of S1-constructors (see Def. 3.6). The sorts

of S1 are called visible sorts of SP ′.

(2) State model. S′0 = TS , R′ = R and AX ′ = AX. F ′ \ F is a set of S1-destructors (see Def. 3.6). The sorts

of S1 are called hidden sorts of SP ′.

(3) Recursive functions. SP satisfies (1). Σ′ \ Σ is a set of S1-destructors, called recursive functions.

Define the S′-sorted set rec and the substitutions sub1 : S′ → TS′ and sub2 : S′ → TΣ′ as follows: For all

s ∈ S, rec(s) = {ids}, for all s ∈ S1, rec(s) = {f ∈ F ′ \ F | domf = s}, and for all s ∈ S′, sub1(s) =∏
f∈rec(s) ranf and sub2(s) = 〈rec(s)〉. For all f ∈ Σ′ \ Σ and all S1-constructors c : dom → domf there
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is a Σ-term

tf,c : sub∗1(dom)→ ranf

such that AX ′ \AX contains the equation

f ◦ c ≡ tf,c � sub∗2(dom).

These are the only axioms of AX ′ \AX.6

(4) Corecursive functions. SP satisfies (2). Σ′ \Σ is a set of S1-constructors, called corecursive functions.

Define the S′-sorted set cor and the substitutions sub1 : S′ → TS′ and sub2 : S′ → TΣ′ as follows:

For all s ∈ S, cor(s) = {ids}, for all s ∈ S1, cor(s) = {f ∈ F ′ \ F | ranf = s}, and for all s ∈ S′,

sub1(s) =
∐
f∈cor(s) domf and sub2(s) = [cor(s)]. For all f ∈ Σ′ \Σ and all Σ-destructors d : ranf → ran

there is a Σ-term

tf,d : domf → sub∗1(ran)

such that AX ′ \AX contains the equation

d ◦ f ≡ sub∗2(ran)� tf,d.

These are the only axioms of AX ′ \AX.7

(5) Visible abstraction. SP is visible. Σ′ \ Σ is a set of S1-constructors and logical relations. AX ′ \ AX
consists of (R1 ∪ equals)-positive Horn clauses for R′ \R ∪ equals and includes CONH (see Def. 10.1).

(6) Hidden abstraction. Σ′ \Σ is a set of logical relations. AX ′ \AX consists of (R1∪equals)-positive co-Horn

clauses for R′ \R ∪ equals and includes CONC (see Def. 10.1).

(7) Visible restriction. Σ′ \ Σ is a set of logical relations. AX ′ \ AX consists of (R1 ∪ univs)-positive and

restricted Horn clauses for R′ \R ∪ univs and includes INVH (see Def. 10.1).

(8) Hidden restriction. SP is hidden. Σ′ \Σ is a set of S1-destructors and logical relations. AX ′ \AX consists

of (R1 ∪ univs)-positive and restricted co-Horn clauses for R′ \ R ∪ univs and includes INVC (see Def.

10.1).

In cases (5) and (6), SP ′ is an abstraction. In cases (7) and (8), SP ′ is a restriction. In cases (1), (3),

(5) and (7), SP ′ is visible. In cases (2), (4), (6) and (8), SP ′ is hidden.

A predecessor of SP ′ is a swinging type SP0 such that there are swinging types SP1, . . . , SPn = SP ′

and for all 1 ≤ i ≤ n, SPi−1 is the base type of SPi. The sort-building predecessor of SP ′ is the least8

predecessor SP of SP ′ such that both specifications have the same set of sorts. o

The sort-building predecessor of SP ′ always satisfies 5.1(1) or (2).

Example 5.2 A visible type of Boolean arithmetic reads as follows.

BOOL

vissorts bool

constructs true, false : 1→ bool

defuncts not : bool→ bool

and, or, eq : bool × bool→ bool

preds 6≡ : bool × bool
vars b, c : bool

axioms not ◦ true ≡ false true and b ≡ b
6For the category-theoretic presentation of recursion, see, e.g., [65], Section 5.
7For the category-theoretic presentation of corecursion, see, e.g., [2], §§5.11-5.14.
8with respect to set inclusion
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not ◦ false ≡ true false and b ≡ false
or ◦ 〈true, id〉 ≡ true eq(true, b) ≡ b
false or b ≡ b eq(false, b) ≡ not(b)
true 6≡ false false 6≡ true

Several swinging types given later have BOOL as a visible subtype. o

Definition 5.3 (model-based specification, parameterized type) Let SP = (Σ, AX) be a specification, Σ =

(S0, S, F,R), Σ1 ⊆ Σ and A be a Σ1-structure. The pair SP (A) = (Σ(A), AX(A)) with

Σ(A) = Σ ∪ {a : 1→ s | a ∈ sA},
AX(A) = AX ∪ {f ◦ a ≡ fA(a) | f : s→ s′ ∈ F, a ∈ sA} ∪ {r ◦ a | r ∈ R, a ∈ rA}

is the specification based on (SP,A).

A parameter type PAR = (PΣ,PAX )[SP1, . . . , SPk] consists of a set PΣ of signature elements, a set PAX

of formulas and k ≥ 0 swinging types SPi = (Σi, AXi), 1 ≤ i ≤ k, called constant subtypes of PAR, such

that

Σ(PAR) =def PΣ ∪
k⋃
i=1

Σi

is a signature and

AX(PAR) =def PAX ∪
k⋃
i=1

AXi

is a set of Σ(PAR)-formulas. A parameterized (swinging) type PSP = (Σ, AX)[PAR1, . . . ,PARn] consists of

a set Σ of signature elements, a set AX of Horn or co-Horn clauses and n ≥ 0 parameter types PAR1, . . . ,PARn

such that

Σ(PSP) =def Σ ∪
n⋃
i=1

Σ(PARi)

is the signature and AX is the set of axioms of a swinging type.

Given a parameter type PAR = (PΣ,PAX )[SP1, . . . , SPk], a Σ(PAR)-structure A with equality is a pa-

rameter model of PAR if A satisfies AX(PAR) and for all 1 ≤ i ≤ k, A|Σ(SPi)
∼= Ini(SPi).

Given a parameterized type PSP = (Σ, AX)[PAR1, . . . ,PARn] and parameter modelsA1, . . . , An of PAR1, . . . ,PARn,

respectively, the actualization of PSP by (A1, . . . , An) is the swinging type

(Σ, AX)[A1, . . . , An] =def (Σ(A1) ∪ · · · ∪ Σ(An), AX(A1) ∪ · · · ∪AX(An)). o

Example 5.4 The simplest parameter type consists of a single sort with equality and inequality:

NEQ(s)

sorts s

preds 6≡ : s× s
axioms x 6≡ y ⇔ ¬(x ≡ y)

Since s is a type variable, s may be instantiated by any other type. For example, NEQ(bool) is the parameter

type that agrees with NEQ(s) except for the replacement of all occurrences of s in NEQ(s) by bool. Here is a

parameterized type using NEQ(s) as parameter:

STACK[NEQ(s)] where STACK =

primsorts s
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vissorts stack(s)

constructs empty : 1→ stack(s)

push : s× stack → stack(s)

defuncts pop : stack(s)→ stack(s)

top : stack(s)→ 1 + s

preds 6≡ : stack(s)× stack(s)

vars x, y : s L,L′ : stack(s)

axioms top ◦ empty ≡ ι1
top ◦ push ≡ ι2 ◦ π1

pop ◦ empty ≡ empty
pop ◦ push ≡ π2

empty 6≡ push(x, L)

push(x, L) 6≡ empty
push(x, L) 6≡ push(x, L′) ⇐ L 6≡ L′

Finally, we extend NEQ(s) to a parameter type with a constant subtype:9

TRIV(s)[BOOL] where TRIV(s) = NEQ(s) and

functs eq, neq : s× s→ bool

axioms eq(x, y) ≡ true ⇐ x ≡ y
eq(x, y) ≡ false ⇐ x 6≡ y
neq(x, y) ≡ true ⇐ x 6≡ y
neq(x, y) ≡ false ⇐ x ≡ y o

hidden abstraction ***** final algebra semantics [109, 57, 78]

Labelled transition systems may be integrated into swinging types by declaring them as ternary relations.

Although Def. 5.1 excludes the specification of alternating fixpoints [84], it is sufficient for axiomatizing all

common modal- or temporal-logic operators in terms of swinging types (see also [89], Example 2.7). General

results that have been drawn from the incorporation of modal into many-sorted logic and that may be fruitful

for modal logic itself deal with bisimulation invariant formulas and their syntactic characterization (see [89],

Theorems 3.8 and 7.9).

6 Data and states

Definition 6.1 (initial, final) Let Σ be a signature and C be a class of Σ-structures.

Ini ∈ Mod(Σ) is initial in C or the initial object of C if Ini ∈ C and for all B ∈ C there is a unique

Σ′-homomorphism from Ini to B.

Fin ∈ Mod(Σ) is final in C or the final object of C if Fin ∈ C and for all B ∈ C there is a unique

Σ′-homomorphism from B to Fin. o

Lemma 6.2 Let Σ be a signature and C be a class of Σ-structures.

(1) All initial objects of C are Σ-isomorphic.

(2) All final objects of C are Σ-isomorphic.

(3) Initial objects of C do not have proper substructures in C.

Consequently, for all initial objects A ∈ C and Σ-invariants inv on A, invA = A.

9The operator and denotes the componentwise union of its arguments. It is adopted from the algebraic specification language
CASL [12].
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(4) Final objects of C do not have proper quotients in C.

Consequently, for all final objects A ∈ C and Σ-congruences ∼ on A, ∼A= ∆A.

(5) Let Ini be initial in C. Then for all A ∈ C, the image of the unique Σ-homomorphism h : Ini→ A is the

least Σ-invariant of A that belongs to C.

(6) Let Fin be final in C. Then for all A ∈ C, the kernel of the unique Σ-homomorphism h : A→ Fin is the

greatest Σ-congruence ∼ on A such that A/∼∈ C.

Proof. (1) Let A,B be initial in C. Then there are Σ-homomorphisms g : A → B and h : B → A. Hence

h ◦ g and idA are Σ-homomorphisms from A to A, and g ◦ h and idB are Σ-homomorphisms from B to B. By

uniqueness, h ◦ g = idA and g ◦ h = idB .

(2) Analogously.

(3) Let Ini be initial in C, A be a substructure of Ini, h be the unique Σ-homomorphism from Ini to A and

inc be the Σ-homomorphic inclusion mapping from A to Ini. By (1), inc ◦ h = idIni. Hence inc is surjective

and thus bijective, i.e., A and Ini are Σ-isomorphic.

(4) Let Fin be final in C, A be a quotient of Fin, h be the unique Σ-homomorphism from A to Fin and nat

be the Σ-homomorphic natural mapping from Fin to A. By (2), h ◦ nat = idFin. Hence nat is injective and

thus bijective, i.e., A and Fin are Σ-isomorphic.

(5) Of course, h(Ini) is a Σ-invariant of A. Let inv be a Σ-invariant of A such that inv ∈ C. Then there is

a Σ-homomorphism g : Ini → inv. Moreover, the inclusion mapping inc : inv → A is Σ-homomorphic. Hence

by uniqueness, h = inc ◦ g and thus for all b ∈ Ini, h(b) = inc(g(b)) = g(b) ∈ inv, i.e., h(Ini) ⊆ inv.

(6) Of course, ker(h) is a Σ-congruence on A. Let ∼ be a Σ-congruence on A such that A/∼∈ C. Then

there is a Σ-homomorphism g : A/∼→ Fin. Moreover, the natural mapping nat : A→ A/∼ is Σ-homomorphic.

Hence by uniqueness, h = g◦nat and thus for all (a, b) ∈ A2, a ∼ b implies h(a) = g(nat(a)) = g(nat(b)) = h(b),

i.e., ∼⊆ ker(h). o

Theorem 6.3 Let Σ = (S0, S, F,R) be a signature, A be an S0-sorted set and S1 = S \ S0. Suppose that

for all f : s → s′ ∈ F , s, s′ ∈ TS0
or s′ ∈ S1. The free Σ-structure Ini over A is initial in ModEU (Σ, A).

Moreover, for all t ∈MGenΣ, tFree(Σ,A) = ιt.

Proof. Let C ∈ ModEU (Σ, A) and h : Ini → C be the S-sorted function defined by hs = ids for all s ∈ S0

and

hs ◦ ιt = tC (1)

for all s ∈ S1 and t : dom → s ∈ MGenΣ. First we show by induction on the structure of s that (1) holds

true for all s ∈ TS . Let t : dom → s ∈ MGenΣ. If s is a product, say s =
∏
i∈I si, then for all i ∈ I there is

ti : domi → si ∈MGenΣ such that t =
∏
i∈I ti. Hence for all a ∈ domA and i ∈ I,

πi(hs(ιt(a))) = πi(h∏
i∈I

si
(ιt(a))) = hsi(πi(ιt(a))) = hsi(πi(ι

∏
i∈I

ti
(a))) = hsi(ιti(πi(a)))

i.h.
= tCi (πi(a)) =

πi((t
C
i (πi(a)))i∈I) = πi((

∏
i∈I t

C
i )(a)) = πi(t

C(a)).

If s is a sum, say s =
∐
i∈I si, then there are i ∈ I and u : dom → si ∈ MGenΣ such that t = ιi ◦ u and thus,

by the isomorphism in the proof of Proposition 4.2(1), ιt = ιi ◦ ιu. Hence for all a ∈ domA,

hs(ιt(a)) = h∐
i∈I

si
(ιi(ιu(a))) = ιi(hsi(ιu(a))

i.h.
= ιi(u

C(a)) = (ιi ◦ u)C(a) = tC(a).

Next we show that h is Σ-homomorphic, i.e., for all f : s→ ran ∈ F ′, hran ◦ f Ini = fC ◦ hs. Let s ∈ S′ and

a ∈ sIni. If ran ∈ TS , then f ∈ F and thus by Proposition 4.6(4),

hran(f Ini(a)) = hran(fA(a)) = fA(a) = fA(hs(a)) = fC(hs(a)).
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Otherwise f ∈ F ′ \ F and ran ∈ S′ \ S. If s ∈ S′, then for all a = (b, t) ∈ sIni,

hran(f Ini(a)) = hran(b, f◦t) = hran(ιf◦t(b))
(1)
= (f◦t)C(b) = fC(tC(b))

(1)
= fC(hs(ιt(b))) = fC(hs(b, t)) = fC(hs(a)).

If s =
∏
i∈I si, then for all a = (bi, ti)i∈I ∈

∏
i∈I s

Ini
i ,

hran(f Ini(a)) = hran((bi)i∈I , f ◦
∏
i∈I ti) = hran(ιf◦

∏
i∈I

ti
((bi)i∈I)

(1)
= (f ◦

∏
i∈I ti)

C((bi)i∈I) =

fC((
∏
i∈I ti)

C((bi)i∈I)) = fC((tCi (bi))i∈I)
(1)
= fC((hs(ιti(bi)))i∈I) = fC((hs(bi, ti))i∈I) = fC(hs(a)).

If s =
∐
i∈I si, then for all a = ((b, t), i) ∈

∐
i∈I s

Ini
i ,

hran(f Ini(a)) = hran(b, f ◦ ιi ◦ t) = hran(ιf◦ιi◦t(b))
(1)
= (f ◦ ιi ◦ t)C(b) = fC(ιi(t

C(b)))
(1)
=

fC(ιi(hs(ιt(b)))) = fC(ιi(hs(b, t))) = fC(h(ιi(b, t))) = fC(hs((b, t), i)) = fC(hs(a)).

A suitable re-arrangement of the equations in this proof leads to a proof that h is the only Σ-homomorphism

from Ini to C. In particular, if C = Ini, then h = idIni and thus (1) implies tFree(Σ,A) = ιt for all t ∈MGenΣ.

o

Theorem 6.4 Let Σ = (S0, S, F,R) be a signature, A be an S0-sorted set and S1 = S \S0. Suppose that for

all f : s→ s′ ∈ F , s, s′ ∈ TS0 or s ∈ S1. The cofree Σ-structure Ini over A is final in ModEU (Σ, A). Moreover,

for all t ∈MObsΣ, tCofree(Σ,A) = πt.

Proof. Let C ∈ ModEU (Σ, A) and h : C → Fin be the S-sorted function defined by hs = ids for all s ∈ S0

and

πt ◦ hs = tC (2)

for all s ∈ S1 and t : s → ran ∈ MObsΣ. First we show by induction on the structure of s that (2) holds

true for all s ∈ TS . Let t : s → ran ∈ MObsΣ. If s is a product, say s =
∏
i∈I si, then there are i ∈ I and

u : si → ran ∈ MObsΣ such that t = u ◦ πi and thus, by the isomorphism in the proof of Proposition 4.2(2),

πt = πu ◦ πi. Hence for all a ∈ sFin,

πt(hs(a)) = πu(πi(hs(a))) = πu(πi(h∏
i∈I

si
(a))) = πu(hsi(πi(a)))

i.h.
= uC(πi(a)) = (u ◦ πi)C(a) = tC(a).

If s is a sum, say s =
∐
i∈I si, then for all i ∈ I there is ti : si → rani ∈ MObsΣ such that t =

∐
i∈I ti. Hence

for all i ∈ I and a ∈ sFini ,

πt(hs(ιi(a))) = πt(h∐
i∈I

si
(ιi(a))) = πt(ιi(hsi(a))) = π∐

i∈I
ti

(ιi(hsi(a))) = πti(hsi(a))
i.h.
= tCi (a) =

(
∐
i∈I t

C
i )(ιi(a)) = tC(ιi(a)).

Next we show that h is Σ-homomorphic, i.e., for all f : dom → s ∈ F ′, hs ◦ fC = fFin ◦ hdom. Let s ∈ S′

and a ∈ sC . If dom ∈ TS , then f ∈ F and thus by Proposition 4.6(5),

hs(f
C(a)) = hs(f

A(a)) = fA(a) = fA(hdom(a)) = fFin(hdom(a)).

Otherwise f ∈ F ′ \ F and dom ∈ S′ \ S. If s ∈ S′, then for all a ∈ domC and t : s→ ran ∈MObsΣ,

πt(hs(f
C(a)))

(2)
= tC(fC(a)) = (t ◦ f)C(a)

(2)
= πt◦f (hdom(a)) = hdom(a)t◦f = πt(f

Fin(hdom(a))).

If s =
∏
i∈I si, then for all a ∈ domC , i ∈ I and ti : si → rani ∈MObsΣ,

πti(πi(hs(f
C(a)))) = πti(hsi(πi(f

C(a))))
(2)
= tCi (πi(f

C(a))) = (ti ◦ πi ◦ f)C(a)
(2)
= πti◦πi◦f (hdom(a)) =

hdom(a)ti◦πi◦f = πti(πi(f
Fin(hdom(a)))).
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If s =
∐
i∈I si, then for all a ∈ domC and T =

∐
i∈I(ti : si → rani) ∈

∐
i∈IMObsΣ,

πT (hs(f
C(a)))

(2)
= TC(fC(a)) = (T ◦ f)C(a)

(2)
= πT◦f (hdom(a)) = hdom(a)T◦f = πT (fFin(hdom(a))).

A suitable re-arrangement of the equations in this proof leads to a proof that h is the only Σ′-homomorphism

from C to Fin. In particular, if C = Fin, then h = idFin and thus (2) implies tCofree(Σ,A) = πt for all

t ∈MObsΣ. o

If SP ′ satisfies Def. 5.1(1), then the sum of all constructors of SP ′ \ SP is an isomorphism:

Theorem 6.5 Let SP ′ = (Σ′, AX ′) be a swinging type with base type SP = (Σ, AX) such that SP ′ satisfies

5.1(1). There is a Σ′-isomorphism h from the initial object Ini of ModEU (SP ′) to the Σ′-structure B with

equality and universe that is defined as follows: Let S1 = S′\S and for all s ∈ S1, C(s) = {c ∈ F ′\F | sc = s}.

• B|Σ = Ini|Σ,

• for all s ∈ S1, sB =
∐
c∈C(s) dom

Ini
c ,

• for all c : domc → s ∈ F ′ \ F , cB = ιc ◦ domc[[C(s)Ini)/s | s ∈ S1].

Moreover, for all s ∈ S1 and s-constructors c : dom→ s, cIni = h−1 ◦ ιc.

Proof. Since SP satisfies 5.1(1), B ∈ModEU (SP ′) and thus there is a unique Σ′-homomorphism h : Ini→ B.

First we show that g : Ini→ Ini defined by gs = id
Ini|Σ
s for all s ∈ S and gs = [C(s)Ini) ◦ hs for all s ∈ S1 is a

Σ′-homomorphism: For all c : domc → s ∈ F ′ \ F ,

gs ◦ cIni = [C(s)Ini) ◦ hs ◦ cIni = [C(s)Ini) ◦ cB ◦ hdomc
= [C(s)Ini) ◦ ιc ◦ domc[[C(s)Ini)/s | s ∈ S1] ◦ hdomc

= cIni ◦ domc[[C(s)Ini) ◦ hs/s | s ∈ S1] = cIni ◦ domc[gs/s | s ∈ S1] = cIni ◦ gdomc

Since Ini is initial in ModEU (SP ′), there is only one Σ′-homomorphism from Ini to Ini. Hence g = idIni.

Next we show that h′ : B → Ini defined by h′s = id
Ini|Σ
s for all s ∈ S and h′s = [C(s)Ini) for all s ∈ S1 is an

inverse of h. For all s ∈ S, h′s is an inverse of hs because hs = id
Ini|Σ
s . Let s ∈ S1. Then

h′s ◦ hs = [C(s)Ini) ◦ hs = gs = idInis .

Moreover, for all s-constructors c : domc → s,

hs ◦ h′s ◦ ιc = hs ◦ [C(s)Ini) ◦ ιc = hs ◦ cIni = cB ◦ hdomc
= ιc ◦ domc[[C(s)Ini)/s | s ∈ S1] ◦ hdomc = ιc ◦ domc[[C(s)Ini) ◦ hs/s | s ∈ S1]

= ιc ◦ domc[gs/s | s ∈ S1] = ιc ◦ domc[id
Ini
s /s | s ∈ S1] = ιc ◦ idInidomc

= ιc

and thus hs ◦ h′s = idInis . This finishes the proof that h is an isomorphism with inverse h′.

For all c : dom→ s ∈ F ′ \ F , cIni = [C(s)Ini) ◦ ιc = h′s ◦ ιc = h−1 ◦ ιc. o

If SP ′ satisfies Def. 5.1(2), then the product of all destructors of SP ′ \ SP is an isomorphism:

Theorem 6.6 Let SP ′ = (Σ′, AX ′) be a swinging type with base type SP = (Σ, AX) such that SP ′ satisfies

5.1(2). There is a Σ′-isomorphism h from the Σ′-structure B with equality and universe to the final object Fin

of ModEU (SP ′) that is defined as follows: Let S1 = S′ \ S and for all s ∈ S1, D(s) = {d ∈ F ′ \ F | sd = s}.

• B|Σ = Fin|Σ,

• for all s ∈ S1, sB =
∏
d∈D(s) ran

Fin
d ,

• for all d : s→ rand ∈ F ′ \ F , dB = rand[〈D(s)Fin〉/s | s ∈ S1] ◦ πd.
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Moreover, for all d : s→ ran ∈ F ′ \ F , dFin = πd ◦ h−1.

Proof. Since SP satisfies 5.1(2), B ∈ModEU (SP ) and thus there is a unique Σ′-homomorphism h : B → Fin.

The statement of the lemma follows by dualizing the proof of Theorem 6.5. o

7 Recursion and corecursion

Theorem 7.1 Let SP ′ = (Σ′, AX ′) be a swinging type with base type SP = (Σ, AX) such that SP ′ satisfies

5.1(3). The initial object of ModEU (SP ) can be extended to the initial object of ModEU (SP ′).

Proof. Let A ∈ ModEU (SP ) and f ∈ F ′ \ F . Using the notations of Def. 5.1(3) we define a Σ-structure A′

as follows:

• for all s ∈ S1, sA
′

=
∏
f∈rec(s) ran

A
f (= sub1(s)A),

• for all s ∈ S1 and constructors c : dom→ s, cA
′

= 〈tAf,c〉f∈rec(s),
• for all other symbols s ∈ Σ, sA

′
= sA.

Let Ini be initial in ModEU (SP ). Since SP satifies 5.1(1), Ini′ ∈ ModEU (SP ). Since Ini is initial in

ModEU (SP ), there is a unique Σ-homomorphism h : Ini → Ini′. Hence for all s ∈ S1 and constructors

c : dom→ s,

hs ◦ cIni = cIni
′
◦ hdom = 〈tInif,c 〉f∈rec(s) ◦ hdom. (1)

Let s ∈ S1. f : s → ran ∈ rec(s) can be interpreted in Ini as the composition sIni
hs→ sIni

′ πf→ ranIni, i.e.,

f Ini = πf ◦ hs. Consequently,

hs = 〈f Ini〉f∈rec(s) = 〈rec(s)〉Ini (2)

and thus by Proposition 4.4, for all constructors c : dom→ s,

f Ini ◦ cIni = πf ◦ hs ◦ cIni
(1)
= πf ◦ 〈tInif,c 〉f∈rec(s) ◦ hdom = tInif,c ◦ hdom

(2)
= tInif,c ◦ sub

#
2 (dom)Ini,

i.e., Ini satisfies the equation

f ◦ c ≡ tf,c � sub#2 (dom) (3)

of AX ′ \ AX (see Def. 5.1(3)). To sum up, we have concluded the validity of AX ′ \ AX in Ini from the fact

that h is Σ-homomorphic.

It remains to show that Ini is initial in ModEU (SP ′). So let B ∈ ModEU (SP ′) and A = B|Σ. Conversely

to the preceding proof step, let us now conclude from the validity of AX ′ \AX in B that h′ : A→ A′, defined

by πf ◦ h′s = fB for all s ∈ S, is Σ-homomorphic. Let s ∈ S1 and c : dom→ s be a constructor. Then

πf ◦ h′s ◦ cA = fB ◦ cB (3)
= tBf,c ◦ sub

#
2 (dom)B = πf ◦ 〈tAf,c〉f∈rec(s) ◦ sub

#
2 (dom)B = πf ◦ cA

′
◦ h′dom

and thus h′s ◦ cA = cA
′ ◦ h′domc , i.e., h′ is Σ-homomorphic.

Since A ∈ ModEU (SP ), there is a unique Σ-homomorphism g : Ini → A. Define g′ : Ini′ → A′ by

πf ◦ g′s = granf ◦ πf for all s ∈ S1 and f ∈ rec(s) and by g′s = gs for all s ∈ S0. Let s ∈ S1 and c : dom → s

be a constructor. Since tf,c : sub#1 (dom)→ ranf is a Σ-term, g is Σ-homomorphic and g′s =
∏
f∈rec(s) granf =

gsub1(s), Proposition 3.5 implies

granf ◦ tInif,c = tAf,c ◦ gsub#1 (dom) = tAf,c ◦ g′dom (4)

and thus

πf ◦ g′s ◦ cIni
′

= granf ◦πf ◦ 〈tInif,c 〉f∈rec(s) = granf ◦ tInif,c

(4)
= tAf,c ◦ g′dom = πf ◦ 〈tAf,c〉f∈rec(s) ◦ g′dom = πf ◦ cA

′
◦ g′dom.
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Hence g′s ◦ cIni
′

= cA
′ ◦ g′dom, i.e., g′ is Σ-homomorphic.

Consequently, there are two Σ-homomorphisms from Ini to A′: h′ ◦ g and g′ ◦ h. Since Ini is initial in

ModEU (SP ), they are equal. Hence for all s ∈ S1 and f ∈ rec(s),

fB ◦ gs = πf ◦ h′s ◦ gs = πf ◦ g′s ◦ hs = granf ◦ πf ◦ hs = granf ◦ f Ini,

i.e., g extends to a Σ′-homomorphism from Ini to B. Since each Σ′-homomorphism from Ini to B reduces to

a Σ-homomorphism from Ini to A, Ini is initial in ModEU (SP ) and S′ = S, g is the only Σ′-homomorphism

from Ini to B. We conclude that Ini is initial in ModEU (SP ′). o

Theorem 7.2 Let SP ′ = (Σ′, AX ′) be a swinging type with base type SP = (Σ, AX) such that SP ′ satisfies

5.1(4). The final object of ModEU (SP ) can be extended to the final object of ModEU (SP ′).

Proof. Let A ∈ModEU (SP ). Using the notations of Def. 5.1(4) we define a Σ-structure A′ as follows:

• for all s ∈ S1, sA
′

=
∐
f∈cor(s) dom

A
f (= sub1(s)A),

• for all s ∈ S1 and destructors d : s→ ran, dA
′

= [tAf,d]f∈cor(s),

• for all other symbols s ∈ Σ, sA
′

= sA.

Let Fin be final in ModEU (SP ). Since SP satifies 5.1(2), Fin′ ∈ ModEU (SP ). Since Fin is final in

ModEU (SP ), there is a unique Σ-homomorphism h : Fin′ → Fin. Hence for all s ∈ S1 and destructors

d : s→ ran,

dFin ◦ hs = hran ◦ dFin
′

= hran ◦ [tFinf,d ]f∈cor(s). (1)

Let s ∈ S1. f : dom → s ∈ cor(s) can be interpreted in Fin as the composition domFin ιf→ sFin
′ hs→ sFin, i.e.,

fFin = hs ◦ ιf . Consequently,

hs = [fFin]f∈cor(s) = [cor(s))Fin (2)

and thus by Proposition 4.4, for all destructors d : s→ ran,

dFin ◦ fFin = dFin ◦ hs ◦ ιf
(1)
= hran ◦ [tFinf,d ]f∈cor(s) ◦ ιf = hran ◦ tFinf,d

(2)
= sub∗2(ran)Fin ◦ tFinf,d ,

i.e., Fin satisfies the equation

d ◦ f ≡ sub∗2(ran)� tf,d (3)

of AX ′ \ AX (see Def. 5.1(4)). To sum up, we have concluded the validity of AX ′ \ AX in Fin from the fact

that h is Σ-homomorphic.

It remains to show that Fin is final in ModEU (SP ′). So let B ∈ModEU (SP ′) and A = B|Σ. Conversely to

the preceding proof step, let us now conclude from the validity of AX ′ \AX in B that h′ : A′ → A, defined by

h′s ◦ ιf = fB for all s ∈ S, is Σ-homomorphic. Let s ∈ S1 and d : s→ ran be a destructor. Then

dA ◦ h′s ◦ ιf = dB ◦ fB (3)
= sub∗2(ran)B ◦ tBf,d = sub∗2(ran)B ◦ [tAf,d]f∈cor(s) ◦ ιf = h′ran ◦ dA

′
◦ ιf

and thus dA ◦ h′s = h′ran ◦ dA
′
, i.e., h′ is Σ-homomorphic.

Since A ∈ ModEU (SP ), there is a unique Σ-homomorphism g : A → Fin. Define g′ : A′ → Fin′ by

g′s ◦ ιf = ιf ◦ gdomf for all s ∈ S1 and f ∈ cor(s) and by g′s = gs for all s ∈ S0. Let s ∈ S1 and d : s→ ran be a

destructor. Since tf,d : domf → sub∗1(ran) is a Σ-term, g is Σ-homomorphic and g′s =
∐
f∈cor(s) gdomf = gsub1(s),

Proposition 3.5 implies

tFinf,d ◦ gdomf = gsub∗1(ran) ◦ tAf,d = g′ran ◦ tAf,d (4)

and thus

dFin
′
◦ g′s ◦ ιf = [tFinf,d ]f∈cor(s) ◦ ιf ◦ gdomf = tFinf,d ◦ gdomf

(4)
= g′ran ◦ tAf,d = g′ran ◦ [tAf,d]f∈cor(s) ◦ ιf = g′ran ◦ dA

′
◦ ιf .
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Hence dFin
′ ◦ g′s = g′ran ◦ dA

′
, i.e., g′ is Σ-homomorphic.

Consequently, there are two Σ-homomorphisms from A′ to Fin: g ◦ h′ and h ◦ g′. Since Fin is final in

ModEU (SP ), they are equal. Hence for all s ∈ S1 and f ∈ cor(s),

gs ◦ fB = gs ◦ h′s ◦ ιf = hs ◦ g′s ◦ ιf = hs ◦ ιf ◦ gdomf = fFin ◦ gdomf ,

i.e., g extends to a Σ′-homomorphism from B to Fin. Since each Σ′-homomorphism from B to Fin reduces to

a Σ-homomorphism from A to Fin, Fin is final in ModEU (SP ) and S′ = S, g is the only Σ′-homomorphism

from B to Fin. We conclude that Fin is final in ModEU (SP ′). o

8 Relations

Definition 8.1 (µ- and ν-extensions) Let Σ′ = (S0, S, F
′, R′) be a signature, Σ = (S0, S, F,R) be a subsignature

of Σ′, SP = (Σ, AX), SP ′ = (Σ′, AX ′) be specifications with AX ⊆ AX ′ such that AX1 =def AX
′\AX consists

of

(1) R1-positive Horn clauses for R1 =def (R′ \R) ∪ {≡s | s ∈ S1} or

(2) restricted R1-positive Horn clauses for R1 =def (R′ \R) ∪ {alls | s ∈ S1} or

(3) restricted R1-positive co-Horn clauses for R1 =def (R′ \R) ∪ {alls | s ∈ S1} or

(4) R1-positive co-Horn clauses for R1 =def (R′ \R) ∪ {≡s | s ∈ S1}

where S1 = S\S0. R1 is called the set of relations defined by AX1. In cases (1) and (2), SP ′ is a µ-extension

of SP and thus R1 is a set of predicates. In cases (3) and (4), SP ′ is a ν-extension of SP and thus R1 is a

set of copredicates (see Def. 5.1). o

Proposition 8.2 Let SP ′ = (Σ′, AX ′) be a swinging type with base type SP = (Σ, AX).

If SP ′ is an abstraction, then SP ′ is a µ-extension of SP .

If SP ′ is a restriction, then SP ′ is a ν-extension of SP . o

We recapitulate the classical fixpoint theorems for monotone resp. continuous functions for complete lattices:

Definition and Theorem 8.3 (fixpoints, continuity) Let L be a complete lattice with partial order ≤, least

element ⊥ and greatest element >. Given a set A, the lattice structure of L induces a lattice structure on the

function space LA as usual.

Let F : L→ L be a function. F ∗ =def ti∈NF i and F∗ =def ui∈NF i.

a ∈ L is F -closed if F (a) ≤ a. a is F -dense if a ≤ F (a). a is a fixpoint of F if a is F -closed and F -dense.

F is monotone if for all a, b ∈ L, a ≤ b implies F (a) ≤ F (b). F is continuous if for all increasing chains

a0 ≤ a1 ≤ a2 ≤ . . . of elements of L, F (ti∈Nai) ≤ ti∈NF (ai). F is cocontinuous if for all decreasing chains

a0 ≥ a1 ≥ a2 ≥ . . . of elements of L, ui∈NF (ai) ≤ F (ui∈Nai).

Let F be monotone.

(1) (Knaster-Tarski) lfp(F ) = u{a ∈ L | F (a) ≤ a} is the least fixpoint of F and a superset of F ∗(⊥).

gfp(F ) = t{a ∈ L | a ≤ F (a)} is the greatest fixpoint of F and a subset of F∗(>).

(2) (Kleene) If F is continuous, then F (F ∗(⊥)) ≤ F ∗(⊥) and thus by (1), lfp(F ) = F ∗(⊥). If F is

cocontinuous, then F∗(>) ≤ F (F∗(>)) and thus by (1), gfp(F ) = F∗(>). o

The following lemma is fundamental for the most important proof rules for reasoning about extensions by

predicates or copredicates, respectively (see Theorem 8.15).
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Theorem 8.4 Let L be a complete lattice, F,G : L→ L be monotone functions and a ∈ L.

(1) Induction. lfp(F ) ≤ a if Fn(a) ≤ a for some n > 0.

(2) Strong induction. lfp(F ) ≤ a if Fn(a u lfp(F )) ≤ a for some n > 0.

(3) Coinduction. a ≤ gfp(F ) if a ≤ Fn(a) for some n > 0.

(4) Strong coinduction. a ≤ gfp(F ) if a ≤ Fn(a t gfp(F )) for some n > 0.

(5) Extended strong coinduction. Suppose that all b ∈ L are G-dense and for all b ∈ L and n > 0,

b ≤ Fn(G∗(b)) implies G∗(b) ≤ Fn(G∗(b)). (5.1)

a ≤ gfp(F ) if (5.2) a ≤ Fn(G∗(a t gfp(F ))) for some n > 0.

Proof. (1) Let Fn(a) ≤ a for some n > 0, i.e., a is Fn-closed. Let b =def ui>0F
i(a). Then

b ≤ Fn(a) ≤ a = F 0(a). (∗)

Moreover, by the definition of b, b ≤ F i(a) for all i > 0. Hence for all i > 0, b ≤ F i−1(a) and thus F (b) ≤ F i(a)

because F is monotone. We conclude that F (b) is a lower bound of {F i(a) | i > 0}. Hence F (b) ≤ b, i.e., b is

F -closed. By Theorem 8.3(1), lfp(F ) = u{c ∈ L | F (c) ≤ c} and thus lfp(F ) ≤ b ≤ a by (∗) and because lfp(F )

is the least F -closed element of L.

(2) Let Fn(a u lfp(F )) ≤ a for some n > 0. Then

Fn(a u lfp(F )) = Fn(a u lfp(F )) u Fn(a u lfp(F ))

≤ Fn(a u lfp(F )) u Fn(lfp(F )) (since Fn is monotone)

≤ a u Fn(lfp(F )) (by assumption)

≤ a u lfp(F ). (since lfp(F ) is F - and thus Fn-closed because F is monotone)

Hence a u lfp(F ) is Fn-closed. Let b =def ui>0F
i(a u lfp(F )). Then

b ≤ Fn(a u lfp(F )) ≤ a u lfp(F ) = F 0(a u lfp(F )). (∗)

Moreover, by the definition of b, b ≤ F i(aulfp(F )) for all i > 0. Hence for all i > 0, b ≤ F i−1(aulfp(F )) and thus

F (b) ≤ F i(aulfp(F )) because F is monotone. We conclude that F (b) is a lower bound of {F i(aulfp(F )) | i > 0}.
Hence F (b) ≤ b, i.e. b is F -closed. By Theorem 8.3(1), lfp(F ) = u{c ∈ L | F (c) ≤ c} and thus lfp(F ) ≤ b ≤
a u lfp(F ) ≤ a by (∗) and because lfp(F ) is the least F -closed element of L.

