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Abstract

We present a number of swinging specifications with visible and/or hidden components, such as lists, sets,
bags, maps, monads, streams, trees, graphs, processes, nets, classes, languages, parsers,... They provide more
or less worked-out case studies and shall allow the reader to figure out the integrative power of the swinging
type approach with respect to various specification and proof formalisms. For instance, the translation of
algebraic nets into swinging types admits the generalization of net proof methods and thus—via a compiling
graph grammar—ifor verifying SDL specifications. Similarly, UML class diagrams and state machines are
turned into swinging types in order to make them amenable to constraint solving and proving.
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1 Standard types 3

All specifications presented in the paper follow the syntax of swinging types. The main actual definitions
can be found in [78]: Def. 1.1 (swinging signature), Def. 1.2 (basic Horn specification, swinging type), Def. 1.5
(Herbrand model, functional, continuous, behaviorally consistent specification), Def. 3.1.1 (cosignature), Def.
3.1.7 (cospecification), Def. 3.2.1 (coalgebraic swinging types), Def. 5.1 (coinductive specification). Roughly
said, a coalgebraic swinging type is a swinging type built up from a cospecification. Coinductive, functional and
continuous specifications are behaviorally consistent ([78], Thm. 5.4; previous version: [75], Thm. 6.5). Criteria
for functionality and continuity are given in [74], [76], Chapter 5, and [75], Section 5.

1 Standard types

1.1 Numbers and Booleans

Natural number arithmetic is presented in terms of a basic Horn specification:

NAT
sorts nat
constructs 0 :— nat
_+1:nat — nat
defuncts _+ _:nat X nat — nat
_— _:nat X nat — nat
min : nat X nat — nat
static preds _# _:nat X nat
_< _:nat X nat
_> _:nat X nat
_< _:nat X nat
vars T,y : nat
Horn axioms O+zx=2x
@+l +y=(@+y) +1
0—2z=0

(@+l)—y=@-y) +1
min(z,x) =z
min(z,y) =z < x<y
min(z,y) =y < x>y
0£zxz+1

x+1#0

r+1#Zy+1 < x#y
O<z+1

r+l<y+1l < <y
r>y <= y<zx

r<zx

<y & <y

A swinging type with empty visible subspecification provides another presentation of natural number arithmetic:

HNAT
hidsorts nat
constructs 0,1 :— nat

_+ _:nat X nat — nat
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_— _:nat X nat — nat

destructs pred : nat — 1 + nat

vars T, Yy, 2 nat

Horn axioms pred(0) = ()
pred(1) = (0)
pred(x +y) = () < pred(z) = () Apred(y) = ()
pred(x +y) = (2) < pred(z) = () Apred(y) = (2)
pred(x +y) = (z+y) < pred(z) = (z)
pred(x —y) = () < pred(z) = ()
pred(x —y) = (z—y) < pred(z) = (z)

Note that these axioms are coinductive if one uses the extended definition of observing atoms given in Section
1 (cf. [75], Def. 6.1).

NAT and HNAT are dual to each other: the inverse of NAT’s nat-constructor succ provides HNAT’s nat-
destructor pred. The initial NAT-model is isomorphic to the final HNAT-model. Both are isomorphic to N. In
contrast to NAT, HNAT can be extended easily to a specification of N W {oo}:

NAT,, = HNAT then
constructs o0 :— nat
Horn axioms pred(oo) = (00)

The final NAT,.-model is isomorphic to the final F-coalgebra N where F(A) =qer 1 + A. More precisely, N
and 1 + N are isomorphic to the nat- resp. nat'-carrier of Fin(NAT,,). Dually, N is the initial F-algebra and
isomorphic to the initial NAT-model (see Section 6).

Let us show that « + 0o ~ oo is an inductive theorem of NAT,. For the rules applied here, see [76, 78].

Va:z+o00~o0

coinduction on ~, 4

F Jg¢gVa:q(x+oo,00) AVy, z:(q(y,2) = ¢ (pred(y), pred(z)))
define ¢ by the axioms ¢(z + 00, 00), ¢(00,c0) and unfold ¢

F Va,y,z: (y=x+ 00 Az=00)= ¢ (pred(y), pred(z))) A

Vy,z: (y =00 Az =00) = ¢ (pred(y), pred(z)))

variable elimination

F Va:d(pred(xz + 00),pred(o0)) A ¢ (pred(oo), pred(oo))
unfold pred

V2 g (pred(s + 0, (00)) A ¢'((00), (50)
unfold ¢’ with the implicit axioms of ¢’ (cf. [78], Section 1)

F Va:d(pred(z + o0), (00)) A g(oo,00)
unfold ¢

F Va:d(pred(z + o0), (00))
unfold pred

E Va:(32:q((2),(0)) Apred(z) = () Apred(oo) = (2)) V (3y: ¢ ((y +00),(00)) A pred(z) = (y))
unfold pred

F Ya: (3z2:¢((2),(00)) Apred(z) = () A (00)
constructor elimination

F Vs (32:d((2),(00) Apred(z) = ) Aco=2) V By d((y+00), (59)) Apred(z) = (1))
variable elimination

E Va:(¢((00),(0)) Apred(z) = () vV (Fy:q((y+00),(c0)) Apred(z) = (y))

(2)) vV By :d((y+00) (c0)) Apred(z) = (y))
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unfold ¢’

F Va: (g(oo,00) Apred(z) =()) V (y:qly+ o0o,00) Apred(z) = (y))
unfold ¢

F Va: (pred(z)=() vV Jy:pred(z) =
expansion with pred(z) = () V3 y: pred(x)
F True

Boolean arithmetic is also presented in terms of a basic Horn specification:

BOOL

sorts bool

constructs true, false :— bool

defuncts not : bool — bool
and, or, eq : bool x bool — bool

static preds _# _: bool x bool

vars b, ¢ : bool

Horn axioms not(true) = false true and b=b
not(false) = true false and b= false
true or b = true true Z false
false or b=b false # true

eq(true,b) =b
eq(false,b) = not(b)

The following specification of integer numbers represents the numbers as terms constructed from 0, 1, + and
-. Since the induced structural equivalence is too fine for representing the equality of integers, we specify this

equality as a behavioral one with three destructors: successor, predecessor and a test on zero.

INT = BOOL and
hidsorts int
constructs 0,1:—1nt
_+ _:int X int — int
_— _int X int — int

destructs pred, succ : int — int
zero : int

vars T,y :int

Horn axioms succ(0) =

pred(1l) =
pred(x +y) = (x +y) — 1
pred(z+y) = (z—y) -1

The destructor zero cannot be dropped. Otherwise all int-terms were behaviorally equivalent. The domain
completion of INT contains additional axioms succ(i) =i + 1 and pred(i) =i — 1 for each i € Z.

Exercise. Show that (z +y) —y ~ = and (z — y) +y ~ z are inductive theorems of INT!
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1.2 Generic types

We specify frequently used generic data types, namely lists, sets, bags (or multisets) and maps (or arrays).
We use parameter specifications similarly to Haskell type classes each of which is associated with some sort
variable s [15]. A type class TC(s) consists of functions and predicates that are polymorphic in s and axioms
that restrict the instances of s to those sorts for which corresponding instances of the functions and predicates
exist and meet the axioms. T'C(s) in the list of base specifications of another specification SP stands for all
those instances used in SP. In this way, SP becomes generic type. For example, the parameter ENTRY (s)
(see below) demands an inequality for s and the subsequent generic type LIST has ENTRY (entry) in the
list of base specifications and thus may use all sorts, functions and predicates that are polymorphic in entry
(like list(entry)) or in instances of entry (like list(list(entry))) provided that inequalities for the latter can be

derived from the presupposed inequality for entry.

This concept of parametric polymorphism makes signature morphisms superfluous as a means for instantiating
parameter specifications, but of course not as a means for structuring specifications vertically by refinement or

data type change.

We use some CASL notations [18]: “and” builds the non-disjoint union of specifications and thus identifies
synonymous, equally-typed symbols of the argument specifications. “then” denotes the extension operator that
combines a specification with additional signature symbols and axioms.

ENTRY (s) = BOOL then

functs eq: s X s — bool
preds _FE_1sXxS8

vars T,y 8

axioms rZys(r=y)

eq(z,x) = true
eq(z,y) = false < z#y

1.2.1 Lists and binary trees

LIST = ENTRY (entry) and ENTRY (entry’) and NAT then
hidsorts list = list(entry) list’ = list(entry’)
objconstructs [| :— list
_:_tentry x list — list

defuncts eq : entry X entry — bool
[] : entry — list
- list x list — list
join‘_: list X list — list
_—_list x list — list
N2 list X nat — 1+ entry
drop : nat X list — list
sublist : list — (nat x nat — list)
flatten : list(list) — list
mklist : entry* — list
map : (entry — entry’) — (list — list’)
filter : (entry — bool) x list — list
length : list — nat

card : list X entry — nat
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concatMap : (entry — list’) — (list — list’)
in : entry x list — bool
exists, forall : (entry — bool) X list — bool
null : list — bool
static preds _€ _:entry x list
_¢& _:entry X list
_#F _:list x list
sorted : list(nat)

vars x,y:entry L,L':list L":list(list) n:nat

f rentry — entry’ g :entry — bool h :entry — list’
Horn axioms eq(x,x) = true

eq(z,y) = false < xZy

[z]=a:]]

[HL=L

(z:L)+HL =z:(L+L)
Lijoin'l' =L ++(L— L)
L — L' = filter(Az.not(in(x, L"), L)

It =

(x: D)0 = (x)

(z: L) (n+1)=Lln

drop(n, [|) = ]

drop(0,L) =L

drop(n+ 1,z : L) = drop(n, L)

sublist([) (i) =

sublist(xz : L)(0,0) =]

sublist(z : L)(0,7 + 1) = x : sublist(L)(0, )
sublist(x : L)(i+ 1,7 + 1) = sublist(L)(4, j)
flatten([]) = ]

flatten(L : L") = L 4+ flatten(L")
mklist(()) =[]

mklist((z1,...,2,)) = x1 : mklist(xa, ..., x,)
map(f)([]) = [

map(f)(x: L) = f(x) : map(f)(L)

filter(g, ) = |

filter(g,xz : L) = x : filter(g,L) < g(x)=true
filter(g,z : L) = filter(g,L) < g(z) = false

length([]) =0
length(x : L) = length(L) + 1
card([],z) =0

card(xz : L,x) = card(L,x) + 1

card(x : L,y) = card(L,y) < xZ%y
concatMap(h)([]) =]

concatMap(h)(z : L) = h(x) +HconcatMap(h)(L)
in(z, L) = exists(Az.eq(z,y), L)

exists(g,[]) = false

exists(g,x : L) = g(x) or exists(g, L)

forall(g,[]) = true

forall(g,z : L) = g(z) and forall(g, L)
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null([]) = true

null(L) = false < L#]]
xe€Ll < in(z,L)=true

€L < in(x,L)= false

sorted(]])

sorted([x])

sorted(z :y: L) < x<yAsorted(y:L)

standard inequality axioms (see [75], Section 4)

For any correct actualization SP of LIST that assigns the sort s to entry, Ini(SP)s: is isomorphic to Ini(SP)*
and thus to the initial F-algebra where F'(A) =gef 1+ (Ini(SP)s x A) (see Section 6).

A hidden specification of lists would amount to a specification of streams such as FSTREAM (cf. Section

4.2) where, however, all ground normal forms of sort stream denote finite streams.

n 2n 2n+1
l L ¢ list2heap
I IEY B N A
heap2list

Figure 1. From lists to heaps and backwards.

The mutual translation between lists and binary trees according to the heap order is an instructive example

of how to use sum sorts for specifying exceptions and error recovery.

HEAP = LIST then

hidsorts

objconstructs

defuncts

vars

Horn axioms

bintree = bintree(entry)

mt :— bintree

_#_#_: bintree X entry x bintree — bintree

list2heap : list — bintree

mkHeap : list X nat — 1 + bintree

heap2list : bintree — list

heaps2list : list(bintree) x list — list

root : bintree — list

subtrees : bintree — list(bintree)

x:entry n:nat L:list T,T :bintree TL: list(bintree)

list2heap([]) = mt

list2heap(x : L) =T <« mkHeap(z:L,1) = (T)

mkHeap(L,n) = () < nth(L,n—1)=()

mkHeap(L,n) = (mt#x#mt) < nth(L,n—1)=(z) A

mkHeap(L,2+n) = () A
mkHeap(L,2+xn+ 1) = ()

mkHeap(L,n) = (mt#x#T) < nth(L,n—1)=(z) A
mkHeap(L,2xn) = () A
mkHeap(L,2xn+ 1) =

mkHeap(L,n) = (T#x#mt) < nth(L,n—1)= (z) A

(T)
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mkHeap(L,2 xn) = (T) A
mkHeap(L,2xn+1) = ()

mkHeap(L,n) = (T#a#T') < nth(L,n—1)=(x) A
mkHeap(L,2*n) = (T) A
mkHeap(L,2xn+1) = (T")

heap2list(T) = heaps2list([T],][])

heaps2list([],L) = L

heaps2list(T : TL, L)

= heaps2list(concatMap(subtrees)(T : TL), L ++concatMap(root)(T : TL))

root(mt) = ||

root(T#a#T") = [z]

subtrees(mt) = ||

subtrees(TH#x#T") = [T,T]

Exception handling with sum sorts can be implemented directly in a functional language like ML as well
as in a procedural language like Java by employing the corresponding language constructs (raise and handle in
ML; throw and try/catch in Java).

1.2.2 Sets

Sets of a given set of entries can be specified in several ways. In the first version, many set operators are declared
as constructors. All axioms are coinductive (cf. [78], Def. 5.1).

SET = LIST then
hidsorts set = set(entry)
constructs 0,all :— set
{_} : entry — set
_U_:set X set — set
_\ -t set x set — set

compr : (entry — bool) — set set comprehension
destructs in : entry x set — bool
defuncts _N_:set X set — set

filter : (entry — bool) x set — set
insert, remove : entry X set — set
mkset : list — set
mkset : entry* — set
static preds finite : set
_€ _:entry X set
_¢& _:entry X set
exists : (entry — bool) x set
v-preds isempty, in finite : set
_C _:set x set

forall : (entry — bool) x set

vars x,y:entry s, :set S:entry* L:list(entry) g:entry— bool
Horn axioms in(z,0) = false
n(z,all) = true

(
in(z,sUs') = in(z,s) or in(x,s’)
(

n(z,s\s') = in(x,s) and not(in(z,s’))
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n(x, compr(g)) = g(x) g(z) stands for apply(g, x).
{z} = compr(Ny.eq(z,y))

sNs’ = ((sUs)\(s\s')\(s"\s)

filter(g,s) = compr(g) Ns

insert(x,s) = sU{z}

remove(x, s) s\ {z}

0

mkset(]]) =

mkset(x : L) = insert(x, mkset(L))
mkset(S) = mkset(mklist(S))

finite(s) < isempty(s)

finite(s) < x € sA finite(remove(z, s))

re€s <« in(z,s)=true

x¢s < in(z,s)= false

erists(g,s) < x€sAg(x)=true
co-Horn axioms isempty(s) = (v €s = False)

infinite(s) = (finite(s) = False)

sCs = (zes = zed)

forall(g,s) = (ze€s = g(r) =true)

Regardless of the actualization of entry, as a non-coalgebraic swinging type, SET presents only those sets
of entries that are reachable by the respective set constructors, i.e., only countable sets. If SET is regarded as
a coalgebraic swinging type, SET presents all elements even of an uncountable powerset.

For specifying defined functions whose axioms use v-predicates we regard SET as the visible subspecification
of the following extension of SET:

SET1 = SET and NAT,, then

defuncts map : (entry — entry’) x set — set

exists : (entry — bool) x set — bool

|| : set = nat
vars x :entry s:set f:entry — entry g :entry — bool
Horn axioms exists(g, s) =true < exists(g,s)

exists(g,s) = false <  forall(noto g,s)
map(f,s) = compr(exists(\y.eq(f(y),x),s))
[s| =0 < isempty(s)

|s| = [remove(z,s)|+1 <« finite(s) ANz € s
[s] =00 <« infinite(s)

Some axioms might look rather unusual. The reason is that they should be coinductive. Coinductivity
forbids axioms for defined functions or p-predicates that represent inductive definitions on hidden normal forms.
However, condition (3) of the definition of a coinductive specification ([78], 5.1) also admits non-coinductive
axioms for a function or predicate whose compatibility with behavioral equivalence can be shown directly. For
instance, if we restrict ourselves to a specification of finite sets, the constructors ), {_} and U are sufficient for
building up all members of the set domain so that the following specification is complete — and coinductive

because it can be proved directly that each symbol whose axioms are not coinductive is compatible with
behavioral equivalence.

FINSET = LIST then

hidsorts set = set(entry) set’ = set(entry’)
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constructs

destructs

defuncts

static preds

vars

Horn axioms

0 :— set

{_}: entry — set

_U_: set X set — set

in : entry x set — bool

_N_:set X set — set

insert, remove : entry x set — set
mkset : list — set

mkset : entry* — set

S\ -t set x set — set

filter : (entry — bool) x set — set
map : (entry — entry’) x set — set’
|| : set = nat

exists, forall : (entry — bool) x set — bool
isempty : set — bool

flatten : set(set) — set

_€ _:entry X set

_¢ _:entry X set

exists, forall : (entry — bool) X set
isempty : set

_C _:set X set

T,Y,T1,..., Ty entry 8,8 ,8" :set [ :entry — entry g :entry — bool
in(xz,0) = false

in(z,{y}) = eq(z,y)

in(z,sUs") = in(z,s) or in(x,s’)

sNs’ = ((sUs)\(s\s))\(s"\s)

insert(x,s) = sU{x}

s\ {z}

mkset([

mkset(x : L) = insert(x, mkset(L))
mkset(()) = 0

mkset((z1,...,2,)) = {z1}U---U{zp}
s\ s = filter(Az.not(in(z,s")), s)
filter(g,0) = 0

filter(g,{z}) = 0 < g(x) = false
filter(g,{z}) = {a} <« g(z) =true
filter(g,sUs") = filter(g,s)U filter(g,s’)
map(f,0) = 0

map(f, {z}) = {f(@)}

map(f,sUs") = map(f,s) Umap(f,s')
0] = 0

o} = 1

[sUs'| = |s\s|+]s"\ s

exists(g,0) = false

exists(g,{z}) = g(z)

exists(g,sUs') = ewists(g,s) or exists(g,s’)
forall(g,s) = not(exists(noto g,s))
isempty(0) = true

isempty(sUs’) = isempty(s) and isempty(s’)

11

L :list
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flatten(@) = 0
flatten({s}) = s
flatten(s U s") = flatten(s) U flatten(s’)

x€s <« in(x,s) = true
xds < in(z,s) = false
exists(g, s) exists(g,s) = true

=
forall(g,s) < forall(g,s) = true
DCs
{z} Cs <« ze€s
(sUs)Cs" « sCs" N Cs”
The following specification, LIST2SET, of finite sets actually presents lists. For obtaining sets, we apply
a model transformer to the final model of LIST2SET. Given a signature ¥ and a subsignature 3’ of X, the
restriction operator induced by ¥', reachs:, maps a Y-structure A to the least ¥'-substructure A’ contained
in A. For all sorts s € X', A” consists of all elements of A that have a ground ¥'-term representation, i.e.
a = t4 for some t € Tsy. Given that DF is the set of defined functions of a swinging type SP and EF is
the set of those defined functions that are declared as generators, the standard model of SP is defined as

reachg\DpuEF(Fin(SP)).

If SP=LIST2SET, this model consists of all sorted lists of entries, which provide unique representations of

finite sets of entries

ORDER (entry) = ENTRY (entry) then
preds _< _:entry X entry
_> _:entry X entry
_< _:entry X entry
vars x,y :entry

axioms r<yVa>y r<yey>w r<ys (zr<yVr=y)

LIST2SET = ORDER(entry) and ORDER(entry’) and NAT then
hidsorts set = set(entry) set’ = set(entry’)
objconstructs [ :— set

_:_:enlry X set — set
generators 0:— set
{-} : entry — set
U : set X set — set
insert, remove : entry X set — set
mkset : list — set
filter : (entry — bool) x set — set
map : (entry — entry’) x set — set’
|| : set = nat
in : entry x set — bool
exists, forall : (entry — bool) x set — bool
isempty : set — bool
flatten : set(set) — set
static preds _€ _:entry x list
_¢& _:entry X list
_C _:set X set

vars x,y:entry s,8 :set S:set(set) f:entry— entry g :entry — bool



1.2 Generic types 13

L:list

Horn axioms 0 =
{z} = =]
JUs = s
(x:s5)Us = insert(x,sUs’)
insert(x,[]) = z:]]
insert(x,y:s) = x:s
insert(x,y:s) = x:(y:s) <« x<y
insert(x,y:s) = y:insert(z,s) < x>y
remove(x,s) = filter(Ay.not(eq(z,y)),s)
mkset([]) = 0
mkset(x : L) = insert(xz, mkset(L))
filter(g,[]) = ||
filter(g,xz : s) = filter(g,s) < g(x)= false
filter(g,xz :s) = x: filter(g,s) < g(x) =true
map(f.[) = [
map(f,z:s) = insert(f(z), map(f,s))
0l = o
|z:s] = [s|+1
in(z, s) exists(Ay.eq(z,y), s)

exists(g,[]) = false
exists(g,x:s) = (g(x) or exists(g,s)

forall(g,s) = not(exists(noto g,s))
]

isempty([]) = true
isempty(x : s) = false
flatten([]) = ||

flatten(s: S) = sU flatten(S)
x€s < in(x,s)=true
xg€s < in(z,s)= false
lcs

r:5Cs <« zesnsCs

Since the generators create only sorted lists or transform sorted lists into sorted lists, each ground term built
up of generators is structurally equivalent to a normal form representing a sorted list. Hence each finite set has

a unique representation in reachs\ prupr (Fin(LIST2SET)).

1.2.3 Multisets

The behavioral equivalence of bags or multisets is determined by the destructor card, which returns the number
of occurrences of a given entry in a bag. Two finite bags are behaviorally equivalent iff the lists they are
constructed from are permutations of each other. Hence a specification of bags can be used, for instance, for
proving conjectures about list permutations, such as the condition that a sorting algorithm returns a permutation

of its input.

BAG = LIST then
hidsorts bag = bag(entry) bag’ = bag(entry’)
constructs empty :— bag
[] : entry — bag
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destructs
defuncts
static preds
v-preds

vars

Horn axioms

co-Horn axioms

1 Standard types

_:bag X bag — bag

— _:bag X bag — bag
map : (entry — entry’) x bag — bag’
card : bag x entry — nat
mkbag : list — bag
_€ _:entry X bag
exists : (entry — bool) x set
isempty : bag X bag

C _:bag X bag
forall : (entry — bool) x set
z,y :entry bb :bag f:entry— entry g:entry — bool L :list
card([z],z) = 1
card([z],y) = 0 < z#y
card(b+V,z) = card(b,x)+ card(V, )
card(b—Vb,z) = card(b,x) — card(V, )
card(empty,x) = 0
card(map(f,b),x) = card(byy) < f(y)==z
mkbag([]) = empty
mkbag(x : L) = [z] + mkbag(L)
xeb <« card,x)>0
exists(g,b) < x€bAg(x)=true
isempty(b) = (x €b = False)
bCc = (r€b = ze€c
forall(g,b) = (xre€b = g(x) = true)

All axioms for bag functions are coinductive except those for |_|. Similarly to the step from SET to FINSET,

we may turn several bag constructors into defined functions if only finite bags are to be specified. Again,

many of the new axioms are not coinductive. Hence the compatibility of behavioral equivalence with defined

functions must be proved explicitly. For minimizing the number of cases to be considered we reduce the set

of constructors to a singleton, namely mkbag : list — bag. Behavioral FINBAG-equivalence actually coincides
with the equivalence kernel of (the interpretation of) mkbag (in the Herbrand FINBAG-model).

FINBAG = LIST then
hidsorts
constructs
destructs
defuncts

static preds

v-preds

bag = bag(entry) bag’ = bag(entry’)
mkbag : list — bag
card : bag x entry — nat
empty :— bag
[] : entry — bag
_:bag X bag — bag
— _:bag X bag — bag
map : (entry — entry’) x bag — bag’
filter : (entry — bool) x bag — bag
exists : (entry — bool) x bag — bool
forall : (entry — bool) x bag — bool
isempty : bag — bool
|| : bag — nat
€ _:entry X bag
_:bag x bag
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vars

Horn axioms

co-Horn axioms

1.2.4 Maps

z,y:entry bbb :bag f:entry — entry
card(mkbag(L),z) = card(L,x)

empty = mkbag([])

[z] = mkbag([x])

mkbag(L) + mkbag(L') = mkbag(L +L")
mkbag(L) — mkbag(L') = mkbag(L — L)
map(f, mkbag(L)) = mkbag(map(f)(L))
filter(g,mkbag(L)) = mkbag(filter(g, L))
exists(g,mkbag(L)) = ewxists(g, L)
forall(g, mkbag(L)) = forall(g, L)
isempty(mkbag(L)) = null(L)
|mkbag(L)| = length(L)

x € mkbag(L) <= =z €L

bCc = (re€b = zec

(w
(w

g : entry — bool

L :list
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The third common schema of a permutative type provides partial functions, also called arrays if the doamin is

finite, or tables or matrices if the domain is a binary relation.

MAP = ENTRY (domain) and ENTRY (range) and SET then

hidsorts

constructs

destructs

defuncts

vars

Horn axioms

MAP+4 = MAP then

map = map(domain, range)

new :— map

upd : domain X range X map — map
get : map X domain — 1 + range
dom : map — set(domain)

ran : map — set(range)

pre : map X range — set(domain)
remove : domain X map — map

_x _:map X (range — range) — map

i,7 : domain x,y :range f:map h:range — range

get(new,i) = ()
get(upd(i,z, f),i) = (z)
get(upd(i,x, ), j) = get(f,j) < i#j

pre(new,z) =0

pre(upd(i, z, ), x) = insert(i, pre(f, z))

pre(upd(i,z, f),y) = pre(f.y) < zZy
)

upd(i,x, f) * b = upd(i, h(x), f * )

= upd(j, x, remove(i, f)) <«

i F ]

update
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defuncts _+ _:map X map — 1 + map
vars i :domain x :range f,g,f :map
Horn axioms new + f = (f)

upd(i,z, f) + g = (upd(i,z, f')) <« i¢dom(g)Nf+g=(f)
upd(i,z, f)+9=() <= igdom(g)Af+g=()
upd(i,z, f)+g9=() <« i€ doml(g)

The following function uses adopted from [33] transforms a list L of map-updates and -lookups into the list
of values returned by the lookups of L:

USELIST = MAP and LIST then

vissorts occ
constructs def : domain X range — occ

use : domain — occ
defuncts uses : list(occ) — list(1 + range)

loop : list(occ) x map — list(1 + range)
vars L : list(occ) i:domain x:range f:map
Horn axioms uses(L) = loop(L, new)

toop([], f) = |

loop(def (i,z) : L, f) = loop(L, upd(i, x, f))
loop(use(i) : L, f )—get(ﬂ) loop(L, f)

An implementation of USELIST that regards the variable f only as a pointer to an object of sort map would
not comply with the intended semantics of the specification that is given by the Herbrand model of USELIST.
The error occurs when the last axiom is applied and f is copied. For instance, consider the following reduction:

uses([def(1,a),use(1),def(1,b)]) — loop([def(1,a),use(1),def(1,b)], new)

— loop([use(1),def(1,b)], upd(1, a,new)) — get(upd(1, a,new),1) : loop([def(1,b)], upd(1, a,new)).
If the last step is implemented in a multi-threaded way, i.e. instead of copying upd(1, a, new) a second reference
to this term is generated, then the subsequent reduction of loop([def(1,b)],upd(1,a,new)), which leads to
the replacement of upd(1,a,new) by upd(1,b,upd(1,a,new)), implicitly rewrites get(upd(1, a, new),1) to the
inequivalent term get(upd(1, b, upd(1, a, new)),1).

