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Abstract

A coalgebraic, equational approach to the speci(cation of observational structures allowing for
a choice in the result type of observations is presented. Observers whose result type is structured
as a coproduct of basic types are considered, and notions of covariable, coterm and coequation,
dual to the algebraic notions of variable, term and equation are used to specify the associated
structures. A sound and complete deduction calculus for reasoning about observational structures
is then formulated. Finally, the approach is extended in order to account for the availability of
a (xed data universe in the speci(cation of such structures. c© 2002 Elsevier Science B.V. All
rights reserved.

1. Introduction

Recent developments in the theory of coalgebras have demonstrated the suitability of
coalgebraic techniques for the speci(cation of state-based, dynamical systems [9, 11].
Such techniques have proved particularly fruitful for specifying observational properties
of objects, with (nal coalgebras providing appropriate denotations for object speci(-
cations [5, 6]. Various approaches to reasoning about state observation have also been
proposed: in [8, 10], ideas from modal logic have been applied to coalgebras, yield-
ing logics whose sentences constrain single state observations, while in [3] equational
sentences have been used to relate di8erent observations of the same state. At the ex-
pense of using in(nitary sentences, approaches stemming from modal logic are able to
provide characterisability results for coalgebras [8]. However, the formulation of com-
pleteness results in such approaches requires a restriction to (nitary sentences, as well
as the satisfaction of some rather restrictive (niteness conditions by the endofunctors
in question [10]. While not su;ciently expressive to yield similar characterisability
results, equational approaches do not require any additional assumptions in order to
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derive completeness results [3]. Furthermore, equational sentences appear to be better
suited for specifying in a concise manner observational properties quanti(ed over state
spaces. Since our aim is to reason about properties of collections of states (as opposed
to single states), we shall restrict our attention to equational approaches.
In [3], suitably restricted algebraic terms are used to formalise state observations,

and equations are used to constrain the results yielded by them. A sound and complete
deduction calculus for reasoning about state observations is also formulated. However,
the use in [3] of an algebraic syntax prevents observers with structured result type
to be accommodated by the approach. Such observers turn out to be essential for
capturing termination (of possibly in(nite structures such as lists), as well as more
general structural properties of state-based systems, including various dependencies
between their components, or the presence=absence of certain components in some of
the system states.
The present paper extends the approach in [3] in order to account for the possibility

of a choice in what can be observed of a system in a particular state. State observations
are formalised by the notion of coterm, which captures the successive evaluation of
observers by providing alternatives for proceeding with an evaluation depending on the
type of the result yielded by the most recently evaluated observer. Equational sentences
are used to constrain observations, and a sound and complete deduction calculus for
reasoning about the associated behaviours is formulated. Moreover, the resulting speci-
(cation logic is shown to be an institution. The approach is then extended to allow for
the interpretations of certain sorts to be (xed when specifying observational properties
of systems. The resulting formalism is shown to be as expressive as many-sorted al-
gebra with regard to the kinds of structures speci(able at the level of signatures (but
less expressive as far as characterising classes of coalgebras is concerned). Moreover,
moving from one- to many-sorted coalgebras is shown to be necessary in order to
attain this expressiveness.
By moving from an essentially algebraic framework to a coalgebraic one, algebraic

features such as the use of data values as constant observations, or the use of data
arguments to state observers are discarded. Our approach could be adapted to include
such features; however, we believe that their integration should take place at a dif-
ferent level, where it should be possible to specify arbitrary algebraic structures over
coalgebraically speci(ed state spaces.
Some familiarity with basic notions of category theory as well as with the use of

algebra and coalgebra in speci(cation is assumed in the following. The paper is struc-
tured as follows. Section 2 recalls some de(ning features of speci(cation logics and, at
the same time, establishes some notation for subsequent sections. Section 3 introduces
a coalgebraic formalism for the speci(cation of observational structures allowing for a
choice in the result types of observations, and presents a sound and complete deduc-
tion calculus for reasoning about such structures. Section 4 extends the approach in
order to account for the availability of a (xed data universe when specifying observa-
tional properties of systems. Section 5 investigates the expressiveness of the approach,
while Section 6 discusses its relation to other approaches to the speci(cation of observa-
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tional structures. Finally, Section 7 summarises the results presented and outlines future
work.

2. Speci�cation logics

Formal speci(cation and veri(cation techniques employ a large variety of logics,
whose common features include notions of sentence, inference of sentences from sets
of sentences, model, and satisfaction of sentences by models. The semantical and,
respectively, syntactical aspects of a speci(cation logic are formally captured by the
notions of institution [4] and entailment system [7].

De�nition 1 (Goguen and Burstall [4]). An institution is a tuple (Sign;Mod;Sen;
|=), where:
(1) Sign is a category whose objects are called signatures.
(2) Sen :Sign→Set is a functor giving, for each signature, a set of sentences over

that signature.
(3) Mod :Sign→Catop is a functor giving, for each signature �, a category Mod(�)

whose objects are called �-models and whose arrows are called �-homomorphisms.
(4) |= is a signature-indexed family of relations (|=�)�∈|Sign| with, for �∈ |Sign|,
|=� ⊆ |Mod(�)| ×Sen(�) being called �-satisfaction

additionally satisfying: M ′ |=�′ Sen(�)(e) if and only if Mod(�)(M ′) |=� e, for any
(� :�→�′)∈‖Sign‖, any M ′ ∈ |Mod(�′)| and any e∈Sen(�).

Signatures provide a syntax for constructing sentences, while signature morphisms
de(ne translations between syntaxes. The de(ning condition of institutions, known as
the satisfaction condition, formalises the statement that truth is invariant under changes
of notation [4].
One writes U� for Mod(�) and �(e) for Sen(�)(e), with (� :�→�′)∈‖Sign‖ and

e∈Sen(�). The functors U� are called reduct functors.

De�nition 2. Let I=(Sign;Mod;Sen; |=) denote an institution.
(1) An (I-)speci7cation is a pair (�; E) with �∈ |Sign| and E⊆Sen(�).
(2) A �-model M satis7es a speci(cation (�; E) (written M |=� E) if and only if

M |=� e for each e∈E.
(3) A �-sentence e is semantically entailed by a set E of �-sentences (written E |=� e)

if and only if M |=� E implies M |=� e for any M ∈ |Mod(�)|.
(4) A signature morphism � :�→�′ de(nes a speci7cation morphism � : (�; E)→

(�′; E′) if and only if E′ |=�′ Sen(�)(e) for each e∈E.

One writes Mod(�; E) for the full subcategory of Mod(�) whose objects satisfy the
speci(cation (�; E). Then, speci(cation morphisms � : (�; E)→ (�′; E′) induce reduct
functors U� :Mod(�′; E′)→Mod(�; E).



38 C. C)̂rstea / Theoretical Computer Science 280 (2002) 35–68

The notion of entailment employed by institutions is based on the satisfaction of sen-
tences by models. A di8erent notion of entailment, based on the inference of sentences
according to speci(ed rules is captured by entailment systems.

De�nition 3 (Meseguer [7]). An entailment system is a triple (Sign;Sen;�), where:
(1) Sign is a category whose objects are called signatures.
(2) Sen :Sign→Set is a functor giving, for each signature, a set of sentences over

that signature.
(3) � is a signature-indexed family of relations (��)�∈|Sign| with, for �∈ |Sign|,
�� ⊆P(Sen(�))×Sen(�) being called �-entailment

such that the following hold:
(1) {e} �� e, for e∈Sen(�) (reHexivity),
(2) E �� e and E⊆E′ imply E′ �� e (monotonicity),
(3) E �� ei for i∈ I and {ei | i∈ I} �� e imply E �� e (transitivity),
(4) E �� e implies Sen(�)(E)��′ Sen(�)(e), for � :�→�′ (�-translation).

A desirable property of any speci(cation logic which involves both an institution
and an entailment system is the existence of a certain compatibility between its two
notions of entailment, in a sense made precise below.

De�nition 4. Let Sign; Mod; Sen; |= and � be such that (Sign;Mod;Sen; |=) is an
institution and (Sign;Sen;�) is an entailment system. Then, � is sound (respectively,
complete) for |= if and only if E �� e implies E |=� e (E |=� e implies E �� e) for any
�∈ |Sign|, any E⊆Sen(�) and any e∈Sen(�).

3. Many-sorted coalgebra

This section presents a formalism for the speci(cation of observational structures al-
lowing for a choice in the result type of observers. The resulting formalism is, to a large
extent, a syntactic dual of the many-sorted algebraic formalism for the speci(cation of
data types.

3.1. Cosignatures, covariables, coterms and substitution

De�nition 5. A (many-sorted) cosignature is a pair (S; �) with S a set of sorts and
� an S × S+-sorted set of operation symbols (where S+ denotes the set of (nite,
non-empty sequences of sorts). One writes � : s→ s1 : : : sn for �∈�s; s1 ::: sn .

In the following it is only assumed that the set of operation symbols of a many-sorted
cosignature is enumerable. In practice however, this set is usually (nite. Cosignatures
(S; �) are abbreviated � whenever the context allows it. The set {�∈�s; s1 ::: sn | s1; : : : ; sn
∈ S}, with s∈ S is denoted �s.
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The operation symbols of a many-sorted cosignature specify basic ways of observing
the states of a given system. Arbitrary state observations are formalised by the notion
of coterm, which provides alternatives for proceeding with an observation, depending
on the result type of the most recently evaluated observer. Covariables are used in
coterms as place-holders for their potential outputs, in a manner similar to the use of
variables as place-holders for the inputs of algebraic terms.

De�nition 6. Let � denote a many-sorted cosignature with sort set S, and let C denote
an S-sorted set (of covariables). The (S-sorted) set T�[C] of �-coterms with covariables
from C is the least S-sorted set satisfying:
(1) Z ∈T�[C]s for Z ∈Cs,
(2) [t1; : : : ; tn]�∈T�[C]s for �∈�s; s1 ::: sn and ti ∈T�[C]si , i=1; : : : ; n.

Coterms of sort s∈ S (elements of T�[C]s) specify ways of observing states of type s.
Their result type is determined by the sorts of the covariables appearing in them. There
are no coterms over an empty set of covariables.
One writes Z : s for Z ∈Cs. The S-sorted set of covariables actually appearing in a

coterm t ∈T�[C] (a subset of C) is denoted cov(t). (It then follows by De(nition 6
that cov(t) is (nite for any t ∈T�[C] and any set C of covariables.)

De�nition 7. Let � denote a many-sorted cosignature. A coterm t ∈T�[C] is said to
be non-identifying if it contains at most one occurrence of each covariable in C. The
S-sorted set of non-identifying �-coterms with covariables in C is denoted T 1

� [C].

Let C0 denote an S-sorted set of covariables, with C0; s in(nite but enumerable
for each s∈ S. Also, for a many-sorted cosignature �, let T 1

� denote the set of non-
identifying �-coterms with covariables in C0. 1 Then, since both C0; s with s∈ S and
the set of operation symbols of � are enumerable, so is T 1

�; s for any s∈ S. The set T 1
�

will play an important rôle in characterising the elements of (nal and cofree coalgebras,
as well as in the proof of a completeness result.
Substitution of coterms for covariables is now de(ned as follows.