(3) Let a ≤ Fn(a) for some n > 0, i.e., a is Fn-dense. Let b =def ti>0F
i(a). Then

b ≥ Fn(a) ≥ a = F 0(a). (∗)

Moreover, by the definition of b, b ≥ F i(a) for all i > 0. Hence for all i > 0, b ≥ F i−1(a) and thus F (b) ≥ F i(a)

because F is monotone. We conclude that F (b) is an upper bound of {F i(a) | i > 0}. Hence b ≤ F (b), i.e. b

is F -dense. By Theorem 8.3(1), gfp(F ) = t{c ∈ L | F (c) ≥ c} and thus gfp(F ) ≥ b ≥ a by (∗) and because

gfp(F ) is the greatest F -dense element of L.

(4) Let a ≤ Fn(a t gfp(F )) ≤ a for some n > 0. Then

Fn(a t gfp(F )) = Fn(a t gfp(F )) t Fn(a t gfp(F ))

≥ Fn(a t gfp(F )) t Fn(gfp(F )) (since Fn is monotone)

≥ a t Fn(gfp(F )) (by assumption)

≥ a t gfp(F ). (since gfp(F ) is F - and thus Fn-dense because F is monotone)
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Hence a t gfp(F ) is Fn-dense. Let b =def ti>0F
i(a t gfp(F )). Then

b ≥ Fn(a t gfp(F )) ≥ a t gfp(F ) = F 0(a t gfp(F )). (∗)

Moreover, by the definition of b, b ≥ F i(atgfp(F )) for all i > 0. Hence for all i > 0, b ≥ F i−1(atgfp(F )) and thus

F (b) ≥ F i(atgfp(F )) because F is monotone. We conclude that F (b) is an upper bound of {F i(at lfp(F )) | i >
0}. Hence b ≤ F (b), i.e. b is F -dense. By Theorem 8.3(1), gfp(F ) = t{c ∈ L | c ≤ F (c)} and thus

gfp(F ) ≥ b ≥ a t gfp(F ) ≥ a by (∗) and because gfp(F ) is the greatest F -dense element of L.

(5) Let a ≤ Fn(G∗(a t gfp(F ))) ≤ a for some n > 0. Then

Fn(G∗(a t gfp(F ))) = Fn(G∗(a t gfp(F ))) t Fn(G∗(a t gfp(F )))

≥ Fn(G∗(a t gfp(F ))) t Fn(a t gfp(F )) (since a t gfp(F ) ≤ G∗(a t gfp(F )) and Fn is monotone)

≥ Fn(G∗(a t gfp(F ))) t Fn(gfp(F )) (since Fn is monotone)

≥ a t Fn(gfp(F )) (by assumption 5.2)

≥ a t gfp(F ). (since gfp(F ) is F - and thus Fn-dense because F is monotone)

By assumption 5.2, we conclude that G∗(a t gfp(F )) is Fn-dense. Let b =def ti>0F
i(G∗(a t gfp(F ))). Then

b ≥ Fn(G∗(a t gfp(F ))) ≥ G∗(a t gfp(F )) = F 0(G∗(a t gfp(F ))). (∗)

Moreover, by the definition of b, b ≥ F i(G∗(a t gfp(F ))) for all i > 0. Hence for all i > 0, b ≥ F i−1(G∗(a t
gfp(F ))) and thus F (b) ≥ F i(G∗(a t gfp(F ))) because F is monotone. We conclude that F (b) is an upper

bound of {F i(G∗(a t lfp(F ))) | i > 0}. Hence b ≤ F (b), i.e. b is F -dense. By Theorem 8.3(1), gfp(F ) = t{c ∈
L | c ≤ F (c)} and thus gfp(F ) ≥ b ≥ G∗(at gfp(F )) ≥ at gfp(F ) ≥ a by (∗) and because gfp(F ) is the greatest

F -dense element of L. o

Lemma 8.5 (not used) Let L be a complete lattice and F,G : L→ L be monotone functions.

(1) lfp(F ) ≤ lfp(F tG).

(2) gfp(F uG) ≤ gfp(F ).

(3) If lfp(F ) u lfp(G) is F -closed, then lfp(F ) ≤ lfp(G).

(4) If gfp(F ) t lfp(G) is F -dense, then gfp(G) ≤ gfp(F ).

(5) If G(lfp(F ◦G)) is F -closed and G ≤ id, then lfp(F ) ≤ lfp(F ◦G).

(6) If G(gfp(F ◦G)) is F -dense and id ≤ G, then gfp(F ◦G) ≤ gfp(F ).

Proof. (1) We show that lfp is a monotone function from the lattice [L→ L] of monotone functions on L to

L. ≤ and t are lifted as usually from L to [L → L]. Let F ′, G′ ∈ [L → L] such that F ′ ≤ G′. By Theorem

8.3(1),

lfp(F ′) = u{a ∈ L | F ′(a) ≤ a} ≤ u{a ∈ L | G′(a) ≤ a} = lfp(G′).

Hence in particular, lfp(F ) ≤ lfp(F tG).

(2) We show that gfp is a monotone function from the lattice [L→ L] of monotone functions on L to L. ≤
and u are lifted as usually from L to [L→ L]. Let F ′, G′ ∈ [L→ L] such that F ′ ≤ G′. By Theorem 8.3(1),

gfp(F ′) = t{a ∈ L | a ≤ F ′(a)} ≤ t{a ∈ L | a ≤ G′(a)} = gfp(G′).

Hence in particular, gfp(F uG) ≤ gfp(F ).

(3) If lfp(F ) u lfp(G) is F -closed, then lfp(F ) = u{a ∈ L | F (a) ≤ a} ≤ lfp(F ) u lfp(G) ≤ lfp(G).

(4) If gfp(F ) t lfp(G) is F -dense, then gfp(G) ≤ gfp(F ) t lfp(G) ≤ t{a ∈ L | F (a) ≤ a} = gfp(F ).

(5) If G(lfp(F ◦G)) is F -closed and G ≤ id, lfp(F ) = u{a ∈ L | F (a) ≤ a} ≤ G(lfp(F ◦G)) ≤ lfp(F ◦G).
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(6) If G(gfp(F ◦G)) is F -dense and id ≤ G, gfp(F ◦G) ≤ G(gfp(F ◦G)) ≤ t{a ∈ L | F (a) ≤ a} = gfp(F ).o

Given the assumptions of Def. 8.1 and an (SP ∪ F ′)-model A, the class Mod(Σ′, A) of Σ′-structures over

A forms a complete lattice: The partial order ≤ and the corresponding least element ⊥, greatest element >,

suprema and infima are defined as follows. For all B,C ∈Mod(Σ′, A),

B ≤ C ⇐⇒ ∀ r ∈ R1 : rB ⊆ rC .

For all r : s ∈ R1 and B ⊆Mod(Σ′, A), r⊥ = ∅, r> = sA, rtB =
⋃
B∈B r

B and ruB =
⋂
B∈B r

B . Moreover, if R1

is an S-sorted set of binary relations rs : s× s, then for all B,C ∈ Mod(Σ′, A), B · C ∈ Mod(Σ′, A) is defined

as follows: For all r ∈ R1, rB·C = rB · rC (see Section 1).

The monotone function on Mod(Σ′, A) we are interested in here is the functor |σ induced by the signature

morphism σ that maps each r ∈ R1 to the AX1-definition of r (see Definition 4.5):

Definition and Proposition 8.6 (AX-definition) Let Σ = (S0, S, F,R) be a signature, AX be a finite set

of either only Horn or only co-Horn clauses over Σ, A be a Σ-structure and r : s ∈ R.

(1) Let AXr = {(r◦ti ⇐ ϕi) : si}ni=1 be the set of Horn clauses for r among the clauses of AX. The Σ-formula

ϕr,AX(x) =def

n∨
i=1

∃i(x ≡ ti(i) ∧ ϕi) : s

is called the AX-definition of r. A satisfies AXr iff A satisfies r(x)⇐ ϕr,AX(x).

(2) Let AXr = {(r ◦ ti ⇒ ϕi) : si}ni=1 be the set of co-Horn clauses for r among the clauses of AX. The

Σ-formula

ϕr,AX(x) =def

n∧
i=1

∀i(¬x ≡ ti(i) ∨ ϕi) : s

is called the AX-definition of r. A satisfies AXr iff A satisfies r(x)⇒ ϕr,AX(x).

Proof. Proposition 4.7 and a couple of simple logical transformations. o

Definition 8.7 (step functor) Let the assumptions of Def. 8.1 hold true. The signature morphism σ : Σ′ → Σ′

that is the identity on Σ and maps each relation r defined by SP ′ wrt SP to ϕr,AX1 is called the relation

transformer defined by AX ′ \AX.

Let Σ1 = (S0, S, F
′, R) and A be a Σ1-structure. The (A, σ)-step functor maps each B ∈ Mod(Σ′, A) to

B|σ. o

Proposition 8.8 Let the assumptions of Def. 8.7 hold true and F be the (A, σ)-step functor.

(1) For all B ∈Mod(Σ′, A), ϕ ∈ FormΣ′ and i ∈ N, rF
i(B) = σi(r)B and rF

∗(B) = σ∗(r)B.

(2) Let SP ′ be a µ-extension of SP . B ∈ Mod(Σ′, A) satisfies AX1 iff for all r ∈ R1, B satisfies r ⇐ σ(r),

iff B is F -closed.

(3) Let SP ′ be a ν-extension of SP B ∈Mod(Σ′, A) satisfies AX1 iff for all r ∈ R1, B satisfies r ⇒ σ(r), iff

B is F -dense.

(4) Let SP ′ be a µ- or ν-extension of SP . B is a fixpoint of F iff for all r ∈ R1, B ∈ Mod(Σ′, A) satisfies

r ⇔ σ(r), iff for all Σ′-formulas ϕ, B satisfies ϕ⇔ σ(ϕ).

Proof. (1) follows by induction on i: Assume that for all B ∈Mod(Σ′, A) and ϕ ∈ FormΣ′ , r
F i(B) = σi(r)B .

Then rF
i+1(B) = rF (F i(B)) = rF

i(B)|σ) = σ(r)F
i(B) = σi(σ(r))B = σi+1(r)B .

(2) follows from Propositions 8.6 and 4.7(4). (3) follows from Propositions 8.6 and 4.7(4). (4) follows from

Proposition 4.7(4). o
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Moreover, given a fixpoint B of ΦA,σ, rB is the B-complement of rB if the AX1-definition of r is the negation

of the AX1-definition of r:

Proposition 8.9 Let the assumptions of Def. 8.7 hold true, F be the (A, σ)-step functor and B be a fixpoint

of F . Suppose that for each relation r : s defined by SP ′ wrt SP there is a relation r : s defined by AX1 such

that B satisfies σ(r)⇔ ¬σ(r). Then rB is the B-complement of rB (see Def. 3.6).

Proof. Let r : s be a relation defined by AX1. Since B is a fixpoint of F , we obtain

rB = σ(r)B = (¬σ(r))B = sB \ σ(r)B = sB \ rB

by Proposition 8.8(4) and the assumption. o

Example 8.10 The parameter type TRIV(s)[BOOL] (see Example 5.4) is extended by binary relations on

s:

ORD(s)[BOOL] where ORD(s) = TRIV(s) and

preds <,>,≤,≥, 6≡: s× s
vars x, y : s

axioms x < y ⇐⇒ y > x

x ≤ y ⇐⇒ ¬x > y

x ≥ y ⇐⇒ ¬x < y

x 6≡ y ⇐⇒ ¬x ≡ y

The following swinging type extends LIST[ORD(s)[BOOL]] (see Example 14.2) by the relations sorted and

∈ for list membership and their complements unsorted and 6∈:

COMPL[ORD(s)[BOOL]] where COMPL = LIST and

preds ∈, 6∈: s× list(s)
sorted, unsorted : list(s)

vars x, y : s L,L′ : list(s)

axioms x ∈ y : L ⇐ x ≡ y ∨ x ∈ L
sorted([])

sorted(x : [])

sorted(x : y : L) ⇐ x ≤ y ∧ sorted(y : L)

x 6∈ y : L ⇒ x 6≡ y ∧ x /∈ L
unsorted([]) ⇒ False

unsorted(x : []) ⇒ False

unsorted(x : y : L) ⇒ x > y ∨ unsorted(y : L)

Let σ be the relation transformer defined by the axioms for COMPL\LIST. In fact, σ(unsorted) and σ(6∈)

are the negations of σ(sorted) and σ(∈), respectively (see Def. 8.6). Hence for all LIST[TRIV(s)[BOOL]]-models

A and fixpoints B of ΦA,σ, unsortedB and 6∈B are the B-complements of sortedB and ∈B , respectively. o

Definition 8.11 (monotone, (co)compact formula) Given the assumptions of Def. 8.7, a Σ′-formula ϕ is

Σ′-monotone over A if for all B,C ∈Mod(Σ′, A),

B ≤ C implies ϕB ⊆ ϕC . (1)

ϕ is Σ′-compact over A if for all increasing chains B0 ≤ B1 ≤ B2 ≤ . . . of Mod(Σ′, A),

ϕti∈NBi ⊆
⋃
i∈N

ϕBi . (2)
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ϕ is Σ′-cocompact over A if for all decreasing chains B0 ≥ B1 ≥ B2 ≥ . . . of Mod(Σ′, A),⋂
i∈N

ϕBi ⊆ ϕui∈NBi . o (3)

Proposition 8.12 Let the assumptions of Def. 8.7 hold true. ΦA,σ is monotone iff the premises of all Horn

clauses and the conclusions of all co-Horn clauses of AX1 are Σ′-monotone over A. ΦA,σ is continuous over A

iff the premises of all Horn clauses AX1 are Σ′-compact over A. ΦA,σ is cocontinuous over A iff the conclusions

of all co-Horn clauses AX1 are Σ′-cocompact over A. o

Theorems 8.13 and 9.1 given below are shown by transfinite induction on ordinal numbers. Remember the

principle of transfinite induction: A property P holds true for all ordinals if for all ordinals β, if P (β) can be

concluded from the assumption that P holds true for all ordinals α < β. The correctness of transfinite induction

rule follows from the fact that ordinal numbers form a well-ordered set O, i.e., O is a totally ordered set such

that each nonempty subset M of O has a least element (see [106], §13). The least element of the entire set O
is denoted by 0. An ordinal is either 0, a successor ordinal β, i.e., β has an immediate predecessor α w.r.t. <,

or a limit ordinal denoted by sup(M) where M is the set of all predecessors of sup(M) w.r.t. <.10

For proving Theorems 8.13 and 9.1 by transfinite induction, we use the following O-sorted set M of pairs

(ϕ, a) consisting of an R1-positive Σ′-formula ϕ : s and some a ∈ sA: Let I be a nonempty set.

• For all Σ-atoms ϕ : s and a ∈ sA, (ϕ, a) ∈M0.

• Let (ϕ, a) ∈Mα and β be the least ordinal that is greater than α. Then (¬ϕ, a) ∈Mβ .

• Let a ∈
∏
i∈∪{Ij |j∈J} s

A
i , for all j ∈ J , (ϕj :

∏
i∈Ij si, πIj (a)) ∈ Mαj and β be the least ordinal that is

greater than αj , j ∈ J . Then (
∧
ϕj , a), (

∨
ϕj , a) ∈Mβ .

• Let k ∈ I, a ∈
∏
i∈I\{k} s

A
i , for all b ∈ sAk , (ϕ :

∏
i∈I si, a ∗k b) ∈ Mαb and β be the least ordinal that is

greater than all αb, b ∈ sAk . Then (∀kϕ, a), (∃kϕ, a) ∈Mβ .

Theorem 8.13 Given the assumptions of Def. 8.7, R1-positive Σ′-formulas are Σ′-monotone over A.

Proof. Let B,C ∈ Mod(Σ′, A) with B ≤ C. We show 8.11(1) for all R1-positive Σ′-formulas ϕ. Let

(ϕ, a) ∈Mα, a ∈ ϕB and I be a nonempty set.

• Let ϕ = r(t) be a Σ′-atom. If r ∈ R, then ϕ is a Σ-formula and thus a ∈ ϕB = ϕA = ϕC . If r ∈ R1, then

a ∈ ϕB implies tA(a) ∈ rB ⊆ rC because B ≤ C. Hence a ∈ ϕC .

• Let ϕ = ¬ψ for some Σ-atom ψ : s. Hence ψB = ψA = ψC and thus a ∈ ϕB = sA \ ψB = sA \ ψC = ϕC .

• Let ϕ = ψ ∧ ϑ (resp. ϕ = ψ ∨ ϑ). Then there are β < α and γ < α such that (ϕ, πI(a)) ∈ Mβ and

(ψ, πJ(a)) ∈ Mγ . a ∈ ϕB implies πI(a) ∈ ψB and (resp. or) πJ(a) ∈ ϑB . Hence by induction hypothesis,

πI(a) ∈ ψC and πJ(a) ∈ ϑC and thus a ∈ ϕC .

• Let ϕ = ∀kψ (resp. ϕ = ∃kψ) for some k ∈ I. Then for all b ∈ sAk there is αb < β such that (ψ, a∗kb) ∈Mαb .

a ∈ ϕB implies a ∗k b ∈ ψB for all (resp. some) b ∈ sAk . Hence by induction hypothesis, a ∗k b ∈ ψC and

thus a ∈ ϕC . o

Proposition 8.8 and Theorems 8.13 and 8.3 (Knaster-Tarski) immediately imply:

Theorem 8.14 (fixpoint semantics of µ- and ν-extensions) Let the assumptions of Def. 8.7 hold true and

F be the (A, σ)-step functor.

• If SP ′ is a µ-extension of SP , then F has a least fixpoint, which agrees with the least SP ′-model over A

(with respect to ≤).

100, β and sup(M) are usually interpreted as follows: 0 = ∅, β = α ∪ {α} and sup(M) = ∪M . Consequently, < is strict set
inclusion and thus O is well-ordered.
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• If SP ′ is a ν-extension of SP , then F has a greatest fixpoint, which agrees with the greatest SP ′-model

over A. o

Let us reformulate Theorem 8.4 in terms of a µ- or ν-extension SP ′ = (Σ′, AX ′) and the lattice Mod(Σ′, A):

Theorem 8.15 Let the assumptions of Def. 8.7 hold true, SP ′ be a µ- or ν-extension of SP , σ be the relation

transformer defined by AX ′ \AX and F be the (A, σ)-step functor. Moreover, let τ, τ1, τ2 : Σ′ → Σ′ be signature

morphisms such that for all r ∈ Σ, τ(r) = r, and for all r ∈ R1, τ1(r) = τ(r) ∧ r and τ2(r) = τ(r) ∨ r.

(1) Induction. lfp(F ) satisfies
∧
r∈R1

(r ⇒ τ(r)) if lfp(F ) satisfies
∧
r∈R1

(τ(σn(r))⇒ τ(r)) for some n > 0.

(2) Strong induction.

lfp(F ) satisfies
∧
r∈R1

(r ⇒ τ(r)) if lfp(F ) satisfies
∧
r∈R1

(τ1(σn(r))⇒ τ(r)) for some n > 0.

(3) Coinduction.

gfp(F ) satisfies
∧
r∈R1

(τ(r)⇒ r) if gfp(F ) satisfies
∧
r∈R1

(τ(r)⇒ τ(σn(r))) for some n > 0.

(4) Strong coinduction.

gfp(F ) satisfies
∧
r∈R1

(τ(r)⇒ r) if gfp(F ) satisfies
∧
r∈R1

(τ(r)⇒ τ2(σn(r))) for some n > 0.

(5) Extended strong coinduction. Let γ : Σ′ → Σ′ be a further signature morphism11 such that for all

r ∈ Σ1, γ(r) = r or r is binary and

γ(r) = r ∨ ≡ ∨ r ◦ 〈π2, π1〉 ∨ ∃3(r ◦ 〈π1, π3〉 ∧ r ◦ 〈π3, π2〉).

gfp(F ) satisfies
∧
r∈R1

(τ(r)⇒ r) if gfp(F ) satisfies
∧
r∈R1

(τ(r)⇒ γ∗(τ2(σn(r)))) for some n > 0.

Proof. (1) Suppose that for some n > 0 and all r ∈ R1, lfp(F ) satisfies τ(σn(r))⇒ τ(r), i.e., τ(σn(r))lfp(F ) ⊆
τ(r)lfp(F ). Let B be the τ -reduct of lfp(F ). By the definition of F and Proposition 4.7(3), rF

n(B) = rB|σn =

σn(r)B = τ(σn(r))lfp(F ) ⊆ τ(r)lfp(F ) = rB . Hence Fn(B) ≤ B. By Theorem 8.4(1), lfp(F ) ≤ B and thus

rlfp(F ) ⊆ rB = τ(r)lfp(F ), i.e., lfp(F ) satisfies r ⇒ τ(r).

(2) Suppose that for some n > 0 and all r ∈ R1, lfp(F ) satisfies τ1(σn(r)) ⇒ τ(r), i.e., τ1(σn(r))lfp(F ) ⊆
τ(r)lfp(F ). Let B be the τ -reduct of lfp(F ). By the definition of F and Proposition 4.7(3), rF

n(Bulfp(F )) =

r(Bulfp(F ))|σn = σn(r)Bulfp(F ) = σn(r)B ∩σn(r)lfp(F ) = τ(σn(r))lfp(F ) ∩σn(r)lfp(F ) = (τ(σn(r))∧σn(r))lfp(F ) =

τ1(σn(r))lfp(F ) ⊆ τ(r)lfp(F ) = rB . Hence Fn(B u lfp(F )) ≤ B. By Theorem 8.4(2), lfp(F ) ≤ B and thus

rlfp(F ) ⊆ rB = τ(r)lfp(F ), i.e., lfp(F ) satisfies r ⇒ τ(r).

(3) Suppose that for some n > 0 and all r ∈ R1, gfp(F ) satisfies τ(r) ⇒ τ(σn(r)), i.e., τ(r)gfp(F ) ⊆
τ(σn(r))gfp(F ). Let B be the τ -reduct of gfp(F ). By Proposition 4.7(3), rB = τ(r)gfp(F ) ⊆ τ(σn(r))gfp(F ) =

σn(r)B = rB|σn = rF
n(B). Hence B ≤ Fn(B). By Theorem 8.4(3), B ≤ gfp(F ) and thus τ(r)gfp(F ) = rB ⊆

rgfp(F ), i.e., gfp(F ) satisfies τ(r)⇒ r.

(4) Suppose that for some n > 0 and all r ∈ R1, gfp(F ) satisfies τ(r) ⇒ τ2(σn(r)), i.e., τ(r)gfp(F ) ⊆
τ2(σn(r))gfp(F ). Let B be the τ -reduct of gfp(F ). By Proposition 4.7(3) and the definition of F , rB =

τ(r)gfp(F ) ⊆ τ2(σn(r))gfp(F ) = (τ(σn(r))∨ σn(r))gfp(F ) = τ(σn(r))gfp(F ) ∪ σn(r)gfp(F ) = σn(r)B ∪ σn(r)gfp(F ) =

σn(r)Btgfp(F ) = r(Btgfp(F ))|σn = rF
n(Btgfp(F )). Hence B ≤ Fn(B t gfp(F )). By Theorem 8.4(4), B ≤ gfp(F )

and thus τ(r)gfp(F ) = rB ⊆ rgfp(F ), i.e., gfp(F ) satisfies τ(r)⇒ r.

(5) Suppose that for some n > 0 and all r ∈ R1, gfp(F ) satisfies τ(r) ⇒ γ∗(τ2(σn(r))), i.e., τ(r)gfp(F ) ⊆
γ∗(τ2(σn(r)))gfp(F ). Let B,C be the τ -reducts of gfp(F ) and G∗(gfp(F )), respectively, and G be the (A, γ)-

step functor. By Propositions 4.7(3) and 8.8(1), rB = τ(r)gfp(F ) ⊆ γ∗(τ2(σn(r)))gfp(F ) = τ2(σn(r))G
∗(gfp(F )) =

(τ(σn(r))∨σn(r))G
∗(gfp(F )) = τ(σn(r))G

∗(gfp(F ))∪σn(r)G
∗(gfp(F )) = σn(r)C∪σn(r)G

∗(gfp(F )) = σn(r)CtG
∗(gfp(F )) =

???σn(r)G
∗(B)tG∗(gfp(F )) ⊆ rFn(G∗(Btgfp(F ))). Hence B ≤ Fn(BtG∗(gfp(F ))). By Theorem 8.4(5), B ≤ gfp(F )

and thus τ(r)gfp(F ) = rB ⊆ rgfp(F ), i.e., gfp(F ) satisfies τ(r)⇒ r. o

11γ is the relation transformer defined by axioms for the equivalence closure of r.
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Here are some alternative axiomatizations of relations that satisfy the induction or coinduction assumption

of Theorem 8.15. [39]

Corollary 8.16 Let the assumptions of Theorem 8.15 hold true.

(1) Suppose that SP1 and SP2 are µ-extensions of SP , R2 = R1 ∪ {r′ : s | r : s ∈ R1} and

AX2 = {r ⇐ (σ1(r) ∧ r′) | r ∈ R1} ∪ {r′ ⇐ σ1(r)[r′/r|r ∈ R1] | r ∈ R1}.

Then lfp(ΦA,σ1
) ≤ lfp(ΦA,σ2

).

(2) Suppose that SP1 and SP2 are ν-extensions of SP , R2 = R1 ∪ {r′ : s | r : s ∈ R1} and

AX2 = {r ⇒ (σ1(r) ∨ r′) | r ∈ R1} ∪ {r′ ⇒ σ1(r)[r′/r|r ∈ R1] | r ∈ R1}.

Then gfp(ΦA,σ2
) ≤ gfp(ΦA,σ1

).

(3) Suppose that SP1 and SP2 are µ-extensions of SP , R1 is an S-sorted set of binary relations ∼s: s × s,
R2 = R1 ∪ {≈s: s× s | s ∈ S},

AX1 = {f(x) ∼s′ f(y)⇐ x ∼s y | f : s→ s′ ∈ F},
AX2 = {∼s⇐≈s ·σ1(∼s)· ≈s | s ∈ S} ∪ {≈s⇐ σ1(∼s)[≈s / ∼s |s ∈ S] | s ∈ S}

and lfp(ΦA,σ1
) · lfp(ΦA,σ1

) ≤ lfp(ΦA,σ1
). Then lfp(ΦA,σ1

) ≤ lfp(ΦA,σ2
).

(4) Suppose that SP1 and SP2 are ν-extensions of SP , R1 is an S-sorted set of binary relations ∼s: s × s,
R2 = R1 ∪ {≈s: s× s | s ∈ S},

AX1 = {x ∼s y ⇒ f(x) ∼s′ f(y) | f : s→ s′ ∈ F},
AX2 = {∼s⇒≈s ·σ1(∼s)· ≈s | s ∈ S} ∪ {≈s⇒ σ1(∼s)[≈s / ∼s |s ∈ S] | s ∈ S}

and gfp(ΦA,σ1) · gfp(ΦA,σ1) ≤ gfp(ΦA,σ1). Then gfp(ΦA,σ2) ≤ gfp(ΦA,σ1).

Proof. (1) Let lfpi = lfp(Φσi,A), i = 1, 2. Define a function F : Mod(Σ1, A) → Mod(Σ1, A) by F (B) =

Bu lfp1. Let B ∈Mod(Σ1, A) and r ∈ R1. The construction of AX2 from AX1 implies σ2(r)B = σ1(r)B ∩ rlfp1 .

Hence

rσ2(B) = σ2(r)B = σ1(r)B ∩ rlfp1 = σ1(r)B ∩ rσ1(lfp1) = σ1(r)B ∩ σ1(r)lfp1 = σ1(r)F (B) = rσ1(F (B)),

i.e., σ2 = σ1 ◦ F . By Lemma 8.5(3), it remains to show that lfp1 u lfp2 is σ1-closed. Since σ1 is monotone,

σ1(lfp1ulfp2) ≤ σ1(lfp1) = lfp1. Moreover, σ1(lfp1ulfp2) = σ1(F (lfp2)) = σ2(lfp2) = lfp2. Hence σ1(lfp1ulfp2) ≤
lfp1 u lfp2.

(2) Let gfpi = gfp(Φσi,A), i = 1, 2. Define a function F : Mod(Σ1, A) → Mod(Σ1, A) by F (B) = B t gfp1.

Let B ∈Mod(Σ1, A) and r ∈ R1. The construction of AX2 from AX1 implies σ2(r)B = σ1(r)B ∪ rgfp1 . Hence

rσ2(B) = σ2(r)B = σ1(r)B ∪ rgfp1 = σ1(r)B ∪ rσ1(gfp1) = σ1(r)B ∪ σ1(r)gfp1 = σ1(r)F (B) = rσ1(F (B)),

i.e., σ2 = σ1 ◦ F . By Lemma 8.5(4), it remains to show that gfp1 t gfp2 is σ1-dense. Since σ1 is monotone,

gfp1 = σ1(gfp1) ≤ σ1(gfp1 t gfp2). Moreover, gfp2 = σ2(gfp2) = σ1(F (gfp2)) = σ1(gfp1 t gfp2). Hence

gfp1 t gfp2 ≤ σ1(gfp1 t gfp2).

(3) Let lfpi = lfp(Φσi,A), i = 1, 2.

(4) Let gfpi = gfp(Φσi,A), i = 1, 2. Define a function F : Mod(Σ1, A)→Mod(Σ1, A) by F (B) = gfp1 ·B ·gfp1.

Let B ∈Mod(Σ1, A) and s ∈ S. The construction of AX2 from AX1 implies σ2(∼s)B =∼gfp1
s ·σ1(∼s)B · ∼gfp1

s .

Hence
∼σ2(B)
s = σ2(∼s)B =∼gfp1

s ·σ1(∼s)B · ∼gfp1
s =∼σ1(gfp1)

s ·σ1(∼s)B · ∼σ1(gfp1)
s

= σ1(∼s)gfp1 · σ1(∼s)B · σ1(∼s)gfp1 = σ1(∼s)F (B) =∼σ1(F (B))
s ,
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i.e., σ2 = σ1 ◦ F . By Lemma 8.5(6), it remains to show that F (gfp2) is σ1-dense. Let s ∈ S. Since σ2 = σ1 ◦ F
and gfp1 · gfp1 ≤ gfp1,

∼F (gfp2)
s =∼gfp1

s · ∼gfp2
s · ∼gfp1

s =∼gfp1
s · ∼σ2(gfp2)

s · ∼gfp1
s

=∼gfp1
s ·σ1(∼s)F (gfp2)· ∼gfp1

s =∼gfp1
s · ∼gfp1

s ·σ1(∼s)gfp2 · ∼gfp1
s · ∼gfp1

s

=∼gfp1
s ·σ1(∼s)gfp2 · ∼gfp1

s =∼σ1(gfp1)
s ·σ1(∼s)gfp2 · ∼σ1(gfp1)

s

= σ1(∼s)gfp1 · σ1(∼s)gfp2 · σ1(∼s)gfp1 = σ1(∼s)F (gfp2) =∼σ1(F (gfp2))
s . o

9 Finitely branching swinging types

Theorem 9.1 Given the assumptions of Def. 8.1, an R1-positive Σ′-formula ϕ is Σ′-compact over A iff for all

increasing chains B0 ≤ B1 ≤ B2 ≤ . . . of Mod(Σ′, A),

(1) sets {ψj :
∏
i∈Ij si}j∈J of Σ′-formulas and a ∈

∏
i∈∪{Ij |j∈J} s

A
i such that

∧
j∈J ψj is a subformula of ϕ,

∀j ∈ J ∃i ∈ N : πIj (a) ∈ ψBij implies ∃i ∈ N ∀j ∈ J : πIj (a) ∈ ψBij , (3)

(2) Σ′-formulas ψ :
∏
i∈I si, k ∈ I and a ∈

∏
i∈I\{k} s

A
i such that ∀kψ is a subformula of ϕ,

∀b ∈ sAk ∃i ∈ N : a ∗k b ∈ ψBi implies ∃i ∈ N ∀b ∈ sAk : a ∗k b ∈ ψBi . (4)

Proof. Let B0 ≤ B1 ≤ B2 ≤ . . . be an increasing chain of Mod(Σ′, A). We show 8.11(2) for all R1-positive

Σ′-formulas ϕ. Let B = ti∈NBi, (ϕ, a) ∈Mα, a ∈ ϕB and I be a nonempty set.

• Let ϕ = r(t) be a Σ′-atom. If r ∈ R, then ϕ is a Σ-formula and thus a ∈ ϕB = ϕA =
⋃
i∈N ϕ

Bi . If r ∈ R1,

then a ∈ ϕB =
⋃
i∈N ϕ

Bi .

• Let ϕ = ¬ψ for some Σ-atom ψ : s. Hence ψB = ψA =
⋂
i∈N ψ

Bi and thus

a ∈ ϕB = sA \ ψB = sA \
⋂
i∈N

ψBi =
⋃
i∈N

(sA \ ψBi) =
⋃
i∈N

ϕBi .

• Let ϕ =
∧
j∈J ψj :

∏
i∈Ij si. Then for all j ∈ J there is αj < α such that (ψj , πIj (a)) ∈ Mαj . a ∈ ϕB

implies πIj (a) ∈ ψBj for all j ∈ J . Hence by induction hypothesis, πIj (a) ∈
⋃
i∈N ψ

Bi
j , i.e., there is

i ∈ N such that πIj (a) ∈ ψBi . By (3), there is i ∈ N such that for all j ∈ J , πIj (a) ∈ ψBij . Hence

a ∈ ϕBi ⊆
⋃
i∈N ϕ

Bi .

• Let ϕ =
∨
j∈J ψj :

∏
i∈Ij si. Then for all j ∈ J there is αj < α such that (ψj , πIj (a)) ∈ Mαj . Hence by

induction hypothesis, πIj (a) ∈
⋃
i∈N ψ

Bi
j , i.e., there is i ∈ N such that πIj (a) ∈ ψBi . Hence a ∈ ϕBi ⊆⋃

i∈N ϕ
Bi .

• Let ϕ = ∀kψ for some k ∈ I. Then for all b ∈ sAk there is αb < α such that (ψ, a ∗k b) ∈ Mαb . a ∈ ϕB

implies a∗k b ∈ ψB for all b ∈ sAk . Hence by induction hypothesis, a∗k b ∈
⋃
i∈N ψ

Bi , i.e., there is i ∈ N such

that a ∗k b ∈ ψBi . By (4), there is i ∈ N such that for all b ∈ sAk , a ∗k b ∈ ψBi . Hence a ∈ ϕBi ⊆
⋃
i∈N ϕ

Bi .

• Let ϕ = ∃kψ for some k ∈ I. Then for all b ∈ sAk there is αb < α such that (ψ, a ∗k b) ∈ Mαb . a ∈ ϕB

implies a ∗k b ∈ ψB for some b ∈ sAk . Hence by induction hypothesis, a ∗k b ∈
⋃
i∈N ψ

Bi , i.e., there is i ∈ N
such that a ∗k b ∈ ψBi . Hence a ∈ ϕBi ⊆

⋃
i∈N ϕ

Bi . o

By dualizing the preceding proof, one obtains:

Theorem 9.2 Given the assumptions of Def. 8.1, an R1-positive Σ′-formula ϕ is Σ′-cocompact over A iff

for all decreasing chains B0 ≥ B1 ≥ B2 ≥ . . . of Mod(Σ′, A),

(1) sets {ψj :
∏
i∈Ij si}j∈J of Σ′-formulas and a ∈

∏
i∈∪{Ij |j∈J} s

A
i such that

∨
j∈J ψj is a subformula of ϕ,

∀i ∈ N ∃j ∈ J : πIj (a) ∈ ψBij implies ∃j ∈ J ∀i ∈ N : πIj (a) ∈ ψBij ,
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(2) Σ′-formulas ψ :
∏
i∈I si, k ∈ I and a ∈

∏
i∈I\{k} s

A
i such that ∃kψ is a subformula of ϕ,

∀i ∈ N ∃b ∈ sAk : a ∗k b ∈ ψBi implies ∃b ∈ sAk ∀i ∈ N : a ∗k b ∈ ψBi .

Theorems 9.1 and 9.2 lead to the following criterion for compactness resp. cocompactness:

Definition 9.3 (finitely branching) Let the assumptions of Def. 8.1 hold true and B ∈Mod(Σ′, A).

A set {ϕj :
∏
i∈Ij si}j∈J is finitely B-solvable if for all a ∈

∏
i∈∪{Ij |j∈J} s

B
i , the set of j ∈ J such that

πIj (a) ∈ ϕBj is finite.

A Σ′-formula ϕ :
∏
i∈I si is finitely B-solvable in k ∈ I if for all a ∈

∏
i∈I\{k} s

B
i , the set of b ∈ sBk such

that a ∗k b ∈ ϕB is finite.

SP ′ is finitely branching in B if for all Horn clauses p ⇐ ϕ ∈ AX1, co-Horn clauses q ⇒ ψ ∈ AX1,

subformulas
∧
j∈J ϕj and ∀k : ϑ of ϕ and subformulas

∨
j∈J ϕj and ∃k : ϑ of ψ, {ϕj}j∈J is finitely B-solvable

and ϑ is finitely B-solvable in k. o

Modal logic achieves continuity by restricting the bodies of modal operators like 2 and 3 to propositions

about finitely branching transition systems. Roughly said, the restriction implies that the set of solutions of

these bodies in the quantified variables is finite. The following example may illustrate the connection between

finitely branching transition systems and (co)compact formulas.

Given a specification of a set State of states and a transition system→ on State, the least relation r ⊆ State
that satisfies the Horn clause

r(s) ⇐ ∀s′ : (s→ s′ ⇒ q(s′)) (1)

consists of all states that admit only finite runs w.r.t. →. Since, in this example, the models Bi in Def. 8.11

reduce to sets Si of states (i.e., the different interpretations of r), the premise of (1) is compact iff for all

increasing chains S0 ⊆ S1 ⊆ S2 ⊆ . . . of sets of states,

∀s′∃is′ : (s→ s′ ⇒ s′ ∈ Sis′ ) implies ∃i∀s′ : (s→ s′ ⇒ s′ ∈ Si). (2)

Now suppose that the premise of (2) holds true and → is finitely branching. If the chain becomes stationary,

i.e., there is n ∈ N such that Sj = Sn for all j ≥ n, then the conclusion of (2) holds true for i = n. Otherwise

there is n ∈ N such that Sn consists of all direct successors of s w.r.t. →. Again i = n satisfies the conclusion

of (2). Duality suggests that a finitely branching transition system → also entails that the conclusion of the

co-Horn clause that results from negating (1):

r(s) ⇒ ∃s′ : (s→ s′ ∧ q(s′)), (3)

is cocompact. Indeed, (3) is cocompact iff for all decreasing chains S0 ⊇ S1 ⊇ S2 ⊇ . . . of sets of states,

∀i∃s′i : (s→ s′ ∧ s′i ∈ Si) implies ∃s′∀i : (s→ s′ ∧ s′ ∈ Si). (4)

Suppose that the premise of (4) holds true and→ is finitely branching. Then there is a state s′ such that s→ s′

and s′ = s′i for infinitely many i ∈ N. Hence for all i ∈ N there is ni ≥ i with s′ni = s′. Since s′ = s′ni ∈ Sni ⊆ Si,
we obtain the conclusion of (4).