If the domain is ordered, we may specialize MAP to BMAP (“bounded maps”) such that the final BMAP-
model identifies all maps with identical restrictions to a given interval of domain elements.

BMAP = ORDER(domain) and ENTRY (range) then

hidsorts bmap = bmap(domain, range)

constructs new : domain X domain — bmap
upd : domain X range X bmap — bmap

destructs get : bmap x domain — 1 4+ range

defuncts lwb, upb : bmap — domain

vars 1,7,k : domain x :range f:bmap

Horn axioms get(new(i, 7),k) = ()
get(upd(i,x, f),1) = (z) < lwb(f) <iANi<upb(f)
get(upd(i,z, f),i) = () < Lwb(f) > upb(f)
get(upd(i,z, f),1) = () < lwb(f) >1
get(upd(i,z, f),i) = () <« i > upb(f)
get(upd(i,x, ), j) = get(f,j) < i#j
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lwb(new(i, j)) =i upb(new(i,j)) = j
lwb(upd(i, z, f)) = lwb(f)  upb(upd(i,z, f)) = upb(f)
1.2.5 Monads
Monads, Kleisli triples or algebraic theories [(1, (9, 83, | are parameterized domains M (s) such that,

category-theoretically, M is an endofunctor and, intuitively, M stands for a notion of computation, while M (s)
denotes the set of M-computations of values of sort s. Given a set S of sorts and a category K, suppose that
each s € S denotes an object of IC. A function M : Obj(K) — Obj(K) on a category K is a monad if for each
s € S there is a function unit = units : s — M(s) and for each function f : s — M(s’) there is a function
f*: M(s) — M(s') such that unit* is the identity on M(s) and for all f : s — M(s') and g : s — M(s"),
frounits = f and g* o f* = (¢g* o f)*. Intuitively, units embeds s into M(s) and f* extends f from s to M(s).
M becomes an endofunctor on K by defining M (f : s — s') as (units o f)*. The list monad is a built-in monad
of Haskell.

Common monads are the list or free-monoid functor _* : Set® — Set® with unit(a) =g4ef [a] and f*(L) =gef
concatMap(f)(L), the powerset functor o : Set® — Set® with unit(a) =g4er {a} and f*(A) =ger Useaf(a),
and for a signature ¥ = (S, F'), the term or free-algebra functor T% : Set® — Set® with unit(a) =4¢; a and

f*(t(alv RN an)) =def t(f(al)v ey f(an))
Given a sort s, the state monad M (s) is a functional sort of the form [state — (s X state)] that denotes a

set of state transformations with outputs in s. For all S-sorted sets A and s € S, Aps(s) =aer [@ — (As x Q)].

STATEMON = ENTRY (state) and ENTRY(s) and ENTRY(s’) then

hidsorts M(s) = state — (s X state)
destructs apply : M (s) x state — s X state
apply : (s = M(s")) x s = M(s)
defuncts return : s — M(s) Haskell notation for unit

(s — M(s) = (M(s) — M(s)))
o= M(s)x (s > M(s") — M(s)

S>>t M(s) x M(s') — M(s)

o_: (8 = M(s") x (s = M(s")) = (s = M(s"))
vars x:s stst':state m:M(s) m':M(s") fis— M(s) g:s — M(s")
Horn axioms return(z)(st) = (x, st)

frm)(st) = f(z)(st') < m(st) = (2, st')

m >= f = f*(m)

m > m' = m >= dz.m

(go f)(z) = flx) >= g
Parser monads [11] are of the form
M(tree) = input — list(tree x input)

where input is usually a product of string sorts and tree is a sort for derivation trees. For an actual input xs,
M (tree)(xs) is a list of parses of xs each of which consists of a derivation tree for some prefix of xs and the

remaining suffix of xs.

The composition operators >>=, >> and o have the same axioms in all monads.! >>= usually occurs in
a context of the form m >>= Ax.m’. If one unrolls the semantics of >>=, as it is given by the axioms of

1>>= and >> are the notations used in the functional programming language Haskell [45], whose imperative features are based
on built-in monads.
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STATEMON, m >>= Az.m’ turns out to represent an assignment to z of the output of the state transformation
m, followed by the state transformation m’ that uses (the assigned value of) xz. This motivates Haskell’s do
notation [11, 45] for nested bind expressions:

my >>= Ax1.(mg >>= Aza.(... (my >= Az,.m) ... ))

is denoted by

do{xy < my; o < Mo ... Ty & My; M}

A recursive compiler of do-expressions into bind expressions is defined as follows:

comp(do{m}) = m
comp(do{m; R}) = m > comp(do{R})
comp(do{xz <~ m; R}) = m >= Azx.comp(do{R})

With the help of STATEMON functions generating or modifying states are turned into procedures, i.e. their
axioms look more like imperative than functional-logic programs. This admits the communication between
programs of different types, in particular, at places where I/0 is performed. Therefore, Haskell ([45]) and Curry
([38]) employ a built-in I/O monad whose states are hidden insofar as they can only be accessed indirectly via
monad functions. Hence the state is single-threaded, i.e. always referenced by at most one pointer and thus
“destructive updates” of the store are safe. If a program based on STATEMON does not use state-sorted terms,
states can never be copied like, for instance, the map f is copied in the last axiom of USELIST (cf. Section
1.2.4).

If the state sort of STATEMON is actualized by map, one comes up with the monadic arrays of [33]:

MAPMON = MAP and STATEMON then
hidsorts map = map(domain,range) M(s) = map — (s X map)
defuncts New: M(s) — s
Upd : domain x range — M (1)
Get : domain — M (1 + range)
vars i:domain x :range y:s m:M(s) f:map
Horn axioms New(m)=y < m(new) = (y, f)
Upd(i,)(f) = (0, upd(is z, f)
Get(i)(f) = (get(f i), f)

Following [33] we re-program USELIST (cf. 1.2.4) in terms of MAPMON whereby maps become single-
threaded:

USELIST = MAPMON and LIST then

sorts occ
constructs def : domain X range — occ
use : domain — occ
defuncts uses : list(occ) — list(1 + range)
Loop : list(occ) — M(list(1 + range))
vars L : list(occ) i:domain x:range x':1+range L' :list(1l+ range)
Horn axioms uses(L) = New(Loop(L))

Loop([]) = return(]])
Loop(def (i,x) : L)
( =

i do{Upd(i,x); Loop(L)}
Loop(use(i) : L)

do{a’ < Get(i); L' < Loop(L); return(x’: L')}
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From the monad version of USELIST we directly obtain an imperative program. We remove the monad

constructor M, get the type of Loop as a procedure:
Loop : list(occ) — list(1 + range),

introduce a state variable f : map, remove the monad embedding return and translate the axioms of USELIST

into Java method declarations:

list(1 + range) uses(list(occ) L) {f := new; return Loop(L)}
list(1 + range) Loop(list(occ) L) {switch L { case [ : return [|;
case def(i,x): L1) : Upd(i,x); return Loop(Li);
case Loop(use() Ll) :
= Get(i); L' := Loop(Ly); return o’ : L'}}

The sort 1+ map of MAP is a sum sort that was introduced in order to totalize partial functions with range

sort map (cf. Section 1.2.4). Hence 1 + map is derived from an exception or error monad [(9, ]:

ERRORMON = ENTRY(s) then

sorts E(s)=1+s
defuncts unit : s — E(s)
s BW) = (B6) > BLs)
- 2B X (0 B() o 5
vars xseE()f E(s)
Horn axioms umt( = (x)

The axioms for + : map x map — 1+ map (cf. 1.2.4) follow a schema that becomes obvious if we respecify

this function with the help of an error monad:

MAP++ = MAP and ERRORMON then

defuncts _+ _:map x map — E(map)
vars i :domain x :range f,g,f :map
Horn axioms new + f = (f)

upd(i,z, f)+g = (f+9) > Af'.(upd(i,z, f')) <= i¢dom(g)
upd(i,z, f)+g=() < i€ dom(g)

2 Trees, graphs, and parsers

2.1 Regular trees

A tree or rooted graph is regular if all nodes are reachable from a root node and nodes with the same label

have the same outdegree.

Given that the number of different node labels is finite, a finite regular tree can be specified as a ground

normal form. Each node label becomes a constructor whose arity agrees with the node’s outdegree.

REGTREE
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sorts

constructs

defuncts
vars

Horn axioms

2 Trees, graphs, and parsers

tree

Cly...,Cm :—> lree

fi: treefr — tree k1 >0
fn: treefr — tree kn, >0
subs : tree — 11, 1 + 117 treek: subtrees
Ti,...,Ty, : tree 1<1<n

subs(c;) = ki)
subs(fi(Th,- -, Tk,)) = Gmai(T1, -, Tk,)

As an example, let us specify binary decision trees that are used for representing n-ary Boolean functions

and manipulating the representations:

BDTREE = BOOL and FINSET then

sorts
constructs

defuncts

vars

Horn axioms

bdtree

0,1 :— bdtree

fi,--., fn : bdtree x bdtree — bdtree

subs : bdtree — 1+ 1+ I, (bdtree x bdtree)
tree2fun : bdtree — (bool™ — bool)

- : bdtree — bdtree

+ : bdtree x bdtree — bdtree

restrict; : bdtree x bool — bdtree 1<i<n
reduce : bdtree — bdtree

solve : bdtree — 1 + bool™

Solve : bdtree — set(bool™)

all :— set(bool™)

compose : bdtree x bdtree — bdtree

glue : bdtree x bdtree x bdtree — bdtree

7,7 T, T, : bdtree x,x1,...,T, : bool

subs(0) = k1()
subs(1) = ka()
subs(fi(T,T")) = kors(T,T") 1<i<n

tree2fun(0) = A(z1,...,z,).false

tree2fun(1) = Az, ..., x,). true

tree2fun(f;(T,T")) = Mz, . .., xn).(not(x;) and tree2fun(T)) or
(x; and tree2fun(T")))

-0=1

-1=0

ﬁfi(TvT/) = f:(-T, _'T/)
0+T=T

1+T=1

T+0=T

T+1=1

[i(0,T) + fi(Ty, T)
Li(T,T") + f;(Th, 1)
fi(T, 1) + f3(Th, T2)
restrict;(0,2) =0

fi(T+T, T +Ty)
[i(T + f;(T1, T2), T" + f;(Th,Tz))
(T + fi(T, 1), Ty + fi(T,T7)) 1<j<i<n

restrict;(1,z) =1
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restrict;(f;(T,T"), false) =T
restrict;(f;(T,T"),true) =T’
restrict;(f;(T,T"),x) = f;(restrict,(T, x), restrict;(T', x)) 1<i#j<n
reduce(0) =0
reduce(l) =1
reduce(f;(T,T") =Ty < reduce(T) =T Nreduce(T') =To NT) =Ts
reduce(f;(T,T")) = fi(Th,Ta) < reduce(T) =Ty Areduce(T") =To ATy £ Ts
solve(0) = ()
solve(1) = (true, ..., true)
solve(fi(T,T")) = (x1,...,2i-1, false,Tit1,...,Tn) <= solve(T) = (x1,...,2,)
solve(fi(T,T")) = (x1,...,%i—1, true,Tix1,...,Tn) <= solve(T') = (z1,...,2n)
solve(fi(T,T)) = () < solwe(T) = () A solve(T") = ()
Solve(0) =0
Solve(1) = all
Solve(f;(T,T")) = filter(A(z1,...,x,).eq(x;, false), Solve(T)) U
filter(A(x1, ..., xy).eq(x;, true), Solve(T"))
compose;(f;(T,T"),0) =0
compose; (fi(T,T"),1) =1
compose; (fi(T,T"),T") = glue(T", T, T")
compose;(f;(T,T"),T") = f;(compose;(T,T"), compose;,(T",T")) 1<i#j<n
glue(0, T, T") =T
glue(1, T, T") =T’

glue(fi(T13T2 7T7 T/) = fl(glue(Tla T7 Tl)hglue(TQvTa T/))

2.2 Regular graphs

A specification of regular graphs is obtained by turning REGTREE into a coalgebraic swinging type and the

defined function subs of REGTREE into a destructor. The final model of the resulting specification contains

all regular graphs constructed from cq,...,¢,, and f1,..., fu:
REGGRAPH
hidsorts graph
destructs subs : graph — 172, 1 + H;’zlgraphki subgraphs
sink : graph — 1
constructs Cly. -y Cm i — graph
fi1: graph®* — graph ki1 >0
fn = graph*» — graph kn >0
vars T,Ty,...,Ty, : graph 1<i<n

Horn axioms

subs(c;) = ki)
subs(fi(Th, ..., Tk,)) = Emti(T1, -, Tk,)
sink(T) = ()

The set of REGGRAPH-contexts is the smallest set CT of coterms such that subs, sink € CT and

d:graph - se€(Cl = V1<i<n, 1§j§ki:d~7rj:graphki—>s€CT,
{d; : graph* — s;}7, CCT == (I ,id + 11" ,d;) - subs : graph — 117", 1 + 115, € CT.

i=
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Let CSP be the cospecification of REGGRAPH and C' = Fin(visSP) (cf. [79], Def. 4.2.1). The graph-
carrier of Fiin(C'SP) is the set of all regular graphs with leaf labels ¢y, . . ., ¢;;, and internal-node labels f1, ..., fu:
Let P = [1..grapnssccr Cs- Fin(CSP)grapn is the greatest fixpoint of the function ® : p(P) — p(P) that is
defined as follows: for all A € P,

B(A) = {acA|F1<i<n, be AV d= (I id + 117 d;) - subs € CT : wg(a) = Kpyi(ma, (b))}
The domain completion SP’ of REGGRAPH contains the following additional axiom for each a € Fin(CSP)graph,

ki) if there is 1 <4 < n such that for all d € CT, mq(a) = K;(),
subs(a) = Kmai(al,...,ag,) if there are 1 <i <n and ay,...,a, such that
for all d = (I ,id + I d;) - subs € CT, m4(a) = kmti(ma, (a1, - .., ax,)).

Since REGGRAPH has no assertions, REGGRAPH is cospec closed. [76], Korollar 6.1.5, [75], Thm. 5.15,
and [79], Thm. 7.4, imply that REGGRAPH is functional, continuous and behaviorally consistent. Hence by
[79], Thm. 4.2.5, Fin(SP’) and Fin(CSP) are isomorphic.

Similarly to the step from REGTREE to REGGRAPH we turn the specification BDTREE (cf. Section 2.1)
into a specification BDGRAPH of binary decision diagrams (BDDs):

BDGRAPH = BOOL then

hidsorts bdd
destructs subs : bdd — 1+ 14 I, (bdd x bdd)
reduce : bdd — bdd
sink : bdd — 1
constructs 0,1 :— bdd
Fireo fo s bdd X bdd — bdd
= : bdd — bdd
vars D, D', Dy, Dy, D3, D : bdd
Horn axioms  subs(0) = x1()
subs(1) = ka()
subs(f;(D,D")) = kayi(D, D) 1<i<n
subs(—D) = ka() < subs(D) = k1(2)
subs(—D) = k1() < subs(D) = ka(z2)
subs(—D) = ka4i(0D1,7D3) < subs(D) = kayi(D1, Do)
reduce(0) =0
reduce(l) =1
reduce(f;(D,D")) = fi(reduce(D),reduce(D’)) < D % D’ 1<i<n
reduce(fi(D,D'))=D <« D=D <i<n
reduce(—~D) = =D
sink(D) = ()
assertions subs(D) = k1() = reduce(D) =0
subs(D) = ka() = reduce(D) =1

= reduce(D) = reduce(D1)
(subs(D) = ka1i(D1, D2) A reduce(Dy) # reduce(D3))
= reduce(D) = f;(reduce(D1), reduce(D3))

In the domain completion of BDGRAPH, a BDD with k£ nodes comes as a collection of k constructor
constants dy, ..., d; :— bdd together with axioms of the form

SUbS(dl) = R2+4ry (dll ) dj1)a R SUbs(dk) = RK2+ry (dlk ) djk)



2.3 Graphs as functions 23

Figure 2. A binary decision diagram.
where r1,...,7 € {1,...,n} and 41,...,%k,J1,---,Jk € {0,1,d1,...,di}. For instance, the BDD of Fig. 2 is
represented by three constants dy, ds, d3 and the axioms

subs(dy) = koys(da,ds), subs(da) = kat7(0,d3), subs(dz) = kats5(0,1).

2.3 Graphs as functions
The nodes of a graph G that are reachable from a given node can be collected efficiently if GG is represented as

an adjacency list, i.e. a function that maps each node to the list of its direct successors. The following iterative

programs for depthfirst search and checking acyclicity are adopted from [71], pp. 103 and 106.

GRAPH = LIST then

hidsorts list = list(entry)

hidsorts graph = graph(entry) = entry — list
destructs apply : graph x entry — list
defuncts depth : graph x entry — list

depthLoop : graph x list x list — list
acyclicLoop : graph x list?> x (1 + list) — 1+ list
preds acyclic : graph x entry
vars z,y:entry L, L', V,V'P:list Vi :1+list G: graph
Horn axioms  depth(G,z) = depthLoop(G, [z],[])
depthLoop(G,[,V)=V
depthLoop(G,x : L,V) = depthLoop(G,L,V) < z€V
depthLoop(G,x : L,V) = depthLoop(G,G(z) HL,xz: V) < x&V
)

acyclic(G,x) < acyclchoop( 20, () = (V)

acyclicLoop(G, [, P, V1) =

acyclicLoop(G,z : L, P, (V)) =() <« z€P

acyclicLoop(G,x : L, P,(V)) = acyclicLoop(G,L,P,(V)) < xzg¢gPANxzeV
acyclicLoop(G,x : L, P,(V)) = acyclicLoop(G, L, P, ([z]))

< ¢ PAx gV AG() =]
acyclicLoop(G,x : L, P,(V)) = acyclicLoop(G, L, P, (x : V"))

< 2 PAx gV AG@)=y: L AacyclicLoop(G,y: L',z : P,(V)) = (V)
acyclicLoop(G,x : L, P,(V)) = acyclicLoop(G, L, P, ())

< ¢ PAx gV AG()=y: L AacyclicLoop(G,y : L',z : P,(V)) = ()
acyclicLoop(G,x : L, P,()) = ()
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2.4 Parsers

Maybe the most general definition of a parser or recognizer goes as follows. Given a signature ¥ = (5, F,0)
and a Y-structure A, a parser for A is an S-sorted function parse : A — p(Tx) such that for all @ € A and
+A

t € parse(a), t* = a.? For instance, parsers for a context-free language G = (N, T, P) fit into this schema if

one defines ¥ as the abstract syntax for G and A as the following »-structure:

e For all s €. S, A, is the set of w € T™ such that s i)g w.

e Foralln € N, s,81,...,8, € N, w,wy,...,w, € T*, p= (s — wsiw;y...spwy,) € P, 1 <i<n and
a; € As,, pA(ay,. .. a,) = waiw; ... apw,.
a g [a] t a g
/o
R R 1/ R/ R/ D R< D Nil
\ \ \
a \C t \a [c,t] & \[C/t]

Figure 3. A WFA-normal form.

DNA sequence alignment problems [96, 26] can be solved by parsers for pairs of words over A. Here ¥ is
given by constructors for the grammar of well-formed alignments presented in [20] (p. 13). The interpretation
of ¥-terms in A is defined in terms of axioms for the defined function yield (cf. [26], p. 10):

WFA = BASE(base) and LIST then

hidsorts match insert delete align = match + insert + delete nolns = match + delete
noDel = match + insert

constructs I : nolns x list(base) — insert
D : list(base) x noDel — delete
E :— match

R : base x align x base — match
defuncts yield : align — list(base) x list(base)
yield : match — list(base) x list(base)
yield : insert — list(base) x list(base)
yield : delete — list(base) x list(base)
vars x,y:base a:align m:match d:delete i:insert L,Ly,Ls : list(base)

Horn axioms  yield((m)) = yield(m)

yield((i)) = yield(i)

yield((d)) = yield(d)

yield(E) = ([, [))

yield(R(x,a,y)) = (x : L1,y : La) <« yield(a) = (L, L2)
yield(I((m),L)) = (L1, L ++L2) <« yield(m) = (L1, Lo)
yield(I((d),L)) = (L1, L +HL2) < wyield(d) = (L1, La)
yield(D(L,(m))) = (L +L1,L2) < wyield(m) = (L1, L2)
yield(D(L, (1)) = (L ++Ly, L) < yield(i) = (L1, L)

Given a pair (L1, L) of base sequences, a parser for yield enumerates all WFA-normal forms ¢ such that
yield(t) =wra (L1, L2). The parser developed in [26], Section 2.4, follows the schema of dynamic programming,
i.e. tabulates recursive calls. We develop the parser in three steps. The first one (WFA-Parser0) works directly

2For all S-sorted sets A, let p(A)s = p(As) for all s € S.
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on the pair of sequences to be aligned (and their suffixes passed to recursive calls). The second one submits
the positions of the suffixes with respect to the entire sequences instead of the suffixes themselves. The third
one replaces the definition of the parser as a set of recursive functions (on pairs of numbers) by an equivalent
definition of recursively defined tables. The specification BASE(base) is supposed to include axioms for the
actual alignment relation ~: base? between elements of the first and the second sequence, respectively.

Let us first collect auxiliary list operations to be used in the parser(s) in an extension of LIST (cf. Section
1.2):

LIST2 = LIST then
hidsorts list = list(entry)
defuncts parts2 : list — list(list?)
parts3 : list — list(list®)
[-...] : nat x nat — list(nat)
mkPairs : nat x nat — list(nat?)

vars x:entry L,Lq,Ls:list 4,5 : nat
Horn axioms  parts2([]) =]
parts2(xz : L) = ([z], L) : map(A(L1, La).(x : L1, La))(parts2(L))
parts3() = [
parts3([x]) = [({], [], [])]
parts3(z :y : L) = map(A(L1, L2).([J, = : L1, La))(parts2(y : L)) ++

map(A(L1, La).([z], L1, La))(parts2(y : L)) ++
map(A(L, L1, La).(x : L, L1, L2))(parts3(y : L))
ijl=i:fit1.j] < i<j

i.dl=]] < i>7
mkPairs(i,j) = (4,7) : (mkPairs(i + 1, j)'join‘mkPairs(i,j — 1)) < i<j
mkPairs(i,j) =[] < i>j

WFA-Parser0) = LIST2 and WFA then

defuncts align : list(base)? — list(align)
match : list(base)? — list(match)
insert : list(base)? — list(insert)
delete : list(base)? — list(delete)
mklIns : list(base) — nolns — insert
mkDel : list(base) — noDel — delete

vars x,y:base L,L' :list(base) a:align t:nolns u:mnoDel

Horn axioms align(L, L") = map((—))(match(L, L") ++insert(L, L") ++delete(L, L))
match([], []) = [E]

match([],z : L) = ||

match(z : []) =]

match(x : L,y : L) = map(Aa.R(z, a,y))(align(L, L)) < x~y
match(x: Lyy: L") =[] < x4y

insert(L, L") = concatMap(g)(parts2(L'))

< V Ly,Ly: g(L1, La) = map(mkIns(Lq))(match(L, Ly) ++delete(L, Ls))
delete(L, L") = concatMap(g)(parts2(L))

< V Ly, Ly : g(L1, La) = map(mkDel(Ly))(match(Lsg, L") +insert(Ly, L))
mkIns(L)(t) = I(t, L)
mkDel(L)(u) = D(L, u)



26 2 'Trees, graphs, and parsers

A dynamic-programming version similar to the one presented in [206] can be derived systematically from
WFA-Parser0. At first, the induction on the decreasing suffixes of L and L’ is replaced by an induction on the
initial positions ¢ and k of the suffixes within L resp. L’. Since this parser does not modify them, the sequences
L or L' are declared as constants and thus need not be forwarded to the parse functions as parameters.

WFA-Parserl = LIST2 and WFA then
defuncts L, L :— list(base)
j,l:— nat
parse :— list(align)
align : nat® — list(align)
match : nat? — list(match)
insert : nat®> — list(insert)
delete : nat® — list(delete)
mklIns : list(base) — nolns — insert
mkDel : list(base) — noDel — delete
vars xz,y :base i, k,m:nat a:align t:nolns u:noDel
Horn axioms  j = length(L)
I =length(L')
parse = align(0,0)
align(i, k) = map((—))(match(i, k) Hinsert(i, k) +H-delete(i, k))

match(i, k) =[E] < i>jANk>1

match(i, k) =[] < i>jAk<l

match(i, k) =[] < i<jAk>1

match(i, k) = map(Aa.R(LNi, a, L'VE))(align(i + 1,k + 1))

< I<jANE<IANLVi~ LNk
match(i, k) =[] < i<jANk<IANLUNiAL LNk
insert(i, k) = concatMap(g)([k + 1..1])

< Vm: g(m) = map(mkIns(sublist(L')(k, m)))(match(i,m) ++delete(i, m))
delete(i, k) = concatMap(g)([i + 1..5])

< YV m: g(m) = map(mkDel(sublist(L)(i,m)))(match(m, k) +rinsert(m, k))
mkIns(L)(t) = I(t, L)
mkDel(L)(u) = D(L,u)

In the second development step, tables implement the parse functions align, match, insert and delete (cf.
Section 1.2.4). Recursive calls of the parse functions are replaced by corresponding table lookups.

WEFA-Parser2 = LIST2 and WFA then
hidsorts table = table(list(base))
constructs mkTab : (nat*> — list(base)) — table
align :— table(list(align))
match :— table(list(match))
insert :— table(list(insert))
delete :— table(list(delete))

destructs _I_: table x nat® — list(base)
defuncts L, L' :— list(base)
7,1 :— nat

parse :— list(align)
mklIns : list(base) — nolns — insert
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Horn axioms
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mkDel : list(base) — noDel — delete
i,j,k,l,m,n:nat f:nat® — list(base) x,y:base a:align t:nolns u:mnoDel
mkTab(f)/(m,n) = f(m,n) <= 0<m<jA0<n<]
mkTab(f){(m,n) =[] < 0>mVm>3jVv0>nVn>I
j = length(L)
1 = length(L")
parse = align!(0,0)
align = mkTab(f)
< Vi, k: f(i,k) = map((—))(match!(i, k) ++insert!(i, k) ++delete! (i, k))
match = mkTab(f)

< Vi k:i>jANk>1= f(i,k) =|E] A
Vik:i>jAk<l= f(i,k)=] A
Vik:i<jAnk>l= f(i,k)=] A

Vik:i<jAk<IALli~LE
= f(i, k) = map(Aa.R(LVi, a, L'NK))(align!(i + 1,k + 1)) A
Vik:i<jANk<IANLWiot L'k = f(i,k) =]
insert = mkTab(f)
< Vi, k:concatMap(g)([k + 1..1]) A
YV m: g(m) = map(mkIns(sublist(L")(k,m)))(match!(i,m) +delete! (i, m))
delete = mkTab(f)
< Y,k :concatMap(g)([i + 1..5]) A
YV m: g(m) = map(mkDel(sublist(L)(i,m)))(match!(m, k) ++insert!(m, k))
mkIns(L)(t) = 1(t, L)
mkDel(L)(u) = D(L, u)

In a similar way, the following yield function provides the basis for recognizing local separated palin-

dromes [27, 28]. While the yield function of WFA returns pairs of words, the yield function of LSP delivers

single words:

LSP = BASE(base) and LIST then

hidsorts

constructs

defuncts

vars

Horn axioms

match context start

E : list(base) — start

S : context — start

C' : list(base) x match X list(base) — context
P : base x align x base — match

PI : base x align X base — align

I : list(base) — align

yield : start — list(base)

yield : context — list(base)

yield : match — list(base)

yield : align — list(base)

x,y : base m :match i:align c:context L,Lq, Lo : list(base)
yield(E(L)) = L

yield(S(e)) = yield(c)

yield(C(Ly,m, La)) = L1 Hyield(m) +Lo
yield(P(x, m y)) =z : yield(m) +[y]
yield(PI(z, )) =z : yield(i) +H[y]
yield(I(L ))
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BASE(base) is supposed to include axioms for the alignment relation ~: base? between individual elements

of the sequence to be parsed. For recognizing palindromes, ~ must be defined as equality.

