

I-polynomial data types: adjunctions, equations, and theories

partly presented at CMCS 2016

Peter Padawitz, TU Dortmund, Germany

Road map

• \mathcal{I} -polynomial types	3
• Signatures	4
• Terms and coterms	5
• Σ -algebras and Σ -functors	12
• Term folding und state unfolding	18
• From constructors to destructors and backwards	22
• Iterative equations	27
• Typed theories	30

\mathcal{I} -polynomial types

Let S be a finite set and \mathcal{I} be a set of nonempty sets (of indices), implicitly including the one-element set $1 = \{\epsilon\}$, the two-element set $2 = \{0, 1\}$ and the *n*-element set $[n] = \{1, \ldots, n\}$ for all n > 1.

The set $\mathcal{T}(S,\mathcal{I})$ of \mathcal{I} -polynomial types over S is inductively defined as follows:

- $S \cup \mathcal{I} \subset \mathcal{T}(S, \mathcal{I}).$
- For all $I \in \mathcal{I}$ and $\{e_i\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I}), \prod_{i \in I} e_i, \prod_{i \in I} e_i \in \mathcal{T}(S, \mathcal{I}).$

For all $I \in \mathcal{I}$, n > 1 and $e, e_1, \ldots, e_n \in \mathcal{T}(S, \mathcal{I})$ we use the following short notations:

$$e_{1} \times \cdots \times e_{n} =_{def} \prod_{i \in [n]} e_{i},$$

$$e_{1} + \cdots + e_{n} =_{def} \coprod_{i \in [n]} e_{i},$$

$$e^{I} =_{def} \prod_{i \in I} e,$$

$$e^{n} =_{def} e^{[n]},$$

$$e^{+} =_{def} e + \coprod_{n > 1} e^{n},$$

$$e^{*} =_{def} 1 + e^{+}.$$

,

Signatures

A signature $\Sigma = (S, \mathcal{I}, F)$ consists of sets S and \mathcal{I} as above and a finite set F of typed function symbols ("operations") $f : e \to e'$ with $e, e' \in \mathcal{T}(S, \mathcal{I})$.

 $f: e \to e' \in F$ is a constructor if $e' \in S$ and a destructor if $e \in S$.

 Σ is **constructive** if F consists of constructors and for all $s \in S$, \mathcal{I} implicitly contains $\{s\}$ and $\{f \in F \mid ran(f) = s\}$.

 Σ is **destructive** if F consists of destructors and for all $s \in S$, \mathcal{I} implicitly contains $\{s\}$ and $\{f \in F \mid dom(f) = s\}$.

Terms and coterms

 $A \longrightarrow B$ denotes the set of partial functions from A to B.

 $L \subseteq A^*$ is **prefix closed** if for all $w \in A^*$ and $a \in A$, $wa \in L$ implies $w \in L$.

A deterministic tree is a partial function $f : A^* \longrightarrow B$ with prefix closed domain.

f may be written as a kind of record:

$$t_f = f(\epsilon) \{ x \to t_{\lambda w.f(xw)} \mid x \in def(t) \cap A \}.$$

f is well-founded if there is $n \in \mathbb{N}$ with $|w| \leq n$ for all $w \in def(t)$, intuitively: all paths emanating from the root are finite.

dtr(A, B) denotes the set of all deterministic trees from A^* to B. wdtr(A, B) denotes the set of all wellfounded trees of dtr(A, B).

Let $\Sigma = (S, \mathcal{I}, F)$ be a signature, V be an S-sorted set,

$$EL_{\Sigma} = \bigcup \mathcal{I} \cup \{sel\}, \quad (edge \ labels)$$
$$NL_{\Sigma,V} = \bigcup \mathcal{I} \cup V \cup \{tup\}. \quad (node \ labels)$$

Let Σ be constructive.

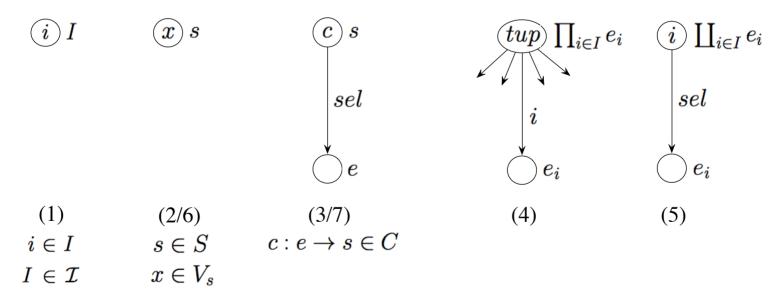
The set $CT_{\Sigma}(V)$ Σ -terms over V is the greatest $\mathcal{T}(S,\mathcal{I})$ -sorted set M of subsets of $dtr(EL_{\Sigma}, NL_{\Sigma,V})$ with the following properties: Let $I \in \mathcal{I}$ and $\{e_i\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$.

•
$$M_I = I.$$
 (1)

• For all
$$s \in S$$
 and $t \in M_s$, $t \in V_s$
or $t = c\{sel \to t'\}$ for some $c : e \to s \in F$ and $t' \in M_e$. (2)
(3)

or
$$t = c \{sel \to t'\}$$
 for some $c : e \to s \in F$ and $t' \in M_e$.