Moreover, the invariance and congruence axioms of Definition 10.1 are finitely branching.

Lemma 9.4 Let the assumptions of Def. 8.1 hold true. If SP ′ is finitely branching in all B ∈Mod(Σ′, A),

then the premises of all Horn clauses of AX1 are Σ′-compact over A and the conclusions of all co-Horn clauses

of AX1 are Σ′-cocompact over A.

Proof. Let p⇐ ϕ ∈ AX1 and B0 ≤ B1 ≤ B2 ≤ . . . be an increasing chain of Mod(Σ′, A).
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Let {ϕj :
∏
i∈Ij si}j∈J be a set of Σ′-formulas and a ∈

∏
i∈∪{Ij |j∈J} s

B
i such that

∧
j∈J ϕj is a subformula of

ϕ. Suppose that for all j ∈ J there is i ∈ N such that πIj (a) ∈ ϕBij . Since SP ′ is finitely branching in Bi, the

set of j ∈ J such that πIj (a) ∈ ϕBj is finite. Hence there is n ∈ N such that for all j ∈ J , πIj (a) ∈ ϕBij for some

i ≤ n. Since Bi ≤ Bn and thus, by Theorem 8.13, ϕBij ⊆ ϕ
Bn
j , we conclude that for all j ∈ J , πIj (a) ∈ ϕBnj .

Let ψ :
∏
i∈I si be a Σ′-formula, k ∈ I and a ∈

∏
i∈I\{k} s

A
i such that ∀kψ is a subformula of ϕ. Suppose

that for all b ∈ sAk there is i ∈ N such that a ∗k b ∈ ψBi . Since SP ′ is finitely branching in Bi, the set of b ∈ sBik
such that a ∗k b ∈ ψBi is finite. Hence there is n ∈ N such that for all b ∈ sBk , a ∗k b ∈ ψBi for some i ≤ n. Since

Bi ≤ Bn and thus, by Theorem 8.13, ψBi ⊆ ψBn , we conclude that for all b ∈ sBik , a ∗k b ∈ ψBn .

Let p⇒ ϕ ∈ AX1 and B0 ≥ B1 ≥ B2 ≥ . . . be a decreasing chain of Mod(Σ′, A).

Let {ϕj :
∏
i∈Ij si}j∈J be a set of Σ′-formulas and a ∈

∏
i∈∪{Ij |j∈J} s

B
i such that

∨
j∈J ϕj is a subformula of

ϕ. Suppose that for all i ∈ N there is ji ∈ J such that πIji (a) ∈ ϕBiji . Since SP ′ is finitely branching in Bi, the

set of j ∈ J such that πIj (a) ∈ ϕBij is finite. Hence there are j ∈ J and infinitely many i ∈ N such that ji = j.

Consequently, for all i ∈ N there is ni ≥ i such that jni = j and thus πIj (a) = πIjni
(a) ∈ ϕBnijni

= ϕ
Bni
j . Since

Bi ≥ Bni and thus, by Theorem 8.13, ϕBij ⊇ ϕ
Bni
j , we conlude that for all i ∈ N, πIj (a) ∈ ϕBij .

Let ψ :
∏
i∈I si be a Σ′-formula, k ∈ I and a ∈

∏
i∈I\{k} s

A
i such that ∃kψ is a subformula of ϕ. Suppose

that for all i ∈ N there is bi ∈ sAk such that a ∗k bi ∈ ψBi . Since SP ′ is finitely branching in Bi, the set of

b ∈ sBik such that a ∗k b ∈ ψBi is finite. Hence there are b ∈ sBk and infinitely many i ∈ N such that bi = b.

Consequently, for all i ∈ N there is ni ≥ i such that bni = b and thus a ∗k b = a ∗k bni ∈ ψBni . Since Bi ≥ Bni
and thus, by Theorem 8.13, ψBi ⊇ ψBni , we conlude that for all i ∈ N, a ∗k b ∈ ψBi . o

Proposition 8.12, Theorems 9.1 and 9.2 and Lemma 9.4 immediately imply:

Theorem 9.5 Let the assumptions of Def. 8.1 hold true, Σ1 = (S0, S, F
′, R) and A be a Σ1-structure. ΦA,σ

is continuous resp. cocontinuous over A iff SP ′ is finitely branching over A. o

If the clauses of AX ′ \ AX are Σ′-compact resp. -cocompact over A, then by Proposition 8.12, ΦA,σ is

continuous resp. cocontinuous over A. Hence Theorem 8.3 (Kleene) provides us with an inductive construction

of the least resp. greatest fixpoint of σ: for all r ∈ R′ \R,

rlfp(ΦA,σ) =
⋃
i∈N

rΦiA,σ(⊥) resp. rgfp(ΦA,σ) =
⋂
i∈N

rΦiA,σ(>).

Consequently, a property P holds true for lfp(ΦA,σ) iff there is i ∈ N such that P is valid for ΦiA,σ(⊥), while P

holds true for gfp(ΦA,σ) iff for all i ∈ N, P is valid for ΦiA,σ(>).

10 Abstraction and restriction

Definition 10.1 (congruence and invariant axioms) Let Σ = (S0, S, F,R) be a signature. The congruence

property of equalities can be axiomatized either by Horn clauses (CONH) or by co-Horn clauses (CONC):

f(x) ≡s′ f(y) ⇐ x ≡s y for all f : s→ s′ ∈ F CONH1

r(x) ⇐ x ≡s y ∧ r(y) for all r : s ∈ R CONH2

(xi)i∈I ≡∏
i∈I

si
(yi)i∈I ⇐

∧
i∈I xi ≡si yi for all {si}i∈I ⊆ TS CONH3

ιi(x) ≡∐
i∈I

si
ιi(y) ⇐ x ≡si y for all {si}i∈I ⊆ TS and i ∈ I CONH4
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x ≡s y ⇒ f(x) ≡s′ f(y) for all f : s→ s′ ∈ F CONC1

r(x) ⇒ (x ≡s y ⇒ r(y)) for all r : s ∈ R CONC2

(xi)i∈I ≡∏
i∈I

si
(yi)i∈I ⇒ xi ≡si yi for all {si}i∈I ⊆ TS and i ∈ I CONC3

ιi(x) ≡∐
i∈I

si
ιi(y) ⇒ x ≡si y for all {si}i∈I ⊆ TS and i ∈ I CONC4

ιi(x) ≡∐
i∈I

si
ιj(y) ⇒ False for all {si}i∈I ⊆ TS and i, j ∈ I with i 6= j CONC4

Analogously, the invariant property of universes can be axiomatized either by Horn clauses (INVH) or by

co-Horn clauses (INVC):

alls′(f(x))⇐ alls(x) for all f : s→ s′ ∈ F INVH1

all∏
i∈I

si
(xi)i∈I ⇐

∧
i∈I allsi(xi) for all {si}i∈I ⊆ TS INVH2

all∐
i∈I

si
(ιi(x)) ⇐ allsi(x) for all {si}i∈I ⊆ TS and i ∈ I INVH3

alls(x)⇒ alls′(f(x)) for all f : s→ s′ ∈ F INVC1

all∏
i∈I

si
(xi)i∈I ⇒ allsi(xi) for all s1, . . . , sn ∈ TS and 1 ≤ i ≤ n INVC2

all∐
i∈I

si
(ιi(x)) ⇒ allsi(x) for all s1, . . . , sn ∈ TS and 1 ≤ i ≤ n INVC3

These axioms include the extensions of ≡ and all to products and sums that are also called relation resp.

predicate liftings (see section 4).

Lemma 10.2 Let the assumptions of Def. 8.1 hold true, A ∈Mod(SP ) and B ∈Mod(Σ′, A).

(1) If SP ′ is a µ-extension of SP and CONH ⊆ AX1, then ≡B is an R′-compatible Σ′-congruence.

(2) If SP ′ is a ν-extension of SP and CONC ⊆ AX1, then ≡B is an R′-compatible Σ′-congruence.

(3) If SP ′ is a µ-extension of SP and INV H ⊆ AX1, then allB is a Σ′-invariant.

(4) If SP ′ is a ν-extension of SP and INV C ⊆ AX1, then allB is a Σ′-invariant.

(5) If SP ′ is a ν-extension of SP , CONC ⊆ AX1 and B = gfp(ΦA,σ), then ≡B is an R′-compatible equivalence

relation.

Proof. (1)-(4) hold true trivially.

(5) Let B∗ = ti∈NBi where Bi ∈Mod(Σ′, A) is defined as follows: Let s ∈ TS and r : s′ ∈ R′ \R.

• ≡B0
s = ∆B

s ∪ ≡Bs ∪(≡Bs )−1 and rB0 = rB .

• For all i > 0, ≡Bi+1
s = {(a, b) ∈ sA × sA | ∃ c : (a ≡Bis c ∧ c ≡Bis b)}.

• For all i > 0, rBi+1 = {a ∈ As′ | ∃ b : (a ≡Bs′ b ∧ b ∈ rBi)}.

Suppose that B∗ satisfies CONC. Since B is the greatest Σ′-structure over A that satisfies CONC, B∗ ≤ B
and thus B∗ = B because B ≤ B∗. Since B∗ is an R′-compatible equivalence relation, the proof is complete.

It remains to prove B∗ |= CONC. we show Bi |= CONC for all i ∈ N. Let s ∈ S1 and r : s ∈ R′ \ R. Since

≡B0 is a Σ′-congruence, B0 |= CONC. Let i > 0. By induction hypothesis, Bi−1 satisfies CONC.

We show that Bi satisfies CONC1. Let f : s → s′ ∈ F \ F0 and a ≡Bis b. Then there is c ∈ sA such that

a ≡Bi−1
s c and c ≡Bi−1

s b. Since Bi−1 satisfies CONC1, fA(a) ≡Bi−1
s fA(c) and fA(c) ≡Bi−1

s fA(b). Hence

fA(a) ≡Bis fA(b).

We show that Bi satisfies CONC2. Let s =
∏
i∈I si ∈ TS and (aj)j∈I ≡Bis (bj)j∈I . Then there is {cj}j∈I ⊆ sA

such that (aj)j∈I ≡B (cj)j∈I and (cj)j∈I ≡Bi−1
s (bj)j∈I . Since B satisfies CONC2, for all j ∈ I, aj ≡Bi−1

sj cj



10 Abstraction and restriction 43

and cj ≡Bi−1
sj bj . Hence aj ≡Bisj bj .

Analogously, Bi satisfies CONC3-CONC9. o

Theorem 10.3 Let Σ = (S0, S, F,R) be a signature, A ∈ Mod(Σ), ∼ be a Σ-congruent and R-compatible

equivalence relation on A and ϕ be a Σ-formula. Then B =def A/∼ satisfies ϕ iff A satisfies ϕ.

Proof. The conjecture holds true if

{[a] ∈ B | a ∈ ϕA} = ϕA/∼. (1)

(1) is shown by induction on the structure of ϕ: Let r(t) be a Σ-atom. Then by Proposition 4.14,

a ∈ (r ◦ t)A = (tA)−1(rA)⇐⇒ tA(a) ∈ rA ⇐⇒ tB([a]) = [tA(a)] ∈ rB

⇐⇒ [a] ∈ (tB)−1(rA) = (r ◦ t)B .

Let ϕ : s be a Σ-formula. By induction hypothesis,

a ∈ (¬ϕ)A = sA \ ϕA ⇐⇒ [a] ∈ Bs \ ϕA/∼ = (¬ϕ)B .

Let {ϕj :
∏
i∈Ij si}j∈J be a set of Σ-formulas. Then, by induction hypothesis,

a ∈ (
∧
j∈J ϕj)

A =
⋂
j∈J π

−1
Ij

(ϕAj )⇐⇒ ∀ j ∈ J : πIj (a) ∈ ϕAj ⇐⇒ ∀ j ∈ J : πIj ([a]) = [πIj (a)] ∈ ϕBj
⇐⇒ [a] ∈

⋂
j∈J π

−1
Ij

(ϕBj ) = (
∧
j∈J ϕj)

B .

Let ϕ :
∏
i∈I si be a Σ-formula and k ∈ I. By induction hypothesis,

a ∈ (∀kϕ)A =
⋂
b∈sA

k
(ϕA ÷k b)⇐⇒ ∀ b ∈ sAk : a ∈ ϕA ÷k b

⇐⇒ ∀ b ∈ sAk : a ∗k b ∈ ϕA ⇐⇒ ∀ [b] ∈ sBk : [a] ∗k [b] = [a ∗k b] ∈ ϕB

⇐⇒ ∀ [b] ∈ sBk : [a] ∈ ϕB ÷k [b]⇐⇒ [a] ∈
⋂

[b]∈sB
k

(ϕB ÷k [b]) = (∀kϕ)B . o

Theorem 10.4 Let Σ = (S0, S, F,R) be a signature, A ∈ Mod(Σ), inv =def all
A be a Σ-invariant on A,

S1 = S \ S0 and ϕ : s be a restricted Σ-formula. Then B =def A|inv satisfies ϕ if A satisfies ϕ.

Proof. The conjecture holds true if

ϕA ∩ invs = ϕB . (1)

(1) is shown by induction on the structure of ϕ: Let r(t) : s be a Σ-atom and a ∈ invs. Since inv is Σ-invariant,

tA(a) ∈ inv and thus by Proposition 4.14,

a ∈ (r ◦ t)A = (tA)−1(rA)⇐⇒ tA(a) ∈ rA ⇐⇒ tB(a) = tA(a) ∈ rA ∩ inv = rB

⇐⇒ a ∈ (tB)−1(rB) = (r ◦ t)B .

Let ϕ : s be an restricted Σ-formula and a ∈ invs. By induction hypothesis,

a ∈ (¬ϕ)A = sA \ ϕA ⇐⇒ a ∈ invs \ ϕA = invs \ (ϕA ∩ invs) = invs \ ϕB = (¬ϕ)B .

Let {ϕj :
∏
i∈Ij si}j∈J be a set of Σ-formulas and s =

∏
i∈∪{Ij |j∈J} such that ϕ =

∧
j∈J ϕj is restricted and

a ∈ invs. Then for all j ∈ J , πIj (a) ∈ inv∏
i∈Ij

si
, and thus by induction hypothesis,

a ∈ (
∧
j∈J ϕj)

A =
⋂
j∈J π

−1
Ij

(ϕAj )⇐⇒ ∀ j ∈ J : πIj (a) ∈ ϕAj
⇐⇒ ∀ j ∈ J : πIj (a) ∈ ϕAj ∩ inv∏

i∈Ij
si

= ϕBj ⇐⇒ a ∈
⋂
j∈J π

−1
Ij

(ϕBj ) = (
∧
j∈J ϕj)

B .
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Let ϕ :
∏
i∈I si be a Σ-formula, k ∈ I and s =

∏
i∈I\{k} si such that ∀kϕ is restricted and a ∈ invs. Let sk ∈ S0.

Then invsk = Ask . Hence for all b ∈ Ask , a ∗k b ∈ inv∏
i∈I

si
, and thus by induction hypothesis,

a ∈ (∀kϕ)A =
⋂
b∈sA

k
(ϕA ÷k b) =

⋂
b∈invsk

(ϕA ÷k b)⇐⇒ ∀ b ∈ invsk : a ∈ ϕA ÷k b
⇐⇒ ∀ b ∈ invsk : a ∗k b ∈ ϕA ⇐⇒ ∀ b ∈ invsk : a ∗k b ∈ ϕA ∩ inv∏

i∈I
si

= ϕB

⇐⇒ ∀ b ∈ invsk : a ∈ ϕB ÷k b⇐⇒ a ∈
⋂
b∈invsk

(ϕB ÷k b) = (∀kϕ)B .

Let sk ∈ S1. Since ∀kϕ is restricted, w.l.o.g. ϕ = ¬allsk(k) ∨ ψ for some Σ-formula ψ. Hence a ∈ invs and the

induction hypothesis imply

a ∈ (∀kϕ)A =
⋂
b∈sA

k
(ϕA ÷k b)⇐⇒ ∀ b ∈ sAk : a ∈ ϕA ÷k b⇐⇒ ∀ b ∈ sAk : a ∗k b ∈ ϕA = (¬allsk(k) ∨ ψ)A

⇐⇒ ∀ b ∈ sAk : (b 6∈ allAsk = invsk ∨ a ∗k b ∈ ψA)⇐⇒ ∀ b ∈ invsk : a ∗k b ∈ ψA

⇐⇒ ∀ b ∈ invsk : a ∗k b ∈ ψA ∩ inv∏
i∈I

si
= ψB

⇐⇒ ∀ b ∈ invsk : (a ∗k b = b 6∈ invsk = allBsk ∨ a ∗k b ∈ ψ
B)

⇐⇒ ∀ b ∈ invsk : a ∗k b ∈ (¬allsk(k) ∨ ψ)B = ϕB ⇐⇒ ∀ b ∈ invsk : a ∈ ϕB ÷k b
⇐⇒ a ∈

⋂
b∈invsk

(ϕB ÷k b) = (∀kϕ)B . o

Theorem 10.5 Let Σ = (S, F,R) be an algebraic signature, A,B ∈ Mod(Σ) and ϕ : s be an implicational

Σ-formula. Then A×B satisfies ϕ if A and B satisfy ϕ.12

Proof. Note that s is a product of sorts because Σ is algebraic. The conjecture holds true if

{〈a, b〉 | a ∈ ϕA ∧ b ∈ ϕB} ⊆ ϕA×B . (1)

At first we show

{〈a, b〉 | a ∈ ϕA ∧ b ∈ ϕB} = ϕA×B (2)

for all universally quantified conjunctions ϕ of Σ-atoms by induction on the structure of ϕ: Let r(t) : s be a

Σ-atom, a ∈ sA and b ∈ sB . Then by Proposition 4.14,

a ∈ r(t)A = (r ◦ t)A = (tA)−1(rA) ∧ b ∈ r(t)B = (r ◦ t)B = (tB)−1(rB)⇐⇒ tA(a) ∈ rA ∧ tB(b) ∈ rB

⇐⇒ 〈tA(a), tB(b)〉 ∈ rA×B ⇐⇒ 〈a, b〉 ∈ (tA×B)−1(rA×B) = (r ◦ t)A×B = r(t)A×B .

Let {ϕj :
∏
i∈Ij si}j∈J be a set of implicational Σ-formulas. Then, by induction hypothesis,

a ∈ (
∧
j∈J ϕj)

A =
⋂
j∈J π

−1
Ij

(ϕAj ) ∧ b ∈ (
∧
j∈J ϕj)

B =
⋂
j∈J π

−1
Ij

(ϕBj )

⇐⇒ ∀ j ∈ J : πIj (a) ∈ ϕAj ∧ ∀ j ∈ J : πIj (b) ∈ ϕBj ⇐⇒ ∀ j ∈ J : πIj (〈a, b〉) = 〈πIj (a), πIj (b)〉 ∈ ϕA×Bj

⇐⇒ 〈a, b〉 ∈
⋂
j∈J π

−1
Ij

(ϕA×Bj ) = (
∧
j∈J ϕj)

A×B .

Let ϕ :
∏
i∈I si be an implicational Σ-formula and k ∈ I. By induction hypothesis,

a ∈ (∀kϕ)A =
⋂
c∈sA

k
(ϕA ÷k c) ∧ b ∈ (∀kϕ)B =

⋂
d∈sB

k
(ϕB ÷k d)

⇐⇒ ∀ c ∈ sAk : a ∈ ϕA ÷k c ∧ ∀ d ∈ sBk : b ∈ ϕB ÷k d⇐⇒ ∀ c ∈ sAk : a ∗k c ∈ ϕA ∧ ∀ d ∈ sBk : b ∗k d ∈ ϕB

⇐⇒ ∀ 〈c, d〉 ∈ sA×Bk : 〈a, b〉 ∗k 〈c, d〉 = 〈a ∗k c, b ∗k d〉 ∈ ϕA×B

⇐⇒ ∀ 〈c, d〉 ∈ sA×Bk : 〈a, b〉 ∈ ϕA×B ÷k 〈c, d〉 ⇐⇒ 〈c, d〉 ∈
⋂
〈c,d〉∈sA×B

k
(ϕA×B ÷k 〈c, d〉) = (∀kϕ)A×B .

Secondly, we show (1) by induction on the structure of an implicational Σ-formula ϕ: If ϕ is an atom, a

conjunction or a universally quantified formula, the proof proceeds analogously to the above proof of (2): just

12Counterexamples showing that this theorem cannot be generalized to non-algebraic signatures or non-implicational formulas
are obtained easily from the study of products and implicational classes in universal algebra. See, e.g., [71], Section 5.3, and [111],
Section 3.3.
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replace “universally quantified conjunction of atoms” by implicational formula”. It remains to derive (1) for

simple implications ψ ⇒ ϕ (see Def. 3.12) from the validity of (1) for ϕ: Let ϕ :
∏
i∈J si be an implicational

Σ-formula and ψ :
∏
i∈I si be a universally quantified conjunction of atoms. By (2) and induction hypothesis,

a ∈ (ψ ⇒ ϕ)A ∧ b ∈ (ψ ⇒ ϕ)B ⇐⇒ (a 6∈ ψA ∨ a ∈ ϕA) ∧ (b 6∈ ψB ∨ b ∈ ϕB)

⇐⇒ (a 6∈ ψA ∧ b 6∈ ψB) ∨ (a 6∈ ψA ∧ b ∈ ϕB) ∨ (a ∈ ϕA ∧ b 6∈ ψB) ∨ (a ∈ ϕA ∧ b ∈ ϕB)

=⇒ a 6∈ ψA ∨ b 6∈ ψB) ∨ (a ∈ ϕA ∧ b ∈ ϕB)

=⇒ 〈a, b〉 6∈ ψA×B ∨ 〈a, b〉 ∈ ϕA×B ⇐⇒ 〈a, b〉 ∈ (ψ ⇒ ϕ)A×B . o

Definition 10.6 (reachable, observable, consistent, complete) Let Σ = (S0, S, F,R) be a subsignature of a

signature Σ′ = (S0, S, F
′, R′), S1 = S \ S0, B ∈ Mod(Σ′, A) for some S0-sorted set A. The Σ-reachability

invariant of B, reachBΣ , is the image of the S-sorted function reachB with

reachBs = [t]t∈MGenΣ,s
: (

∐
t∈MGenΣ,s

domA
t )→ sB .

The Σ-observability congruence of B, obsBΣ , is the kernel of the S-sorted function obsB with

obsBs = 〈t〉t∈MObsΣ,s : sB →
∏

t∈MObsΣ,s

ranAt .

B is Σ-reachable or Σ-generated13 if reachBΣ = B.

B is Σ-observable or Σ-cogenerated14 if obsBΣ = ∆B .

B is Σ-consistent if for all t, u ∈MGenΣ and a, b ∈ A, tB(a) = uB(b) implies tFree(Σ,A)(a) = uFree(Σ,A)(b).

B is Σ-complete if for all a ∈ Cofree(Σ, A), obsB(b) = a for some b ∈ B.

Given a class C of Σ′-structures, RC and OC denote the subclasses of Σ′-reachable and Σ′-observable struc-

tures of C, respectively. o

In [83], both Σ-reachable and Σ-consistent structures are called free, while both Σ-observable and Σ-complete

structures are called cofree.

Lemma 10.7 Let the assumptions of Def. 10.6 hold true and Σ = Σ′.

(1) Suppose that for all f : s → s′ ∈ F , s, s′ ∈ TS0
or s′ ∈ S1. Then the Σ-reachability invariant of B is a

Σ-invariant.

(2) Suppose that for all f : s→ s′ ∈ F , s, s′ ∈ TS0
or s ∈ S1. Then the Σ-observability congruence of B is a

Σ-congruence.

(3) Let h : B → C be a Σ-homomorphism. C is Σ-complete if B is Σ-complete. B is Σ-consistent if C is

Σ-consistent.

(4) Let h : B → C be a Σ-epimorphism. C is Σ-reachable resp. Σ-observable if B is Σ-reachable resp.

Σ-observable. B is Σ-complete if C is Σ-complete.

(5) Let h : B → C be a Σ-monomorphism. C is Σ-consistent if B is Σ-consistent. B is Σ-reachable resp.

Σ-observable if C is Σ-reachable resp. Σ-observable.

Proof. (1) Let s ∈ S, f : s→ s′ ∈ F and b ∈ reachBΣ,s. Then b = tB(a) for some t ∈MGenΣ,s and a ∈ domA
t .

If s, s′ ∈ S0, then ids′ is a maximal Σ-generator and thus fB(b) = idBs′(f
B(b)) ∈ reachBΣ,s′ . If s′ ∈ S1, then f is

an S1-constructor and thus f ◦ t : dom→ s′ is a maximal Σ-generator. Hence fB(b) = f(tB(a)) = (f ◦ t)B(a) ∈
reachBΣ,s′ .

13This notion is used in [83].
14dto.
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(2) Let s ∈ S, f : s → s′ ∈ F and (a, b) ∈ obsBΣ,s. Then for all t : s → ran ∈ MObsΣ, tB(a) = tB(b). If

s, s′ ∈ S0, then ids is a maximal Σ-observer and thus a = idBs (a) = idBs (b) = b. Hence fB(a) = fB(b) and thus

(fB(a), fB(b)) ∈ obsBΣ,s′ because kernels are reflexive. If s′ ∈ S1, then f is an S1-destructor and thus for all

t : s′ → ran ∈MObsΣ, t ◦ f : s→ ran is a maximal Σ-observer. Hence tB(fB(a)) = (t ◦ f)B(a) = (t ◦ f)B(b) =

tB(fB(b)) and thus (fB(a), fB(b)) ∈ obsBΣ,s′ .

(3) Let B be Σ-complete and a ∈ sCofree(Σ,A). Hence obsBs (b) = a for some b ∈ B and thus by Proposition

4.6(5),

obsCs (h(b)) = 〈tC〉t∈MObsΣ,s(h(b)) = 〈tC ◦ h〉t∈MObsΣ,s(b) = 〈tB〉t∈MObsΣ,s(b) = obsBs (b) = a.

Hence C is Σ-complete.

Let C be Σ-consistent, t : s1 → s, u : s2 → s ∈ MGenΣ, a ∈ sA1 and b ∈ sA2 such that tB(a) = uB(b). By

Proposition 4.6(4), tC(a) = h(tB(a)) = h(uB(b) = uC(b) and thus tFree(Σ,A)(a) = uFree(Σ,A)(b) because C is

Σ-consistent. We conclude that B be Σ-consistent.

(4) Let B be Σ-reachable and c ∈ sC . Since h is surjective, c = h(b) for some b ∈ sB . Since B is

Σ-reachable, b = uB(a) for some u : dom → s ∈ MGenΣ and a ∈ domA. Hence by Proposition 4.6(4),

c = h(b) = h(uB(a)) = uC(a) and thus C is Σ-reachable.

Let B be Σ-observable and a, b ∈ sC such that obsCs (a) = obsCs (b). Since h is surjective, a = h(a′) and

b = h(b′) for some a′, b′ ∈ sB . Hence by Proposition 4.6(5),

obsBs (a′) = 〈tB〉t∈MObsΣ,s(a
′) = 〈tC ◦ h〉t∈MObsΣ,s(a

′) = 〈tC〉t∈MObsΣ,s(a) = obsCs (a) =

obsCs (b) = 〈tC〉t∈MObsΣ,s(b) = 〈tC ◦ h〉t∈MObsΣ,s(b
′) = 〈tB〉t∈MObsΣ,s(b

′) = obsBs (b′)

and thus a′ = b′ because B be Σ-observable.

Let C be Σ-complete and a ∈ sCofree(Σ,A). Hence obsCs (c) = a for some c ∈ C. Since h is surjective, c = h(b)

for some b ∈ sB , and thus by Proposition 4.6(5),

obsBs (b) = 〈tB〉t∈MObsΣ,s(b) = 〈tC ◦ h〉t∈MObsΣ,s(b) = 〈tC〉t∈MObsΣ,s(c) = a.

Hence B is Σ-complete.

(5) Let B be Σ-consistent, t : s1 → s, u : s2 → s ∈MGenΣ, a ∈ sA1 and b ∈ sA2 such that tC(a) = uC(b). By

Proposition 4.6(4), h(tB(a)) = tC(a) = uC(b) = h(uB(b)) and thus tB(a) = uB(b) because h is injective. Hence

tFree(Σ,A)(a) = uFree(Σ,A)(b) because B is Σ-consistent. We conclude that C be Σ-consistent.

Let C be Σ-reachable and b ∈ sB . Then h(b) = uC(a) for some u : dom → s ∈ MGenΣ and a ∈ domA.

Hence by Proposition 4.6(4), h(b) = uC(a) = h(uB(a)) and thus b = uB(a) because h is injective. We conlude

that B is Σ-reachable.

Let C be Σ-observable and a, b ∈ sB such that obsBs (a) = obsBs (b). Hence by Proposition 4.6(5),

obsCs (h(a)) = 〈tC〉t∈MObsΣ,s(h(a)) = 〈tC ◦ h〉t∈MObsΣ,s(a) = 〈tB〉t∈MObsΣ,s(a) = obsBs (a) =

obsBs (b) = 〈tB〉t∈MObsΣ,s(b) = 〈tC ◦ h〉t∈MObsΣ,s(b) = 〈tC〉t∈MObsΣ,s(h(b)) = obsCs (h(b))

and thus h(a) = h(b) because C is Σ-observable. Since h is injective, a = b, and we conclude that B is

Σ-observable. o

Lemma 10.8 Let the assumptions of Def. 10.6 hold true, Σ = Σ′, C be a class of Σ-structures and Ini be

initial in C or Fin be final in C. Let B ∈ C, g be the unique Σ-homomorphism from Ini to B or h be the unique

Σ-homomorphism B to Fin, respectively.

(1) reachBΣ ⊆ img(g).
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(2) ker(h) ⊆ obsBΣ .

(3) Ini is Σ-reachable. B is Σ-reachable iff g is surjective. If B is Σ-consistent, then g is injective. If g is

injective and C = ModEU (Σ, A) for some set A, then B is Σ-consistent.

(4) Fin is Σ-observable. B is Σ-observable iff h is injective. If B is Σ-complete, then h is surjective. If h is

surjective and C = ModEU (Σ, A) for some set A, then B is Σ-complete.

Proof. (1) Let b ∈ reachBΣ . Then b = tA(a) for some t : dom → s ∈ MGenΣ and a ∈ domA. Hence by

Proposition 4.6(4), b = tA(a) = g(tIni(a)) ∈ img(g).

(2) Let (a, b) ∈ ker(h) and t : s → ran ∈ MObsΣ. Then h(a) = h(b) and thus by Proposition 4.6(5),

tA(a) = tFin(h(a)) = tFin(h(b)) = tA(b). Hence (a, b) ∈ obsBΣ .

(3) By Lemma 10.7(1), reachIniΣ is a Σ-invariant and thus B = Ini|reachIniΣ is a substructure of Ini. By

Lemma 6.2(3), B is not a proper substructure of Ini. Hence for all s ∈ S, reachInis = sIni and thus Ini is

Σ-reachable. If B is Σ-reachable, then by (1), B = B|reachB ⊆ img(g) and thus g is surjective. If g is surjective,

then by Lemma 10.7(3), B is Σ-reachable because Ini is Σ-reachable.

Suppose that B is Σ-consistent. By Proposition 4.6(4), for all t ∈ MGenΣ, g ◦ tIni = tB . Since Ini is

Σ-reachable, this equation defines g. Hence g is injective iff for all t, u ∈ MGenΣ and a, b ∈ A, tB(a) = uB(b)

implies tIni(a) = uIni(b). So let t, u ∈ MGenΣ and a, b ∈ A such that tB(a) = uB(b). Since B is Σ-consistent,

tFree(Σ,A)(a) = uFree(Σ,A)(b). By Theorem 6.3, Free(Σ, A) is initial in ModEU (Σ, A). Hence there is a unique

Σ-homomorphism g′ : Free(Σ, A)→ Ini. By Proposition 4.6(4),

tIni(a) = g′(tFree(Σ,A)(a)) = g′(uFree(Σ,A)(b)) = uIni(b).

We have shown that g is injective.

Conversely, suppose that g is injective and C = ModEU (Σ, A). Then by Theorem 6.3, Ini = Free(Σ, A) and

thus tB(a) = uB(b) implies

tFree(Σ,A)(a) = tIni(a) = uIni(b) = uFree(Σ,A)(b)

because g is injective. Hence B is Σ-consistent.

(4) By Lemma 10.7(2), obsFinΣ is a Σ-congruence and thus a B = Fin/obsFinΣ is a quotient of Fin. By

Lemma 6.2(4), B is not a proper quotient of Fin. Hence obsFinΣ = ∆Fin and thus Fin is Σ-observable. If B

is Σ-observable, then by (2), ker(h) ⊆ obsBΣ = ∆B and thus h is injective. If h is injective, then by Lemma

10.7(2), B is Σ-observable because Fin is Σ-observable.

Suppose that B is Σ-complete. By Proposition 4.6(5), for all t ∈ ObsΣ, tFin ◦ h = tB . Since Fin is

Σ-observable, this equation defines h. Hence h is surjective iff for all c ∈ Fin there is b ∈ B such that for

all t ∈ MObsΣ, tB(b)(= tFin(h(b))) = tFin(c). So let c ∈ Fin. By Theorem 6.4, Cofree(Σ, A) is final in

ModEU (Σ, A). Hence there is a unique Σ-homomorphism h′ : Fin → Cofree(Σ, A). Since B is Σ-complete,

there is b ∈ B such that for all t : s→ ran ∈MObsΣ, tB(b) = h′(c)t = πt(h
′(c)) = tFin(c) (see Theorem 6.4(2)).

We have shown that h is surjective.

Conversely, suppose that h is surjective and C = ModEU (Σ, A). Then by Theorem 6.4, Fin = Cofree(Σ, A).

Let s ∈ S and c = (at)t:s→ran∈MObsΣ ∈ sCofree(Σ,A) = sFin. Since h is surjective, c = h(b) for some b ∈ B.

Hence by Proposition 4.6(5) and Theorem 6.4(2), tB(b) = tFin(c) = tCofree(Σ,A)(c) = πt(c) = at for all

t : s→ ran ∈MObsΣ. Hence B is Σ-complete. o

Theorem 10.9 (abstraction models) Let SP ′ = (Σ′, AX ′) be a swinging type with base type SP = (Σ, AX),

Σ = (S0, S, F,R), Σ′ = (S0, S, F
′, R′), σ be the relation transformer defined by AX ′ \ AX, Ini′ be initial in

Mod(Σ′, AX) and Φ be the (Ini′, σ)-step functor.
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(1) If SP ′ is a visible abstraction, then lfp(Φ)/≡lfp(Φ) is initial in ModEU (SP ′).

(2) If SP ′ is a hidden abstraction, then gfp(Φ)/≡gfp(Φ) is final in RModEU (SP ′).

Proof. Let equals = {≡s | s ∈ S1}.

(1) By Lemma 10.2(1) and Theorem 10.3, lfp(Φ) |= AX ′ implies lfp(Φ)/≡lfp(Φ)|= AX ′ and thus lfp(Φ)/≡lfp(Φ)∈
ModEU (SP ′). Let B ∈ModEU (SP ′). Hence B ∈Mod(Σ′, AX) and thus there is a unique Σ′-homomorphism

h : Ini′ → B.

Let A be the Σ′-structure that agrees with Ini′ except for the interpretation of R1 ∪ equals: for all r : s ∈
R1 ∪ equals, rA =def {a ∈ Ini′s | h(a) ∈ rB}. Hence for all s ∈ S, ≡A= ker(h) because B is a structure with

equality.

Suppose that for all r ∈ R1 ∪ equals, rlfp(Φ) is a subset of rA. In particular, for all s ∈ S1, ≡lfp(Φ)
s ⊆≡As and

thus for all a, b ∈ Ini′s, a ≡lfp(Φ) b implies h(a) = h(b). Hence g : lfp(Φ)/≡lfp(Φ)→ B with g([a]) =def h(a) for

all a ∈ Ini′ is well-defined. Therefore, h = g ◦ nat. Since nat is epimorphic and h is homomorphic, Lemma

4.16(1) implies that g is homomorphic, too. Moreover, let g′ be any Σ-homomorphism from lfp(Φ)/≡lfp(Φ) to

B. Since h is the only Σ-homomorphism from Ini′ to B, we obtain g′ ◦ nat = h = g ◦ nat and thus g′ = g

because nat is surjective. Hence lfp(Φ)/≡lfp(Φ) is initial in ModEU (SP ′).

It remains to show that for all r : s ∈ R1 ∪ equals, rlfp(Φ) is a subset of rA. By Theorem 8.4(1), rlfp(Φ) ⊆ rA

follows from rΦ(A) ⊆ rA. So let a ∈ rΦ(A) = σ(r)A. Since for all q ∈ R′, qA = {a ∈ Ini′s | h(a) ∈ qB}, a ∈ σ(r)A

implies h(a) ∈ σ(r)B . Since B satisfies r ⇐ σ(r), h(a) ∈ σ(r)B implies h(a) ∈ rB , i.e., a ∈ rA.

(2) By Lemma 10.2(2) and (5) and Theorem 10.3, gfp(Φ) |= AX ′ implies B = gfp(Φ)/≡gfp(Φ)|= AX ′ and

thus B ∈ ModEU (SP ′). Since Ini′ is initial in Mod(Σ′, AX), gfp(Φ) is so, too, and thus by Lemma 10.8(3),

gfp(Φ) is Σ′-reachable. Hence there is unique Σ′-homomorphism h from gfp(Φ) to B that must agree with the

natural mapping. Therefore, h is surjective and thus, again by Lemma 10.8(3), B is Σ′-reachable. We conclude

that B ∈ RModEU (SP ′).

Let B ∈ RModEU (SP ′). Hence B ∈ModEU (SP ) and thus there is a unique Σ-homomorphism h : Ini′ → B.

Let A be the Σ′-structure that agrees with Ini′ except for the interpretation of R1 ∪ equals: for all r : s ∈
R1 ∪ equals, rA =def {a ∈ Ini′s | h(a) ∈ rB}. Hence for all s ∈ S, ≡A= ker(h) because B is a Σ-structure with

equality.

Suppose that for all r ∈ R1 ∪ equals, rA is a subset of rgfp(Φ). In particular, for all s ∈ S1, ≡As ⊆≡
gfp(Φ)
s

and thus for all a, b ∈ Ini′s, h(a) = h(b) implies a ≡gfp(Φ) b. By Lemma 10.8(3), h is surjective because B

is reachable. Hence g : B → gfp(Φ)/≡gfp(Φ) with g(h(a)) =def [a] for all a ∈ Ini′ is well-defined. Therefore,

g ◦h = nat. Since h is epimorphic and nat is homomorphic, Lemma 4.16(1) implies that g is homomorphic, too.