LSP-Parser0 = LIST2 and LSP then

defuncts start : list(base) — list(start)
context : list(base) — list(context)
match : list(base) — list(match)
align : list(base) — list(align)
mkCon : list(base)? — match — context

vars x,y :base L,L':list(base) t:match

Horn axioms  start([]) = [E([])]
start([z]) = [E([z])]
start(x :y: L) = E(x:y: L) : map(S)(context(x : y: L))
context(L) = concatMap(g)(parts3(L))

< V Li,L,Ly:g(Ls,L,Ly) = map(mkCon(Ly, Ls))(match(L))

match([]) = ]

match([z]) = ]

match(z :y : L) = map(Ni.P(z,i,last(y : L)))(align(init(y : L))) < x~last(y: L)
match(z:y:L)=[] < x¢last(y: L)

atign(()) = [1([)]

align([a]) = [1([z])]

align(z : y : L) = map(Am.PI(x,i,last(y : L)))(align(init(y : L))) < x ~last(y: L)

align(z :y: L)=[I(z:y:L)] < x#last(y: L)
kaOH(Ll,Lg)(t) = C(Ll,t7L2)

LSP-Parserl = LIST2 and LSP then

defuncts L :— list(base)
n :— nat
parse :— list(start)
start : nat? — list(start)
context : nat®> — list(context)
match : nat? — list(match)
align : nat® — list(align)
mkNoPal : nat> — start
mkInner : nat® — align
mkCon : list(base)? — match — context

vars xz,y : base 1,7, k,l:nat t:match u:align

Horn axioms  n = length(L)
parse = start(0,n)
start(i,j) = [mkNoPal(i,j)] < i>j
start(i, j) = mkNoPal(i, j) : map(S)(context(i,j)) < i<j
context(i,j) = concatMap(g)(mkPairs(i,j))

< Vk, gk 1) =map(mkCon(i,k,l, 7)) (match(k,1))

match(i,j) =[] < i>j—1
match(i, j) = map(Au.P(LVi, u, L)) (align(i + 1,7 — 1)) < i<j—1ALNi~LI(j—-1)
match(i,j) =[] < i<j—1ALNiZLN(j—1)

align(i, j) = [mkInner(i,j)] < i>j—1
align(i, j) = map(Au.PI(LNi, u, LI'j))(align(t + 1,57 — 1)) <= i<j—1ALY~ LI(G—1)
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align(i, j) = [mkInner(i,j)] < i<j—1ALNi LN(G—1)
mkNoPal(i,j) = E(sublist(L)(i,7))

mklInner(i,j) = I(sublist(L)(i, 7))

mkCon(i, k,1, j)(t) = C(sublist(L)(i, k), sublist(L)(l, 7))

LSP-Parser2 = LIST2 and LSP then
hidsorts table = table(list(base))
constructs mkTab : (nat? — list(base)) — table
start :— table(list(start))
context :— table(list(context))
match :— table(list(match))
align :— table(list(align))

destructs 1_: table x nat® — list(base)
defuncts L :— list(base)
lg :— nat

parse :— list(start)

start : nat® — list(start)

context : nat®> — list(context)

match : nat? — list(match)

align : nat® — list(align)

mkNoPal : nat®> — start

mkInner : nat®> — align

mkCon : list(base)? — match — context

vars i,j,k,l,m,n :nat f:nat? — list(base) x,y:base a:align t:match u:align
Horn axioms  mkTab(f)!(m,n) = f(m,n) < 0<m<IlgA0<n<lg
mkTab(f)!(m,n) =[] < 0>mVm>IlgvV0>nVn>lg

lg = length(L)
parse = start!(0,1g)
start = mkTab(f)
< Vi,jii>j= fi,5) = [mkNoPal(i, )] A
Vi, j:i<j= f(i,j) =mkNoPal(i,j) : map(S)(context!(i, 7))
context = mkTab(f)
< Vi,j: f(i,4) = concatMap(g)(mkPairs(i,j)) A
Yk, g(k,l) =map(mkCon(i, k, 1, 7)) (match!(k,1))
match = mkTab(f)
e Vijii>j=fi,j)=[A
Vi, j:i<jALli~LNj= f(i,5) = map(Au.P(LV, u, L)) (align!(i + 1,5 — 1))
Vi ji<jiALligt LG = f(i,5) =]
align = mkTab(f)
< Vi,j:1>7= f(i,5) = [mkInner(i,j)] A
Vi, jii<jiALlVi~ LNj= f(i,7) = map(Au.PI(LVi,u, LVj))(align!(i + 1,7 — 1))
Vi,g:i<jANLWNiot LNj = f(i,j) = [mkInner(i,j)]
mkNoPal(i,j) = E(sublist(L)(i,7))
mkInner(i,j) = I(sublist(L)(i, j))
mkCon(i, k,1, j)(t) = C(sublist(L)(i, k), sublist(L)(l, 7))

Expander2 [80] provides Haskell implementations of WFA-Parser2 and LSP-Parser2 and a GUI for executing
these algorithms and displaying their results.
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3 State-based types

3.1 Bank accounts

We present swinging versions of a favorite example used for demonstrating formal approaches to the object-
oriented or state-based specification of data types (cf., e.g., [33, 64]).

ACC_STATE = LIST then

hidsorts transaction acc
objconstructs from, to : entry X nat — transaction
constructs new : entry — acc

credit, debit : acc X nat x entry — acc
destructs name : acc — entry
bal : acc — nat

record : acc — list(transaction)

vars T :entry n:nat a:acc

Horn axioms name(new(z)) = x
bal(new(z)) =0
record(new(z)) =

[
name(credit(a,n, z)) = name(a)

~—

~—
I
=
N
~
S

~
_|_
S

bal(credit(a,n,
record(credit(a,n,z)) = from(z,n) : record(a)
name(debit(a,n,x)) = name(a)
bal(debit(a,n,z)) = bal(a) — n
record(debit(a,n,z)) = to(x,n) : record(a)

Since behavioral acc-equivalence is determined by the destructors name, bal and record, the acc-carrier of
the final ACC_STATE-model, say A, is isomorphic to the product Aepsry x N < Ay o .. Of course, this is
also achieved by declaring acc as the product entry x nat x list(transaction) and name, bal and record as the
corresponding projections. To ensure that ACC_STATE is consistent, new, credit and debit had to be defined

functions and would be axiomatized as follows:

new(z) = (z,0,]])
credit(a,n,z) = (name(a),bal(a) + n, from(xz,n) : record(a))

debit(a,n,x) = (name(a),bal(a) —n,to(xz,n) : record(a))

Unfortunately, these axioms could not be inherited to extensions of ACC_STATE that represent subclasses of
acc-objects with additional acc-constructors. These would require the re-specification of all defined functions
with acc-arguments. If, on the other hand, ACC_STATE is extended by acc-constructors, no axiom need not
be removed. This “option for inheritance” is—besides the involvement of observers—the reason for calling
ACC_STATE an object-oriented specification.

3.1.1 A functional version

ACC_LOCAL1 = ACC_STATE then
hidsorts com
objconstructs deposit, withdraw : nat — com
send, receive : nat X entry — com

defuncts _:_:acc X com — acc
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vars rentry n:nat a:acc c:com

: deposit(n) = credit(a,n,name(a))

s withdraw(n) = debit(a,n, name(a)) < n < bal(a)
cwithdraw(n) =a < n > bal(a)

: send(n, x) = debit(a,n,x) < n < bal(a)

: send(n, x) = debit(a,n,x) < n > bal(a)

: receive(n, x) = credit(a,n, )

Horn axioms

Q2 2 2 & & 8

ACC_GLOBAL1 = ACC_LOCALLI and SET then
hidsorts message
objconstructs open, close : entry — message
_._:entry X com — message
_; -1 message X message — message
defuncts _: - set(acc) X message — set(acc)
transfer : entry x nat x entry — message
static preds _€ _:entry x set(acc)
_¢& _:entry x set(acc)

v-preds _ & _:message X message
vars x,y:entry n:nat a:acc as:set(acc) c:com m,m' :message
Horn axioms as : open(z) = asU {new(x)} < z¢&as

as:open(r) =as < x €as

as: close(z) = as\{a} < name(a)=x
as:xzc=as\{a}U{a:c} < a€asAname(a) ==z
as:x.c=as < zx€as
as: (m;m') = (as:m):m/

transfer(x,n,y) = xz.send(n,y); y.receive(n,x)
x€as < name(a) =z Nac€as

rdas < name(a) =z Na¢as

co-Horn axioms m~m' = as:m~as:m’

Terms of the form a : ¢ or as : m represent configurations that are typical for SOS (= structural operational
semantics) rules (cf. [34]). An SOS rule is nothing but a Horn axiom for a dynamic predicate. Configurations
are pairs consisting of a state (here: of single or several accounts) and a command (here: a com- resp. message-

term).

3.1.2 A relational version with state sets

ACC_GLOBALLI evaluates acc- and set(acc)-terms in a completely functional way. The following alternative
specification ACC_GLOBAL2 has dynamic predicates — and = instead of the function symbol(s) :. An
equation of the form a : ¢ = b becomes an atom a — b, which represents a transition between states of a
single account. An equation of the form as : m = bs becomes an atom as == bs, which represents a transition
between states of several accounts. While the interpreter “:” of ACC_GLOBALL is a function and thus the
command term ¢ of a : ¢ = b can only include input variables, the label ¢ of a — b may also contain output
variables, which are instantiated during the transition. For instance, the evaluation of a command bal?(n) shall

produce a valuation of n. Moreover, since — and = are predicates, we do not need counterparts of axioms

@ @

for whose only purpose was to totalize “:”. For the same reason we may identify the label sorts com and

message.

ACC_LOCAL2 = ACC_STATE then
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hidsorts com

objconstructs deposit, withdraw : nat — com
send, receive : nat X entry — com
bal? : nat — com

dynamic preds - —> _-:acc X com X acc

vars T :entry n:nat a:acc c:com
i deposit(n) .

Horn axioms a —  credit(a,n,name(a))

g Vithdraw(n) debit(a,n,name(a)) < n < bal(a)

g Sendne) debit(a,n,x) < n < bal(a)
receive(n,a) credit(a,n, )
bal?(n)

a —'a <« nzbal(a)

ACC_GLOBAL2 = ACC_LOCAL2 and SET then
objconstructs open, close : entry — com
_._enlry X com — com
_j_1com X com — com

defuncts transfer : entry X nat X entry — com
dynamic preds _ = _: set(acc) x com x set(acc)
static preds _ & _:entry x set(acc)
v-preds _R _:1com X com
vars x,y:entry a,a’ :acc as,bs,as’,bs’ : set(acc) ¢, : com
Horn axioms as "7 45U {new(z)} < zdas
close()

as\{a} < name(a) ==
as =% as\ {a}U{d'} <= a-d ANa€asAname(a) =2
c;c , c c ’
as = as’ < as=bsN\bs = as
transfer(x,n,y) = xz.send(n,y); y.receive(n, )
x&as < name(a) =xAaéas
co-Horn axioms cxcd = (as==bs = Ibs' : (as = bs' Abs ~bs'))

c=d = (asébs/ = Jbs: (as == bs Abs ~ bs'))

Command sequences such as
open(x); x.deposit(100); x.withdraw(50); z.bal?(n) (1)
represent imperative programs. For instance, (1) is executed by unfolding atom (2):

5 oPen(@); @-deposit(100); wwithdraw(50); .bal?(n) . @)
predicate unfolding
F 3 asi,ase,as3 :as onen() asy A asy I'dwg(loo) ass A ass I'withdgw(m) as3 A ass m'lm:l7>(n) bs
predicate unfolding and expansion with as ~ as
F Jasg,ass:z & asAasU{new(x)} @ deposif(100) as2ass @ withdrgw(50) ass A ass T
predicate unfolding

z.withdraw(50)

depoit(}l(]o) as AasU {ai}\ {a1} U {as} — asz N

F Jay,az,as3: ¢ € asAayp =new(z) A ay

z.bal?(n)
asy —
behavioral term replacement
deposit(100 z.withdraw (50 z.bal?(n
F Jas,as3:x & as Anew(x) posit( )az/\aSU{az} drgeol )a53/\a53 2l s

predicate and function unfolding
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F Jass:z & asAasU{credit(new(x),100,z)} wwithdrgw(50) ass A asg TR

predicate unfolding

F Jag,a3: x & as Aag = credit(new(z),100,z) A az
behavioral term replacement

F Jas:x & as A credit(new(z), 100, x)
predicate and function unfolding

F & as A as U {debit(credit(new(z), 100, z), 50, x)}
predicate and function unfolding

F Jas,b:x & asAaz = debit(credit(new(x), 100, z), 50, x) A as P b A as U {as} \ {as} U {b} =bs
predicate unfolding

F o & as An = bal(debit(credit(new(x), 100, x),50,z)) A ...
function unfolding

F xzdasAn=50A...

xz.bal?(n)

witth_a;U(W) az NasU{az} \ {az} U{az} "= " bs

withdraw(50 z.bal?(n
(50) ( )bs

as A asU{as}

x‘balz?(n) bs

Hence the derivation computes a solution of (2) in n.

3.1.3 A relational version with ports

A third version of the specification follows the paradigm of concurrent logic programming introduced by [97],
namely to implement objects as command stream consuming predicates. This was also adopted by [38] for the
functional-logic language Curry where it has recently been combined with message passing via ports in the sense
of [48, 39]. Following [48] we specify ports as collections (here: lists) of commands in a way that abstracts from

the particular way several command streams are merged into a single input stream.

An object predicate Ob has two arguments: a list acts of actions, commands, etc., to be processed and an
object state s. Intuitively, the object atom Ob(acts, s) is true if acts leads from s to a final state.®> The object-
as-predicate paradigm complies with the state-as-hidden-term concept employed in, e.g., ACC_GLOBAL1 and
ACC_GLOBAL2. ACC_GLOBALS3 adds object predicates A and AS that represent acc- resp. accs-objects. An
object is created whenever a Horn axiom r(t) < ¢ is applied and ¢ contains an object predicate # r (see, e.g.,
axiom (x) below). ACC_GLOBALS3 interprets accs not as account sets, but as maps assigning ports to account

names:

ACC_GLOBAL3 = ACC_LOCAL2 and LIST and MAP then
hidsorts accs = map(entry, list(com))
objconstructs open, close : entry — com

_._:entry X com — com
defuncts transfer : entry X nat X entry — com
static preds A : list(com) X acc

AS : list(com) x accs

free : list(com)

dynamic preds _== _: set(acc) x com X set(acc)
v-preds _ & _: list(com) x list(com)
vars x,y:entry c,c :com cL,cL’:list(com) a,a’:acc as,bs,as’ :accs
Horn axioms A([],a)
Alc:cLya) < a5 d NA(cL,a")
45(]) as)

AS(c:cLyas) <« as==as' A AS(cL,as’)

3In ACC_GLOBALS3, each state (= acc- or accs-term) is final.
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free(cL) <« “create a reference cL”

as ") upd(z,cL,as) < get(as,x) = () A free(cL) A A(cL, new(zx)) (%)
A port cL is created and assigned to x. The commands
arriving at cL are processed by A in state new(z).
close(z)

as = remove(x,as)
as =% as < get(as,x) = (cL)Ac € cL

The command c is sent to cL, the port of x.
transfer(z,n,y) = xz.send(n,y) : y.receive(n,x) : [|
AS(cL,as) = Fas’ : (AS(cL',;as’) Aas ~ as'))
AS(cl!,as") = Fas: (AS(cL,as) Aas ~ as'))

co-Horn axioms cL~cL' = (
cL~cl = (

The command sequence (1) of Section 3.1.2 is executed in terms of ACC_.GLOBAL3 as follows.

AS(open(x) : x.deposit(100) : x.withdraw(50) : x.bal?(n) : [, as)
predicate unfolding
F 3 eL: get(as,z) = () A A(cL,new(zx)) A
AS(x.deposit(100) : z.withdraw(50) : x.bal?(n) : [|, upd(z, cL, as))
predicate unfolding
F JeL, el : get(as,z) = () A A(eL, new(x)) A get(upd(z,b,as), xz) = (cL’) A
deposit(100) € cL’ A AS(x.withdraw(50) : z.bal?(n) : [, upd(x,cL,as))
function unfolding
F JeL, el : get(as,z) = () A A(cL, new(x)) A (cL) = (cL’) A
deposit(100) € cL' A AS(x.withdraw(50) : z.bal?(n) : |, upd(x,cL,as))
constructor elimination
F JeL,cl : get(as,z) = () AN A(cL,new(x)) AcL = cL/ A
deposit(100) € cL' A AS(x.withdraw(50) : x.bal?(n) : [], upd(x, cL, as))
variable elimination
F 3L : get(as,x) = () A A(cL, new(x)) A
deposit(100) € cL A AS(z.withdraw(50) : x.bal?(n) : [|, upd(zx, cL, as))
expansion with ¢ € ¢: cL
F 3L : get(as,x) = () A A(deposit(100) : cL, new(x)) A
AS(z.withdraw(50) : x.bal?(n) : [], upd(z, deposit(100) : cL,as))
predicate and function unfolding
F 3L : get(as,z) = () A A(cL, eredit(new(z), 100, x)) A
AS(z.withdraw(50) : x.bal?(n) : ||, upd(z, deposit(100) : cL,as))
predicate unfolding
F JeL, el : get(as,z) = () A A(cL, credit(new(x), 100, 2)) A
get(upd(x, deposit(100) : cL,as),z) = (cL') A
withdraw(50) € cL' A AS(z.bal?(n) : [|, upd(z, deposit(100) : cL, as))
function unfolding
F 3cL,cl’ : get(as,z) = () A A(cL, credit(new(x), 100, 2)) A (deposit(100) : cL) = (cL’) A
withdraw(50) € cL' A AS(z.bal?(n) : [|, upd(z, deposit(100) : cL, as)
constructor elimination
F JeL,cl : get(as,z) = () A A(cL, credit(new(x), 100, z)) A deposit(100) : cL = cL’ A
withdraw(50) € cL’ AN AS(z.bal?(n) : [], upd(z, deposit(100) : cL, as))
variable elimination
F 3L : get(as,x) = () A A(cL, eredit(new(x), 100, z)) A
withdraw(50) € deposit(100) : cL A AS(z.bal?(n) : [|, upd(x, deposit(100) : cL,as))
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expansion with c€ ¢ :c:cL
F 3 el get(as,z) = () AN A(withdraw(50) : cL, credit(new(z), 100, z)) A
AS(z.bal?(n) : [|, upd(z, deposit(100) : withdraw(50) : cL,as))
predicate and function unfolding
F 3 cL: get(as,x) = () A A(cL, debit(credit(new(x), 100, x), 50, 2)) A
AS(z.bal?(n) : [], upd(z, deposit(100) : withdraw(50) : cL, as))
predicate unfolding
F JeL,cl’ : get(as,z) = () A A(cL, debit(credit(new(x), 100, ), 50, x)) A
get(upd(x, deposit(100) : withdraw(50) : cL,as),z) = (cL') A
bal?(n) € cL’ N AS([], upd(x, deposit(100) : withdraw(50) : cL,as))
predicate unfolding
F JeL, el : get(as,z) = () A A(cL, debit(credit(new(x), 100, ), 50, z)) A
get(upd(z, deposit(100) : withdraw(50) : cL,as),x) = (cL') A bal?(n) € cL'
function unfolding
F JeL, el : get(as,z) = () A A(cL, debit(credit(new(x), 100, z), 50, x)) A
(deposit(100) : withdraw(50) : ¢L) = (cL') A bal?(n) € cL’
constructor elimination
F 3eL,cl : get(as,z) = () A A(cL, debit(credit(new(x), 100, z), 50, x)) A
deposit(100) : withdraw(50) : ¢L = cL’ Abal?(n) € cL'
variable elimination
F 3L : get(as,x) = () A A(cL, debit(credit(new(x), 100, x), 50, x)) A
bal?(n) € deposit(100) : withdraw(50) : cL
expansion with cec : ¢’ :c:cL
F 3L : get(as,x) = () A A(bal?(n) : cL, debit(credit(new(z), 100, z), 50, z))
predicate unfolding
F 3 ecL: get(as,z) = () A A(eL, debit(credit(new(x), 100, z), 50, z)) An = 50
quantor elimination
F get(as,z) = () N A([], debit(credit(new(z), 100, z), 50, 2)) A n = 50
function and predicate unfolding
F get(as,z) = () An =50

3.2 Web scripting

The premise of axiom (a) of ACC_.GLOBAL3 introduces the existentially quantified “free” variable cL that is
supposed to be implemented as the creation of a reference. For axiom (b) to be “executed”, ¢L must have been
instantiated by a list that contains c¢. Such free variables also occur frequently in the specification of HTML
documents [40] as expressions of the functional-logic language Curry [38]. Using ST syntax the expressions are

built up as follows:

HTML = STRING and LIST and STATEMON then*
hidsorts Exp Form = string x list(Exp) CyqiRef = string
Env = CqiRef — String Handler = Env — M (Form)
objconstructs Text: string — Exp
Struct : string x list(string x string) x list(Exzp) — Exp
Elem : string X list(string X string) — Exp
CRef : CqgiRef x Exp — Ezp
Fvent : Exp x handler — Exp
defuncts htext : string — Exp
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static preds
vars

Horn axioms
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hrule :— Exp
bold : list(Exp) — Exp
text field : CgiRef X string — Exp
button : string x Handler — Exp
revdup, guess form, name form :— M (Form)
guessinput :— list(Exp)
revhandler, duphandler, guesshandler, firsthandler : CgiRef — (Env — M (Form))
lasthandler : CgiRef x CgiRef — (Env — M (Form))
free : CgiRef
r,r’ . CgiRef str: string hexps: list(Exp) handler : Handler env: Env
htext(str) = Text(str)
hrule = Elem(hr, [])
bold(hexps) = Struct(b, [|, hexps)
textfield(r, str) = CRef(r, Elem(input, [(type, text), (name, r), (value, str)]))
button(str, handler)
= FEvent(Elem(input, [(type, submit), (name, event), (value, str)]), handler)
revdup = return(Question, [htext(Enter a string),
text field(r,[]),
hrule,
button(Reverse string, revhandler(r)),
button(Duplicate string, duphandler(r))])
< free(r)
revhandler(r)(env) = return(Answer, [htexrt(Reversed input : +Hrev(env(r)))])
duphandler(r)(env) = return(Answer, [htexrt(Duplicated input : +H-env(r) Henv(r))])
guess form = return(Number Guessing, guessinput)
guessinput = [htext(Guess a number),
text field(r, []),
button(Check, guesshandler(r))]) <  free(r)
guesshandler(r)(env) = return(Answer, [htext(Bingo!)] ++guessinput) < int(r) = 42
guesshandler
< int(r) <42
guesshandler(r)(env) = return(Answer, [htext(Too large!), hrule] +guessinput)
< int(r) > 42
nameform = return(First Name, [htext(Enter your first name),
text field(r,[]),
button(Continue, firsthandler(r))])
< free(r)
firsthandler(r)(env) = return(Last Name, [htext(Enter your first name),
text field(r’,[]),
button(Continue, lasthandler(r,r"))])
< free(r')
lasthandler(r,r")(env) = return(Full Name, [htext(env(r) H-env(r’))])
free(r) <« “create a reference r”

(r
(r

)(env) = return(Answer, [htext(Too smalll), hrule] ++guessinput)

7 and r’ denote input elements of HTML forms.

4We write string constants in typewriter mode. H denotes string concatenation. int(r) is the integer value of the string r. For

STATEMON, cf. Section 1.2.5.
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3.3 Plan formation

The three versions of ACC_.GLOBAL (cf. Section 3.1) are coinductive (cf. [75]). Coinductive axioms yield a
schema for SOS definitions as well as for algebraic nets, SDL systems (see Section 5), labelled transition logic
(LTL; see [3]) and rewriting logic (Maude specifications; see [64]). These formalisms mainly differ with respect
to the structure of a state. SOS and LTL regard states as (abstract) stores of values, while net states are tuples
of multisets, usually called markings. SDL states are unstructured, but implicitly associated with valuations
of program variables. States in Maude are sets of objects as in the above example (cf. [64], Section 12.4.1).
Many formal approaches are two-tiered as they reason about transitions on the one hand and the structure of
states on the other hand in different logical frameworks. However, LTL, swinging types and modal fragments
of predicate logic (cf. [10]) adopt the one-tiered view of a labelled transition system as a ternary predicate of a

data type specification.

Explicit state structures should be distinguished from the agents occurring in stream and process calculi.
While the above specifications (and COM below) separate states from agents (= commands), process calculi
identify them: an agent is both an abstract program and the initial state the program starts out from (see
Section 4.4).

As in Section 3.1, object predicates are determined by transition systems:

Ob([],s) < final(s),
Ob(act : acts,s) < s s' AOb(acts, s').

Ob(acts, s) holds true iff acts leads from s to to a final state. If object predicates are used not for executing, but
for generating action sequences, we deal with plan formation. This is accomplished by expanding implications
of the form

initial(s) = Ob(acts, s).

The expansion has derived a plan if it results in a “solved” goal of the form acts = t where t is a normal form.
This works because acts is universally quantified in the formula initial(s) = Ob(acts, s). A similar goal is to
prove that final states are reachable from initial ones. This is achieved by expanding the formula

initial(s) = 3 acts: Ob(acts,s)

into True. Let us illustrate plan formation at three small examples.

Monkey wants banana. A monkey and a box are located at the door, at the window or in the middle of
a room. In order to grasp the banana hanging from the ceiling in the middle of the room the monkey must go
the box, push the box to the middle of the room and climb the box. The monkey-box system is in state (x,y,b)
iff = is the position of the monkey, y is the position of the box and b is true iff the monkey is on the box.

MONKEY = LIST then
sorts position state = position X position X bool com
constructs door, middle, window :— position
walk, push, climb :— com
static preds MB : list(com) X state
final : state
_ — _: state X com X state
£: position X position
vars x,y : position act: com acts: list(com) s,s" : state
Horn axioms MB([],s) < final(s)

act,

MB(act : acts,s) < s— s’ N MB(acts,s')
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final(middle, middle, true)

(z,y, false) walg (y,y, false) <= x#y

(z,z, false) push (middle, middle, false) < x Z middle
(middle, middle, false) climb (middle, middle, true)

standard inequality axioms (see [75], Section 4)

For a given state s, an expansion of M B(acts, s) terminates because (1) final states are reachable from s, (2)

only finitely many states are reachable and (3) each of them is reached at most once, i.e. — does not run into

cycles.

Bottling water. You have two empty bottles, one for three and one for five gallons of water and an

unbounded water supply, and want to fill them with exactly four gallons. The bottles are in state (x,y) iff

and y are the numbers of gallons in the first resp. second bottle. A plan whose execution leads to the desired

state is obtained by expanding the goal bottles(acts, (0,0)) with axioms of the following specification.