- For all $t \in M_{\prod_{i \in I} e_i}$ and $i \in I$, $t = tup\{i \to t_i \mid i \in I\}$ for some $t_i \in M_{e_i}$.
- For all $t \in M_{\prod_{i \in I} e_i}$, $t = i\{sel \to t'\}$ for some $i \in I$ and $t' \in M_{e_i}$. (5)



Terms with their respective types.

(4)

The elements of $CT_{\Sigma} =_{def} CT_{\Sigma}(\emptyset)$ are called **ground** Σ -terms.

 $T_{\Sigma}(V) =_{def} CT_{\Sigma}(V) \cap wdtr(EL_{\Sigma}, NL_{\Sigma,V})$ is the least $\mathcal{T}(S, \mathcal{I})$ -sorted set M of subsets of $dtr(EL_{\Sigma}, NL_{\Sigma,V})$ with (1) and the following properties:

Let $I \in \mathcal{I}$ and $\{e_i\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$.

• For all
$$s \in S, V_s \subseteq M_s$$
. (6)

• For all
$$c: e \to s \in F$$
 and $t \in M_e, c\{sel \to t\} \in M_s.$ (7)

- For all $t_i \in M_{e_i}$, $i \in I$, $tup\{i \to t_i \mid i \in I\} \in M_{\prod_{i \in I} e_i}$.
- For all $i \in I$ and $t \in M_{e_i}$, $i\{sel \to t\} \in M_{\coprod_{i \in I} e_i}$.

 $T_{\Sigma} =_{def} T_{\Sigma}(\emptyset).$

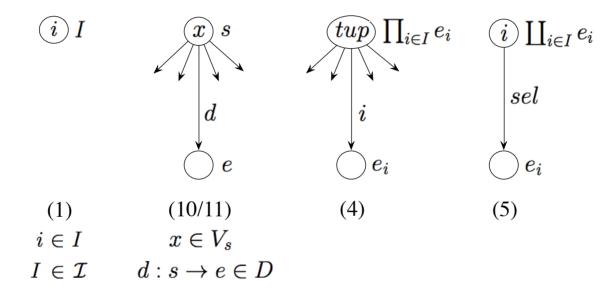
(8)

(9)

Let Σ be destructive.

The set $DT_{\Sigma}(V)$ of Σ -coterms over V is the greatest $\mathcal{T}(S, \mathcal{I})$ -sorted set M of subsets of $dtr(EL_{\Sigma}, NL_{\Sigma,V})$ with (1), (4), (5) and the following property:

• For all $s \in S$ and $t \in M_s$ there is $x \in V_s$ and for all $d : s \to e \in F$ there is $t_d \in M_e$ with $t = x\{d \to t_d \mid d : s \to e \in F\}$. (10)



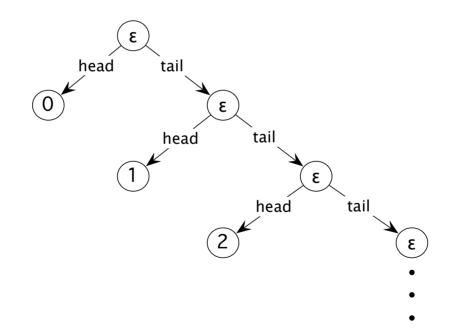
Coterms with their respective types.

The elements of $DT_{\Sigma} =_{def} DT_{\Sigma}(1)$ are called **ground** Σ -coterms.

Examples

 $\text{Let } Stream(X) = (\{stream\}, \{X\}, \{head: stream \rightarrow X, \ tail: stream \rightarrow stream\}).$

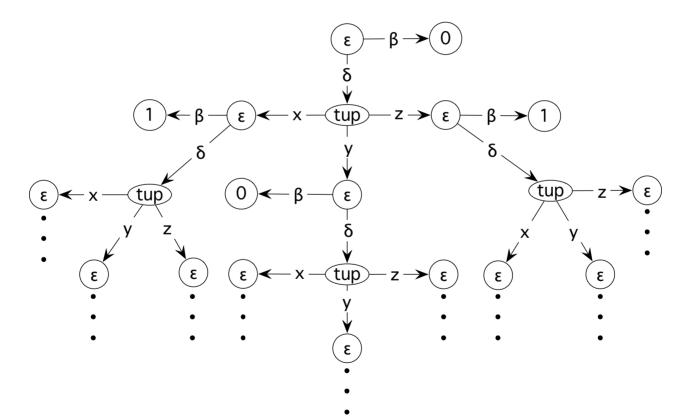
The following $Stream(\mathbb{N})$ -coterm represents the stream of natural numbers:



 $\text{Let } Acc(X) = (\{stream\}, \{X, 2\}, \{\delta: state \rightarrow state^X, \ \beta: state \rightarrow 2\}).$

Let $X = \{x, y, z\}.$

The following Acc(X)-coterm represents an acceptor of all words over X that contain x or z:



 $coT_{\Sigma}(V) =_{def} DT_{\Sigma}(V) \cap wdtr(EL_{\Sigma}, NL_{\Sigma,V})$ is the least $\mathcal{T}(S, \mathcal{I})$ -sorted set M of subsets of $dtr(EL_{\Sigma}, NL_{\Sigma,V})$ with (1), (8), (9) and the following property:

• For all $s \in S$, $x \in V_s$, $d: s \to e \in F$ and $t_d \in M_e$, $x\{d \to t_d \mid d: s \to e \in F\} \in M_s$. (11)

 $coT_{\Sigma} =_{def} coT_{\Sigma}(1).$

The set $T_{\Sigma}(V)$ of well-founded Σ -terms over V, however, is defined as if Σ were constructive:

 $T_{\Sigma}(V)$ is the least $\mathcal{T}(S,\mathcal{I})$ -sorted set M of subsets of $dtr(EL_{\Sigma}, NL_{\Sigma,V})$ with (1), (6), (8), (9), but the following property instead of (7):

• For all $s \in S$, $d: s \to e \in F$ and $t_d \in M_e$, $\epsilon \{ d \to t_d \mid d: s \to e \in F \} \in M_s$. (12)

Type compatible $\mathcal{T}(S, \mathcal{I})$ -sorted sets

A $\mathcal{T}(S, \mathcal{I})$ -sorted set A is type compatible if for all $I \in \mathcal{I}$,

- $A_I = I$,
- for all $\{e_i\}_{i\in I} \subseteq \mathcal{T}(S,\mathcal{I})$
- there are tuples

 $\pi = (\pi_i : A_{\prod_{i \in I} e_i} \to A_{e_i})_{i \in I} \text{ and } \iota = (\iota_i : A_{e_i} \to A_{\coprod_{i \in I} e_i})_{i \in I}$ such that $(A_{\prod_{i \in I} e_i}, \pi)$ is a **product** and $(A_{\coprod_{i \in I} e_i}, \iota)$ is a **sum** or **coproduct** of $(A_{e_i})_{i \in I}$.

Let A be type compatible, $I \in \mathcal{I}$ and $\{e_i\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$

(1) For all $a \in A_{\prod_{i \in I} e_i}$ there are unique $i \in I$ and $b \in A_{e_i}$ such that $\iota_i(b) = a$. (2) For all $a, b \in A_{\prod_{i \in I} e_i}$, a = b if for all $i \in I$, $\pi_i(a) = \pi_i(b)$. Let A, B be type compatible $\mathcal{T}(S, \mathcal{I})$ -sorted sets.

A $\mathcal{T}(S,\mathcal{I})$ -sorted function $h: A \to B$ is type compatible if for all $I \in \mathcal{I}$,

- $h_I = id_I$,
- for all $\{e_i\}_{i\in I} \subseteq \mathcal{T}(S,\mathcal{I}), h_{\prod_{i\in I} e_i} = \prod_{i\in I} h_{e_i} \text{ and } h_{\prod_{i\in I} e_i} = \prod_{i\in I} h_{e_i}.$

Set^{S,I} denotes the subcategory of $Set^{\mathcal{T}(S,\mathcal{I})}$ with type compatible $\mathcal{T}(S,\mathcal{I})$ -sorted sets as objects and type compatible $\mathcal{T}(S,\mathcal{I})$ -sorted functions as morphisms.

Let $\Sigma = (S, \mathcal{I}, F)$ be a signature.

A Σ -algebra $\mathcal{A} = (A, Op)$ consists of a type compatible $\mathcal{T}(S, \mathcal{I})$ -sorted set A and an F-sorted set

$$Op = (f^{\mathcal{A}} : A_e \to A_{e'})_{f:e \to e' \in F}$$

of functions.

Let \mathcal{A}, \mathcal{B} be Σ -algebras. A type compatible $\mathcal{T}(S, \mathcal{I})$ -sorted function $h : \mathcal{A} \to \mathcal{B}$ is a Σ -homomorphism if if for all $f : e \to e' \in F$,

$$h_{e'} \circ f^A = f^B \circ h_e.$$

 Alg_{Σ} denotes the subcategory of $Set^{S,\mathcal{I}}$ with Σ -algebras as objects and Σ -homomorphisms as morphisms.

If Σ is constructive, then $CT_{\Sigma}(V)$ is a Σ -algebra:

Let $I \in \mathcal{I}$ and $\{e_i\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $c: e \to s \in C$, $t \in CT_{\Sigma}(V)_e$, $c^{CT_{\Sigma}(V)}(t) =_{def} c\{sel \to t\}$.
- For all $t_i \in CT_{\Sigma}(V)_{e_i}$, $i \in I$, and $k \in I$, $\pi_k(tup\{i \to t_i \mid i \in I\}) =_{def} t_k$.
- For all $i \in I$ and $t \in CT_{\Sigma}(V)_{e_i}$, $\iota_i(t) =_{def} i\{sel \to t\}$.

If Σ is destructive, then $DT_{\Sigma}(V)$ is a Σ -algebra:

Let $I \in \mathcal{I}$ and $\{e_i\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $d: s \to e \in D$, $x \in V_s$ and $t'_d \in DT_{\Sigma}(V)_e, d': s \to e' \in D$, $d^{DT_{\Sigma}(V)}(x\{d \to t'_d \mid d': s \to e' \in D\}) =_{def} t_d.$
- For all $t_i \in DT_{\Sigma}(V)_{e_i}$, $i \in I$, and $k \in I$, $\pi_k(tup\{i \to t_i \mid i \in I\}) =_{def} t_k$.
- For all $i \in I$ and $t \in DT_{\Sigma}(V)_{e_i}$, $\iota_i(t) =_{def} i\{sel \to t\}$.