Moreover, let g′ be any Σ-homomorphism from B to gfp(Φ)/≡gfp(Φ). Since nat is the only Σ-homomorphism

from Ini′ to gfp(Φ)/≡gfp(Φ), we obtain g′ ◦ h = nat = g ◦ h and thus g′ = g because h is surjective. Hence

gfp(Φ)/≡gfp(Φ) is final in RModEU (SP ′).

It remains to show that for all r : s ∈ R1∪ equals, rA is a subset of rgfp(Φ). By Theorem 8.4(2), rA ⊆ rgfp(Φ)

follows from rA ⊆ rΦ(A). So let a ∈ rA. Hence h(a) ∈ rB and thus h(a) ∈ σ(r)B because B satisfies r ⇒ σ(r).

Since for all q ∈ R′, qA = {a ∈ Ini′s | h(a) ∈ qB}, h(a) ∈ σ(r)B implies a ∈ σ(r)A = rΦ(A). o

Theorem 10.10 (restriction models) Let SP ′ = (Σ′, AX ′) be a swinging type with base type SP = (Σ, AX),

Σ = (S0, S, F,R), Σ′ = (S0, S, F
′, R′), σ be the relation transformer defined by AX ′ \ AX, Fin′ be final in

Mod(Σ′, AX) and Φ be the (Fin′, σ)-step functor.

(1) If SP ′ is a hidden restriction, then gfp(Φ)|allgfp(Φ) is final in ModEU (SP ′).

(2) If SP ′ is a visible restriction, then lfp(Φ)|alllfp(Φ) is initial in OModEU (SP ′).
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Proof. Let univs = {alls | s ∈ S1}.

(1) By Lemma 10.2(4) and Theorem 10.4, gfp(Φ) |= AX ′ implies gfp(Φ)|allgfp(Φ) |= AX ′ and thus gfp(Φ)|allgfp(Φ) ∈
ModEU (SP ′). Let B ∈ModEU (SP ′). Hence B ∈Mod(Σ′, AX) and thus there is a unique Σ′-homomorphism

h : B → Fin′.

Let A be the Σ′-structure that agrees with Fin′ except for the interpretation of R1 ∪ univs: for all r ∈
R1 ∪univs, rA =def h(rB). Hence for all s ∈ S, allAs = h(allBs ) = h(sB) because B is a structure with universe.

Suppose that for all r ∈ R1 ∪ univs, rA is a subset of rgfp(Φ). In particular, for all s ∈ S1, h(sB) = allAs ⊆
all

gfp(Φ)
s . Hence g : B → gfp(Φ)|allgfp(Φ) with g(a) =def h(a) for all a ∈ B is well-defined. Therefore, h = inc◦g.

Since inc is monomorphic and h is homomorphic, Lemma 4.17(1) implies that g is homomorphic, too. Moreover,

let g′ be any Σ-homomorphism from B to gfp(Φ)|allgfp(Φ). Since h is the only Σ-homomorphism from B to

Fin′, we obtain inc ◦ g′ = h = inc ◦ g and thus g′ = g because inc is injective. Hence gfp(Φ)|allgfp(Φ) is final in

ModEU (SP ′).

It remains to show that for all r : s ∈ R1 ∪ univs, rA is a subset of rgfp(Φ). By Theorem 8.4(2), rA ⊆ rgfp(Φ)

follows from rA ⊆ rΦ(A). So let a ∈ rA. Hence a = h(b) for some b ∈ rB and thus b ∈ σ(r)B because B satisfies

r ⇒ σ(r). Since for all q ∈ R′, qA = h(qB), b ∈ σ(r)B implies a = h(b) ∈ σ(r)A = rΦ(A).

(2) By Lemma 10.2(3) and Theorem 10.4, lfp(Φ) |= AX ′ implies B = lfp(Φ)|alllfp(Φ) |= AX ′ and thus

B ∈ModEU (SP ′). Since Fin′ is final in Mod(Σ′, AX), lfp(Φ) is so, too, and thus by Lemma 10.8(4), lfp(Φ) is

Σ′-observable. Hence there is unique Σ′-homomorphism h from B to lfp(Φ) that must agree with the inclusion

mapping. Therefore, h is injective and thus, again by Lemma 10.8(4), B is Σ′-observable. We conclude that

B ∈ OModEU (SP ′).

Let B ∈ OModEU (SP ′). Hence B ∈ ModEU (SP ′) and thus there is a unique Σ-homomorphism h : B →
Fin′. Let A be the Σ′-structure that agrees with Fin′ except for the interpretation of R1 ∪ univs: for all

r ∈ R1 ∪ univs, rA =def h(rB). Hence for all s ∈ S, allAs = h(allBs ) = h(sB) because B is a Σ-structure with

universe.

Suppose that for all r ∈ R1 ∪ univs, rlfp(Φ) is a subset of rA. In particular, for all s ∈ S1, all
lfp(Φ)
s ⊆

allAs = h(sB) ⊆ Fin′. By Lemma 10.8(4), h is injective because B is observable. Hence g : lfp(Φ)|alllfp(Φ) → B

with g(h(b)) =def b for all b ∈ h−1(alllfp(Φ)) is well-defined. Therefore, h ◦ g = inc. Since h is monomorphic

and inc is homomorphic, Lemma 4.16(2) implies that g is homomorphic, too. Moreover, let g′ be any Σ-

homomorphism from lfp(Φ)|alllfp(Φ) to B. Since inc is the only Σ-homomorphism from all
lfp(Φ)
s to Fin′, we

obtain h◦g′ = inc = h◦g and thus g′ = g because h is injective. Hence lfp(Φ)|alllfp(Φ) is initial in OModEU (SP ′).

It remains to show that for all r : s ∈ R1 ∪ univs, rlfp(Φ) is a subset of rA. By Theorem 8.4(1), rlfp(Φ) ⊆ rA

follows from rΦ(A) ⊆ rA. So let a ∈ rΦ(A) = σ(r)A. Since for all q ∈ R′, qA = h(qB), a ∈ σ(r)A implies

b ∈ σ(r)B for some b ∈ B with h(b) = a. Hence b ∈ rB and thus a = h(b) ∈ rA because B satisfies r ⇐ σ(r). o

11 Conservative extension

Lemma 11.1 Let the assumptions of Def. 10.6 hold true, C be a class of Σ-structures and B be a Σ′-structure.

(1) Let Ini be initial in C. If B is Σ-reachable and Σ-consistent, then the S-sorted function abs : B → Ini

mapping b ∈ B to tIni(a) for some t ∈ MGenΣ with tB(a) = b is well-defined and surjective. Moreover,

Ini can be extended to a Σ′-structure such that abs becomes Σ′-homomorphic. If B|Σ ∈ C, then abs is also

injective and thus a Σ′-isomorphism.

(2) Let Fin be final in C. If B is Σ-observable and Σ-complete, then the S-sorted function rep : Fin → B

mapping a ∈ Fin to b ∈ B with obsBs (b) = obsFins (a) is well-defined and injective. Moreover, Fin can be
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extended to a Σ′-structure such that rep becomes Σ′-homomorphic. If B|Σ ∈ C, then rep is also surjective

and thus a Σ′-isomorphism.

Proof. (1) Let b ∈ B. Since B is Σ-reachable, there are t ∈ MGenΣ and a ∈ A such that tB(a) = b.

Suppose that tB(a) = uB(b) for some t, u ∈ MGenΣ and a, b ∈ A. Since B is Σ-consistent, tFree(Σ,A)(a) =

uFree(Σ,A)(b). By Theorem 6.3, Free(Σ, A) is initial in ModEU (Σ, A). Hence by Proposition 4.6(4), the unique

Σ-homomorphism from Free(Σ, A) to Ini maps tFree(Σ,A)(a) to tIni(a). Hence tFree(Σ,A)(a) = uFree(Σ,A)(b)

implies tIni(a) = uIni(b). We conclude that abs is well-defined. By Lemma 10.8(3), Ini is Σ-reachable. Hence

for all c ∈ Ini there are t ∈MGenΣ and a ∈ A such that tIni(a) = c and thus abs is surjective.

f : dom → s ∈ F1 is interpreted in Ini as follows. Since Ini is Σ-reachable, f Ini is well-defined by

f Ini(tIni(a)) = abs((f ◦ t)B(a)) for all t : s0 → dom ∈MGenΣ and a ∈ sA0 . Let b ∈ B. Since B is Σ-reachable,

there are t ∈MGenΣ and a ∈ A such that tB(a) = b. Hence abs is compatible with f :

abs(fB(b)) = abs(fB(tB(a))) = abs((f ◦ t)B(a)) = f Ini(tIni(a)) = f Ini(abs(tB(a))) = f Ini(abs(b)).

We conclude that abs is Σ′-homomorphic. For all r ∈ R′ \R, rIni = abs(rB).

Suppose that B|Σ ∈ C and abs(b) = abs(c) for some b, c ∈ B. Then tIni(a) = tIni(a′) for some a, a′ ∈ A with

tB(a) = b and tB(a′) = c. By assumption, there is a unique Σ-homomorphism h from Ini to B|Σ. Hence by

Proposition 4.6(4), b = tB(a) = h(tIni(a)) = h(tIni(a′)) = tB(a′) = c and thus abs is injective.

(2) Let s ∈ S and c ∈ sFin. By Theorem 6.4, Cofree(Σ, A) is final in ModEU (Σ, A). Let h be the unique

Σ-homomorphism from Fin to Cofree(Σ, A). Since B is Σ-complete, obsBs (b) = h(c) for some b ∈ B. Hence by

Proposition 4.6(5), for all t ∈MObsΣ,s,

πt(obs
B
s (b)) = πt(h(c)) = tCofree(Σ,A)(h(c)) = tFin(a) = πt(obs

Fin
s (c))

and thus obsBs (b) = obsFins (c). Suppose that obsBs (b) = obsBs (c) for some b, c ∈ sB . Since B is Σ-observable,

b = c. We conclude that rep is well-defined. By Lemma 10.8(4), Fin is Σ-observable. Hence for all b, c ∈ Fin,

obsFins (b) = obsFins (c) implies b = c, and thus rep is injective.

f : s → ran ∈ F1 is interpreted in Fin as follows. Since Fin is Σ-observable, fFin is well-defined by

tFin(fFin(c)) = (t ◦ f)B(rep(c)) for all t ∈MObsΣ,ran and c ∈ sFin. Hence for all c ∈ sFin,

obsBran(rep(fFin(c))) = tFin(fFin(c)) = (t ◦ f)B(rep(c)) = obsBran(fB(rep(c)))

and thus rep(fFin(c)) = fB(rep(c)) because B is Σ-observable. We conclude that rep is Σ′-homomorphic. For

all r : s ∈ R′ \R, rFin = {c ∈ sFin | rep(c) ∈ rB}.

Suppose that B|Σ ∈ C, s ∈ S and b ∈ sB . By assumption, there is a unique Σ-homomorphism h from B|Σ
to Fin. Hence by Proposition 4.6(5), for all t ∈MObsΣ,s,

πt(obs
B
s (b)) = tB(b) = tFin(h(b)) = πt(obs

Fin
s (h(b)))

and thus obsBs (b) = obsFins (h(b)). Hence b = rep(h(b)) and thus rep is surjective. o

Theorem 11.2 Let the assumptions of Def. 10.6 hold true and F1 = F ′ \ F .

(1) Suppose that F1 consists of S1-constructors and B is Σ′-reachable.

B is Σ-reachable iff reachBΣ is F1-compatible.

(2) Suppose that F1 consists of S1-destructors and B is Σ′-observable.

B is Σ-observable iff obsBΣ is F1-compatible.

Proof. (1) The “only-if”-direction is trivial. Let s ∈ S and b ∈ sB . Since B is Σ′-reachable, b = tB(a) for

some t : dom → s ∈ MGenΣ′ and a ∈ domA. We show b ∈ reachBΣ by induction on (m,n) where m and n are
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the numbers of occurrences of F1-symbols resp. F ′-symbols in t. We start with two basic cases: (a) t consists

of F -symbols and (b) t = f ◦ u for some f ∈ F1 and u ∈ MGenΣ. In case (a), t is a Σ-generator and thus the

proof is complete. In case (b), uB(a) ∈ reachBΣ . Hence by assumption, (f ◦ u)B(a) = fB(uB(a)) ∈ reachBΣ and

thus tB(a) = (f ◦ u)B(a) = wB(c) for some w ∈MGenΣ and c ∈ domA
w. Again, the proof is complete.

If neither case (a) nor case (b) holds true, then t = v◦〈ui〉i∈I for some {v}∪{ui : dom→ si}i∈I ⊆ GenΣ′ such

that for some k ∈ I, uk contains at least one F1-symbol. Since uk is a subterm of t, the induction hypothesis

implies uBk (a) ∈ reachBΣ , i.e., uBk (a) = wB(c) for some w ∈MGenΣ,sk and c ∈ domA
w. Hence

b = tB(a) = (v ◦ 〈ui〉i∈I)B(a) = vB(〈uBi 〉i∈I(a)) = vB((uBi (a))i∈I) =

vB((vBi (a, c))i∈I) = vB(〈vBi 〉i∈I(a, c)) = (v ◦ 〈vi〉i∈I)B(a, c)
(3)

where for all i ∈ I,

vi =

{
w ◦ π2 : dom× domw → sk if i = k,

ui ◦ π1 : dom× domw → si if i 6= k.

Since v ◦ 〈vi〉i∈I contains less occurrences of F1-symbols than t, the induction hypothesis implies b = (v ◦
〈vi〉i∈I)B(a, c) ∈ reachBΣ . We conclude that B is Σ-reachable.

(2) The “only-if”-direction is trivial. Let s ∈ S and a, b ∈ sB such that a 6= b. Since B is Σ′-observable,

there are t : s→ ran ∈MObsΣ′ such that tB(a) 6= tB(b). We show (a, b) 6∈ obsBΣ by induction on (m,n) where

m and n are the numbers of occurrences of F1-symbols resp. F ′-symbols in t. We start with two basic cases:

(a) t consists of F -symbols and (b) t = u◦f for some f ∈ F1 and u ∈MObsΣ. In case (a), t is a Σ-observer and

thus the proof is complete. In case (b), uB(fB(a)) = (u ◦ f)B(a) = tB(a) 6= tB(b) = (u ◦ f)B(b) = uB(fB(b)).

Hence u ∈ MObsΣ implies (fB(a), fB(b)) 6∈ obsBΣ and thus by assumption, (a, b) 6∈ obsBΣ . Again, the proof is

complete.

If neither case (a) nor case (b) holds true, then t = [ui]i∈I ◦ v for some {ui : si → ran}i∈I ∪ {v} ⊆ ObsΣ′

such that for some k ∈ I, uk contains at least one F1-symbol. Since tB(a) 6= tB(b), there are i, j ∈ I, c ∈ sBi
and d ∈ sBj such that ranv =

∐
i∈I si, v

B(a) = (c, i), vB(b) = (d, j), c 6= d and uBi (c) 6= uBj (d).

Case 1: i = j = k. Then uBk (c) 6= uBk (d). Since uk is a superterm of t, the induction hypothesis implies

(c, d) 6∈ obsBΣ′ , i.e., wB(c) 6= wB(d) for some w ∈MObsΣ,sk . Hence

([vi]i∈I ◦ v)B(a) = ([vBi ]i∈I)(v
B(a)) = ([vBi ]i∈I)(c, k) = vBk (c) = wB(c) 6= wB(d) =

vBk (d) = ([vBi ]i∈I)(d, k) = ([vBi ]i∈I)(v
B(b)) = ([vi]i∈I ◦ v)B(b)

(4)

where for all i ∈ I,

vi =

{
w : sk → ranw if i = k,

ui : si → ranw if i 6= k.

Case 2: i 6= k or j 6= k. For all i ∈ I, let

vi =

{
ι1 : sk → 1 + ranw if i = k,

ι2 ◦ ui : si → 1 + ranw if i 6= k.

Hence 
vBi (c) = ι2(uBi (c)) 6= ι2(uBj (d)) = vBj (d) if i 6= k and j 6= k,

vBi (c) = ι1(c) 6= ι2(uBj (d)) = vBj (d) if i = k,

vBi (c) = ι2(uBi (c)) 6= ι1(d) = vBj (d) if j = k,

and thus
([vi]i∈I ◦ v)B(a) = ([vBi ]i∈I)(v

B(a)) = ([vBi ]i∈I)(c, i) = vBi (c) 6= vBj (d) =

([vBi ]i∈I)(d, j) = ([vBi ]i∈I)(v
B(b)) = ([vi]i∈I ◦ v)B(b).

(5)
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Since, in both cases, [vi]i∈I ◦ v contains less occurrences of F1-symbols than t, the induction hypothesis

implies (a, b) 6∈ obsBΣ . We conclude that B is Σ-observable. o

Theorem 11.3 (conservative model extension)

(1) Let SP ′ = (Σ′, AX ′) be a visible abstraction with base type SP = (Σ, AX), Ini be initial in ModEU (SP ),

Ini′ be initial in Mod(Σ′, AX), σ be the relation transformer defined by AX ′ \AX and Φ be the (Ini′, σ)-

step functor. Ini can be extended to an initial object of ModEU (SP ′) if B = lfp(Φ)/≡lfp(Φ) is Σ-consistent

and reachBΣ is F1-compatible. The converse holds true if SP satisfies 5.1(1).

(2) Let SP ′ = (Σ′, AX ′) be a hidden restriction with base type SP = (Σ, AX), Fin be final in ModEU (SP ),

Fin′ be final in Mod(Σ′, AX), σ be the relation transformer defined by AX ′ \AX and Φ be the (Fin′, σ)-

step functor. Fin can be extended to a final object of ModEU (SP ′) if B = gfp(Φ)|allgfp(Φ) is Σ-complete

and obsBΣ is F1-compatible. The converse holds true if SP satisfies 5.1(2).

Proof. (1) By Theorem 10.9(1), B is initial in ModEU (SP ′). Suppose that B is Σ-consistent and reachBΣ is

F1-compatible. By Lemma 10.8(3), B is Σ′-reachable and thus by Theorem 11.2(1), B is Σ-reachable because

reachBΣ is F1-compatible. Since B|Σ ∈ ModEU (SP ), Lemma 11.1(1) implies that Ini can be extended to a

Σ′-structure that is Σ′-isomorphic to B and thus initial in ModEU (SP ′).

Suppose that SP satisfies 5.1(1) and Ini is initial in ModEU (SP ′). Then ModEU (SP ) = ModEU (Σ, A)

for some set A. Moreover, B and Ini are Σ′-isomorphic. Since Ini is initial in ModEU (SP ) = ModEU (Σ, A),

Lemma 10.8(3) implies that Ini is Σ-reachable and Σ-consistent. Since Ini and B are Σ′-isomorphic, Lemma

10.7(4/5) implies that B is also Σ-consistent and Σ-reachable, and thus reachBΣ is F1-compatible.

(2) By Theorem 10.10(1), B is final in ModEU (SP ′). Suppose that B is Σ-complete and obsBΣ is F1-

compatible. By Lemma 10.8(4), B is Σ′-observable and thus by Theorem 11.2(2), B is Σ-observable because

obsBΣ is F1-compatible. Since B|Σ ∈ ModEU (SP ), Lemma 11.1(2) implies that Fin can be extended to a

Σ′-structure that is Σ′-isomorphic to B and thus final in ModEU (SP ′).

Suppose that SP satisfies 5.1(2) and Fin is final in ModEU (SP ′). Then ModEU (SP ) = ModEU (Σ, A) for

some set A. Moreover, B and Fin are Σ′-isomorphic. Since Fin is final in ModEU (SP ) = ModEU (Σ, A),

Lemma 10.8(4) implies that Fin is Σ-observable and Σ-complete. Since Fin and B are Σ′-isomorphic, Lemma

10.7(4/5) implies that B is also Σ-complete and Σ-observable, and thus obsBΣ is F1-compatible. o

12 The perfect model

Definition 12.1 (perfect model of a swinging type) Let SP = (Σ, AX) be a swinging type. The perfect model

of SP , Per(SP ), is defined inductively as follows: If SP = (∅, ∅), then Per(SP ) is the empty Σ-structure.

Otherwise

• Per(SP ) is the initial object of ModEU (SP ) if SP is visible, but not a visible restriction.

• Per(SP ) is the initial object of OModEU (SP ) if SP is a hidden abstraction.

• Per(SP ) is the final object of RModEU (SP ) if SP is a visible restriction.

• Per(SP ) is the final object of ModEU (SP ) if SP is hidden, but not a hidden abstraction. o

Theorems 6.3, 6.4, 7.1, 7.2, 10.9 and 10.10 ensure the existence of the perfect model. The following two

lemmas provide conditions under which the quotients in Theorem 10.9 and the substructures in Theorem 10.10

are not proper:

Lemma 12.2 (trivial quotients) Let SP ′ = (Σ′, AX ′) be a µ-extension of a swinging type SP = (Σ, AX).

Let Ini be initial in ModEU (SP ).
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(1) If CONH is the set of all axioms of AX1 = AX ′ \ AX that do not include ≡s for some s ∈ S1, then for

all s ∈ S1, the least SP ′-model over Ini interprets ≡s as the diagonal of Ini2s.

(2) If INV H ⊆ AX ′, then for all s ∈ S1, the least (and only) SP ′-model over Ini interprets alls as Inis.

Proof. By Theorem 8.14, the least SP ′-model B over Ini exists. Let Σ = (S, F,R, S0, C).

(1) Let D be the S-sorted set of all a ∈ Ini such that a ≡B a. Since B satisfies CONH, ≡B is Σ-congruent

and thus D is a substructure of Ini: Let f : s → s′ ∈ Σ and a ∈ Ds, i.e., a ≡B a. Then f(a) ≡B f(a), i.e.,

f(a) ∈ Ds′ . By Theorem 10.4, D ∈ ModEU (SP ). Hence by Lemma 6.2(3), D = Ini and thus for all a ∈ Ini,
a ≡B a, i.e., ∆Ini is a subset of ≡B . Since ∆Ini yields an interpretation of ≡ in Ini that satisfies CONH and

≡B is the least one, ≡B is a subset ∆Ini. We conclude that both relations are equal, i.e., B interprets ≡s as

the diagonal of Ini2s.

(2) Since Ini ∈ModEU (SP ) and B satisfies INV H, allB is Σ-invariant and thus, by Theorem 10.4, can be

turned into an SP -model over A with equality and universe such that the inclusion mapping inc from allB to

Ini is Σ-homomorphic. Since Ini is initial in ModEU (SP ), there are unique Σ-homomorphisms h : Ini→ allB

and h′ : Ini→ Ini. Hence inc ◦ h = idIni, i.e., for all a ∈ Ini, a = h(a) ∈ allB . Of course, allB is a subset Ini.

We conclude that both relations are equal, i.e., B interprets all as Ini. o

Lemma 12.3 (trivial substructures) Let SP ′ = (Σ′, AX ′) be a ν-extension of a swinging type SP = (Σ, AX)

Let Fin be final in ModEU (SP ).

(1) If CONC ⊆ AX ′, then for all s ∈ S1, the greatest (and only) SP ′-model over Fin interprets ≡s as the

diagonal of Fin2
s.

(2) If INV C is the set of all axioms of AX1 = AX ′ \ AX that do not include alls for some s ∈ S1, then for

all s ∈ S1, the greatest SP ′-model over Fin interprets alls as Fins.

Proof. By Theorem 8.14, the greatest SP ′-model B over Fin exists. Let Σ = (S, F,R, S0, C).

(1) Since B satisfies CONC, ≡B is Σ-congruent. By Lemma 10.2(5), ≡B is an R′-compatible equivalence

relation. Hence ∆Fin is a subset of ≡B and the quotient D =def Fin/≡B is well-defined. By Theorem 10.3,

D ∈ ModEU (SP ). Hence by Lemma 6.2(4), D ∼= Fin, i.e., ≡B is contained in ∆Fin. We conclude that both

relations are equal, i.e., B interprets ≡s as the diagonal of Fin2
s.

(2) Since Fin ∈ModEU (SP ) and B satisfies INV C, allB is Σ-invariant and thus, by Theorem 10.4, can be

turned into an SP -model over A with equality and universe such that the inclusion mapping inc from allB to

Fin is Σ-homomorphic. Since Fin is final in ModEU (SP ), there is a unique Σ-homomorphism h : allB → Fin.

Of course, allB is contained in Fin. Since Fin yields an interpretation of all in Fin that satisfies INV C and

allB is the greatest one, Fin is a subset of allB . We conclude that both relations are equal, i.e., B interprets

all as Fin. o

Successive abstractions/restrictions induced by least or greatest congruences/invariants specified by Horn or

co-Horn clauses can be combined to a single one:

Lemma 12.4 (composition of abstractions) Let SP1 = (Σ1, AX1) and SP2 = (Σ2, AX1 ∪AX2) be swinging

types with base type SP = (Σ, AX) resp. SP1 = (Σ1, AX1) such that SP1 and SP2 are (1) µ-extensions or (2)

ν-extensions of SP resp. SP1. Let σ1, σ2 and σ3 be the relation transformers defined by AX1 \AX, AX2 \AX1

and AX2 \ AX, respectively. Let R be the relations defined by AX2 \ AX, A be a (Σ2 \ R)-structure and for

i = 1, 3, let Φi be the (A, σi)-step functor, Φ2 be the (B1/≡B1 , σ2)-step functor and for i = 1, 2, 3, let (1)

Bi = lfp(Φi) or (2) Bi = gfp(Φi).

(1) If for i = 1, 2, 3, Φi is continuous, then B2/≡B2 and B3/≡B3 are Σ2-isomorphic.

(2) If for i = 1, 2, 3, Φi is cocontinuous, then B2/≡B2 and B3/≡B3 are Σ2-isomorphic.
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Proof. (1) Let nat1, nat2 and nat3 be the natural mappings from A to B1/≡B1 , from B1/≡B1 to B2/≡B2

and from A to B3/≡B3 , respectively.

A
nat3-- B3/≡B3

=

B1/≡B1

nat1
??

nat2
-- B2/≡B2

h

6

interpretations of a

non-primitive sort s ∈ Σ:

sB1 = sA

sB2 = sA/≡B1

sB3 = sA

Suppose that the function h : B2/≡B2→ B3/≡B3 with h ◦ nat2 ◦ nat1 =def nat3 is bijective. Since nat2 ◦ nat1
is Σ2-epimorphic and nat3 is Σ2-homomorphic, Lemma 4.16(1) implies that h is a Σ2-isomorphism. For the

bijectivity of h we must show that for all a, b ∈ A,

[a]≡B1 ≡B2 [b]≡B iff a ≡B3 b,

or, more generally, for all r : s ∈ R and a ∈ sA,

[a]≡B1 ∈ rB2 iff a ∈ rB3 . (3)

Let i = 1, 2, 3. Since Φi is continuous, Theorem 8.3(2) implies Bi = tj∈NΦji (⊥). We start with the “only-

if”-direction of (3) and show by induction on j that for all j ∈ N,

[a]≡B1 ∈ rΦj2(⊥) implies a ∈ rΦk3 (⊥) (4)

for some k ∈ N. Suppose that

a ∈ rB1 implies a ∈ rΦk3 (⊥) (5)

for some k ∈ N. Let [a]≡B1 ∈ rΦj2(⊥). If j = 0, then [a] ∈ r⊥ = rB1/≡B1
and thus a ∈ rB1 . Hence by (5),

a ∈ rΦk3 (⊥) for some k ∈ N. If j > 0, then by the definition of Φ2,

[a] ∈ ϕΦj−1
2 (⊥)

r,AX2
.

By induction hypothesis, for all relations q occurring in ϕr,AX2
, [b]≡B1 ∈ qΦj−1

2 (⊥) implies b ∈ qΦk3 (⊥) for some

k ∈ N. Hence by the monotonicity of Φ2,

a ∈ ϕΦk3 (⊥)
r,AX2

⊆ ϕΦk3 (⊥)
r,AX3

for some k ∈ N because AX2 ⊆ AX3 and thus for all Σ2-structures C, ϕCr,AX2
⊆ ϕCr,AX3

. By the definition of

Φ3, we conclude that a ∈ rΦk+1
3 (⊥). This finishes the proof of (4). It remains to show (5), i.e., that for all j ∈ N,

a ∈ rΦj1(⊥) implies a ∈ rΦk3 (⊥) (6)

for some k ∈ N. Let a ∈ rΦj1(⊥). If j = 0, then a ∈ r⊥ = rA = rΦj3(⊥). If j > 0, then by the definition of Φ1,

a ∈ ϕΦj−1
1 (⊥)

r,AX1
.

By induction hypothesis, for all relations q occurring in ϕr,AX1
, b ∈ qΦj−1

1 (⊥) implies b ∈ qΦk3 (⊥) for some k ∈ N.

Hence by the monotonicity of Φ1,

a ∈ ϕΦk3 (⊥)
r,AX1

⊆ ϕΦk3 (⊥)
r,AX3

for some k ∈ N because AX1 ⊆ AX3 and thus for all Σ2-structures C, ϕCr,AX1
⊆ ϕCr,AX3

. By the definition of

Φ3, we conclude that a ∈ rΦk+1
3 (⊥). This finishes the proof of (6) and thus of (5).
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We proceed with the “if”-direction of (3) and show by induction on j that for all j ∈ N,

a ∈ rΦj3(⊥) implies [a]≡B1 ∈ rΦk2 (⊥) (7)

for some k ∈ N. Let a ∈ rΦj3(⊥). If j = 0, then a ∈ r⊥ = rA ⊆ rB1 and thus [a] ∈ rB1/≡B1
= rΦj2(⊥). If j > 0,

then by the definition of Φ3,

a ∈ ϕΦj−1
3 (⊥)

r,AX3
.

Since AX3 = AX1 ∪AX2, there are two cases: (i) a ∈ ϕΦj−1
3 (⊥)

r,AX1
and (ii) a ∈ ϕΦj−1

3 (⊥)

r,AX2
.

(i) By induction hypothesis, for all relations q occurring in ϕr,AX1
, b ∈ qΦj−1

3 (⊥) implies [b] ∈ qΦk2 (⊥) for

some k ∈ N. Hence by the monotonicity of Φ1, [a] ∈ ϕΦk2 (⊥)
r,AX1

and thus [a] ∈ rΦk2 (⊥) because by Theorem 10.3,

B1 |= r ⇐ ϕr,AX1
implies ⊥ = B1/≡B1 |= r ⇐ ϕr,AX1

and thus Φk2(⊥) |= r ⇐ ϕr,AX1
.

(ii) By induction hypothesis, for all relations q occurring in ϕr,AX2
, b ∈ qΦj−1

3 (⊥) implies [b] ∈ qΦk2 (⊥) for some

k ∈ N. Hence by the monotonicity of Φ2, [a] ∈ ϕΦk2 (⊥)
r,AX2

for some k ∈ N. By the definition of Φ2, we conclude

that [a] ∈ rΦk+1
2 (⊥). This finishes the proof of (7).

(2) can be shown analogously. o

Lemma 12.5 (composition of restrictions) Let SP1 = (Σ1, AX1) and SP2 = (Σ2, AX1 ∪ AX2) be swinging

types with base type SP = (Σ, AX) resp. SP1 = (Σ1, AX1) such that SP1 and SP2 are (1) ν-extensions or (2)

µ-extensions of SP resp. SP1. Let σ1, σ2 and σ3 be the relation transformers defined by AX1 \AX, AX2 \AX1

and AX2 \ AX, respectively. Let R be the relations defined by AX2 \ AX and A be a (Σ2 \ R)-structure. For

i = 1, 3, let Φi be the (A, σi)-step functor, Φ2 be the (B1|allB1 , σ2)-step functor and for i = 1, 2, 3, let (1)

Bi = gfp(Φi) or (2) Bi = lfp(Φi).

(1) If for i = 1, 2, 3, Φi is cocontinuous, then B2|allB2 and B3|allB3 are Σ2-isomorphic.

(2) If for i = 1, 2, 3, Φi is continuous, then B2|allB2 and B3|allB3 are Σ2-isomorphic.

Proof. (1) Let inc1, inc2 and inc3 be the inclusion mappings from B1|allB1 to A, from B2|allB2 to B1|allB1

and from B3|allB3 to A, respectively.

A �
inc3�B3|allB3

=

B1|allB1

inc1

6

6

�
inc2
�B2|allB2

h

?

interpretations of a

non-primitive sort s ∈ Σ:

sB1 = sA

sB2 = sA ∩ allB1

sB3 = sA

Suppose that the function h : B3|allB3 → B2|allB2 with inc1 ◦ inc2 ◦ h = inc3 is bijective. Since inc1 ◦ inc2
is Σ2-monomorphic and inc3 is Σ2-homomorphic, Lemma 4.16(2) implies that h is a Σ2-isomorphism. For the

bijectivity of h we must show allB2 = allB3 or, more generally, for all r : s ∈ R,

rB2 ∩ allB2 = rB3 ∩ allB3 . (8)

Let i = 1, 2, 3. Since Φi is cocontinuous, Theorem 8.3(2) implies Bi = uj∈NΦji (>). We start with the

left-to-right inclusion of (8) and show by induction on j that for all j ∈ N,

a ∈ sA \ rΦj3(>) implies a ∈ sA \ rΦk2 (>) (9)

for some k ∈ N. Let a ∈ sA \ rΦj3(>). j = 0 implies

sA \ rΦj3(>) = sA \ r> = sA \ rA = sA \ sA = ∅.
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Hence j > 0 and thus by the definition of Φ3,

a ∈ sA \ ϕΦj−1
3 (>)

r,AX3
.

Since AX3 = AX1 ∪AX2, there are two cases: (i) a ∈ sA \ ϕΦj−1
3 (>)

r,AX1
and (ii) a ∈ sA \ ϕΦj−1

1 (>)

r,AX2
.

(i) By induction hypothesis, for all relations q : s′ occurring in ϕr,AX1
, b ∈ (s′)A \ qΦj−1

3 (>) implies b ∈
(s′)A \ qΦk2 (>) for some k ∈ N. Hence by the monotonicity of Φ3, a ∈ sA \ ϕΦk2 (>)

r,AX1
and thus a ∈ sA \ rΦk2 (>)

for some k ∈ N because by Theorem 9.4, B1 |= r ⇒ ϕr,AX1 implies > = B1|allB1 |= r ⇒ ϕr,AX1 and thus

Φk2(>) |= r ⇒ ϕr,AX1 .

(ii) By induction hypothesis, for all relations q : s′ occurring in ϕr,AX2
, b ∈ (s′)A \ qΦj−1

3 (>) implies b ∈
(s′)A \ qΦk2 (>) for some k ∈ N. Hence by the monotonicity of Φ3, a ∈ sA \ ϕΦk2 (>)

r,AX2
for some k ∈ N. By the

definition of Φ2, we conclude that a ∈ sA \ rΦk+1
2 (>). This finishes the proof of (9).

We proceed with the right-to-left inclusion of (8) and show by induction on j that for all j ∈ N,

a ∈ sA \ rΦj2(>) implies a ∈ sA \ rΦk3 (>) (10)

for some k ∈ N. Suppose that

a ∈ sA \ rB1|allB1
implies a ∈ sA \ rΦk3 (>) (11)

for some k ∈ N. Let a ∈ sA \ rΦj2(>). If j = 0 then a ∈ sA \ r> = sA \ rB1|allB1
. Hence by (11), a ∈ sA \ rΦk3 (>)

for some k ∈ N. If j > 0, then by the definition of Φ2,

a ∈ sA \ ϕΦj2(>)

r,AX2
.

By induction hypothesis, for all relations q : s′ occurring in ϕr,AX2
, b ∈ (s′)A \qΦj−1

2 (>) implies b ∈ (s′)A \qΦk3 (>)

for some k ∈ N. Hence by the monotonicity of Φ2,

a ∈ sA \ ϕΦk3 (>)
r,AX2

⊆ ϕΦk3 (⊥)
r,AX3

for some k ∈ N because AX2 ⊆ AX3 and thus for all Σ2-structures C, ϕCr,AX3
⊆ ϕCr,AX2

. By the definition of

Φ3, we conclude that a ∈ sA \ rΦk+1
3 (>). This finishes the proof of (10). It remains to show (11), i.e., that for

all j ∈ N,

a ∈ sA \ rΦj1(>) implies a ∈ sA \ rΦk3 (>) (12)

for some k ∈ N. Let a ∈ sA \ rΦj1(>). If j = 0, then a ∈ sA \ r> = rA = rΦj3(>). If j > 0, then by the definition

of Φ1,

a ∈ sA \ ϕΦj−1
1 (>)

r,AX1
.

By induction hypothesis, for all relations q : s′ occurring in ϕr,AX1
, b ∈ (s′)A \qΦj−1

1 (>) implies b ∈ (s′)A \qΦk3 (>)

for some k ∈ N. Hence by the monotonicity of Φ1,

a ∈ sA \ ϕΦk3 (>)
r,AX1

⊆ sA \ ϕΦk3 (>)
r,AX3

for some k ∈ N because AX1 ⊆ AX3 and thus for all Σ2-structures C, ϕCr,AX3
⊆ ϕCr,AX1

. By the definition of

Φ3, we conclude that a ∈ sA \ rΦk+1
3 (>). This finishes the proof of (12) and thus of (11).

(2) can be shown analogously. o

By Theorems 6.3, 6.4, 7.1, 7.2, 10.9 and 10.10 and Lemmas 12.4 and 12.5, the perfect model of a swinging

type (Σ, AX) is always a (maybe trivial) quotient of a free Σ-structure or a (maybe trivial) substructure of a

cofree Σ-structure:

Theorem 12.6 Let SP = (Σ, AX) be a swinging type with primitive sort set S0 and sort-building predecessor

SP1.
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(1) Let SP be an abstraction. Then there are a unique S0-sorted set A and a µ-extension SP2 of SP1 such

that SP is a ν-extension of SP2 and

Per(SP ) = (Free(Σ, A)/≡lfp(Φ1))/≡gfp(Φ2)

where Φi, i = 1, 2, is the (A, σi)-step functor and σ1, σ2 are the relation transformers defined by AX2\AX1

and AX \AX2, respectively. If SP is a hidden abstraction, then SP2 = SP .

(2) Let SP be a restriction. Then there are a unique S0-sorted set A and a ν-extension SP2 of SP1 such that

SP is a µ-extension of SP2 and

Per(SP ) = (Cofree(Σ, A)|allgfp(Φ1))|alllfp(Φ2)

where Φi, i = 1, 2, is the (A, σi)-step functor and σ1, σ2 are the relation transformers defined by AX2\AX1

and AX \AX2, respectively. If SP is a visible restriction, then SP2 = SP . o

Theorem 12.6 allows us to characterize conservative model extensions in terms of congruences on free struc-

tures and invariants on cofree structures, respectively:

Lemma 12.7 Let SP ′ = (Σ′, AX ′) be a swinging type with base type SP = (Σ, AX), F1 be the set of function

symbols of Σ′ \ Σ and A = prim(SP ′).

