http://www.lsv.ens—cachan.fr/Publis/
In Theoretical Computer Science 298(3):471-510, 2003.

Observational Logic, Constructor-Based Logic,
and their Duality *

Michel Bidoit , Rolf Hennicker ®, and Alexander Kurz®

2 Laboratoire Spécification et Vérification (LSV), CNRS & ENS de Cachan, France
b Institut fir Informatik, Ludwig-Mazimilians- Universitit Minchen, Germany

¢ Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands

Abstract

Observability and reachability are important concepts for formal software devel-
opment. While observability concepts are used to specify the required observable
behavior of a program or system, reachability concepts are used to describe the un-
derlying data in terms of datatype constructors. In this paper we first reconsider the
observational logic institution which provides a logical framework for dealing with
observability. Then we develop in a completely analogous way the constructor-based
logic institution which formalizes a novel treatment of reachability. Both institutions
are tailored to capture the semantically correct realizations of a specification from
either the observational or the reachability point of view. We show that there is a
methodological and even formal duality between both frameworks. In particular, we
establish a correspondence between observer operations and datatype constructors,
observational and constructor-based algebras, fully abstract and reachable algebras,
and observational and inductive consequences of specifications. The formal duality
between the observability and reachability concepts is established in a category-
theoretic setting.

Key words: Algebraic specification, observability, reachability, duality, institution

* This work was partially supported by the ESPRIT Working Group 29432 COFI,
by the Bayer. Forschungsstiftung, and by the German DFG-project InopSys. Pre-
liminary results of this study have been published in [9], and preliminary results
about the observational logic institution have been published in [18].

Email addresses: bidoit@lsv.ens-cachan.fr (Michel Bidoit),
hennicke@informatik.uni-muenchen.de (Rolf Hennicker),
Alexander.Kurz@cwi.nl (Alexander Kurz).

Preprint submitted to Elsevier Science 19 September 2002

1 Introduction

An important role in software specification and program development is played
by observability and reachability concepts which deal with different aspects
of software systems. While observational approaches focus on the observable
properties of a system, reachability notions are used to describe the underly-
ing data manipulated by the system. Since observability and reachability are
used for different purposes, both concepts may seem unrelated. In this study
we show that there is a methodological and even formal duality between the
two concepts. We believe that investigating this duality contributes to a clar-
ification of specification methodologies and their semantic foundations.! The

correspondence will be based on the following working hypothesis (in the spirit
of Hoare [22]):

The model class of a specification SP describes
the class of all correct realizations of SP.

The underlying paradigm of the algebraic approach is to model programs
by (many-sorted) algebras and to describe the properties of these algebras
by logical axioms provided by some specification SP. Then a program is a
correct realization if it is a model of SP. Using these assumptions we will
study algebraic frameworks for observability and for reachability (which both
form an institution), we will analyze the analogy between the two institutions
and, finally, we will develop a categorical representation of our observability
and reachability notions (in terms of algebras and coalgebras defined w.r.t.
appropriate functors), which leads to a formal duality principle between the
two concepts.

1.1 Observability

Observability concepts provide means to specify the observable behavior of
software systems in an abstract, implementation independent way. They take
into account our working hypothesis from above in the sense that any program
which satisfies the observable behavior prescribed by a specification SP is
considered as a correct realization of SP.

One can distinguish two main approaches to observability.? The first one is
based on an observational equivalence relation between algebras which is used

1 In the context of automata theory, a similar duality was already investigated by
Arbib and Manes in [3].

2 The relationships between the two approaches have been intensively studied
in [10].

to abstract from the (standard) model class of a specification, see, e.g., [36].
The second approach relaxes the (standard) satisfaction relation so that the
observational models of a specification are all algebras which satisfy the given
set of axioms up to observational equality of the elements of the algebra. (This
idea was originally introduced by Reichel, see, e.g., [34].) Thereby two elements
are considered to be observationally equal if they cannot be distinguished by
a set of observable experiments.

In this work we will follow the second approach. A flexible framework to for-
malize observable experiments is suggested (in a similar way) e.g. in [18], [16]
and [32] where the operations of an algebraic signature are split into a set
of “observer operations” for building observable experiments and the “other”
operations which can be used, for instance, to manipulate (non-visible) states
of a system. In this study we will use the observational logic institution (intro-
duced in [18]), where the non-observer operations are required to respect the
observational equality (induced by the observer operations) which is formally
captured by our notion of an observational algebra. The observational seman-
tics of a specification SP consists of all observational algebras which satisfy
observationally (i.e. up to observational equality) the axioms of SP.

To study observational consequences of a specification SP, we also consider
its (observational) “black box semantics” which consists of the fully abstract
models of SP. The axiomatization of full abstractness leads to proof principles
for verifying observational consequences of a specification.

1.2 Reachability

Reachability concepts provide means to specify generation principles for data-
types. The standard approach to reachability is to introduce a set of datatype
constructors and to admit as models of a specification only those algebras
which are reachable w.r.t. the given constructors. Most algebraic specification
languages incorporate features to express reachability like, for instance, the
CasL language [4].

Syntactically, we will follow these approaches where the operations of an alge-
braic signature are split into a set of “constructor operations” for generating
the relevant data and the “other” operations which perform computations.
From the semantic point of view, however, we do not adopt the standard in-
terpretation which is too restrictive w.r.t. our working hypothesis from above,
since many examples show that a correct realization of a specification may con-
tain non-reachable (junk) elements which are simply not relevant for computa-
tions. It is only important that the non-constructor operations, when applied
to reachable data, cannot produce values which lie outside the constructor-

generated part of the algebra. This property is captured by our notion of
constructor-based algebra. The constructor-based semantics of a specification
SP consists of all constructor-based algebras which satisfy up to junk elements
the axioms of SP. Hence we use, analogously to the observational approach,
a relaxed satisfaction relation (called constructor-based satisfaction), which
interprets variables of a formula only by values in the constructor-generated
part of an algebra. Using these notions we develop a novel institution, called
the constructor-based logic institution, for the treatment of reachability.