Let $e \in \mathcal{T}(S, \mathcal{I})$, $I \in \mathcal{I}$ and $\{e_i\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$. $\{c_i : A_{e_i} \to A_e \mid i \in I\}$ is a set of constructors for e if $[c_i]_{i \in I} : \coprod_{i \in I} A_{e_i} \to A_e$ is iso. $\{d_i : A_e \to A_{e_i} \mid i \in I\}$ is a set of destructors for e if $\langle d_i \rangle_{i \in I} : A_e \to \prod_{i \in I} A_{e_i}$ is iso.

- The injections of A for a sum type form a set of constructors for this type.
- The projections of A for a product type form a set of destructors for this type.
- If Σ is constructive and \mathcal{A} is initial in Alg_{Σ} , then for all $s \in S$, $\{f^{\mathcal{A}} \mid f : e \to s \in F\}$ is a set of constructors for s.
- If Σ is destructive and \mathcal{A} is final in Alg_{Σ} , then for all $s \in S$, $\{f^{\mathcal{A}} \mid f : s \to e \in F\}$ is a set of destructors for s.

Let $\Sigma = (S, \mathcal{I}, F)$ be a constructive signature.

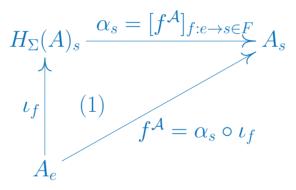
 Σ induces the functor $H_{\Sigma} : Set^S \to Set^S$:

For all $A, B \in Set^S$, $h \in Set^S(A, B)$ and $s \in S$,

$$H_{\Sigma}(A)_{s} = \coprod_{f:e \to s \in F} A_{e},$$

$$H_{\Sigma}(h)_{s} = \coprod_{f:e \to s \in F} h_{e}.$$

For all $s \in S$ and $f : e \to s \in F$,



Let $\Sigma = (S, \mathcal{I}, F)$ be a destructive signature.

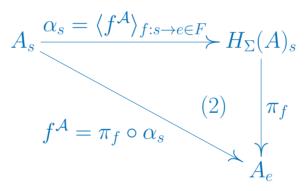
 Σ induces the functor $H_{\Sigma} : Set^S \to Set^S$:

For all $A, B \in Set^S$, $h \in Set^S(A, B)$ and $s \in S$,

$$H_{\Sigma}(A)_{s} = \prod_{f:s \to e \in F} A_{e},$$

$$H_{\Sigma}(h)_{s} = \prod_{f:s \to e \in F} h_{e}.$$

For all $s \in S$ and $f : s \to e \in F$,



Term folding und state unfolding

Let $\Sigma = (S, \mathcal{I}, C)$ be a constructive signature, $\mathcal{A} = (A, Op)$ be a Σ -algebra, V be an S-sorted set of "variables" and $g: V \to A$ be an S-sorted valuation of V.

The **extension** of g,

$g^*: T_{\Sigma}(V) \to A,$

is the $\mathcal{T}(S, \mathcal{I})$ -sorted function that is inductively defined as follows:

Let $I \in \mathcal{I}$ and $\{e_i\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$.

•
$$g_I^* = id_I.$$
 (1)

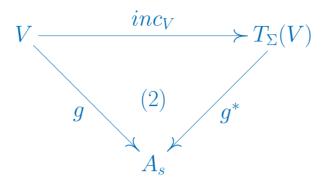
• For all
$$s \in S$$
 and $x \in V_s$, $g_s^*(x) = g_s(x)$. (2)

- For all $c: e \to s \in F$ and $t \in T_{\Sigma}(V)_e, g_s^*(c\{sel \to t\}) = c^{\mathcal{A}}(g_e^*(t)).$ (3)
- For all $t_i \in T_{\Sigma}(V)_{e_i}, i \in I$, and $k \in I, \pi_k(g^*_{\prod_{i \in I} e_i}(\{tup \to t_i \mid i \in I\})) = g^*_{e_k}(t_k).$ (4)
- For all $k \in I$ and $t \in T_{\Sigma}(V)_{e_k}, g^*_{\coprod_{i \in I} e_i}(k\{sel \to t\}) = \iota_k(g^*_{e_k}(t)).$ (5)

Intuitively, g^* evaluates each wellfounded Σ -term over V in \mathcal{A} .

Theorem FREE

 g^* is the only Σ -homomorphism from $T_{\Sigma}(V)$ to \mathcal{A} that satisfies (2):



The restriction of g^* to ground terms does not depend on g and is denoted by $fold^{\mathcal{A}}: T_{\Sigma} \to \mathcal{A}.$

Since g^* is the only Σ -homomorphism from $T_{\Sigma}(V)$ to \mathcal{A} that satisfies (2), $fold^{\mathcal{A}}$ is the only Σ -homomorphism from T_{Σ} to \mathcal{A} , i.e., T_{Σ} is initial in Alg_{Σ} .