(1) Let SP ′ be a visible abstraction and ∼=≡lfp(Φ(SP ′)),

(i) for all f : s → s′ ∈ F1, t ∈ MGenΣ,s and a ∈ domA
t there are ιu(b) ∈ Free(Σ′, A) such that

ιf◦t(a) ∼ ιu(b),

(ii) for all ιt(a), ιu(b) ∈ Free(Σ′, A), ιt(a) ∼ ιu(b) implies t = u and a = b.

Then Per(SP ′) is Σ-reachable and Σ-consistent.

(2) Let SP ′ be a hidden restriction, inv = allgfp(Φ(SP ′)),

(iii) for all f : s → s′ ∈ F1 and a, b ∈ sinv, if πt(a) = πt(b) for all t ∈ MObsΣ,s, then πt◦f (a) = πt◦f (b)

for all t ∈MObsΣ,s′ ,

(iv) for all sorts s ∈ Σ and a ∈ sCofree(Σ′,A) there is b ∈ sinv such that for all t ∈MObsΣ,s, πt(a) = πt(b).

Then Per(SP ′) is Σ-observable and Σ-complete.

Proof. (1) By Theorem 12.6(1), B =def Per(SP
′) = Free(Σ′, A)/∼. By Theorem 6.3, for all t ∈ MGenΣ′ ,

tFree(Σ
′,A) = ιt. Hence by (ii), B is Σ-consistent. Since by Lemma 10.7(3), B is Σ-reachable, Theorem 11.2(1)

implies that B is Σ-reachable if reachBΣ is F1-compatible. So let f : s→ s′ ∈ F1, t ∈ MGenΣ′,s and a ∈ domA
t

such that

tB(a) = nat(tFree(Σ
′,A)(a)) = nat(ιt(a)) ∈ reachBΣ .

Then there are u ∈MGenΣ and b ∈ domA
u such that

nat(ιt(a)) = tB(a) = uB(b) = nat(uFree(Σ
′,A)(b)) = nat(ιu(b))

and thus ιt(a) ∼ ιu(b). By (i), there are v ∈MGenΣ and c ∈ domA
v such that ιf◦u(b) ∼ ιv(c). Hence

fB(nat(ιt(a))) = fB(nat(ιu(b))) = nat(fFree(Σ
′,A)(ιu(b))) = nat(fFree(Σ

′,A)(uFree(Σ
′,A)(b)))

= nat((f ◦ u)Free(Σ
′,A)(b)) = nat(ιf◦u(b)) = nat(ιv(c)) ∈ reachBΣ .

We conclude that reachBΣ is F1-compatible.

(2) By Theorem 12.6(2), B =def Per(SP
′) = Cofree(Σ′, A)|inv. By Theorem 6.4, for all t ∈ MObsΣ′ ,

tCofree(Σ
′,A) = πt. Hence by (iv), B is Σ-complete. Since by Lemma 10.7(4), B is Σ-observable, Theorem

11.2(2) implies that B is Σ-observable if obsBΣ is F1-compatible. So let f : s→ s′ ∈ F1 and a, b ∈ sB ⊆ sinv such
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that (a, b) ∈ obsBΣ , i.e., for all t ∈MObsΣ,s, πt(a) = πt(b). Then by (iii), for all t ∈MObsΣ,s′ , πt◦f (a) = πt◦f (b).

Hence

πt(f
B(a)) = πt(inc(f

B(a))) = πt(f
Cofree(Σ′,A)(inc(a))) = tCofree(Σ

′,A)(fCofree(Σ
′,A)(a))

= (t ◦ f)Cofree(Σ
′,A)(a) = πt◦f (a) = πt◦f (b) = (t ◦ f)Cofree(Σ

′,A)(b) = tCofree(Σ
′,A)(fCofree(Σ

′,A)(b))

= πt(f
Cofree(Σ′,A)(inc(b))) = πt(inc(f

B(b))) = πt(f
B(b)),

i.e., (fB(a), fB(b)) ∈ obsBΣ . We conclude that obsBΣ is F1-compatible. o

Definition 12.8 (covering, defining) A set T of Σ-generators is MGenΣ-covering if for all t ∈ MGenΣ

some term of T is a superterm of t. A set T of Σ-observers is is MObsΣ-covering if for all t ∈ MObsΣ some

term of T is a subterm of t.

Given a set F1 = {f1, . . . , fn} of S1-constructors such that F1 ∩ F = ∅, a set AX of Horn clauses

{fi ◦ cij ≡ c′ij ⇐ ϕij ∧
nij∧
k=1

fijk ◦ cijk ≡ c′ijk | 1 ≤ i ≤ n, 1 ≤ j ≤ ni}

for F1 is F1-defining if {cij | 1 ≤ i ≤ n, 1 ≤ j ≤ ni} is an MGenΣ-covering set and there is a well-founded

ordering > such that for all 1 ≤ i ≤ n, 1 ≤ j ≤ ni and 1 ≤ k ≤ nij , fijk ∈ F and c′ij , cijk and c′ijk are

Σ-generators, (cij , c
′
ij) > (cijk, c

′
ijk) and neither the terms cij , c

′
ij , cijk, c

′
ijk nor the formula ϕij contain symbols

of F .

Given a set F1 = {f1, . . . , fn} of S1-destructors such that F1 ∩ F = ∅, a set AX of Horn clauses

{dij ◦ fi ≡ cij ⇒ ϕij ∧
nij∧
k=1

dijk ◦ fijk ≡ cijk | 1 ≤ i ≤ n, 1 ≤ j ≤ ni}

for F1 is a F1-defining if {dij | 1 ≤ i ≤ n, 1 ≤ j ≤ ni} is an MObsΣ-covering set and there is a well-founded

ordering > such that for all 1 ≤ i ≤ n, 1 ≤ j ≤ ni and 1 ≤ i ≤ nij , fijk ∈ F , cij and cijk are Σ-generators and

dijk is a Σ-observer, (dij , cij) > (dijk, cijk) and neither the terms dij , cij , dijk, cijk nor the formula ϕij contain

symbols of F . o

Theorem 12.9 *****

(1) F1 = {f1, . . . , fn} S1-constructors. AX F1-defining implies Lemma 12.7(i/ii).

(1) F1 = {f1, . . . , fn} S1-destructors. AX F1-defining implies Lemma 12.7(iii/iv).

13 Deductive semantics

Given a swinging type SP = (Σ, AX), Theorem 8.14 implies that the least/greatest SP -model over B =

Free/Cofree(Σ, A) agrees with the least/greatest fixpoint of the (B, σ)-step functor where σ is the relation

transformer defined by AX. We show that these models can also be characterized in terms of a sequent calculus

based on AX. It is a variant of Gentzen’s system LK [26]. We formulate it as a system of rules for inferring

implications ϕ ⇒ ψ and admit applications of Boolean laws in order to turn Σ-formulas into matching rule

redices.

The calculus contains rules with infinitely many premises (∧- and ∀-introduction). Hence we must employ

ordinal numbers and transfinite induction for defining the length of a proof via the calculus (see section 7).

Ordinal numbers for measuring proofs rules have been used in, e.g., [106], §20, and [98], Section 1.3.

Definition 13.1 Let the assumptions of Def. 8.1 hold true, Σ1 = (S0, S, F
′, R) and A be a Σ1-structure. The

sequent calculus for (A,SP ′) is given by the following rules for deriving (implications between) Σ′-formulas.

Let I be a nonempty set.
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base rule
ϕ =⇒ ϕ

for all ϕ ∈ FormΣ′(A) (see Def. ??)

axiom rule
ϕ =⇒ ψ

for all ϕ⇒ ψ ∈ AX ′(A) (see Def. ??)

∧-introduction
ϕ =⇒ ψ

ϕ ∧ ϑ =⇒ ψ

ϕ =⇒ ψ ∨ ϑ, ϕ′ =⇒ ψ′ ∨ ϑ′

ϕ ∧ ϕ′ =⇒ (ψ ∧ ψ′) ∨ ϑ ∨ ϑ′

∨-introduction
ϕ =⇒ ψ

ϕ =⇒ ψ ∨ ϑ
ϕ ∧ ψ =⇒ ϑ, ϕ′ ∧ ψ′ =⇒ ϑ′

(ϕ ∨ ϕ′) ∧ ψ ∧ ψ′ =⇒ ϑ ∨ ϑ′

¬-introduction
ϕ =⇒ ψ ∨ ϑ
ϕ ∧ ¬ψ =⇒ ϑ

ϕ ∧ ψ =⇒ ϑ

ϕ =⇒ ¬ψ ∨ ϑ

⇒-introduction
ϕ ∧ ϑ =⇒ ϑ′ ∨ ψ
ϕ =⇒ (ϑ⇒ ϑ′) ∨ ψ

ϕ =⇒ ψ ∨ ϑ, ϕ′ ∧ ψ′ =⇒ ϑ′

(ψ ⇒ ϕ′) ∧ ϕ ∧ ψ′ =⇒ ϑ ∨ ϑ′

∀-introduction
ϕ ∧ ψ �k a =⇒ ϑ

ϕ ∧ ∀kψ =⇒ ϑ
for all a ∈ sAk and k ∈ I (see Def. 3.15)

{ϕ =⇒ ψ �k a ∨ ϑ | a ∈ sAk }
ϕ =⇒ ∀kψ ∨ ϑ

for all k ∈ I

∃-introduction
ϕ =⇒ ψ �k a ∨ ϑ
ϕ =⇒ ∃kψ ∨ ϑ

for all a ∈ sAk and k ∈ I

{ϕ ∧ ψ �k a =⇒ ϑ | a ∈ sAk }
ϕ ∧ ∃kψ =⇒ ϑ

for all k ∈ I

***
ϕ

t� ϕ
⇓ for all t : s→ s′ ∈ TΣ′ and ϕ : s ∈ FormΣ such that tA is surjective

***
t� ϕ
ϕ
⇓ for all t : s→ s′ ∈ TΣ′ and ϕ : s ∈ FormΣ such that tA is injective

***
{t ◦ u ≡ t ◦ v | t ∈MObsΣ,s}

u ≡ v
⇓ for all s ∈ S and u, v : dom→ s ∈ TΣ

Let α be an ordinal number. The set `αA,SP ′ of Σ′-formulas derivable with the sequent calculus for (A,SP ′)

is defined inductively as follows:

• Let {ϕi}i∈I be the premises and ψ be the conclusion of (an instance of) a rule of the sequent calculus for

(A,SP ′) modulo Boolean equivalences including ϕ× True⇔ ϕ and ϕ+ False⇔ ϕ. If for all i ∈ I there

is αi < α such that `αiA,SP ′ ϕi, then `αA,SP ′ ψ.

The length of a derivation of ϕ ∈ FormΣ′ via the sequent calculus for (A,SP ′) is the least ordinal α such

that `αA,SP ′ ϕ. We write `A,SP ′ ϕ if there is an ordinal α such that `αA,SP ′ ϕ. o

Definition 13.2 (deductive model µ- and ν-extensions) Let the assumptions of Def. 8.1 hold true, Σ1 =

(S0, S, F
′, R) and A be a Σ1-structure. The deductive (A,SP ′)-model, Ded(A,SP ′), is defined as follows.

• Ded(A,SP ′)|Σ′\R1
= A|Σ′\R1

,

• If SP ′ is a µ-extension of SP , then for all r : s ∈ R1 and t : 1→ s ∈ TΣ′ ,

tA ∈ rDed(A,SP ′) iff `A,SP ′ True ⇒ r(t).

• If SP ′ is a ν-extension of SP , then for all r : s ∈ R1 and t : 1→ s ∈ TΣ′ ,

tA ∈ rDed(A,SP ′) iff 6`A,SP ′ r(t)⇒ False. o

Lemma 13.3 (correctness and completeness of `A,SP ′ wrt A) Let the assumptions of Def. 8.1 hold true,

Σ1 = (S0, S, F
′, R) and A be a Σ1-structure. Then for all Σ′-formulas ϕ : 1,
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(1) if SP ′ is a µ-extension of SP , then Ded(A,SP ′) |= ϕ iff `A,SP ′ True ⇒ ϕ,

(2) if SP ′ is a ν-extension of SP , then Ded(A,SP ′) 6|= ϕ iff `A,SP ′ ϕ⇒ False.

Proof. (1) The “if”-direction (correctness) is shown by induction on the length of derivations via the sequent

calculus for (A,SP ′). As usually, this follows from the correctness of each rule {ϕi:si}i∈Iψ:s of the calculus in the

sense that for all B ∈Mod(A,SP ′);

∀ i ∈ I : sBi ⊆ ϕBi implies sB ⊆ ψB .

The correctness of the base rule, the axiom rule and ∧- and ∨-introduction and -elimination is trivial. For the

instance rule, suppose that
∏
i∈I s

A
i ⊆ ϕA.

The “only-if”-direction (completeness) is shown by induction on the size of Σ′-formulas.

(2) o

Theorem 13.4 Let the assumptions of Def. 8.1 hold true, Σ1 = (S0, S, F
′, R) and A be a Σ1-structure.

(1) If SP ′ is a µ-extension of SP , then Ded(A,SP ′) = lfp(ΦA,σ).

(2) If SP ′ is a ν-extension of SP , then Ded(A,SP ′) = gfp(ΦA,σ).

Proof. (1) Suppose that B = Ded(A,SP ′) satisfies AX1 and r ∈ R1. Since lfp(ΦA,σ) satisfies AX1, the

cut calculus for SP ′ is correct w.r.t. lfp(ΦA,σ). Hence for all Σ′-atoms r(t) : s, Trues `A,SP ′ r(t) implies

lfp(ΦA,σ) |= r(t) and thus rB is a subset of rlfp(ΦA,σ). Conversely, rlfp(ΦA,σ) is a subset of rB because lfp(ΦA,σ)

is the least SP ′-model over A. It remains to show that B satisfies AX1.

Let r(t) ⇐ ϕ ∈ AX1 and B |= ϕ. By Lemma 13.3(1), True `A,SP ′ ϕ and thus True `A,SP ′ r(t) by the

definition of rB . Hence B |= r(t) and thus B |= r(t)⇐ ϕ.

(2) Suppose that B = Ded(A,SP ′) satisfies AX1 and r ∈ R1. Since gfp(ΦA,σ) satisfies AX1, the cut calculus

for SP ′ is correct w.r.t. gfp(ΦA,σ). Hence for all Σ′-atoms r(t) : s, r(t) `A,SP ′ Falses implies gfp(ΦA,σ) |= ¬r(t)
and thus rgfp(ΦA,σ) is a subset of rB . Conversely, rB is a subset of rgfp(ΦA,σ) because gfp(ΦA,σ) is the greatest

SP ′-model over A. It remains to show that B satisfies AX1.

Let r(t) ⇒ ϕ ∈ AX1 and B |= r(t). By the definition of rB , r(t) 6`A,SP ′ False. Hence ϕ 6`A,SP ′ False and

thus B |= ϕ by Lemma 13.3(2). Hence B |= r(t)⇒ ϕ. o

14 Constructor-based algebras

Let SP = (Σ, AX) be a visible swinging type with sort set S, constructor set CO, base type baseSP =

(baseΣ, baseAX) and extension (Σ′, AX ′).

A functor F : SetS → SetS is defined as follows: for all A ∈ SetS and s ∈ S,

F (A)s =

{
sB if s ∈ baseΣ,∐
f :w→s∈CO Aw otherwise.

By Theorem 21.3, F is continuous and thus by Theorem 21.2, Alg(F ) has an initial object ini : F (Ini(F )) →
Ini(F ). Ini(F ) can be represented as the algebra TB∪CO of finite ground terms over B ∪ CO.

Proof!

The free F -algebra over an S-sorted set X is given by the algebra TB∪CO(X) of finite terms over B ∪ CO
with variables in X. This complies with Theorem 21.8 because X just forms a set of additional constants, in

other words: TB∪CO∪X coincides with TB∪CO(X).
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Σ-structures are F -algebras: α : F (A)→ A is obtained from a Σ-structureA by combining the interpretations

in A of all constructors f : w → s ∈ CO into a single morphism α such that for all A ∈ SetS and a ∈ Aw,

α(ιf (a)) =def f
A(a)

where ιf is the injection from Aw to
∐
f :w→s∈CO Aw. Conversely, decomposing an F -algebra α into an inter-

pretation of CO defines a Σ-algebra: for all a ∈ Aw,

fA(a) =def α(ιf (a)).

Example 14.1

NAT

vissorts nat

constructs 0 :→ nat

suc : nat→ nat

defuncts pred : nat→ 1 + nat

1 : 1→ nat

+ , − : nat× nat→ nat

min,max : nat× nat→ nat

preds ≤ : nat× nat
6≡ : nat× nat

vars x, y : nat

axioms pred(0) ≡ ι1
pred(suc(x)) ≡ ι2(x)

1 ≡ suc(0)

0 + x ≡ x
suc(x) + y ≡ suc(x+ y)

0− x ≡ 0

suc(x)− y ≡ suc(x− y)

min(0, x) ≡ 0

min(suc(x), 0) ≡ 0

min(suc(x), suc(y)) ≡ min(x, y)

max(0, x) ≡ x
max(suc(x), 0) ≡ suc(x)

min(suc(x), suc(y)) ≡ max(x, y)

0 ≤ x
suc(x) ≤ suc(y) ⇐ x ≤ y
0 6≡ suc(x)

suc(x) 6≡ 0

suc(x) 6≡ suc(y) ⇐ x 6≡ y

In terms of Def. 5.1, SP is empty, S′ = {nat} and F ′ = {0, suc}. By Theorem 6.3,

natIni = {sucn(0) | n ∈ N}.

SUPERTYPE! By ???, F (A)nat = 1 +Anat. The initial NAT-model is isomorphic to the initial F -algebra (see

Def. 3.3). In particular, αnat is the unique sum extension of 0Ini(F ) and sucIni(F ). o

Example 14.2 The following specification of finite lists is a parameterized ST that extends the parameter

type TRIV(s) (see Example 5.4):
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LIST[TRIV(s)[BOOL]] where LIST = NAT and

vissorts list(s)

constructs [] : 1→ list(s)

: : s× list(s)→ list(s)

λy. (x, y) : ((s× s)→ bool)→ (s→ bool)

recfuncts head : list(s)→ 1 + s

tail : list(s)→ 1 + list(s)

length : list(s)→ nat

defuncts [ ] : s→ list(s)

take, drop : nat× list(s)→ list(s)

reverse : list(s)→ list(s)

odds, evens : list(s)→ list(s)

++ , zip : list(s)× list(s)→ list(s)

length′ : list(s)→ nat

nth : list(s)→ 1 + s

exists, forall : (s→ bool)× list(s)→ bool

filter : (s→ bool)× list(s)→ list(s)

remove : s× list(s)→ list(s)

$ : ((s→ bool)× s)→ bool

preds 6≡ : list(s)× list(s)
vars x, y : s L,L′ : list(s) n : nat f : s→ bool g : s× s→ bool

axioms head ◦ [] ≡ ι1
head ◦ (:) ≡ ι2 ◦ π1

tail ◦ [] ≡ ι1
tail ◦ (:) ≡ ι2 ◦ π2

length ◦ [] ≡ 0

length ◦ (:) ≡ suc ◦ π2 ◦ (ids × length)

[x] ≡ x : []

take(0, L) ≡ []

take(suc(n), []) ≡ []

take(suc(n), x : L) ≡ x : take(n,L)

drop(0, L) ≡ L
drop(suc(n), []) ≡ []

drop(suc(n), x : L) ≡ drop(n,L)

reverse([]) ≡ []

reverse(x : L) ≡ reverse(L) ++[x]

odds([]) ≡ []

odds(x : L) ≡ x : evens(L)

evens([]) ≡ []

evens(x : L) ≡ odds(L)

[] ++L ≡ L
(x : L) ++L′ ≡ x : (L++L′)

zip([], L) ≡ L
zip(L, []) ≡ L
zip(x : L, y : L′) ≡ x : y : zip(L,L′)

length′([]) ≡ 0

length′(x : L) ≡ length′(L) + 1

nth(n, []) ≡ ι1
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nth(0, x : L) ≡ ι2(x)

nth(suc(n), x : L) ≡ nth(n,L)

exists(f, []) ≡ false
exists(f, x : L) ≡ f(x) or exists(f, L)

forall(f, []) ≡ true
forall(f, x : L) ≡ f(x) and forall(f, L)

filter(f, []) ≡ []

filter(f, x : L) ≡ x : filter(f, L) ⇐ f(x) ≡ true
filter(f, x : L) ≡ filter(f, L) ⇐ f(x) ≡ false
remove(x, L) ≡ filter(λy.not(eq(x, y)), L)

$(λy.g(x, y), y) ≡ g(x, y)

[] 6≡ x : L

x : L 6≡ []

x : L 6≡ y : L′ ⇐ x 6≡ y ∨ L 6≡ L′

Note that a λ-abstraction is declared as a constructor mapping from the sorts of its free variables to a sort

representing functions in its bounded variables. λ-abstractions as well as other higher-order functions are applied

to arguments by suitable apply functions (denoted by $), which are—usually implicitly—declared as defined

functions (see Section 2.2).

In terms of Def. 5.1, SP=TRIV(s)∪NAT, S′ \ S = {list(s)} and F ′ \ F = {[], : }. Let B be a parameter

model of TRIV(s). Hence TB∪CO,list(s) is the set of finite lists with entries in sB and

F (A)list(s) = 1 + sB ×Alist(s).

The initial LIST(B)-model is isomorphic to the initial F -algebra α : F (Ini(F )) → Ini(F ) (see Def. 3.3). In

particular, αlist(s) is the unique sum extension of []Ini(F ) and ( : )Ini(F ). o

Definition 14.3 Let SP = (Σ, AX) and

PSP = SP [PAR1, . . . ,PARk,PARk+1, . . . ,PARn], PSP1, . . . , PSPk

be parameterized types. For all 1 ≤ i ≤ k let PΣi be the set of signature symbols of PARi that do not

belong to a constant subtype of PARi (see Def. 5.3). Let σi : PΣi → Σ(PSP i) be a signature morphism. The

parameterized type

SPσ1,...,σk [PSP1, . . . ,PSPk][PARk+1, . . . ,PARn] =def (Σ′, AX ′)[PARk+1, . . . ,PARn]

with

Σ′ =def

k⋃
i=1

(Σ(PSP i) ∪ σi(Σ)) und AX ′ =def

k⋃
i=1

(AX(PSP i) ∪ σi(AX))

is called the amalgamation of PSP with PSP1 . . . ,PSPk along σ1 . . . , σk where σi, 1 ≤ i ≤ k, is extended to

Σ as follows:

- σi(s) = s for all unstructured sorts s ∈ Σ,

- σi(s(s1, . . . , sn)) = s(σi(s1), . . . , σi(sn)) for all structured sorts s ∈ Σ,

- σi(f : w → s) = f : σi(w)→ σi(s) for all functions f ∈ Σ,

- σi(r : w) = r : σi(w) for alle relations r ∈ Σ. o

Example 14.4 The following specification of finite binary trees is a further parameterized swinging type

that extends the parameter type TRIV(s):
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BINTREE[TRIV(s)[BOOL]] where BINTREE = NAT and LISTbool/s[BOOL] ??? and

vissorts bintree(s)

constructs mt : 1→ bintree(s)

# # : bintree(s)× s× bintree→ bintree(s)

λy. (x, y) : ((s× s)→ bool)→ (s→ bool)

defuncts size : bintree(s)→ nat

< >: s→ bintree(s)

mirror : bintree(s)→ bintree(s)

subtree : bintree(s)× list(bool)→ 1 + bintree(s)

exists, forall : (s→ bool)× bintree(s)→ bool

∈ : s× bintree(s)→ bool

preds 6≡ : bintree(s)× bintree(s)
vars x, y : s T, T ′ : bintree(s) b : bool bL : list(bool) f : s→ bool g : s× s→ bool

axioms size(mt) ≡ 0

size(T#x#T ′) ≡ size(T ) + size(T ′) + 1

< x >≡ mt#x#mt

mirror(mt)) ≡ mt
mirror(T#x#T ′) ≡ mirror(T ′)#x#mirror(T )

subtree(T, []) ≡ ι2(T )

subtree(mt, bL) ≡ ι1
subtree(T#x#T ′, true : bL) ≡ subtree(T, bL)

subtree(T#x#T ′, false : bL) ≡ subtree(T ′, bL)

exists(f,mt) ≡ false
exists(f, T#x#T ′) ≡ f(x) or exists(f, T ) or exists(f, T ′)

forall(f,mt) ≡ true
forall(f, T#x#T ′) ≡ f(x) and forall(f, T ) and forall(f, T ′)

x ∈ T ≡ exists(λy.eq(x, y), T )

$(λy.g(x, y), y) ≡ g(x, y)

mt 6≡ T#x#T ′

T#x#T ′ 6≡ mt
T#x#T ′ 6≡ T1#y#T2 ⇐ x 6≡ y ∨ T 6≡ T1 ∨ T ′ 6≡ T2

In terms of Def. 5.1, SP=TRIV(s)∪NAT∪LIST(BOOL), S′ \ S = {bintree(s)} and F ′ \F{mt, # # }. Let

B be a parameter model of TRIV(s). Hence TB∪CO,bintree(s) is the set of finite binary trees with entries in sB

and

F (A)bintree(s) = 1 +Abintree(s) × sB ×Abintree(s).

The initial BINTREE(B)-model is isomorphic to the initial F -algebra (see Def. 3.3). In particular, αbintree(s)
is the unique sum extension of mtIni(F ) and ( # # )Ini(F ). o

Example 14.5 The following specification of finite trees is a parameterized swinging type with two new

(visible) sorts:

TREE[TRIV(s)[BOOL]] where TREE = NAT and LISTnat/s[NAT] ??? and

vissorts tree(s) trees(s)

constructs & : s× trees(s)→ tree(s)

[] : 1→ trees(s)

: : tree(s)× trees(s)→ trees(s)

λy. (x, y) : ((s× s)→ bool)→ (s→ bool)
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destructs rs : tree(s)→ s× trees(s)
ht : trees(s)→ 1 + s× trees(s)

defuncts size : tree(s)→ nat

sizeL : trees(s)→ nat

< >: s→ tree(s)

subtree : tree(s)× list(bool)→ 1 + tree(s)

subtreeL : trees(s)× list(bool)→ 1 + tree(s)

exists, forall : (s→ bool)× tree(s)→ bool

∈ : s× tree(s)→ bool

$ : ((s→ bool)× s)→ bool

preds 6≡ : tree(s)× tree(s)
6≡ : trees(s)× trees(s)

vars x, y : s T : tree(s) TL : trees(s) n : nat nL : list(nat)

f : s→ bool g : s× s→ bool

axioms rs(x&TL) ≡ (x, TL) (1)

ht([]) ≡ ι1 (2)

ht(T : TL) ≡ ι2(T, TL) (3)

size(x&TL) ≡ sizeL(TL) + 1

sizeL([]) ≡ 0

sizeL(T : TL) ≡ size(T ) + sizeL(TL)

< x >≡ x&[]

subtree(T, []) ≡ ι2(T )

subtree(x&TL, n : nL) ≡ subtreeL(TL, n : nL)

subtreeL([], nl) ≡ ι1
subtreeL(T : TL, []) ≡ ι1
subtreeL(T : TL, 0 : nL) ≡ subtree(T, nL)

subtreeL(T : TL, suc(n) : nL) ≡ subtreeL(TL, n : nL)

exists(f, x&TL) ≡ f(x) or existsL(f, TL)

existsL(f, []) ≡ false
existsL(f, T : TL) ≡ exists(f, T ) or existsL(f, TL)

forall(f, x&TL) ≡ f(x) and forallL(f, TL)

forallL(f, []) ≡ true
forallL(f, T : TL) ≡ forall(f, T ) and forallL(f, TL)

x ∈ T ≡ exists(λy.eq(x, y), T )

$(λy.g(x, y), y) ≡ g(x, y)

x&TL 6≡ y&TL′ ⇐ x 6≡ y ∨ TL 6≡ TL′

[] 6≡ T : TL

T : TL 6≡ []

T : TL 6≡ T ′ : TL′ ⇐ T 6≡ T ′ ∨ TL 6≡ TL′

Functional programmers, don’t cry because of the introduction of a list version for each function on trees!

Of course, an implementation would avoid the list versions by using the well-known map function that applies

a function on s to each element of an s-list. However, this does not help when properties of a tree function f

shall be proved. Then one needs has to find and prove corresponding properties of map ◦ f . To this end, an

explicit definition of map ◦ f will be needed anyway.

In terms of Assumption ??, SPi=TRIV(s)∪NAT∪LIST(NAT), extS = {tree(s), trees(s)} and CO =

{ & , [], : }. Let B be a parameter model of TRIV(s). Hence TB∪CO,tree(s) is the set of nonempty finite
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trees with entries in sB and finite node degree, TB∪CO,trees(s) is the set of finite forests with entries in sB and

F (A)tree(s) = sB ×Atrees(s),
F (A)trees(s) = 1 +Atree(s) ×Atrees(s).

The initial TREE(B)-model is isomorphic to the initial F -algebra (see Def. 3.3). In particular, αtree(s) =

( & )Ini(F ), αtrees(s) is the unique sum extension of []Ini(F ) and ( : )Ini(F ), α−1
tree(s) = rsIni(F ) and α−1

trees(s) =

htIni(F ). Hence rs (“root and successors”) and ht (“head and tail”) are called destructors. In terms of Def. 5.1,

they are defined functions (by axioms (1)-(3)). o

15 Constructor-based coalgebras

Let SP = (Σ, AX) be a hidden swinging type with sort set S, constructor set CO, base type baseSP =

(baseΣ, baseAX) and extension (Σ′, AX ′).

By Thm. 21.3, F is also cocontinuous. Hence by Thm. 21.2, coAlg(F ) has a final object fin : Fin(F ) →
F (Fin(F )). Fin(F ) can be represented as the algebra T∞B∪CO of finite or infinite ground terms over B ∪ CO.

The elements of T∞B∪CO are usually represented as the partial functions t : N∗ → B ∪CO whose domain dom(t)

satisfies the following conditions: for all w ∈ N∗ and i ∈ N,

wi ∈ dom(t) ⇒ w ∈ dom(t),

w(i+ 1) ∈ dom(t) ⇒ wi ∈ dom(t).

f : w → s ∈ CO is defined in Fin(F ) as in Ini(F ) just by placing the symbol f on top of the argument terms:

for all t ∈ Fin(F )w, fFin(F )(t) =def f(t).

Proof!

The cofree F -coalgebra over an S-sorted set X is given by the product T∞B∪CO×X. Hence each element can

be represented as a finite or infinite ground term over B ∪ CO whose root is colored by an element of X.

Ini(F ) = TB∪CO is the least fixpoint, Fin(F ) = T∞B∪CO is the greatest fixpoint of the same functor F .15

But F -algebras and F -coalgebras are usually different from each other: given an S-sorted set A, an F -algebra

α maps F (A) to A, while an F -coalgebra β maps A to F (A). Since F (A) is a sum of sets (see §4.2), α is a

sum of maps that can be decomposed into several functions, one for each constructor of CO. Conversely, β is a

single function dA that maps A to a sum of sets. Since the initial α and the final β are isomorphisms, Ini(F )

is also an F -coalgebra and Fin(F ) is also an F -algebra, i.e., dFin(F ) is the inverse of the sum of constructor

interpretations mapping F (Fin(F )) to Fin(F ). Hence dFin(F ) is the interpretation of the S-sorted destructor

ds : s →

{
1 if s ∈ baseS,∐
f :w→s∈CO w otherwise

such that for all f : w → s ∈ CO and t ∈ Fin(F )w, d
Fin(F )
s (f(t)) =def ιf (t) where ιf is the injection from

Fin(F )w to
∐
f :w→s∈CO Fin(F )w.

Hence for final F -coalgebras, constructors are as essential as they are for initial F -algebras. Syntactically,

their different interpretation is indicated by the different mode of the sorts of extS: if extS consists of visible

sorts, then they are interpreted as carriers of the initial F -algebra; if extS consists of hidden sorts, they are

interpreted as carriers of the final F -coalgebra.

15By [7], Thm. 3.2, the fixpoints of other both continuous and cocontinuous functors F on Set (and thus on SetS) are related to
each other in the same way: the final F -coalgebra is the Cauchy completion of the initial F -algebra.
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For all s ∈ extS, behavioral s-equality may be specified either in terms of COs or in terms of ds. In fact,

the behavior axioms B1/B2 and B5/B6 (see Def. 5.1(2)) are equivalent in Fin(F ) (but of course not in all

F -coalgebras!):

x ∼s y ⇒ ds(x) ∼ ds(y)

holds true in Fin(F ) iff for all f, g ∈ COs,

f(x) ∼s g(y) ⇒ ds(f(x)) ∼ ds(g(y))

holds true in Fin(F ) iff for all f, g ∈ COs,

f(x) ∼s g(y) ⇒ ιf (x) ∼ ιg(y)

holds true in Fin(F ) iff for all f, g ∈ COs with f 6= g,

f(x) ∼s f(y) ⇒ ιf (x) ∼ ιf (y),

f(x) ∼s g(y) ⇒ ιf (x) ∼ ιg(y)

hold true in Fin(F ) iff for all f, g ∈ COs with f 6= g,

f(x) ∼s f(y) ⇒ x ∼ y,
f(x) ∼s g(y) ⇒ False

holds true in Fin(F ). In all subsequent examples, we specify behavioral equalities in terms of B5/B6.

Example 15.1

CONAT

hidsorts cnat

destructs pred : cnat→ 1 + cnat

cofuncts 0, 1,∞ : 1→ cnat

suc : cnat→ cnat

+ , − : cnat× cnat→ cnat

min,max : cnat× cnat→ cnat

preds 6∼ : cnat× cnat
copreds ≤ : cnat× cnat

∼ : cnat× cnat
vars x, y, x′, y′ : cnat

axioms pred(0) ≡ ι1 (1)

pred(suc(x)) ≡ ι2(x) (2)

pred(1) ≡ ι2(0)

pred(∞) ≡ ι2(∞)

pred(x+ y) ≡ pred(y) ⇐ pred(x) ≡ ι1
pred(x+ y) ≡ ι2(x′ + y) ⇐ pred(x) ≡ ι2(x′)

pred(x− y) ≡ ι1 ⇐ pred(x) ≡ ι1
pred(x− y) ≡ ι2(x′ − y) ⇐ pred(x) ≡ ι2(x′)

x ≤ y ⇒ pred(x) ≡ ι1 ∨ (pred(x) ≡ ι2(x′) ∧ pred(y) ≡ ι2(y′) ∧ x′ ≤ y′)
0 ∼ suc(x) ⇒ False (3)

suc(x) ∼ 0 ⇒ False (4)

suc(x) ∼ suc(y) ⇒ x ∼ y (5)

0 6∼ suc(x) (6)

suc(x) 6∼ 0 (7)

suc(x) 6∼ suc(y) ⇐ x 6∼ y (8)
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In terms of Assumption ??, SPi is empty, extS = {cnat}, CO = {0, suc} and dcnat = pred. Hence

T∞CO = {sucn(0) | n ∈ N ∪ {∞}}

and F (A)cnat = 1 + Acnat.
16 Note that equations (1)-(8) present the general definition of d

Fin(F )
s (see above)

and the behavior axioms (see 5.1(2)) for s = cnat, respectively, and may thus be dropped. o

Example 15.2 The following specification of finite or infinite lists is a parameterized ST that extends the

parameter type TRIV(s) (see Example 5.4):

COLIST[TRIV(s)] = NAT and LIST[TRIV(s)] and CONAT then

hidsorts clist(s)

constructs [] : 1→ clist(s)

: : s× clist(s)→ clist(s)

λy. (x, y) : ((s× s)→ bool)→ (s→ bool)

destructs ht : clist(s)→ 1 + s× clist(s)
length : clist(s)→ 1 + nat

corecfuncts length′ : clist(s)→ cnat

min : (s→ bool)× clist(s)→ 1 + nat

cofuncts [ ] : s→ clist(s)

take : nat× clist(s)→ list(s)

drop : nat× clist(s)→ clist(s)

odds, evens : clist(s)→ clist(s)

++ , zip : clist(s)× clist(s)→ clist(s)

nth : nat× clist(s)→ 1 + s

filter : (s→ bool)× clist(s)→ clist(s)

defuncts ∈ : s× clist(s)→ bool

remove : s× clist(s)→ clist(s)

$ : ((s→ bool)× s)→ bool

preds exists : (s→ bool)× clist(s)
finite : clist(s)

copreds forall : (s→ bool)× clist(s)
infinite : clist(s)

fair : (s→ bool)× clist(s)
∼ : clist(s)× clist(s)

vars x, y : s L,L′, L′′ : clist(s) m,n : nat f : s→ bool g : s× s→ bool

axioms ht([]) ≡ ι1 (1)

ht(x : L) ≡ ι2(x, L) (2)

take(0, L) ≡ []

take(suc(n), L) ≡ [] ⇐ ht(L) ≡ ι1
take(suc(n), L) ≡ x : take(n,L′) ⇐ ht(L) ≡ ι2(x, L′)

ht(drop(0, L)) ≡ ht(L)

ht(drop(n+ 1, L) ≡ ι1 ⇐ ht(L) ≡ ι1
ht(drop(n+ 1, L) ≡ ht(drop(n,L′)) ⇐ ht(L) ≡ ι2(x, L′)

ht(odds(L)) ≡ ι2(x, evens(L′)) ⇐ ht(L) ≡ ι2(x, L′)

ht(evens(L)) ≡ odds(L′) ⇐ ht(L) ≡ ι(x, L′)
ht(L++L′) ≡ ι1 ⇐ ht(L) ≡ ι1 ∧ ht(L′) ≡ ι1
ht(L++L′) ≡ ι2(x, L′′) ⇐ ht(L) ≡ ι1 ∧ ht(L′) ≡ ι2(x, L′′)

16suc∞(0) denotes the infinite term t with dom(t) = 0∗ and t(w) = suc for all w ∈ dom(t).
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ht(L++L′) ≡ ι2(x, L′′ ++L′) ⇐ ht(L) ≡ ι2(x, L′′)

ht(zip(L,L′)) ≡ ι1 ⇐ ht(L) ≡ ι1 ∧ ht(L′) ≡ ι1
ht(zip(L,L′)) ≡ ι2(x, L′′) ⇐ ht(L) ≡ ι1 ∧ ht(L′) ≡ ι2(x, L′′)

ht(zip(L,L′)) ≡ ι2(x, zip(L′, L′′)) ⇐ ht(L) ≡ ι2(x, L′′)

nth(n,L) ≡ ι1 ⇐ ht(L) ≡ ι1
nth(0, L) ≡ ι2(x) ⇐ ht(L) ≡ ι2(x, L′)

nth(n+ 1, L) ≡ nth(n,L′) ⇐ ht(L) ≡ ι2(x, L′)

length(L) ≡ ι1 ⇐ /⇒ ∃x, L′ : (ht(L) ≡ ι2(x, L′) ∧ length(L′) ≡ ι1)

length(L) ≡ ι2(0) ⇐ /⇒ ht(L) ≡ ι1
length(L) ≡ ι2(suc(n)) ⇐ /⇒ ∃x, L′ : (ht(L) ≡ ι2(x, L′) ∧ length(L′) ≡ ι2(n))

pred ◦ length′ ≡ (id+ (length′ ◦ π2)) ◦ ht
min(f, L) ≡ ι1 ⇒ f(nth(n,L)) ≡ false
min(f, L) ≡ ι2(n) ⇒ f(nth(n,L)) ≡ true ∧ (n ≤ m ∨ f(nth(m,L)) ≡ false
ht(filter(f, L)) ≡ ι1 ⇐ min(f, L) ≡ ι1
ht(filter(f, L)) ≡ ι2(x, filter(f, L′))

⇐ min(f, L) ≡ ι2(n) ∧ nth(n,L) ≡ ι2(x) ∧ drop(n+ 1, L) ≡ L′

x ∈ L ≡ exists(λy.eq(x, y), L)

remove(x, L) ≡ filter(λy.not(eq(x, y)), L)

$(λy.g(x, y), y) ≡ g(x, y)

exists(f, L) ⇐ ht(L) ≡ ι2(x, L′) ∧ (f(x) ≡ true ∨ exists(f, L′))
finite(L) ⇐ ht(L) ≡ ι1 ∨ ∃x, L′ : (ht(L) ≡ ι2(x, L′) ∧ finite(L′))

forall(f, L)

⇒ ht(L) ≡ ι1 ∨ ∃x, L′ : (ht(L) ≡ ι2(x, L′) ∧ f(x) ≡ true ∧ forall(f, L′))

infinite(L) ⇒ ∃x, L′ : (ht(L) ≡ ι2(x, L′) ∧ infinite(L′))

fair(f, L) ⇒ ht(L) ≡ ι1 ∨ (exists(f, L) ∧ ht(L) ≡ ι2(x, L′) ∧ fair(f, L′))
[] ∼ x : L ⇒ False (3)

x : L ∼ [] ⇒ False (4)

x : L ∼ y : L′ ⇒ x ≡ y ∧ L ∼ L′ (5)

[] 6∼ x : L (6)

x : L 6∼ [] (7)

x : L 6∼ y : L′ ⇐ x 6≡ y ∨ L 6∼ L′ (8)

In terms of Assumption ??, SPi=TRIV(s)∪NAT, extS = {clist(s)}, CO = {[], : } and dclist(s) = ht. Let

B be a parameter model of TRIV(s). Hence T∞B∪CO,clist(s) is the set of finite or infinite lists with entries in sB

and

F (A)clist(s) = 1 + sB ×Aclist(s).