De�nition 8. If t ∈T�[{Z1; : : : ; Zn}]s with Zi : si for i=1; : : : ; n, and if ti ∈T�[C]si for
i=1; : : : ; n, then the coterm obtained by substituting t1; : : : ; tn for Z1; : : : ; Zn in t, denoted
[t1=Z1; : : : ; tn=Zn]t ([Kt= KZ]t for short) is de(ned inductively on the structure of t as follows:
(1) [Kt= KZ]Zi = ti, for i=1; : : : ; n,
(2) [Kt= KZ]([t′1; : : : ; t

′
m]�)= [[Kt= KZ]t′1; : : : ; [Kt= KZ]t

′
m]�, for �∈�s; s′1 ::: s

′
m
and t′j∈T�[{Z1; : : : ; Zn}]s′j ;

j=1; : : : ; m.
If t ∈T�[{Z1; : : : ; Zn}], we write t for a coterm with the following properties:

(1) t ∈T 1
� [{X1; : : : ; Xm}],

(2) t= [Zi1 =X1; : : : ; Zim =Xm]t, with Zi1 ; : : : ; Zim ∈{Z1; : : : ; Zn}.
1 Note that, since the sets of operation symbols of many-sorted cosignatures are enumerable, and since

coterms only contain a (nite number of covariables, restricting attention to coterms over C0 does not reduce
the expressiveness of the formalism.
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That is, t is obtained from t by renaming and possibly identifying some covariables.
(Note that t is only de(ned up to a bijective renaming of its covariables.)

Example 9. Lists ((nite or in(nite) are speci(ed using sorts 1 (denoting a one-element
set), Elt and List, and operation symbols first : List→ 1 Elt and rest : List→
1 List. The following are coterms of sort List : [Z,E]first (used to observe the (rst
element of a list), [Z,[Z,E]first]rest (used to observe the second element), and
so on. Their result type is 1+ Elt. (In the second case, this is because the covariable
Z occurs twice in the coterm.)

Remark 10. Coterms can be represented as trees with the leaves labelled by covariables
and with the internal nodes labelled by operation symbols:
(1) covariables Z are represented as trees having one node, labelled by Z ,
(2) coterms of form [t1; : : : ; tn]� are represented as trees having the root labelled by �

and its subtrees given by the trees associated to t1; : : : ; tn.
A path from the root of the tree associated to a coterm to one of its leaves is called
an evaluation path for that coterm.

Given the cosignature in Example 9, the tree associated to [Z,[Z,E]first]rest is

with the evaluation paths corresponding to an empty list, a list with only one element,
and respectively a list with at least two elements.

3.2. Coalgebras, 7nality and bisimilarity

The models of a many-sorted cosignature provide interpretations for its sorts and
operation symbols.

De�nition 11. Let � denote a many-sorted cosignature with sort set S. A (many-
sorted) �-coalgebra is given by an S-sorted set A together with, for each � : s→ s1 : : : sn
in �, a function �A :As→As1+· · ·+ Asn . Given �-coalgebras A and B, a �-homomorphism
f :A→B is given by an S-sorted function (fs)s∈S with fs :As→Bs for s∈ S, addition-
ally satisfying: [�1 ◦fs1 ; : : : ; �n ◦fsn ](�A(a))= �B(fs(a)) for each � : s→ s1 : : : sn in � and
each a∈As, with s; s1; : : : ; sn ∈ S (where �j :Bsj→Bs1 + · · ·+Bsn for j=1; : : : ; n are the
coproduct injections). The category of �-coalgebras and �-homomorphisms is denoted
Coalg(�).

The use of the word coalgebra to refer to the models of a many-sorted cosignature
is justi(ed in the following.
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De�nition 12. Let G :C→C denote an arbitrary endofunctor. A G-coalgebra is a pair
〈A; �〉 with A a C-object and � :A→GA a C-arrow. A G-coalgebra homomorphism
between G-coalgebras 〈A; �〉 and 〈B; �〉 is a C-arrow f :A→B additionally satisfy-
ing: � ◦f=Gf ◦ �. The category of G-coalgebras and G-coalgebra homomorphisms is
denoted Coalg(G).

Proposition 13. Let � denote a many-sorted cosignature with sort set S; and let
G� :SetS→SetS be given by: (G�X )s =

∏
�∈�s; s1 ::: sn

(Xs1 + · · ·+Xsn) for X ∈ |SetS | and
s∈ S. Then; Coalg(�) and Coalg(G�) are isomorphic.

Proof. �-coalgebras A uniquely determine SetS -arrows � :A→G�A (with �s mapping
a∈As to (�A(a))�∈�s; s1 ::: sn

, for s∈ S) and conversely, any such SetS -arrow uniquely
de(nes a �-coalgebra structure on its domain.

Example 14. Given the cosignature in Example 9, the coalgebra A de(ned by

A1 = {∗}; AElt = N; AList = N∗

firstA(l) =

{
�1(∗) if l = !

�2(e) if l = e : l′’
restA(l) =

{
�1(∗) if l = !;

�2(l′) if l = e : l′

(with N∗ denoting the set of sequences of natural numbers and ! denoting the empty
sequence of natural numbers) provides an implementation of (nite lists.

We note that further constraints must, in general, be imposed to first and rest

in order to ensure that their interpretations in coalgebras of the list cosignature are
consistent with each other (i.e. that either both of them yield a result of type 1, or
none of them does). Such constrains will be considered in Section 3.3. We also note
that, at this point, it is not possible to syntactically constrain the interpretation of the
sort 1 in coalgebras of the list speci(cation to a one-element set. This issue will be
dealt within Section 4.
Given a �-coalgebra A, a set {Z1; : : : ; Zn} of covariables with Zi : si for i=1; : : : ; n

and a covariable Z ∈{Z1; : : : ; Zn} with Z : s, one writes �Z :As→As1 + · · ·+ Asn for the
corresponding coproduct injection.
The interpretation of �-operation symbols by �-coalgebras extends to an interpreta-

tion of �-coterms by �-coalgebras.

De�nition 15. Let � denote a many-sorted cosignature. The interpretation of a
�-coterm t ∈T�[C]s, with s∈ S, in a �-coalgebra A is a function tA :As→

∐
Z∈C; Z :s′ As′

de(ned as follows:
(1) ZA = �Z for Z ∈Cs,
(2) ([t1; : : : ; tn]�)A = [(t1)A; : : : ; (tn)A] ◦ �A for �∈�s; s1 ::: sn and ti ∈T�[C]si , i=1; : : : ; n
with [(t1)A; : : : ; (tn)A] :As1 + · · · + Asn→

∐
Z∈C; Z :s′ As′ denoting the unique Set-arrow

induced by (ti)A :Asi→
∐

Z∈C; Z :s′ As′ with i=1; : : : ; n.
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A characterisation of the behaviours observable using the operations speci(ed by
a cosignature is provided by (the elements of) a (nal coalgebra of that cosignature.
Existence of (nal coalgebras of many-sorted cosignatures is an immediate consequence
of Proposition 13 and of a general result regarding the existence of (nal coalgebras of
!op-continuous endofunctors (see e.g. [11]). An alternative proof of the existence of
such coalgebras which, in addition, provides a concrete description of their elements
is given in the following.

Proposition 16. Any many-sorted cosignature � admits a 7nal coalgebra.

Proof. Let F denote the �-coalgebra given by

Fs =
{
’ : T 1

�; s →
⋃
{cov(t) | t ∈T 1

�; s} | t ∈ T 1
�; s ⇒ ’(t)∈ cov(t);

t; t′ ∈T 1
�; s; t′ = [t1=Z1; : : : ; tn=Zn]t; ’(t) = Zk ⇒ ’(t′)∈ cov(tk)

}
for s∈ S, and

�F(’) =’′ ∈ Fs′ ; ’′(t′) = ’([Z1; : : : ; t′; : : : ; Zn]�) for t′ ∈T 1
�; s′

if ’([Z1; : : : ; Zn]�) = Zi : s′

for ’∈Fs and �∈�s; s1 ::: sn . That is, the elements of F are suitably restricted mappings
from non-identifying coterms to covariables appearing in them (with, for each such
coterm, the choice of covariable determining an evaluation path for that coterm). Then,
F is a (nal �-coalgebra. For, given an arbitrary �-coalgebra A, the S-sorted function
f :A→F de(ned by: f(a)(t)=Z if tA(a)∈ �Z(A), for t ∈T 1

�; s, a∈As and s∈ S de(nes
a �-homomorphism from A to F . Moreover, any �-homomorphism from A to F is
necessarily de(ned in this way.

Remark 17. For C ∈ |SetS |, a cofree �-coalgebra A over C is given by

As =
{
’ :T 1

�; s →
⋃
{ cov(t)× C | t ∈ T 1

�; s } | t ∈T 1
�; s ⇒ '1(’(t))∈ cov(t);

t; t′ ∈T 1
�; s; t′ = [t1=Z1; : : : ; tn=Zn]t; '1(’(t)) = Zk ⇒ '1(’(t′)) ∈ cov(tk);

and moreover; if tk is a covariable then '2(’(t′)) = '2(’(t))
}

for s∈ S (where the product cov(t)×C is taken in SetS), and:

�A(’) =’′ ∈ As′ ; ’′(t′) = ’([Z1; : : : ; t′; : : : ; Zn]�) for t′ ∈T 1
�; s′

if ’([Z1; : : : ; Zn]�) = 〈Zi; ci〉 with Zi : s′

for ’∈As and �∈�s; s1 ::: sn . This can be shown similarly to Proposition 16.
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A characterisation of the notion of bisimilarity on (the G�-coalgebras induced by)
many-sorted �-coalgebras is given in the following.

De�nition 18. Let G :C→C be an arbitrary endofunctor. A G-bisimulation on a
G-coalgebra 〈A; �〉 is a G-coalgebra 〈R; )〉, with 〈R; '1; '2〉 a relation 2 on A in C, such
that '1 :R→A and '2 :R→A de(ne G-coalgebra homomorphisms from 〈R; )〉 to 〈A; �〉.
The largest bisimulation 3 on 〈A; �〉, if it exists, is called bisimilarity.
A G-coalgebra 〈A; �〉 is extensional if and only if bisimilarity on 〈A; �〉 is given by
the equality relation on A.

Proposition 19. Let � denote a many-sorted cosignature with sort set S; and let A
denote a �-coalgebra. Then; given s∈ S; two states a; a′ ∈As are bisimilar if and only
if for any t ∈T 1

�; s; there exists Z ∈ cov(t)s′ with s′ ∈ S such that tA(a); tA(a′)∈ �Z(As′).

Proof. The conclusion follows from the observation that, if f :A→F denotes the
unique �-homomorphism from A to the (nal �-coalgebra, then a; a′ ∈As are bisimilar
if and only if fs(a)=fs(a′). 4

That is, two states of a given coalgebra are bisimilar if and only if, when observed
using any non-identifying coterm, the results yielded correspond to the same evaluation
path for that coterm.

Example 20. The notion of bisimilarity associated to the cosignature in Example 9
relates two states of a coalgebra if and only if they denote lists with the same num-
ber of elements. 5 A (ner notion of bisimilarity, which discriminates between lists
with di8erent elements will be obtained in Section 4 (see Example 52) by (xing the
interpretation of the sort Elt.

The characterisation of bisimilarity given by Proposition 19 together with the exten-
sionality of (nal coalgebras yield a coinductive technique for proving the equality of
observations on the elements of (nal coalgebras.

Corollary 21. Let � denote a many-sorted cosignature with sort set S; let F de-
note a 7nal �-coalgebra; and let l; r ∈T�[{Z1; : : : ; Zn}]s with Z1 : s1; : : : ; Zn : sn. Then;
given ’∈Fs; lF(’)= rF(’) holds if and only if ([t1=Z1; : : : ; tn=Zn]l)F(’) and ([t1=Z1; : : : ;
tn=Zn]r)F(’) are both in �Z(Fs′) for some Z : s′; for any ti ∈T 1

�; si with i=1; : : : ; n.