To study inductive consequences of a constructor-based specification SP, we
consider its (constructor-based) “black box semantics” which consists of the
reachable models of SP. The axiomatization of reachability leads to proof prin-
ciples like finitary and infinitary induction for verifying inductive consequences
of a specification.

1.3 Duality Principle

It is obvious that the notions and results of the observational and constructor-
based logic institutions (like observer and constructor operation, observational
equality and constructor-generated part, observational and constructor-based
algebra, observational and constructor-based satisfaction, fully abstract and
reachable algebra etc.) are developed in a completely analogous way. This leads
to the question whether there is a formalization of the analogy between the two
concepts. We will show that indeed a formal duality principle can be estab-
lished if we express the central notions of the observational and constructor-
based logics in a category-theoretic setting. Thereby the syntactic aspects of
the observational and the constructor-based notions are expressed by appropri-
ate functors and the semantic notions of observational and constructor-based
algebras and their properties are represented by dual constructions on algebras
and coalgebras defined w.r.t. these functors.

1.4 Organization of this Work

First, in Section 2, we reconsider the observational logic institution [18] which
is used as the basis for formalizing observability. Then, in Section 3, we discuss
reachability and we introduce the constructor-based logic institution. Section 4
exhibits the syntactic and semantic correspondences between all notions used
in observational logic and in constructor-based logic. In Section 5, we focus on
the black box views and on proof systems for observational and constructor-
based specifications which lead to a further comparison between observability
and reachability. In Section 6, we develop the formal duality principle for our

observability and reachability concepts. Finally, some concluding remarks are
given in Section 7.

1.5 Algebraic Preliminaries

We assume that the reader is familiar with the basic notions of algebraic
specifications (see, e.g., [31,5]), like the notions of (many-sorted) signature
Y. = (S5, OP) (where S is a set of sorts and OP is a set of operation symbols
op : S1,...,8, — 8), signature morphism o : X — X' (total) X-algebra
A= ((Ay)ses, (0p™) opeor), B-term algebra Ts(X) over a family X = (X,),es
of sets X of variables of sort s and interpretation I, : Tg(X) — A w.r.t. a
valuation o : X — A. The class of all Y-algebras is denoted by Alg(X).
Together with Y-morphisms this class forms a category which, for simplicity,
is also denoted by Alg(X). For any signature morphism o : ¥ — ¥/, the reduct
functor __|, : Alg(¥") — Alg(X) is defined as usual. The reduct of a relation
R C A" x B"wurt. o:% — Y is denoted by R'|, where R'|, C A'|, x B'|, is

defined by (R'|,), € R, forall s € S.

2 The Observational Logic Institution

In this study we will use the observational logic institution introduced in [18]
to formalize observability. In the remainder of this section we reconsider this
institution (with a modified definition of observational signature and observ-
able context) and we will provide all the necessary proofs, in particular that
observational logic satisfies the satisfaction condition of institutions.

First, we introduce the notion of an observational signature which is a standard
algebraic signature together with a distinguished set of observer operations. An
n-ary operation op : sy,...,s, — s with several non-observable argument sorts
may also be used as an observer. In this case op is equipped with a “position
number” 1 < ¢ < n which indicates the argument sort of the observed elements
(also called “states”).

Definition 1 (Observational signature) An observer is a pair (0bs,1)
where obs is an operation symbol obs : s1,...,8;, ..., 8, = s with 1 <1 < n.
The distinguished argument sort s; of obs is called a state sort (or hidden

3 Up to now proofs for the observational logic framework have only been given in a
technical report [17]. The proofs provided here are more elegant and, moreover, we
will see that a completely analogous reasoning can be used to prove corresponding
facts for the constructor-based logic institution in Section 3.

sort). If obs : s; — s is a unary observer we will simply write obs instead of

(obs, 1).

An observational signature Xops = (2, OPops) consists of a signature ¥ =
(S, OP) and a set OPoys of observers (obs,i) with obs € OP.

The set Ssiate € S of state sorts (or hidden sorts, w.r.t. OPoys) consists
of all sorts s; such that there exists at least one observer (0bs,i) in OPops,
obs 1 S1,...,Siy...,8, — 5. The set Sons € S of observable sorts consists of
all sorts which are not a state sort, i.e. Sops = S\ Sstate-

An observer (obs,i) € OPops with profile obs : S1,...,8;,...,8, — § is called
a direct observer of s; if s € Sons, otherunse it is an indirect observer.

We implicitly assume in the following that whenever we consider an observa-
tional signature Yo, then Yops = (2, OPops) with ¥ = (.S, OP) and similarly
for 3, ete.

Note that in the above definition the state sorts and the observable sorts are
uniquely determined by the given observers. This is different from [18] (and
other previous approaches) where the set of observable sorts was explicitly
declared as part of an observational signature. We believe that the new defini-
tion is closer to our intuition since, indeed, declaring an observer (obs, i) with
obs : sy,...,Si,...,8, — s means simultaneously that s; is not directly visible,
i.e., is a state sort. In particular, if OPqs = (), then there is no state sort, i.e.
all sorts are observable. This corresponds also to the constructor-based case
where, if no constructors are provided, there is no constrained sort, i.e. all
sorts are loose (see Section 3). Moreover, we will see in Section 6 that in the
coalgebraic setting, observers are expressed by functors which, by definition,
simultaneously determine state sorts and observable sorts.

For example, an observational signature for streams of booleans could be
obtained from the following standard signature Xgrream = ({bool, stream},
{head : stream — bool, tail : stream — stream, merge : stream X stream —
stream, rev : stream — stream}) by choosing head and tail as observers.
Hence stream is a state sort and bool is an observable sort. *

Any observational signature determines a set of observable contexts which rep-
resent the observable experiments. Observable contexts are built by observer
operations only. They have a state sort as “application sort” (since they are
used to observe states) and an observable result sort. The following defini-
tion shows how observable contexts are constructed in a coinductive style
starting from direct observers. This is syntactically different from [18] (and
other previous work) where observable contexts were defined in an inductive

4 Usual operations on booleans are omitted.

style starting from “trivial” contexts consisting only of a single variable z;.
We do not adopt this approach anymore since the coinductive style is more
adequate w.r.t. observability. First, it leads directly to a coinductive specifi-
cation method (see Section 4) and, secondly, it leads to a coinduction scheme
for performing proofs of observational properties as discussed at the end of
Section 5.1.