F coincides with the functor F of Example 14.2. Note that equations (1)-(8) present the general definition of

d
Fin(F )
s (see above) and the behavior axioms (see 5.1(2)), respectively, for s = clist(s) and may thus be dropped.

Here is an alternative specification of exists and forall as Boolean functions, analogously to Example 14.2:

destructs exists, forall : (s→ bool)× clist(s)→ bool

axioms exists(f, L) ≡ true
⇒ ∃x, L′ : (ht(L) ≡ ι2(x, L′) ∧ f(x) or exists(f, L′) ≡ true)

exists(f, L) ≡ false
⇒ ht(L) ≡ ι1 ∨ ∃x, L′ : (ht(L) ≡ ι2(x, L′) ∧ f(x) and exists(f, L′) ≡ false)

forall(f, L) ≡ true
⇒ ht(L) ≡ ι1 ∨ ∃x, L′ : (ht(L) ≡ ι2(x, L′) ∧ f(x) and forall(f, L′) ≡ true)
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forall(f, L) ≡ false
⇒ ∃x, L′ : (ht(L) ≡ ι2(x, L′) ∧ f(x) or forall(f, L′) ≡ false)

The reason why exists, forall and the functions length and min of COLIST are declared as destructors and

the other non-constructor functions as codefined functions will be given later.

The following ST specifies infinite number sequences:

COLIST’ = COLISTnat/s[NAT] then

cofuncts blink :→ clist(nat)

nats : nat→ clist(nat)

vars n : nat

axioms ht(blink) ≡ ι2(0, 1 : blink)

ht(nats(n)) ≡ ι2(n, nats(n+ 1))o

Example 15.3 The following specification of finite or infinite binary trees is a further parameterized swinging

type that extends the parameter type TRIV(s):

COBINTREE[TRIV(s)] = NAT and LISTbool/s[BOOL] then

hidsorts cbintree(s)

constructs undef : 1→ cbintree(s)

# # : cbintree(s)× s× cbintree(s)→ cbintree(s)

λy. (x, y) : (s× s)→ bool)→ (s→ bool)

destructs ler : cbintree(s)→ 1 + cbintree(s)× s× cbintree(s)
size : cbintree(s)→ 1 + nat

cofuncts < >: s→ cbintree(s)

mirror : cbintree(s)→ cbintree(s)

subtree : cbintree(s)× list(bool)→ cbintree(s)

defuncts ∈ : s× cbintree(s)→ bool

$ : ((s→ bool)× s)→ bool

preds exists : (s→ bool)× cbintree(s)
finite : cbintree(s)

copreds forall : (s→ bool)× cbintree(s)
infinite : cbintree(s)

∼ : cbintree(s)× cbintree(s)
∼ : (cbintree(s)× cbintree(s))× (cbintree(s)× cbintree(s))

vars x, y : s T, T ′, U, U ′ : cbintree(s) b : bool bL : list(bool) f : s→ bool g : s× s→ bool

k,m, n : nat

axioms ler(T#x#T ′) ≡ ι2(T, x, T ′)

ler(undef) ≡ ι3
size(T ) ≡ ι1
⇒ ∃x, T1, T2 : (ler(T ) ≡ ι2(T1, x, T2) ∧ (size(T1) ≡ ι1 ∨ size(T2) ≡ ι1))

size(T ) ≡ ι2(n)

⇒ ∃x, T1, T2 : (ler(T ) ≡ ι2(T1, x, T2) ∧ size(T1) ≡ ι2(k) ∧ size(T2) ≡ ι2(m) ∧ k +m+ 1 ≡ n)

ler(< x >) ≡ ι2(mt, x,mt)

ler(mirror(T )) ≡ ι1 ⇐ ler(T ) ≡ ι1
ler(mirror(T )) ≡ ι2(mirror(U ′), x,mirror(U)) ⇐ ler(T ) ≡ ι2(U, x, U ′)

subtree(T, []) ≡ T

subtree(T, b : bL)) ≡ ι1 ⇐ ler(T ) ≡ ι1
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subtree(T, true : bL) ≡ subtree(U, bL)) ⇐ ler(T ) ≡ ι2(U, x, U ′)

subtree(T, false : bL) ≡ subtree(U ′, bL) ⇐ ler(T ) ≡ ι2(U, x, U ′)

x ∈ T ≡ exists(λy.eq(x, y), T )

$(λy.g(x, y), y) ≡ g(x, y)

exists(f, T ) ⇐ ler(T ) ≡ ι2(U, x, U ′) ∧ (exists(f, U) ∨ f(x) ≡ true ∨ exists(f, U ′))
finite(T ) ⇐ ler(T ) ≡ ι1 ∨ (ler(T ) ≡ ι2(U, x, U ′) ∧ finite(U) ∧ finite(U ′))

forall(f, T ) ⇒ ler(T ) ≡ ι1 ∨ ∃x, U, U ′ : (ler(T ) ≡ ι2(U, x, U ′) ∧ forall(f, U) ∧
f(x) ≡ true ∧ forall(f, U ′)) ∨ ler(T ) ≡ ι3

infinite(T ) ⇒ ∃x, U, U ′ : (ler(T ) ≡ ι2(U, x, U ′) ∧ (infinite(U) ∨ infinite(U ′)))

T ≡ T ′ ⇒ ler(T ) ≡ ler(T ′) (3)

ι2(T, x, T ′) ∼ ι2(U, y, U ′) ⇒ T ≡ T ′ ∧ x ≡ y ∧ U ≡ U ′ (4)

ι2(T, x, T ′) ∼ ι1 ⇒ False (4)

ι1 ∼ ι2(T, x, T ′) ⇒ False (4)

In terms of Assumption ??, SPi=TRIV(s)∪NAT∪LIST(BOOL), extS = {cbintree(s), cbintree1(s)}, CO =

{mt, # # , def , undef}, dcbintree(s) = ler and dcbintree1(s) = switch. Let B be a parameter model of TRIV(s).

Hence T∞B∪CO,cbintree(s) is the set of finite or infinite binary trees with entries in sB , T∞B∪CO,cbintree1(s) =

1 + T∞B∪CO,cbintree(s) and

F (A)cbintree(s) = 1 +Acbintree(s) × sB ×Acbintree(s),
F (A)cbintree1(s) = 1 +Acbintree(s).

F coincides with the functor F of Example 14.4. Note that equations (1)-(14) present the general definition of

d
Fin(F )
s (see above) and the behavior axioms (see 5.1(2)), respectively, for s ∈ {cbintree(s), cbintree1(s)} and

may thus be dropped.

Here is an alternative specification of exists and forall as Boolean functions, analogously to Example 14.4:

destructs exists, forall : (s→ bool)× cbintree(s)→ bool

axioms exists(f, T ) ≡ true
⇒ ∃x, T1, T2 : (ler(T ) ≡ ι2(T1, x, T2) ∧ exists(f, T1) or f(x) or exists(f, T2) ≡ true)

exists(f, T ) ≡ false
⇒ ler(T ) ≡ ι1 ∨ ∃x, T1, T2 : (ler(T ) ≡ ι2(T1, x, T2) ∧

exists(f, T1) and f(x) and exists(f, T2) ≡ false)
forall(f, T ) ≡ true
⇒ ler(T ) ≡ ι1 ∨ ∃x, T1, T2 : (ler(T ) ≡ ι2(T1, x, T2) ∧

forall(f, T1) and f(x) and forall(f, T2) ≡ true)
forall(f, T ) ≡ false
⇒ ∃x, T1, T2 : (ler(T ) ≡ ι2(T1, x, T2) ∧ forall(f, T1) or f(x) or forall(f, T2) ≡ false)

The reason why exists, forall and the function size of COBINTREE are declared as destructors and the other

non-constructor functions as codefined ones will be given later. o

Example 15.4 The following specification of finite or infinite trees is a parameterized swinging type with

three new (hidden) sorts:

COTREE[TRIV(s)] = NAT and LISTnat/s[NAT] then

hidsorts ctree(s) ctrees(s) ctree1(s)

constructs & : s× ctrees(s)→ ctree(s)
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[] :→ ctrees(s)

: : ctree(s)× ctrees(s)→ ctrees(s)

undef : 1→ ctree1(s)

def : ctree(s)→ ctree1(s)

λy. (x, y) : (s× s)→ bool)→ (s→ bool)

destructs rs : ctree(s)→ s× ctrees(s)
ht : ctrees(s)→ 1 + s× ctrees(s)
switch : ctree1(s)→ 1 + ctree(s)

size : ctree(s)→ 1 + nat

sizeL : ctrees(s)→ 1 + nat

cofuncts < >: s→ ctree(s)

subtree : ctree(s)× list(bool)→ ctree1(s)

subtreeL : ctrees(s)× list(bool)→ ctree1(s)

exists, forall : (s→ bool)× bintree(s)→ bool

defuncts ∈ : s× bintree(s)→ bool

$ : ((s→ bool)× s)→ bool

preds exists : (s→ bool)× ctree(s)
existsL : (s→ bool)× ctrees(s)
finite : ctree(s)

finiteL,finiteB : ctrees(s)

copreds forall : (s→ bool)× ctree(s)
forallL : (s→ bool)× ctrees(s)
infinite : ctree(s)

infiniteL : ctrees(s)

∼ : ctree(s)× ctree(s)
∼ : ctrees(s)× ctrees(s)
∼ : ctree1(s)× ctree1(s)

vars x, y : s T, T ′ : ctree(s) TL, TL′ : ctrees(s) m,n : nat nL : list(nat)

f : s→ bool g : s× s→ bool

axioms rs(x&TL) ≡ (x, TL) (1)

ht([]) ≡ ι1 (2)

ht(T : TL) ≡ ι2(T, TL) (3)

switch(undef) ≡ ι1 (4)

switch(def (T )) ≡ ι2(T ) (5)

size(T ) ≡ ι1 ⇒ rs(T ) ≡ ι2(x, TL) ∧ sizeL(TL) ≡ ι1
size(T ) ≡ ι2(n)

⇒ rs(T ) ≡ ι2(x, TL) ∧ sizeL(TL) ≡ ι2(m) ∧m+ 1 ≡ n
sizeL(TL) ≡ ι1
⇒ ht(TL) ≡ ι2(T, TL′) ∧ (size(T ) ≡ ι1 ∨ sizeL(TL′) ≡ ι1)

sizeL(TL) ≡ ι2(0) ⇒ ht(TL) ≡ ι1
sizeL(TL) ≡ ι2(suc(n))

⇒ ht(TL) ≡ ι2(T, TL′) ∧ size(T ) ≡ ι2(k) ∧ sizeL(TL) ≡ ι2(m) ∧ k +m ≡ n
rs(< x >) ≡ (x, [])

switch(subtree(T, [])) ≡ ι2(T )

switch(subtree(T, n : nL)) ≡ switch(subtreeL(TL, n : nL)) ⇐ rs(T ) ≡ (x, TL)

switch(subtreeL([], nl)) ≡ ι1
switch(subtreeL(T : TL, [])) ≡ ι1
switch(subtreeL(T : TL, 0 : nL)) ≡ switch(subtree(T, nL))
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switch(subtreeL(T : TL, suc(n) : nL)) ≡ switch(subtreeL(TL, n : nL))

x ∈ T ≡ exists(λy.eq(x, y), T )

$(λy.g(x, y), y) ≡ g(x, y)

exists(f, T ) ⇐ rs(T ) ≡ (x, TL) ∧ (f(x) ≡ true ∨ existsL(f, TL))

existsL(f, TL) ⇐ ht(TL) ≡ ι2(T, TL′) ∧ (exists(f, T ) ∨ existsL(f, TL′))

finite(T ) ⇐ rs(T ) ≡ (x, TL) ∧ finiteL(TL)

finiteL(TL) ⇐ ht(TL) ≡ ι1 ∨ (ht(TL) ≡ ι2(T, TL′) ∧ finite(T ) ∧ finiteL(TL′))

finiteB(TL) ⇐ ht(TL) ≡ ι1 ∨ (ht(TL) ≡ ι2(T, TL′) ∧ finiteB(TL′))

forall(f, T ) ⇒ ∃x, TL : (rs(T ) ≡ (x, TL) ∧ f(x) ≡ true ∧ forallL(f, TL))

forallL(f, TL)

⇒ ht(TL) ≡ ι1 ∨ ∃T, TL′ : (ht(TL) ≡ ι2(T, TL′) ∧ forall(f, T ) ∧ forallL(f, TL′))

infinite(T ) ⇒ ∃x, TL : (rs(T ) ≡ (x, TL) ∧ infiniteL(TL))

infiniteL(TL)

⇒ finiteB(TL) ∧ ∃x, TL′ : (ht(TL) ≡ ι2(T, TL′) ∧ (infinite(T ) ∨ infiniteL(TL′)))

x&TL ∼ y&TL′ ⇒ x ≡ y ∧ TL ∼ TL′ (6)

x&TL 6∼ y&TL′ ⇐ x 6≡ y ∨ TL 6∼ TL′ (7)

[] ∼ T : TL ⇒ False (8)

T : TL ∼ [] ⇒ False (9)

T : TL ∼ T ′ : TL′ ⇒ T ∼ T ′ ∧ TL ∼ TL′ (10)

[] 6∼ T : TL (11)

T : TL 6∼ [] (12)

T : TL 6∼ T ′ : TL′ ⇐ T 6∼ T ′ ∨ TL 6∼ TL′ (13)

def (T ) ∼ undef ⇒ False (14)

undef ∼ def (T ′) ⇒ False (15)

def (T ) ∼ def (T ′) ⇒ T ∼ T ′ (16)

def (T ) 6∼ undef (17)

undef 6∼ def (T ′) (18)

def (T ) 6∼ def (T ′) ⇐ T 6∼ T ′ (19)

In terms of Assumption ??, SPi=TRIV(s)∪NAT∪LIST(NAT), extS = {ctree(s), ctrees(s), ctree1(s)} and

CO = { & , [], : , def , undef}, dctree(s) = rs, dctrees(s) = ht and dctree1(s) = switch. Hence T∞B∪CO,ctree(s) is

the set of finite or infinite trees with entries in sB and finite or infinite node degree, TB∪CO,trees(s) is the set of

finite or infinite forests with entries in sB , T∞B∪CO,ctree1(s) = 1 + T∞B∪CO,ctree(s) and

F (A)ctree(s) = sB ×Actree(s),
F (A)ctrees(s) = 1 +Actree(s) ×Actrees(s),
F (A)ctree1(s) = 1 +Actree(s).

F coincides with the functor F of Example 14.5. Note that equations (1)-(19) present the general definition of

d
Fin(F )
s (see above) and the behavior axioms (see 5.1(2)), respectively, for s ∈ {ctree(s), ctrees(s), ctree1(s)}

and may thus be dropped. The reason why the functions size and sizeL of COTREE are declared as destructors

and the other non-constructor functions as codefined functions will be given later. o

Fin(F ) is also the initial continuous (B ∪ CO)-algebra whose carriers are cpos and whose functions are

continuous w.r.t. the cpo structure [38]. Given variables x1 ∈ Xs1 , . . . , xn ∈ Xsn and f1, . . . , fn ∈ B ∪ CO, the

set

E = {x1 ≡ f1(x11, . . . , x1k1), . . . , xn ≡ fn(xn1, . . . , xnkn)}

of regular or (fi-)guarded equations has a unique solution in Fin(F ) ([38], Theorem 5.2). E defines the

infinite trees t1, . . . , tn of Fin(F ) that arise from unfolding the graph presented by E. As part of a swinging
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type SP , E would be written as:

ds1(x1) ≡ ιf1
(x11, . . . , x1k1

), . . . , dsn(xn) ≡ ιfn(xn1, . . . , xnkn)

where d is the S-sorted destructor defined at the top of this section. The unique solvability of E in Fin(F ) can

be shown easily: Suppose that {ti}ni=1 and {ui}ni=1 are two solutions of E. Let R = {(t1, u1), . . . , (tn, un)}. Since

the greatest binary relation ∼ on Fin(F ) that satisfies the behavior axioms of SP (see Def. 5.1(2)) coincides

with the diagonal of Fin(F )2 (see Theorem ????), we only need to show that R also satisfies these axioms,

which read here as follows: For all 1 ≤ i ≤ n,

x ∼ y ⇒ dsi(x) ∼ dsi(y).

So let (ti, ui) ∈ R. Then

dsi(ti) ≡ ιfi(ti1, . . . , tiki) and dsi(ui) ≡ ιfi(ui1, . . . , uiki).

Since for all 1 ≤ j ≤ ki, (tij , uij) ∈ R, the proof is complete.

16 Destructor-based coalgebras

F is built up of coproducts and finite products. The following functor G : SetS → SetS involves also infinite

products, i.e., function spaces. In contrast to F , G covers hidden data types with parameterized destructors.

G is cocontinuous, but not necessarily continuous. While F is induced by a signature Σ of constructors with

hidden range sort, G is associated with a signature ∆ of destructors with a unique hidden argument. Hence

w.l.o.g. for all f : sw → s′ ∈ ∆, s ∈ hidS. Given a visS-sorted set C, G : SetS → SetS is defined as follows:

for all A ∈ SetS and s ∈ S,

G(A)s =

{
sC if s ∈ visS,∏
f :sw→ran∈∆[wC → ranA] if s ∈ hidS.

The Nerode or contextual SP -equivalence, ∼Ner
SP is the set of all ground term pairs (t, t′) such that for

all Σ-contexts c : sw → s′ and u ∈ TΣ,w, c(t, u) ≡SP c(t′, u).

As ∆ agrees with the set Obs(Ξ) of observations of a (Ω,Ξ)-signature ([61], Def. 6.1), so CTΣ coincides with

the set Cont(Ξ) of Ξ-contexts constructed from Obs(Ξ) ([61], Def. 6.2).

If A is a Herbrand structure, then we write c for cA (cf. Section 2). The values of contexts determine the

contextual equivalence of terms (see below). The quotient of TΣ by ∼Ner
SP is also called the final realization

of the behavior of C (cf. [78], Section 5).

Since G is cocontinuous, Thm. 21.2 implies that coAlg(G) has a final object fin : Fin(G) → G(Fin(G)).

Fin(G) can be represented as a product of function spaces: for all s ∈ S,

Fin(G)s =

{
sC if s ∈ visS,∏
c:sw→s′∈CTΣ

[Cw → Cs′ ] if s ∈ hidS.

CoCASL [83] also admits parameterized destructors. However, the semantics of the hidden data types is not

given by the final coalgebra Fin(G), but a—probably isomorphic—behavior algebra BehΣ(C), which generalizes

the infinite-term algebra T∞Σ∪C of the previous section to parameterized destructors. The trees of BehΣ(C) may

not only have infinite paths, but also infinite outdegree. Inner nodes of BehΣ(C) are labelled with hidden sorts.

Let n be an inner node labelled with s. Then for each destructor d : sw → s′ and each c ∈ Cw, n has a direct

successor with label s′ and a direct successor with label c. Hence the out degree of n is infinite if Cw is infinite.
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If ∆ lacks destructors with visible range sort, then CTΣ is empty and thus Fin(G) is a one-element set! In

Section 3.2, a signature Σ consisting of constructors with hidden range sort was associated with a functor F .

In Section 3.3, a cosignature ∆ of unary destructors was derived from Σ.

The set of instances of a class cl declared in an object-oriented program agrees with the product
∏
a∈Att V ala

where Att is the set of attributes of cl and V ala is the set of possible values of a. If considered as a set of

unary functions, Att is the set of contexts and hence usually finite. However, if, for instance, some attributes

denote (references to) other object of class cl, we obtain infinitely many contexts and, as a final G-coalgebra,

the semantics of cl is an infinite product.

Example 16.1 Infinite sequences are specified as follows.

STREAM = LIST and ENTRY(entry′) then

hidsorts stream = stream(entry) stream′ = stream(entry′)

destructs head : stream→ entry

tail : stream→ stream

constructs & : entry × stream→ stream′

blink :→ stream(nat)

nats : nat→ stream(nat)

zip : stream× stream→ stream

map : (entry → entry′)× stream→ stream′

defuncts # : list× stream→ stream

nth : nat× stream→ entry

nthtail : nat× stream→ stream

static preds exists : (entry → bool)× stream
copreds forall : (entry → bool)× stream

fair : (entry → bool)× stream
vars n : nat x, y : entry L : list s, s′ : stream

f : entry → entry′ g : entry → bool

axioms head(x&s) ≡ x tail(x&s) ≡ s
head(blink) ≡ 0 tail(blink) ≡ 1&blink

head(nats(n)) ≡ n tail(nats(n)) ≡ nats(n+ 1)

head(zip(s, s′)) ≡ head(s) tail(zip(s, s′)) ≡ zip(s′, tail(s))
head(map(f, s)) ≡ f(s) tail(map(f, s)) ≡ map(f, tail(s))
[]#s ≡ s
(x : L)#s ≡ x&(L#s)

nth(0, s) ≡ head(s)

nth(n+ 1, s) ≡ nth(n, tail(s))

nthtail(0, s) ≡ s
nthtail(n+ 1, s) ≡ nthtail(n, tail(s))
exists(g, s) ⇐ g(head(s)) ≡ true
exists(g, s) ⇐ exists(g, tail(s))

forall(g, s) ⇒ g(head(s)) ≡ true ∧ forall(g, tail(s))

fair(g, s) ⇒ exists(g, s) ∧ fair(g, tail(s))

& appends an entry to a stream. blink denotes a stream whose elements alternate between zeros and ones.

nats(n) generates the stream of all numbers starting from n. zip merges two streams into a single stream by

alternatively appending an element of one stream to an element of the other stream. # concatenates a list and

a stream into a stream. fair(g, s) holds true iff s contains infinitely many elements satisfying g.
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Let SP = STREAM, visS = {entry}, hidS = {stream}, Σ = {&}, ∆ = {(head, tail)}, C = Ini(SP ) and

F (A)stream = Centry ×Astream. Fin(SP )stream is embedded in

T∞Σ∪C,stream = {a1&a2& . . . | a1, a2, · · · ∈ Centry}.o

Example 16.2 The final models of the following types are embedded in final G-coalgebras:

SET = LIST then

hidsorts set = set(entry)

destructs in : entry × set→ bool

constructs ∅, all :→ set

{ } : entry → set

∪ : set× set→ set

\ : set× set→ set

compr : (entry → bool)→ set set comprehension

vars x, y : entry s, s′ : set g : entry → bool

axioms in(x, ∅) ≡ false

in(x, all) ≡ true

in(x, {y}) ≡ eq(x, y)

in(x, s ∪ s′) ≡ in(x, s) or in(x, s′)

in(x, s \ s′) ≡ in(x, s) and not(in(x, s′))

in(x, compr(g)) ≡ g(x)

BAG = LIST then

hidsorts bag = bag(entry)

destructs card : bag × entry → nat

constructs empty :→ bag

[ ] : entry → bag

+ : bag × bag → bag

− : bag × bag → bag

vars x, y : entry b, b′ : bag

axioms card(empty, x) ≡ 0

card([x], x) ≡ 1

card([x], y) ≡ 0 ⇐ x 6≡ y
card(b+ b′, x) ≡ card(b, x) + card(b′, x)

card(b− b′, x) ≡ card(b, x)− card(b′, x)

WSET = LIST and INT17then

hidsorts wset = wset(entry)

destructs weight : wset× entry → int

constructs empty :→ wset

[ ] : entry → wset

+ : wset× wset→ wset

− : wset→ wset

vars x, y : entry V,W : wset

axioms weight(empty, x) ≡ 0

weight([x], x) ≡ 1

weight([x], y) ≡ 0 ⇐ x 6≡ y
weight(V +W,x) ≡ weight(V, x) + weight(W,x)
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weight(V −W,x) ≡ weight(V, x)− weight(W,x)

MAP = ENTRY(domain) and ENTRY(range) then

hidsorts map = map(domain, range)

destructs get : map× domain→ range

constructs new : range→ map

upd : domain× range×map→ map

vars i, j : domain x : range f : map

axioms get(new(x), i) ≡ x
get(upd(i, x, f), i) ≡ x
get(upd(i, x, f), j) ≡ get(f, j) ⇐ i 6≡ j

Let SP = SET, visS = {entry, bool}, hidS = {set}, ∆ = {in}, C = Ini(SP ), G(A)set = [Centry → Cbool].

Let SP = BAG, visS = {entry, nat}, hidS = {bag}, ∆ = {card}, C = Ini(SP ), Cnat = N and G(A)bag =

[Centry → N].

Let SP = WSET, visS = {entry, int}, hidS = {wset}, ∆ = {weight}, C = Ini(SP ) and G(A)wset =

[Centry → Z].

Let SP = MAP, visS = {domain, range}, hidS = {map}, ∆ = {get}, C = Ini(SP ) and G(A)map =

[Cdomain → Crange]. o

Example 16.3 The classical examples of G-coalgebras are deterministic automata, which realize (partial)

functions from the set of words over some fixed set Cin of inputs into some fixed set Cout of outputs. Here ∆,

G and Fin(G) read as follows: Let A ∈ SetS .

• Moore-automata. ∆ = {δ : state× in→ state, β : state→ out},
G(A)state = [Cin → Astate]× Cout, Fin(G)state ∼= [C∗in → Cout].

• Mealy-automata. ∆ = {δ : state× in→ state, β : state× in→ out},
G(A)state = [Cin → Astate]× [Cin → Cout], Fin(G)state ∼= [C+

in → Cout]. o

Lemma 16.4 Let SP be a continuous and behaviorally consistent specification without hidden constructors

and logical predicates. Let ∆ be the set of destructors of SP . Based on C = Ini(SP ), define G as above. Then

there is an injective Σ-homomorphism from Fin(SP ) to Fin(G).

Proof. Let SP = (Σ, AX) and A = Fin(G). For all t ∈ TΣ, [t] denotes the ≡SP -equivalence class of t. For

all c : w → s ∈ CTΣ, πc denotes the projection of A to [Cw → Cs]. A function h : Her(SP ) → A is defined

as follows: for all s ∈ visS and t ∈ TΣ,s, h(t) = [t], while for all s ∈ hidS, t ∈ TΣ,s, c : sw → s′ ∈ CTΣ and

u ∈ TΣ,w,

πc(h(t))([u]) =def [c(t, u)].

We show that the equivalence kernel ∼h of h coincides with ∼SP . Let s ∈ S and t, t′ ∈ TΣ,s. h(t) = h(t′)

holds true iff t ∼Ner
SP t′. Analogously to the proof of Lemma 18.3 (see below) one may show that behavioral

SP -equivalence coincides with contextual SP -equivalence and thus with ∼h.

Since SP is behaviorally consistent and ∼SP=∼h, ∼h is a Σ-congruence. Hence h(Her(SP )) becomes a

Σ-structure and h a Σ-homomorphism if one defines fh(Her(SP ))(h(t)) = h(f(t)) for all f : w → s ∈ Σ and

t ∈ TΣ,w. Consequently, h induces an injective Σ-homomorphism h∗ : Her(SP )/∼h→ A. Hence Fin(SP ) =

Her(SP )/∼SP= Her(SP )/∼h is embedded in A = Fin(G). o

Data types often involve several hidden sorts whose meaning distributes over initial F -algebras, final F -

coalgebras and final G-coalgebras. For arbitrary endofunctors F and G on the same category K, F,G-objects

17For a specification of integer numbers, see Example 19.1.
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[68], F,G-bialgebras [24] and F,G-structures [49, 61]18 deal with pairs of an F -algebra and a G-coalgebra.

[25] also considers F,G-dialgebras, i.e., morphisms from F (A) to G(A) for some A ∈ K. Here each hidden

sort is interpreted as the object of either the initial F -algebra or the final G-algebra.

In most applications, including those discussed in the above-mentioned papers, F and G are instances

of the schemas presented in the previous two sections. What goes beyond are non-deterministic structures

where behavioral equality is determined by transition predicates, such as labelled transition systems (LTS).

In the coalgebraic setting, these structures are modelled as solutions of domain equations involving powerset

functors. Unfortunately, the construction of the corresponding models becomes much less elegant and useful as

a semantical basis of specification if one proceeds from polynomial to powerset functors (cf., e.g., [105, 104, 19].

Given an LTS with a term-generated set of states, one may keep to presenting the LTS as a relation, in

terms of swinging types: as a dynamic predicate. A relational presentation is also adequate and does not

cause model- or proof-theoretical problems if the LTS is not used as a transition predicate, i.e., if it does not

determine a behavioral equality (cf. Def. 5.1). As one may conclude from Section 5, only if the state set is

uncountable and the LTS determines a behavioral equality, the swinging type approach enforces us to replace

the relational presentation of an LTS. In this case one should start out from a functional simulation of the LTS,

say →: state × label × state, and specify a destructor sucs : state × label → state∗ such that for all states

s, s1, . . . , sn and labels x,

sucs(s, x) = (s1, . . . , sn) implies {s1, . . . , sn} = {s′ | s x−→ s′}.

Of course, sucs induces a finer behavioral equivalence than → would do if → were declared as a transition

predicate. But even the desired equivalence can be achieved if one extends the dialgebraic swinging type whose

behavioral equality is induced by sucs to an algebraic ST:

LTS = SUCS then

hidsorts state′

constructs mkstate′ : state→ state′

transpreds −→ : state′ × label × state′

vars s, s1, . . . , sn : state x : label

axioms mkstate′(s)
x−→ mkstate′(si) ⇐ sucs(s, x) ≡ (s1, . . . , sn) for all 1 ≤ i ≤ n

This step from a destructor to a transition predicate somewhat reflects the natural transformation from a tree

constructing functor to a powerset functor given in [105], Section 3.4. It suggests that category-theoretical

“weapons” like natural transformations need not be employed in order to accomplish an adequate model of a

specification whose behavioral equivalence is determined by an LTS.

17 More on final coalgebras

Definition 17.1 (final coalgebra) Let SP = (Σ, AX) be a coalgebraic type with cosignature ∆ = (visS, hidS, FD)

and visible subtype visSP and C be a visSP -model with equality. The following S-sorted set P collects the

“observations” or “measurements” on hidden objects in a product:

Ps =

{ ∏
d:s→(w→s′)∈CT∆

[Cw → Cs′ ] if s ∈ hidS,
Cs if s ∈ visS.

For all contexts d : s → (w → s′) ∈ CT∆, πd denotes the projection from Ps to [Cw → Cs′ ]. d defines

an “experiment”, which, if performed on a under the “initial condition” c ∈ Cw, returns the visible result

πd(a)(c) ∈ Cs′ .
18In terms of [49, 61], F = Ω and G = Ξ.
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Projections for individual contexts can be extended to sums of contexts: Let {ei : si → (wi → s′i)}i∈I ⊆
CT∆ ∪ ID and e = qi∈Iei. Then

πe : qi∈IPsi → qi∈I [Cwi → Cs′
i
]

is defined as follows: for all i ∈ I,

πe ◦ ιi =

{
ιi ◦ πei if ei ∈ CT∆,

ιi if ei ∈ ID.

Let P(P ) be the set of S-sorted subsets of P . A functional Φ : P(P ) → P(P ) is defined as follows: for all

s ∈ S and A ⊆ P ,

Φ(A)s =


{a ∈ As |

∀ s′ = qi∈Isi ∈ hidS, d : s→ (v → s′) ∈ FD, c ∈ Cv
∃ i ∈ I, b ∈ sAi ∀ e : s′ → (w → s′′) ∈ CT∆, c

′ ∈ Cw :

πe(ιi(b))(c
′) = πd·e(a)(c, c′) (1)

} if s ∈ hidS,

Cs if s ∈ visS.

Since Φ is monotone, Φ has a greatest fixpoint gfp(Φ) (cf. Thm. 8.3). The final (SP,C)-coalgebra Fin =

Fin(SP,C) is the (SP,C)-coalgebra such that for all s ∈ hidS,

• Fins = gfp(Φ)s,

• for all d : s→ (w → s′) ∈ FD, a ∈ Fins and c ∈ Cw,

dFin(a)(c) =

{
ιi(b) such that (1) holds true if s′ ∈ hidS,
πd(a)(c) if s′ ∈ visS.

Suppose that (1) has two solutions in i and b. Then (1) implies that both solutions are identical. Hence dFin

is well-defined. o

πe(d
Fin(a)) =def πd·e(a)

Beispiel: finaler Automat: δ(f, x)(w) = f(xw)

Condition 17.1(1) selects those tuples a among the elements of the product Ps such that for each two contexts

e1 : s→ s1, e2 : s→ s2 containing the same path p that is taken when a is observed by e1, then p is also taken

when a is observed by e2, and both observations lead to the same result.

Contexts are dual to terms, in particular to normal forms. Contexts are composed of destructors. Normal

forms are composed of constructors, while contexts are composed of destructors. The structure of a context is

determined by the coarities of the destructors it is built of. The structure of a normal form is determined by

the arities of the constructors it is composed of. Hence both contexts and normal forms are trees whose nodes

are labelled with function symbols: destructors and constructors, respectively. In the first case, the outdegree

of a node is the coarity of the node label, in the second case, it is the arity. Except for [15], contextual

characterizations of final coalgebras have only been given for cosignatures where all destructors are linear (cf.

[100, 34, 67, 49, 61]). Only [15] handles the important generalization to sum sorts and works out its impact on

coalgebraic specifications.

If all destructors are linear, then the final (∆, C)-coalgebra is the entire product of context ranges:

Proposition 17.2 Let SP , ∆ and C be as in Def. 17.1 such that all destructors are linear. Then for all

s ∈ hidS, Fin(SP,C)s = Ps.

Proof. Let d : s→ (s→ s′) ∈ FD. Since s′ has coarity 1, we may identify b with ιi(b). Hence (1) amounts

to a definition of b: for all e : s′ → (w → s′′) ∈ CT∆ and c′ ∈ Cw, πe(b)(c
′) =def πd·e(a)(c, c′). Therefore,

gfp(Φ)s = Ps. o
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The restriction to the linear case excludes many “properly coalgebraic” types such as COLIST (Ex. 15.2),

finite and infinite trees (cf. Ex. 19.5), regular graphs ([91], Section 2.2), processes ([91], Section 4.4) and class

diagrams involving inheritance relationships ([91], Section 6). The algebraic counterpart of final coalgebras with

linear destructors are initial algebras with unary constructors only, i.e., sets of words. As the expressiveness of

words is limited, so is the expressiveness of linear destructors.

Contexts and normal forms are also complementary with respect to the traversal of their tree representations.

A normal form is evaluated bottom-up, starting from the leaves, along all paths up to the root where the value

of the object itself is returned. A context is evaluated top-down, starting from the root, along a single path

consisting of destructors until a leaf is reached where the result of an observation is delivered (cf. Fig. ??).

Hence, from an operational point of view, contexts are flowcharts or transition systems rather than normal

forms representing static objects. The evaluations of a context encompass possible worlds (states, movements,

interferences, etc.). But the various possibilities can never be viewed in parallel. Once an object is observed,

its multiverse contracts to a universe (cf. [13]).

A normal form is the object it denotes. An evaluation of a context only represents the behavior of an

actually invisible object in a certain state. Hence a final coalgebra can be seen as a Kripke structure that may

interpret the same constants, function symbols and predicates differently in different states. Just regard the set

of contexts as a signature Σ. Then a Σ-algebra is both the interpretation of a state in the corresponding Kripke

model and an element of a final coalgebra.

Theorem 17.3 Given the assumptions of Def. 17.1, Fin(SP,C) is final in coAlg(SP,C). Moreover,

Fin(SP,C) interprets behavioral equalities as identities.

Proof. Let Fin = Fin(SP,C) and B be an (SP,C)-coalgebra. A function fin : B → Fin is defined as

follows: for all s ∈ S and b ∈ sB ,

fin(b) = b if s ∈ visS,
πe(fin(b)) = eB(b) for all e : s→ s′ ∈ CT∆ if s ∈ hidS,
fin(ιi(b)) = ιi(fin(b)) if s = wi for a sum sort qi∈Iwi.

fin is a Σ-homomorphism: Let s′ ∈ visS, d : s→ (w → s′) ∈ FD, b ∈ sB and c ∈ Cw. Hence

fin(dB(b)(c)) = dB(b)(c) = πd(fin(b))(c) = dFin(fin(b))(c). (2)

Let s′ = qi∈Isi ∈ hidS, d : s → (v → s′) ∈ FD, e = qi∈Iei : s′ → (w → s′′) ∈ CT∆, b ∈ sB , c ∈ Cv and

c′ ∈ Cw. dB(b)(c) = ιi(a) implies

πe(fin(dB(b)(c)))(c′) = πe(fin(ιi(a)))(c′) = πe(ιi(fin(a)))(c′) = ιi(πei(fin(a)))(c′)

= ιi(e
B
i (a))(c′) = eB(ιi(a))(c′) = eB(dB(b)(c))(c′) = (d · e)B(b)(c, c′) = πd·e(fin(b))(c, c′)

Def. 17.1
= πe(d

Fin(fin(b))(c))(c′).