2 See e.g. [1, p. 101] for a categorical de(nition of relations.
3 The category of relations on A is a preorder.
4 See e.g. [11]. (The fact that G� preserves pullbacks is used here.)
5 Here it is assumed that the constraints mentioned earlier regarding the consistency of first and rest

are satis(ed by the coalgebra in question.
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Proof. The only if direction is straightforward. For the if direction, it su;ces to
show that lF(’)∼F rF(’), with ∼F denoting �-bisimilarity on F . 6 Taking ti =Zi for
i=1; : : : ; n gives lF(’); rF(’)∈ �Zi(Fsi) for some i∈{1; : : : ; n}. Then, for any t ∈T 1

�; si ,
taking tj =Zj for j∈{1; : : : ; i−1; i+1; : : : ; n} and ti = t in the hypothesis gives tF(lF(’))
= tF(rF(’)). Hence, lF(’)∼F; si rF(’).

3.3. Coalgebraic equational speci7cation

In algebraic speci(cation, many-sorted equations are used to constrain the interpre-
tation of terms by algebras. A similar approach proves suitable for constraining state
observations, provided that one’s interest is in relating di8erent observations of the
same state. This section presents such an approach, illustrating the kinds of constraints
speci(able within it.
A (rst approximation of the notion of coequation is given by a pair of coterms of the

same sort. Satisfaction of a coequation by a coalgebra then corresponds to the coalge-
bra providing identical interpretations for the two coterms. For instance, a coequation
of form: [Z; [Z; E]first]rest = [Z′; E]first constrains the interpretation of the sort
List in coalgebras A satisfying the coequation to constant, in(nite lists (as it requires
[�Z; �E] ◦ ([Z; [Z; E]first]rest)A, [�Z′ ; �E] ◦ ([Z′; E]first)A :AList→A1 + AElt + A1 to
yield similar results on any list). However, due to the presence of choice in the
result types of observers, one expects reasoning with coequations to involve some
form of case analysis on the possible evaluation paths of coterms. For instance, in
order to derive the coequation: [Z; L]rest = [Z′; L]rest (constraining restA to always
yield a result of type List, by requiring that the observations [�Z; �L] ◦ ([Z; L]rest)A,
[�Z′ ; �L] ◦ ([Z′; L]rest)A :AList→A1 +AList +A1 yield similar results) from the previ-
ous coequation, a case analysis on the possible evaluation paths of [Z, L] rest should
be carried out. Speci(cally, the satisfaction of this coequation would follow by showing
that the assumption that the evaluation path corresponds to the covariable Z together
with the satisfaction of the initial coequation yield a contradiction. It turns out that in
order to obtain a complete deduction calculus for coequations, this form of case anal-
ysis should be incorporated in the notion of coequation. This justi(es the following
de(nition.

De�nition 22. Let � denote a many-sorted cosignature. A �-coequation is a tuple
(l; r; C), with l; r ∈T�[C]s and C = {(t1;C′

1); : : : ; (tn;C
′
n)} for some s∈ S and ti ∈

T�[Ci]s, C′
i ⊆Ci for i=1; : : : ; n. A �-coalgebra A satis7es a �-coequation e of the

above form (written A |=� e) if and only if lA(a)= rA(a) holds whenever a∈As is such
that (ti)A(a)∈ �Zi(Asi) for some Zi ∈ (C′

i )si , for i=1; : : : ; n (case in which a is said to
satisfy the conditions C).

The coequation (l; r; C) is alternatively denoted l= r if (t1;C′
1); : : : ; (tn;C

′
n). Also,

if C′
i = {Zi}, one writes (ti; Zi) as a shorthand for (ti;C′

i ). Finally, given a set E of

6 As (nal coalgebras are extensional, see e.g. [11].
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�-coequations together with s∈ S, one writes Es for the subset of E consisting of
coequations of sort s.

Example 23. A state invariant for lists is speci(ed using the coequations:

[Z; L]rest = [Z; L′]rest if ([Z; E]first; Z);

[Z; E]first = [Z; E′]first if ([Z; L]rest; Z);

stating that a list is either empty, in which case it has neither a head nor a tail, or
non-empty, in which case it has both a head and a tail. The coequation:

[Z; [Z; [Z; E]first]rest]rest = [Z; E]first if ([Z; [Z; L]rest]rest; L);

further constrains the interpretation of the sort List to alternating lists. It is also
worth noting that the absence of any algebraic structure limits the expressiveness of
coequational speci(cation. For instance, the property of lists stating that each two
adjacent elements of a list are di8erent from each other cannot be formalised using
coequations, as no means to compare two elements of a list are available.

Given �∈�s; s1 ::: sn together with i∈{1; : : : ; n} and conditions C of form (t1;C′
1); : : : ;

(tm;C′
m) for the sort si, one writes [Z1; : : : ; C; : : : ; Zn]� as a shorthand for ([Z1; : : : ; tj ;

: : : ; Zn]�;C′
j ∪{Z1; : : : ; Zi−1; Zi+1; : : : ; Zn})j=1;:::; m, with {Z1; : : : ; Zn}∩ cov(tj)= ∅ for j=

1; : : : ; m. The conditions [Z1; : : : ; C; : : : ; Zn]� require the result yielded by � to satisfy the
conditions C whenever the evaluation path for [Z1; : : : ; Zn]� corresponds to the covari-
able Zi : si. Also, given t ∈T�[{Z1; : : : ; Zn}]s with Zi : si, i=1; : : : ; n, and i, C as before,
one writes [Z1=Z1; : : : ; C=Zi; : : : ; Zn=Zn]t for ([Z1=Z1; : : : ; tj=Zi; : : : ; Zn=Zn]t;C′

j ∪{Z1; : : : ;
Zi−1; Zi+1; : : : ; Zn})j=1;:::; m. This notation will be used when formulating a deduction
calculus for coequations.
While, in many-sorted algebra, equations of form X =X ′ are only satis(ed by alge-

bras whose corresponding carrier is a one-element set, here coequations of form Z =Z ′

are only satis(ed by coalgebras whose corresponding carrier is empty. More generally,
coequations of form l= r with cov(l) �= cov(r) constrain the result type of l and r
to the type of a covariable appearing in both l and r. Among such coequations, of
particular interest are those with l and r being the same up to a renaming of their
covariables.

De�nition 24. Let � denote a many-sorted cosignature, let t ∈T�[C]s for some set C
of covariables and some s∈ S, and let C′⊆C. The coequation: t= [y1=X1; : : : ; ym=Xm]t,
where t= [Zi1 =X1; : : : ; Zim =Xm]t with t ∈T 1

� [{X1; : : : ; Xm}], and

yj =

{
Xj if Zij ∈C′

Yj if Zij =∈C′ for j = 1; : : : ; m

is called a type constraint for t and is denoted c(t;C′).
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c(t;C′) constrains the result type of t to the type of a covariable in C′: given a
�-coalgebra A, c(t;C′) holds in a state a∈As if and only if tA(a)∈ �Z(As′) for some
Z ∈C′

s′ . If C
′ = {Z}, c(t;C′) is alternatively denoted c(t; Z).

Remark 25. If t ∈T 1
� [{Z1; : : : ; Zn}] and i∈{1; : : : ; n}, then c(t; Zi) has the form: t=

[Y1=Z1; : : : ; Zi=Zi; : : : ; Yn=Zn]t.

Since t is only de(ned up to a bijective renaming of its covariables, so are the type
constraints for t. Consequently, the covariables Xi; Yi can be arbitrarily chosen, provided
that they are all distinct. This observation will be used when proving a completeness
result for the satisfaction of coequations by coalgebras.
Some immediate properties of the notion of satisfaction of coequations are stated

below.

Proposition 26. Let A and B denote �-coalgebras; let f :A→B denote a �-homo-
morphism; and let e denote a �-coequation. Then:
(1) A |=� e implies Im(f) |=� e.
(2) If all the components of f corresponding to sorts of covariables appearing in e

are injective; then B |=� e implies A |=� e.

Proof. The fact that tIm(f)(fs(a))= [�1 ◦fs1 ; : : : ; �n ◦fsn ](tA(a)) for each s∈ S, t ∈
T�[{Z1; : : : ; Zn}]s with Z1 : s1; : : : ; Zn : sn and a∈As is used. (This is a consequence of
the de(nition of �-homomorphisms.)

As a result, the class of coalgebras satisfying a set of coequations is a covariety.

De�nition 27. Let G :C→C denote an arbitrary endofunctor, and let 〈A; �〉 denote a
G-coalgebra. A G-subcoalgebra of 〈A; �〉 is a G-coalgebra 〈B; �〉 for which there exists
a G-coalgebra homomorphism b : 〈B; �〉→ 〈A; �〉 with b :B→A a C-monomorphism.
Also, a homomorphic image of 〈A; �〉 is a G-coalgebra 〈C; .〉 for which there ex-
ists a G-coalgebra homomorphism c : 〈A; �〉→ 〈C; .〉 with c :A→C a C-epimorphism.
A class of G-coalgebras is a covariety if and only if it is closed under subcoalgebras,
homomorphic images and coproducts.

Corollary 28. Let � denote a many-sorted cosignature and let E denote a set of
�-coequations. The class of �-coalgebras satisfying E is a covariety.

The fact that coequations induce predicates on the carriers of coalgebras results in
the existence of largest subcoalgebras satisfying given sets of coequations. The next
result provides a concrete description of such subcoalgebras.

Proposition 29. Let � denote a many-sorted cosignature; let E denote a set of
�-coequations; and let A denote an arbitrary �-coalgebra. The largest �-subcoalgebra
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AE of A satisfying the coequations in E has its carrier given by

AE; s = {a ∈ As | lA(tA(a)) = rA(tA(a)) whenever

t ∈ T 1
�[{Z1; : : : ; Zn}]s; i ∈ {1; : : : ; n} and (l = r if C) ∈ Esi

are such that tA(a) ∈ �Zi(Asi) and C holds in tA(a)}; s ∈ S:

Proof. To show that the S-sorted set (AE; s)s∈S de(nes a �-subcoalgebra of A, let
a∈AE; s and �∈�s; s1 ::: sm . Say �A(a)∈ �j(Asj) with j∈{1; : : : ; m}. Then, given t′ ∈
T 1
� [{Z1; : : : ; Zn}]sj and (l= r if C)∈E such that C holds in t′A(�A(a)), taking t= [X1; : : : ;
Xj−1; t′; Xj+1; : : : ; Xm]� in the de(nition of AE gives lA(t′A(�A(a)))= rA(t′A(�A(a))). That
is, �A(a)∈ �j(AE; sj). Also, given an arbitrary (�; E)-subcoalgebra A′ of A, the inclusion
�A′ of A′ into A factors through the inclusion �AE of AE into A. (Proposition 26 gives
Im(�A′) |=� E, which, together with the de(nition of AE , gives Im(�A′)⊆AE .)

3.4. An institution of many-sorted coalgebras

De�nition 30. Let � and �′ denote many-sorted cosignatures with sort sets S and,
respectively, S ′. A (many-sorted) cosignature morphism from � to �′ consists of
a function � : S→ S ′, together with an S × S+-sorted function (�s;w)s∈S;w∈S+ , with
�s;w :�s;w→�′

�(s); �+(w) (with �+ denoting the pointwise extension of � : S→ S ′ to a
function from S+ to S ′+). The category of many-sorted cosignatures and cosignature
morphisms is denoted Cosign.