BOTTLES = LIST then

sorts
constructs

static preds

vars

Horn axioms

com state = nat X nat

filll, fill2, emptyl, empty2, 1to2, 2tol :— com
bottles : list(com) X state

final : state

_ — _: state X com X state

x,y:nat act:com acts:list(com) s,s : state
bottles([],s) < final(s)

bottles(act : acts,s) <« s RPN bottles(acts, s")
final(z,y) < x4+y=4

(z,9) 75 (3,1)
(2,9) *= (2,5)
iyl

(z,y) "5 (0,y)

empty2
(z,y) —" (z,0)
(x,y)lt—O%(O,x—i—y) < z+y<5h
(2,9) X8 (2 +y—5,5) <« z+y>5
(x,y)zt—‘ﬂ>(a:+y,0) < z+y<3
(x,y)Qt—Ol>(3,x+y—3) < x+y>3

For a given state s, final states are reachable from s and only finitely many states are reachable. To ensure

that expansions of the goal bottles(acts, (0,0)) terminate we also require that each reachable state is achieved

at most once. This is accomplished by accumulating visited states and expanding bottles’(acts, (0,0), D) instead

of bottles(acts, (0,0)):

BOTTLES’ = BOTTLES and SET then

static preds
vars

Horn axioms

bottles’ : list(com) X state X set(state)

act : com acts : list(com) s,s : state states : set(state)
bottles'([], s, states) <  final(s)

bottles'(act : acts, s, states)

act

< s — s N & states A bottles'(acts, s, states U {s'})

The towers of Hanoi. A pile of circular blocks (represented as natural numbers) is to be carried from

place A via place B to place C. The blocks are always piled up in the order of decreasing diameter. They are

in state (z,y, z) iff x,y resp. z is the pile of blocks at place A, B resp. C.
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TOWERS = LIST then

sorts place com
hidsorts pile = list(nat) state = pile X pile X pile
constructs A, B,C :— place

_to_ : place x place — com

static preds towers : list(com) X state
admissable : nat x list(nat)
_ — _: state X com X state
final : state

vars x,y:nat act:com acts:list(com) s,s :state a,b,c: pile
Horn axioms towers([],s) < final(s)

towers(act : acts,s) < s LEPN towers(acts, s')

final([l, {1, ¢)

(x:a,b,c) Ato)B (a,z:b,c) < admissable(z,b)

(x:a,b,c) AtoC (a,b,z:c) < admissable(z,c)

(a,z:b,c) B_to,C (a,b,z:¢c) < admissable(z,c)

(a,x : b,c) B oA (r:a,b,c) < admissable(x,a)

(a, b,z : ¢) RALRG (x:a,b,c) < admissable(x,a)

(a, b,z : ¢c) Cto,B (a,x:b,c) < admissable(zx,b)

admissable(x, [])

admissable(x,y :a) < x <y

For a given state s, final states are reachable from s and only finitely many states are reachable. To ensure
that expansions of towers(acts, s) terminate we also require that each reachable state is reached at most once.
Analogously to BOTTLES’, this is achieved by storing visited states.

The following well-known function, which is often used for introducing recursion, computes a plan for carrying
blocks from A via B to C deterministically:

RECTOWERS = TOWERS then

defuncts plan : pile x place x place x place — list(com)
vars x:nat a:pile source,aux,target : place
Horn axioms plan(]], source, auzx, target) = ||

plan(z : a, source, auzx, target) = plan(a, source, target, auzx) +H[source to target] ++

plan(a, auzx, source, target)

Exercise. Show that plan is correct, i.e. prove that
sorted(a) = towers(plan(a, A, B,C), (a,]],]])) (1)
is valid in the Herbrand model of RECTOWERS! Can the axioms for plan be derived from an inductive proof

of (a generalization of) (1) (cf. [76], Section 9; [72], Section 5.5)7

3.4 Lift controller

The “lift problem” is one of the benchmark examples for illustrating approaches to the specification of reactive
systems (see, e.g., [13, ). People send stop requests from the inside or the outside of an elevator to a
controller that causes the lift to move to the requested levels. Each lift (controller) state s is given by four
destructors:
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e dir(s) yields the direction in which the lift is currently moving.

e nextFloor(s) denotes the next floor a moving lift heads to.

o requests(up, s) and requests(down, s) are sorted lists of numbers representing the floors still to be served,

where a stop request is still pending. The lists are updated by the functions insert and tail.

e visits(s) returns the list of numbers denoting all visited floors up to the state s where the lift stops

and meets a stop request. The order of visits(s) agrees with the order in which the lift arrived at the

corresponding floors.

A state s is built up of constructors representing the “history” of actions leading from the initial state new

to s. The basic actions are goto(n): a stop at floor n is requested; stop: the lift stops at the next floor in the

direction in which it currently moves; start: the lift starts going; pass: the lift passes the next floor in the

direction in which it currently moves, but does not stop there.

LIFT = LIST then

sorts
objconstructs

destructs

defuncts

dynamic preds
static preds
v-preds

vars

Horn axioms

two act state

up, down :— two

T :— act

goto,visit : nat — act

new :— state

goto : nat X state — state

stop, start, pass : state — state

dir : state — two

nextFloor : state — nat

requests : two X state — list(nat)

apply : ((nat x nat) — bool) x (nat x nat) — bool
tail : list(nat) — list(nat)

incr : nat X two — nat

turn : two — two

insert : nat x list X ((nat x nat) — bool) — list
gt, It : nat x nat — bool

_— _: state X act X state

no_visit, no_request : act

will_be_served, was_requested : nat X state

d:two s, :state a:act m,n:nat L:list(nat) «:act g:nat X nat — bool

incer(n,up) =n+1 incr(n,down) =n—1
turn(up) = down turn(down) = up
tail([]) =[] tailln: L) =L
insert(m,n: Lyg)=m:n:L < g(m,n)=true

(
(

insert(m,n: L,g) =n :insert(m,L) < g(m,n)= false

insert(n,n: L,g)=n:L

gtim,n) =true < m>n

gt(m,n) = false < m<n

lt(m,n) = gt(n,m)

dir(new) = up

dir(goto(n, s)) = dir(s)

dir(stop(s)) = dir(s)

dir(start(s)) = turn(dir(s)) < requests(dir(s),s) =]
dir(start(s)) = dir(s) < requests(dir(s),s)=n:L
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dir(pass(s)) = dir(s)
nextFloor(new) = 1
nextFloor(goto(n, s)) = nextFloor(s)
nextFloor(stop(s)) = nextFloor(s)
nextFloor(start(s)) = incr(nextFloor(s), turn(dir(s))) < requests(dir(s),s) =]
nextFloor(start(s)) = incr(nextFloor(s),dir(s)) < requests(dir(s),s)=n:L

(

nextFloor(pass(s)) = iner(nextFloor(s), dir(s))

requests(d, new) =
requests(up, goto(n, 8)) = insert(n, requests(up, s), gt) < n > nextFloor(s)
requests(up, goto(n, s)) = insert(n, requests(down, s),lt) < n < nextFloor(s)

(
(
requests(down, goto(n, s)) = insert(n, requests(down, s),lt) < n < nextFloor(s)
requests(down, goto(n, s)) = insert(n, requests(up, s), gt) < n > nextFloor(s)
requests(d, stop(s)) = tail(requests(d, s))
requests(d, start(s)) = requests(d, s)
requests(d, pass(s)) = requests(d, s)

goto(n)

— " goto(n, s)

vzﬂ n) . . .
5 stop(s) <« requests(dir(s),s) =n: L An = nextFloor(s)
s — start(s) <« requests(up,s) =n: LV requests(down,s) =n: L

s — pass(s) < requests(dir(s),s) =n: L An # nextFloor(s)

no_visit(r) no_request(r)
no_visit(goto(n)) no_request(visit(n))
co-Horn axioms will_be_served(n, s)
= 3¢ s Y gy g a,s": (s =% s’ Anovisit(a) A will_be_served(n, s'))
was_requested(n, s)
= 39 s v 3 a,s": (s -2 s A no_request(a) A was_requested(n, s'))

Exercise. Show that the following formulas are valid in the Herbrand model of LIFT!

(1) was_requested(n,s) = will_be_served(n,s) (each request to visit a floor is served eventually).

(2) will_be_served(n,s) = was_requested(n,s) (a floor is visited only if it was requested for).

(3) s % s Adir(s') = turn(dir(s)) = requests(dir(s),s) =[] (the lift changes its direction only if there
are no pending requests in the current direction).

(4) sorted(rev(requests(down, s)) ++(nextFloor(s) : requests(up, s))) (the request lists are sorted upwards
resp. downwards and their elements are greater resp. smaller than or equal to nextFloor(s)).

3.5 A command language with communication

We specify a simple imperative language that admits iteration, nondeterminism and broadcast communication
via a shared queue. The basic schema of the specification is similar to ACCOUNT (cf. Section 3.1). Moreover,
a hidden sort environment denotes sets of both “user stores” and queue states. A similar scenario is described
by the dynamic data type SYSTEM of [5]. We presuppose a visible specification INT of integer arithmetic and
regard int and var as subsorts of exp and bool as a subsort of boolexp. Actualizations of LIST and MAP (cf.
Section 2.2) are used for specifying the queue and user stores. The empty sorts prid and var denote sets of

process identifiers and program variables, respectively.

COM = ENTRY (var) and ENTRY (prid) and INT and LIST and MAP and SET then

sorts exp boolerp com bufcom
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hidsorts

consts

destructs

defuncts

dynamic preds

v-preds

vars

Horn axioms

store queue = list(int) environment = set(store) X queue
new : prid — store

upd : int X var X store — store
_=_:wvar X exp — com

_?: boolexp — com

send : exp — com

receive : var — com

_;_ 1 com X com — com

_+ _:com X com — com

_* i com — com

put, get : int — bufcom

_/-: com X bufcom — com

create : prid — com

_._:prid X com — com

_:var — exp

_:int — exp

_: bool — boolexp

add : exp X exp — exp

equal, greater : exp X exp — boolexp

Not : boolexp — boolexp

And : boolexp x boolexp — boolexp

owner : store — prid

contents : store — map(index,var)

skip, fail :— com

if _then_else_ : boolexp X com X com — com
while_do_ : boolexp x com — com
if_in_then_else_: boolexp X prid x com X com — com
while_in_do_ : boolexp X prid x com — com
eval : exp — int

eval : boolexp — bool

dequeue : queue — queue

first : queue — 1 4+ int

_ = _:queue X com X queue

- — _: store X com X store

= _: set(store) x com X set(store)

_ = _: environment X com X environment

- _:com X com

3 State-based types

i,k :int b:bool x:var p:prid e e :exp be,be' : boolexp c,c : com be: bufcom

s, 8,81 : store ss,ss’ : set(store) L,L': queue
env, env’, env, envs : environment
owner(new(p)) = p
contents(new(p)) = new
owner(upd(i,x, s)) = owner(s)
contents(upd(i, z, s)) = upd(i, x, contents(s))
L™
LY dequeue(L) < first(L) = (i)

Tri=e . .
s =— upd(i,z,s) < eval(s,e)=1



3.5 A command language with communication

co-Horn axioms

be?
s 5 s < eval(s,be) = true
send(e)/put(s .
s /g o o eval(s,e) =1
receive(x)/get(i .
s Q/ ® upd(i, z, 3)
cc c oy
s§s— S8 <& §s— 81 NS —S
ct+c c /
s— s < s—s

c+c ¢ /
5—)8 <= S§S—S

s s s
sy = 595
TP ou {new(p)}
ss 25 ss\ {stU{s'} < s-5 A owner(s)=p
Pelbe s \{sju{s'} <« s A owner(s) = p
(ss,L) == (s§',L) <« s5=>s5'
(ss,L) == (ss',L') <« ss C/:bg ss' A LS L
env ;; env! < env == envy A enuv; é env’
env EL eny! = env =% ent!
env LS e’ < env == en’
env == env
env < eny! = env Z5 eny!
skip = true?
fail = false?
if be then c else ¢ = (be?;c)+ (Not(be)?;c)
while be do ¢ = (be?;c)*; Not(be)?
if be in p then c else ¢ = (p.be?;c) + (p.Not(be)?; )
while be in p do ¢ = (p.be?;c)*; p.Not(be)?
eval(s,x) = get(contents(s),:c)
eval(s,i) =
eval(s, add(e €')) = eval(s, e) + eval(s, e)
eval(s,b) =
eval(s,equal(e,e')) = false < eval(s,e) Z eval(s,e’)

eval(s, greater(e,e’)) =true < eval(s,e) > eval(s,e’)
e,€)) = false < eval(s,e) < eval(s,e’)

not(eval(s, be))

)=

(eval(s,be) and eval(s, be'))

eval(s, greater (e,
eval(s, Not(be)) =
eval(s, And(be, be’)

(s,
(
(s,
eval(s, equal(e e)) =true < eval(s,e) = eval(s,e’)
(
(
(
(s,

dequeue([]) = |

dequeue(i : [|) =]

dequeue(i : k : L) =i : dequeue(k : L)

first()) = ()

First(i : ) = ()

first(i: k: L) = first(k: L)

c=d = (enw :> envy = 3 envy : (env == envy A envy ~ enuy))
cxcd = (enw => envy = Jenvy : (env == envy A envy ~ envy))

43



44 3 State-based types

Floyd-Hoare program assertions can be presented as first-order formulas over COM. For instance, let s, s’
be sort-variables and ¢ be a com-term. Then the formula

pre(s)As —+ s = post(s’)

expresses the correctness the program presented by ¢ w.r.t. the input/output relation given by pre/post: if the
precondition pre holds true in s and if ¢ transforms s into s’, then s’ satisfies the postcondition post. The
classical rules of the Hoare calculus for proving assertions about sequential programs become expansion rules
that are sound w.r.t. the Herbrand model of COM (cf. [75]):

pre(s) As Z=5 s = post(s')
pre(s) = post(s)le/x]

f

assignment rule

pre(s)As =5 s = post(s')

ft

sequence rule . v
pre(s)As —= s = q(s'), q(s)As s = post(s)

if be then c else ¢’

pre(s) A s = post(s’)

conditional rule .
pre(s) A eval(s,be) =true N s — s’ = post(s'),

pre(s) A eval(s,be) = false A s s = post(s’)

while be do ¢
— S

pre(s) A s = post(s’)

loop rule
pre(s) = inv(s),

inv(s) A eval(s,be) = true As — s’ = inv(s'),
inv(s) A eval(s,be) = false = post(s)

inv is usually called a Hoare invariant. Besides its occurrence in the loop rule it may support the proof that

a loop terminates:

while be do ¢
— S

pre(s) = s

termination rule
pre(s) = inv(s),
inv(s) Aeval(s,be) = true As == s = s> s Ainv(s')

if >: store x store has a well-founded interpretation in the Herbrand model of COM

The weakest (liberal) precondition of (¢, post) can be specified by the following generalized Horn clauses:

wp(s) <= wip(s) As —s  resp. wip(s) < Vs :(s -5 = post(s)).



4 Streams and processes

4 Streams and processes

4.1 Streams

Infinite sequences are specified as follows.

STREAM = LIST and ENTRY (entry’) then
hidsorts stream = stream(entry) stream’ = stream(entry’)
constructs &_: entry x stream — stream’
blink :— stream(nat)
nats : nat — stream(nat)
itery,itery : (entry — entry) X entry — stream(entry)
rev : stream(bool) — stream(bool)
odds : stream — stream
zip : stream X stream — stream
map : (entry — entry’) — (stream — stream’)
destructs head : stream — entry
tail : stream — stream
defuncts switch : nat — nat
_#_: list X stream — stream
evens : stream — stream
firstn : nat x stream — list
nthtail : nat x stream — stream
loop : (entry — entry) — nat — entry

preds exists : (entry — bool) x stream
Nat : nat

copreds forall, forallExists : (entry — bool) x stream
fair : (entry — bool) x stream

vars n:nat x,y:entry L:list s,s :stream bs: stream(bool)
fentry — entry’ g : entry — bool

Horn axioms head(z&s) = tail(z&s) = s
head(blink) = tail(blink) = 1&blink
head(nats(n )) =n tail(nats(n)) = nats(suc(n))
head(iteri(f,x)) =z tail(iter1 (f, x)) = iter,(f, f(x))
head(iters(f,x)) = x tail(itera(f, z))
head(zip(s,s')) = head(s) tail(zip(s,s')) = zip(s', tail(s))
head(rev(bs)) = not(head(bs)) tail(rev(s)) = rev(tail(s))
head(odds(s)) = head(s) tail(odds(s)) = odds(tail(tail(s)))
head(map(f)(s)) =  (head(s)) tail(map(f)(s)) = map(f)(tail(s))
switch(0) =1
switch(1) =0
nil#s = s

(z : L)#s = x&(L#s)

evens(s) = odds(tail(s))

firstn(0, s) = nil

firstn(suc(n), ) head(s) : firstn(n,tail(s))
nthtail(0,s) =

nthtail (suc(n), s) = nthtail(n, tail(s))

= map(f)(itera(f, x))
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suc(n))(z) = f(loop()(n)(@)
g(head(s)) = true
exists(g, tail(s))

Nat(suc(n)) <« Nat(n)
co-Horn axioms  forall(g,s) = g(head(s)) = true A forall(g,tail(s))
forallExists(g,s) = exists(g,s) A forallEzists(g, tail(s))

(A) fair(g,s) = forallEzists(g,s)
(B) fair(g,s) = exists(g,s) A fair(g,tail(s))
(®); fair(g,s) = 3n,s : (forall(not o g, firstn(n, s)) A nthtail(n,s) = s’ A head(s') = x

A g(z) = true A fair(g,tail(s")))

The final model (cf. [79], Section 6.5) interprets STREAM as follows. The stream-carrier consists of all
infinite sequences over a set of entries (cf. [79], Ex. 2.5.7). & appends an entry to a stream. blink denotes a
stream whose elements alternate between zeros and ones. nats(n) generates the stream of all numbers starting
from n. odds(s) returns the stream of all elements of s that have odd-numbered positions in s. zip merges two
streams into a single stream by alternatively appending an element of one stream to an element of the other
stream. # concatenates a list and a stream into a stream. head, tail, firstn, nthtail, map, exists, forall and
forallEzists are the stream counterparts of the synonymous list functions. fair(g,s) holds true iff s contains
infinitely many elements satisfying g. Axioms A,B,C are pairwise inductively equivalent.

In the sequel, we show that the following behavioral equations are valid in Fin(STREAM):

rev(rev(s)) ~ s

)
odds(x&s) ~ xz&evens(s)

zip(odds(s), evens(s)) ~ s

(1)
(2)
evens(zip(s,s’)) ~ & (3)
(4)
(5)

iter1(f,x) ~ itera(f,x)

The proofs are generated by Ezpander 2 almost automatically. The main rules employed are coinduction,

explicit induction, narrowing and resolution (cf. [78], [80, 81]). Alternative proofs using more specialized proof

methods can be found in [91, 92], [20], [21] and [31], respectively.

All, Any, & and | denote V, 3, A and V, respectively.
Proof of (1):

rev(rev(S)) ~ S

Coinduction w.r.t. sO0 ~ s’0 ===> head(s0) = head(s’0) & tail(s0) ~ tail(s’0)
applied to the preceding formula leads to the formula

All sO s’0:
(s0 = rev(rev(s’0)) ===> head(s0) = head(s’0) & tail(s0) = rev(rev(tail(s’0))))

Simplification applied to the preceding formula leads to the formula

A1l s°0: (head(rev(rev(s’0)))

= head(s’0))
& All s’°0: (tail(rev(rev(s’0))) =

rev(rev(tail(s’0))))

The axiom rev(s) = map(switch) (s)
applied at positions [1,0],[0,0] of the preceding formula leads to the formula
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A11 s°0: (head(map(switch) (rev(s’0)))

= head(s’0))
& A1l s°0: (tail(map(switch) (rev(s’0))) =

rev(rev(tail(s’0))))

The axioms tail(map(f)(s)) = map(f)(tail(s)) & head(map(f) (s)) = f(head(s))
applied at positions [1,0],[0,0] of the preceding formula leads to the formula

A1l s’0: (switch(head(rev(s’0))) = head(s’0))
& All s°0: (map(switch) (tail(rev(s’0))) = rev(rev(tail(s’0))))

The axiom rev(s) = map(switch) (s)
applied at positions [1,0],[0,0] of the preceding formula leads to the formula

A11 s°0: (switch(head(map(switch)(s’0))) = head(s’0))
& A1l s°0: (map(switch) (tail(map(switch)(s’0))) = rev(rev(tail(s’0))))

The axioms tail(map(f)(s)) = map(f)(tail(s)) & head(map(f) (s)) = f(head(s))
applied at positions [1,0],[0,0] of the preceding formula leads to the formula

A1l s’0: (switch(switch(head(s’0))) = head(s’0))
& A1l s°0: (map(switch) (map(switch) (tail(s’0))) = rev(rev(tail(s’0))))

The theorem switch(switch(x)) = x
applied at position [0,0] of the preceding formula leads to the formula

A1l s’0: (head(s’0) = head(s’0))
& A1l s°0: (map(switch) (map(switch) (tail(s’0))) = rev(rev(tail(s’0))))

Simplification applied to the preceding formula leads to a new one. The current factor is given by
True

Simplification applied to the preceding formula leads to a new one. The current formula is given by
A11 s°0: (map(switch) (map(switch) (tail(s’0))) = rev(rev(tail(s’0))))

The axiom rev(s) = map(switch) (s)
applied at position [0] of the preceding formula leads to the formula

A1l s°0: (map(switch) (map(switch) (tail(s’0))) = rev(map(switch) (tail(s’0))))

The axiom rev(s) = map(switch) (s)
applied at position [0] of the preceding formula leads to the formula

A1l s°0: (map(switch) (map(switch) (tail(s’0))) = map(switch) (map(switch) (tail(s’0))))

Simplification applied to the entire formula leads to True.

Proof of (2):

odds(X:S) ~ X:evens(S)

The axiom s ~ s’ ===> head(s) = head(s’) & tail(s) ~ tail(s’)
applied at position [] of the preceding formula leads to the formula

head(odds(X:S)) = head(X:evens(S)) & tail(odds(X:S)) ~ tail(X:evens(S))
The axioms

tail(x:s) = s & head(x:s) = x
& head(odds(s)) = head(s) & tail(odds(s)) = odds(tail(tail(s)))
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applied at positions [1],[1],[0],[0] of the preceding formula leads to the formula
head(X:8) = X & odds(tail(tail(X:8))) ~ evens(8)

The axioms tail(x:s) = s & head(x:s) = x
applied at positions [1],[0] of the preceding formula leads to the formula

X = X & odds(tail(8)) ~ evens(S)

Simplification applied to the preceding formula leads to a new one. The current factor is given by
True

Simplification applied to the preceding formula leads to a new one. The current formula is given by
odds(tail(S)) ~ evens(S)

The axiom evens(s) = odds(tail(s))
applied at position [] of the preceding formula leads to the formula

odds (tail(S)) ~ odds(tail(S))

Simplification applied to the entire formula leads to True.

Proof of (3):
evens(zip(S,S’)) ~ &’

The axiom evens(s) = odds(tail(s))
applied at position [] of the preceding formula leads to the formula

odds(tail(zip(S,S’))) ~ S’

The axiom tail(zip(s,s’)) = zip(s’,tail(s))
applied at position [] of the preceding formula leads to the formula

odds(zip(S’,tail(8))) ~ S’

Coinduction w.r.t. s0 ~ s’0 ===> head(s0) = head(s’0) & tail(s0) ~ tail(s’0)
applied to the preceding formula leads to the formula

A1l sO s’0:
(Any S0: (sO = odds(zip(s’0,tail(S0))))
===> head(s0) = head(s’0) & Any S1: (tail(s0) = odds(zip(tail(s’0),tail(S1)))))

Simplification applied to the preceding formula leads to the formula

A11 s°0 S0: (head(odds(zip(s’0,tail(S0)))) = head(s’0))
& All s’0 SO: (Any S1: (tail(odds(zip(s’0,tail(S0)))) = odds(zip(tail(s’0),tail(S1)))))

The axiom head(odds(s)) = head(s)
applied at position [0,0] of the preceding formula leads to the formula

A11 s°0 SO: (head(zip(s’0,tail(S0))) = head(s’0))
& All s’0 SO: (Any S1: (tail(odds(zip(s’0,tail(S0)))) = odds(zip(tail(s’0),tail(S1)))))

The axiom head(zip(s,s’)) = head(s)
applied at position [0,0] of the preceding formula leads to the formula

A1l s’0 SO: (head(s’0) = head(s’0))
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& A1l s°0 SO: (Any S1: (tail(odds(zip(s’0,tail(S0)))) = odds(zip(tail(s’0),tail(S1)))))
Simplification applied to the preceding formula leads to a new one. The current factor is given by
True

Simplification applied to the preceding formula leads to a new one. The current formula is given by
A1l 5’0 S0: (Any S1: (tail(odds(zip(s’0,tail(S0)))) = odds(zip(tail(s’0),tail(S1)))))

The axiom tail(odds(s)) = odds(tail(tail(s)))
applied at position [0,0] of the preceding formula leads to the formula

A1l s°0 SO: (Any S1: (odds(tail(tail(zip(s’0,tail(S0))))) = odds(zip(tail(s’0),tail(S1)))))

The axiom tail(zip(s,s’)) = zip(s’,tail(s))
applied at position [0,0] of the preceding formula leads to the formula

A1l s°0 S0: (Any S1: (odds(tail(zip(tail(S0),tail(s’0)))) = odds(zip(tail(s’0),tail(S1)))))

The axiom tail(zip(s,s’)) = zip(s’,tail(s))
applied at position [0,0] of the preceding formula leads to the formula

A1l s°0 SO: (Any S1: (odds(zip(tail(s’0),tail(tail(S0)))) = odds(zip(tail(s’0),tail(S1)))))
Substituting tail(S0) for S1 applied at position [0] of the preceding formula leads to the formula
A1l s°0 S0: (odds(zip(tail(s’0),tail(tail(S0)))) = odds(zip(tail(s’0),tail(tail(S0)))))

Simplification applied to the entire formula leads to True.

Proof of (4):

zip(odds(S),evens(S)) ~ S

Coinduction w.r.t. sO 7 s’0 ===> head(s0) = head(s’0) & tail(s0) ~ tail(s’0)
applied to the preceding formula leads to the formula

A1l sO s’0:
(s0 = zip(odds(s’0),evens(s’0))
===> head(s0) = head(s’0) & tail(s0) = zip(odds(tail(s’0)),evens(tail(s’0))))

Simplification applied to the preceding formula leads to the formula

A11 s°0: (head(zip(odds(s’0),evens(s’0)))

= head(s’0))
& A1l s°0: (tail(zip(odds(s’0),evens(s’0))) =

zip(odds(tail(s’0)),evens(tail(s’0))))

The axioms tail(zip(s,s’)) = zip(s’,tail(s)) & head(zip(s,s’)) = head(s)
applied at positions [1,0],[0,0] of the preceding formula leads to the formula

A1l s’0: (head(odds(s’0)) = head(s’0))
& All s°0: (zip(evens(s’0),tail(odds(s’0))) = zip(odds(tail(s’0)),evens(tail(s’0))))

The axioms tail(odds(s)) = odds(tail(tail(s))) & head(odds(s)) = head(s)
applied at positions [1,0],[0,0] of the preceding formula leads to the formula

A1l s°0: (head(s’0) = head(s’0))
& All s’0: (zip(evens(s’0),odds(tail(tail(s’0)))) = zip(odds(tail(s’0)),evens(tail(s’0))))

Simplification applied to the preceding formula leads to a new one. The current factor is given by
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True
Simplification applied to the preceding formula leads to a new one. The current formula is given by
A1l s°0: (zip(evens(s’0),odds(tail(tail(s’0)))) = zip(odds(tail(s’0)),evens(tail(s’0))))

The axiom evens(s) = odds(tail(s))
applied at positions [0],[0] of the preceding formula leads to the formula

A11 s°0: (zip(odds(tail(s’0)),odds(tail(tail(s’0)))) = zip(odds(tail(s’0)),odds(tail(tail(s’0)))))

Simplification applied to the entire formula leads to True.