(3)

Hence fin(dB(b)(c)) = dFin(fin(b))(c). A permutation of the terms in (2) and (3) shows that fin is the only

(∆, C)-homomorphism from B to Fin.

Let BE be the set of behavioral equalities if Σ′ and C(A) be the class of Σ-structures B such that B|Σ\BE =

A =def Fin|Σ\BE . Since Fin is canonical, the fixpoint theorem of Knaster and Tarski (Thm. 8.3) implies that

for all s ∈ hidS,

∼As =
⋃
{∼Bs ⊆ Aw | B ∈ C(A), ∼Bs ⊆∼Φ(B)

s }.

Hence the diagonal of A2 is a subset of ∼As . Conversely, let a ∼As b. Then there is B ∈ C(A) such that

(a, b) ∈∼Bs ⊆∼
Φ(B)
s . Hence for all d : sw → s′ ∈ des and c ∈ Bw = Cw, dB(a, c) ∼Bs′ dB(b, c). Consequently, for all
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e : s→ (w → s′) ∈ CT∆ and c ∈ Cw, eB(a)(c) ∼Bs′ eB(b)(c) and thus πe(a)(c) = eB(a)(c) = eB(b)(c) = πe(b)(c)

because s′ is visible and B|visΣ = C is a structure with ∼-equality. Hence a = b. o

We recapitulate the definition of the functor G : SetS → SetS given in Section 3.4 using the notation of Def.

??: for all A ∈ SetS and s ∈ S,

G(A)s =

{ ∏
d:s→(w→s′)∈FD[Cw → s′A] if s ∈ hidS,

Cs if s ∈ visS.

Each (∆, C)-coalgebra B in the sense of Def. ?? induces a G-coalgebra βB : B → G(B): for all s ∈ S and

b ∈ sB ,

πd(β(b)) = dB(b) for all d : s→ (w → s′) ∈ FD if s ∈ hidS,
β(b) = b if s ∈ visS.

Conversely, a G-coalgebra β : B → G(B) equips B with an interpretation of ∆: for all d : s→ (w → s′) ∈ FD
and b ∈ sB , dB(b) =def πd(β(b)). Hence G-coalgebras and (∆, C)-coalgebras correspond to each other. Since G

is cocontinuous, the limit of the chain

1← G(1)← G2(1)← . . .

is a final G-coalgebra Fin(G) (cf. Thm. 21.2). In fact, β = fin. The proof proceeds analogously to the proof

of Thm. 17.3.

The functor F : SetS → SetS of Section 3.2 can also be adapted to the assumptions of Def. ??: for all

A ∈ SetS and s ∈ S,

F (A)s =

{ ∐
f :w→s∈ΣAw if s ∈ hidS,

Cs if s ∈ visS.

The initial F -algebra Ini(F ) is given by the algebra of ground (Σ ∪ C)-terms (cf. Section 3.2). Both initial F -

algebras and final G-coalgebras are constructed from sums and products, but in opposite order: for all s ∈ hidS,

Ini(F )s can be represented by the sum ∐
f :w→s∈Σ

TΣ∪C,w

of sets of term tuples, while Fin(G)s is (a subset of) the product∏
d:s→(w→s′)∈CT∆

[Cw → Cs′ ]

of context ranges (cf. Def. 17.1).

Definition 17.4 (coinductive, coequational type and inductive type) Let SP = (Σ, AX) be a

swinging type satisfying 5.1(5) such that the base type baseSP of SP is coalgebraic and has cosignature ∆ and

visible subtype visSP . Then SP is a coinductive type with cosignature ∆ and visible subtype visSP . o

Theorem 17.5 Let SP = (Σ, AX) be a coinductive type with base type baseSP = (baseΣ, baseAX), ex-

tension (Σ′, AX ′), cosignature ∆ = (visS, hidS, FD) and visible subtype visSP = (visΣ, visAX). Let C be

a visSP -model with equality such that A = Fin(baseSP,C) is a canonical baseSP -model. Moreover, suppose

that

â for all (d(f(x))(t) ≡ u⇐ ϕ) ∈ AX ′ and f, g ∈ Σ′, u does not contain a subterm of the form f(. . . , g(. . . ), . . . ),

â for all d : s → (v → s′) ∈ DS, f : w → s ∈ Σ′, a ∈ A and b : X → A there is exactly one (d(f(x))(t) ≡
u⇐ ϕ) ∈ AX ′ such that a = b∗(t) and A |=b ϕ.

Then there is a canonical SP -model Fin(SP,C) with Fin(SP,C)|baseΣ = A.

Proof. Σ′ consists of coinductive functions. We interpret Σ′ on A and show that the axioms for Σ′ are valid

in A. For this purpose, we construct an (baseSP,C)-coalgebra B such that the final morphism fin : B → A
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yields an interpretation of Σ′ in A. Let hidS′ be the set of all s ∈ hidS such that there is f : w → s ∈ Σ′. B is

defined as follows: for all s ∈ S,

sB =

{ ∐
f :w→s∈Σ′ Aw if s ∈ hidS′,

sA otherwise.

We interpret each f : w → s ∈ Σ′ in B by the injection ιf : Aw → sB . Let TΣ(X)′ be the set of all

Σ-terms t such that t does not contain a subterm of the form f(. . . , g(. . . ), . . . ). Let d : s → (v → s′) ∈ DS,

f : w → s ∈ Σ′, a ∈ A, b : X → A and c : X → B such that for all x ∈ X, b(x) = c(x). By assumption, there

is exactly one (d(f(x))(t) ≡ u ⇐ ϕ) ∈ AX ′ such that a = b∗(t) and A |=b ϕ. Hence dB is defined uniquely as

follows:
dB(ιf (bx))(a) =def c∗(u) if s ∈ hidS′,
dB =def dA otherwise.

It is crucial that u ∈ TΣ(X)′. Otherwise c∗(u) were not defined because for some f : w → s ∈ Σ′ occurring in

u, Aw 6= Bw and thus fB = ιf would not be a function from Bw to sB .

Of course, B is a (baseSP,C)-coalgebra. Hence by Thm. 17.3 there is a unique baseΣ-homomorphism

fin : B → A. Hence A may interpret f : w → s ∈ Σ′ as follows: for all a ∈ Aw,

fA(a) =def fins(ιf (a)). (1)

With this interpretation of coinductive functions, A satisfies AX ′: Let (d(f(x))(t) ≡ u⇐ ϕ) ∈ AX ′, a ∈ A and

b : X → A such that a = b∗(t) and A |=b ϕ. Hence by (1), the definition of dB , since fin is compatible with

DF and since both fins′ ◦ c∗ and b∗ are Σ-homomorphic extensions of b to TΣ(X)′,

b∗(d(f(x))(t)) = dA(fA(bx))(b∗(t)) = dA(fA(bx))(a) = dA(fins(ιf (bx)))(a)

= fins′(d
B(ιf (bx))(a)) = fins′(c

∗(u)) = b∗(u),

i.e., A |=b d(f(x))(t) ≡ u. o

Besides the set of destructors that is introduced by a cosignature ∆, a cospecification CSP with cosignature

∆ allows us to axiomatize functions inductively on the structure of visible data (aux), greatest relations (coP),

coinductively defined functions (coF ) and subdomains of the final (∆, C)-coalgebra by assertions. The latter

occur in a similar form in CCSL specifications [54]. Jacobs introduced assertions in [52] as axioms for unary

predicates—we call them coequalities (cf. Def. 17.4)—, which are invariant with respect to the application

of destructors and thus equip the subcarriers of coalgebra elements satisfying the assertions with their own

coalgebra structure. CCSL assertions are arbitrary first-order formulas over the given cosignature. Sometimes

rather complicated closure constructions are necessary for ensuring their invariance with respect to destructors

[52]. Our assertions are confined to co-Horn clauses and combined with invariance axioms (see below), which

ensures that a final coalgebra satisfying the assertions always exists (cf. Thm. ??(3)).

The terminal constraints of [101], the destructor specifications of [15] and the (Ω,Ξ)-specifications of [49]

represent classes of cospecifications. [15] admits only certain conditional equations, called coequations, as axioms

and forbids functional codomains of destructors. The axioms of an (Ω,Ξ)-specification may be arbitrary first-

order formulas, but the destructors must be linear, though they may have functional codomains. Such codomains

occur also in other approaches (cf., e.g., [18, 34]). They allow us to formalize parameterized observations and

come quite naturally with the “cofreeness” of final coalgebras. [15] restricts the codomains to non-nested sums,

but seems to be the only paper so far where final coalgebras with non-linear destructors are characterized in

terms of context interpretations.

other notions of coequations in [42], [62], [114] ??
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Instead of presenting a language like CCSL [54] for specifying everything coalgebraically we show in the

following section how to incorporate a cospecification CSP into a swinging type SP such that the final model

of CSP is isomorphic to the final model of the domain completion of SP (Def. 18.4).

In terms of object-oriented design, s-assertions are the invariants of the class denoted by s. Only coalgebraic

specifications allow us to present subdomains described by invariants directly. From an algebraic specification

SP whose standard model M consists of terms a particular subdomain can be obtained only indirectly, namely

by constructing a reduct of M . A reduct is determined by a set F of functions of SP : the F -reduct of M

contains exactly those elements of M that can be generated by applications of F . On the other hand, reducts

of final coalgebras do not make sense because uncountable subdomains could never be specified in this way.

Instead, the reduct construction will be integrated into the notion of a dialgebraic swinging type given in the

next section.

In closing this section, let us point out a striking duality between algebraic and coalgebraic specifications:'

&

$

%

Algebraic specifications are function-oriented.

A signature Σ defines functions on objects that are terms consisting of constructors.

+ The standard model of Σ is an initial algebra of terms, i.e., a sum of products.

The axioms of a specification SP with signature Σ identify objects and specify functions induc-
tively.

+ The standard model of SP is a quotient of the standard model of Σ.

'

&

$

%

Coalgebraic specifications are object-oriented.

A cosignature ∆ defines object states as interpretations of contexts consisting of destructors.

+ The standard model of ∆ is a final coalgebra of object states, i.e., a product of sums.

The axioms of a cospecification CSP with cosignature ∆ select objects and specify functions
coinductively.

+ The standard model of CSP is a subcoalgebra of the standard model of ∆.

A closer look at the standard models reveals further dualities between algebraic and coalgebraic specifications:
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Σ signature ∆ cosignature

I = Ini(Σ) initial Σ-algebra F = Fin(∆, C) final (∆, C)-coalgebra

consisting of terms consisting of context interpretations (cf. Fig. ??)

µAX Horn clauses coAX co-Horn clauses

SP = (Σ, µAX ∪ . . . ) algebraic swinging type CSP = (∆, C, . . . , coAX ∪ . . . ) cospecification

EMod(SP ) Mod(CSP )

= {A ∈Mod(SP ) | ∀ s ∈ S : ≡As = ∆A
s } = {A ∈ pMod(CSP ) | ∀ s ∈ hidS : isAs = sA}

I
ini→ A A

fin→ F

kernel(ini) |= µAX image(fin) |= coAX

≡I=def least subset of I × I s.t. I |= µAX isF =def greatest subset of F s.t. F |= coAX

=⇒ ≡I⊆ kernel(ini) =⇒ image(fin) ⊆ isF

⇐⇒ ini is compatible with ≡ ⇐⇒ fin is compatible with is

=⇒

{
I

nat→ I/≡I ini
′

→ A ini′ is

[t] 7→ ini(t) well-defined
=⇒

{
A

fin′→ isF
inc→ F fin′ is

a 7→ fin(a) well-defined
I∈Mod(SP )

=⇒ I/≡I is initial in EMod(SP )
F∈pMod(CSP )

=⇒ isF is final in Mod(CSP )

Another dimension of the duality between initial and final models is the topic of [10]. In the table above, we

construct quotients on the left-hand initial side and subdomains on the right-hand final side, while [10] confronts

initial reachability (via constructors) with final observability (via behavioral equalities). This reflects the more

general duality between the initial construction of subdomains (via subsignatures) and the final construction of

quotients (via greatest fixpoints), respectively.

As proof obligations are concerned, the duality leads to trade-offs. While the final specification of a subdo-

main in terms of assertions is automatically consistent, the initial specification in terms of generating functions

requires an inductive proof that the generated objects and only these have the subdomain’s desired properties.

On the other hand, the initial specification of a quotient in terms of equational axioms automatically yields

a congruence relation (the structural equivalence), while the final specification in terms of destructors requires

the proof that the induced behavioral equality is also compatible with the other functions and relations of the

specification.

18 Algebraic types with cospecifications

In this section, we combine a swinging type SP with a cospecification CSP . Certain hidden sorts of SP are

declared as destructor sorts, which thus become the hidden sorts of CSP . SP is then extended by the final

CSP -model insofar as all elements of Fin(CSP ) are added to SP as additional constructor constants. Without

such an extension swinging types can only represent finitely generated data domains where each object has a

ground term representation. Final models of a cospecification, however, may have even uncountable carriers.

Definition 18.1 (dialgebraic swinging type) Let SP = (Σ, AX) be an algebraic swinging type that

is not basic Horn and whose components are named as in Def. 5.1. Suppose that all hidS-destructors are

functional destructors with a single hidden argument and there are no hidS-constructors. Let des denote the

set of hidS-destructors, ∆ = (visΣ, hidS, des), C = Fin(visSP ) and

CSP = (∆, C, aux, coP , coF ,CAX )
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be a cospecification such that the auxiliary functions of CSP are defined functions of SP and the axioms for

aux and νP are the same in SP and CSP . Then

CST = (SP, aux, coF , AXhidS∪coF )

is a dialgebraic swinging type. SP is the algebraic part and CSP is the cospecification of CST . A

CST -context is a ∆-context. o

The main syntactic differences between an algebraic swinging type SP and a dialgebraic swinging type CST

can be summarized as follows:

• CST has no transitional destructors.

• SP has neither assertions nor cofunctions.

For the later use of a dialgebraic ST as the visible subtype of an algebraic ST, the former is transformed into

its domain completion (cf. Def. 18.4), which is an algebraic ST. While the hidden sorts of an algebraic ST are

interpreted as quotients of term sets, the hidden sorts of a dialgebraic type will be interpreted in the final model

of the type’s cospecification. Each element of the model denotes a set of behaviors or context interpretations

(cf. Def. 17.1). From the applications’ point of view the requirement that each destructor for a hidden sort has a

single hidden argument (cf. Def. 18.1) is not restrictive. For instance, in object-oriented terminology, the sort s

of the hidden argument corresponds to the class whose objects are “observed” by the s-destructors. A destructor

never observes several objects simultaneously, unless they are tupled, i.e., attached to a (hidden) product sort

whose projections provide the destructors into the component sorts (cf. Section 2). Further arguments of a

destructor denote observation parameters and thus are always part of a visible subdomain.

Definition 18.2 (contextual equivalence) Let SP be an algebraic functional swinging type. The Nerode

or contextual SP -equivalence ∼Ner
SP is the S-sorted binary relation on TΣ that is defined as follows: for all

s ∈ S and t, t′ ∈ TΣ,s,

t ∼Ner
SP t′ ⇐⇒def

{
nf(t) ∼visSP nf(t′) if s ∈ visS,
∀ e : s→ (w → s′) ∈ CT∆, u ∈ TΣ,w : nf(e(t)(u)) ∼visSP nf(e(t′)(u)) if s ∈ hidS. o

Lemma 18.3 Let SP be an algebraic functional and continuous swinging type. Then contextual SP -

equivalence agrees with behavioral SP -equivalence.

Proof. Since ∼SP is the greatest relation on TΣ that satisfies the behavior axioms of SP (cf. Def. 5.1), ∼Ner
SP

agrees with ∼SP iff ∼Ner
SP is the greatest relation ≈ on TΣ such that for all s ∈ S and t, t′ ∈ TΣ,s,

t ≈ t′ implies

{
t ∼SP t′ if s ∈ visS,

∀ d : sw → s′ ∈ des, u ∈ TΣ,w : d(t, u) ≈ d(t′, u) if s ∈ hidS.

}
(1)

∼Ner
SP is a subrelation of ∼SP if (1) is satisfied by ≈=∼Ner

SP . This holds true for s ∈ visS because then

∼Ner
SP,s⊆≡SP ◦ ∼visSP ◦ ≡SP⊆∼SP . Let s ∈ hidS, t ∼Ner

SP,s t
′, d : sw → s′ ∈ des and u ∈ TΣ,w. Then for all

e : s′ → (v → s′′) ∈ CT∆ and u′ ∈ TΣ,v,

nf(e(d(t, u))(u′)) ∼visSP nf((e · d)(t)(u, u′)) = nf((e · d)(t′)(u, u′)) = nf(e(d(t′, u))(u′)).

Hence d(t, u) ∼Ner
SP d(t′, u), and we conclude that ≈=∼Ner

SP satisfies (1).

For the converse, let Φ be the coAX-consequence operator on Her(SP )|Σ′ (cf. Def. 12.1) and U be the

(Σ′∪ coP)-structure with U |Σ′ = Her(SP ′) and rU = TΣ,w for all r : w ∈ coP . By assumption, Φ is continuous.

Hence by Kleene’s fixpoint theorem (cf., e.g., [89], Thm. 4.2), Her(SP )Σ′∪coP = ∩i∈NΦi(U).
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Let i ∈ N and CT i∆ be the set of ∆-contexts consisting of at most i destructors. We define approximations

of contextual equivalence: for all s ∈ S and t, t′ ∈ TΣ,s,

t ∼i t′ ⇐⇒def

{
nf(t) ∼visSP nf(t′) if s ∈ visS,
∀ e : s→ s′ ∈ CT i∆, u ∈ TΣ,w : nf(e(t)(u)) ∼visSP nf(e(t′)(u)) if s ∈ hidS.

Suppose that for all i ∈ N, s ∈ S and t, t′ ∈ TΣ,s,

Φi(U) |= t ∼ t′ implies t ∼i t′. (2)

Then ∼SP= ∩i∈N ∼Φi(U)⊆ ∩i∈N ∼i=∼Ner
SP , and the proof is complete. It remains to show (2).

Let Φi(U) |= t ∼ t′. If s ∈ visS, then t ∼SP t′ and thus nf(t) ≡SP t ∼SP t′ ≡SP nf(t′). Hence

nf(t) ∼SP nf(t′) and thus nf(t) ∼visSP nf(t′) because ∼SP |TvisΣ satisfies the behavior axioms of visSP and

∼visSP is the greatest solution of the behavior axioms of visSP . Hence t ∼i t′.

Let s ∈ hidS. If i = 0, then ∼Φi(U)
s =∼Us = TΣ,s × TΣ,s and CT i∆ = ∅. Hence (2) holds true. Let i > 0. By

the definition of Φ,

∀ d : sw → s′ ∈ des, u ∈ TΣ,w : Φi−1(U) |= d(t, u) ∼ d(t′, u). (3)

By induction hypothesis, (3) implies d(t, u) ∼i−1 d(t′, u). Hence for all e : s′ → (v → s′′) ∈ CT i−1
∆ and u′ ∈ TΣ,v,

nf((e · d)(t)(u, u′)) = nf(e(d(t, u))(u′)) ∼visSP nf(e(d(t, u))(u′)) = nf((e · d)(t)(u, u′)).

Hence t ∼i t′, and the proof of (2) is complete. o

Let SP ′ be the extension of SP by constructor constants denoting the elements of Fin(CSP ). The final

SP ′-model that is given by the quotient of the SP ′-Herbrand model by behavioral SP ′-equivalence (cf. [89],

Def. 4.6) will turn out to be isomorphic to Fin(CSP ). Hence the final-coalgebra semantics of CST , which is

given by Fin(CSP ), coincides with the final-algebra semantics Fin(SP ′) of a “sufficiently big” extension of SP .

Definition 18.4 (domain completion) Let CST be a dialgebraic swinging type as in Def. 18.1 such that

visSP is functional and head complete (cf. Def. 12.1). We regard the elements of Fin(CSP ) as additional

(nullary) constructors and the cofunctions of CSP as additional defined functions and add the following sets of

axioms for destructors and cofunctions, respectively:

AXdes = {d(a, u) ≡ t | d : sw → s′ ∈ des, s′ ∈ visS, a ∈ Fin(CSP )s,

u, t ∈ NFvisΣ, t is an object normal form,

dFin(CSP )(a, [u]) = [t]}19 ∪
{d(a, u) ≡ b | d : sw → s′ ∈ des, s′ ∈ hidS, a ∈ Fin(CSP )s,

u ∈ NFvisΣ, d
Fin(CSP )(a, [u]) = b}

AXcoF = {f(t1, . . . , tn) ≡ b | f : s1 . . . sn → s ∈ coF , for all 1 ≤ i ≤ n,

si ∈ visS implies ti ∈ NFvisΣ,si and t′i = [ti],

si ∈ hidS implies ti = t′i ∈ Fin(CSP )si ,

fFin(CSP )(t′1, . . . , t
′
n) = b}

Let Σ′ = Σ ∪ (∅, F in(CSP ) ∪ coF , ∅) and AX ′ = AX ∪ AXdes∪coF . Then SP ′ = (Σ′, AX ′) is an algebraic

swinging type, called the domain completion of CST . A coinductive theorem of CST is an inductive

theorem of SP ′ (cf. Def. 12.1).

19Since visSP is head complete and functional, [94], Lemma 3.7 implies that all behaviorally visSP -equivalent object normal
forms are equal. Hence the ∼visSP -equivalence dFin(CSP )(a, [u]) contains exactly one object normal form t.
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CST is cospec closed if CST has no assertions or no hidS-constructors or for all s ∈ hidS and t ∈ sNFΣ′

there is a ∈ Fin(CSP )s such that t ∼SP ′ a. CST is functional, continuous or behaviorally consistent,

respectively, if SP ′ is functional, continuous or behaviorally consistent, respectively. o

Note that AXdes need not be the only axioms for hidS-destructors in SP ′. If SP contains hidden construc-

tors, then these must be specified in terms of axioms for destructors in order to make CST complete and, if

CST contains assertions, cospec closed.

SP ′ is coinductive if SP is coinductive ([89], Def. 6.1; [94], Def. 7.1). This confirms the adequacy of

this criterion for behavioral consistency, especially concerning the required form of the left-hand side t of a

coinductive equational axiom: the leading function symbol of t is a destructor, while all other symbols of t are

constructors or variables. Each of these axioms contributes to the specification of a single destructor. Condition

17.1(1) ensures the “context-free” interpretation of each destructor in the final (∆, C)-coalgebra. Hence it is

not necessary to admit axioms that specify destructors in the context of other destructors (see also [89], Section

6).

Each dialgebraic swinging type has an algebraic part. Conversely, one build algebraic on top of dialgebraic

types in the course of developing a specification hierarchically. This happens automatically when the visible

subtype of an algebraic type coincides with the domain completion of a dialgebraic type (cf. Def. 5.1).

The domain completion SP ′ of CST may augment the algebraic part SP of CST with infinitely, maybe

uncountably many constants, which denote context interpretations, i.e., elements of Fin(CSP ). These constants

are and occur in the ground terms Her(SP ′) consists of. Since Fin(CSP ) may be uncountable, while the rest of

Her(SP ′) is countable, Her(SP ′) may be imagined as an iceberg whose main part hides in the sea (cf. Fig. ??).

In contrast to Fin(CSP ), the term structure of Her(SP ′) allows us to employ inference rules whose applicability

relies on term unification. In fact, reasoning about (the domain completion of) CST can be reduced to reasoning

about the cospecification of CST :

Theorem 18.5 Let CST be a cospec closed, functional, continuous and behaviorally consistent dialgebraic

swinging type as in Def. 18.1 and SP ′ = (Σ′, AX ′) be the domain completion of CST such that visSP is

functional and object constructor complete.

(1) If CST has no assertions, then for all s ∈ hidS and t ∈ TΣ′,s there is a ∈ Fin(CSP )s such that t ∼SP ′ a.

(2) For all s ∈ hidS and a, b ∈ Fin(CSP )s, a ∼SP ′ b iff a = b.

(3) Fin(SP ′) and Fin(CSP ) are Σ′-isomorphic.

Proof. Let ≈ be the S-sorted relation that is defined as follows. For all s ∈ visS, ≈s=∼visSP,s. For all

s ∈ hidS, ≈s is the least equivalence relation on TΣ′,s that includes ≡SP ′,s and satisfies

t ≈s t′ ∧ u ∼visSP,w u′ ⇒ d(t, u) ≈s′ d(t′, u)

for all d : sw → s′ ∈ des with s′ ∈ hidS. Of course, ≈ is a subrelation of ∼SP ′ .

Let C = Fin(visSP ). We define a (∆, C)-coalgebra A:

• For all s ∈ visS, sA = Cs = TvisΣ,s/∼visSP,s.
• For all s ∈ hidS, sA = TΣ′,s/≈s.
• For all d : sw → s′ ∈ des, t ∈ TΣ′,s and u ∈ TvisΣ,w, dA([t], [u]) = [nf(d(t, u))].

dA is well-defined: Let t ≈ t′ and u ∼visSP u′. If s′ ∈ visS, then d(t, u) ∼SP ′ d(t′, u′) and thus nf(d(t, u)) ∼SP ′
nf(d(t′, u′)). Hence nf(d(t, u)) ∼visSP nf(d(t′, u′)) because ∼SP ′ |TvisΣ satisfies the behavior axioms of visSP

and ∼visSP is the greatest solution of the behavior axioms of visSP . If s′ ∈ hidS, then d(t, u) ≈ d(t′, u′) by

the definition of ≈. Hence nf(d(t, u)) ≈ nf(d(t′, u′)).
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By Thm. 17.3, Fin(∆, C) is final in coAlg(∆, C). Hence there is a unique (∆, C)-homomorphism fin : A→
Fin(∆, C) that is defined as follows (see the proof of Thm. 17.3): for all s ∈ S and t ∈ TΣ′,s,

fin([t]) = [t] if s ∈ visS,
πe(fin([t])) = eA([t]) for all e : s→ s′ ∈ CT∆ if s ∈ hidS.

Let nat : NFΣ′ → A be the natural function that maps each visS- resp. hidS-sorted ground normal form

t to the ∼visSP - resp. ≈-equivalence class [t]. The composition nat ◦ nf is compatible with visΣ and des: Let

d : sw → s′ ∈ des, t ∈ TΣ′,s and u ∈ TvisΣ,w. Then

(nat ◦ nf)(d(t, u)) = [nf(d(t, u))] = dA([t], [u]) = dA([nf(t)], [nf(u)]) = dA((nat ◦ nf)(t), (nat ◦ nf)(u)).

Next we show fin([a]) = a for all a ∈ Fin(CSP ). This holds true if for all e : s → (w → s′) ∈ CT∆,

πe(fin([a])) = πe(a), which is proved by induction on the size of e:

Case 1. e ∈ des. Let u ∈ TvisΣ,w. Since s′ ∈ visS, there is t ∈ NFvisΣ such that eFin(CSP )(a, [u]) = [t].

Hence (e(a, u) ≡ t) ∈ AX ′ and thus

πe(fin([a]))([u]) = eA([a], [u]) = [nf(e(a, u))] = [t] = eFin(CSP )(a, [u]) = πe(a)([u]).

Case 2. e = f ·d and w = vv′ for some d : sv → s′′ ∈ des and f : s′′ → (v′ → s′) ∈ CT∆. Let u ∈ TvisΣ,v and

u′ ∈ TvisΣ,v′ . Since s′ ∈ hidS, there is b ∈ Fin(∆, C) such that dFin(CSP )(a, [u]) = b. Hence (d(a, u) ≡ b) ∈ AX ′

and thus

πe(fin([a]))([u], [u′]) = eA([a])([u], [u′]) = fA(dA([a], [u]))([u′]) = fA([nf(d(a, u))])([u′])

= fA([b])([u′]) = πf (fin([b]))([u′])
ind.hyp.

= πf (b)([u′]) = πf (dFin(CSP )(a, [u]))([u′])

= πe(a)([u], [u′])

where the last equation follows from the interpretation of d in Fin(∆, C) (cf. Def. 17.1).

We show that the equivalence kernel of h =def fin◦nat◦nf : Her(SP ′)→ Fin(∆, C) agrees with contextual

SP ′-equivalence (cf. Def.18.2). Let s ∈ S and t, t′ ∈ TΣ′,s. If s ∈ visS, then

h(t) = h(t′) ⇐⇒ nf(t) ∼visSP nf(t′) ⇐⇒ t ∼Ner
SP ′ t

′.

Let s ∈ hidS. Then h(t) = h(t′) iff for all e : s→ (w → s′) ∈ CT∆,

eA([t]) = eA([nf(t)]) = πe(fin([nf(t)])) = πe(fin([nf(t′)])) = eA([nf(t′)]) = eA([t′]). (4)

We show that for all s ∈ hidS, t ∈ TΣ′,s, e : s→ (w → s′) ∈ CT∆ and u ∈ TvisΣ,w,

eA([t]) = eA([t′]) ⇐⇒ nf(e(t)(u)) ∼visSP nf(e(t′)(u)), (5)

by induction on the size of e. If e ∈ des, then s′ ∈ visS and (5) follows from the definition of eA (see above).

Otherwise there are v, v′ ∈ visS∗, s′′ ∈ hidS, d : sv → s′′ ∈ des and f : s′′ → (v′ → s′) ∈ CT∆ with e = f · d
and w = vv′. Suppose that eA([t]) = eA([t′]) for all u ∈ TvisΣ,u and u′ ∈ TvisΣ,v′ . Then

fA([nf(d(t, u))])([u′]) = fA(dA([t], [u]))([u′]) = eA([t])([u], [u′]) = eA([t′])([u], [u′])

= fA(dA([t′], [u]))([u′]) = fA([nf(d(t′, u))])([u′])

and thus by induction hypothesis,

nf(e(t)(u, u′)) = nf(f(d(t, u))(u′)) ∼visSP nf(f(d(t′, u))(u′)) = nf(e(t)(u, u′)).
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For the converse, suppose that nf(e(t)(u, u′)) ∼visSP nf(e(t′)(u, u′)) for all u ∈ TvisΣ,u and u′ ∈ TvisΣ,v′ . Then

nf(f(d(t, u))(u′)) = nf(e(t)(u, u′)) ∼visSP nf(e(t′)(u, u′)) = nf(f(d(t′, u))(u′))

and thus by induction hypothesis,

eA([t])([u], [u′]) = fA(dA([t], [u]))([u′]) = fA([nf(d(t, u))])([u′])

= fA([nf(d(t′, u))])([u′]) = fA(dA([t′], [u]))([u′]) = eA([t′])([u], [u′]).

By (4) and (5), for all e : s→ (w → s′) ∈ CT∆ and u ∈ TvisΣ,w,

h(t) = h(t′) ⇐⇒ fin(nat(nf(t))) = fin(nat(nf(t′)))

⇐⇒ ∀ e : s→ (w → s′) ∈ CT∆, u ∈ TvisΣ,w : nf(e(t)(u)) ∼visSP nf(e(t′)(u)) ⇐⇒ t ∼Ner
SP ′ t

′.

This finishes the proof that the equivalence kernel of h agrees with contextual SP ′-equivalence.

(1) Suppose that CST has no assertions. Then Fin(∆, C) = Fin(CSP ). Hence for all t ∈ TΣ′,s there is

a ∈ Fin(CSP ) such that h(t) = a = fin([a]) = fin([nf(a)]) = h(a). Since the equivalence kernel of h agrees

with ∼SP ′ , t and a are behaviorally SP ′-equivalent.

(2) Since the equivalence kernel of h agrees with ∼SP ′ , for all a, b ∈ Fin(CSP ), a ∼SP ′ b iff a = fin([a]) =

fin([nf(a)]) = h(a) = h(b) = fin([nf(b)]) = fin([b]) = b.

By Lemma ??, A is a pre-CSP -model. Since for all s′ ∈ hidS, d : sw → s′ ∈ des, a ∈ Fin(CSP )s and

u ∈ TvisΣ,w, dA([a], [u]) = [nf(d(a, u))] = [b] for some b ∈ Fin(CSP )s′ , A has a CSP -submodel with A′s =

{[a] ∈ sA | a ∈ Fin(CSP )s} for all s ∈ hidS. Since SP ′ is consistent, for all s ∈ hidS and a, b ∈ Fin(CSP )s,

a ≡SP ′ b implies a = b. Hence A′ and Fin(CSP ) are Σ0-isomorphic where Σ0 = visΣ∪ (hidS, des∪ aux, coP).

Let ϕ be an assertion of CSP . We show that A satisfies ϕ. Let f : X → TΣ′ such that for all x ∈ XvisS ,

f(x) ∈ TvisΣ. Since CST is complete and cospec closed, there are g : X → TΣ′ and g′ : X → Fin(CSP ) such

that for all x ∈ XvisS , g(x) = f(x) and g′(x) = [f(x)], and for all x ∈ XhidS , f(x) ∼SP ′ g(x) = g′(x). Since

Fin(CSP ) is a pre-CSP -model, Fin(CSP ) satisfies ϕ and thus Fin(CSP ) |=g′ ϕ. Since Fin(CSP ) and A′

are Σ0-isomorphic and ϕ is a Σ0-formula, Fin(CSP ) |=g′ ϕ implies A′ |=nat◦g ϕ and thus A |=nat◦g ϕ because

ϕ has no universal quantifiers. Since ≈ is a weak Σ′-congruence and ϕ is poly-modal, [89], Thm. 3.9(a) implies

Her(SP ′) |=g ϕ. Since SP ′ is behaviorally consistent, [89], Thm. 3.8(3) implies Her(SP ′) |=f ϕ. Since ≈ is a

weak Σ′-congruence and ϕ is poly-modal, [89], Thm. 3.9(a) implies A |=nat◦f ϕ.

This finishes the proof that A satisfies the assertions of CSP . Since A interprets the copredicates of CSP

as the greatest solutions of coAX (see the proof of Lemma ??), we conclude that A is a CSP -model.

By Thm. ??(3), Fin(CSP ) is final in Mod(CSP ) and the range restriction of fin : A → Fin(∆, C) to

Fin(CSP ) is the final morphism. Since for all s ∈ hidS and a ∈ Fin(CSP )s, fin([a]) = a, fin and thus h are

surjective.

Since the equivalence kernel of h agrees with contextual SP ′-equivalence, Lemma 18.3 implies that it coincides

with behavioral SP ′-equivalence, which, by assumption, is a weak Σ′-congruence.

Let Σ1 = visΣ∪ (hidS, des, ∅). nf, nat, fin and thus h are Σ1-homomorphisms. Since h is surjective and the

equivalence kernel of h is a weak Σ′-congruence, Fin(CSP ) becomes a Σ′-structure and h a Σ′-homomorphism

if Σ′ \ Σ1 is interpreted as follows:

aFin(CSP ) = a ( = fin([a]) = h(a) ) for all s ∈ hidS and a ∈ Fin(CSP )s,

fFin(CSP )(h(t)) = h(f(t)) for all function symbols f : w → s ∈ Σ \ Σ1,

h(t) ∈ rFin(CSP ) ⇔ Her(SP ′) |= r(t) for all static predicates r : w ∈ Σ \ Σ1,

(h(t), h(u)) ∈ δFin(CSP ) ⇔ ∃ v : Her(SP ′) |= u ∼ v ∧ δ(t, v) for all dynamic predicates δ : ws ∈ Σ.
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Indeed, the interpretations are well-defined: Let f : w → s ∈ Σ \ Σ1 and t, t′ ∈ TΣ′,w such that h(t) = h(t′).

Since the equivalence kernel of h is compatible with f , h(f(t)) = h(f(t′)). Let r : w ∈ Σ \ Σ1 be a static

predicate and t, t′ ∈ TΣ′,w such that h(t) = h(t′). Since the equivalence kernel of h is compatible with r,

Her(SP ′) |= r(t) iff Her(SP ′) |= r(t′). Let δ : ws ∈ Σ be a dynamic predicate, t, t′ ∈ TΣ′,w and u, u′ ∈ TΣ′,s

such that h(t) = h(t′) and h(u) = h(u′). Hence t ∼SP ′ t′, u ∼SP ′ u′ and thus

∃ v : Her(SP ′) |= u ∼ v ∧ δ(t, v) =⇒ ∃ v, v′ : Her(SP ′) |= u ∼ v ∧ δ(t′, v′) ∧ v ∼ v′

=⇒ ∃ v′ : Her(SP ′) |= u′ ∼ v′ ∧ δ(t′, v′).

(3) We have shown that h is a Σ′-homomorphism. Since the equivalence kernel of h agrees with ∼SP ′ ,
h : Her(SP ′)→ Fin(CSP ) induces an injective Σ′-homomorphism h′ : Fin(SP ′)→ Fin(CSP ). h′ is surjective

because h is surjective. Hence h′ is an isomorphism. o

Under the assumptions of Thm. 18.5, the inductive theory of CST agrees with the coinductive theory of

CSP (see Definitions 18.4 and ??):

Corollary 18.6 Let CST be a cospec closed, functional, continuous and behaviorally consistent dialgebraic

swinging type and SP ′ be the domain completion of CST such that visSP is functional and head complete.

Then for all poly-modal Σ′-formulas ϕ,

Fin(CSP ) |= ϕ ⇐⇒ Fin(SP ′) |= ϕ ⇐⇒ Her(SP ′) |= ϕ.

Moreover, Fin(CSP ) is final in the class of reachable Σ′-structures that interpret behavioral equalities as weak

Σ′-congruences.

Proof. The statements are direct consequence of Thm. 18.5 and [89], Thm. 5.1(2) and (5). o

Basic inference rules that are sound with respect to Her(SP ′) are discussed in [93]. In addition, Corollary

18.6 tells us that the assertions of CST are inductive theorems of CST and thus may be used as lemmas

in proofs of further inductive theorems. Corollary 18.6 also implies that the following unfolding rule for a

cofunction f : w → s is correct with respect to Her(SP ′):

unfolding of f ∈ coF
ϕ(d(f(t), u))∨n

i=1(ϕ(ti[t/x, u/z]) ∧ ϕi[t/x, u/z])
m

if {d(f(x), z) ≡ t1 ⇐ ϕ1, . . . , d(f(x), z) ≡ tn ⇐ ϕn} is the coinductive axiomatization

of f (cf. Def. 17.4)

A number of proof samples can be found in [85, 86, 90, 93, 94, 91].