Cosignature morphisms � :�→�′ induce reduct functors U� :Coalg(�′)→Coalg(�),
taking �′-coalgebras A′ to the �-coalgebras having carriers A=(A′

�(s))s∈S , and opera-
tions �A(a)=�(�)A′(a) for s∈ S, a∈As and �∈�s.

Proposition 31. Let � :�→�′ denote a cosignature morphism. Then; for any
�-coalgebra C; there exists a cofree �′-coalgebra over C w.r.t. U�.

Proof. The conclusion follows by instantiating a result in [2] regarding the existence
of right adjoints to functors between categories of coalgebras.

The mapping from many-sorted cosignatures to their categories of coalgebras ex-
tends to a functor Coalg :Cosign→Catop. Also, the translations of sorts and operation
symbols along cosignature morphisms extend to translations of coterms and hence of
coequations, yielding a functor Coeqn :Cosign→Set.

Theorem 32. (Cosign;Coalg;Coeqn; |=) is an institution.

Proof. For a many-sorted cosignature morphism � :�→�′, a �′-coalgebra A′ and
a �-coequation e, the fact that U�A′ |=� e is equivalent to A′ |=�′ �(e) follows from
the observation that tU�A′ =�(t)A′ for any �-coterm t (with �(t) denoting the



48 C. C)̂rstea / Theoretical Computer Science 280 (2002) 35–68

translation of t along �). This observation also yields tU�A′ ∈ �Z((U�A′)s) if and only
if �(t)A′ ∈ �Z(As′), for any Z ∈ cov(t).

This institution will be called many-sorted coalgebra. 7 Its speci(cations and speci-
(cation morphisms will be referred to as coalgebraic speci7cations and, respectively,
coalgebraic speci7cation morphisms.
A consequence of Propositions 31 and 29 is the existence of cofree coalgebras w.r.t.

the reduct functors induced by coalgebraic speci(cation morphisms.

Proposition 33. Let � : (�; E)→ (�′; E′) denote a coalgebraic speci7cation morphism.
Then; for any A∈|Coalg(�; E)|; there exists A′∈|Coalg(�′; E′)| cofree over A w.r.t. U�.

Taking (�; E)= ((S; ∅); ∅) then yields cofree coalgebras over given S-sorted sets.

Corollary 34. Let (�; E) denote a coalgebraic speci7cation. Then; for any C ∈ |SetS |;
there exists A∈ |Coalg(�; E)| cofree over C.

Also, taking C to be (nal in SetS yields a (nal (�; E)-coalgebra.

Corollary 35. Any coalgebraic speci7cation (�; E) admits a 7nal coalgebra.

3.5. Coalgebraic equational deduction

We are now in the position to formulate a sound and complete deduction calculus
for coequations. We consider the following deduction rules:

[base]
E � e

e ∈ E;

[cond]
E � c(t;C) if (t;C)

;

[weakening]
E � t = t′ if C

E � t = t′ if C; C′ ;

[re>exivity]
E � t = t

;

[symmetry]
E � t = t′ if C
E � t′ = t if C

;

[transitivity]
E � t = t′ if C; E � t′ = t′′ if C

E � t = t′′ if C
;

7 The use of this terminology is justi(ed by the syntactic duality w.r.t. many-sorted algebra.
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[closure]
E � t1 = t′1 if C1; : : : ; E � tn = t′n if Cn

E � [t1; : : : ; tn]� = [t′1; : : : ; t′n]� if [C1; : : : ; Zn]�; : : : ; [Z1; : : : ; Cn]�
;

[substitution]
E � t = t′ if C

E � [t1=Z1; : : : ; tn=Zn]t = [t1=Z1; : : : ; tn=Zn]t′ if C
;

[contradiction]
E � t = t′ if C
E � l = r if C

;

for t; t′ ∈ T�[C]s; cov(t)∩ cov(t′) = ∅; l; r ∈ T�[C′]s;

[case]
E � t = t′ if C; (t0;C1); : : : ; E � t = t′ if C; (t0;Cn)

E � t = t′ if C
;

for t; t′ ∈ T�[C′]s; t0 ∈ T�[C]s; C = C1 ∪ · · · ∪ Cn:

Proposition 36. (Cosign;Coeqn;�) is an entailment system.

Theorem 37 (Soundness). Let (�; E) denote a coalgebraic speci7cation and let e de-
note a �-coequation. Then; E � e implies E |=� e.

Proof. We use induction on the structure of the proof of E � e to show that E |=� e.
If the last rule applied is base, then E |=� e follows from the de(nition of A |=� E
for a �-coalgebra A. If the last rule applied is weakening, then E |=� t= t′ if C; C′

follows from the fact that if C; C′ holds in a state a∈As of some �-coalgebra A,
then C holds in a. If the last rule applied is cond or re>exivity, then E |=� e follows
by any �-coalgebra (and hence any (�; E)-coalgebra) satisfying any coequation of
form c(t;C) if (t;C), respectively, t= t. If the last rule applied is one of symmetry,
transitivity or substitution, then E |=� e follows from the induction hypothesis by using
standard properties of equality. If the last rule applied is closure, then for any (�; E)-
coalgebra A and any a∈As satisfying [C1; : : : ; Zn]�; : : : ; [Z1; : : : ; Cn]�, say �A(a)∈ �Zi(Asi)
with i∈{1; : : : ; n}, the satisfaction of [Z1; : : : ; Ci; : : : ; Zn]� by a implies the satisfaction
of Ci by �A(a), which yields (ti)A(�A(a))= (t′i )A(�A(a)) (by the induction hypothesis);
that is, ([t1; : : : ; tn]�)A(a)= ([t′1; : : : ; t

′
n]�)A(a). If the last rule applied is contradiction,

then E |=� l= r if C follows from the fact that for a (�; E)-coalgebra A, there are no
states a∈As satisfying C (as they would then have to satisfy tA(a)= t′A(a)). Finally,
if the last rule applied is case, E |=� t= t′ if C follows from one of the conditions
(t0;C1); : : : ; (t0;Cn) holding in any state a∈As satisfying C, for any (�; E)-coalgebra A.

The completeness proof requires some preliminary results.

Lemma 38. Let � denote a many-sorted cosignature and let E denote a set of
�-coequations. If E � l= r if C; (t;C) and E � c(t;C) if C; C′; then E � l= r if C; C′.
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Proof. If C′ = cov(t)\C, then the soundness of the weakening and contradiction rules
gives E � l= r if C; C′; (t;C) and E � l= r if C; C′; (t;C′). The conclusion then follows
by the soundness of the case rule.

The next two lemmas will prove crucial to the completeness proof. The former
states that whenever a set of coequations is inconsistent w.r.t. a given sort and a set
of conditions for that sort, a contradiction for the given conditions can be syntactically
derived from the coequations, while the latter states that if two coterms constrained
to the same covariable cannot be proved equal under certain conditions, then the two
coterms are distinguished by a state satisfying the given conditions, in a coalgebra
satisfying the speci(cation.

Lemma 39. Let (�; E) denote a coalgebraic speci7cation and let FE denote a 7nal
(�; E)-coalgebra. Also; let s∈ S and let C denote some conditions for sort s. If
E �� l= r if C for any l; r ∈T�[C]s with cov(l)∩ cov(r)= ∅; then FC

E; s = {’∈FE; s |C
holds in ’} �= ∅.

Proof. We de(ne an !op-chain in Set whose limit object L has the following
properties:
(a) L �= ∅ implies FC

E; s �= ∅,
(b) if L= ∅ then E � l= r if C with l; r ∈T�[C]s, cov(l)∩ cov(r)= ∅.
Then, FC

E; s = ∅ gives L= ∅, which, in turn, gives E � l= r if C for some l; r ∈T�[C]s
with cov(l)∩ cov(r)= ∅, yielding a contradiction. Hence, FC

E; s �= ∅.
We begin by recalling that the set T 1

�; s is enumerable; say T 1
�; s = {t1; t2; : : :}. We then

consider the following !op-chain:

C1
p1←C2

p2←C3
p3←· · ·

where

Cn = {(Zt1 ; : : : ; Ztn) |Zti ∈ cov(ti) for i ∈ {1; : : : ; n}

E �� l = r if C; (t1; Zt1 ); : : : ; (tn; Ztn)

for any l; r ∈ T�[C]s with cov(l) ∩ cov(r) = ∅}

and pn(Zt1 ; : : : ; Ztn+1)= (Zt1 ; : : : ; Ztn) for n=1; 2; : : : . A limit object L for this !op-chain
is given by:

L= {(Zti)i∈{1;2;:::} |E �� l = r if C; (t1; Zt1 ); : : : ; (tn; Ztn)

for any l; r ∈ T�[C]s with cov(l)∩ cov(r) = ∅ and any n}:

To show (a), let (Zti)i∈{1;2;:::} ∈L, and let ’ :T 1
�; s→

⋃ {cov(t) | t ∈T 1
�; s} be given by

’(ti)=Zti for i=1; 2; : : : .
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To show that ’∈Fs, let ti; tj ∈T 1
�; s be such that tj = [t′1=Z1; : : : ; t′n=Zn]ti. If Zti =Zk , we

must show that Ztj ∈ cov(t′k). Suppose Ztj =∈ cov(t′k). Then

E � tj = [t′1=Z1; : : : ; t′n=Zn]ti

(following by re>exivity) together with

E � ti = [U1=Z1; : : : ; Zk=Zk ; : : : ; Un=Zn]ti if C; (t1; Zt1 ); : : : ; (ti; Zti)

and

E � tj = [V1=Z ′
1; : : : ; Ztj =Ztj ; : : : ; Vm=Z ′

m]tj if C; (t1; Zt1 ); : : : ; (tj; Ztj)

(both following by cond and weakening) yield (by substitution followed by weakening
and then by transitivity):

E � [V1=Z ′
1; : : : ; Ztj =Ztj ; : : : ; Vm=Z ′

m]tj = [U1=Z1; : : : ; t′k =Zk ; : : : ; Un=Zn]ti

if C; (t1; Zt1 ); : : : ; (tN ; ZtN )

with N =max(i; j). But this contradicts the de(nition of L, as the lhs and rhs of the
last coequation have no covariable in common. Hence, Ztj ∈ cov(t′k).
To show that ’∈FE; s, let t ∈T 1

� [{Z1; : : : ; Zn}]s, i∈{1; : : : ; n} and (ti = t′i if Ci)∈E be
such that tF(’)∈ �Zi(Fsi), ti; t′i ∈T�[Ci]si and Ci holds in tF(’). According to
Proposition 29, we must show that (ti)F(tF(’))= (t′i )F(tF(’)). However, by
Corollary 21, it su;ces to show that, for any coterms u1; : : : ; uq of suitable sort, lF(’)
and rF(’) are both in �Z(Fs′) for some Z : s′, where:

l = [u1=U1; : : : ; uq=Uq][Z1=Z1; : : : ; ti=Zi; : : : ; Zn=Zn]t;

r = [u1=U1; : : : ; uq=Uq][Z1=Z1; : : : ; t′i =Zi; : : : ; Zn=Zn]t

with {U1; : : : ; Uq}=Ci ∪{Z1; : : : ; Zi−1; Zi+1; : : : ; Zn}.
Now let l= [Vi1 =X1; : : : ; Vim =Xm]l with l∈T 1

� [{X1; : : : ; Xm}]s, and r= [Vj1 =Y1; : : : ; Vjp =
Yp]r with r ∈T 1

� [{Y1; : : : ; Yp}]s. From
E � ti = t′i if Ci

(following by base) we can infer, by successive applications of the closure rule, fol-
lowed by substitution:

E � l = r if [Z1=Z1; : : : ; Ci=Zi; : : : ; Zn=Zn]t:

We claim that if Zl =Xk and Zr =Yl, then Vik =Vjl . For, if this was not the case, cond
together with substitution would yield:

E � [S1=V1; : : : ; Vik =Vik ; : : : ; So=Vo]l= [T1=V1; : : : ; Vjl =Vjl ; : : : ; To=Vo]r

if [Z1=Z1; : : : ; Ci=Zi; : : : ; Zn=Zn]t; (l; Xk); (r; Yl)
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with Vik �=Vjl , which would then yield:

E � [S1=V1; : : : ; Vik =Vik ; : : : ; So=Vo]l = [T1=V1; : : : ; Vjl =Vjl ; : : : ; To=Vo]r

if (t1; Zt1 ); : : : ; (tN ; ZtN )

for N su;ciently large (the fact that [Z1=Z1; : : : ; Ci=Zi; : : : ; Zn=Zn]t holds in ’ together
with Lemma 38 are used here). But this would contradict the de(nition of L. Hence,
Vik =Vjl =Z : s′ and lF(’); rF(’)∈ �Z(Fs′). This gives ’∈FE; s.
In addition, ’∈FC

E; s. For, if this was not the case, the conditions in C would
contradict (t1; Zt1 ); : : : ; (tN ; ZtN ) for N su;ciently large (by Lemma 38), yielding
E � l= r if C; (t1; Zt1 ); : : : ; (tN ; ZtN ) with cov(l)∩ cov(r)= ∅. This concludes the proof
of (a).
To show (b), assume L= ∅. Then, for any Z ∈C1, there exists nZ ∈{2; : : :} such

that Z =∈ Im(p1 ◦ · · · ◦pnZ ). For, if Z ∈C1 was such that Z ∈ Im(p1 ◦ · · · ◦pn) for any
n∈{2; : : :}, then also Z ∈ Im(l1) (with l1 :L→C1 denoting the corresponding arrow
of the limiting cone), which would contradict the assumption that L= ∅. Now let
n′ =max{nZ |Z ∈C1}. It then follows by weakening and contradiction that E � l= r if
C; (t1; Z1); : : : ; (tn′ ; Zn′) for any choice of Z1 ∈ cov(t1); : : : ; Zn′ ∈ cov(tn′), with l; r ∈
T�[C]s being such that cov(l)∩ cov(r)= ∅. Then, successive applications of the case
rule yield E � l= r if C with l; r ∈T�[C]s and with cov(l)∩ cov(r)= ∅, thus contra-
dicting the hypothesis. This concludes the proof of (b).

Lemma 40. Let (�; E) denote a coalgebraic speci7cation; let l; r ∈T�[C]s for some
set C of covariables and some s∈ S; and let Z ∈C. Also; let AE denote a cofree
(�; E)-coalgebra over the S-sorted set ({∗; ∗′})s∈S . If E �� l= r if C; (l; Z); (r; Z); then
there exists ’∈AC;(l; Z);(r; Z)

E; s such that lAE (’) �= rAE (’).

Proof. We begin by recalling that the cofree (�; E)-coalgebra AE over the S-sorted
set ({∗; ∗′})s∈S has elements given by functions ’ :T 1

�; s→
⋃ { cov(t)× ({∗; ∗′})s∈S | t∈

T 1
�; s}, additionally satisfying:
(1) t ∈T 1

�; s implies '1(’(t))∈ cov(t);
(2) t; t′ ∈T 1

�; s, t′ = [t1=Z1; : : : ; tn=Zn]t and '1(’(t))=Zk imply '1(’(t′))∈ cov(tk) and
moreover, if tk is a covariable, then '2(’(t′))= '2(’(t));

(3) (ti)A(tA(’))= (t′i )A(tA(’)) holds whenever ’∈As, t ∈T 1
� [{Z1; : : : ; Zn}]s, i∈

{1; : : : ; n} and (ti = t′i if Ci)∈E are such that tA(’)∈ �Zi(Asi), ti; t′i ∈T�[Ci]si and
Ci holds in tA(’), with A denoting the cofree �-coalgebra over ({∗; ∗′})s∈S .

(This is a consequence of Remark 17 together with Corollary 34, see also
Proposition 29.)
The proof is similar to that of Lemma 39. We de(ne an !op-chain in Set whose

limit object is a non-empty set provided that E �� l= r if C; (l; Z); (r; Z), and then use
an element of the limit object to construct ’∈AC;(l; Z);(r; Z)

E; s with lAE (’) �= rAE (’).
Consider the following !op-chain:

S1
p1← S2

p2← S3
p3←· · ·
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where

Sn = {(Zt1 ; : : : ; Ztn) |Zti ∈ cov(ti) for i ∈ {1; : : : ; n};
E �� l = r if C; (l; Z); (r; Z); (t1; Zt1 ); : : : ; (tn; Ztn)}

and pn(Zt1 ; : : : ; Ztn+1)= (Zt1 ; : : : ; Ztn) for n=1; 2; : : : . A limit object L for this !op-chain
is given by

L= {(Zti)i∈{1;2;:::} |Zti ∈ cov(ti) for i ∈ {1; 2; : : :};
E �� l = r if C; (l; Z); (r; Z); (t1; Zt1 ); : : : ; (tn; Ztn) for any n}:

We claim that:
(a) Sn �= ∅ for any n∈{1; 2; : : :},
(b) L �= ∅.
To show (a), assume Sn = ∅ for some n∈{1; 2; : : :}. That is

E � l = r if C; (l; Z); (r; Z); (t1; Zt1 ); : : : ; (tn; Ztn)

for any Zti ∈ cov(ti) with i=1; : : : ; n. It then follows by case that:

E � l= r if C; (l; Z); (r; Z):

But this contradicts the hypothesis. Therefore Sn �= ∅ for any n∈{1; 2; : : :}.
To show (b), assume L= ∅. Hence, for any Z ∈ S1, there exists nZ ∈{2; : : :} such

that Z =∈ Im(p1 ◦ · · · ◦pn). If n′ =max{nZ |Z ∈ S1}, it follows by weakening that:

E � l = r if C; (l; Z); (r; Z); (t1; Zt1 ); : : : ; (tn′ ; Ztn′ )

for any choice of Zt1 ∈ cov(t1); : : : ; Ztn′ ∈ cov(tn′). Hence, by case

E � l = r if C; (l; Z); (r; Z):

Again, this contradicts the hypothesis. Hence, L �= ∅.
We now (x (Zti)i= 1;2;::: ∈L and use it to de(ne ’∈AC;(l; Z);(r; Z)

E; s such that lAE (’) �=
rAE (’). Say C= {Z1; : : : ; Zn}. Let l= [Zi1 =X1; : : : ; Zim =Xm]l for some l∈T 1

� [{X1; : : : ; Xm}]s,
and r= [Zj1 =Y1; : : : ; Zjp =Yp]r for some r ∈T 1

� [{Y1; : : : ; Yp}]s. Also, let k ∈{1; : : : ; m} be
such that Xk =Zl, and l∈{1; : : : ; p} be such that Yl =Zr . One can immediately infer
that Zik =Z and Zjl =Z ; for if, say, Zik �=Z , then the conditions (l; Z) and (l; Xk) would
contradict each other, yielding:

E � l′ = r′ if C; (l; Z); (r; Z); (t1; Zt1 ); : : : ; (tN ; ZtN )

with cov(l′)∩ cov(r′)= ∅ for N su;ciently large. Finally, for n∈{1; 2; : : :}, let Cn stand
for (t1; Zt1 ); : : : ; (tn; Ztn).
Now de(ne

T = {t ∈ T 1
�; s | there exists n ∈ {1; 2; : : :} such that

E � t = [Y1=Y1; : : : ; Zt=Yl; : : : ; Yp=Yp]r if C; (l; Z); (r; Z); Cn};
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where {Y1; : : : ; Yp}∩ cov(t)= ∅ for any t ∈T 1
�; s. That is, T consists of �-coterms whose

interpretation must agree with that of r on any state in AC;(l; Z);(r; Z)
E; s which, in addition,

satis(es the conditions (ti; Zi), with i=1; 2; : : : . Then let ’∈AC;(l; Z);(r; Z)
E; s be given by

’(t)= 〈Zt; ct〉 for t ∈T 1
�; s, where

ct =

{ ∗ if t =∈ T

∗′ if t ∈ T
:

Note that if, say, Z : s′, then t ∈T gives Zt : s′ (as Zr =Yl : s′).
We now claim that:

(c) ’∈AC;(l; Z);(r; Z)
E; s ;

(d) rAE (’) �= lAE (’).
Proving (c) reduces to proving that ’∈AE; s and that each of C; (l; Z); (r; Z) holds
in ’.
The proof of ’∈As, with A denoting the cofree �-coalgebra over ({∗; ∗′}s)s∈S is

similar to the proof of ’∈Fs in Lemma 39. In addition, here we must show that if
ti; tj ∈T 1

�; s are such that tj = [t′1=Z
′
1; : : : ; t

′
n=Z

′
n]ti, Zti =Z ′

k and t′k =Ztj , then either ti and
tj are both in T , or none of them is in T . One can distinguish two cases:
(1) ti ∈T . That is:

E � ti = [Y1=Y1; : : : ; Z ′
k =Yl; : : : ; Ym=Ym]r if C; (l; Z); (r; Z); Cn0

for some n0 ∈{1; 2; : : :}. Then, substitution yields

E � tj = [t′1=Z
′
1; : : : ; t

′
n=Z

′
n][Y1=Y1; : : : ; Z ′

k =Yl; : : : ; Ym=Ym]r

if C; (l; Z); (r; Z); Cn0 :

This, together with

{Z ′
1; : : : ; Z

′
k−1; Z

′
k+1; : : : ; Z

′
n} ∩ {Y1; : : : ; Yl−1; Yl+1; : : : ; Ym} = ∅

and t′k =Ztj yields

E � tj = [Y1=Y1; : : : ; Ztj =Yl; : : : ; Ym=Ym]r if C; (l; Z); (r; Z); Cn0 :

That is, tj ∈T .
(2) tj ∈T . That is

E � tj = [Y1=Y1; : : : ; Ztj =Yl; : : : ; Ym=Ym]r if C; (l; Z); (r; Z); Cn0

for some n0 ∈{1; 2; : : :}. Then, tj = [t′1=Z
′
1; : : : ; t

′
n=Z

′
n]ti gives

E � [t′1=Z ′
1; : : : ; t

′
n=Z

′
n]ti = [Y1=Y1; : : : ; Ztj =Yl; : : : ; Ym=Ym]r

if C; (l; Z); (r; Z); Cn0 :



C. C)̂rstea / Theoretical Computer Science 280 (2002) 35–68 55

But Zti =Z ′
k together with substitution and cond yield

E � [t′1=Z ′
1; : : : ; t

′
n=Z

′
n]ti = [Z ′

1=Z
′
1; : : : ; t

′
k =Z

′
k ; : : : ; Z

′
n=Z

′
n]ti

if C; (l; Z); (r; Z); CN

for N su;ciently large. Also, t′k =Ztj . Hence, by transitivity:

E � [Z ′
1=Z

′
1; : : : ; Ztj =Z

′
k ; : : : ; Z

′
n=Z

′
n]ti

= [Y1=Y1; : : : ; Ztj =Yl; : : : ; Ym=Ym]r if C; (l; Z); (r; Z); CN :

Finally, substituting Zti for Ztj yields

E � ti = [Y1=Y1; : : : ; Zti =Yl; : : : ; Ym=Ym]r if C; (l; Z); (r; Z); CN :

That is, ti ∈T .
Hence, either both ti and tj belong to T , or neither of them does, and therefore cti = ctj .
This concludes the proof of ’∈As.
The proof of ’∈AE; s is, again, similar to the proof of ’∈FE; s in Lemma 39. In

addition, here we must show that given t ∈T 1
� [{Z ′

1; : : : ; Z
′
n}]s, i∈{1; : : : ; n} and (ti = t′i if

Ci)∈E such that tA(’)∈ �Z′
i
(Asi), ti; t

′
i ∈T�[Ci]si and Ci holds in tA(’), then either both

l′ and r′ are in T , or none of them is (where l′ and r′ are de(ned similarly to l and
r from Lemma 39).
Suppose l′ ∈T . On the one hand,

E � l′ = r′ if [Z ′
1=Z

′
1; : : : ; Ci=Z ′

i ; : : : ; Z
′
n=Z

′
n]t

(following by successive applications of the closure rule) together with the fact that
[Z ′

1=Z
′
1; : : : ; Ci=Z ′

i ; : : : ; Z
′
n=Z

′
n]t holds in ’ yield

E � l′ = r′ if CN

for N su;ciently large (Lemma 38 is used here). That is

E � [Wi1 =U1; : : : ; Wiq =Uq]l
′ = [Wj1 =V1; : : : ; Wjr =Vr]r′ if CN :

One can immediately infer that if q0 ∈{1; : : : ; q} and r0 ∈{1; : : : ; r} are de(ned by
Zl′ =Uq0 and respectively Zr′ =Vr0 , then Wiq0

=Wjr0
.