Definition 2 (Observable context) Let Xons be an observational signa-
ture, let X = (Xs)ses be a family of countably infinite sets X, of variables
of sort s and let Z = ({zs})sesqm. b€ @ disjoint family of singleton sets (one
for each state sort). For all s € Ssiate and s € Sops, the set C(Xops)s—s
of observable Ygps-contexts with “application sort” s and “observable result
sort” ' is coinductively defined as follows:

(1) For each direct observer (obs,i) with obs : S1,...,8i,...,8, — § and
pairwise different variables x1:81, ..., 2,85,
0bS(T1, .. Til1y Zs;y Tit1y - oy) € C(B0bs)s; s -

(2) For each observable context ¢ € C(Xops)s—s » for each indirect observer
(0bs,i) with 0bs : S1,...,Siy...,8, — S, and pairwise different variables
T1:81, - -+, TniSy MOt OCCUTTING N C,
cobs(x1, .. i1, Zess Tig1s oo s Tn) /2] € C(X0bs)s; s
where clobs(x1,. .., Ti 1, Zs;, Tit1,---,Tn)/2s] denotes the term obtained
from ¢ by substituting the term obs(x1,...,Ti—1,Zs;, Tit1, .., Tpn) for zs.

The set of all observable contexts is denoted by C(Xows). We implicitly assume
in the following that for any state sort s € Sstate there exists an observable
context with application sort s.

The syntactic notion of observable context induces, for any X-algebra A, a se-
mantic relation, called observational equality, which expresses indistinguisha-
bility of states w.r.t. the given observable contexts.

Definition 3 (Xons-equality) Let Yops be an observational signature. For
any Y-algebra A € Alg(X), the observational Yops-equality on A is denoted
by ~xg,..4 and defined as follows.

For all s € S, two elements a,b € A, are observationally equal w.r.t. Xops,
i.e., a Ry, A b, if and only if

Case s € Sops: a =0

Case s € Ssiate: for all observable sorts s € Sops, for all observable contexts
¢ € C(X0bs)s—s, and for all valuations o, f : XU{z:} — A with a(z) = B(z)
if v € X, a(zs) = a and B(zs) = b, we have 1,(c) = Iz(c).

Definition 4 (Fully-abstract algebra) Let Yo be an observational signa-
ture. A X-algebra A is called fully abstract (w.r.t. Xops) if the observational
Yobs-equality ~x,_a on A coincides with the set-theoretic equality.

Note that only the observer operations are used to build observable contexts
and hence to define the observational equality. As a consequence we require
that the non-observer operations should not contribute to distinguish states.
This requirement is fulfilled by observational algebras defined as follows.

Definition 5 (Observational algebra) Let Yo be an observational signa-
ture. An observational YXops-algebra is a X-algebra A such that ~s,, 4 s a
Y-congruence on A. The class of all observational Yops-algebras is denoted by

Algops(Xobs)-

Since for any observational Xops-algebra A, the observational equality ~yx, 4
is a X-congruence, we can construct its quotient A/~y,, 4 which is a X-
algebra that identifies all elements of A which are indistinguishable “from the
outside”. A/~5,_a can be considered as the “black box view” of A and rep-
resents the “observable behavior” of A w.r.t. Yops. A/~Rx,..4 s fully abstract
since the observational equality (w.r.t. Xopns) on A/~x, 4 coincides with the
set-theoretic equality.

Definition 6 (Observational black box view) Let A be an observational

Yobs-algebra. The quotient algebra A/~s., 4 is called the (observational)
black box view of A.

To obtain a category of observational algebras we define the following obser-
vational morphism notion which is a generalization of standard ¥-morphisms
reflecting the relationships between the observable behaviors of algebras.

Definition 7 (Observational morphism) Let A, B € Algy, (Xobs) be two
observational Yops-algebras. An observational Yope-morphism h : A — B
is an S-sorted family (hs)ses of relations hy C Ag X B with the following
properties, for all s € S:

(1) For all a € As, there exists b € By such that a hg b.

(2) Foralla € As,b,V/ € By, ifa hs b, then (a hs b if and only if b ~x,, V).

(3) For all a,a’ € As,b € By, if a hy b and a =z, 4 d, then a’ hs b.

(4) For all op : $1,...,8, — s € OP and a; € A,,,b; € By,, if a; hy, b; for
i=1,...,n, then op™(ay,...,a,) hs opB(by,...,b,).

The following lemma shows that there is a one to one correspondence be-
tween observational morphisms h : A — B and standard morphisms £ :
A/xsg,..4 = B/~x,,. B between the observational black box views of A and

B.5

5 Hence observational morphisms could have been defined also directly as standard
morphisms between the black box views of two observational algebras A and B. We
prefer, however, an explicit definition on the carriers of A and B and to distinguish
clearly between the category of observational algebras and the one of standard

Lemma 8 Let A, B € Algy,.(Xops) be two observational Yops-algebras and
h: A — B be an observational Lops-morphism. Then h/~y,, : A/~s,,..4 —
B/xx,,. B, defined by h/~x., (la]) = [b] if a h b, is a X-morphism. Moreover,
for each X-morphism k : A/~s,, .4 — B/~xs,,. B, there exists a unique Xops-
morphism h : A — B such that h/~x,, = k.