Proof of (5):
iter1(F,N) ~ iter2(F,N)

The theorem s = map(loop(£f)(0))(s) (6)
applied at position [] of the preceding formula leads to the formula

Any £0: (iter1(F,N) ~ map(loop(£0)(0)) (iter2(F,N)))

The theorem map(loop(f) (n)) (iter2(f,x)) = iterl(f,loop(f) (n) (x)) ¢p)
applied at position [0] of the preceding formula leads to the formula

Any fO0: (iter1(fO0,N) ~ iter1(£0,loop(£0)(0)(N)) & F = £0)
Simplification applied to the preceding formula leads to the formula
iter1(F,N) ~ iter1(F,loop(F)(0)(N))

The theorem loop(f)(0)(x) = x
applied at position [] of the preceding formula leads to the formula

iter1(F,N) ~ iteri(F,N)

Simplification applied to the entire formula leads to True.

Proof of Lemma (6):

map (loop(F) (0))(8) ~ S

Coinduction w.r.t. s0 ~ s’0 ===> head(s0) = head(s’0) & tail(s0) ~ tail(s’0)
applied to the preceding formula leads to the formula

All sO s’0:
(Any FO: (s0 = map(loop(F0)(0))(s’0))
===> head(s0) = head(s’0) & Any F1: (tail(s0) = map(loop(F1) (0)) (tail(s’0))))

Simplification applied to the preceding formula leads to the formula

A1l s°0 FO: (head(map(loop(F0)(0))(s’0)) = head(s’0))
& All s’0 FO: (Any F1: (tail(map(loop(FO0)(0))(s’0)) = map(loop(F1)(0))(tail(s’0))))

The axioms tail(map(f)(s)) = map(f) (tail(s)) & head(map(f)(s)) = f(head(s))
applied at positions [1,0,0],[0,0] of the preceding formula leads to the formula

A1l s°0 FO: (loop(FO) (0) (head(s’0)) = head(s’0))
& All s°0 FO: (Any F1: (map(loop(F0)(0))(tail(s’0)) = map(loop(F1)(0)) (tail(s’0))))
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The axiom loop(f)(0)(x) = x
applied at position [0,0] of the preceding formula leads to the formula

A1l s°0 FO: (head(s’0) = head(s’0))
& All s’0 FO: (Any F1: (map(loop(F0)(0))(tail(s’0)) = map(loop(F1)(0)) (tail(s’0))))

Simplification applied to the preceding formula leads to a new one. The current factor is given by
True

Simplification applied to the preceding formula leads to a new one. The current formula is given by
A1l s°0 FO: (Any F1: (map(loop(F0)(0))(tail(s’0)) = map(loop(F1)(0)) (tail(s’0))))

Substituting FO for F1 applied at position [0] of the preceding formula leads to the formula

A1l s’0 FO: (map(loop(F0)(0))(tail(s’0)) = map(loop(F0)(0))(tail(s’0)))

Simplification applied to the entire formula leads to True.

Proof of Lemma (7):

iter1(F,loop(F) (N) (X)) ~ map(loop(F) (N)) (iter2(F,X))

Coinduction w.r.t. s0 ~ s’0 ===> head(s0) = head(s’0) & tail(s0) ~ tail(s’0)
applied to the preceding formula leads to the formula

A1l sO s’0:
(Any FO NO X0: (sO = iter1(FO0,loop(F0)(NO)(X0)) & s’0 = map(loop(F0) (NO)) (iter2(F0,X0)))
===> head(s0) = head(s’0)
& Any F1 N1 X1:
(tail(s0) = iter1(F1,loop(F1) (N1)(X1)) & tail(s’0) = map(loop(F1) (N1)) (iter2(F1,X1))))

Simplification applied to the preceding formula leads to the formula

A1l FO NO X0: (head(iter1(F0,loop(F0) (NO)(X0))) = head(map(loop(F0) (NO)) (iter2(F0,X0))))
& All FO NO XO:
(Any F1 N1 X1:
(tail(iter1(F0,loop(F0) (NO) (X0))) = iter1(F1,loop(F1) (N1)(X1))
& tail(map(loop(F0) (NO)) (iter2(F0,X0))) = map(loop(F1) (N1)) (iter2(F1,X1))))
Simplification applied to the preceding formula leads to a new one. The current factor is given by

A1l FO NO XO: (head(iter1(FO0,loop(F0) (NO)(X0))) = head(map(loop(F0) (NO)) (iter2(F0,X0))))

The axioms head(map(f)(s)) = f(head(s)) & head(iter1(f,x)) = x
applied at positions [0],[1] of the preceding formula leads to the factor

A1l FO NO X0: (loop(FO0)(NO)(X0) = loop(F0) (NO) (head(iter2(F0,X0))))

The axiom head(iter2(f,x)) = x
applied at position [1,1] of the preceding formula leads to the factor

A1l FO NO XO0: (loop(FO0)(NO)(X0) = loop(FO0) (NO) (X0))
Simplification applied to the preceding formula leads to the factor
True

Simplification applied to the preceding formula leads to a new one. The current formula is given by
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A1l FO NO XO:
(Any F1 N1 X1:
(tail(iter1(F0,loop(F0) (NO) (X0))) = iteri1(F1,loop(F1) (N1) (X1))
& tail(map(loop(F0) (NO)) (iter2(F0,X0))) = map(loop(F1) (N1)) (iter2(F1,X1))))

The axioms tail(map(f)(s)) = map(f)(tail(s)) & tail(iteri(f,x)) = iterl(f,f(x))
applied at positions [0,0,0,0],[0,0,1,0] of the preceding formula leads to the formula

A1l FO NO XO:
(Any F1 N1 X1:
(iter1(F0,F0(loop(F0) (NO) (X0))) = iter1(F1,loop(F1) (N1)(X1))
& map (loop(FO0) (NO)) (tail(iter2(F0,X0))) = map(loop(F1) (N1)) (iter2(F1,X1))))

The axiom tail(iter2(f,x)) = map(f) (iter2(f,x))
applied at position [0,0,1,0,1] of the preceding formula leads to the formula

A1l FO NO XO:
(Any F1 N1 X1:
(iter1(F0,F0(loop(F0) (NO) (X0))) = iter1(F1,loop(F1) (N1) (X1))
& map (loop (F0) (NO)) (map (FO) (iter2(F0,X0))) = map(loop(F1) (N1)) (iter2(F1,X1))))

Substituting FO for F1 applied at position [0] of the preceding formula leads to the formula

A1l FO NO XO:
(Any N1 X1:
(iter1(F0,F0(loop(F0) (NO) (X0))) = iter1(FO0,loop(F0) (N1) (X1))
& map (loop (FO) (NO)) (map (FO) (iter2(F0,X0))) = map(loop(FO)(N1)) (iter2(F0,X1))))

The theorem £ (loop(f) (n)(x)) = loop(f) (suc(n)) (x)
applied at position [0,0,0] of the preceding formula leads to the formula

A1l FO NO XO:
(Any N1 X1:

(iter1(F0,loop(FO0) (suc(N0)) (X0)) = iter1(FO0,loop(FO0) (N1)(X1))

& map (loop (F0) (NO)) (map (FO) (iter2(F0,X0))) = map(loop(F0) (N1)) (iter2(F0,X1))))
Substituting suc(NO) for N1 applied at position [0] of the preceding formula leads to the formula
A1l FO NO XO:
(Any X1:

(iter1(F0,loop(F0) (suc(N0)) (X0)) = iter1(FO0,loop(F0) (suc(N0)) (X1))

& map (loop(FO) (NO)) (map (FO) (iter2(F0,X0))) = map(loop(FO) (suc(NO0))) (iter2(F0,X1))))
Substituting X0 for X1 applied at position [0] of the preceding formula leads to the formula

A1l FO NO XO:

(iter1(FO0,loop(FO0) (suc(N0)) (X0)) = iter1(FO0,loop(FO0) (suc(N0)) (X0))

& map (loop(FO) (NO)) (map (FO0) (iter2(F0,X0))) = map(loop(FO0) (suc(N0))) (iter2(F0,X0)))
Simplification applied to the preceding formula leads to the formula

A1l FO NO X0: (map(loop(F0)(NO)) (map(F0) (iter2(F0,X0))) = map(loop(F0) (suc(N0))) (iter2(F0,X0)))

The theorem map(loop(f) (n)) (map(f)(s)) = map(loop(f) (suc(n))) (s) (8)
applied at position [0] of the preceding formula leads to the formula

A1l FO NO X0: (map(loop(FO0) (suc(N0))) (iter2(F0,X0)) = map(loop(F0) (suc(N0))) (iter2(F0,X0)))

Simplification applied to the entire formula leads to True.

Proof of Lemma (8):
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map (loop(F) (suc(N))) (S) ~ map(loop(F) (N)) (map(F) (S))

Coinduction w.r.t. s0 ~ s’0 ===> head(s0) = head(s’0) & tail(s0) ~ tail(s’0)
applied to the preceding formula leads to the formula

A1l sO s’0:
(Any FO NO S0: (sO = map(loop(FO) (suc(N0)))(S0) & s’0 = map(loop(F0) (NO)) (map(FO0) (S0)))
===> head(s0) = head(s’0)
& Any F1 N1 Si1:
(tail(s0) = map(loop(F1) (suc(N1)))(S1) & tail(s’0) = map(loop(F1) (N1)) (map(F1)(S1))))

Simplification applied to the preceding formula leads to the formula

A1l FO NO SO: (head(map(loop(FO0) (suc(N0)))(S0)) = head(map(loop(F0) (NO)) (map(F0) (S0))))
& A1l FO NO SO:
(Any F1 N1 S1:
(tail(map(loop(FO) (suc(N0))) (S0)) = map(loop(F1l) (suc(N1))) (S1)
& tail(map(loop(F0) (NO)) (map(FO) (S0))) = map(loop(F1) (N1)) (map(F1)(S1))))

The axioms tail(map(f)(s)) = map(f)(tail(s)) & head(map(f) (s)) = f(head(s))
applied at positions [0,0,0],[0,0,1],[1,0,0,0,0],[1,0,0,1,0] of the preceding formula leads to the formula

A1l FO NO SO: (loop(FO0) (suc(NO)) (head(S0)) = loop(FO0) (NO) (head(map(F0) (S0))))
& A1l FO NO SO:
(Any F1 N1 S1:
(map (Loop (FO) (suc(N0))) (tail(S0)) = map(loop(F1) (suc(N1)))(S1)
& map (loop (F0) (NO)) (tail (map(F0) (S0))) = map(loop(F1)(N1)) (map(F1)(S1))))
Simplification applied to the preceding formula leads to a new one. The current factor is given by

A1l FO NO SO: (loop(F0) (suc(NO)) (head(S0)) = loop(FO0) (NO) (head (map(FO0) (S0))))

The axiom head(map(f)(s)) = f(head(s))
applied at position [1,1] of the preceding formula leads to the factor

A1l FO NO SO: (loop(F0) (suc(NO)) (head(S0)) = loop(F0) (NO) (FO(head(S0))))

The theorem loop(f) (suc(n))(x) = £(loop(f) (n)(x))
applied at position [] of the preceding formula leads to the factor

A1l FO NO SO: (FO(loop(FO0) (NO) (head(S0))) = loop(FO0) (NO) (FO(head(50))))

The theorem loop(f)(n)(£(x)) = £(loop(£) (n)(x)) 9)
applied at position [] of the preceding formula leads to the factor

A1l FO NO SO: (FO(loop(FO0)(NO) (head(S0))) = FO(loop(FO0) (NO) (head(S0))))
Simplification applied to the preceding formula leads to the factor
True
Simplification applied to the preceding formula leads to a new one. The current formula is given by
All FO NO SO:
(Any F1 N1 S1:
(map (1oop (FO) (suc(N0))) (tail(S0)) = map(loop(F1) (suc(N1)))(S1)

& map (loop (F0) (NO)) (tail (map(F0) (S0))) = map(loop(F1) (N1)) (map(F1)(S1))))

The axiom tail(map(f)(s)) = map(f) (tail(s))
applied at position [0,0,1,0,1] of the preceding formula leads to the formula

A1l FO NO SO:
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(Any F1 N1 S1:
(map (loop(FO) (suc(N0))) (tail(S0)) = map(loop(F1) (suc(N1))) (S1)
& map (loop (F0) (NO)) (map (FO) (tail(S0))) = map(loop(F1) (N1)) (map(F1)(S1))))

Substituting FO for F1 applied at position [0] of the preceding formula leads to the formula

A1l FO NO SO:
(Any N1 S1:
(map (1oop (FO) (suc(NO0))) (tail(S0)) = map(loop(FO) (suc(N1))) (S1)
& map (loop (F0) (NO)) (map (FO) (tail(S0))) = map(loop(F0) (N1)) (map(F0) (S1))))

Substituting NO for N1 applied at position [0] of the preceding formula leads to the formula

A1l FO NO SO:
(Any S1:
(map (Lloop(FO) (suc(N0))) (tail(S0)) = map(loop(FO) (suc(NO))) (S1)
& map (loop (F0) (NO)) (map (FO) (tail(S0))) = map(loop(F0) (NO)) (map(F0) (S1))))

Substituting tail(S0) for S1 applied at position [0] of the preceding formula leads to the formula
A1l FO NO SO:

(map (loop (FO) (suc(N0))) (tail(S0)) = map(loop(F0) (suc(N0))) (tail(S0))

& map (loop (FO) (NO) ) (map (FO) (tail(S0))) = map(loop(F0) (NO)) (map(FO) (tail(S0))))

Simplification applied to the entire formula leads to True.

Proof of Lemma (9):

Nat (N) ==> loop(F) (N) (F(X)) = F(loop(F) (N) (X))
Selecting induction variables applied at position [] of the preceding formula leads to the formula
A1l F X: (Nat(!N) ==> loop(F) (!N) (F(X)) = F(loop(F)(!N)(X)))

The axioms loop(f) (0)(x) = x & loop(f) (suc(n)) (x) = £(loop(£) (n) (x))
applied at position [0,1] of the preceding formula leads to the formula

All F X:
(Nat (IN)
==> F(X) = F(loop(F)(0)(X)) & !N =0
| Any nO: (F(loop(F)(n0) (F(X))) = F(loop(F) (suc(n0)) (X)) & !N = suc(n0)))

The axioms loop(f) (suc(n))(x) = £(loop(f)(n)(x)) & loop(£f)(0)(x) = x
applied at positiomns [0,1,1,0,0],[0,1,0,0] of the preceding formula leads to the formula

All F X:
(Nat (!'N)
=>FX) =FX) & 'N=0
| Any n0: (F(loop(F) (n0) (F(X))) = F(F(loop(F)(n0)(X))) & !N = suc(n0)))

Simplification applied to the preceding formula leads to the formula

A1l F X:
(Nat(!N) ==> IN = 0 | Any nO: (F(loop(F) (n0)(F(X))) = F(F(loop(F)(n0)(X))) & 'N = suc(n0)))

The theorem loop(F) (NO) (F(X0)) = F(loop(F)(NO)(X0)) <=== Nat(NO) & !N >> NO
applied at position [0,1,1,0,0] of the preceding formula leads to the formula

A1l F X:
(Nat (IN)
=> IN =0
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| Any nO: ((F(F(loop(F)(n0)(X))) = F(F(loop(F)(n0)(X))) & !N >> n0 & Nat(n0)) & !N = suc(n0)))
Simplification applied to the preceding formula leads to the formula
Nat(!N) ==> IN = 0 | Any nO: (!N >> n0 & Nat(n0) & !N = suc(n0))

The axiom suc(x) >> x
applied at position [1,1,0,0] of the preceding formula leads to the formula

Nat(!N) ==> IN = 0 | Any n0: (!N = suc(n0) & Nat(nO) & !N = suc(n0))

The axioms Nat(0) & (Nat(suc(x)) <=== Nat(x))
applied at position [0] of the preceding formula leads to the formula

IN = 0 | Any x0: (Nat(x0) & !N = suc(x0)) ==> IN = 0 | Any nO: (!N = suc(n0) & Nat(nO))

Simplification applied to the entire formula leads to True.

4.2 Finite and infinite sequences

For any correct actualization SP of STREAM that assigns the sort s to entry, Fin(SP)stream is embedded in
Ini(SP)Y and thus in the final F-coalgebra where F(A) =g.r Ini(SP)s x A (see Section 6). Domains of finite
and infinite streams can be specified either relationally in terms of a transition predicate —»: stream x entry x
stream, which replaces the destructors head and tail of STREAM, or functionally by combining head and tail
to a single destructor ht : stream — 1+ (entry x stream) (cf. Section 1). The latter solution “implements”
the final G-coalgebra where G(A) =g¢5 1+ (Ini(SP)s x A) analogously to the way HNAT implements the final
F-coalgebra where F(A) =45 1+ A (see Sections 2.1 and 6).

RSTREAM = LIST and ENTRY (entry’) then
hidsorts rstream = rstream(entry) rstream’ = rstream(entry’)
constructs nil :— rstream
&_: (entry — entry’) x rstream — rstream’
blink :— rstream(nat)
nats : nat — rstream
odds, evens : rstream — rstream
_Q_: rstream x rstream — rstream
zip : rstream X rstream — rstream
map : (entry — entry) X rstream — rstream

filter : (entry — bool) x rstream — rstream

defuncts firstn : nat x rstream — list
nthtail : nat X rstream — rstream

destructors isnil : rstream

transpreds _— _:rstream X entry X rstream

static preds finite : rstream

exists : (entry — bool) X rstream
v-preds infinite : rstream

forall, forallExists : (entry — bool) x rstream

fair : (entry — bool) x rstream
vars n:nat z,y:entry L:list s,8,t,t' :rstream f:entry — entry g:entry — bool
Horn axioms r&s = s

blink — 1&blink

nats(n) — nats(suc(n))
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concatenation of streams and finite and infinite distinguish finite from infinite streams.

co-Horn axioms

s ANs Lt
= s L dns St
xT
s —1
isnil(s) A s’ -2 t
s —t
isnil(s) A s 2t/

odds(s) —= odds(t) <
evens(s) — evens(t)
s@s’ 5 tQs’ <«
sQs’ s sQt «
zip(s,8') — zip(s',t) <
zip(s,8') — zip(s,t') <«
map(f, s) —Zmapf, = 55t

filter(g,s) == filter(g,t) < s—=>tAg(z)=true

filter(g,s) 5t < s-"tAglx)=
isnil(nal)

isnil(odds(s)) <  isnil(s)
isnil(evens(s)) < isnil(s)

(

(5)) < s tAisnil(t)

isnil(s) A isnil(s)

isnil(s) N isnil(s")
isnil(s)

(

(

isnil(evens

isnil(sQs’) <

isnil(zip(s,s")) <

isnil(map(f,s)) <
(filter(g,s)) <

isnil(filter(g,s)) < s—=tAg(z)=

finite(s) < isnil(s)

finite(s) < st Aisnil(t)

exists(g,s) < s—=tAg(x)=true

( < 55t Aexists(g,t)

isnil(f isnil(s)

exists(g, s

firstn(0, s) = nil

firstn(suc(n),s) =z : firstn(n,t) < s——t
nthtail(0,s) = s

nthtail(suc(n), s) = nthtail(n,t) < s-—t

infinite(s) = Jx,t: (s — t Ainfinite(t))

forall(g,s) = (s =t = (g(x) = true A forall(g,t)))

forallEzists(g,s) = ewists(g,s)

forallEzists(g,s) = (s —t = forallEzists(g,t))

fair(g,s) = forallExists(g,s)

fair(g,s)

fair(g,s) = (s ==t = fair(g,t))

fair(g, s) : (forall(not o g, firstn(n,
A g(z) = true A fair(g,t))

= ewxists(g, s)

= dn,s’

4 Streams and processes

false A filter(g,t) =t/

false Nisnil(filter(g,t))

s)) Anthtail(n,s) = s’ As' > t

In the final RSTREAM-model, s — t holds true if x is the first entry and t is the rest of s, @ is the

A comprehension

function like filter would not make sense within STREAM because it may return finite sequences. The other

function symbols and predicates are interpreted as the synomymous symbols of STREAM.

The second specification of finite and infinite streams is built along the lines of HNAT because we also need

to specify a partial destructor and thus to introduce a sum sort for incorporating “undefined” values. Similar
to STREAM, but in contrast to RSTREAM, behavioral equivalence is induced by a functional observer.

COLIST = ENTRY (entry) and ENTRY (entry’) and NAT then

hidsorts

constructs

colist = colist(entry) colist’ = colist(entry’)
nil :— colist
&_: entry x colist — colist
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destructs
defuncts

static preds

v-preds

vars

Horn axioms

co-Horn axioms

@

blink :— colist(nat)

nats : nat — colist

_Q@Q_: colist x colist — colist

zip : colist x colist — colist

map : (entry — entry) X colist — colist’
ht : colist — 1 + (entry X colist)

evens : colist — colist

firstn : nat x colist — colist

nthtail : nat x colist — 1 + colist

isnil : colist

exists : (entry — bool) X colist

forall, forallExists : (entry — bool) x colist
fair : (entry — bool) x colist

infinite : colist

n:nat xz,y:entry s,s,t:colist f:entry— entry g:entry — bool

ht(nil) = ()

ht(x&s) = (z, s)

ht(blink) = (0, 1&blink)

ht(nats(n)) = (n, nats(suc(n)))

ht(sQs') = ht(s') < ht(s) = (

ht(s@Qs’) = (z,tQs") <  hi(s) = (z,1)
ht(zip(s,s')) = ht(s') < hit(s) = ()
ht(zip(s,s')) = (x,zip(s',t)) < ht(s) = (x,t)
Bt(map(f,$) = () < hi(s) = ()
ht(map(f,s)) = (f(s),map(f,t)) <« hi(s) = (z,1)
evens(s) = () < ht(s) = ()

evens(s) = odds(t) < ht(s) = (z,1)
firstn(0, s) = nil

firstn(suc(n), s) = z& firstn(n,t) < hit(s) = (x,t)
nthtail(n,s) = nil < ht(s) = ()

nthtail(0,s) = (s) <  ht(s) = (x,t)

nthitail(suc(n), s) = nthtail(n,t) < ht(s) = (z,t)

isnil(s) < hi(s) =()

exists(g,s) < hit(s) = (z,t) A g(x) = true

exists(g,s) < ht(s) = (z,t) A exists(g,t)

forall(g,s) = (ht(s) = (x,t) = (g(x) = true A forall(g,t)))

forallEzists(g,s) = exists(g,s)
forallEzists(g,s) = (ht(s) = (x,t) = forallExists(g,t))

fair(g,s) = forallEzists(g,s)
fair(g,s) = (ht(s) = (x,t) = (exists(g,s) A fair(g,t)))
fair(g,s) = s': (forall(not o g, firstn(n, s)) A nthtail(n,s) = s

A ht(s') = (z,t) A g(x) = true A fair(g,t))
infinite(s) = 3Jx,t: (ht(s) = (x,t) Ninfinite(t))

COLIST serves as the visible subspecification of the following specification of colist comprehension ( filter).

Axioms for filter cannot be included into COLIST because they involve a v-predicate (forall), which must first

be translated into a p-predicate. This happens automatically as a consequence of the step from the swinging

type COLIST to the swinging type FILTER where the first one is turned into its basic Horn translation (cf.
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78], Det. 2.8).

FILTER = COLIST then

defuncts filter : (entry — bool) x colist — colist
vars x:entry s:colist g:entry — bool
Horn axioms filter(g,s) =nil < forall(not o g, s)

filter(g,s) = z&filter(g,t) < hit(s) = (z,t) A g(x) = true
filter(g,s) = filter(g,t) < ht(s) = (z,t) A g(xz) = false A exists(g,t)

Two further specifications of filter are presented in [79]: as a destructor defined in terms of assertions and as

a cofunction, i.e. defined in terms of a coinductive aziomatization.

4.3 Alternating bit protocol

The alternating bit protocol of [9] is presented as a network of three list processing functions send, sendAck
and receive and two stream processing functions chl and ch2. The elements of a message list L are equipped
with a Boolean tag, transmitted by send to the channel chl and consumed by receive. The tags are sent back
via the channel ch2 to the sender by sendAck for confirming (acknowledging) the receipt. Since both tagged
messages and acknowledgements may get lost while being transmitted, a message is re-sent until the sender

receives the corresponding acknowledgement.

EBPAIR = ENTRY (entry) then

static preds _# _: (entry x bool) x (entry x bool)
vars z,y :entry b, c: bool
Horn axioms (x,0) # (y,0) = z#y

(z,b) # (y,c) = bFc

ABP = LIST and EBPAIR and LIST and STREAM then

defuncts send : list(entry) x bool x list(bool) — list(entry x bool)
chl : list(entry x bool) x stream(bool) — list(entry x bool)
receive : list(entry x bool) x bool — list(entry)
sendAck : list(entry x bool) x bool — list(bool)
ch2 : list(bool) x stream(bool) — list(bool)

static preds net : list(entry) x bool x list(entry) x bool

vars x,y:entry xL,yL :list(entry) tag,ack,b: bool acks : list(bool)
pair : entry x bool pairs : list(entry x bool) s,s" : stream(bool)

Horn axioms send(xL,tag, nil) = nil
send(x : xL,tag, tag : acks) = (x,tag) : send(xL,not(tag), acks)
send(x : xL,tag, ack : acks) = (z,tag) : send(x : xL,tag,acks) < tag # ack
chl(nil, s) = nil
chl(pair : pairs, s) = pair : chl(pairs,s’) < s frug o
chl(pair : pairs, s) = chl(pairs,s’) < s false o
receive(nil, tag) = nil
receive((z,tag) : pairs,tag) = x : receive(pairs, not(tag))
receive((x, tag) : pairs, tag’) = receive(pairs,tag’) < tag #Z tag’
sendAck(nil, tag) = nil
sendAck((x, tag) : pairs,tag) = tag : sendAck(pairs, not(tag))
sendAck((x, tag) : pairs,tag’) = tag : sendAck(pairs,tag’) < tag #Z tag’
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ch2(nil, s) = nil

ch2(ack : acks, s) = ack : ch2(acks,s') < 525

ch2(ack : acks,s) = ch2(acks,s’) < s false o1

net(xL,tag,yL,tag’) < send(xL,tag,acks’) = pairs A chl(pairs, s1) = pairs’ A
receive(pairs’,tag’) = yL A sendAck(pairs’,tag’) = acks A
ch2(acks, s2) = acks’

sl
|
v
chl receive yL —»
tag i \
l pairs pairs’
tag’ ——
xL —»| send
—
acks’ sendAck
acks
ch2 “
A
|
s2

Figure 4. The functions of ABP.

The edge labels in Fig. 4 correspond to the arguments of net. If each message gets lost at most finitely many
times, the list consumed by the sender agrees with the list produced by the receiver, formally,

fair(Ab.eq(b, true), s1) A fair(Ab.eq(b, true),ss) = mnet(zL,tag,zL, tag). (1)

We claim that (1) is an inductive theorem of ABP and can be proved similarly to the corresponding conjecture
of [72], Section 8.7.

Next we present a completely different specification of the alternating bit protocol that handles also infinite
message streams and is designed along the lines of ACCOUNT and COM. All messages have the form a/b. A

b -
dynamic atom s i> t indicates that the transition from s to t consumes a and produces b.