On the other hand, l′ ∈T gives

E � l′ = [Y1=Y1; : : : ; Zl′ =Yl; : : : ; Ym=Ym]r if C; (l; Z); (r; Z); Cn0

for some n0 ∈{1; 2; : : :}.
The last two statements, together with

E � l′ = [Wi1 =U1; : : : ; Uq0 =Uq0 ; : : : ; Wiq =Uq]l′ if CN

and

E � r′ = [Wj1 =V1; : : : ; Vr0 =Vr0 ; : : : ; Wjr =Vr]r′ if CN
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(both following by cond for N su;ciently large) can then be used to infer

E � r′ = [Y1=Y1; : : : ; Zr′ =Yl; : : : ; Ym=Ym]r if C; (l; Z); (r; Z); CN :

That is, r′ ∈T . This concludes the proof of ’∈AE; s.
It remains to prove that each of C; (l; Z); (r; Z) holds in ’. If this was not the

case, the condition C; (l; Z); (r; Z); CN would be contradictory for N su;ciently large,
yielding E � l= r if C; (l; Z); (r; Z); CN . This, in turn, contradicts the de(nition of L.
We have therefore proved (c).
To prove (d), it su;ces to show that l =∈T . Then, since r ∈T , the claim follows

from ∗ �= ∗′. We show that l∈T yields a contradiction. If l∈T , then

E � l = [Y1=Y1; : : : ; Xk=Yl; : : : ; Ym=Ym]r if C; (l; Z); (r; Z); Cn0

for some n0 ∈{1; 2; : : :}. This, together with
E � l = [X1=X1; : : : ; Z=Xk ; : : : ; Xm=Xm]l if CN

and

E � r = [Y1=Y1; : : : ; Z=Yl; : : : ; Yp=Yp]r if CN

for N su;ciently large (both following by transitivity and cond) can then be used to
infer

E � l = r if C; (l; Z); (r; Z); CN

for N su;ciently large. But this contradicts the fact that (Zti)i= 1;2;::: ∈L. Hence, l =∈T .
This concludes the proof of (d).
We have therefore constructed ’∈AE; s such that C; (l; Z); (r; Z) holds in ’, but

rAE (’) �= lAE (’). This concludes the proof.

Theorem 41 (Completeness). Let (�; E) denote a coalgebraic speci7cation and let e
denote a �-coequation. Then; E |=� e implies E � e.

Proof. Let e be of form l= r if C with l; r ∈T�[C]s, let FE denote a (nal (�; E)-
coalgebra, and let AE denote a cofree (�; E)-coalgebra over the S-sorted set ({∗; ∗′})s∈S .
We distinguish the following cases.
(1) FC

E; s = ∅. Then, E � e follows immediately by Lemma 39.
(2) FC

E; s �= ∅. We assume that E �� e and show that this yields a contradiction. From
E �� e one can immediately infer that there exist Z ∈Cs′ and Z ′ ∈Cs′′ with s′; s′′ ∈ S
such that E �� l= r if C; (l; Z); (r; Z ′) (otherwise E � l= r if C would follow by
case). We now distinguish two sub-cases.
(a) Z �=Z ′. We have : E �� l′ = r′ if C; (l; Z); (r; Z ′) for any l′; r′ ∈T�[C′]s with

cov(l′) ∩ cov(r′)= ∅ (otherwise contradiction could be applied to infer E � l
= r if C; (l; Z); (r; Z ′)). Lemma 39 then gives ’∈FE; s such that C; (l; Z);
(r; Z ′) holds in ’. That is, ’ satis(es the conditions C but lFE (’) �= rFE (’)
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(as lFE (’)∈ �Z(FE; s′) and rFE (’)∈ �Z′(FE; s′′), with Z �=Z ′). Hence, FE �|=� l=r
if C.

(b) Z =Z ′. Since E �� l= r if C; (l; Z); (r; Z), it follows by Lemma 40 that
there exists ’∈AE; s such that C; (l; Z); (r; Z) holds in ’ but lAE (’) �= rAE (’).
Hence, AE �|=� l= r if C.

In both of the above sub-cases one can infer that E �|=� e, which contradicts the
hypothesis. Hence, E � e.

This concludes the proof of completeness.

Example 42. Given the cosignature in Example 9, the fact that:

E � [Z; L]rest = [Z′; L]rest

with

E = {[Z; [Z; E]first]rest = [Z′; E]first};
follows by case-analysis from

E � [Z; L]rest = [Z′; L]rest if ([Z; L]rest; L);

following directly by cond, together with

E � [Z; L]rest = [Z′; L]rest if ([Z; L]rest; Z);

following by contradiction from

E � [Z; [Z; E]first]rest = [Z′; E′]first if ([Z; L]rest; Z):

The last statement follows by transitivity from

E � [Z; [Z; E]first]rest = [Z; [Z; E′]first]rest if ([Z; L]rest; Z);

following by cond and substitution, together with

E � [Z; [Z; E′]first]rest = [Z′; E′]first if ([Z; L]rest; Z);

following by base and weakening.

4. Coalgebraic speci�cation over a data universe

This section extends the approach in the previous section in order to account for
the availability of a (xed data universe when specifying observational properties of
systems. A sound and complete deduction calculus for reasoning about such proper-
ties is obtained by extending the deduction calculus of many-sorted coalgebra (see
Section 3.5) with a rule that accounts for the data universe being (xed. Throughout
this section, V denotes a set of visible sorts, while D denotes a V -sorted set (of data
values). Furthermore, it is assumed that Dv �= ∅ for each v∈V .



58 C. C)̂rstea / Theoretical Computer Science 280 (2002) 35–68

4.1. Destructor cosignatures

De�nition 43. A destructor cosignature over V is a pair (H;�) with H a set of hidden
sorts and � a V ∪H -sorted cosignature such that �v = ∅ for v∈V . A cosignature
morphism between destructor cosignatures (H;�) and (H ′; �′) over V is a many-sorted
cosignature morphism � : (V ∪H;�)→ (V ∪H ′; �′) such that ��V =1V and such that
�(H)⊆H ′. The category of destructor cosignatures over V and cosignature morphisms
is denoted CosignV .

Whenever possible, destructor cosignatures (H;�) over V are abbreviated �, while
the set V ∪ H is denoted S.

Example 44. The many-sorted cosignature in Example 9 can be regarded as a destruc-
tor cosignature over 1 and Elt.

4.2. Coalgebras, 7nality and bisimilarity

De�nition 45. Let � denote a destructor cosignature over V . A �D-coalgebra is a
many-sorted �-coalgebra A such that Av =Dv for each v∈V . Also, a �D-homomorphism
between �D-coalgebras A and B is a many-sorted �-homomorphism f :A→B such that
fv =1Dv for each v∈V . The category of �D-coalgebras and �D-homomorphisms is de-
noted CoalgD(�).

Destructor cosignature morphisms � :�→�′ induce reduct functors U� :CoalgD(�
′)

→CoalgD(�) in the usual way.

Example 46. Given the destructor cosignature in Example 44, (xing the interpretation
of 1 and Elt to {∗} and, respectively, N results in the coalgebras of this cosignature
implementing (nite and in(nite lists of natural numbers.

The next result relates coalgebras of destructor cosignatures with coalgebras of end-
ofunctors induced by such cosignatures.

Proposition 47. Let � denote a destructor cosignature; let SetSD denote the category
of S-sorted sets whose V-sorted components are given by D and S-sorted functions
whose V-sorted components are given by 1D; and let G� :SetSD→SetSD be given by

(G�X )s =




Ds if s∈V;∏
�∈�s; s1 ::: sn

(Xs1 + · · ·+ Xsn) if s∈H

for X ∈ |SetSD| and s∈ S. Then; CoalgD(�) and Coalg(G�) are isomorphic.

Proof. �D-coalgebras A induce SetSD-arrows � :A→G�A (whose h-component maps
a∈Ah to (�A(a))�∈�h; s1 ::: sn

for each h∈H) and conversely, any such SetSD-arrow de(nes
a �D-coalgebra structure on its domain.
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Proposition 47 results in the existence of (nal and cofree coalgebras. Such coalgebras
can alternatively be obtained as cofree many-sorted coalgebras over suitably chosen
sorted sets.

Proposition 48. Let � denote a destructor cosignature over V; let C ∈ |SetSD|; and
let A denote the cofree many-sorted �-coalgebra over C. Then; A de7nes a cofree
�D-coalgebra over C.

Proof. The fact that �v = ∅ for v∈V ensures that A de(nes a �D-coalgebra. Cofreeness
of A in CoalgD(�) follows from its cofreeness w.r.t. the functor taking many-sorted
�-coalgebras to their carrier.

Taking C to be (nal in SetSD yields a (nal �D-coalgebra.

Corollary 49. Let � denote a destructor cosignature over V; and let C ∈ |SetSD| be
given by Cv =Dv for v∈V; and Ch = {∗} for h∈H . The carrier of the 7nal �D-
coalgebra is given by

Fh =
{
’ :T 1

�; h →
⋃
{ cov(t)× C | t ∈ T 1

�; h} | t ∈ T 1
�; h ⇒ '1(’(t)) ∈ cov(t) ;

t; t′ ∈ T 1
�; h; t′ = [t1=Z1; : : : ; tn=Zn]t; '1(’(t)) = Zk ⇒ '1(’(t′)) ∈ cov(tk)

and moreover; if tk is a covariable then '2(’(t′)) = '2(’(t))
}
; h ∈ H

Fv = Dv; v ∈ V:

The notion of bisimilarity induced by destructor cosignatures is (ner than the one in-
duced by their underlying many-sorted cosignatures – the visible components of bisim-
ilarity relations are equality relations, as opposed to universal relations. As far as the
hidden components of bisimilarity relations are concerned, a characterisation similar to
the one in Proposition 19 can be given.

Proposition 50. Let � denote a destructor cosignature over V and let A denote a
�D-coalgebra. Then; given h∈H; two states a; a′ ∈Ah are bisimilar if and only if
for any t ∈T 1

�; h; there exists Z ∈ cov(t)s with s∈ S such that tA(a); tA(a′)∈ �Z(As) and
moreover; tA(a)= tA(a′) if s∈V .