 \mathcal{A} is reachable (or generated) if $fold^{\mathcal{A}}$ is epi. \mathcal{A} is equationally consistent if $fold^{\mathcal{A}}$ is mono. Let $\Sigma = (S, \mathcal{I}, D)$ be a destructive signature, $\mathcal{A} = (A, Op)$ be a Σ -algebra, V be an S-sorted set of "colors" and $g : A \to V$ be an S-sorted coloring of A.

The **coextension** of g,

 $g^{\#}: A \to DT_{\Sigma}(V),$

is the $\mathcal{T}(S, \mathcal{I})$ -sorted function that is inductively defined as follows:

Let $I \in \mathcal{I}$ and $\{e_i\}_{i \in I} \subseteq \mathcal{T}(S, \mathcal{I})$.

•
$$g_I^\# = id_I.$$
 (1)

- For all $s \in S$ and $a \in A_s$, $g_s^{\#}(a) = g_s(a) \{ d \to g_e^{\#}(d^{\mathcal{A}}(a)) \mid d : s \to e \in D \}.$ (2)
- For all $a \in A_{\prod_{i \in I} e_i}, g_{\prod_{i \in I} e_i}^{\#}(a) = tup\{i \to g_{e_i}^{\#}(\pi_i(a)) \mid i \in I\}.$ (3)

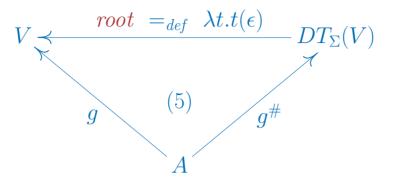
• For all
$$k \in I$$
 and $a \in A_{e_k}$, $g_{\coprod_{i \in I} e_i}^{\#}(\iota_k(a)) = k\{sel \to g_{e_k}^{\#}(a)\}.$ (4)

Intuitively, $g^{\#}$ unfolds each "state" $a \in A$ into the Σ -coterm that represents the "behavior" of a w.r.t. \mathcal{A} .

In particular, the coextension $id_A^{\#} : A \to DT_{\Sigma}(A)$ "runs" (the destructors of) \mathcal{A} on its arguments.

Theorem COFREE

 $g^{\#}$ is the only Σ -homomorphism from \mathcal{A} to $DT_{\Sigma}(V)$ that satisfies (5):



The restriction of $g^{\#}$ to ground coterms does not depend on g and is denoted by $unfold^{\mathcal{A}}: \mathcal{A} \to DT_{\Sigma}.$

Since $g^{\#}$ is the only Σ -homomorphism from \mathcal{A} to $DT_{\Sigma}(V)$ that satisfies (5), $unfold^{\mathcal{A}}$ is the only Σ -homomorphism from \mathcal{A} to DT_{Σ} , i.e., DT_{Σ} is final in Alg_{Σ} .

 \mathcal{A} is observable (or cogenerated) if $unfold^{\mathcal{A}}$ is mono. \mathcal{A} is behaviorally complete if $unfold^{\mathcal{A}}$ is epi.

Lambek's Lemma

- (1) Suppose that Alg_F has an initial object $\alpha : F(A) \to A$. α is iso.
- (2) Suppose that $coAlg_F$ has a final object $\beta : A \to F(A)$. β is iso.

Lambek's Lemma allows us to transform every constructive or destructive signature Σ into a destructive resp. constructive signature $co\Sigma$ such that

$$DT_{co\Sigma} \cong CT_{\Sigma}$$
 resp. $T_{co\Sigma} \cong coT_{\Sigma}$.

Here are the details:

Let $\Sigma = (S, \mathcal{I}, C)$ be a constructive signature,

$$D = \{s : s \to \coprod_{c:e \to s \in C} e \mid s \in S\},\$$

$$co\Sigma = (S, \mathcal{I}, D).$$

By Lambek's Lemma (1), the initial H_{Σ} -algebra

$$\alpha = \{ \alpha_s : H_{\Sigma}(T_{\Sigma})_s \xrightarrow{[c^{T_{\Sigma}}]_{c:e \to s \in C}} T_{\Sigma,s} \mid s \in S \}$$

is iso. Hence there is the H_{Σ} -coalgebra

$$\{\alpha_s^{-1}: T_{\Sigma,s} \to H_{\Sigma}(T_{\Sigma})_s \mid s \in S\}$$

that corresponds to the $co\Sigma$ -algebra $\mathcal{A} = (T_{\Sigma}, Op)$ with $s^{\mathcal{A}} = \alpha_s^{-1}$ for all $s \in S$.

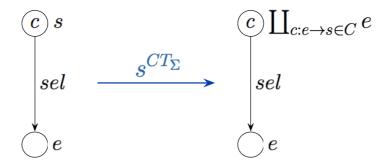
Since $co\Sigma$ is destructive, Theorem COFREE implies that $DT_{co\Sigma}$ is final in $Alg_{co\Sigma}$.

 CT_{Σ} is also final in $Alg_{co\Sigma}$:

 CT_{Σ} is a $co\Sigma$ -algebra: Let $I \in \mathcal{I}$ and $\{e_i\} \subseteq \mathcal{T}(S, \mathcal{I})$.