Proof. The properties of observational morphisms imply that h/~s,, is a
well-defined »-morphism. For proving the second part of the lemma assume
that k : A/~y,, .4 = B/~yg,,. 5 is a X-morphism. Then £ induces a family
of relations hy, C A, x B, such that for all a € A, b € B, we have a hg b
if and only if ks([a]) = [b]. It is straightforward to show that h is indeed an
observational Xops-morphism between A and B such that h/~s,, = k. For
proving the uniqueness of hlet o’ : A — B be an observational ¥ops-morphism
with h'/~s,,. = k. Then, for any a € A,, b € By, a hy b iff ky([a]) = [b] iff
W [Rsin, ([a]) =] iff a ., . =

Definition 9 (Category of observational algebras) For any observa-
tional signature Xops, the class Algo,(Xons) together with the observational
Yobs-morphisms defines a category which, by abuse of notation, will also be
denoted by Algq,(XZons). The composition of observational Xops-morphisms is
the usual composition of relations and for each A € Algon.(Zons), the identity
idy : A — A is the observational equality ~s,, a.°

Using the observational black box construction of Definition 6, one can relate,
for any observational signature Xops, the category Algeoy (Zobs) of observa-
tional Yops-algebras and the category Alg(X) of (standard) X-algebras by
a functor which associates to any observational algebra its black box view.
According to Lemma 8 this functor establishes a one to one correspondence
between observational and standard morphisms, i.e., it is full and faithful.

Definition 10 (Observational black box functor) For any observational
signature Xops, BBsg,, : Algons(Xons) — Alg(X) is the full and faithful functor
defined by:

(1) For each A € Algoy(Xombs), BBsg,. (A) = A/R 544

(2) For each observational Xons-morphism h : A — B, BBx,,_ (h) NN
where h/~s,, : A/~s,,..4 = B/~s,,. B is defined in Lemma 8.

20bs

In the next step we define an observational satisfaction relation between ob-
servational algebras and first-order Y-formulas. The underlying idea of this
satisfaction relation is to interpret the equality symbol = occurring in a first-
order formula ¢ not by the set-theoretic equality but by the observational
equality of elements. Hence the following definition is quite similar to the def-

algebras.
6 Tt is easy to prove that all properties of a category are indeed satisfied.

inition of the standard satisfaction relation. The only difference concerns (1)
where “I,(t) = I,(r)” is replaced by “I,(t) ~gg,..a La(r)”.

Definition 11 (Observational satisfaction relation) The observational
satisfaction relation between Xons-algebras and first-order X-formulas is de-
noted by |= and defined as follows. Let A € Algop (Eobs)-

20bs

(1) For any two termst,r € Tx(X)s of the same sort s and for any valuation
a: X = A Aafs,, t=rholds if 1,(t) ~sg,. 4 La(r).

(2) For any arbitrary X-formula ¢ and for any valuation o : X — A,
A a [=x,,. @ is defined by induction over the structure of the formula ¢
i the usual way.

(3) For any arbitrary X-formula ¢, A |=
a: X - A Ao kEs,, ¢ holds.

© holds if for all valuations

20bs

The notation A [y, ¢ is extended in the usual way to classes of observa-
tional algebras and sets of formulas. The next theorem shows that the obser-
vational black box functor is compatible with the observational and standard
satisfaction relations.

Theorem 12 Let Yo be an observational signature with underlying standard
signature X, let ¢ be a X-formula and let A be a Xops-algebra. Then:
A l=s,,. ¢ if and only if BBs,,.(A) Es .7

This theorem is a generalization of Theorem 3.11 in [10]. The proof is done
by induction on the form of the formula ¢ (along the lines of the proof of
Theorem 3.11 in [10]). Similar results are provided in [23] and in [33].

Definition 13 (Basic observational specification) A basic observational
specification SPops = (Zops, AX) consists of an observational signature Xops =
(3, OPops) and a set Ax of Y-sentences, called the axioms of SPops. The se-
mantics of SPops is given by its signature Sigons(SPons) and by its class of
models Modops(SPops) which are defined by:

def

Sigons (SPons) = Xobs

Modons (SPobs) & {A € Algos(Zos) | A Fxo,, Ax}

In the following, SPops =5, ¢ means Modops(SPobs) Fsep, ©-

The definitions stated above provide the basic ingredients for defining the ob-
servational logic institution. Thereby it is particularly important to use an
appropriate morphism notion for observational signatures which guarantees

" When it is clear from the context we often write |= instead of |=x to denote the
standard satisfaction relation.

10

encapsulation of properties with respect to the observational satisfaction rela-
tion (formally expressed by the satisfaction condition of institutions, see [14]).
To ensure that the satisfaction condition holds, the crucial idea is to require
that observers are preserved (formally expressed by condition (1) below) and
that no “new” observer can be introduced for “old” sorts via a signature mor-
phism (formally expressed by condition (2) below). Then the set of observable
contexts for observing “old” sorts remains unchanged (up to renaming) and
so does the observational equality. This fact is formally stated in Lemma 16
below.

Definition 14 (Observational signature morphism) Given two observa-
tional signatures Yons = (2, OPops) and X, = (X', OPys) with ¥ = (S, OP)
and X' = (S', OP"), an observational signature morphism oops : Xops — Lo
s a signature morphism o : X — X' such that:

(1) If (obs,i) € OPops, then (a(0bs),i) € OPg,,.
(2) If (0bs',i) € OPg,, with obs' : s},... s}, ... s, — & and s, € o(S), then

there exists obs € OP such that (0bs,i) € OPops and obs' = a(0bs).

Note that this definition implies that for all sorts s in S, s € Ss;ate if and only
if 0(s) € Sgae and s € Sops if and only if o(s) € S,

We implicitly assume in the following that whenever we consider an observa-
tional signature morphism oops @ Zobs — 2ops, then the underlying signature
morphism is o : ¥ — X'

Lemma 15 Observational signatures together with observational signature
morphisms form a category which has pushouts.

Proof. Obviously the properties of a category are satisfied. To show the ex-
istence of pushouts let o10bs : Lobs — X1,0bs and 020bs @ D0Obs —F 242,0bs
be observational signature morphisms with underlying signature morphisms
o1 1 X — Y and 09 @ X — Y. It is well-known that in the category of
algebraic signatures there exists a pushout as shown in the following diagram.

o1
x >
o9 o}
oh ,
9 x

Now let OPqy, = {(01(0p1), 1) | (0p1,1) € OP10bs} U {(05(0p2), i) | (0p2,i) €
OPsobs} and X = (X, OPg,,)- It is straightforward to prove that o} and
0y give rise to observational signature morphisms o7y ,,, and 03, such that
the following diagram is a pushout in the category of observational signature

11

morphisms.

