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Abstract

This paper shows that the main results of Aczel and Mendler on the existence
of terminal coalgebras for an endofunctor on the category of sets do not, for the
main part of the results require looking at functors on the category of (possibly
proper) classes. We will see here that the main results are valid for sets up to some
regular cardinal. Should that cardinal be inaccessible, then Aczel and Mendler’s
results are derived. In addition we discuss the canonical map from the initial
algebra for an endofunctor on sets to the terminal coalgebra and show that in
many cases it embeds the former as a dense subset of the latter in a certain
natural topology. By way of example, we calculate the terminal coalgebra for
various simple endofunctors.

Introduction

Let T be an endofunctor on a category C . A T -coalgebra in C is a pair (C,ψ:C
−→ TC). A morphism f : (C,ψ) −→ (C ′, ψ′) is a morphism f :C −→ C ′ such that

C ′ TC ′-
ψ′

C TC-ψ

?

f

?

Tf

commutes. This defines a category called the category of T -coalgebras and denoted
CT .

∗ In the preparation of this paper, I have been assisted by grants from the NSERC of Canada and
the FCAR du Québec.



It should be noted that this terminology and notation do not conflict with those of
coalgebra for a cotriple T = (T, ε, δ) in which the category CT of T- coalgebras is a
full subcategory of CT .

Let Set and SET denote the categories of small sets and of classes (or large sets),
respectively. Let T : SET −→ SET be a “Sets-based functor” (this notion defined by
Aczel and Mendler will be defined below; it is the same as a SET-accessible functor in
the sense of Makkai and Paré [1990]. The existence of a terminal coalgebra for such
functors is of interest in theoretical computer science in connection with bisimulations.
A brief discussion and further reference may be found in [Aczel & Mendler, 1989]. A
theorem guaranteeing a terminal coalgebra in general will also guarantee a right adjoint
to the forgetful functor SetT −→ Set (Theorem 1.2).

A Set-based functor on SET is a functor T : SET −→ SET such that for any class
X , TX is a colimit of the TA where A is a subSet of X . If we interpret SET as the
category of sets of cardinality up to and including some inaccessible cardinal κ and Set
as the category of all those of cardinality less than κ , then a Set-based functor is the
same thing as a κ-accessible functor whose value on every set of cardinality less than κ
has cardinality at most κ . Thus Aczel and Mendler’s result can thus be interpreted as
saying that if κ is an inaccessible cardinal and if T is a κ-accessible functor whose value
on a set of cardinality less than κ is at most κ , then there is a terminal T -coalgebra of
size at most κ . (Note that “accessible” in the sense of Makkai & Paré has nothing to
do with accessible and inaccessible cardinals. This unfortunate clash of terms will not
cause much trouble, since this paper deals only peripherally with the latter.)

Here we use an argument based on the special adjoint functor theorem, a basic tool
of category theory, to show that there is a much more general construction that applies
to any regular cardinal and specializes to the theorem of Aczel and Mendler when that
cardinal is inaccessible.

1 The main theorems

For a set A we let |A| denote the cardinality of A . We begin with a preliminary result.
A functor UA −→ B is said to create the colimit of a diagram D: I −→ A is given
a colimit cocone UD −→ B in B , there is a unique colimit cocone D −→ A in A
such that U applied to D −→ A gives a cocone isomomorphic to UD −→ B . This
usually happens when the category B is a category of objects of A with additional
structure and U is the functor that forgets that structure. There is, by the way, a
similar definition for limits.

1.1 Proposition. For any category C and any endofunctor T on C , the forgetful
functor U : CT −→ C creates colimits.

Proof. The argument is well known, but we sketch it. Given a diagram D: I −→ CT

such that UD has a colimit u:UD −→ C , let ψ:C −→ TC be the unique arrow such
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that for each object I of I , the square

C TC-
ψ

UDI TUDI-δI

?

uI

?

TuI

commutes. The existence of ψ follows from the unique mapping property of a colimit.
The maps δI are the structure maps on the DI . It is now routine to see that the
structure so defined on C makes it a colimit of D .

In particular, U preserves epis so that if C has cointersections (the dual of inter-
sections) of arbitrary families of quotients, so does CT .

The following theorem is implicit in the work of Makkai & Paré, but a direct proof
is so easy that we include it.

1.2 Theorem. If T is an accessible endofunctor on sets, the underlying functor
SetT −→ Set has a right adjoint (and hence SetT has a terminal object).

Proof. According to the special adjoint functor theorem, we must show that the cat-
egory of coalgebras is cocomplete, well-copowered and has a set of generators. The
cocompleteness and the well-copoweredness follow immediately from the same facts for
sets according to Proposition 1.1. As for the generators, this follows from the weighted
bilimit Theorem 5.1.6 of [Makkai & Paré, 1990].

In fact, a direct proof of all this is quite easy and we will give it in the next theorem
because for that theorem we will require an estimate of the terminal object and that
does not appear in the Makkai & Paré theorem.

We now prove the result from which the theorem of Aczel & Mendler follows. Al-
though their result is (equivalent to one) stated for inaccessible cardinals, the argument
is in fact valid for any cardinal κ that is is regular and if, in addition, λ < κ implies
2λ ≤ κ .