ABP2 = STREAM then
hidsorts mes sender reveiver channel abp
constructs _/-: entry X entry — mes
-/ (2, 2) : bool x entry x bool — mes
(5,-)/-: entry x bool x bool — mes
receive : bool X sender — sender
receive : entry X bool X receiver — receiver
_|-|-]- : sender x channel x receiver x channel — abp
destructs str : sender — stream(entry)
tag : sender — bool
str : receiver — stream(entry)
tag : receiver — bool
transpreds _— _: sender X mes X sender

_— _:Teceiver X mes X recetver
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_ — _: channel x mes x channel

_—> _:abp x abp

dynamic preds =% _:abp x abp
Otransmits : channel
v-preds fair : channel
vars z,y :entry b,b,c,c :bool se,se' :sender re,re’ :receiver ch,ch’,dh,dh’ : channel
S,S", 8" :abp a:mes
Horn axioms tag(receive(b, se)) = not(b) < b= tag(se)
tag(receive(b, se)) = tag(se) < b tag(se)
str(receive(b, se)) = tail(str(se)) < b= tag(se)
str(receive(b, se)) = str(se) <« b % tag(se)

se b/(—%’c) receive(b, se) < head(str(se)) = x Atag(se) =c

tag(receive(z,b,re)) = not(t) < b= tag(re)
tag(receive(z,b,re)) = tag(re) < b # tag(re)
) = ax&str(re) < b=tag(re)
)) =str(re) < b#tag(re)
e (T receive(z,b,re) <« tag(re) =c
ch 5 ch
ch -5 ch

str(receive(z, b, re
str(receive(z, b, re

b/(cym) e Ach (C’zL(g v) ch’

(o, r)/(b W) ot p e O

se|ch|reldh — se’|ch/|reldh <
se|ch|re|dh — se|ch’|re’'|[dh < ch
e e "0 re’/\dh/—>dh’

P an A se L) ser

se|ch|re|dh — se|ch|re’|dRh’
se|ch|reldh —» se’|chlreldh’ < dh —
Otransmits(ch) < ch 2% gy

Otransmits(ch) < ch -%5 ch’ A Otransmits(ch’)

55—
§—=9" &« §—5NT 5"
co-Horn axioms fair(ch) = Stransmits(ch)

fair(ch) = (ch - ch! = fair(ch'))
The correctness requirement now reads formally as follows (cf. (1)):

fair(ch) A fair(dh) = 3 se’ ch',re/,dh' : (se|ch|re|dh —= se'|ch|re’|dh A
firstn(n, str(se)) = firstn(n, str(re’)).

4.4 Processes

STREAM (Section 4.2) specifies linear computation sequences. PROCESS adds nondeterminism via the sum-
mation operator +. The axioms for the process transition predicate —: proc x act X proc are derived from
Milner’s process calculus CCS ([67], Section 2.5). We include value passing via shared variables (channels). For
simplicity, the domain of values is restricted to integers. Valuations are not stored in states as in ACCOUNT
and COM. Instead, operators that substitute expressions for variables are included into PROCESS.

The labels of transition systems for process calculi are usually called actions. Here the actions are silent (7)
or read (c?z), write (cle) commands for which we adopt the notation of Hoare’s process language CSP [11]. A
specification EXP may provide expression constructors and a substitution operator _[_/_] : expxexpxvar — exp.
As in COM (cf. Section 3.4), var is supposed to be a subsort of exp.
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ACTION(channel) = EXP then
sorts channel act
constructs _?7_: channel X exp — act

_I_: channel x exp — act

T :— act
defuncts -:act = act
Horn axioms cle =cle

cle = c?e

PROCESS = ACTION(channel) and SET then
hidsorts proc
constructs stop :— proc
_._:act X proc — proc
_+ _:proc X proc — proc
_|-: proc x proc — proc
_\ - proc x set(act) — proc
map : (act — act) X proc — proc

destructs _[/] : proc x exp x var — proc

transpreds _— _:proc X act X proc

vars a:act as:set(act) p,p',q,q :proc f:act — act c:channel x,y:var
e, e :exp

Horn axioms clx.p < ple/z]
cle.p e P

TP—=q = p-gq
brp—q < bp—gq

p+pr g < p-Sg
p+p g & p-Sgq
plp) =gl = p-—¢
plp = pld <= p -S54
plp s qld <= p-gny Sq

p\as = q\as < p-qhadas
map(f,p) "% map(f,q) < p-"q
stople/x] = stop

(cle.p)e’/x] = cle[e’ /x].ple’ /]
(c?z.p)le/x] = clx.p

(c?zp)le/y] = cleple/y] < z#y
(p+p')le/x] = ple/a] + p'le/x]

Further process constructors may be specified by “head normal form” or “guarded” process equations such
as p = Z?Zl a;.p;, which stands for the n axioms p —» p1,...,p —% p,. For instance, the process equation
clock = tick.clock corresponds to the axiom clock LK clock for the constructors tick :— act and clock :— proc.
By adding this to PROCESS one obtains clock ~ tick.clock as an the inductive theorem of PROCESS. It is
easy to see that a process must be guarded for being specifiable in terms of —.

Exercises. (A) Show that the 7-laws:
aTp ~ a.p (1)
p+TPp ~ TP (2)
a.(p+7q9) +aq ~ a.(p+71.q) (3)
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are inductive theorems of PROCESS (cf. [67], Prop. 3.2).

(B) Show that the expansion law for two guarded processes:

Yo ai-(pilg) \ e+

> e bis(plai) \ ¢ +
Zi<j:ai:d?a:,bj:d!e 7.(pile/]lg;) \ ¢ +
Zi<j:ai:d!e,bj:d?m T. (pi\qj le/z]) \ c

pEZai.pi A qEZbi-Qi = (plg)\c ~ (4)
i=1 i=1

is an inductive theorem of PROCESS (cf. [67], Cor. 3.6). Use coinduction!

(C) Given k process expressions (= proc-normal forms) Z?;l aij.pij, - - .,Z?il aj-pr; containing occur-
rences of k guarded process variables (= proc-constants) Py, ..., P.°, show that, for distinct process variables
Q1,...,Qr, the unique-solution law:

P EZ?’; aijpij A ... A
Py =301 akjprj A
Q1 =201 anypiy[Qu/Pry o Qi /Pe] A oo A (5)
Qr =205 ag;pri[Q1/Prs -, Qi) Py
= P ~Qi A ... A P~ O

is an inductive theorem of PROCESS (cf. [67], Prop. 3.4).

(D) The following buffer processes are taken from [67], Ex. 3.2.

BUFFERS = PROCESS then
constructs buf |, buf 5, buf 5 :— proc
a, 8,7 :— channel
Horn axioms buf, = a?.yl.buf,

buf, = 7.8 buf 5
bufs = (a?.plbufg) + (Bl.a?.buf )

Show that
(buf 1[buf2) \v? ~ a?.bufy (6)
is an inductive theorem of PROCESS. Use (1), (4) and (5) (cf. [67], Ex. 3.2).

4.5 The 7-calculus

The m-calculus [68] is a further development of CCS that captures, besides concurrency and communication,
the mobility of systems, mainly by treating channels as values. The syntax splits into names (z,y, z, . .. ), labels,
processes and agents ([68], §9.1):
LABEL(name)

sorts name label

constructs _:name — label

= : name — label

PROCESS = LABEL(name) and SET then

hidsorts proc agent

5P is guarded if P = pij implies a;; # 7.
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constructs 0 :— proc
T._:proc — proc silent action
(0).- : list(name) x proc — agent receive list
v_{_)._: set(name) x list(name) x proc — agent send list

~- - name X agent — proc

_+ _:proc X proc — proc summation
_|-: proc x proc — proc composition
v_ _: set(name) X proc — proc restriction
I_: proc — proc replication
defuncts ,|agem5, 1 agent X proc — agent
Vagent- - - agent X proc — agent
vars x,y : list(name) P,Q :proc xs,ys,zs,xs’,zs : set(name)
Horn axioms (2).P)|agent@ = (2).(P|Q)

(ves(y).P)lagent@ = vas(y).(P|Q)
Vagent (28, (y).P) = (y).vzs P
Vagent(x8,v2s(y).P) = vzs'(y).ves' .P
< y=Wi, - yn) AYs={y1,.. ., ynt Axs' =xs\ys A zs' = zsU (zsNys)

The structural congruence ([68], Def. 9.7) of the p-calculus is the least equivalence relation that is
compatible with the above constructors and the change of bound names (a-conversion) and satisfies the following

equations:

PLQ+R=(PYQ)+R P+Q=Q+P P(QR=(PQIR PQ=qP
PO0=P P =P|IP vxs0=0
vrs(P|Q) = PlvzsQ  (if xs N freeVars(P) = ()

Equational axioms that relate process constructors to each other are also typical for process algebra. For
instance, BPA and ACP (cf. [7]) form equational specifications (mainly of + resp. + and —) and induce
a semantics of processes that is defined by the respective initial BPA- resp. ACP-model. The number and
complexity of these equations is much greater than what we know from classical algebra with its study of groups,
rings, fields, ring modules or vector spaces. The point is that here the initial, free or other standard models have
canonical representations, while the quotients given by Ini(BPA) or Ini(ACP) consist of equivalence classes
where conceivable unique representatives (normal forms) are difficult to find. This also applies to the above
structural congruence of the w-calculus and to the structural congruence of the ambient calculus (cf. [15]).

In general, most functions occurring in equations generating a structural congruence = cannot be declared
as defined functions and thus the equations cannot be declared as axioms of a swinging type. Instead, one may
search for axioms for a swinging type SP whose behavioral equivalence agrees with the respective structural
congruence. Even this often fails, but there remains the possibility to specify a behavioral equivalence that
includes the structural congruence. This seems to be adequate because in all the above-mentioned cases the
structural congruence yields a subrelation of the process equivalence(s) process algebra, the m-calculus or the
ambient calculus work with. For instance, after having defined the above structural congruence =, Milner
presents reaction rules (Horn axioms for a dynamic predicate —) that include a rule (STRUCT) expressing
the compatibility of = with — ([68], Def. 9.16):

TP+M — P TAU

(x(y).P+ M)|(Z(2).Q + N) — Plz/y]|Q REACT
PlQ-——P|Q « P—P PAR
vesP|Q — vasP'|Q <« P — P’ RES

Q-—Q <« P—PAP=QAP =Q STRUCT
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STRUCT implies that = is a strong bisimulation w.r.t. —, i.e. zigzag compatible with —, in other
words: = is a subrelation of behavioral S P-equivalence if — is the only observer of SP. In fact, the question
arises whether a structural congruence needs to be separated at all. For instance, what would we lose by
replacing the axiom !P = P|!P with an additional reaction rule, namely:

'P—@Q <« P|IIP—Q REPL
?

The commitment rules ([68], Def. 12.6) define a ternary transition relation — analogously to the one
specified in Section 4.4. Here — transforms processes into agents. Let « be a label, P, @, R, S be processes,
M, N be summations, A be an agent, s C {z1,...,2,} and z = (21,...,2p).

M+aA+N - A SUM
actP|Qrvas(Rz/y]|S) < P - (y).R A Q -5 vas(z).S L-REACT
P|lQ s vas(R[z/y)|S) < P -Zsvas(z).S A Q-5 (y).R R-REACT

P|Q i> A|agentQ < P i> A L-PAR

P|Q i> A|agentp ~ Q i> A R-PAR
vrsP -2 Vagent(zs,A) <« P 25 A if o & {z,7} RES
P A « PP A REP

Milner shows that the above structural congruence is also zigzag compatible with the transition relation
generated by the commitment rules (cf. [68], Thm. 12.8). Hence, again, the above structural congruence = is
a subrelation a process congruence, namely the greatest strong bisimulation w.r.t. —. This is similar to the
greatest relation ~ that satisfies the following co-Horn clauses, called strong equivalence ([68], Def. 12.13):
Let « be a label, P, @ be processes, A, B be agents, s C {y1,...,Yn}, ¥y = (Y1,-..,Yn) and z = (21,..., 2p).

P~QANP-*>A = 3IB:Q-BANA~B

P~Q ANQ-5B JA:P5ANA~B
(y).P ~ (v).Q Va: Pla/y]~ Qz/y] (7)
vrs(y).P ~vzs{y).Q P~Q (8)

il

Strong equivalence is not weak enough for obtaining unique solutions of process equations, analogously to (5)
above. Hence Milner defines a weak or observation equivalence ([08], Def. 13.2) for mobile processes similarly
to weak bisimilarity for CCS. Weak equivalence has the desired uniqueness property ([68], Thm. 13.8). Both
equivalences are agent congruences ([068], Def. 12.24), i.e., they are compatible with summation, composition,
restriction, replication and, by definition, satisfy the inverses of (7) and (8) ([68], Props. 12.25 and 13.7).

4.6 Infinite trees

In accordance with the structural congruence generated by the equations
p+lg+r) = p+q+r, p+tqg=q+p, ptp =p

the following specification distinguishes between processes (sort proc) and sets of processes (sort procs). Since
both proc and procs are hidden sorts, set membership (3) is declared as a transition predicate, in contrast to
SET (cf. Section 2.2.2) where set membership is the Boolean destructor in. Otherwise the axioms for some

process operators would not be coinductive (cf. [75], Def. 6.1).

FPROCESS = ACT(act) then
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hidsorts proc procs
constructs _._:act X procs — proc
0 :— procs

{_} : proc — procs
_+4 _:procs X procs — procs
_j -1 Procs X procs — procs
_|-: proes x procs — procs
map : (act — act) X proc — proc
map : (act — act) X procs — procs
destructs root : proc — act
subs : proc — procs
transpreds _D _:procs X proc
vars a,b:act p,q:proc ps,ps’,qs,qs’ :procs f:act— act
Horn axioms root(a.ps) =a
subs(a.ps) = ps
{ptop
ps+qs>p <= ps>p
ps+qs>p <= qs>p
ps;qs D a.(ps’;qs) < ps D pAroot(p) = a A subs(p) = ps

/

pslgs 3 a.(ps’lqgs) < ps D pAroot(p) = a A subs(p) = ps’
pslgs 3 a.(pslgs’) < qs > qAroot(q) = a A subs(q) = qs’
pslgs D 1.(ps’|qs’) < ps 3 pAroot(p) = a A subs(p) = ps’ A
gs D gAroot(q) =bAsubs(q) =qs’ Na=b

root(map(f,p)) = f(root(p))
subs(map(f,p)) = map(f, subs(p))
map(f,ps) > map(f,p) <= ps3p

The schema for specifying finite or infinite trees with arbitrary finite outdegree and node labels of sort entry
generalizes the schema for specifying finite or infinite lists that is used in COLIST (cf. Section 4.2). Concerning
the destructors, we follow the schema of REGGRAPH (cf. Section 2.2) and provide a function rs that maps a

tree to its root and the tuple of its maximal proper subtrees where the tuple belongs to a sum domain.

FTREE = ENTRY (entry) then

hidsorts tree = tree(entry)
constructs mt :— tree
&_:entry x tree™ — tree n >0
destructs rs:tree = 1+ (entry x I, otree™)
vars x:entry ti,...,ty :tree

Horn axioms rs(mt) = ()
rs(x&(ty, ..., tn)) = (z,t1,. .., tn)

Analogously to FTREE, the following specification provides finite and infinite trees with edge labels of sort
entry and finite outdegree.

ETREE = ENTRY (entry) then
hidsorts etree = etree(entry)
constructs mt :— etree
_._:entry X etree — etree

_+ _:etree X etree — etree
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destructs sucs : etree X entry — etree*
vars xrentry 4t .. b, th, ..t etree
Horn axioms sucs(mt,z) = ()
sucs(z.t,x) = (t)
sucs(zt,y)=() < v#Zy
sucs(x, t +1t') = (t1, ... tm, th, ..., )
< sucs(z,t) = (t1, ..., tm) N sucs(x
sucs(x,t +1t') = sucs(t) < sucs(x,t’) =
sucs(x,t +1t') = sucs(t') <  sucs(x,t) =

5 Petri nets

Successors

tYy=(t,...,t)

0
0

ETREE can be extended to a specification of processes (cf. Section 4.4) by axiomatizing behavioral process

equivalence in terms of a transition predicate that is derived from the etree-destructor sucs.

EPROCESS = ETREE then

hidsorts eproc = eproc(entry)
constructs mkproc : etree — eproc
defuncts mt :— eproc
_._1enlry X eproc — eproc
_+ _:eproc X eproc — eproc
transpreds _—> _:eproc X entry X eproc
vars x :entry t,ti,...,t, :etree p,p’ :eproc

Horn axioms mkproc(t) — mkproc(t;) <« sucs(t,z)

mt = mkproc(mt)
x.mkproc(t) = mkproc(z.t)
mkproc(t) + mkproc(t') = mkproc(t + t)

Here the collection of successors of a tree is regarded as a set

5 Petri nets

5.1 Weighted sets

= (t1,..-,tn) forall1<i<n

of trees, not as a list as in ETREE.

The place domains of high-level Petri nets are finite multisets with positive or negative cardinalities (cf., e.g.,
[50], Vol. 2, Section 4.2). Hence weighted sets are specified similarly to bags (cf. Section 2.2.3). Let INT be a

specification of integer arithmetic such as the one given in Section 2.1.

WSET = LIST and INT then

hidsorts wset = wset(entry)
constructs empty — wset

[] : entry — wset

_+ - wset X wset — wset

—_ 1 wset — wset
destructs weight : wset X entry — int
defuncts mkwset : list — wset

_— _:wset X wset — wset

_* _:nat X entry — wset

map : (entry — entry) x wset — wset
filter : (entry — bool) x wset — wset
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|| : wset — int

preds _€ _:entry X wset

copreds _C _:wset X wset

vars x,y:entry V,W :wset n:nat f:entry— entry g:entry — bool L,L :list
Horn axioms weight(empty, ) =0

weight([z],z) =1

weight([z],y) =0 < z#y

weight(V + W, z) = weight(V, z) + weight(W, x)
weight(—W, x) = —weight(W, z)
mkwset(nil) = empty

mkwset(z : L) = [z] + mkwset(L)
V-W=V4(-W)

0%z = empty

suc(n) x x = [z] + (n * )

map(f, empty) = empty

map(f, [2]) = [f(2)

map(f,V + W) = map(f, V) + map(f, W)
map(f, W) = —map(f, V)

filter(g, empty) = empty

filter(g,[z]) = [x] < g(x) = true

filter(g, [z]) = empty < g(x) = false
filter(g,V + W) = filter(g,V) + filter(g, W)
filter(g,—W) = — filter(g, W)

lempty| =0

=] =1

V+W[=[V]+ W]

| —Wl=-W|

reW <« weight(W,z) >0
co-Horn axioms VCW = (xeV = xeW)

Note that weighted sets built up with the above constructors yield an Abelian group, i.e., + is associative and
commutative, empty is neutral (or absorbing) w.r.t. + and —W is the inverse of W w.r.t. +. This fact will
be referred to in Section 5.3 where invariants are derived from linear functions mapping states (= tuples of
weighted sets) to powers of an Abelian group.

5.2 Nets

Our definition of nets combines the definitions of predicate/event nets, high-level nets ([37], Def. 4.2) with flexible
arc inscriptions ([37], Section 10.4), colored nets ([50], Def. 2.5) and algebraic nets ([52], Section 2.2). All these
approaches associate a domain of structured tokens with each place of a net N. Given that pq,...,p, are the
places of N, we denote the domain of p;-tokens by the sort dom;. Moreover, let t1,...,t; be the transitions of
N. Each arc connects a place with a transition and is labelled with the pattern of a weighted set of elements
taken from resp. added to the place whenever the transition fires. Hence the label of an arc connecting place p;
with transition ¢, is a term of sort wset(dom;). If the arc leads from p; to ¢;, the term is denoted by in; ;. If it
leads from t; to p;, the term is denoted by out; ;. The term

inoutm = OILtj7Z‘ - Z.TLiJ‘
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describes the effect of ¢; on p;. Global state changes may involve all places and transitions of N and imagined
as concurrent movements of objects between the places of N. They are represented by the incidence matrix:

mouty -+ inoutyk

nouty 1 -+ 1NOUty K
Moreover, a transition ¢; may be associated with a Boolean term guard; that restrict the instances of in; ; and
out;; to the subsets whose elements satisfy guard;. of

N is usually depicted as a labelled bipartite graph whose nodes are the places resp. transitions of N. A
transition is labelled with its guard if there is any. There are edges from p; to t; labelled with in; ; and from

t; to p; labelled with out;; unless in; ; resp. out;; map all their arguments to the empty weighted set.

Nt guard; outy ]

®
t ®
®

inn,t outt,n

o

Figure 5. The functions and predicates associated with a transition.

/'[

phy,...phy]
[x] [x]

put [LF(x),RE(x)] [LF(x),RE()]

] [foq,...for] ]

Figure 6. DPH with initial marking M .

Example 5.2.1 (dining philosophers) (cf. [37], Section 1; [50], Vol. 2, Section 1.6); [38], Fig. 21.3) The
net DPH of Fig. 6 has three places: think (thinking philosophers), eat (eating philosophers) and avail (available

forks), and two transitions: take (take fork) and put (release fork).

spec(DPH) = INT and WSET then

sorts domypink = doMeqr = Phil domgya; = fork
constructs ph : int — phil fo :int — fork
defuncts max :— int LF, RF : phil — fork
vars i:int x : phil

Horn axioms LF(ph(i)) = fo(4)



5.2 Nets

69
RF(ph(i)) = fo(i+1) < i<max
RF(ph(mazx)) = fo(1)
OUtput think = Mthink take = OUltake,eat = Meat,put = [Jf]
Output,a'uail = inavail,take = [LF(J:)’ RF(I)]6
out, , = empty for all (t,p) & {(put, think), (take, eat), (put, avail)
inp: = empty for all (p,t) & {(think,take), (avail, take)

Definition 5.2.2 (dynamics of N) spec(N) specifies the (static) data types involved in N. The behavior

or dynamics of N can be presented as an extension of spec(N):

dyn(N) = spec(N) then

hidsorts
defuncts

preds

transpreds

copreds

vars

Horn axioms

co-Horn axioms

state = wset(domy) X ... x wset(domy,)

p; : state — wset(dom;) 1<i<n
enabled; : state 1<5<k
enabled : state
(Y, Or: state for all r : state
disjoint; ;, overlap; j, same; ;, different; ;,, conflict; ;. state 1<4,7 <k
,g,:statexstate 1<5<k
_— _: State X state
disabled : state
[Jr, Or, AF(r): state for all r : state (AF = “always finally”)
q~ 1 : state for all q,r : state
s, 8" 1 state wsy : wset(domy) ... ws, : wset(domy,)
pi(ws1, ..., ws,) = ws; 1<i<n
enabled;(s) < guard; AN N\ in;; C pi(s) 1<j<k
s Ly (p1(s) +inouty j,...,pn(s) + inout, ;) < enabled;(s) 1<j<k
s — s <« sl>s’ 1<j<k
enabled(s) < s— ¢
(Ir(s) <= s—= s Ar(s)
Or(s) <« r(s)
Or(s) <« s—= 8 ANOr(s)
disjoint; ji(s) < YV @1,..., 25 Nieying;Ning o =0 (1)
overlap; j/(s) < x €injj ANz €in,j 1<i<n
same;j i (s) <= YV a1,...,xn: Niy(ingj = ini ;0 Aoutj; = outjr ;) (2)
different; ;/(s) <= in;; # ini 1<i<n
diﬁerentj,j,(s) < outj; Zouty 1<i<n
conflict; j(s) <= enabled;(s) A enabled; (s) A

overlapj j/(s) A different; ;,(s) 1<i<n

disabled(s) = (s — s’ = Fulse)
[]r(s) (s = s =r(s))

Or(s) (s > & = 0Or(s))

AF(r)(s) = (r(s) V 3§ :s5s—¢)

AF(r)(s) = (s—=s = (r(s) vV AF(r)(s")))
(g~r)(s) = (a(s) = AF(r)(s))

(g~r)(s) = (s—=s = (¢g~7)))

6[21,...,x] stands for the weighted set [z1] + - - - + [z#].
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A marking of (the places of) N is a state-sorted ground term over dyn(N). M(N) denotes the set of
markings of N. N satisfies a formula ¢ over dyn(N), written N = ¢, if the initial model of dyn(N) satisfies
@ (cf. [75]). N is finitely branching if for all transitions ¢ and markings M of N there are only finitely many
markings M’ such that M s M. 0

Do the axioms for disjoint, same and con flict capture the definitions of these predicates that are given in

[103], Section 3.4.1? The variables x1, ..., x, are supposed to include all variables in the premise of axiom (1)
resp. (2).

dyn(N) is functional, coinductive and continuous. Hence by [75], Thm. 6.5, behavioral dyn(N)-equivalence
is a weak congruence and thus by [75], Thm. 3.8(3), dyn(IN) enjoys the following Hennessy-Milner Theorem:

Theorem 5.2.3 Given a net N, two markings of N are behaviorally dyn(N)-equivalent iff they satisfy the

same poly-modal formulas over dyn(N). 1

5.3 Net properties

[103, 22, 53] visualize properties of the modal operator ~» (leads to) with the help of proof graphs. Inference
rules, which build up the derivations presented as poof graphs and which are correct with to the intial model
of dyn(N) read as follows:

- o~ QP
~s-decomposition oo A po v f P )
©1 vV pa~ 01 A pa~
1~ Y A pro ) 1~ YV opro )
dr:p~ p ~ Y
Pt 1 1 U
AF (¢)(M)

AF-decomposition f+ for all M € M(N)

(As.(s ~ M) ~ @) (M)

Given an initial marking M € M(N), dyn(N)-formulas of the form (Cp)(M), AF(p)(M) or ¢ ~ 1) are
called reachability conditions, while those of the form Op(M) are called invariants. For proving reachability
conditions one may use the following instance of fixpoint induction on predicates (cf. [75, 78]): Let ¢ be a term

and s, s’ be variables.

(Or)(t) = ¢
r(s) = ¢(s) A (s = s Ap(s)) = ¢(s)

)

<O-induction

The conclusion is the instance of the two <¢-axioms (cf. Def. 5.2.2) with Or replaced by ¢g. For proving invariants
one may use the following instance of coinduction on copredicates (cf. [75, 78]):

Y = (Br)()
P(s) = r(s) N (s =8 Ai(s)) = p(s)

)

O-coinduction

The conclusion is the instance of the two O-axioms (cf. Def. 5.2.2) with Or replaced by gq.

The following theorem provides a derived inference rule that employs linear functions on M(N). It gener-
alizes, for instance, Theorem 4.7 of [50], Vol. 2.