01,0bs

EObs EI,Obs
2,0bs T1,0bs
%5 o

s S !
E2,Obs > EObs

O

The next lemma provides the basis for defining the observational reduct func-
tor and for proving the (observational) satisfaction condition. It says that
observational equalities are compatible with reducts along observational sig-
nature morphisms.

Lemma 16 For any observational signature morphism oops @ X0bs — 20bs
and observational Xoy.-algebra A" € Algo, (Xoy,s), we have (g, ar)l, =
RY oney(Allo) - Thereby (%%bs,A/) |» is the reduct of the observational ¥t . -equality
on A" along o (see Section 1.5) and =5, (a1,) @5 the observational Lops-
equality on the reduct A'|,.

Proof. Let s € S and a,b € (A'])s. Then a,b € A}, and a (~xy, ar)|o b iff
a Ry ooa b. Hence it is sufficient to prove a Rsy, A biff a ~x,. a1, b
If s € Sops then o(s) € Sgy,s and conversely. Hence, in this case, a ~yy a4 b
iff a = biff a =y, a1,) b If 8 € Ssate then o(s) € Sg;,. and conversely.
In this case, the conditions (1) and (2) of Definition 14 imply that for any
observable context ¢ € C(X(),,) with application sort o(s) one can construct
a corresponding observable context ¢ € C(Xops) with application sort s and
vice versa. Hence we can conclude a Rosy, A biff a =5, (a1, b O

As a first obvious consequence of Lemma 16 we obtain the following fact which
allows us to define the observational reduct functor in Definition 18.

Corollary 17 For any observational signature morphism oops : 20bs — L0bs
and for any observational Xy, .-algebra A’ € Algoy (Eous): Ao € Algon(Zobs)-
Moreover, for any observational g, -morphism h' . A" — B’ the reduct
W\|y: A'l, = B'|, is an observational Xons-morphism.

Definition 18 (Observational reduct functor) For any observational sig-
nature morphism oops @ Xobs —> Lopss the functor __|,o,. @ Algop (o) —
Algos(Zons) s defined as follows.

(1) For each A" € Algou,(Sop): Alogy = Al

(2) For each observational ¥, ,-morphism h' : A" — B', b’ Ly,

|O'Obs

12

As a second consequence of Lemma 16, we obtain that the (observational)
black box functor commutes with the reduct functor. This important fact
shows again the adequacy of the notion of observational signature morphisms.

Corollary 19 For any observational signature morphism oops : 20bs — L0bs
and for any observational ¥, -algebra A" € Algo,(Ehps),

BBEIObs(A/)|U = BBZObS(A/|UObs)‘

The last corollary and Theorem 12 are the essential facts that are needed to
prove the (observational) satisfaction condition.

Theorem 20 (Observational satisfaction condition) For any observa-
tional signature morphism oobs © Lobs = 2onss 0bservational Y. -algebra
A" € Algon (X)) and X-sentence ¢:

Al):E’Obs 0-(90) Zf and Only Zf A,|00bs):ZObs 2

Proof. A" |Exy o(p) iff, by Theorem 12, BBy, (A') s o(p) iff (since the
satisfaction condition holds in the institution of standard many-sorted first-
order logic) BBy, (A')|, = ¢ iff, by Corollary 19, BBy, (A'|s0.) Fs ¢ iff,
by Theorem 12, A'|,... FExo.. ©- O

We have now defined all ingredients that constitute the observational logic
institution. The category of signatures is the category of observational sig-
natures and observational signature morphisms, for each observational sig-
nature Yops = (X, OPops), the sentences are finitary first-order X-sentences,
the model functor assigns to each observational signature Yo the category
Algos(Xoms) of observational Yops-algebras and Xops-morphisms, and the sat-
isfaction relation is the observational satisfaction relation.

The following remark discusses briefly some properties and further aspects of
the observational logic institution.

Remark 21

(1) Observational logic satisfies the amalgamation property as defined, for in-
stance, in [39]. This can be proved by applying the construction of amalga-
mations for standard algebras to observational algebras. That the amal-
gamated union of two observational algebras is again an observational
algebra is a consequence of Lemma 16.

(2) If we allowed infinitary X-sentences (with countably infinite conjunctions
and disjunctions) and restricted to injective signature morphisms then the
interpolation property would be satisfied as well.® The proof of this fact is
given in [17]. It relies on the infinitary axiomatization of full abstractness
presented in Section 5.1 and on Corollary 44 and Theorem 45.

8 For the definition of the interpolation property see, e.g., [39].

13

(8) On top of the observational logic institution, structured observational
specifications can be defined by applying the institution-independent speci-
fication-building operators introduced in [37] and similarly in [6]. Since
the observational logic institution satisfies the amalgamation property,
one can compute, following the construction in [6], for each structured
observational specification, a normal form which consists (in general) of
a basic observational specification restricted to an export signature.

(4) From the above theorems we can conclude that the functors BBy, asso-
ciated to observational signatures Yons can be extended to an institution
encoding (in the sense of [39]) which maps the institution of observational
logic to the institution of standard first-order logic. A concrete discussion
on how this institution encoding works is outside the scope of this paper.

3 The Constructor-Based Logic Institution

Reachability concepts are used to describe the underlying data manipulated
by a program. For this purpose a distinguished subset OP ¢q,s of the operation
symbols OP (of a signature ¥ = (5, OP)) is declared as a set of constructor
symbols which leads to our notion of a constructor-based signature (see Def-
inition 22 below). As already discussed in Section 1.2 the standard semantic
approach to reachability is to restrict the admissible models of a specification
to those algebras which are reachable w.r.t. the given constructors. We believe
that this interpretation is too restrictive w.r.t. our working hypothesis (of the
Introduction). Let us illustrate our viewpoint by a simple example.