1.3 Proposition. Let κ > ℵ0 be such a cardinal as described above and T : Set
−→ Set be a κ-accessible functor. Suppose, in addition, that when |A| < κ, then
|TA| ≤ κ. Then SetT has a terminal coalgebra of cardinality no larger than κ.1

Proof. We claim that there is a set of generators each of cardinality less than κ . In
fact, let α:A −→ TA be a coalgebra. Since inclusions of non-empty subsets split (have
right inverses), T takes inclusions to injections. It will simplify notation to suppose
that T takes subsets of A to subsets of TA . From the definition of accessible, there

1 I would like to thank Peter Aczel for tightening up the statement of this theorem; the original form
would not have implied his result
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is, for each a ∈ A , a subset Aa ⊆ A such that |Aa| < κ and α(a) ∈ TAa . Let B0 be
a subset of A of cardinality less than κ . Let B1 = B0 ∪

⋃
a∈B0

Aa . Then B0 ⊆ B1 and
α(B0) ⊆ TB1 . This is a union of fewer than κ sets, each of cardinality less than κ and
since κ is regular, it follows that |B1| < κ . In this way we can build up a countable
chain of subsets

B0 ⊆ B1 ⊆ · · · ⊆ Bn ⊆ · · ·
of subsets of B of cardinality less than κ such that α(Bn) ⊆ TBn+1 . If we let B =⋃
Bn , it follows that α(B) ⊆ TB , so that B is a subcoalgebra. Since each |Bn| < κ ,

we have |B| < κ as well.
Thus there is a set of generators Gi = (Ai, αi) with all |Ai| ≤ κ . The cardinality of

the set of all the Ai is at most κ . For each one, there are at most |Hom(Ai, TAi)| ≤ κλ

coalgebra structures. But κλ =
⋃
µ<κ µ

λ since each function λ −→ κ must, by regularity,

factor through a smaller ordinal. For µ < κ , µλ ≤ (2µ)λ = 2µ×λ ≤ κ . Thus κλ is
a union of κ sets of cardinality at most κ and hence the cardinality of this set of
generators is at most κ . The coalgebra G =

∑
Gi , whose underlying set is

∑
Ai , has

cardinality at most κ since it is the sum of at most κ many sets each of cardinality
at most κ . Since the underlying functor creates colimits, it also creates epimorphisms,
which are thereby surjective, and a quotient of this coalgebra also has size at most κ .
We let G0 be the colimit (cointersection) of all these quotients. Just as the intersection
of subobjects of an object is still a subobject, this colimit is also an epimorphic image
of G and hence |G0| ≤ κ .

Let C be any coalgebra. The defining property of generators implies that there is a
surjection ∑

λi ·Gi→→C

where each λi is a cardinal (not necessarily less than κ) and λi · Gi denotes the sum
of λi many copies of Gi . We now form the pushout diagram

G G′--

∑
λi ·Gi C--

?

f

?

where f is the morphism that is the identity on each copy of Gi in the sum
∑
λi ·Gi .

It is well-known (and easy) that the arrow opposite an epi in a pushout is an epi and so
G′ is a quotient of G . Since G0 is the colimit of all the quotients, it follows that there
is an arrow G′ −→ G0 . This shows that every coalgebra has at least one arrow to G0 .
Now suppose some object has two distinct arrows, say f, g:C −→ G0 . The coequalizer
of those two arrows is an epimorphism h:G0→→G′0 . Let k:G→→G0 be the arrow in
the colimit cone. Then h ◦ k:G→→G′0 is an epi so that we have l:G′0 −→ G0 such that
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l ◦ h ◦ k = k . The diagram is

G G0
--

k

h ◦ k
�

�
��	

�
�
��	

G′0

?
l

G′0-h

From l ◦ h ◦ k = k and k epi, we conclude that l ◦ h = id. But then h ◦ l ◦ h = h and h
is epi, so that h ◦ l = id and we conclude that h is an isomorphism which contradicts
f 6= g .

2 Limits on countable chains

In Barr & Wells [1985], Proposition 7 of 9.4 states (in dual form) the following:

2.1 Theorem. Suppose that the category C is cocomplete with finite limits and that
C has and T preserves limits along countable chains. Then the underlying functor CT

−→ C has an adjoint.

The proof demonstrates that the terminal object of CT is the limit of the chain

1
f
←−− T1

Tf
←−−− T 21

T 2f
←−−−− · · ·

T nf
←−−−− T n1

T n+1f
←−−−−−− T n+11←− · · ·

where f is the unique arrow T1 −→ 1. In the present case of C = Set , the theorem
applies as soon as T preserves limits along countable chains. Many functors do.

Let us call a functor ω -continuous if it preserves limits along countable chains, ω -
cocontinuous if it preserves colimits along countable chains and ω -bicontinuous if it
does both.