Corollary 51. Let � denote a destructor cosignature over V; let F denote a 7nal
�D-coalgebra and let l; r ∈T�[{Z1; : : : ; Zn}]h with Z1 : s1; : : : ; Zn : sn and h∈H . Then;
for ’∈Fh; lF(’)= rF(’) if and only if for any ti ∈T 1

�; si for i=1; : : : ; n; ([t1=Z1; : : : ;
tn=Zn]l)F(’) and ([t1=Z1; : : : ; tn=Zn]r)F(’) are both in �Z(Fs) for some Z : s and s∈ S
and moreover; ([t1=Z1; : : : ; tn=Zn]l)F(’)= ([t1=Z1; : : : ; tn=Zn]r)F(’) if s∈V .
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Example 52. The notion of bisimilarity induced by the destructor cosignature in
Example 44 relates two elements of sort List if and only if they denote lists with the
same number of elements as well as with the same elements.

4.3. An institution of D-coalgebras

The fact that destructor cosignatures and their morphisms are suitably restricted
many-sorted cosignatures and, respectively, cosignature morphisms, and that the coal-
gebras of destructor cosignatures are suitably restricted coalgebras of the underlying
many-sorted cosignatures automatically yields an institution w.r.t. the satisfaction of
many-sorted coequations of hidden sort.

Theorem 53. Let CoalgD :CosignV →Catop denote the functor taking destructor
cosignatures to their categories of coalgebras; and HCoeqn :CosignV →Set denote
the functor taking destructor cosignatures to their sets of hidden coequations. Then;
CoalgD =(CosignV ;CoalgD;HCoeqn; |=) is an institution.

The speci(cations and speci(cation morphisms of this institution will be referred to
as destructor speci7cations and destructor speci7cation morphisms.
Given a destructor speci(cation (�; E) together with a �D-coalgebra A, the largest

many-sorted �-subcoalgebra of A satisfying E de(nes a �D-coalgebra. This results
in the existence of (nal coalgebras of destructor speci(cations, as well as of cofree
coalgebras along destructor speci(cation morphisms.
The (nal coalgebra of a destructor speci(cation has the property that it satis(es pre-

cisely those coequations in visible-sorted covariables which are semantic consequences
of the coequations in the speci(cation.

Proposition 54. Let (�; E) denote a destructor speci7cation; let FE denote a 7nal
(�D; E)-coalgebra; and let e denote a �-coequation in visible-sorted covariables. Then;
E |=� e if and only if FE |=� e.

Proof. The if direction follows from 2 of Proposition 26 (the visible-sorted components
of any �D-homomorphism, and hence also of the unique �D-homomorphisms into the
(nal (�D; E)-coalgebra, are injective), while the only if direction follows from E |=� e
together with FE |=� E.

4.4. Deduction

The deduction rules of many-sorted coalgebra are sound for the satisfaction of hidden
coequations by coalgebras of destructor speci(cations. However, in order to derive a
completeness result, additional deduction rules are required. It turns out that adding the
following rule:

[unity]
E � t = t′ if (t; Z); (t′; Z)

Z : v; |Dv| = 1
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(inspired by a rule in [3]) to the deduction calculus in Section 3.5 yields a calculus
which is both sound and complete for the satisfaction of coequations by coalgebras of
destructor speci(cations.

Theorem 55 (Soundness). The deduction calculus obtained by adding the unity rule
to the deduction calculus of many-sorted coalgebra is sound for the satisfaction of
�-coequations by (�D; E)-coalgebras.

Proof. Soundness of the deduction rules of many-sorted coalgebra follows from
Theorem 37 together with the fact that any (�D; E)-coalgebra is a (many-sorted) (�; E)-
coalgebra. Also, soundness of the unity rule follows from the fact that if Z : v and
|Dv|=1, then tA(a)= t′A(a) holds whenever tA(a); t′A(a)∈ �Z(Dv), for any �D-coalgebra
A and any a∈As.

The completeness proof follows the same line as in the many-sorted case.

Lemma 56. Let (�; E) denote a destructor speci7cation and let FE denote a 7nal
(�D; E)-coalgebra. Also; let h∈H and let C denote some conditions for sort h. If
E �� l= r if C for any l; r ∈T�[C]h with cov(l)∩ cov(r)= ∅; then FC

E;h �= ∅.

Proof. We begin by noting that FE is isomorphic to the many-sorted, cofree (�; E)-
coalgebra over the S-sorted set C given by: Cv =Dv for v∈V , and Ch = {∗} for h∈H .

The proof is now similar to the proof of Lemma 39. We show that FC
E;h has a

surjective mapping into the limit object L of the !op-chain de(ned in Lemma 39.
Speci(cally, we show that ’∈FC

E;h �→ ('1(’(ti)))i∈{1;2;:::} ∈L de(nes a surjective map-
ping from FC

E;h to L. Then, FC
E;h = ∅ gives L= ∅, which, by the proof of Lemma 39,

gives E � l= r if C for some l; r ∈T�[C] with cov(l)∩ cov(r)= ∅, thus contradicting
the hypothesis.
For the above mapping to be correctly de(ned, ('1(’(ti)))i∈{1;2;:::} ∈L must hold for

each ’∈FC
E;h. If this was not the case for some ’∈FC

E;h, then E � l= r if C; (t1; Zt1 ); : : : ;
(tn; Ztn) for some l; r ∈T�[C]h with cov(l)∩ cov(r)= ∅ and some n∈{1; 2; : : :} would
contradict the soundness of � (as both C and each (ti; Zti) with i=1; : : : ; n hold in
’∈FC

E;h, whereas l= r does not). Hence, ('1(’(ti)))i∈{1;2;:::} ∈L for each ’∈FC
E;h.

To show that the mapping ’ �→ (Zti)i∈{1;2;:::} is surjective, we (x cs ∈Cs for each
s∈ S. Then, given (Zti)i∈{1;2;:::} ∈L, we let ’∈FC

E;h be given by ’(ti)= 〈Zti ; cti〉 for
i=1; 2; : : : , with cti = csi if Zti : si, for i=1; 2; : : : .
The proof of ’∈FC

E;h is based on the proof of ’∈FC
E; s in Lemma 39. First, given

ti; tj ∈T 1
�; h with tj = [t′1=Z1; : : : ; t′n=Zn]ti and with Zti =Zk , the proof of Lemma 39 gives

Ztj ∈ cov(t′k). Moreover, if t′k =Ztj then si = sj, and hence cti = ctj . Next, given t ∈
T 1
� [{Z1; : : : ; Zn}]h; i∈{1; : : : ; n} and (ti = t′i if Ci)∈E such that tF(’)∈ �Zi(Fsi); ti ; t′i ∈

T�[Ci]si and Ci holds in tF(’), and given coterms u1; : : : ; uq of suitable sort, the proof
of Lemma 39 gives lF(’); rF(’)∈ �Z(Fs) for some Z : s. Moreover, lF(’)= rF(’), as
both are equal to cs. Hence, ’∈FE;h. The proof of Lemma 39 also gives ’∈FC

E;h.
Hence, FC

E;h has a surjective mapping into L. This concludes the proof.



62 C. C)̂rstea / Theoretical Computer Science 280 (2002) 35–68

Lemma 57. Let (�; E) denote a destructor speci7cation; let l; r ∈T�[C]h for some
set C of covariables and some h∈H; and let Z ∈C. Also; let AE denote a cofree
(�D; E)-coalgebra over the S-sorted set C ∈ |SetSD| given by: Cv =Dv for v∈V; and
Ch = {∗; ∗′} for h∈H . If E �� l= r if C; (l; Z); (r; Z); then there exists ’∈AC; (l; Z); (r; Z)

E; h
such that lAE (’) �= rAE (’).

Proof. Again, we use the fact that AE is isomorphic to the (many-sorted) cofree (�; E)-
coalgebra over C.
Say Z : s with s∈ S. One can immediately infer that s∈V implies |Ds|¿1 (otherwise

unity together with weakening would yield E � l= r if C; (l; Z); (r; Z)). Let cs; c′s ∈Cs

be such that cs �= c′s.
The proof is now similar to the proof of Lemma 40. An element of the limit ob-

ject L of the !op-chain de(ned in Lemma 40 is used to construct ’∈AC; (l; Z); (r; Z)
E; h

with lAE (’) �= rAE (’), under the assumption that E �� l= r if C; (l; Z); (r; Z). Speci(cally,
given (Zti)i=1;2;::: ∈L; ’∈AC; (l; Z); (r; Z)

E; h is given by ’(t)= 〈Zt; ct〉 for t ∈T 1
�; h, where

ct =

{
cs if t =∈ T; Zt : s;

c′s if t ∈ T; Zt : s

and where T is de(ned as in Lemma 40.
The proof of ’∈AC; (l; Z); (r; Z)

E; h is similar to the proof of ’∈AC; (l; Z); (r; Z)
E; s in Lemma 40.

Lemma 40 also gives lAE (’) �= rAE (’). This concludes the proof.

Theorem 58 (Completeness). The deduction calculus obtained by adding the unity
rule to the deduction calculus of many-sorted coalgebra is complete for the satisfac-
tion of coequations by coalgebras of destructor speci7cations.

Proof. Let (�; E) denote a destructor speci(cation, and let e denote a �-coequation
such that E |=� e. Also, let FE denote a (nal (�D; E)-coalgebra, and let AE denote a
cofree (�D; E)-coalgebra over the S-sorted set C de(ned in Lemma 57. The proof
of E � e is similar to the corresponding proof in Theorem 41. If FC

E;h = ∅, then E � e
follows by Lemma 56. Also, if FC

E;h �= ∅, Lemma 56 and, respectively, Lemma 57 are
used to show that the assumption that E �� e yields a contradiction.

Example 59. Consider the speci(cation of lists given in Example 44 (regarded as a
destructor speci(cation with visible sorts 1 and Elt), and let E consist of the two
coequations de(ning the list invariant. Provided that the sort 1 is interpreted by D as
a one-element set, one can show that the following holds:

E � [Z; E]first = [Z; L]rest if ([Z; E]first; Z):

This follows by case-analysis from

E � [Z; E]first = [Z; L]rest if ([Z; E]first; Z); ([Z; L]rest; Z);

E � [Z; E]first = [Z; L]rest if ([Z; E]first; Z); ([Z; L]rest; L)
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with the (rst statement following by unity (as Z : 1), and with the second statement
following by contradiction from

E � [Z; L]rest = [Z′; L′]rest if ([Z; E]first; Z); ([Z; L]rest; L):

The last statement follows by transitivity from:

E � [Z; L]rest = [Z; L′]rest if ([Z; E]first; Z); ([Z; L]rest; L)

(following by base and weakening), and:

E � [Z; L]rest = [Z′; L]rest if ([Z; E]first; Z); ([Z; L]rest; L)

(following by cond and weakening).

4.5. Abstracting away bisimilar states

The standard notion of satisfaction of coequations (see Section 3.3) may prove re-
strictive in cases where one’s interest is to only specify system properties up to in-
distinguishability by observations yielding visible results. In such cases, a notion of
satisfaction of coequations up to bisimulation appears to be more appropriate.

De�nition 60. Let � denote a destructor cosignature over V , and let e denote a
�-coequation of form l= r if (t1;C′

1); : : : ; (tn;C
′
n). A �D-coalgebra A is said to satisfy e

up to bisimulation (written A |=b� e) if and only if, whenever a∈Ah is such that (ti)A(a)
∈ �Zi(Asi) for some Zi ∈ (C′

i )si , for i=1; : : : ; n, it follows that lA(a); rA(a)∈ �Z(As′) for
some Z ∈ cov(l)∩ cov(r); Z : s′ and moreover, lA(a)∼A rA(a) (with ∼A denoting
�D-bisimilarity on A).