19 Examples

Dynamic Data Types and Labelled Transition Logic [20, 5] incorporate transition systems as relations into

specifications and axiomatize them in terms of Horn clauses, which amount to SOS (“structural operational

semantics”) rules, the classical syntax of transition system specifications. The logic used for reasoning about

dynamic data types is a temporal one. Swinging types go a step further and admit to integrate not only

transitions systems (in terms of set-valued functions), but also temporal- and modal-logic operators (in terms

of predicates or copredicates; see, e.g., [89], Example 2.7). Set-valued functions are also used for expressing

association multiplicities of UML class diagrams (see Example 6.6).

By modeling state transitions in terms of set-valued functions one gets rid of the distinction between com-

patibility and zigzag compatibility of an equivalence relation ∼ with static and dynamic predicates, respectively
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(see [89]). For instance, zigzag compatibility of a transition relation δ : s × lab × s amounts to compatibility

of its functional counterpart f : s → (lab → set(s)) defined by b ∈ f(a)(x) ⇔ δ(a, x, b). Indeed ∼ is zigzag

compatible with δ or a bisimulation, i.e.

a ∼s a′ ∧ δ(a, x, b) ⇒ ∃ b′ : δ(a′, x, b′) ∧ b ∼s b′,
a ∼s a′ ∧ δ(a′, x, b′) ⇒ ∃ b : δ(a, x, b) ∧ b ∼s b′,

if and only if ∼ is compatible with f , i.e.

a ∼s a′ ⇒ ∀ x : f(a)(x) ∼set(s) f(a′)(x),

where the extension of ∼s to ∼set(s) is defined as above.

A third alternative for specifiying transition systems—besides zigzag compatible relations and set-valued

functions—is used in Maude [16] and CafeOBJ [17]: here transition systems are presented as rewrite rules and

interpreted in categories consisting of term (classes) as objects and rewrite steps as morphisms.

The presentation

SP = SP1 and . . . and SPn then hidden part

of a swinging type SP indicates that SP ′1 ∪ · · · ∪ SP ′n is the visible subtype of SP where SP ′i = SPi if SPi is

algebraic and SP ′i is the domain completion of SPi is SPi is dialgebraic (cf. Def. 5.1). SP itself is algebraic (resp.

dialgebraic) if, in the hidden part, the declaration of the hidden sorts is followed directly (!) by a declaration

of constructors (resp. destructors).

Example 19.1 (integers) The following specification represents integer numbers as terms constructed from

0, 1, + and -. Hence int can be declared as the hidden sort of an algebraic swinging type (cf. Def. 5.1). Since

the induced structural equivalence would be too fine for representing the equality of integers, we specify this

equality as a behavioral one with three destructors: successor, predecessor and a test on zero.

INT = BOOL then

hidsorts int

constructs 0, 1 :→ int

+ : int× int→ int

− : int→ int

destructs pred, succ : int→ 1 + int

is0 : 1 + int→ bool

vars x, y, z : int

axioms succ(0) ≡ (1)

succ(1) ≡ (1 + 1)

succ(x+ y) ≡ (y) ⇐ succ(x) ≡ ()

succ(x+ y) ≡ (z + y) ⇐ succ(x) ≡ (z)

succ(−x) ≡ () ⇐ pred(x) ≡ ()

succ(−x) ≡ (−y) ⇐ pred(x) ≡ (y)

pred(0) ≡ (−1)

pred(1) ≡ ()

pred(x+ y) ≡ (y) ⇐ pred(x) ≡ ()

pred(x+ y) ≡ (z + y) ⇐ pred(x) ≡ (z)

pred(−x) ≡ () ⇐ succ(x) ≡ ()

pred(−x) ≡ (−y) ⇐ succ(x) ≡ (y)

is0(()) ≡ true
is0((x)) ≡ false
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The destructor is0 cannot be dropped. Otherwise all int-terms were behaviorally equivalent. o

Example 19.2 (infinite sequences) The specification STREAM (cf. Ex. 16.1) is a dialgebraic swinging

type and the sort stream denotes an uncountable domain whenever entry is interpreted by a carrier with at

least two elements.

Let ∆ be the cosignature and CSP be the cospecification of STREAM (cf. Def. 18.1). Since head : stream→
entry and tail : stream→ stream are the stream-destructors, for each STREAM-context d there is n ∈ N such

that d = head · tailn : stream→ entry. Hence the stream-carrier of the final CSP -model consists of all infinite

sequences over C (cf. Def. 18.1):

Fin(CSP )stream =
∏

d∈CT∆

Centry =
∏
n∈N

Centry = [N→ Centry].

The domain completion SP ′ of STREAM contains the following additional axioms for head and tail:

head(g) ≡ g(0) and

tail(g) ≡ λn.g(n+ 1) for all g : N→ Centry.

Since STREAM has no assertions, STREAM is cospec closed. [90], Korollar 6.1.5 (or [94]??), and [89], Thms.

5.15 and 6.5 imply that STREAM is functional, continuous and behaviorally consistent, respectively. Hence by

Thm. 18.5, Fin(SP ′) and Fin(CSP ) are isomorphic.

Let G be a ground normal form of sort entry → bool. We extend STREAM by the destructor

min : (entry → bool)× stream→ 1 + nat,

regard the defined functions nth and nthtail of STREAM (cf. Ex. 16.1) as auxiliary functions and the axioms

for nth and nthtail as inductive axiomatizations and add the assertions

∃ n, s′ : (min(G, s) ≡ (n) ∧ nthtail(n+ 1, s) ≡ s′), (1)

min(g, s) ≡ () ⇒ g(nth(n, s)) ≡ false, (2)

min(g, s) ≡ (n) ⇒ g(nth(n, s) ≡ true, (3)

(min(g, s) ≡ (n) ∧m < n) ⇒ g(nth(m, s) ≡ false. (4)

Let FAIR be the resulting dialgebraic swinging type and CSP be the cospecification of FAIR. The stream-carrier

of Fin(CSP ) consists of all infinite sequences s over Centry that are fair with respect to G, i.e., for infinitely

many n ∈ N, Fin(CSP ) satisfies G(nth(n, s)) ≡ true.20 This is accomplished by (1). The assertions specify

the function min that is used in (1). Since min cannot be defined in terms of an inductive axiomatization, min

must be declared as a destructor. The required completeness of FAIR enforces axioms for min that describe

the effect of min on normal forms built up of stream-constructors. For instance, the axioms

min(g, zip(s, s′)) ≡ (2 ∗ n+ 1) ⇐ min(g, s) ≡ () ∧min(g, s′) ≡ (n),

min(g, zip(s, s′)) ≡ (2 ∗m) ⇐ min(g, s) ≡ (m) ∧min(g, s′) ≡ (),

min(g, zip(s, s′)) ≡ (2 ∗m) ⇐ min(g, s) ≡ (m) ∧min(g, s′) ≡ (n) ∧ 2 ∗m < 2 ∗ n+ 1,

min(g, zip(s, s′)) ≡ (2 ∗ n+ 1) ⇐ min(g, s) ≡ (m) ∧min(g, s′) ≡ (n) ∧ 2 ∗m ≥ 2 ∗ n+ 1

specify the effect of min on normal forms zip(s, s′) (cf. [91], Section 4.1). Although FAIR has assertions and

hidden constructors, FAIR is cospec complete, i.e., each t ∈ streamNFΣ′ is behaviorally SP ′-equivalent to some

element of Fin(CSP )stream. By using the Horn axioms of SP ′, this can be shown easily by induction on t. o

Example 19.3 (streams) The specification COLIST (cf. Ex. 15.2) is a dialgebraic swinging type and

the sort stream denotes an uncountable domain whenever entry is interpreted by a carrier with at least two

elements.
20[101], Example 8, provides a related specification.
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Let CSP be the cospecification of COLIST (cf. Def. 18.1). Since ht : stream→ 1 + (entry× stream) is the

only stream-destructor, for each stream-context c there is n ∈ N such that

c = c(n) =def (id+
n
(id+ π1) · ht · π2) · ht

n
: stream→ 1 + (

n
1 + entry )

n
,

i.e., for all n ∈ N, c(n+ 1) = (id+ c(n) · π2) · ht. Hence the stream-carrier of Fin(CSP ) consists of all finite or

infinite sequences over Centry: Let

P =
∏
n∈N

( 1 + (
n
1 + Centry )

n
).

F in(CSP )stream is the greatest fixpoint of the function Φ : P(P ) → P(P ) that is defined as follows: for all

A ⊆ P ,

Φ(A) = {a ∈ A | ∃ b ∈ 1 + (Centry ×A) ∀ n ∈ N : π(id+c(n)·π2)·ht(a) = πid+c(n)·π2
(b)}

= {a ∈ A | ∃ b ∈ 1 + (Centry ×A) ∀ n ∈ N : πc(n+1)(a) = πid+c(n)·π2
(b)}

= {a ∈ A | ∀ n ∈ N : πc(n+1)(a) = () ∨ ∃ (x, a′) ∈ Centry ×A ∀ n ∈ N : πc(n+1)(a) = (πc(n)·π2
(x, a′))}

= {a ∈ A | ∀ n ∈ N : πc(n+1)(a) = () ∨ ∃ a′ ∈ A ∀ n ∈ N : πc(n+1)(a) = (πc(n)(a
′))}.

Hence for all a ∈ P ,

a ∈ Fin ⇐⇒ ∀ n ∈ N : πc(n+1)(a) = () ∨ ∃ a′ ∈ Fin ∀ n ∈ N : πc(n+1)(a) = (πc(n)(a
′))

and thus

Fin = 1 + Centry × (1 + Centry × (1 + Centry × . . . )) = C∗entry ∪ [N→ Centry].

The domain completion SP ′ = (Σ′, AX ′) of COLIST contains the following additional axioms for ht:

ht([]) ≡ (),

ht(x : L) ≡ (x, L) for all x ∈ Centry and L ∈ C∗entry,
ht(g) ≡ (g(0), λn.g(n+ 1)) for all g : N→ Centry.

Since COLIST has no assertions, COLIST is cospec closed. [90], Korollar 6.1.5 (or [94]??), and [89], Thms.

5.15 and 6.5 imply that SP ′ is functional, continuous and behaviorally consistent, respectively. Hence by Thm.

18.5, Fin(SP ′) and Fin(CSP ) are isomorphic.

If we extend COLIST by one of the assertions

(1) ∃ x, s′ : ht(s) ≡ (x, s′),

(2) (ht(s) ≡ () ∨
∃ x, s′ : (ht(s) ≡ (x, s′) ∧

(ht(s′) ≡ () ∨
∃ s′′ : ht(s′) ≡ (x, s′′)))),

(3) (ht(s) ≡ () ∨
∃ x, s′ : (ht(s) ≡ (x, s′) ∧

(ht(s′) ≡ () ∨
∃ y, s′′ : (ht(s′) ≡ (y, s′′) ∧

(ht(s′′) ≡ () ∨
∃ s1 : (ht(s′′) ≡ (x, s1) ∧

(ht(s1) ≡ () ∨
∃ s2 : ht(s1) ≡ (y, s2)))))))),
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respectively, we obtain a dialgebraic type with cospecification CSP such that the stream-carrier of Fin(CSP )

consists of infinite streams (1), constant streams (2) or alternating streams (3). This example was motivated

by the coequational specifications of these subcoalgebras given in [15], Section 4. o

Example 19.4 (stream comprehension) The following extension of COLIST by a specification of stream

comprehension (filter) is inspired by [101], Example 8. We declare filter, as a cofunction and specify filter

in terms of a coinductive axiomatization in the sense of Def. 17.4. As in the previous example, some axioms

involve an additional destructor min and auxiliary functions nth and nthtail. Again, the given axioms for nth

and nthtail form inductive axiomatizations, and min is specified in terms of both Horn axioms and assertions.

FILTER1 = COLIST then

destructs min : (entry → bool)× stream→ 1 + nat

cofuncts filter : (entry → bool)× stream→ stream

vars x : entry m, n : nat s, t : stream g : entry → bool

axioms axioms for min

assertions min(g, s) ≡ () ⇒ g(nth(n, s)) ≡ false
min(g, s) ≡ (n) ⇒ g(nth(n, s) ≡ true
(min(g, s) ≡ (n) ∧m < n) ⇒ g(nth(m, s) ≡ false

cofaxioms ht(filter(g, s)) ≡ () ⇐ min(g, s) ≡ ()

ht(filter(g, s)) ≡ (x, filter(g, t))

⇐ min(g, s) ≡ (n) ∧ nth(n, s) ≡ (x) ∧ nthtail(n+ 1, s) ≡ t

A coinductive axiomatization (Def. 17.4) should not be confused with a set of coinductive axioms ([89], Def.

6.1; [94], Def. 8.2). By [89], Thm. 6.5, coinductive axioms ensure—together with functionality and continuity—

behavioral consistency. The axioms for filter both are coinductive and form a coinductive axiomatization. By

Thm. 17.5, the latter establishes a functional interpretation of odds and filter in the final CSP -model where

CSP is the cospecification of FILTER1.

Example 19.5 (binary trees) The following specification generalizes COLIST and specializes FTREE (cf.

[91], Section 4.6). It is also a “swinging” version of the running example in [54] where finite and infinite binary

trees are presented in CCSL (cf. Section 6). For LIST, see [91], Section 1.2.

BINTREE = ENTRY(entry) and LIST then

hidsorts tree = tree(entry)

destructs root&sucs : tree→ 1 + (tree× entry × tree)
size : tree→ 1 + nat

constructs mirror : tree→ tree

leaf, fill : entry → tree

mkTree : tree× entry × tree→ tree

defuncts subtree : tree× list(bool)→ 1 + tree

static preds ∈ : entry × tree
finite : tree

3r : tree for all static predicates r : tree

copreds infinite : tree

2r : tree for all static predicates r : tree

vars x : entry T, T ′, T1, T2 : tree m, n : nat b : bool

Horn axioms root(mirror(T )) ≡ root(T )

sucs(mirror(T )) ≡ () ⇐ sucs(T ) ≡ ()

sucs(mirror(T )) ≡ (mirror(T2),mirror(T1)) ⇐ sucs(T ) ≡ (T1, T2)

size(mirror(T )) ≡ size(T )
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root(leaf(x)) ≡ x
sucs(leaf(x)) ≡ ()

size(leaf(x)) ≡ (1)

root(fill(x)) ≡ x
sucs(fill(x)) ≡ (fill(x), fill(x))

size(fill(x)) ≡ ()

root(mkTree(T1, x, T2)) ≡ x
sucs(mkTree(T1, x, T2)) ≡ (T1, T2)

size(mkTree(T1, x, T2)) ≡ () ⇐ size(T1) ≡ ()

size(mkTree(T1, x, T2)) ≡ () ⇐ size(T2) ≡ ()

size(mkTree(T1, x, T2)) ≡ (m+ n+ 1) ⇐ size(T1) ≡ (m) ∧ size(T2) ≡ (n)

subtree(T, []) ≡ (T )

subtree(T, b : L) ≡ () ⇐ subtree(T, L) ≡ ()

subtree(T, b : L) ≡ () ⇐ subtree(T, L) ≡ (T ′) ∧ sucs(T ′) ≡ ()

subtree(T, 0 : L) ≡ (T1) ⇐ subtree(T, L) ≡ (T ′) ∧ sucs(T ′) ≡ (T1, T2)

subtree(T, 1 : L) ≡ (T2) ⇐ subtree(T, L) ≡ (T ′) ∧ sucs(T ′) ≡ (T1, T2)

x ∈ T ⇐ root(T ) ≡ x
x ∈ T ⇐ sucs(T ) ≡ (T1, T2) ∧ x ∈ T1

x ∈ T ⇐ sucs(T ) ≡ (T1, T2) ∧ x ∈ T2

finite(T ) ⇐ sucs(T ) ≡ ()

finite(T ) ⇐ sucs(T ) ≡ (T1, T2) ∧ finite(T1) ∧ finite(T2)

3r(T ) ⇐ r(T )

3r(T ) ⇐ sucs(T ) ≡ (T1, T2) ∧3r(T1)

3r(T ) ⇐ sucs(T ) ≡ (T1, T2) ∧3r(T2)

assertions sucs(T ) ≡ () ⇒ size(T ) ≡ (1)

(sucs(T ) ≡ (T1, T2) ∧ size(T1) ≡ ()) ⇒ size(T ) ≡ ()

(sucs(T ) ≡ (T1, T2) ∧ size(T2) ≡ ()) ⇒ size(T ) ≡ ()

(sucs(T ) ≡ (T1, T2) ∧ size(T1) ≡ (m) ∧ size(T2) ≡ (n)) ⇒ size(T ) ≡ (m+ n+ 1)

axioms infinite(T ) ⇒ (sucs(T ) ≡ () ⇒ False)

infinite(T ) ⇒ (sucs(T ) ≡ (T1, T2) ⇒ infinite(T1) ∨ infinite(T2))

2r(T ) ⇒ r(T )

2r(T ) ⇒ (sucs(T ) ≡ (T1, T2) ⇒ 2r(T1) ∧2r(T2))

The set of BINTREE-contexts is the smallest set CT of coterms such that all tree- or (tree×tree)-destructors

belong to CT and

d : tree→ entry ∈ CT =⇒ d · π1, d · π2 : tree× tree→ entry ∈ CT,
d : tree× tree→ entry ∈ CT =⇒ (id+ d) · sucs : tree→ 1 + entry ∈ CT.

Let CSP be the cospecification of BINTREE. The tree-carrier of Fin(CSP ) consists of all finite or infinite

binary trees over Centry: Let

P =
∏

c:tree→s∈CT
Cs.

F in(CSP )tree is the greatest fixpoint of the function Φ : P(P )→ P(P ) that is defined as follows: for all A ⊆ P ,

Φ(A) = {a ∈ A | ∃ b ∈ A2 ∀ d = (id+ e) · sucs ∈ CT : πd(a) = (πe(b)) ∧ A |=a/T AXtree
21}.

21AXtree is the set of assertions of BINTREE.
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The domain completion SP ′ = (Σ′, AX ′) of BINTREE contains the following additional axioms for each

partial function g : {0, 1}∗ → Centry with a binary-tree domain Dg, i.e., for all w ∈ {0, 1}∗ and i ∈ {0, 1}∗,
wi ∈ Dg implies w,w(i+ 1 mod 2) ∈ Dg:

root(g) ≡ g(ε),

sucs(g) ≡

{
(λw.g(0w), λw.g(1w)) if g(0), g(1) ∈ Dg,

() otherwise,

size(g) ≡

{
(|Dg|) if Dg is finite,

() otherwise.

In fact, each g represents exactly one element of Fin(CSP )tree.

Although BINTREE has assertions and hidden cofunctions, BINTREE is cospec closed, i.e., each t ∈ treeNFΣ′

is behaviorally SP ′-equivalent to some element of Fin(CSP )tree. By using the Horn axioms of SP ′, this can be

shown easily by induction on t. [90], Korollar 6.1.5 (or [94]??), and [89], Thms. 5.15 and 6.5 imply that SP ′ is

functional, continuous and behaviorally consistent, respectively. Hence by Thm. 18.5, Fin(SP ′) and Fin(CSP )

are isomorphic.

n tree-constructor constants c1, . . . , cn :→ tree together with the axioms

root(c1) ≡ t1, sucs(c1) ≡ (d1, e1),

. . .

root(cn) ≡ tn, sucs(cn) ≡ (dn, en)

represent a binary graph with n nodes if for all 1 ≤ i ≤ n, di, ei ∈ {c1, . . . , cn} and ti is an entry-sorted ground

term. ci denotes a graph with root node ti, left subgraph di and right subgraph ei (see also Section 3.3).

The following formulas taken from [54] are inductive theorems of BINTREE (cf. Ex. 19.5). They can be

derived by employing assertions of BINTREE and inference rules given in Section 2.

mirror(mirror(t)) ∼ t, (1)

size(fill(x)) ≡ (), (2)

x ∈ fill(y) ⇒ x ≡ y, (3)

x ∈ t ⇔ x ∈ mirror(t), (4)

finite(t) ⇔ ∃ n : size(t) ≡ (n), (5)

infinite(t) ⇔ size(t) ≡ (). o (6)

Figure 5. Two associated classes (Figure 3 of [50]).

Example 19.6 (UML class specifications) For dealing with object collections like the meetings and

participants in Fig. 5 we refer to an algebraic swinging type FINSET of finite sets:
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FINSET

hidsorts set = set(entry)

constructs ∅ :→ set

{ } : entry → set

∪ : set× set→ set

destructs in : entry × set→ bool

defuncts remove : entry × set→ set

mkset : entry∗ → set

filter : (entry → bool)× set→ set

| | : set→ nat

forall : (entry → bool)× set→ bool

flatten : set(set)→ set

vars x, y, x1, . . . , xn : entry s, s′ : set f : entry → entry′ g : entry → bool

axioms in(x, ∅) ≡ false

in(x, {y}) ≡ eq(x, y)

in(x, s ∪ s′) ≡ in(x, s) or in(x, s′)

remove(x, s) ≡ s \ {x}
mkset(()) ≡ ∅
mkset((x1, . . . , xn)) ≡ {x1} ∪ · · · ∪ {xn}
filter(g, ∅) ≡ ∅
filter(g, {x}) ≡ ∅ ⇐ g(x) ≡ false
filter(g, {x}) ≡ {x} ⇐ g(x) ≡ true
filter(g, s ∪ s′) ≡ filter(g, s) ∪ filter(g, s′)
|∅| ≡ 0

|{x}| ≡ 1

|s ∪ s′| ≡ |s \ s′|+ |s′ \ s|
forall(g, ∅) ≡ true

forall(g, {x}) ≡ g(x)

forall(g, s ∪ s′) ≡ forall(g, s) and forall(g, s′)

flatten(∅) ≡ ∅
flatten({s}) ≡ s

flatten(s ∪ s′) ≡ flatten(s) ∪ flatten(s′)

FINSET only specifies the functions used in the class specification given below. For more set functions and

also predicates as well as other set specifications, see [91], Section 1.2.2.

The class diagram of Fig. 5 is represented as a dialgebraic swinging type whose axioms cover the multiplicity

constraints of Fig. 5 and the following OCL constraint [110] taken from [50]:

context Meeting :: checkDate()

post : isConfirmed =

self.participants ->

collect(meetings) ->

forAll(m | m <> self and m.isConfirmed implies

(after(self.end,m.start) or (after(m.end,self.start)))

PERSON&MEETING = FINSET and STRING and DATE&TIME then

hidsorts Person Meeting

destructs name : Person→ String
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meetings : Person→Meeting∗

title : Meeting → String

participants : Meeting → Person∗

start, end : Meeting → Date

isConfirmed : Meeting → bool

constructs checkDate : Meeting →Meeting

cancel : Meeting →Meeting

defuncts Meetings : Person→ set(Meeting)

Participants : Meeting → set(Person)

numMeetings : Person→ nat

numConfirmedMeetings : Person→ nat

duration : Meeting → Time

consistent : Meeting ×Meeting → bool

vars p : Person m,m′ : Meeting ms : set(Meeting) ps : set(Person)

axioms Meetings(p) ≡ mkset(meetings(p))

Participants(m) ≡ mkset(participants(m))

numMeetings(p) ≡ |Meetings(p)|
numConfirmedMeetings(p) ≡ |filter(isConfirmed ,Meetings(p))|
duration(m) ≡ end(m)− start(m)

consistent(m,m′) ≡ not(isConfirmed(m′))

or end(m) < start(m′) or end(m′) < start(m)

isConfirmed(checkDate(m)) ≡ forall(λm′.consistent(m,m′), remove(m,ms))

⇐ Participants(m) ≡ ps ∧ flatten(map(Meetings, ps)) ≡ ms
isConfirmed(cancel(m)) ≡ false

assertions |Participants(m)| ≥ 2

Classes come as hidden sorts, attributes and roles as destructors, roles usually as non-linear ones. Basic

methods are declared as constructors, derived ones as defined functions. Let CSP be the cospecification of

PERSON&MEETING. Similarly to visualizing the elements of of Fin(BINTREE)tree as finite and infinite

binary trees (cf. Ex. 19.5), the elements of Fin(CSP )Person and Fin(CSP )Meeting may be regarded as infinite

trees whose edges represent the relation between object states that is induced by the participates association of

Fig. 5. The UML semantics of Fig. 5 requires sets rather than sequences as values of meetings and participants.

This is reflected by the fact that all axioms of PERSON&MEETING do not use these destructors directly, but

only their set versions Meetings and Participants.

More details about the presentation of UML classes as swinging types can be found in [91], Section 6.1. o

20 Conclusion

Swinging types were introduced in detail in [89]. The paper at hand is devoted to extensions that allow us to use

the approach for specifying and reasoning about uncountable data domains, usually given as sets of “infinite” or

“lazy” data structures like streams, processes, etc. Traditionally, such structures were treated formally within

lattice or order theories. This brought forth many contributions to the model theory of basic computational

structures as well as high-level programming language constructs. However, the theory of abstract data types

did not gain much from those achievements, probably because the variety of data schemas and appropriate

axiomatizations to be considered is much greater here than in classical language theory. Only the evolution of

coalgebra theory led to sufficiently general notions for modelling domains with uncountably many elements.

Most of the work on coalgebras and its application to software specification has been done in category-
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theoretical settings (see, e.g., [105, 104, 56, 10], and the proceedings of already four CMCS workshops22) The

more restricted notion of a Σ-coalgebra as a set of unary functions into a sum sort, now called destructors, already

occurs, e.g., in [69]. First approaches to the specification of coalgebras or other behavioral models can be found

in [100, 101, 68, 34, 33, 15, 8, 49, 102, 52, 54]. Most of these approaches concentrate on (co)signatures with only

linear destructors. Only [15] provides a coterm characterization of final coalgebras with non-linear destructors

(see also Section 4). However, the way axiomatic coalgebra presentations are built upon coterms is far from

traditional logics. At least, the examples of [15] can also be specified in terms of much-easier-to-comprehend

(first-order) assertions (cf. Example 19.3).

Apart from pointing out certain model-theoretic dualities, previous approaches lack an integration of alge-

braic and coalgebraic types that is suffiently general to cope with “real-world” system models. This is achieved

by swinging types, mainly because of their stepwise constructability that allows us to both extend an algebraic

basis by coalgebraic components and, conversely, build algebraic structures on top of coalgebraic ones. The

following case analysis should provide rough guidelines for the stepwise design of a swinging type:

â All sorts s of a type T to be specified are freely generated, i.e., all s-data can be represented uniquely

by ground terms over a finite set of constructors. Then there will be a functional basic Horn specification

(cf. Def. 5.1) whose initial and final model coincide with T . Example: finite lists of natural numbers (cf.

Examples 14.1, 14.2).

â The type is to be extended by a permutative sort s, i.e., all s-data can be represented by ground terms

over a finite set of constructors, but the representation is not unique. Then there will be destructors or

transition predicates such that the induced behavioral s-equivalence captures the desired identification of

data. Examples: naturals with ∞ (cf. Ex. 15.1), integers (cf. Ex. 19.1), finite sets, bags or maps (cf. Ex.

16.2).

â The type is to be extended by an infinite sort s, i.e., some s-data may be represented by ground terms

over a finite set of constructors, but most s-data will not because they represent “infinite” structures taken

from an uncountable domain D. Then there will be destructors and assertions such that the final model

of the induced cospecification CSP coincides with D. Examples: streams (cf. Exs. 16.1, 15.2, 19.2, 19.3,

19.4), trees (cf. Ex. 19.5). Besides CSP , the resulting dialgebraic ST has an algebraic part for taking into

account the term representations of s-data.

â The type is to be extended by a freely generated sort s. Then there will be s-object constructors

such that the induced behavioral s-equivalence coincides with structural s-equivalence (cf. [94], Lemma

3.8).

Destructors determine the behavioral equivalence. In the case of an infinite sort s, s-destructors also deter-

mine the elements of the final model. s-Constructors do so only in the case of a freely generated sort s. In the

case of a permutative or an infinite sort s, the decision whether a function should be declared as a constructor

or a defined function depends on more or less technical requirements like functionality, coinductivity ([89], Def.

6.1; [94], Def. 8.2) and cospec closedness (Def. 18.4).

Dialgebraic types offer a third possibility, namely to declare a function f as a cofunction. This is suggested

at least when f cannot be specified inductively on normal forms. Cofunctions always map into hidden sorts (cf.

Ex. 19.4). Non-inductively-specifiable functions on infinite sorts that map into visible sorts must be declared as

(additional) destructors and specified in terms of assertions (cf. Exs. 19.4, 19.5). All functions used in assertions

must be destructors or auxiliary functions (particular defined functions; cf. Def. 17.4).

If compared with an algebraic ST, the main additional features of a dialgebraic ST are assertions and

cofunctions. Assertions are the invariants of a dialgebraic type. They allow us to specify subdomains of an

uncountable domain. The algebraic counterpart of assertions are generating functions that define a subdomain

22Coalgebraic Methods in Computer Science 1998-2001, published electronically in Elsevier’s ENTCS series.
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as the set of all ground terms built up from them. Such a specification of a subdomain also works for dialgebraic

types, however, the domain is term-generated and thus cannot be uncountable, like, for instance, the set of all

alternating streams (cf. Ex. 19.4).

On the other hand, dialgebraic types do not admit transition predicates as destructors. This lack is remedied

easily by turning the dialgebraic ST into its (algebraic) domain completion and using this type as the visible

subtype of an algebraic type with transition predicates on “copies” of the infinite sorts specified by the dialgebraic

ST (see the end of Section 3.4). In this way, we can present uncountable domains equipped with bisimilarities,

i.e., behavioral equivalences induced by transition predicates.

21 Appendix: Category-theoretical foundations

Algebra may be understandable and applicable without knowing the basics of category theory. Coalgebra and

its dual nature in comparison with algebra is rooted in category theory. Hence the knowledge of fundamental

constructions and ways of reasoning in category theory are crucial for “getting the point” of dialgebraic modeling

(cf., e.g., [65, 4, 70, 97, 104, 56, 41, 60, 2, 55]).

products and sums, equalizers and coequalizers, pullbacks and pushouts, limits and colimits

Definition 21.1 Let K be a category and F be an endofunctor on K. An F -algebra or F -dynamics

is a K-morphism α : F (A) → A. AlgF denotes the category of F -algebras. An Alg(F )-morphism h from

α : F (A)→ A to β : F (B)→ B is a K-morphism h : A→ B with h ◦α = β ◦F (h). If α is the initial F -algebra,

then h is called a catamorphism [79] and (because of its existence and uniqueness) said to be defined by

induction.

An F -coalgebra or F -codynamics is a K-morphism α : A → F (A). coAlgF denotes the category of

F -coalgebras. A coAlg(F )-morphism h from α : A → F (A) to β : B → F (B) is a K-morphism h : A → B

with F (h) ◦ α = β ◦ h. If β is the final F -coalgebra, then h is called an anamorphism [79] and (because of its

existence and uniqueness) said to be defined by coinduction.

Do initial/final objects exist if SP satisfies 5.1(1) resp. (2)? This depends on conditions on K and F . The

main conditions and fixpoint constructions are category-theoretic generalizations of notions and results from

set theory, in particular of, Kleene’s fixpoint theorem for monotone functions. Given a set (“universe”) U ,

the powerset P(U) extends to a category whose objects are the subsets of U and whose morphisms are set

inclusions. The identity morphism is set equality. ∅ is the initial, U the final object. The union of sets is their

colimit, the intersection is their limit. A function F : P(U) → P(U) is monotone iff F is a functor. Hence, if

F is monotone, then least fixpoints of F are initial F -algebras, while greatest fixpoints are final F -coalgebras.

Ascending chains A0 ⊆ A1 ⊆ A2 ⊆ . . . and descending chains B0 ⊇ B1 ⊇ B2 ⊇ . . . in P(U) become diagrams

in an arbitrary category K:

A0 → A1 → A2 → . . . B0 ← B1 ← B2 ← . . .

These correspondences between P(U) and a category K suggest the following definitions: given an endo-

functor F on K, a fixpoint of F is a K-object A with F (A) ∼= A. If α : F (A) → A is initial in Alg(F ), then

A is a fixpoint of F , called the least fixpoint of F . Analogously, if α : A → F (A) is final in coAlg(F ), then

A is a fixpoint of F , called the greatest fixpoint of F . F is continuous if F preserves colimits of ascending

chains in K. F is cocontinuous if F preserves limits of descending chains.

Let K = P(U). If F is continuous, then Kleene’s fixpoint theorem provides us with the least fixpoint

∪i∈NF i(∅). If F is cocontinuous, we obtain the greatest fixpoint ∩i∈NF i(U). In fact, both fixpoint constructions

can be “lifted” to other categories:
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Theorem 21.2 (Kleene’s fixpoint theorem for functors; cf., e.g., [65]) Suppose that K has an initial object

I and colimits of ascending chains. Let F : K → K be an continuous functor and A be the colimit of the chain

I → F (I)→ F 2(I) |.... Then F (A) is the colimit of F (I)→ F 2(I)→ F 3(I)→ . . . and the unique K-morphism

F (A)→ A is initial in Alg(F ).

Suppose that K has a final object T and limits of descending chains. Let F : K → K be a cocontinuous functor

and B be the limit of the chain T ← F (T ) ← F 2(T ) ← . . . . Then F (B) is the limit of F (T ) ← F 2(T ) ←
F 3(T )← . . . and the unique K-morphism B ← F (B) is final in coAlg(F ). o

Given a set S sorts, let SetS be the category of S-sorted sets. Morphisms are S-sorted functions. The

initial object of SetS is the empty S-sorted set 0: for all s ∈ S, 0s is the empty set. The final object is the

one-element S-sorted set 1: for all s ∈ S, 1s is a singleton.

Theorem 21.3 (cf., e.g., [4]) All endofunctors on SetS that are built up from the identity functor, constant

functors, coproducts and finite products are continuous. All endofunctors on SetS that are built up from the

identity functor, constant functors, coproducts and products are cocontinuous. o

Functors built up from the identity functor, constant functors, coproducts and products are called polyno-

mial. Theorems 21.2 and 21.3 ensure that polynomial functors have greatest fixpoints.

The powerset functor sending a set A to its powerset P(A) cannot have a fixpoint: Assume that f : A→ P(A)

has an inverse f−1 : P(A) → A and define B = {a ∈ A| a /∈ f(a)}. Then we obtain the contradiction

f−1(B) ∈ B ⇔ f−1(B) /∈ f(f−1(B)) = B. However, the finite-powerset functor Pf that maps a set to the set

of its finite subsets has final coalgebras because it is bounded:

Definition 21.4 An endofunctor F on SetS is bounded by some cardinal κ if for all F -coalgebras α : A→
F (A) and all a ∈ A there is a subcoalgebra β : B → F (B) of α such that a ∈ B and |B| ≤ κ. o

Theorem 21.5 ([43], Theorem 3.5) Let F be a functor bounded by κ and {αi}i∈I be the family of all

F -coalgebras with cardinality at most κ. The colimes of all homomorphisms with domain
∐
i∈I αi is final in

coAlg(F ). o

Example 21.6 Given a set L with cardinality κ, define a functor F on Set by F (A) = Pf (A)L. F -

coalgebras are usually called image finite labelled transition systems. F is bounded: Given an F -coalgebra

α : A→ F (A) and a ∈ A, let 〈a〉 be the smallest subcoalgebra of A that contains a. 〈a〉 consists of all elements

b ∈ A that are α-reachable from a, i.e., there are a = a1, . . . , an = b ∈ A such that a1 = a, an = b and for all

1 ≤ i < n there is c ∈ L such that ai+1 ∈ α(ai)(c). Since α(ai)(c) is finite, b can be represented uniquely by a

word wc over L× N. Hence 〈a〉 is bounded by the cardinality of (L× N)∗, which is given by
∑
i∈N(κ ∗ ω)i. o

Initiality generalizes to freeness, finality generalizes to cofreeness:

Definition 21.7 Let F be an endofunctor on SetS and X be an S-sorted set.

An F -algebra α : F (A) → A together with a map ηA : X → A is free over X if for all F -algebras

β : F (B)→ B and all maps f : X → B there is a unique Alg(F )-morphism f∗ : A→ B with f∗ ◦ ηA = f .

An F -coalgebra α : A → F (A) together with a map εA : A → X is cofree over X if for all F -coalgebras

β : B → F (B) and all maps f : B → X there is a unique coAlg(F )-morphism f∗ : B → A with εA ◦ f∗ = f . o

Theorem 21.8 Let F be an endofunctor on SetS. An F -algebra α : F (A) → A together with a map

ηA : X → A is free over X iff the unique coproduct extension [ηA, α] : X +F (A)→ A of ηA and α is the initial

X + F (−)-algebra. In particular, if the initial F -algebra exists, it is the free F -algebra over the empty S-sorted

set.

An F -coalgebra α : A → F (A) together with a map εA : A → X is cofree over X iff the unique product

extension (εA, α) : A → X × F (A) of εA and α is the final X × F (−)-coalgebra. In particular, if the final
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F -coalgebra exists, it is the cofree F -coalgebra over the one-element S-sorted set. o

References

[1] P. Aczel, An Introduction to Inductive Definitions, in: J. Barwise, ed., Handbook of Mathematical Logic,

North-Holland (1977) 739-781

[2] J. Adamek, Introduction to Coalgebra, Theory and Applications of Categories 14 (2005) 157-199

[3] M.A. Arbib, E.G. Manes, Arrows, Structures, Functors: The Categorical Imperative, Academic Press 1975

[4] M.A. Arbib, E.G. Manes, Parametrized Data Types Do Not Need Highly Constrained Parameters, Infor-

mation and Control 52 (1982) 139-158

[5] E. Astesiano, M. Broy, G. Reggio, Algebraic Specification of Concurrent Systems, in [6]

[6] E. Astesiano, H.-J. Kreowski, B. Krieg-Brückner, eds., Algebraic Foundations of Systems Specification,

IFIP State-of-the-Art Report, Springer 1999

[7] M. Barr, Terminal Coalgebras in Well-founded Set Theory, Theoretical Computer Science 114 (1993)

299-315

[8] M. Bidoit, R. Hennicker, Observer Complete Definitions are Behaviourally Coherent, Report, University

of Munich (1999)

[9] M. Bidoit, R. Hennicker, Constructor-Based Observational Logic, to appear in: J. of Logic and Algebraic

Programming (2005)

[10] M. Bidoit, R. Hennicker, A. Kurz, On the Duality between Observability and Reachability, Proc. FOSSACS

2001, Springer LNCS 2030 (2001) 72-87

[11] M. Bidoit, R. Hennicker, A. Kurz, Observational Logic, Constructor-Based Logic, and their Duality, The-

oretical Computer Science 298 (2003) 471-510

[12] M. Bidoit, P.D. Mosses, CASL User Manual, Springer LNCS 2900 (2004)

[13] J. Brown, Minds, Machines, and the Multiverse: The Quest for the Quantum Computer, Simon&Schuster

2000

[14] M. Broy, M. Wirsing, Partial Abstract Types, Acta Informatica 18 (1982) 47-64
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