For the purposes of the next proposition, let us say that a finite equivalence relation
E on a functor R is a subfunctor of R × R such that on any set X , EX is an
equivalence relation on RX such that the equivalence class of any element is finite;

2.2 Proposition. The class of ω -bicontinuous functors is stable under the following:

1. Finite limits;

2. Arbitrary sums;

3. Quotients modulo finite equivalence relations;

Proof.
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1. Any limit of ω -continuous functors is ω -continuous because limits commute with
each other. It is easy to see that finite products and equalizers both commute
with colimits along countable chains, so that ω -cocontinuous functors are stable
under finite limits.

2. Since colimits commute with each other, ω -cocontinuous functors are stable under
arbitrary colimits, in particular under arbitrary sums. Suppose we have an I -
indexed family of limit chains

Xi1

fi1←−−− Xi2 ←− · · · ←− Xin

fin←−−− Xi n+1 ←− · · · ←− Xi

with gin:Xi −→ Xin the maps from the limit. We want to show that

∑
Xi1

∑
fi1←−−−−−

∑
Xi2 ←− · · ·

∑
Xin

∑
fin←−−−−−

∑
Xi n+1 ←− · · · ←−

∑
Xi

is also a limit chain. All sums in this argument are taken over the index set I .
Suppose A is a set and we have a family of functions hn:A −→∑

Xin such that

(∑
fin

)
◦ hn+1 = hn (∗)

Each hn decomposes A as
∑
Ain where Ain = h−1

n (Xin). From (∗), it follows
that Ai n+1 ⊆ Ain . If the inclusion were proper for any i , we would then have a
proper inclusion

∑
Ain ⊂

∑
Ai n+1 , which contradicts the fact that both sums are

A . Hence Ani is independent of n and we denote it by Ai . Let hni:Ai −→ Xni be
the restriction of hi . From (∗) it obviously follows fin ◦ hi n+1 = hin . This family
gives a unique map hi:Ai −→ Xi such that gin ◦ hi = hin and then h =

∑
hi:A

−→∑
Xi is the unique arrow such that

∑
gin ◦

∑
hi =

∑
hin = hn . Thus

∑
Xi

is the limit of the chain of
∑
Xin .

3. Again only the continuity is in question. Let us suppose we have a commutative
diagram

T∞ · · ·-

R∞ · · ·-

?
Tn-

Rn
-

?
· · ·-

· · ·-

T1
-

R1
-

T0
-

R0
-

? ?

K∞ · · ·- Kn
- · · ·- K1

- K0
-

?? ?? ?? ??

in which each of the three lines is a limit sequence and all the columns with finite
indices are kernel pair/coequalizer sequences. Further suppose that the kernel
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pairs are such that each equivalence class is finite. We want to show that the left
hand column is also a coequalizer.

First we show that R∞ −→ T∞ is surjective. Let t = 〈t0, t1, . . .〉 ∈ T∞ . For
each n let An ⊆ Rn be the inverse image of tn under the vertical arrow. Since
the vertical arrows are surjective, An 6= 0 for all n and the finiteness condition
implies it is finite. The commutativity of the diagram implies that the horizontal
arrow takes An into An−1 . Thus we have a sequence of non-empty finite sets

· · · −→ An −→ · · · −→ A1 −→ A0

whose inverse limit is therefore non-empty. Any element r = 〈r0, r1, . . .〉 of the
inverse limit maps to t . Suppose r′ = 〈r′0, r′1, · · ·〉 is another element mapping to
t . Then for each n , we have 〈rn, r′n〉 is the image of some element kn ∈ Kn . Thus
we have a sequence

k = 〈k0, k1, · · ·〉 ∈ K∞
whose image in R∞ × R∞ is 〈r, r′〉 . This shows that K∞ −→−→ R∞ −→ T∞ is a
coequalizer.

The identity functor is ω -bicontinuous and hence so are its powers. The symmet-
ric nth power is the quotient modulo the action of the symmetric group Sn which
determines a finite equivalence. Constant functors are also bicontinuous so the above
proposition assures that any functor of the form

TX =
∑
n>0

(An ×Xn +Bn ×Xn)/Sn

is ω -bicontinuous.

2.3 Quotients. One thing notably lacking in the stability properties of ω -bicontinuous
functors are quotients in general. It turns out that if T is a quotient of the ω -
bicontinuous functor R , then we can give a direct description of the a terminal T -
coalgebra in terms of a terminal R-coalgebra. This construction depends heavily on
the fact that we are in the category of sets, where all epimorphisms split.

Let π:R −→ T be a surjective natural transformation between endofunctors on Set .
We make no hypothesis about the nature of R except that it have a terminal coalgebra
α:A −→ RA . We will show that a quotient of A is a terminal T -coalgebra.
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Let A0 = A and α0 = α . Define γ0:A0 −→ A1 to the be the image of π ◦ α0 so that
we have the commutative square

RA0 TA0
--

πA0

A0 A1
--γ0

?

α0

?

?

α1

The function α0 is an isomorphism and hence so is α1 , although we make no real use of
this fact. We define the object An and functions αn:An −→ TAn−1 and γn−1:An−1→→An
inductively so that γn−1 is the image of Tγn−2 ◦ αn−1 . Thus we have the commutative
square

TAn−2 TAn−1
--

Tγn−2

An−1 An--γn−1

?

αn−1

?

?