Let A be the initial model of spec(N). Given a sort dom € spec(N) such that Ag,, is an Abelian group with
addition @ and neutral element 0, a tuple f = (f1, ..., f,) of function symbols f; : wset(dom;) — dom € spec(N)
is linear if for all 1 < i < n and weighted sets V, W, N satisfies f;(V + W) = f;(V) & fi;(W).
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Theorem 5.3.1 (invariant criterion) Given M € M(N), N satisfies (Op)(M) if there is a linear function
f={(f1,-.., fn) such that N satisfies

(1) Yooy filpi(M)) = 300, filpi(s)) = (s),
(2) /\?Zl(guardj = Yi, filinout; ;) = 0).
Proof. Let

q(s) =def Zfi(pi( EZfz (pi(s
i=1

We show s = M = Og(s) by O-coinduction and conclude Elcp(M) because by (1), Og(s) implies Op(s). O-
coinduction yields two proof obligations:

H

(3) N satisfies ¢(M),
(4) N satisfies (s — s’ A q(s)) = q(s').
(3) holds true trivially. So let My, Ms € M such that N satisfies M7 — My and ¢(M;). (4) holds true if
N E q(Ms). N = My — Ms implies N | M, Ly M, for some transition t;. Hence N satisfies p;(M7)+out; ; =
pi(Ms) + in; ; for all 1 < ¢ <n and enabled;(M7). The latter implies N |= guard;. Since f is linear,
filpi(Mn)) + fi(out;i) = fi(pi(Ma)) + fi(ini ;). (5)
By (2), N satisfies

guard;(z Z fi(out; ;) Z fi(ing ;) (6)
i=1

(5) implies

n

Z fi(pi(My)) + Z filout;;) = Z fi(pi(M2)) + Z fi(ing ;)

=1

and thus by (6),
D fipi(My) =) filpi(Ms))
i=1 i=1
because N satisfies guard;. Hence N {= q(M;) implies N = ¢(Ms), and the proof of (4) is complete. U

Example 5.3.2 (dining philosophers) (cf. Ex. 5.2.1) Starting out from the initial marking of DPH as in
Fig. 6, we show three invariants:

e Each philosopher is either thinking or eating.
e Two philosophers eating at the same time do not share forks.

e Potential users of available forks are thinking.
We generalize the last two invariants and come up with the following three conjectures:

(1) Each philosopher is either thinking or eating.
(2) Each fork is either available or in use by a (single) philosopher.
(3) Each fork is either available or its (potential) user does not think.

DPH has three places: think, avail and eat. Hence dyn(DPH) has three state-destructors that define the
markings of DPH such as the initial one (see Fig. 6): think(M) = [phy,...,phg], avail(M) = [fo1,..., fox] and
eat(M) = empty. We express (1)-(3) in terms of dyn(DPH):

V1 =def O([pha,...,phi) = think(s) + eat(s))(M), 7

p2 =daey O([for,..., for] = avail(s) + map(LF)(eat(s)) + map(RF)(eat(s))) (M),
w3 =def O([for1,..., for] = avail(s) — map(LF)(think(s)) — map(RF)(think(s)))(M).
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For satisfying Condition 5.3.1(1) we need linear functions f = (fi, f2, f3) : M(DPH) — wset(phil, fork)? such
that DPH satisfies q;(s) = @1, ¢r(s) = @2 and qs(s) = 3, respectively, where gf(s) is given by the equation

Fi(think(s)) + fa(avail(s)) + fo(think(s)) = fu(lph,....phi]) + fa([for, .., for]) + fa(empty).

Since all guards of DPH are True, the formula 5.3.1(2) amounts to:

fHi(=[z]) + fo( = [LF(2), RE(2)]) + f3([2]) = empty A fr([2]) + fo([LF (2), RE (2)]) + fs(=[z]) = empty  (4)
(cf. Ex. 5.2.1). We obtain
DPH = o1 AN(4) for  f(UV,W) =4 (U, empty, W),

DPH = paA(4) for  f(UV.W) =4 (empty,V,map(LF)(W) + map(REF)(W)),
DPH E ¢3A(4) for  f(UV,W)=ae (—map(LF)(W) — map(RF)(W), V, empty).

Since f is linear in all three cases, we conclude (1)-(3) from Thm. 5.3.1. O
Thm. 5.3.1 provides us with a rule for proving net invariants:
Oep(s)

S filpi(s)) =200, filpi(s) = ()
A /\?Zl(guardj = >, filinout; ;) = 0)

if for all 1 < i < mn, the initial model of spec(N) interprets dom as an

invariant rule

Abelian group and f; : wset(dom;) — dom as a linear function

Since for all ¢, N satisfies
[Jo(s) <= Vs :(s—= s = p(s)),
s—= s = \/?lei(s’) = pi(s) + inout; ;(x),
the following rule is correct for all 1 < i < n:

([1 Vi1 pi(s') = pi(s) + inouty ;) (s)

step rule
P True

)

A net N terminates in M € M(N) if N satisfies AF (disabled)(M) or, equivalently, for all 1 < j <k, N
satisfies AF'(—enabled;(s))(M). Sometimes ¢ ~» 1) can be decomposed into proofs that (1) all runs starting
out from a state satisfying ¢ terminate and (2) final states satisfy ¢. This amounts to the following expansion
rule:

p~
p ~> disabled A disabled = ¢
AF(disabled)(s)
/\f:1 guard; = Y"_ | fi(inout; ;) <0
if for all 1 <4 < n, Her(spec(N)) interprets dom as an Abelian group

termination rules

T

TT

and f; : wset(dom;) — dom as a linear function

Theorem 5.3.3 (termination criterion) Given M € M(N), N satisfies AF(disabled)(M) if there is a
linear function f = (f1,..., fn) such that for all a,b,c € Ajom, a > b implies a + ¢ > b+ ¢, and f decreases,
i.e., forall1 < j <k, N satisfies

guard; = Zfi(inouti7j) < 0. (1)

i=1

"More precisely, p1 = (Oq)(M) for some implicit predicate q : state defined by q(s) = ([ph1, ..., phi] = think(s) + eat(s)).
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Proof. By (1), N satisfies
guard; = Zfi(outm) < Zfl(zn”(m)) (2)
i=1 i=1

As in the proof of Thm. 5.3.1, N = M; — M, implies that N satisfies guard; and

n

Z fi(pi(Mn) + Z filout; i) = Z fi(pi(M2)) + Zfl(m”)

i=1 i=1

for some 1 < j < k and a. Hence by (2),
S Llpi(M) + Y filout;a) > Y filpi(Ma)) + > filout; ). (3)
i=1 i=1 i=1 i=1

(3) implies . .
D fipi(M1)) > Y filpi(Ms)). (4)

i=1 i=1
Therefore, N = M; —— M, also implies (4), and we conclude N |= AF(disabled)(M) because > is well-founded.
4

The similarity of the proofs of Thms. 5.3.1 and 5.3.3 suggests a generalization that subsumes both results.

For this purpose [54] have introduced the notion of a net simulation based on preordered commutative monoids.
[k, ixk] [k, k]
i>1 \k divides k’
[2,...n] erase [2,...n] erase

" / N /

Figure 7. SIEVE1 and SIEVEZ2.

Example 5.3.4 (sieve of Eratosthenes) ([38], Section 15.3) Runs of the nets SIEVE1 and SIEVE2 select
all primes among the set of all natural numbers k with 2 < & < n. We claim that both nets satisfy the

reachability condition

nums(s) =[2,...,n] ~ nums(s) = filter(prime)[2,...,n]. A

The schema of SIEVE2 can be used for specifying many algorithms that amount to set modifications such
as, e.g., an algorithm for computing the shortest paths in a labelled directed graph Gy C Nodes x N x Nodes.
Without comment we present the corresponding net of [38], Fig. 23.4, in Fig. 8.

[(xky), (ym,z),

(xn,2)] \k+m <n
Go modify

[xky), (ym,z),
(x,k+m,z)]

Figure 8. A net for computing shortest paths.
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Exercise. Specify the net of Fig. 8. Show the correctness of the specified shortest-path algorithm by proving
the inductive theorem r(s) = <q¢(s) where the axioms for r and ¢ read as follows:

q(s) <« disabled(s) A forall(A(z, k,y).eq(k, mindist(Go, z,y)), graph(s))

Example 5.3.5 (minimal distances) Runs of the following net MD compute the minimal distances of
inner nodes from some root node of a directed graph Gy C Nodes x Nodes.

GRAPH = WSET then

sorts node
constructs V1,...,V :— node
defuncts Go :— wset(node x node)

roots,inner :— wset(node)

sucs : node — wset(node)

next : nat X node — wset(node X nat x node)
static preds path : wset(node x node) X node X nat X node

rev, minrev : node X nat X node

acyclic : wset(node x node)

vars x,y :node f:node — node x nat m,n :nat G :wset(node x node)
Horn axioms Go=1[...]
roots = [...]

inner = [vy, ..., v] — roots

weight(sucs(x),y) = weight(Go, (z,y))

next(n,x) = map(rz.(z,n, x))(sucs(x))

path(G,z,0,x)

path(G,z,n+1,z) < weight(G, (x,y)) > 0A path(G,y,n, z)

rev(y,n,z) < y € sucs(z)Ar € roots A path(Go,r,n,y)
co-Horn axioms minrev(y,m,z) = (rev(y,n,z) = m<n)

acyclic(G) = (path(G,z,n,z) = n=0)

X in roots

[x] next(1,x)
= -
newDist

[x] X in inner [(ynx)]

next(n+1,y)+[(y,n,x)]
Figure 9. MD

IB
A
=]

Initially, MD has all nodes of the given graph at place nodes. Place dists stores triples (y,n,z) such that
(z,y) is an arc of the graph and n is the length of a path from a root to y. We claim that MD satisfies the
reachability condition

nodes(s) = [v1,...,v5] ~ nodes(s) = empty A
dists(s) = [(y,n, ) | minrev(y,n,x)]® A

acyclic(map(A(y, n, z).(z,y))(dists(s))).
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MD has been inspired by quite similar nets investigated in [52, 53]. O

Example 5.3.6 (alternating bit protocol) (cf. Section 4.3) The unsafe transmission of messages and
acknowledgements is simulated with the help of Boolean tags taken from places 4 and 7 of ABP (see Fig. 10).

Again, the functions occurring in arc inscriptions are part of an underlying domain specification:

DOMAINS = LIST and WSET then
defuncts select : wset x bool — wset
switch : bool x bool — bool
put : entry X list X bool x bool — list
iner : nat X bool x bool — nat
vars x:entry L:list n:nat b,c:bool W :wset
Horn axioms select(W, true) = W
select(W, false) = empty
switch(b,b) = not(b)
switch(b,c) =b < b#c
put(z, L,b,b) = LQ[z]
put(z,L,b,c) =L < b#c
iner(n,b,b) =n+1
iner(n,b,c)=n < b#c

We claim that ABP satisfies the reachability condition
in(s) = [Lo) NOAF (pe(s) # empty) A OAF (po(s) Z empty) ~> in(s) = empty A out(s) = [Lo].

The invariants in the premise ensure that the channels transmit and transAck are fair and thus all messages

and acknowledgements are transferred eventually (cf. Section 4.3).

Part of this example stems from Jensen [51]. However, his net starts out from place 1 in Fig. 10 where the
messages are already numbered and transmits them with the number indices and not with Boolean tags. See
also [38], Section 27, for nets representing the alternating bit protocol.

By using select in the inscriptions of arcs leaving the transitions transmit and transAck, this function
realizes nondeterministic state transitions. The same effect is accomplished by replacing select with a reset
arc pointing to a transition lose (first net of Fig. 11) or by introducing a Boolean place (second net of Fig. 11).

In the third net of Fig. 11, the transition transmits W with a probability of 3/5 instead of 1/2 as in the

second net.

5.4 Translation of SDL specifications into nets

Systems (on the lowest level called blocks) presented in the 2-dimensional specification language SDL (cf. [16])
consist of channels (also called signal routes) and processes. These can be compiled stepwise into nets by
applying the graph grammar rules of Figures 12 and 13.

Rule 1 generates a place for the channel channel, which contains an initially empty queue of messages. Rule
2 equips process with initially empty input and output places and a place s_process for taking up the actual
state of process (initially statep). Rules 3 and 4 connect channel with the input or output place of process,
respectively. Rule 3 dequeues channel if the latest entry is an instance of one of the messages myq, ..., mg. Rule

8For expressing this weighted-set comprehension with filter (cf. Section 5.1) the predicate minrev must be presented as a
Boolean function, which, in turn, requires Horn axioms for the complement of minrev. The reader is invited to work out the
complete specification.
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[Lol [x:L] ~ / [n]
: prepare { : (1]
— ™~

[L]

[(xm)]

[(xm)] ~
send F— [(x,b)] ‘)@7 W —» transmit
[(xn)] A
[n] select(W,b)
[b] l
[1]
[true]
4 ) [true]
[(xb)] [c]
BF - linermbol kG l ‘/[switch(b,c)]
_—
[c] receive

[l] \ [L]
X [put(x,L,b,0)]
© O
recAck [«— [b] €— select(W,b) — transAck €«—— W

Figure 10. ABP

4 enqueues channel if the message sent by process is an instance of one of the messages my,...,mg. Rule 5
creates places for local variables.

Rules 6 through 9 build up the net for the code of process. This leads to the generation of transitions for
reading from or writing into variable places, dequeueing the input queue and enqueueing the output queue of
process (which were generated by Rule 2 and 3, respectively). Dequeueing depends on the actual state state;
of process (see Rule 6). Big dots denote tasks (compiled by Rule 7), switches (compiled by Rule 8) or message
generations (compiled by Rule 9). Dequeueing, task and switch execution are followed by shifting a uniform
“control” token go to new places produced by further applications of Rules 7, 8 or 9. Rule 9 generates a message,
appends it to the output queue, consumes the control token and changes the actual state by putting the new
state into the state place of process (which was generated and initialized by Rule 4). Dotted arcs denote “gluing
points” of a grammar rule.
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[true false] 3*true+2*false

lose

Pl [b] [b] [b] [b]

@ W —»| transmit [— W@ @ W —»| transmit [— select(W,b) @ @ W —»| transmit [— select(W,b) —)@

Figure 11. Net representations of nondeterminism.

6 Swinging UML

We translate UML class diagrams and state machines [93] into coalgebraic swinging types [79] for making UML
models executable and verifiable.

6.1 Class diagrams

A class is denoted by a destructor sort, say cl. An attribute at : s of the class takes values in the domain denoted

by s and provides a destructor d : ¢l — s. A method (operation in UML terminology) m(z1 : 81,...,%n : Sn)
of cl is turned into a constructor ¢ : ¢l X $1 X -+ - X 8§, — cl, while a method m(z1 : s1,...,2Z, : $p) : s of ¢l yields
a defined function f :cl X s1 X --- X s, = s. A class-scope operation m(z; : $1,...,Z, : Sp) is translated

into a constructor ¢ : s1 X - -+ X s,, — cl. Methods defined in terms of other methods may also be introduced as
defined functions.

An n-ary association assoc that relates n classes cly,...,cl, is usually regarded as an m-ary relation
[19, 62, 90]. Then rolenames attached to the ends of assoc correspond to attributes in the sense of relational
data models or projections from an algebraic point of view. Since cly, ..., cl, are hidden, assoc is also a hidden
sort with the membership function €: (cl; X - - - x ¢l,,) X assoc — bool as the destructor. Binary and anonymous
associations, which provide the pathways for navigating between objects of the associated classes, should be
translated differently. For reasoning about navigations the relational view enforces the computation of transitive
closures of associations. This has been shown to result in rather tricky and counter-intuitive code [(2].

Instead of introducing a relational sort for a binary and anonymous association, a rolename attached to one
of its ends becomes destructor of the class ¢l at the opposite end. If an association end lacks a rolename, we
introduce one. The range sort of the destructor, say d : ¢l — s, depends on the multiplicity at the end that
holds the rolename corresponding to d. If the multiplicity is 1, then s = clr where clr is the class the rolename
is attached to. If the multiplicity is m..n, + or %, then s is a sum sort: I clr?, IT,,~oclr™ or clr* = I, enclr™,
respectively.” Hence d assigns a list of clr-objects to each cl-object. The relational view suggests a set rather
than a list. However, additional constraints may demand another type of collection like a list or a bag. As long
we do not want to prove that cl-objects are behaviorally equivalent, the actual collection type is irrelevant so
that we can restrict ourselves to lists as they are given by the above sum sorts. List multiplicities can be turned
into set or bag multiplicities by deriving transition predicates from destructors as in the steps from ETREE to
EPROCESS and EBAG, respectively (cf. Section 4.6).

In [89], binary associations are also translated into set-valued functions. But the authors do not give a
semantics of objects. Hence it is not clear what the elements are the sets consist of. The only adequate
interpretation of a class diagram is a behavioral one, such as the final model of a coalgebraic swinging type [79].
In particular, if there are binary associations forming a cycle (like the one in Fig. 14), then the objects of the

9¢lr0 =def 1.
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nil

channel

process @

empty empty
process m::L exist 1<i<k, x: process
input m =m;(x)
— @ n @D
[myq,... my] 3
L
process process exist 1<i<k, x: L
m =m;(x)
[myq,... my] 4
L@[m]
process process
DCLv @
—

Figure 12. Translating channels and processes.
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S_process
process

process s_process

state; state;

process process

process

process -

mw) > GD\
O) ®

state;

m(f(x))

output
output

Figure 13. Translating process code.
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involved classes cannot be built up in a hierarchical way, just by assigning values to attributes and other objects
to rolenames. Instead, hidden normal forms in a coalgebraic swinging type denote—often infinite—tuples of
functional interpretations of context expressions (cf. [79]). Intuitively, such a tuple describes the behavior of an
object in the state denoted by the normal form. Context expressions are also terms, but they are built up of

destructors, here: attributes and rolenames.

The constructors building up hidden normal forms that denote object states may serve different purposes.
Either they represent methods or method components and thus reflect the dynamic evolution of objects. Or they
reflect the static structure of composite states. Or they arise from object aggregations or compositions.
In the last two cases, behavioral equivalence will be inverse compatible with the constructors and thus they can

be declared as object constructors (cf. Section 1).

Each generalization arrow pointing from a subclass cl to a direct superclass cl’ of ¢l yields a constructor

cl’
cl

object-creating methods like Java’s constructors) and its direct subclasses. Hence generalizations complement

in% :cl — ' of the specification SP(cl) of c¢l. This makes a superclass the sum of itself (if it involves

aggregations that are modelled by products (cf. [23], Section 12.5.2).

Let < be the inheritance relation associated with the class diagram. We assume that the nodes form a finite
lattice w.r.t. <, i.e., each set of classes of the diagram have a least common superclass. The specification of a
class ¢l in the diagram related by < must be augmented with the following frame axioms for defined functions

that are passed to ¢l from sub- or superclasses. Let cl’ be a direct subclass of cl.

Given a class cl, two somewhat complementary extensions of SP(cl), the specification of ¢/, may be necessary.
Both extensions are concerned with defined functions f : ¢l X s1 X -+ X s, — s that stem from attributes or
methods of ¢l and have already axioms (representing the definition of f within ¢l) or are at least used in SP(cl).
At first, f is equipped with the index ¢l in order to distinguish f from the synonymous functions in sub- or
superclasses of cl. Constructors derived from methods of ¢l are also indexed with cl.

The first extension reflects the use of ¢l as a subclass and thus should be applied stepwise, first to the
maximal classes w.r.t. < and then downwards from super- to subclasses. The second extension embodies the
superclass properties of ¢l and thus should be applied first to the minimal clases w.r.t. < and then upwards

from sub- to superclasses:

e Adding subclass properties of cl’. Let fo :cl X 81 X -+ X 8, —> cl and go : ¢l X 81 X -++ X 8, — 8,
s # cl, be used, but not redefined in SP(cl’). Then the following axioms must be added to SP(cl’):

far(,zy,...;xn) =y < fa (mﬁf,(sc), T — mﬁf,(y)

e (T, @1, ... ) =y < gcl(ingf,(x),xl,...,xn)Ey.

e Adding superclass properties of cl. Let fo :cl’ x sy x-+-x s, = cl and gy : cl’ X 51 X -+ X 8, = 5,
s # cl, be defined in SP(cl’), but not in SP(cl). Then the following axioms must be added to SP(cl):

fa(in, (x),x1,. .., 2n) = in (far (@, 21, ... 20))

Ga(in, (), 1, ..y Tn) = gar (T, 21, ..., Tp).

Multiple inheritance. Let ¢l be a common superclass of cl; and cly and ¢y and cly be superclasses of cl3.

Then a cl3-term u may have two normal form representations in cl:

cl

d (in%(u)) and t = ing (in%?(u)).

t = in clg cla cls

For keeping track of the unique origin of cl-terms, SP(cl) is extended by a predicate =.;: ¢l x ¢l and for each
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~cl .

direct subclass cl’ of ¢l, a predicate =,: ¢’ x ¢l, specified by the axioms
~  incl ~cl
TR (y) <= TRy
in (y) = 2 = ymaz
Tr e T
TRy < YRRax
TR 2 & TR YNY Rl 2.

Let SP be the union of specifications derived from the class diagram. ~5F :wge'r(SP)

is an equivalence
relation that identifies all ground cl-terms t,#’, which stem from the same term of a subclass of cl, such as u
above. Let S be the set of all sorts of SP and C'S be the subset of class sorts. If &~ shall be used as an equality

instead of the structural or behavioral cl-equality, then

~gp = {~5 | deCSU{~ST |se S\ CS}
must be made compatible with the functions of SP, i.e., a function f : ¢l X w — s must be specified in a way
such that for all u € Tx ,,, t =5 ' implies f(t,u) ~gp f(t',u).

Of course, neither the additional axioms for functions nor those for hierarchy-preserving equalities must be
added “by hand”. They can be constructed automatically and need to be available only when class specifications
are actually tested or verified, i.e. SP-formulas are solved or proved.

Meeting
Person . title: String
2.% participates * .
name: String — - start: Date
- participants meetings end: Date
numMeetings(): Nat isConfirmed: Bool
dMeetings(): Nat
numConfirmedMeetings() duration(): Time
checkDate()
cancel()
Figure 14. Two associated classes (Figure 3 of [/0]).
In accordance with [93], classes with qualifiers establish product sorts. [29] compiles generalizations and

qualifiers into more basic UML concepts. But since the target language is again UML (and OCL), the translation
does not take us closer to a verifiable model.

UML classes may be equipped with invariants, associations with multiplicity or Boolean constraints, oper-
ations with pre/postconditions. All this is expressed in OCL [102], the “object constraint language” UML is
associated with. Multiplicity constraints and invariants restrict the possible behaviors of class instances. Hence
they amount to assertions of the associated swinging type. Pre/postconditions are translated into Horn ax-
ioms for defined functions. Since partially-defined models are too difficult to handle in a formal way, the given
pre/postconditions must be “completed” in order to yield total functions in the swinging type’s final model.
Adequate completions can always be achieved with the help of sum sorts consisting of disjoint “defined” and
“undefined” summands. In contrast to other approaches sum sorts minimize the specification overhead that
is concerned with partiality. Starting out from the unit sort 1 with its single element (), a detailed exception
handling may be postponed to later refinements of the specification. One of the main proof obligations inherent
to a constraint-augmented class diagram is to show that the (completed) pre/postconditions respect all class

invariants.

A bare class diagram usually contains only a small subset of all desired use relationships between attributes,
operations and rolenames. As [16] points out, it is the additional constraints like invariants or pre/postconditions
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that define “strongly connected” subdiagrams. Each of them covers all attributes and rolenames that occur
in some constraint because all of these must be navigated for checking the constraint. For accomplishing an
adequate class hierarchy, [40] proposes the refinement of a class diagram in a way that turns the strongly
connected subdiagrams into new superclasses (generalizations). This strategy raises the question whether a
reasonable grouping of operations into classes can be achieved at all before most of the constraints have been
fixed. One may plead for hierarchical, parameterized specifications rather than class diagrams in those early
design phases where many constraints are not yet known. But this is debatable because class diagrams allow
people, as a referee puts it, “to look at parts of the map” without being bothered by a “counter-productive”
hierarchy “when the design is still rather vague and prone to changes”.

[46] asserts a conceptual difference between the algebraic specification methodology and the object-oriented
modelling approach: the former favors if not demands a high degree of data encapsulation and constraint
locality, while the latter admits, at least on higher design levels, the “free use of information from almost
anywhere in the current system state.” On lower levels, the object-oriented approach achieves locality “by
enriching the operation lists of the classes and by switching to a message-passing semantics. Sending a message
to a locally known object and reading the result may be the equivalent to a complex navigation over the object
community—however, the global actions, which are caused by sending a message, are invisible to the invoking
object.”

It might be a widespread practice in algebraic specification to enforce a high degree of locality and encap-
sulation, but this is not inherent to the approach. [16] claims a general one-to-one correspondence between a
class and a specification unit. However, a simple look at the graph structure of a class diagram reveals that
this cannot work as soon as the graph involves cycles such as those created by bidirectional associations (cf.
Fig. 14). A class does not correspond to a whole specification, but just to a single sort. Due to the “static”
semantics, an algebraic specification is structured hierarchically: the use relationships form a collapsed tree.

Even the finest specification structure reflecting a class diagram has to encapsulate all data and operations
involved in a cycle of associations into a single specification unit. But we need not head for the other extreme—
recommended by [16]—and turn the entire class diagram into a single type with a global state sort. This gives
up the modularity of object-oriented specifications and thus establishes a semantics far from what the syntax

suggests.

Example 6.1.1 The class diagram of Fig. 14 is presented as a coalgebraic swinging type whose axioms cover
the multiplicity constraints of Fig. 14 and the following OCL constraint [102] taken from [16]:

context Meeting :: checkDate()
post : isConfirmed =
self.participants ->
collect(meetings) ->
forAll(m | m <> self and m.isConfirmed implies
(after(self.end,m.start) or (after(m.end,self.start)))

(cf. [46], Fig. 4).

PERSON&MEETING = FINSET and STRING and DATE&TIME then
hidsorts Person Meeting
destructs name : Person — String
meetings : Person — Meeting*
title : Meeting — String
participants : Meeting — Person*
start,end : Meeting — Date
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1sConfirmed : Meeting — bool
constructs checkDate : Meeting — Meeting
cancel : Meeting — Meeting
defuncts Meetings : Person — set(Meeting)
Participants : Meeting — set(Person)
numMeetings : Person — nat
num Confirmed Meetings : Person — nat
duration : Meeting — Time
consistent : Meeting X Meeting — bool

vars p: Person m,m': Meeting ms : set(Meeting) ps: set(Person)
Horn axioms Meetings(p) = mbkset(meetings(p))
Participants(m) = mbkset(participants(m))

numMeetings(p) = |Meetings(p)|
num Confirmed Meetings(p) = |filter(isConfirmed, Meetings(p))|

duration(m) = end(m) — start(m)
consistent(m,m') = not(is Confirmed(m’))
or end(m) < start(m') or end(m’) < start(m)
isConfirmed(checkDate(m)) = forall(Am’.consistent(m, m’), remove(m,ms))
< Participants(m) = ps A\ flatten(map(Meetings, ps)) = ms
isConfirmed(cancel(m)) = false
assertions | Participants(m)| > 2

Classes come as hidden sorts, attributes and roles as destructors, roles usually as non-linear ones. Basic
methods are declared as constructors, derived ones as defined functions. Let C'SP be the cospecification of
PERSON&MEETING. The elements of Fin(CSP)person and Fin(CSP)reeting may be visualized as infinite
trees whose edges represent the relation between object states that is induced by the participates association
of Fig. 14. The UML semantics of Fig. 14 requires sets rather than sequences as values of meetings and
participants. This is reflected by the fact that all axioms of PERSON&MEETING do not use these destructors
directly, but only their set versions Meetings and Participants. 1

Example 6.1.2 The class diagram of Fig. 15 leads to the following (incomplete) swinging type. The
sx-multiplicity at the bottom of the diagram is turned into a more reasonable 1-multiplicity. The generaliza-
tion induces additional constructors in£s® : SS — Reservation and inf¢® : IR — Reservation (see above).

SP[s1,...,Sy,) indicates that SP is a parameter specification that provides sorts s1, ..., $p.