Let NAT be a standard specification of the natural numbers with signature
Ynar = ({nat}, {zero : — nat, succ : nat — nat, add : nat X nat —
nat}) and with standard axioms. We declare zero and succ as constructor
symbols. Then a Yyar-algebra A is reachable w.r.t. the given constructors if
any element of A is denotable by a term succ(zero) with i > 0. Obviously
the set N of the natural numbers (equipped with the usual operations) is a
reachable algebra. But note that the set Z of the integers (equipped with the
usual interpretations of zero, succ and add) is not reachable w.r.t. the given
constructors and therefore is not an admissible (standard) model of NAT.
Nevertheless the integers can obviously be used as an implementation of the
natural numbers, where negative integers are just junk elements, since they
are not used as representations for natural numbers. Hence, in order to satisfy
our working hypothesis, the integers should be admitted as a model of NAT.
As a consequence, we are interested in a more flexible framework where the
constructor symbols are still essential, in the sense that they determine the
data of interest, but nevertheless non-reachable algebras can be accepted as
models if their subsets of constructor-generated elements are closed under
the non-constructor operations. This condition is formalized by our notion of

14

constructor-based algebra in Definition 26 below.

In this way we obtain a novel treatment of reachability in algebraic specifica-
tions which finally leads to the institution of constructor-based logic. All steps
performed in this section are quite analogous to the development of the obser-
vational logic institution. The correspondences will be analyzed in Section 4
and formalized in Section 6.

Definition 22 (Constructor-based signature) A constructor is an oper-
ation symbol cons : sy,...,8, — s with n > 0. The result sort s of cons is
called a constrained sort.

A constructor-based signature Yoons = (2, OPcons) consists of a signature
Y = (5, 0P) and a set OPcons € OP of constructors.

The set Scons € S of constrained sorts (w.r.t. OPcons) consists of all sorts
s such that there exists at least one constructor in OPcons with range s. The
set Stoose © S of loose sorts consists of all sorts which are not a constrained
sort, i.e. Stoose =S\ SCons-

We implicitly assume in the following that whenever we consider a constructor-
based signature Xcons, then Xeons = (2, OPcons) with X = (S, OP) and simi-
larly for ¥{, . etc.

Note that in the above definition, the constrained sorts and the loose sorts are
uniquely determined by the given constructors. Indeed, declaring a constructor
cons : Sy, ...,S, — s means simultaneously that s is constrained. In particular,
if OPgons = 0, then there is no constrained sort, i.e., all sorts are loose.

For example a constructor-based signature for the natural numbers is obtained
from Ynar (cf. above) by choosing zero and succ as constructors.

Any constructor-based signature determines a set of constructor terms. The
following definition shows how constructor terms are inductively constructed
starting from constants. The interpretation of a constructor term denotes al-
ways a value of a constrained sort. ?

Definition 23 (Constructor term) Let be given a constructor-based signa-
ture Xcons, and let X = (Xs)ses be a family of countably infinite sets X of
variables of sort s. For all s € Scons, the set T(Xcons)s 0f constructor terms
with “constrained result sort” s is inductively defined as follows:

9 This would not be the case if we used another definition where single variable
terms x5 with s € S00se Would be included in the set of constructor terms. More-
over, the definition given here points out clearly the analogy with the definition of
observable contexts in Definition 2.

15

(1) Fach constant cons :— s € OP cons belongs to T (Xcons)s -
(2) For each constructor cons : Si,...,8, — 8 € OPcons with n > 1 and
terms ty,...,t, such that t; is a variable x;:s; if s; € Spoose and t; €

T<ECons)si Zf 5; € SCOIIS7 cons(tl, s 7tn> S T(ECons)s-

The set of all constructor terms is denoted by T (Xcons). We implicitly as-
sume in the following that for any constrained sort s € Scons there exists a
constructor term of sort s.

The syntactic notion of a constructor term induces, for any >-algebra A, the
definition of a family of subsets of the carrier sets of A, called the Xcopns-
generated part, which intuitively consists of those data which are relevant
according to the given constructors.

Definition 24 (X¢ons-generated part) Let be given a constructor-based sig-
nature Ncons- For any X-algebra A € Alg(X), the Yoons-generated part of A,
denoted by Gens,,, (A) = (Gens,, (A)s)ses, is defined by:

Case s € Spoose: Geng,, (A)s = A
Case s € Scons: Geny, (A)s = {a € Ay | there exists a term ¢ € T (Xcons)s
and a valuation a : X — A such that 1,(t) = a}.

Definition 25 (Reachable algebra) Let Ycous be a constructor-based sig-
nature. A X-algebra A is called reachable (w.r.t. Ycons) if its carrier sets
coincide with the carrier sets of its Ycons-generated part.

Note that only the constructor symbols are used to build constructor terms
and hence to define the X ns-generated part. Since the Ycons-generated part
represents the data of interest we require that no further elements should be
constructible by the non-constructor operations.

Definition 26 (Constructor-based algebra) Let Ycons be a constructor-
based signature. A constructor-based Xcops-algebra is a X-algebra A such that
Gens,,,.(A), equipped with the canonical restrictions of the operations op” of
A to the carrier sets of Gens,,, (A), is a X-subalgebra of A. The class of all
constructor-based Ycons-algebras is denoted by Alge, .« (Xcons)-

Since for any Ycops-algebra A, the Yeons-generated part Geng,,, (A) of Ais a
Y-algebra which contains only those elements that are generated by the given
constructors, we can consider the Yoons-generated part Geny. (A) as the
(constructor-based) “black box view” of A (abstracting away from all junk
values that may lie in A). Obviously, Geny,,, _(A) is reachable w.r.t. Xcops.

Definition 27 (Constructor-based black box view) Let A be a construc-
tor-based Xcons-algebra. The Loops-generated part Geny,,, (A) (considered as
a subalgebra of A) is called the (constructor-based) black box view of A.

16

For instance, the black box view of the integers Z w.r.t. the constructors zero
and succ corresponds to the natural numbers.

To obtain a category of constructor-based algebras, we define the following
morphism notion which reflects the relationships between the ¥ ¢o.s-generated
parts of algebras.

Definition 28 (Constructor-based morphism) Let A, B € Algc,n.(Xcons)
be two constructor-based Ycons-algebras. A constructor-based Y cops-morphism
h: A — B is an S-sorted family (hs)ses of partial mappings hs : As — Bs
with the following properties, for all s € S:

(1) The definition domain of hy is Gens,,,_(A)s.