αn

Again it follows from the fact that αn−1 is an isomorphism that αn is.
Let B = colimAn with transition functions δn:An −→ B . We have δn ◦ γn−1 = γn

for n > 0. Define β:B −→ TB so that β ◦ δ0 = Tδ0 ◦ πA0 ◦ α0 and β ◦ δn = Tδn−1 ◦ αn
for n > 0. This is a compatible family of functions for

β ◦ δ1 ◦ γ0 = Tδ0 ◦ α1 ◦ γ0 = Tδ0 ◦ πA0 ◦ α0 = β ◦ δ0

while for n > 0,

β ◦ δn+1 ◦ γn = Tδn ◦αn+1 ◦ γn = Tδn ◦ γn−1 ◦Tαn

= δn ◦T (γn−1 ◦αn) = Tδn−1 ◦αn = β ◦ δn

Note that this construction does not suppose that T preserves the colimit that defines
β . If it should preserve that colimit, then one easily infers that β is an isomorphism
from the fact that all of the αn are. However, as we will see in Example 4.6, (B, β) is
not an initial T -algebra. It is weakly initial:

2.4 Proposition. The object (B, β) is weakly initial in the category SetT .

Proof. Let ξ:X −→ TX be a T -algebra and let θ:TX −→ RX split πX so that
ξ = πX ◦ θ ◦ ξ . Then θ ◦ ξ:X −→ RX is an R-algebra; hence there is a unique arrow
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f :X −→ A such that

A RA-
Rf

X RX-θ ◦ ξ

?

f

?

α

commutes. I claim that the following diagram commutes:

A RA-
Rf

X RX-θ ◦ ξ

?
f

?
α

TA-
πA

TX-πX

?
Tf

B TB-
β

?
δ0

?
Tδ0

In fact, the upper left square is the preceding square, the upper right commutes by
the naturality of π and the bottom rectangle commutes from the definition of β ◦ δ0 .
Together with πX ◦ θ ◦ ξ = ξ this implies that δ0 ◦ f : (X, ξ) −→ (B, β) is a morphism of
SetT and hence that (B, β) is weakly initial.

It is now standard that the terminal object in SetT is the coequalizer of all the
endomorphisms of (B, β). Equivalently, it is the cointersection of all its quotients. As
we will see in an example, this information may suffice to give a good handle on this
object.

3 Initial algebras and terminal coalgebra

For any endofunctor T on any category C , there is a connection between an initial
T -algebra and a terminal T -coalgebra (assuming both exist). In fact, as is well known
since [Lambek, 1970], if ε:TE −→ E is an initial T -algebra, the structure map ε is an
isomorphism. Dually for terminal coalgebras. So if φ:F −→ TF is the terminal coal-
gebra, then φ−1:TF −→ F is an algebra, so there is a unique algebra homomorphism
f :E −→ F . Dually, ε−1 is a coalgebra structure and so there is a unique coalgebra
homomorphism E −→ F . This turns out to be the same morphism and is characterized
by the symmetric equation φ ◦ f ◦ ε = Tf . We will call this morphism the canonical
morphism.

Freyd has studied categories in which this canonical morphism is always an isomor-
phism. This is not the case in Set . The following theorem shows what is true and is
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almost as surprising. We note that any inverse limit in Set has a natural topology as
a subobject of a product of discrete sets. In particular, the limit in Theorem 2.1 that
defines a terminal coalgebra of an ω -bicontinuous functor has such a topology.

We begin with a preliminary result.

3.1 Proposition. Let

Y0 Y1
�
t1

X0 X1
-j0

?

k0

?

k1

· · ·�

· · ·-

�

-

Yn Yn+1
�
tn+1

Xn Xn+1
-jn

?

kn

?

kn+1

· · ·�

· · ·-

be a diagram in S in which

P–1. tn+1 ◦ kn+1 ◦ jn = kn for all n.

P–2. kn is injective for all n.

P–3. tn ◦ kn is surjective for all n.

Then the limit of the lower sequence is the completion of the colimit of the upper in a
natural metric.

Proof. Let un:Xn −→ E be the transition map to the colimit and pn:F −→ Yn be
the transition map to the limit. Define a family of functions fmn:Xn −→ Ym by the
formulas

fmn =




kn if n = m
km ◦ jm−1 ◦ · · · ◦ jn if n > m
tm+1 ◦ · · · ◦ tn ◦ kn if n < m

Next we claim that fmn+1 ◦ jn = fmn = tm+1 ◦ fm+1n . The first equation can be read
off from one or the other of the following two diagrams:

Xn Xn+1
-jn · · ·- Xm−1

- Xm
-jm−1

Ym Ym+1
�
tm+1

Xm+1
-jm

?

km

?

km+1

Ym Ym+1
� tm+1 · · ·� tn� Yn� tn

Xn

?

kn
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The second one is dual to the first and is proved with similar diagrams.
These compatibilities imply, from the universal mapping properties of colimits and

limits that there is a unique function f :E −→ F such that pm ◦ f ◦ un = fmn .