RESERVATION = FINSET and STRING and TIME and INT then

hidsorts Customer Reservation SS IR Ticket Show Performance
CustomlId = String Ticketld = Date x (int + 1) x String x TimeOfDay
constructs new : CustomlId x String — Customer corresponds to add(name,phone) in Fig. 15

new : Ticketld — Ticket

new : Date x TimeOfDay — Performance
new : int — SS

new :— IR

buy : Customer x Ticket — Customer
sell : Ticket x Customer — Ticket

exchange : Ticket — Ticket left unspecified
ing"‘gs : S — Reservation

infes . IR — Reservation

destructs name : Customer — String
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class
Customer

name: String
phone: String

add (name,phone) <

attributes

class-scope operation

1{ owner
association rolenames
* | purchased
Reservation
date: Date
Show
generalization name: String
I 1 show
Subscription Individual /
Series Reservation 7
multiplicities

series: Integer

constraint 0.1 \
0.1 _ _ _ _{i(oi _ - — 1.% | performances

Performance T

> Ticket date: Date
available:Boolean *‘——1——@ time: TimeOfDay

sell (c:Customer) qualifier
exchange () <|

I operations

Figure 15. A “big” class diagram (Figure 3-1 of [93]).

phone : Customer — String
purchased : Customer — Reservation™
date : Reservation — Date
owner : Reservation — Customer
series : SIS — int
(1) tickets : SS — Ticket*
(2) ticket : IR — Ticket
available : Ticket — bool
ID : Ticket — Date x (int + 1) x String x TimeOfDay

(3) subscriptionSeries : Ticket — 1+ S5
(4) individual Reservation : Ticket — 1+ IR
(5) gperformance : Ticket — String x Performance qualified performance

name : Show — String

performances : Show — Performance™
date : Performance — Date

time : Performance — TimeOfDay
show : Performance — Show

seat : String x Performance — String

(6) ticket : String x Performance — Ticket

vars ¢ : Customer cid: Customld t: Ticket tid: Ticketld pho,sea : String sh: Show
ss: 88 ir: IR b:bool i:int dat: Date tim: TimeOfDay p: Performance
r1,...,Ty : Reservation

Horn axioms  name(new(cid,pho)) = cid

phone(new(cid, pho)) = pho
purchased(new(cid, pho)) = ()
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(A) name(buy(c, t)) = name(c)
(B) phone(buy(c, t)) = phone(c)
purchased(buy(c,t)) = (inZ¢(ss),r1,...,mn)
< subscriptionSeries(t) = (ss) A purchased(c) = (r1,...,Tn)
purchased(buy(c,t)) = (infes (ir), r1, ..., m0)
< individual Reservation(t) = (17“) /\purchased( Y= (r1,.-.yTn)

available(new(tid)) = true

ID(new(tid)) = tid

subscriptionSeries(new(dat, (i), sea, tim)) = (new(i))
subscriptionSeries(new(dat, (), sea, tim)) = ()

individual Reservation(new(dat, (i), sea, tim)) = ()
individual Reservation(new(dat, (), sea, tim)) = (new)
gperformance(new(dat, (i), sea, tim)) = (sea, new(date, time))
available(sell(t,c)) = false

ID(sell(t,c)) = ID(t)

subscriptionSeries(sell(t, c)) = subscriptionSeries(t)

53

individual Reservation(sell(t, c)) = individual Reservation(t)

—~ o~~~
=
~—

gperformance(sell(t,c)) = gperformance(t)
seat(sea,p) = sea
assertions 3 < |mkset(tickets(ss))| <

subscriptionSeries(t) = () V individual Reservation(t) = ()
|mkset(performances(sh))| > 0

All operations of Fig. 15 are declared as constructors. The methods new and buy were added for making
the example a little more complete. The Horn axioms describe the operations’ pre/postconditions. Further
preconditions are part of the state machine that may be associated with a class diagram (cf. Ex. 6.2.5). The
destructors (1)-(6) represent the anonymous association ends in Fig. 15. (A)-(F) are frame axioms expressing
that certain operations do not affect the values of certain attribute or rolenames. After the actual effects of all
operations have been specified, frame axioms can be added automatically.

For referring to individual objects object identifiers (address, name, number, etc.) or key attributes in
the sense of relational data bases must be distinguished among the attributes of a class (cf., e.g., [19]). Hence
object identifiers are (tuples of) particular attributes. In Ex. 6.1.1, the destructors name : Person — String
and title : Meeting — String are the object identifiers of Person resp. Meeting. In Ex. 6.1.2, the destructors
name : Customer — String and ID : Ticket — Date x (int+1) x String x TimeOfDay are the object identifiers
of Customer resp. Ticket.

6.2 State machines

UML uses state machines for specifying operations like sell and buy (cf. Ex. 6.1.2). State machines are labelled
transition systems that adopt (part of) the statechart approach [11].10 A transition from state st; to state sto

may have many components:

e(z)lg(x)]/act(x)

The transition is caused by a parameterized event e(t) if the guard (= Boolean expression) g(x) applied to t
evaluates to true. During the state transition, the action act(t) is executed. UML distinguishes between several
kinds of events and actions.

10For differences between statecharts and state machines concerning the semantics of synchronization, see [58], Section 2.4.
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More precisely, the event e(t) denotes a message that is received by an object in state st;, while the action
act(t) denotes a message that is sent by an object in state st;. The same transition label lab may denote an
event at some time and an action at another time. The actual role of lab depends on the sort of stq, i.e. on the
class whose objects may send or receive lab. Objects of the same class can treat lab only either as an action or

as an event.

The crucial point in a formal semantics of state machines is the notion of a state and what it is to represent.
[102] regards states as values of a particular attribute. What distinguishes state attributes from other attributes?
That they can take only finitely many values so that state machines are representable as graphs? Are all state
attributes determined by class attributes? If so, it would be reasonable to define states as tuples of values over

all attributes of a class. Consequently, state sets will usually be infinite.

[37] associates states with predicates whose validity may change when transitions take place. Then there
should be some guidelines telling us which predicates form states and which ones form guards. At some stage of
a refinement of the state model, the predicate denoting a state s should imply the guards that label transitions
starting out from s. States-as-predicates realize the two-tiered view of modal logic and Kripke models: a state
is a world, state transitions change worlds, the structure of states and the structure of transition systems are
expressed on different levels in different languages. Alternatively, process algebra [7], dynamic data types [0],
hidden algebra [30, 32] and swinging types proclaim the one-tiered view where states and state transitions
pertain to the same world.

UML uses state machines only as a description tool. If they shall provide the models against which system
properties are to be verified, the choice between the one- and the two-tiered view becomes crucial. We consider
the former to be more adequate especially when—as in UML state machines—events and actions are calls of
functions that belong to the static part of a system.

STs represent states as hidden-sorted normal forms, i.e., terms built up of constructors. In the beginning
of a system development, a normal form may represent a state uniquely (cf., e.g., Exs. 6.2.2 and 6.2.3 and the
resource-constructors in Ex. 6.2.4). In later stages, a state may obtain many, though behaviorally equivalent,
normal form representations. Normal forms consisting of object constructors (cf. Sect. 2) are behaviorally
equivalent only if they are equal. However, objects cannot be identified by the normal forms representing their
possible states. Their identity is determined by object identifiers (see above).

State transitions should preserve behavioral equivalence, which makes this relation into a bisimulation: it is
not fully, but only zigzag compatible with transitions. This means that the ability of a transition to be executed
and the result of the execution do not depend on the source state’s term representation. Full versus zigzag

compatibility motivates the separation of static predicates from dynamic ones.

filllamount : Integer)
[contents + amount < capacity]

fill(amount : Integer)
{amount < capacity]

partially
filled

>

filllamount : Integer)

fillfamount : integer) [contents + amount >= capacity]

{amount >= capacity]
filled

cap

4
| capped |

Figure 16. A state machine with events and guards, but no actions (Figure 4-4 of [102]).

Example 6.2.1 In Section 3.1, we have presented several variants of a 3-level bank trade specification, which
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employed the states-as-objects approach. If we apply the schema underlying the second variant ACCOUNTS2
to the state machine of Fig. 16, we come up with a corresponding 3-level specification. The sort com is replaced
by the sort event, and sets of accounts are replaced by bags of bottles because here we do not need unique
object identifications.

BOTTLESTATE = NAT then
hidsorts Bottle
constructs new : nat — Bottle
fill : Bottle x nat — Bottle
cap : Bottle — Bottle

destructs capacity, contents : Bottle — nat
capped : Bottle

static preds empty, filled, partially_filled : Bottle

vars n:nat b: Bottle

Horn axioms capacity(new(n)) =

)=n
contents(new(n)) =0
uncapped(new(n))

capacity(fill(b,n)) = capacity(b)

contents(fill(b,n)) = min(contents(b) + n, capacity(b))
capped(cap(b))

capacity(cap(b)) = capacity(b)

contents(cap(b)) = contents(b)

empty(b) <« contents(b) =0

filled(b) <« contents(b) = capacity(b)
partially_filled(b) < 0 < contents(b) < capacity(b)

The specification reveals that each state in Fig. 16 represents a set of attribute (destructor) values. Hence
there is no need for an additional state attribute (cf. [102], Section 4.1.5). The example also shows that state
predicates and transition guards encompass similar semantical information. Both provide preconditions for
executing a transition.

BOTTLETRANS = BOTTLESTATE then
sorts event
constructs Fill : nat — event

Cap :— event

dynamic preds _ — _: Bottle x event x Bottle
Horn axioms p UG fill(b,n) < empty(b)

b ") b)) < partially_filled(b)
b <% cap(h) <« filled(b)

Fill(n) and Cap are the events that cause transitions from a bottle state b to the state fill(b,n) resp. cap(b).

BOTTLES = BOTTLETRANS and FINSET then

constructs New : nat — event
dynamic preds _ = _: set(Bottle) x event x set(Bottle)
vars b,b" : Bottle bs : set(Bottle) e : event
. New(n) .
Horn axioms bs = insert(new(n),bs)

bs == insert(b',remove(b,bs)) < bebsAb-1V
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In terms of UML, events like New(n), which trigger concurrent transitions between distributed states of several

objects, execute class-scope operations. U

The term representation of states allows us to identify a state with an entry action (UML notion) to be

executed when the state is entered.

There are two kinds of state constructors: object generators like new and object modifiers like fill and

cap. Object generators have a hidden-sorted range, while object modifiers have a distinguished hidden-sorted

argument and a range of the same sort. Composite states are built up of non-recursive object generators, i.e.

the sort of a composite state differs from the sorts of its substates.

S

- ——————— = ]

L L

v

Figure 17. A state machine with composite states, normal and abnormal exits (Figure 2 of [58]).

Example 6.2.2 The state machine of Fig. 17 implicitly involves four hidden sorts outer, middle, A and B

and may be translated into a swinging type that follows the one given in [53], Fig. 3:!1
ALPHABET
sorts event
hidsorts outer middle A B
constructs a,b,c:— event
— event This event triggers normal completion transitions.
objconstructs S :middle — outer

dynamic preds
vars

Horn axioms

S1: A x B — middle

C, H, final :— middle

D F:— A

E.G:— B

_— _:outer X event X outer
x:A y:B z:middle
S(S1(D,y)) - S(S1(F,y))

Al R R
8
l@
“«
[
-~
3
g

Note that all axioms are coinductive. [

Example 6.2.3 The state machine of Fig. 18 is translated analogously:

11 The thread denotations A and B become sorts and not constructors.
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/ Taking Class \

concurent composite state
Incomplete ™
lab
lab done done
Lab1 Lab2

*-—> roject done
Term proj @ final state of
Project one thread

fail | i
o Failed
Jonorimal ex: /

Figure 18. A state machine with composite states (Figure 6-6 of [93]).

TAKING_CLASS

sorts event

hidsorts outerr A B C

constructs lab_done, project_done, pass, fail :— event
— event

objconstructs  Incomplete : A x B x C' — outer
Passed, Failed :— outer
Labl, Lab2, finalA :— A
Term_Project, finalB :— B
Final Test, finalC :— C

dynamic preds - — _:outer X event X outer
vars z:Ay:B z:C
Horn axioms Incomplete(Labl,y, z) lab-dane Incomplete(Lab2,y, z)

lab_done

Incomplete(Lab2,y,z) —  Incomplete(finalA,y, z)

project_done
—

Incomplete(x, Term_Project, z) Incomplete(x, final B, z)

Incomplete(x,y, Final Test) 1% pailed

(

(

Incomplete(z,y, Final_Test) 25 Incomplete(x, y, finalC)
(

Incomplete(final A, final B, finalC) — Passed

Note that all axioms are coinductive. A

Example 6.2.4 (mutual exclusion) The following ST specifies the mutually-exclusive access of several
agents to a single resource. As in Example 6.2.1, we begin with “static specifications” of hidden sorts and
proceeds with single-object transitions and, finally, multiple-object transitions.

MUTEX = NAT and BOOL and FINSET then

sorts event label
hidsorts agent resource environment = set(agent) X resource
constructs free,used :— resource

new : int — agent

access, release : agent — agent
New : nat — event

Request, Access, Release :— event
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destructs

static preds

dynamic preds

v-preds

vars

Horn axioms

==

=)

SBEZEE

o

co-Horn axioms

_._:1int X event — event
_: event — label
_/-: event X event — label
id : agent — nat
uses : agent — bool
mutex : environment
_— _:agent x label x agent
_—» _:resource X label X resource
_= _: set(agent) X label x set(agent)
_ = _: environment X environment
Omutex : environment
e,act : event i:nat a,a’ :agent r,r' :resource s,s': set(agent)
env, env’ : environment
id(new(i)) =1
id(access(a)) = id(a)
id(release(a)) = id(a)
uses(new(i)) = false
uses(access(a)) = true
)

uses(release(a)) = false
Request
=

Access
a — access(a)

Releqse release(a) <= wuses(a) = true

free i.Requeﬂ.Access wsed

used ey free

5 Ned insert(new(i), s)

s =5 insert(a’,remove(a,s)) < a€s A a—a A id(a)=1i

(s,7) = (s',7") <= s==5 A r 0

(s,r) = (¢,7") <= r A =
(s,7) = (s/,17") = s=5 A1 57/
, New(i)
(s,r) = (s',r) & s ="s
mutex(s,r) < |filter(uses,s)| <1

Omutex(env) = mutex(env)

/

Omutex(env) = (env = env’ = DOmutex(env’))

Axioms H,I,J K establish communications between an agent and the resource.

6 Swinging UML

The requirement to MUTEX is an invariant: the resource is never accessed by two agents simultaneously,
formally: Omutez(0, free). We show that this formula is an inductive theorem of MUTEX. For the rules

applied here, see |

]. Kommas separate the factors of a conjunction from each other. The factors of some

conjunctions are numbered. At the point where a numbered factor is going to be expanded the number is typed

in boldface.

Omutez (D, free)
O-coinduction (cf. Section 5.3)
F 3q:q(0, free) A (g(env) = mutex(env)) A ((env = env’ A q(env)) = g(env’))
define ¢ by the axioms g¢(s, free) < |filter(uses, s)| =0 and q(s, used) < | filter(uses, s)| <1,

unfold ¢ and mutex

F | filter(uses, )| = 0,
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((env = (s, free) A |filter(uses,s)| =0) V (env = (s,used) A | filter(uses, s)| < 1))
= Fs,7: (env = (s,7) Al filter(uses, s)| < 1),
(env = env’ A q(env)) = q(env’)
expansion with |filter(uses, )| = 0, Boolean rules and variable elimination
F (env = (s, free) A|filter(uses,s)| =0) = T s,r: (env = (s,1) A|filter(uses,s)
(env = (s,used) A | filter(uses,s)| < 1) = T s,r: (env = (s,r) A|filter(uses, s)
(env = env’ A q(env)) = g(env’)

| <1),

| <),
quantor elimination

F (env = (s, free) A |filter(uses, s)

(env = (s, used) A | filter(uses, s)

(env = env’ A g(env)) = q(env’

|=0) = (env = (s, free) A|filter(uses,s)| < 1),
| <1) = (env = (s,used) A|filter(uses,s)| < 1),
v')
Boolean rules
F (env = env’ A g(env)) = g(env”)
unfold = (with axioms H,I.J,K)
F (((env = (s,r) Aenv' = (s',1') A s == &' /\re/ﬂ;r’) Y
= (s,7) Nenv' = (s, )/\’I"E/—C>t’l" As 2L ¢y v
= (s,r) Nenv' (s’,r)/\s:>s Ar =57V
(

shryns New(® ")) A q(env))

env = (s,r) A env’
= q(env’)
Boolean rules and variable elimination

Fo(s ==& /\re/—> " Nq(s,r)) = q(s',1"), (1)

(reLw)tr As 2L & Agls,r)) = q(s', 7)), (2)
(s:>s Ar =7 Ag(s,r)) = q(s',7"), (3)
(s "8 & Na(s,r) = (') )
unfold = (with axioms F,G)
F (((e= New(i) A ' = insert(new(i), s)) V
(e=i.f N =insert(a, remove(a, ))/\aEs/\aLa Nid(a) =1))
Aoy "Aq(s,T))

= q(s',r"),

Boolean rules and variable elimination
- (T N euﬂ) /act

(aES/\aimz’/\id(a)Ei/\r

" Aq(s,r)) = q(insert(new(i), s),r’), (5)
Lﬂct ’

"Nq(s,r)) = q(insert(a’,remove(a, s)),r’), (6)
unfold — (with axioms D,E)
F (False A q(s,r)) = q(insert(new(i), s),r’),

Boolean rules
i.f/act

F (aesha Lia A id(a) =i Ar == 1" Nq(s,1)) = q(insert(a’, remove(a, s)),r’), (6)
variable elimination

F (aesha N RGN q(s,r)) = q(insert(a’,remove(a, s)),r’),

unfold — (with axioms A,B,C)
F (agesA
((f = Request Na’ =a) V (f = Access A a' = access(a)) V



92 6 Swinging UML

(f = Release A\ a' = release(a) A uses(a) = true))
AT ld(a)'—f{ad " Aq(s,r))

= q(insert(a’,remove(a, s)),r'),

Boolean rules and variable elimination

F (aesAr idla) Request/act q(s,1)) = q(insert(a, remove(a, s)),r’), )

id(a).Access/ac
(a€sNnr dla)-dcegss/act Ly n q(s, 1)) = q(insert(access(a), remove(a, s)),r’), (8)

id(a). Rel ¢
(a € s Auses(a) = true Ar "’ (@) Relegse/ac

" Aq(s,r)) = q(insert(release(a), remove(a, s)),r'), 9)
unfold — (with axioms D,E)
F (a€sAr=freeAact =id(a).Access A" = used A q(s,r)) = q(insert(a, remove(a, s)),7’),
(a € s A False A q(s,r)) = q(insert(access(a), remove(a, s)),r'),
(a € s Nuses(a) = true A False A q(s,1)) = q(insert(release(a), remove(a, s)),r’),

variable elimination and Boolean rules
F (a€sAnq(s, free)) = q(insert(a, remove(a, s)), used),
True,
True,

unfolding of ¢ and Boolean rules
F (a € s A|filter(uses, s)| = 0) = | filter(uses, insert(a, remove(a, s)))| < 1,

expansion with |filter(uses,s)| = 0) = |filter(uses,insert(a,remove(a, s)))| <1
F (a € sA|filter(uses, s)| = 0) = |filter(uses, s)| = 0,

Boolean rules

Fo(r egt A s 2L oA q(s,r)) = q(s',1'), @

unfold — (with axioms D,E)
b (r= free Ae =i.Request A act = i.Access Ar' = used A s =5 ' A q(s,r)) = q(s', 1),

variable elimination

(s S A g(s,r) = qls' used),

unfold = (with axioms F,G)

Access

F (s’ =insert(a’,remove(a,s)) Na € sNa — da' Nid(a) =1i) Aq(s,1)) = q(s', used),

variable elimination
Access

F (aesha ™ —" d Nq(s,1)) = q(insert(a’, remove(a, s)), used),

unfold ¢

Access

F (a€sAha —"a N|filter(uses, s)| = 0) = |filter(uses,insert(a’, remove(a, s)))| < 1,

expansion with |filter(uses, s)| = 0) = |filter(uses,insert(a’, remove(a, s)))| <1
Access

F (ae€esha =" a N|filter(uses,s)| = 0) = | filter(uses, s)| =0,

Boolean rules
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- (sgs’/\rﬁr'/\q(s,r):q(s'm'), (3)

unfold = (with axioms F,G)
F (s = insert(a’,remove(a,s)) Na € s ANa — ' Nid(a) =i Ar == 1" Aq(s,7)) = q(s',7"),

variable elimination
F (a€sha—a Ar -7 Aq(s,r) = qlinsert(a’,remove(a, s)), "),

unfold — (with axioms A,B,C)
F (aesA
((e = Request ANa' =a) V (e = Access \a' = access(a)) V
(e = Release A o' = release(a) A uses(a) = true))
Ar =31 Aq(s,T))

= q(insert(a’,remove(a, s)),r’),

Boolean rules and variable elimination

F (aesAr frequest o \ q(s,r)) = q(insert(a, remove(a, s)),r'), (10)
(a€sNnr Accegs 1 q(s,r)) = q(insert(access(a), remove(a, s)),r")), (11)
(a € s ANuses(a) = true Ar felegse 11 q(s,m)) = q(insert(release(a), remove(a, s)),r’)), (12)

unfold — (with axioms D,E)
F (a € s A False A q(s,1)) = q(insert(a, remove(a, s)), '),
(a € s A False A q(s,1)) = q(insert(access(a), remove(a, s)), 1),
(a € s Auses(a) = true AN\r = used A1/ = free A q(s,r)) = q(insert(release(a), remove(a, s)),r’),

Boolean rules and variable elimination
F  True,
True,

(a € s ANuses(a) = true A q(s,used)) = q(insert(release(a), remove(a, s)), free),

Boolean rules and unfolding of ¢
F (a € s Auses(a) = true A | filter(uses, s)| < 1)
= |filter(uses,insert(release(a), remove(a,s)))| = 0,

expansion with filter(uses,insert(release(a), s)) ~ filter(uses,s)
F (a € s Nuses(a) = true A | filter(uses, s)| < 1) = |filter(uses,remove(a,s))| =0,

expansion with (a € s Auses(a) = true A |filter(uses, s)| < 1) = |filter(uses,remove(a,s))| =0
F (a € s Auses(a) = true A | filter(uses, s)| < 1)
= (a € s Auses(a) = true A | filter(uses, s)| < 1),

Boolean rules

F (s New(® o a q(s,m)) = q(s,r) (4)
unfold = (with axioms F,G)

F s =insert(new(i), s) A q(s,r)) = q(s,r)
variable elimination

F q(s,r) = gq(insert(new(i), s),r)
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unfold ¢
F ((r = free Al filter(uses,s)| =0) V (r = used A | filter(uses, s)| < 1))
= ((r = free A | filter(uses,insert(new(i), s))| = 0) V
(r = used A | filter(uses, insert(new(i), s))| < 1))
expansion with filter(uses, insert(new(i), s)) ~ filter(uses, s)
F ((r = free A|filter(uses,s)| =0) V (r = used A | filter(uses, s)| < 1))
= ((r = free A|filter(uses,s)| =0) V (r = used A |filter(uses, s)| < 1))
Boolean rules
F True

Example 6.2.5 We extend RESERVATION (cf. Ex. 6.1.2) by the specification of a state machine that

establishes a communication between Ticket- and Customer-objects.

RESMACHINE = RESERVATION and FINSET then

sorts event label
hidsorts CT = Customer + Ticket
constructs New : CustomlId x String — event

New : Ticketld — event
Order : CustomlId x Date x (int + 1) x String — event
Sell : Ticketld x CustomId — event
_: String x event — event
_._:int X event — event
_: event — label
_/-: event x event — label
sold :— label
dynamic preds _— _: Customer x label x Customer
_— _: Ticket x label x Ticket
_= _:set(CT) x label x set(CT)
vars ¢, c : Customer cid: Customld t,t' : Ticket tid: Ticketld pho,sea : String
dat : Date i:int+1 e,a: event
8, 81,89 : set(CT) dat: Date i :int tim : TimeOfDay

. Order(cid,dat,i,sea) .
Horn axioms c — ¢ < name(c) = cid

o Setittideid) , y(e,t) < ID(t) = tid A name(c) = cid
; Order(md dat, ﬂ;)/Sell(tid,Cid) sell(t, C)

< ID(t) = tid A available(t) = true A name(c) = cid

5 Neriidpho) insert(k1(new(cid, pho)), s)

g Nl insert(ke(new(tid)), s)
(A) s == insert(k1(c'), remove(ki(c),s)) < c¢—+c A name(c) = cid
(B) s <4 insert(ka(t), remove(ka(t),s)) < t LT ID(t) = tid
(@) sggSQ = sez/a>31/\51:a>52

Since the only action cid. Buy(tid) also occurs as an event, we did not introduce a particular sort for actions.
Here the class-scope operation new operates on sets of objects and thus induces events that trigger transitions
between states of several objects. Axioms A and B describe how single-object transitions lead to multiple-object
transitions. Axiom C establishes a communication between objects. Similar transition relations are part of the

command language specification given in Section 3.4.

Example 6.2.6 (dining philosophers) In Example 5.2.1 we have presented a Petri net specification of
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this example. Here is a state machine specification designed along the lines of the preceding example, but with

the main hidden sorts (phil and event) specified only in terms of object constructors.

PHILS = INT and BOOL and FINSET then

sorts
hidsorts
constructs

objconstructs

defuncts

dynamic preds

v-preds

vars

Horn axioms

event label

phil  fork environment = set(phil) x set(fork)
Ph, Fo :int — event

Get, Put :— event

GetLF, PutLF,GetRF, PutRF :— event
_._:int X event — event

_: event — label

_/-: event X event — label

ph : int — phil

forint — fork

think, wait For Eating, eat, wait ForThinking : phil — phil
taken, available : fork — fork

pid : phil — int

fid: fork — int

mazx :— int

LF,RF : phil — fork

_— _: phil x label x phil

_— _: fork x label x fork

= _: set(phil) x label x set(phil)

- = _:set(fork) x label x set(fork)

_ = _: environment X label X environment
Py, Py, Ps : environment

Or : environment

l:label env, em)’ : environment
pid(ph(i)) =

fid(fo(i)) =

LF(ph(i)) = ( )

RF(ph(i)) = fo(i+1) < i< max
RF(ph(mazx)) = fo(1)

)

12

for all r : environment
i:int p,p’ :phil f,f': fork ps,ps’ :set(phil) fs,[fs':set(fork) e,a: event

pid(c(p)) = pid(p) for all object constructors c : phil — phil
fid(c(f)) = fid(p) for all object constructors ¢ : fork — fork

think(p) GetkF waitFor Eating(p)
waitForEating(p) CetRE eat(p)

eat(p) PutRE waitForThinking(p)
waitForThinking(p) Putkr think(p)

available(f) Get taken(f)

taken(f) Rt available(f)

DS Eh) insert(ph(i), ps)

fs 20 insert(fo(i), fs)

s L4 insert(p’,remove(p,ps)) < p—=p A id(p)

fs L& insert(f, remove(f, fs)) <= f-f A zd(f) =3

12The specification has been inspired by the introductory example of [59].
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(ps, fs) == (ps', fs') < ps==35 A fs— fs
co-Horn axioms Pi(ps,fs) = (p€ps = I :(p=think(p/)V p = eat(p')))
Py(ps,fs) = (f€fs = 3f :(f =available(f') V f = taken(f")))
Ps(ps,fs) = ((f€fsAnpepsALF(p) = f)
= 3f": (f = available(f') V p # think(p')))
Ps(ps, fs) = ((f € fsAp€EpsARF(p)=f)
= 3f": (f = available(f') V p # think(p')))
Or(env) = r(env)
Or(env) = (env L env’ = Or(env’))

Exercise. In terms of PHILS, the three correctness conditions of Example 5.3.2 are OP;((,0), OP(0,0)
and OP3(0, (). Show that they are inductive theorems of PHILS. O
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