• For all $c: e \to s \in C, t \in CT_{\Sigma,e}$,

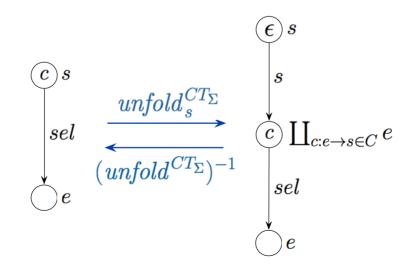
 $s^{CT_{\Sigma}}(c\{sel \to t\}) =_{def} c\{sel \to t\}.$



• For all $t_i \in CT_{\Sigma,e_i}$, $i \in I$, and $k \in I$, $\pi_k(tup\{i \to t_i \mid i \in I\}) =_{def} t_k$. • For all $i \in I$ and $t \in CT_{\Sigma,e_i}$, $\iota_i(t) =_{def} i\{sel \to t\}$.

 CT_{Σ} and $DT_{co\Sigma}$ are $co\Sigma$ -isomorphic. Equivalently, $unfold^{CT_{\Sigma}}: CT_{\Sigma} \to DT_{co\Sigma}$

is bijective.



Let $\Sigma = (S, \mathcal{I}, D)$ be a destructive signature,

$$C = \{s : \prod_{d:s \to e \in D} e \to s \mid s \in S\},\$$

$$co\Sigma = (S, \mathcal{I}, C).$$

By Lambek's Lemma (2), the final H_{Σ} -coalgebra

$$\alpha = \{ \alpha_s : DT_{\Sigma,s} \xrightarrow{\langle d^{DT_{\Sigma}} \rangle_{d:s \to e \in D}} H_{\Sigma}(DT_{\Sigma})_s \mid s \in S \}$$

is iso. Hence there is the H_{Σ} -algebra

$$\{\alpha_s^{-1}: H_{\Sigma}(DT_{\Sigma})_s \to DT_{\Sigma,s} \mid s \in S\}$$

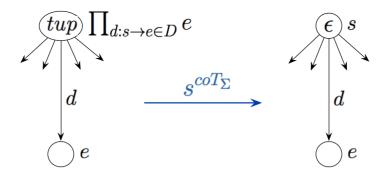
that corresponds to the $co\Sigma$ -algebra $\mathcal{A} = (DT_{\Sigma}, Op)$ with $s^{\mathcal{A}} = \alpha_s^{-1}$ for all $s \in S$.

Since $co\Sigma$ is constructive, Theorem FREE implies that $T_{co\Sigma}$ is initial in $Alg_{co\Sigma}$.

 coT_{Σ} is also initial in $Alg_{co\Sigma}$:

 coT_{Σ} is a $co\Sigma$ -algebra: Let $I \in \mathcal{I}$ and $\{e_i\} \subseteq \mathcal{T}(S, \mathcal{I})$.

• For all
$$s \in S$$
, $c : e \to s \in C$ and $t_d \in coT_{\Sigma,e}$, $d : s \to e \in D$,
 $s^{coT_{\Sigma}}(tup\{d \to t_d \mid d : s \to e \in D\}) =_{def} \epsilon\{d \to t_d \mid d : s \to e \in D\}.$



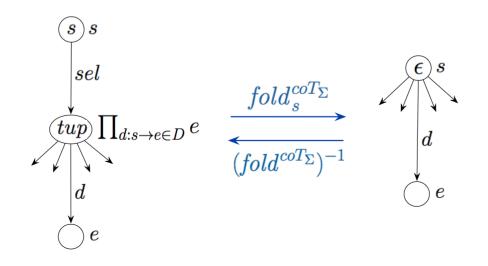
• For all $t_i \in coT_{\Sigma,e_i}$, $i \in I$, and $k \in I$, $\pi_k(tup\{i \to t_i \mid i \in I\}) =_{def} t_k$.

• For all $i \in I$ and $t \in coT_{\Sigma,e_i}, \iota_i(t) =_{def} i\{sel \to t\}.$

 $T_{co\Sigma}$ and coT_{Σ} are $co\Sigma$ -isomorphic. Equivalently,

 $fold^{coT_{\Sigma}}: T_{co\Sigma} \to coT_{\Sigma}$

is bijective.



Iterative Σ -equations

Let $\Sigma = (S, \mathcal{I}, F)$ be a constructive or destructive signature and V be a finite S-sorted set. An S-sorted function

$E: V \to T_{\Sigma}(V)$

with $img(E) \cap V = \emptyset$ is called a system of iterative Σ -equations.

E is usually written as $\{x = E(x) \mid x \in V\}$.

Let Σ be constructive, $\mathcal{A} = (A, Op)$ be a Σ -algebra and A^V be the set of S-sorted functions from V to A.

 $g \in A^V$ solves E in \mathcal{A} if $g^* \circ E = g$.

E turns $T_{\Sigma}(V)$ into a *co* Σ -algebra: Let $s \in S$, $I \in \mathcal{I}$ and $\{e_i\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $x \in V_s$, $s^{T_{\Sigma}(V)}(x) =_{def} s^{T_{\Sigma}(V)}(E(x))$.
- For all $c: e \to s \in F$, $t \in T_{\Sigma}(V)_e$, $s^{T_{\Sigma}(V)}(c\{sel \to t\}) =_{def} c\{sel \to t\}$.
- For all $t_i \in T_{\Sigma}(V)_{e_i}$, $i \in I$, and $k \in I$, $\pi_k(tup\{i \to t_i \mid i \in I\}) =_{def} t_k$.
- For all $i \in I$ and $t \in T_{\Sigma}(V)_{e_i}$, $\iota_i(t) =_{def} i\{sel \to t\}$.