Condition P–2 implies that each composite Xn
un−−−→ E

f−−→ F is injective and

hence that f :E −→ F is injective and P–3 implies that each composite E
f−−→ F

pn−−−→ Yn is surjective. We will use f to suppose that E is a subset of F .
Define a metric on F by saying that d(y, y′) = 2−n for the largest n , if any, for

which pn(y) = pn(y′). If there is no such n , then d(y, y′) = 2. We easily see that the
topology of this metric is the topology induced on the limit by the product topology.
Now suppose that x(0) , x(1) , . . . , x(n) is a Cauchy sequence in E in the induced
metric. By thinning, we can suppose that d(x(n), x(m)) ≤ 2min(n,m) . That is, for all
n < m , we have pn ◦ f(x(n)) = pn ◦ f(x(m)). Thus if we let y(n) = pn ◦ f(xn) we have
a compatible family of elements of

∏
Yn . Thus there is a unique element y ∈ F with

pn(y) = y(n) = pn(x(m)) for all m ≥ n from which it is immediate that lim x(n) = y .
The uniqueness of y is clear, so that F is the Cauchy completion of E .

3.2 Theorem. Let T : Set −→ Set be an ℵ0 -accessible functor that is also ω -
continuous (and hence ω -bicontinuous). Assume that T∅ 6= ∅. The the terminal T -
coalgebra is the Cauchy completion of the initial T -algebra.

Proof. We will first do this under the additional hypothesis that T preserves monics.
In the diagram

1 T1�
t

∅ T∅-j

?
k

?
Tk

· · ·�

· · ·-

�

-

T n1 T n+11�
T nt

T n∅ T n+1∅-T nj

?
T nk

?
T n+1k

· · ·�

· · ·-

the initial algebra (E, ε) is the colimit of the upper row and the terminal coalgebra
(F, φ) is the limit of the bottom row. We note also that

1. t ◦ Tk ◦ j = k and hence T nt ◦ T n+1k ◦ T nj = T nk for all n .

2. k is injective and hence T nk is injective for all n .

3. t ◦ Tk is surjective and hence T nt ◦ T n+1k is surjective for all n .

Thus the preceding proposition applies and we conclude that F is the Cauchy comple-
tion of E in the metric of the limit.

Next we claim that the inclusion f is the canonical function from the initial algebra
to the terminal coalgebra. We must show that φ ◦ f ◦ ε = Tf . Since TE is a colimit
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and TF a limit, this is equivalent to Tpm ◦ φ ◦ f ◦ ε ◦ Tum = Tpm ◦ Tf ◦ Tun . But the
equations we have show that both sides are fm+1n+1 and so f is the canonical map.

This finishes the proof under the additional assumption that T functors preserve
injective functions. An injective with a non-empty domain splits and hence is auto-
matically preserved. If g: ∅ −→ A , then Tg is not necessarily injective. However, it
turns out that we can modify T to produce a functor T ∗ that does preserve injectives,
such that T ∗∅ 6= ∅ and such that T and T ∗ have the same initial algebra and terminal
coalgebra. We let d0, d: 1: 1 −→ 2 be the two arrows and define

T ∗∅ d−−→ T1
Td0−−−−→−−−−→
Td1

T2

to be an equalizer. If the set A is non-empty, we let T ∗A = TA . We have to define
T ∗ on arrows. On arrows with non-empty domain, we let it be the same as T . On the
identity of ∅ , it is, of course, the identity. On the arrow g: ∅ −→ A , with A 6= 0, choose
an element a: 1 −→ A and let T ∗g = Ta ◦ d . We first show this is independent of the
element a . If a′: 1 −→ A is another, then there is a unique arrow f : 2 −→ A such that
f ◦ d0 = a and f ◦ d1 = a′ . Then Ta ◦ d = T (f ◦ d0) ◦ d = Tf ◦ Td0 ◦ d = Tf ◦ Td1 ◦ d
which reduces similarly to Ta′ ◦ d . This shows that T ∗g does not depend on the choice
of element, from which it is immediate that if h:A −→ B , then Th ◦ T ∗g = T ∗(h ◦ g).
Since there are no non-identity arrows to ∅ , this shows that T ∗ is a functor.

Next we show that T ∗∅ 6= ∅ . Since ∅ −→ 1 −→−→ 2 is an equalizer, we have T∅ −→ T1
−→−→ T2 commutes. But T∅ 6= ∅ so that the image of T∅ −→ T1 is non-empty and
provides an element in the equalizer.

Also, since any a: 1 −→ A is a split monic, the composite T ∗g = Ta ◦ d is monic,
and we see that T ∗ preserves all monics.

Since T∅ 6= ∅ , the empty set does not allow either a T -algebra or T ∗ -algebra
structure. Thus the categories of T -algebras and of T ∗ -algebras are isomorphic and
have the same initial algebras (although the descriptions of it as a colimit will differ).
As for coalgebras, the categories are also isomorphic, since the empty set bears a unique
coalgebra structure (which is initial). In this case, the description of the terminal
coalgebra is the same for T and T ∗ .