Example 61. The coequation

[Z; [Z; L]rest]rest = L if ([Z; [Z; L]rest]rest; L)

holds, up to bisimulation, in all coalgebras satisfying the speci(cation of alternating
lists in Example 23.

Versions of the results in Section 3.3 can also be formulated for the notion of
satisfaction of coequations up to bisimulation. In particular, Proposition 26, and conse-
quently Corollary 28 hold. Moreover, no restriction on the homomorphism f is required
by 2 of Proposition 26.
For coalgebras that are extensional, the notion of satisfaction of coequations up to

bisimulation coincides with the standard notion of satisfaction. This results in the (nal
coalgebra of a destructor speci(cation (�; E) also de(ning a (nal object for the full
subcategory of CoalgD(�) whose objects satisfy E up to bisimulation. Furthermore, a
more general version of Proposition 54 holds for the satisfaction of coequations up to
bisimulation.
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Proposition 62. Let (�; E) denote a destructor speci7cation; let FE denote a 7nal
(�D; E)-coalgebra; and let e denote a �-coequation. Then; E |=b� e if and only if
FE |=� e.

Proof. The if direction follows from the fact that coalgebra homomorphisms (in par-
ticular, homomorphisms into the (nal (�D; E)-coalgebra) reHect bisimulations, while
the only if direction follows from FE |=b� E.

The deduction calculus in Section 4.4 is sound for the satisfaction up to bisimula-
tion of arbitrary coequations, and complete for the satisfaction up to bisimulation of
coequations with no hidden-sorted covariables.

Theorem 63. Let (�; E) denote a destructor speci7cation and let e denote a
�-coequation. Then; the following hold:
(1) E � e implies E |=b� e.
(2) E |=b� e implies E � e if e contains no hidden-sorted covariables.

Proof. Soundness of � for |=b follows from the soundness of � for |=, after observing
that A |=b� e is equivalent to A=∼A |=� e for any �D-coalgebra A. Completeness of �
for the satisfaction of coequations with no hidden-sorted covariables follows from the
completeness of � for |=, together with E |=b� e being equivalent to E |=� e in the case
when all the covariables appearing in e are visible-sorted.

5. Expressiveness of the approach

The fact that the components of arbitrary polynomial endofunctors on SetS (i.e. endo-
functors whose components are constructed from constant and projection functors us-
ing (nite products and coproducts) can be written as coproducts of (nite products of
projection functors 8 results in the class of algebraic structures speci(able with many-
sorted signatures being isomorphic to the class of algebras of polynomial endofunctors.
Characterising the class of coalgebraic structures speci(able with many-sorted cosigna-
tures (or, equivalently, with polynomial endofunctors whose components have the form
of products of (nite coproducts of projection functors) is not as straightforward as in
the case of many-sorted signatures, as, on the one hand, coproducts do not distribute
over products in Set, and on the other hand, constant functors can not be written as
products of (nite coproducts of projection functors. In this case, a change in the un-
derlying category is required to transform an arbitrary polynomial endofunctor into the
an endofunctor having the form of a product of (nite coproducts of constant=projection
functors, in such a way that the categories of coalgebras of the two endofunctors are
isomorphic. Furthermore, this also holds for shape extended polynomial endofunctors

8 This is a consequence of the distributivity of products over coproducts in Set, on the one hand, and
of the existence of a Set-theoretic isomorphism C �

∐
C∈C1 with C an arbitrary set and 1 a one-element

set, on the other.
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(i.e. endofunctors whose components are constructed from constant and projection func-
tors using (nite products and coproducts, and exponentials with constant exponent).

Theorem 64. Let T :SetS→SetS denote an extended polynomial endofunctor; such
that all the sets appearing as exponents in T are enumerable. 9 Then; Coalg(T) �
Coalg(GT) for some endofunctor GT :SetST→SetST whose components are products
of 7nite coproducts of constant=projection functors.

Proof. We de(ne ST ∈ |Set| and GT :SetST→SetST by structural induction on the com-
ponents of T.
For F :SetS→Set an extended polynomial functor, we let SF ∈ |Set|; GF :SetS+SF

→Set and (Fs′)s′∈SF with Fs′ :SetS+SF→Set for s′ ∈ SF be de(ned as follows:
(1) if F=?s for some s∈ S or if F=A, then:

(a) SF= ∅,
(b) GF= F
(F is already of the required form.)

(2) if F= F1× F2, then:
(a) SF= SF1 + SF2 ,
(b) GF=(GF1?1)(GF2?2),

(c) Fs′ =
{
(F1)s1?1 if s′ = �1(s1) for some s1 ∈ SF1 ;
(F2)s2?2 if s′ = �2(s2) for some s2 ∈ SF2 ;

where for i∈{1; 2}; ?i :SetS+SF→SetS+SFi denotes the projection functor
induced by the injection S + SFi � S + SF. (Again, F is already of the
required form provided that F1 and F2 are.)

(3) if F= F1 + F2, then
(a) SF= SF1 + SF2 + {s′1}+ {s′2},
(b) GF=?′

1 + ?′
2,

(c) Fs′ =




(F1)s1?1 if s′ = �1(s1) for some s1 ∈ SF1 ;
(F2)s2?2 if s′ = �2(s2) for some s2 ∈ SF2 ;
GF1?1 if s′ = �3(s′1);
GF2?2 if s′ = �4(s′2);

where, for i∈{1; 2}; ?i :SetS+SF→SetS+SFi denotes the projection functor
induced by the injection S+SFi � S+SF, while ?′

i :Set
S+SF→Set denotes

the projection functor induced by the injection {s′i}� S+SF1 +SF2 +{s′1}+
{s′2}. (F is transformed into a functor of the required form by transferring
the structures speci(ed by F1 and F2 to two new sorts s′1 and s′2, and then
capturing the structure speci(ed by F by means of an operation symbol
with result type s′1 + s′2.)

9 This condition guarantees that the set of operation symbols of the resulting destructor cosignature is
enumerable. Theorem 64 also holds for polynomial endofunctors which do not satisfy this condition; but
the resulting endofunctors do not give rise to destructor cosignatures (unless the requirement regarding the
enumerability of the set of operation symbols of a many-sorted cosignature is left out).
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(4) if F=(F1)A (with A enumerable), then:
(a) SF= SF1 ,
(b) GF=

∏
a∈A GF1 ,

(c) Fs′ =(F1)s′ for each s′ ∈ SF1
(The existence of a Set-isomorphism between BA and

∏
a∈A B, with A; B ∈

|Set| is used here to transform F into a functor of the required form.)
It then follows by structural induction on F that both GF and each of the Fs′ with

s′ ∈ SF are in the form of products of (nite coproducts of constant=projection functors.
Now given T :SetS→SetS ; T=(Ts)s∈S , let ST= S +

∐
s∈S STs and GT :SetST→

SetST be given by

(GT)s′ =

{
GTs?s if s′ = �1(s) for some s ∈ S;

(Ts)s′′?s if s′ = �2(s′′) for some s′′ ∈ STs and some s ∈ S;

where, for s∈ S; ?s :SetST→SetS+STs denotes the projection functor induced by the
injection S +STs � ST. The fact that Coalg(T) � Coalg(GT) now follows by structural
induction on (the components of) T.

Thus, destructor cosignatures are at least as expressive for coalgebra as many-sorted
signatures are for algebra. It is worth noting that, unlike in the algebraic case, moving
from one- to many-sorted coalgebras, and from many-sorted cosignatures to destructor
cosignatures is actually necessary in order to model via cosignatures arbitrary (ex-
tended) polynomial endofunctors.
We exemplify the construction of GT by taking T to be the endofunctor typically

used to specify binary trees, that is, T :Set{Tree}→Set{Tree}; T=1+ (Id× Id). In this
case, the construction gives
(1) S1 = ∅; G1 = 1,
(2) SId= ∅; GId= Id,
(3) SId×Id= ∅; GId×Id=GId × GId= Id× Id;
(4) S1+(Id×Id) = {Leaf,Node},

G1+(Id×Id) :Set{Tree,Leaf,Node}→Set; G1+(Id×Id) =?Leaf + ?Node,
(1 + (Id× Id))Leaf=G1?Tree=1,
(1 + (Id× Id))Node=GId×Id?Tree=?Tree ×?Tree,
(?Tree; ?Leaf; ?Node :Set{Tree,Leaf,Node}→Set denote the corresponding projection
functors.)

Hence, GT :Set{Tree,Leaf,Node}→Set{Tree,Leaf,Node} is given by: GT(X; Y; Z)
= (Y + Z; 1; X × X ) for X; Y; Z ∈ |Set|.

6. Related work

This section discusses the relationship between the equational approach to system
speci(cation presented here and the ones in [3] and, respectively, [10].
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To a certain extent, our approach can be regarded as a generalisation of [3], as it
allows for observers whose result type is structured as a coproduct of basic types.
However, what distinguishes the approach here from the one in [3] is the absence of
any algebraic features in our approach, which results in the inability to constrain state
observations to particular data values using coequations. In our opinion such constraints
should only be imposed to observations of particular states (such as the ones yielded
by state constructors), and therefore should not be considered when coalgebraically
specifying state spaces. In addition to operation symbols of arity @ : h→ h and � : h→ v,
operation symbols of arity @ : hv→ h or � : hv→ v′ were also considered in [3]. Our
approach could be extended to accommodate such operation symbols, as well as more
general ones of arity � : hv→ s1 : : : sn. However, we believe that such operations should
not be regarded as observers, especially if the types associated to their visible argument
sorts are in(nite. In particular, operation symbols denoting a change of state rather than
a property of states should not be considered at this level.
As far as modal logic approaches to coalgebraic speci(cation are concerned, the

main di8erence w.r.t. equational approaches stands in the existence of characterisabil-
ity results for (classes of) coalgebras [8]. However, such results are obtained at the
expense of employing in(nitary sentences, while the formulation of completeness re-
sults for particular formalisms requires a restriction to (nitary sentences as well as the
satisfaction of some rather restrictive (niteness conditions by the endofunctors in ques-
tion [10]. Although equational sentences are not su;ciently expressive to yield similar
characterisability results, such sentences appear to be better suited for specifying in a
concise way observational properties quanti(ed over state spaces. In addition, no fur-
ther restrictions are required in equational approaches in order to derive completeness
results (see Sections 3.5 and 4.4).

7. Conclusions and future work

A coalgebraic, equational approach to the speci(cation of observational structures
allowing for a choice in the result type of observations has been obtained by syn-
tactically dualising the setting of many-sorted algebra. Next, a sound and complete
deduction calculus for reasoning about observational properties speci(able with co-
equations has been formulated. Finally, the formalism has been extended to allow for
(xed interpretations of certain (visible) sorts.
Coequations appear to be su;ciently expressive to capture constraints regarding the

structure of system states (including the sharing of data or of subcomponents between
the system components, or the presence, respectively, absence of certain components
in some of the system states). However, the speci(cation of state-based, dynamical
systems also involves constraints regarding the relationship between the evolution of
systems and the observation of their properties. An approach that integrates algebraic
and coalgebraic techniques in order to allow the speci(cation of this relationship is
therefore needed to fully specify these systems. Such an approach should clearly dis-
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tinguish between (algebraic) operations used to construct new states, and (coalgebraic)
operations used to observe properties of existing states.
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