(2) hS(GenEcms(A)S) C GenECODS(B)S'

(3) For all op : s1,...,8, = s € OP and a; € Geng,_,_ (A)s, ,
he(op?(ay,...,a,)) = opB(hs (ar),..., hs,(a,)).

Obviously, there is a one to one correspondence between constructor-based
morphisms h : A — B and standard morphisms & : Geny,,_(A) = Geng,,,.(B).
For instance, the integers are isomorphic to the natural numbers w.r.t. the
constructors zero and succ.

10

Lemma 29 Let A, B € Alge,,«(Xcons) be two constructor-based Xcons-algebras
and h : A — B be a constructor-based Ycons-morphism. Then the restric-
tion hlgens,. (a) + Gensg,,, (A) = Gens,,,.(B) is a X-morphism. Moreover,
for each L-morphism k : Geng,,, (A) — Geng,,.(B), there exists a unique
Ycons-morphism h : A — B such that h|Ge”Econs(A) = k.

Definition 30 (Category of constructor-based algebras) For any cons-
tructor-based signature Loops, the class Algoons(Xcons) together with the cons-
tructor-based Ycons-morphisms defines a category which, by abuse of notation,
will also be denoted by Algc,,s(Xcons)-

Using the constructor-based black box construction of Definition 27, one can
relate, for any constructor-based signature g, the category Alge .« (Xcons)
of constructor-based Y¢ops-algebras and the category Alg(X) of (standard) -
algebras by a functor which associates to any constructor-based algebra its
black box view. According to Lemma 29, this functor is full and faithful.

Definition 31 (Constructor-based black box functor) For any construc-
tor-based signature Xcons, BBse... @ Algcons(Zcons) — Alg(X) is the full and
faithful functor defined by:

10 Similarly to the observational case, constructor-based morphisms could have been
defined also directly as standard morphisms between the (constructor-based) black
box views of two constructor-based algebras A and B.

17

(1) FOT 6aCh’ A S A]'gCOIlS(ECOHS)7 %ZCons (A) déf GenZCons (A)
(2) For each constructor-based Scons-morphism h : A — B, BBy, (h) %
h|GenZCons (A) :

In the next step we define a constructor-based satisfaction relation between
constructor-based algebras and first-order -formulas. The underlying idea
of this satisfaction relation is to restrict the valuations of variables to the
generated values (i.e. to the elements of the Yc.u-generated part) only. !
Hence the following definition is quite similar to the definition of the standard
satisfaction relation. The only difference concerns valuations: “a : X — A” is
replaced by “a: X — Gens,, (A)”.

Definition 32 (Constructor-based satisfaction relation) The construc-
tor-based satisfaction relation between Ycons-algebras and first-order Y-formu-
las is denoted by =z, and defined as follows. Let A € Alge,ns(Xcons)-

(1) For any two termst,r € Tx(X)s of the same sort s and for any valuation
a: X — Geng,,, (A), A, a=s.,,. t =1 holds if 1,(t) = 1,(r).

(2) For any arbitrary X-formula ¢ and for any valuation o : X — Geng,,, . (A),
A o =y, p is defined by induction over the structure of the formula
@ in the usual way. In particular, A, o f=x,.. Ye:s. ¢ holds if for all
a € (Geng,, (A))s, A d FExg,.. ¢ where o/(z) = a and ' (y) = a(y)
fory # x.

(3) For any arbitrary X-formula ¢, A f=x.,.. ¢ holds if for all valuations
a: X = Geny,, (A), A, a =x,,. ¢ holds.

The notation A =5, . ¢ is extended in the usual way to classes of construc-
tor-based algebras and sets of formulas.

As an example consider again the specification NAT and the integers which
satisfy w.r.t. the constructor-based satisfaction relation the third Peano axiom,
ie., Z FEyg,,. Vrinat. succ(z) # zero. Indeed this is true since the Yoons-
generated part of Z w.r.t. the constructors zero and succ is just N and hence
the universally quantified variable z is only interpreted in N.

The next theorem shows that the constructor-based black box functor is com-
patible with the constructor-based and standard satisfaction relations.

Theorem 33 Let Xcons be a constructor-based signature with underlying stan-
dard signature 3, let ¢ be a X-formula and let A be a Ycons-algebra. Then:

A |:ECOHS ()0 Zf and Only Zf %ECOHS (A)):E ()0'
The proof of this theorem is straightforward by induction on the form of the

" This idea is related to the ultra-loose approach of [40], where the same effect is
achieved by using formulas with relativized quantification.

18

formula ¢.

Definition 34 (Basic constructor-based specification) A basic construc-
tor-based specification SPcons = (Xcons, AX) consists of a constructor-based
signature Xoons = (2, OPcons) and a set Ax of 3-sentences, called the azioms

of SPcons- The semantics of SPcons s given by its signature Sigegus(SPcons)

and by its class of models Modcons(SPcons) which are defined by:

def

Sigcons (SPCons) = ECons

MOdCons<SPCons) déf {A € AlgCons(ZCons) | A):ECOHS AX}

In the following, SPcons Fse,,. ¥ means Modcons(SPcons) Fseu. -

For instance, according to the constructor-based satisfaction relation, the in-
tegers are an admissible model of NAT considered as a constructor-based
specification with constructors zero and succ.

The definitions stated above provide the basic ingredients for defining the
constructor-based logic institution. As in the observational case it is again par-
ticularly important to use an appropriate morphism notion for constructor-
based signatures which guarantees encapsulation of properties with respect
to the constructor-based satisfaction relation. To ensure that the satisfaction
condition of institutions holds, the crucial idea is quite similar to the obser-
vational case. We require that constructors are preserved (formally expressed
by condition (1) below) and that no “new” constructor can be introduced
for “old” sorts via a signature morphism (formally expressed by condition (2)
below). Then the set of constructor terms for constructing elements of “old”
sorts remains unchanged (up to renaming) and so does the Y¢.ns-generated
part. This fact is formally stated in Lemma 37 below.