3.3 Remark. The argument used here is very similar to the construction of fixed
points using embedding projection pairs (See [Barr & Wells, 1990] where they are called
retract pairs. Also see [Smyth & Plotkin, 1983].) Indeed, if T∅ = 1 (which happens
in many interesting cases), there is a single sequence made up of embedding projection
pairs whose colimit is the initial algebra and whose limit is the terminal coalgebra.
This observation suggests that embedding projection pairs are more than an ad hoc
construction for finding fixed points.
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3.4 Dependence on the axiom of choice. The above argument depends on the
fact that functors on sets preserve injectives (with non-empty domain) and surjectives.
The second depends on the axiom of choice and the first on the somewhat weaker
property of being boolean. Neither assumption is a good one to make for computer
science. So we consider briefly how necessary these assumptions are.

Interestingly, even without the axiom of choice, every ℵ0 -accessible functor preserves
surjections. For T is ℵ0 -accessible if and only if the arrow RX =

∑
n∈N Tn × Xn

−→ TX is surjective for all X . In fact, this hypothesis is simply the explicit formulation
of the property that every element of TX comes from Tn −→ TX for some finite
cardinal n . But in any topos, the functors Xn , for finite n , and constant multiples
thereof, preserves epis and sums of such functors do as well. Thus if X→→Y , we have

TX TY-

RX RY--

?? ??

from which we see that TX→→TY is epic as well.
The question of functors preserving monics seems more difficult. Certainly every

polynomial functor does, since in any topos, sums preserve monics. Other functors, like
the finite subsets functor can be shown directly to preserve monics. It seems likely that
functors that arise in practice will have the property, but I know of no proof.

4 Examples

4.1 Suppose T : Set −→ Set is the constant functor at some set S . Since the terminal
coalgebra (A,α) has an isomorphism for structure map, the only possibility for the
terminal coalgebra (or initial algebra) is, up to isomorphism, the identity arrow on A
and it is a minute’s work to see that it is.

4.2 Suppose we let T : Set −→ Set be any functor for which T1 = 1. Since the
terminal object is fixed, it is easy to conjecture—and just as easy to prove—that the
terminal object is just 1 with the unique structure map. It is equally easy to show
that any limit diagram that is preserved by (that is taken to a limit diagram by) T is
created by the underlying functor SetT −→ Set .

4.3 The easiest nontrivial example is the functor T : Set −→ Set defined by TX =
A+X , with A a fixed set. This is a polynomial functor, so Proposition 2.2 applies and
we conclude that the terminal object is the limit of the diagram

1
t0←−− A+ 1

t1←−− A+ A+ 1←− · · · ←− n× A+ 1
tn←−− (n+ 1)× A+ 1←− · · ·

13



where t0 is the unique map and tn = T (tn−1). It turns out that tn: (n + 1) × A + 1
−→ n× A + 1 takes the first n copies of A isomorphically to the n copies of A in the
codomain, takes the remaining copy to 1 and is the identity on 1. The inverse limit of
this sequence is N× A+ 1.

A coalgebra α:X −→ A + X is made up of two partial functions α1:X −→ A and
α2:X −→ X . The terminal map f :X −→ N × A + 1 takes an element of X to 1 if
it is in

⋂
n dom(αn2 ). If not, then f(x) = 〈n, α1α

n
2 (x)〉 for the unique n such that

x ∈ dom(αn2 )− dom(αn+1
2 ).

The initial algebra in this case is N×A embedded in the obvious way. The topology
is the finite complement topology.

4.4 Let T : Set −→ Set be defined by TX = 1 + A × X for a fixed set A . This is
again a polynomial functor so the terminal object is given by the inverse limit

1←− 1 + A←− 1 + A+ A2 ←− · · · ←− 1 + A+ A2 + · · ·+ An ←− · · ·
with the arrow tn: 1 +A+ · · ·+An +An+1 −→ 1 +A+ · · ·+An the identity on the first
n + 1 terms and the projection of An −→ An+1 on the last. An element of the inverse
limit always begins with a sequence (possibly null) of finite sequences

〈〉, 〈a1〉, 〈a1, a2〉, · · · , 〈a1, a2, · · · , an〉
This can be extended either by the element 〈a1, a2, · · · , an〉 ∈ An ⊆ T n+11 or by any
element of the form 〈a1, a2, · · · , an, an+1〉 ∈ An+1 ⊆ T n+11. If the first choice is made,
then there is no further choice and this element of the inverse limit is simply equivalent
to the finite sequence 〈a1, a2, · · · , an〉 . If the second choice is made, then this process
continues at least one more step. If it continues to add terms indefinitely, then we build
an infinite sequence of elements of A . Thus the terminal coalgebra is equivalent to the
set of finite and infinite strings of elements of A . This fact was first observed for the
case A = 1 in [Mendler et. al., 1986].

The topology on the terminal coalgebra is the one in which an infinite string is
approximated by its initial segments. The set of finite strings is the initial algebra.

4.5 Let TX be the functor that assigns to each set S the set of subsets of X
that have at most n elements. Then TX is a quotient of the functor RX = 1 + Xn

which identifies two n-tuples that include the same set of elements. The number of
elements that are equivalent to any given n-tuple is evidently at most n! . We let
KX = 1 + Hom(n, n) × Hom(n, n) × Xn . The two functions d0 , d1:KX −→ RX are
defined by

d0(σ, τ, 〈x1, . . . , xn〉) = 〈xσ1, . . . , xσn〉
and

d1(σ, τ, 〈x1, . . . , xn〉) = 〈xτ1, . . . , xτn〉

14



The terminal coalgebra can be written down of course, but it is a little hard to see what
the inverse limit is. Here is a direct computation of the terminal coalgebra.