Theorem SOL

$$V \xrightarrow{inc_V} T_{\Sigma}(V) \xrightarrow{unfold^{T_{\Sigma}(V)}} DT_{co\Sigma} \xrightarrow{(unfold^{CT_{\Sigma}})^{-1}} CT_{\Sigma}$$

solves E in CT_{Σ} uniquely.

Proof. See Theorem SOL (coalgebraic version) in Fixpoints, Categories, and (Co)Algebraic Modeling.

Example

Let $List(X) = (\{list\}, \{X\}, \{nil: 1 \rightarrow list, \ cons: X \times list \rightarrow list\}).$

Let $V = \{blink, blink'\}$. The following system of $List(\mathbb{Z})$ -equations over V has a unique solution in $CT_{List(\mathbb{Z})}$ and thus defines two elements of $CT_{List(\mathbb{Z})}$:

$$blink = cons\{sel \to tup\{1 \to 0, 2 \to blink'\}\},\$$

$$blink' = cons\{sel \to tup\{1 \to 1, 2 \to blink\}\}.$$
 (1)

Infinite Σ -terms that are representable as unique solutions of iterative equations are called **rational**. A Σ -term is rational iff it has only finitely many subterms.

Let Σ be destructive and h be the bijection between $T_{\Sigma}(V)$ and $T_{co\Sigma}(V)$ that is the identity on V and agrees with $(fold^{coT_{\Sigma}})^{-1}$ on $T_{\Sigma} = coT_{\Sigma}$.

Corollary $h \circ E$ has a unique solution in DT_{Σ} .

Proof. DT_{Σ} is a $co\Sigma$ -algebra: For all $s \in S$,

$$s^{DT_{\Sigma}}(\epsilon\{d \to t_d \mid d : s \to e \in F\}) =_{def} s\{sel \to tup\{d \to t_d \mid d : s \to e \in F\}\}.$$

By Theorem SOL, $h \circ E$ has a unique solution in $CT_{co\Sigma}$. Since $CT_{co\Sigma}$ is final in $Alg_{coco\Sigma}$, $CT_{co\Sigma}$ is $coco\Sigma$ -isomorphic to $A =_{def} DT_{coco\Sigma}$. A is a Σ -algebra: For all $s \in S$ and $d: s \to e$ and $t_d \in A_e, d: s \to e \in F$,

$$d^{A}(\epsilon\{s \to s\{sel \to tup\{d \to t_{d} \mid d: s \to e \in F\}\}) =_{def} t_{d}.$$

 $unfold^A : A \to DT_{\Sigma}$ is bijective: The inverse maps $\epsilon \{d \to t_d \mid d : s \to e \in F\} \in DT_{\Sigma}$ to $\epsilon \{s \to s \{sel \to tup \{d \to t_d \mid d : s \to e \in F\}\}\}.$

Hence $CT_{co\Sigma} \cong A \cong DT_{\Sigma}$ and thus the solutions of $h \circ E$ in $CT_{co\Sigma}$ and DT_{Σ} , respectively, coincide up to isomorphism.

Example

Let $V = \{esum, osum\}$. Given the following system E of $Acc(\mathbb{Z})$ -equations over V, $h \circ E$ has a unique solution in $DT_{Acc(\mathbb{Z})}$ and thus defines two elements of $DT_{Acc(\mathbb{Z})}$:

 $esum = \epsilon \{\delta \to tup(\{x \to esum \mid x \in even\} \cup \{x \to osum \mid x \in odd\}), \beta \to 1\},$ $osum = \epsilon \{\delta \to tup\{x \to osum \mid x \in even\} \cup \{x \to esum \mid x \in odd\}), \beta \to 0\}.$ (2)

Typed theories

Let $\Sigma = (S, \mathcal{I}, F)$ be a signature.

The set der_{Σ} of derived Σ -operations is inductively defined as follows: Let $I \in \mathcal{I}$ and $\{e_i\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- $F \subseteq der_{\Sigma}$.
- For all $e \in \mathcal{T}(S, \mathcal{I})$ and $i \in I, \overline{i} : e \to I \in der_{\Sigma}$.
- For all $f: e \to e', g: e' \to e'' \in der_{\Sigma}, g \circ f: e \to e'' \in der_{\Sigma}.$
- $\pi_i : \prod_{i \in I} e_i \to e_i, \ \iota_i : e_i \to \coprod_{i \in I} e_i \in der_{\Sigma}$ (also written as *id* if *I* is a singleton).
- For all $f_i: e \to e_i \in der_{\Sigma}, i \in I, \langle f_i \rangle : e \to \prod_{i \in I} e_i \in der_{\Sigma}.$
- For all $f_i: e_i \to e \in der_{\Sigma}, i \in I, [f_i]: \coprod_{i \in I} e_i \to e \in der_{\Sigma}.$
- λ -abstraction:

For all $c_i : e_i \to e$, $f_i : e_i \to e' \in der_{\Sigma}$, $i \in I$, $\lambda\{c_i, f_i\}_{i \in I} : e \to e' \in der_{\Sigma}$.