Let A be the set (of isomorphism classes, but we ignore the distinction) of rooted
trees which are at most n-way branching, including ones of infinite depth. Then there
is an obvious coalgebra structure on α on A that takes a tree to 1 if the tree is a bare
root and otherwise takes it to the set of its daughters, which is a finite subset of A .
We show that A is a weak terminal object.

Let Am denote the subset of A consisting of the trees of depth limited to m .
Although A is not the union of the Am , there is an obvious truncation function, which
we denote a 7→ a|m of A −→ Am and an obvious topology in which each tree is a limit
of its truncations. In addition, each element of A can be described by its truncations.
Thus given a sequence of trees a0 , a1 , . . . , am , . . . such that am|m−1 = am−1 for each
m , there is a unique a ∈ A such that a|m = am .

Now let (B, β) be a T -coalgebra. We will define a morphism g: (B, β) −→ (A,α) by
defining for each b ∈ B a sequence g0(b), g1(b), . . . of trees such that gm(b) is a tree of
depth at most m and gm(b)|m− 1 = gm−1(b). We begin by defining g0(b) to be a bare
root. Assume the functions g0 , g1 , . . . , gm−1 have been defined (for all coalgebras).
Suppose that β(b) = {b1, b2, . . . , bk} , k ≤ n are the elements of β(b), listed without
repetition. If k = 0, then gm(b) is defined to be the bare root. Otherwise, we define
gm(b) to be the tree with a root and with the trees gm−1(b1), gm−1(b2), . . . , gm−1(bk)
attached at the root.

We can now show that gm(b)|m − 1 = gm−1(b). In fact, if m = 1, this is obvious.
If we suppose that gm−1(bi)|m − 2 = gm−2(bi) for i = 1, . . . , k , then gm(b)|m − 1 is
simply a root with gm−1(b1)|m − 2, gm−1(b2)|m − 2, . . . , gm−1(bk)|m − 2 attached.
This is a root with gm−2(b1), gm−2(b2), · · · , gm−2(bk) attached and that is gm−1(b).
Thus we define g(b). It is clear from the construction that α ◦ gm(b) = gm−1 ◦ τ(b) and
hence α ◦ g(b) = g ◦ τ(b) so that g is a coalgebra homomorphism and (A,α) is weakly
terminal.

This is not, however, the terminal coalgebra. In fact, α isn’t an isomorphism, since
a tree with a root and two identical daughters has the same value under α as a tree
with a root and one copy of that daughter.

Let us say that a binary rooted tree is extensional if no node has two identical
daughters. It is clear that the set of extensional trees is a subcoalgebra. The image of
the map g constructed above is not necessarily an extensional tree but since each tree
has an extensional quotient, this causes no problem. This is done by first identifying
any two identical daughters of any node of the tree. The resultant tree may again
have nodes with identical daughters, so do it again. After a possibly transfinite number
of steps, the tree will be extensional. This is assured because the quotient lattice is
complete.
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On the extensional trees, α is an isomorphism. This suggests that the set of exten-
sional trees might be the terminal object. This is wrong, since the terminal coalgebra
cannot have any congruences and we will see that there is a congruence on the set of
extensional trees.

Begin by saying of two trees t , t′ that t ≈ t′ (read t is extensionally equivalent
to t′ ) if they reduce to the same extensional tree. Let us say of two trees t and t′

that t ∼ t′ (read t is similar to t′ ) if t|n ≈ t′|n for all n . On finite trees this is the
≈ relation, but we will see by example that on infinite trees it is coarser. First we
describe a pair of non-isomorphic extensional trees t and t′ (so that t 6≈ t′ ). The tree
t is simply an infinite chain. The tree t′ is constructed as follows. Let t1 be the tree

• •

•
�
��

@
@@

•
By a leaf we mean a node with no daughters. Evidently t1 has two leaves. Let t2 be

the tree gotten from t1 by replacing each leaf by a copy of t1 . Then t2 has four leaves.
Replace each one by a copy of t1 to make t3 . Continue in this way to build a tree we
denote by t′ of infinite depth and with no leaves. (The tree we construct is actually the
colimit of the finite approximations, treating trees as posets, hence categories.) This
tree is extensional since at every branch the trees on the two nodes are different from
each other. In each case one is an immediate branch and the other isn’t.

On the other hand, any finite truncation of this tree is similar to a chain. In fact the
tree has no leaves so that t′|n has the property that every leaf is at depth exactly n .
I claim that a tree with that property is extensionally equivalent to an n + 1 element
chain. In fact, the claim is evident when n = 0. Assume that the claim is true for
n − 1. If the given tree is not a bare root, then each of the non-empty set of nodes
attached to the root has the property that all its leaves have depth exactly n − 1 and
are therefore extensionally equivalent to n element chains. Since all the daughters are
extensionally equivalent to n element chains, the original tree is equivalent to an n+ 1
element chain. Thus t ∼ t′ but t 6≈ t′ .

We can now show that the ∼ classes of trees is the terminal coalgebra. In fact,
suppose that ≡ is a congruence relation on trees. We will show that ≡ is included in
∼ .

We must show that a ≡ a′ implies that a|m ≈ a′|m for all m . This is immediate
for m = 0. Assume that this has been shown for m − 1 and all pairs a and a′ .
Since ≡ is a congruence, we must have that α(a) ≡ α(a′). Hence α(a) = ∅ if and
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only if α(a′) = ∅ and in that case there is nothing to prove. So let us suppose that
α(a) = {a1, a2, . . . , ak} and α(a′) = {a′1, a′2, . . . , a′k′} . The congruence classes of a1 , . . . ,
ak must coincide with those of a′1 , . . . , a′k′ . Suppose that a1 , a2 , . . . , al are a complete
set of congruence classes in α(a) and similarly for a′1 , a′2 , . . . , a′l in α(a′) (the numbers
will be the same). We can further suppose that they are numbered so that a1 ≡ a′1 ,
a2 ≡ a′2 , . . . , al ≡ a′l . By the inductive hypothesis, we have ai|m − 1 ≈ a′i|m − 1
for i = 1, 2, . . . , l . Moreover if l < j ≤ k , we have that aj ≡ ai for some 1 ≤ i ≤ l
which implies that ai|m− 1 ≈ aj|m− 1 and similarly for the daughters of a′ . But this
means that a|m is extensionally equivalent to the tree with a1 , a2 , . . . , al attached to
the root and similarly a′|m is extensionally equivalent to the tree with a′1 , a′2 , . . . , a′l
attached to a root. Since these are equivalent in pairs, it follows that a|m ≈ a′|m .

Thus ∼ is the top of the congruence lattice and the set of similarity classes is the
terminal coalgebra.

4.6 Let Pfin: Set −→ Set denote the functor that associates to each set the set of its
finite subsets with direct image on morphisms. A coalgebra consists of a pair (A,α)
where A is a set and α is a function that assigns to each element of A a finite subset.
The coalgebra exists by Theorem 1.2, but it is not given by the inverse limit since this
functor is not ω -continuous. The reason is that a countable family of subsets might
have more and more elements and in the limit correspond to an infinite subset of its
domain.

On the other hand, Pfin is a quotient of the functor RX =
∑∞

n=0X
n and so Propo-

sition 2.4 applies and we get an terminal coalgebra for T as a quotient of an terminal
coalgebra for R . It is not hard to see that an terminal coalgebra for R is the set of
finitely branching ordered trees, possibly of infinite depth.

It is interesting to follow the construction of a weak terminal algebra by the process
given in the proof of Proposition 2.4. The object A0 is the set of finitely branching
ordered trees. In A1 two such trees are identified if the set of their first level branches
are the same. So, for example, in the diagram below, the trees (1) and (2) are identified
in A1 , but they are not identified with (3) because the two branches are distinct.

• •

•
�� @@

• •
(1)

•

•

•
(2)

• •

•
�� @@

• • •
�� @@

(3)

In A2 , the two lower branches of (3) are identified so that now all three become
equal. In the limit we get the set of extensional finitely branching trees. However,
just as in the preceding example, this is not the terminal object, although it is weakly
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terminal. The construction of the preceding example works without significant change.
As before we let t ∼ t′ if for all n we have t|n and t′|n have the same extensional
reduction. Then (T, τ)/∼ is the terminal coalgebra. The argument is quite similar to
the previous one. The details are left to the reader.

This is a good example because it illustrates what goes wrong with quotients of
ω -bicontinuous functors. The functor R is ω -bicontinuous so its terminal coalgebra is
given by the limit of the diagram

1←− R1←− · · · ←− Rn1←− · · ·

It is not hard to see that one can interpret Rn1 as the set of rooted trees of depth
at most n . But the trees are non-extensional. The morphism from Rn1 to Rn−11 is
truncation to one depth lower. This leaves width unchanged. That is, if a tree has depth
n and it has a particular k -way branch at some depth d < n then the image of that
node under the truncation will still be k -way branching. When the extensional identity
is imposed, a k -way branch can have some heretofore distinct branches identified when
it is truncated.

The result is that in the inverse limit a particular branch can increase the nodes
of nodes as you move out in the sequence and the limit tree can have a node with an
infinite-way branch. This inverse limit is apparently not a coalgebra and certainly not
a terminal coalgebra. The way to find the terminal coalgebra is as we have done here:
first find the terminal R-coalgebra and then form the quotient.
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M. Makkai and R. Paré, 1990, Accessible Categories. Contemporary Mathematics,
104, Amer. Math. Soc.

N. P. Mendler, P. Panangaden and R.L. Constable, 1986, Infinite Objects in Type
Theory. First Annual IEEE Symposium on Logic in Computer Science, 249-257.

18



M. B. Smyth and G. D. Plotkin, The category-theoretic solution of recursive domain
equations. SIAM J. Computing 11 (1983), 761–783.

19