• κ -abstraction:

For all $d_i: e \to e_i, f_i: e' \to e_i \in der_{\Sigma}, i \in I, \kappa\{d_i, f_i\}_{i \in I}: e' \to e \in der_{\Sigma}.$

 $Th(\Sigma) = (S, \mathcal{I}, F \cup der_{\Sigma})$ is called the (algebraic) Σ -theory.

Let $\mathcal{A} = (A, Op)$ be a Σ -algebra.

The $Th(\Sigma)$ -algebra $\mathcal{B} = Th(\mathcal{A})$ with $\mathcal{B}|_{\Sigma} = \mathcal{A}$ and the following interpretation of der_{Σ} is called the **theory of** \mathcal{A} .

Let $I \in \mathcal{I}$ and $\{e_i\} \subseteq \mathcal{T}(S, \mathcal{I})$.

- For all $e \in \mathcal{T}(S, \mathcal{I}), id^{\mathcal{B}} = id_A$.
- For all $e \in \mathcal{T}(S, \mathcal{I}), i \in I$ and $a \in A_e, \bar{i}^{\mathcal{B}} = \lambda x. i.$
- Compositions, projections, injections, product and coproduct extensions are defined as usually.
- For all $c_i : e_i \to e, f_i : e_i \to e' \in der_{\Sigma}, i \in I$, such that $\{c_i^{\mathcal{B}} \mid i \in I\}$ is a set of constructors for e, for all $k \in I$,

$$(\lambda \{c_i.f_i\}_{i\in I})^{\mathcal{B}} \circ c_k^{\mathcal{B}} = f_k^{\mathcal{B}}.$$

• For all $d_i: e \to e_i, f_i: e' \to e_i \in der_{\Sigma}, i \in I$, such that $\{d_i^{\mathcal{B}} \mid i \in I\}$ is a set of destructors for e, for all $k \in I$,

$$d_k^{\mathcal{B}} \circ (\kappa \{ d_i f_i \}_{i \in I})^{\mathcal{B}} = f_k^{\mathcal{B}}.$$

The following lemma implies that λ - and κ -abstractions are well-defined:

(1) Let $\{f_i : A_{e_i} \to A_e \mid i \in I\}$ be a set of constructors for e. For all $a \in A_e$ there are unique $i \in I$ and $b \in A_{e_i}$ such that $f_i^A(b) = a$. (2) Let $\{f_i : A_e \to A_{e_i} \mid i \in I\}$ be a set of destructors for e. For all $a, b \in A_e$, a = b if $f_i(a) = f_i(b)$ for all $i \in I$.

For ease of notation, $Th(\mathcal{A})$ may be regarded as the category with $\mathcal{T}(S,\mathcal{I})$ as the set of objects and the operations of $Th(\mathcal{A})$ as morphisms: Every $Th(\mathcal{A})$ -morphism $f: e \to e'$ denotes the interpretation of some derived Σ -operation in \mathcal{A} .

Example

Let $p: e \to 2$ and $f, g: e \to e'$ be $Th(\mathcal{A})$ -morphisms. The conditional

if p then f else
$$g: e \to e'$$

can be derived as follows:

if p then f else
$$g = e \xrightarrow{\langle id, p \rangle} e \times 2 \xrightarrow{\lambda\{\langle id, \overline{1} \rangle \cdot f, \langle id, \overline{0} \rangle \cdot g\}} e'.$$

Recursive Σ -equations

 $\begin{aligned} & \textit{factorial} : \mathbb{N} \to \mathbb{N} \\ & \textit{factorial} = \lambda \{ \overline{0}.\overline{1}, \ (+1).(*) \circ \langle \textit{id}, \textit{factorial} \circ (-1) \rangle \} \end{aligned}$

$$\begin{aligned} factorial &: \mathbb{N}^2 \to \mathbb{N}^2 \\ factorial &= [id, \ factorial \circ (x \leftarrow x - 1) \circ (y \leftarrow x * y)] \circ (x = 0) & \text{or} \\ factorial &= if \ x \equiv 0 \ then \ id \ else \ factorial \circ (x \leftarrow x - 1) \circ (y \leftarrow x * y) \\ & \text{where} \ (x = 0)(m, n) = if \ m = 0 \ then \ \iota_1(m, n) \ else \ \iota_2(m, n) \\ & (x \equiv 0)(m, n) = if \ m = 0 \ then \ 1 \ else \ 0 \\ & (x \leftarrow x - 1)(m, n) = (m - 1, n) \\ & (y \leftarrow x * y)(m, n) = (m, m * n) \end{aligned}$$

$$\begin{aligned} zip : X^{\mathbb{N}} \times X^{\mathbb{N}} \to X^{\mathbb{N}} \\ zip \ = \ \kappa \{head.head \circ \pi_1, \ tail.tail \circ zip \circ \langle \pi_2, tail \circ \pi_1 \rangle \} \end{aligned}$$

Where do such equations have unique solutions?