Definition 35 (Constructor-based signature morphism) Given two
constructor-based signatures Ycons = (2, OPcons) and Yg,, = (X, OPgous)

with ¥ = (S, OP) and ¥' = (S, OP'), a constructor-based signature mor-

Phism 0cons : Licons = Dicons &5 @ signature morphism o @ X — X' such that:

(1) If cons € OPcops, then o(cons) € OPg,,..

(2) If cons’ € OPg,,, with cons' : sy,..., s, — s and s' € o(S), then there
exists cons € OPcons such that cons’ = a(cons).

This definition implies that for all sorts s in S, s € Sqops if and only if o(s) €
Stions and s € Spoese if and only if o(s) € S|,

oose”*

We implicitly assume in the following that whenever we consider a constructor-
based signature morphism ocons @ Lcons — Lcons, then the underlying signa-
ture morphism is o : ¥ — 3.

19

Lemma 36 Constructor-based signatures together with constructor-based sig-
nature morphisms form a category which has pushouts.

Proof. The proof is performed in the same way as the proof of Lemma 15
by replacing observational signatures by constructor-based signatures and ob-
servers by constructors. O

To justify that our constructor-based approach indeed yields an institution the
order of arguments is completely analogous to the one used in Section 2 for
the observational logic institution. First, we need the following lemma which
provides the basis for defining the constructor-based reduct functor and for
proving the (constructor-based) satisfaction condition. It says that constructor
generated parts are compatible with reducts along constructor-based signature
morphisms.

Lemma 37 For any constructor-based signature morphism Ocons : 2Cons —

Cons and for any constructor-based Xt -algebra A" € Algens(Xtons) s
Genz’c}ons (AI) |o- = Genzool’ls (A,|o—) -

Proof. If s € Spoese then o(s) € S}, .. and conversely. Hence, in this case,
(GenEgons(A,”J)s = GenEgons(A,)o(S) = ;'(5) = (Ay)s = Genggp (A'l5)s
If s € Scons then o(s) € St and conversely. In this case, the conditions (1)
and (2) of Definition 35 imply that for any constructor term ¢' € T (Xtgng)o(s)s
one can construct a corresponding constructor term t € T(Econs)s and vice

versa. Hence we can conclude that (Geng, (A')|,)s = Geng, (A')o(s) =

GenEcons (A, |0)s- 0

As a first obvious consequence of Lemma 37 we obtain the following fact which
allows us to define the constructor-based reduct functor in Definition 39.

Corollary 38 For any constructor-based signature morphism ocons @ 2Cons —

Cons @nd for any constructor-based Xt -algebra A" € Algeons(Ztons)s A'ls €
Algons(Econs)- Moreover, for any constructor-based ¥t .-morphism b’ : A" —
B’ the reduct 1|, : A'|, — B'|, is a constructor-based Y.cons-morphism.

Definition 39 (Constructor-based reduct functor) For any constructor-

based signature morphism Ocons © Lcons — Lconss the following defines a func-

tOT’ ——|0'00ns : A]'gCOI’lS(E/COnS) - AlgCons(ZCOHS)"

(1) For each A’ € Alggon(Stons): A'locon = Al

Cons

(2) For each constructor-based X .-morphism h' : A" — B', I/ Ly,

|0'Cons

As a second consequence of Lemma 37 we obtain that the (constructor-based)
black box functor commutes with the reduct functor.

Corollary 40 For any constructor-based signature morphism ocons @ 2Cons —

20

/
Cons

BBy,

Cons

and for any constructor-based Xt .-algebra A" € Alge«(Xtons) s
(A,)|U = %ECODS(A,|O.COHS)'

The last corollary and Theorem 33 are the essential facts that are needed to
prove the (constructor-based) satisfaction condition.

Theorem 41 (Constructor-based satisfaction condition) For any cons-
tructor-based signature morphism Ocons : LCons — 2 constructor-based
Cons-0lgebra A" € Alge, (Xons) and X-sentence @:

Cons

AI):E,Cons 0—(80) Zf a’nd Only Zf AI|UCons):ECons SO'

Proof. A" sy, o(yp) iff, by Theorem 33, BBy, (A") Ex o(yp) iff (since
the satisfaction condition holds in the standard first-order logic institution)
BBy (A)|, Ex ¢ iff, by Corollary 40, BBy, (A |se...) Fx ¢ iff, by Theo-

Cons , 12
rem 337 A |(7C01as :ECODS 80 0

/
Cons~

We have now introduced all ingredients that constitute the constructor-based
logic institution. The category of signatures is the category of constructor-
based signatures and constructor-based signature morphisms, for each cons-
tructor-based signature Ycons = (2, OPcons) the sentences are finitary first-
order Y-sentences, the model functor assigns to each constructor-based signa-
ture Xoons the category Alge, .« (Xcons) of Loons-algebras and Xoops-morphisms,
and the satisfaction relation is the constructor-based satisfaction relation.

As in the observational case, the following remark discusses briefly some prop-
erties and further aspects of the constructor-based logic institution.

Remark 42

(1) Constructor-based logic satisfies the amalgamation property. This can
again be proved by applying the construction of amalgamations for stan-
dard algebras. That the amalgamated union of two constructor-based al-
gebras is a constructor-based algebra is a consequence of Lemma 37.

(2) If we allowed infinitary X-sentences and restricted to injective signature
morphisms then the interpolation property would be satisfied as well. The
proof of this fact relies on the infinitary axiomatization of reachability
presented in Section 5.2 and on Corollary 52 and Theorem 53.

(3) Of course, we can also build structured constructor-based specifications
by using the specification-building operators of [37] or [6] and one can
compute normal forms according to [6].

(4) The functors BBy, associated to constructor-based signatures Xops can
be extended to an institution encoding (see [39]) which maps the insti-
tution of constructor-based logic to the institution of standard first-order

12 Note that this proof is totally analogous to the proof of Theorem 20 for the
observational satisfaction condition.

21

logic. A concrete discussion on how this institution encoding works is
outside the scope of this paper.

4 A First Comparison

The observational logic institution and the constructor-based logic institution
were developed step by step in a completely analogous way. Indeed there is
a close correspondence between all concepts of the two approaches which is
summarized in Table 1.

Observability Reachability
observational signature constructor-based signature
Zobs = (3, OPobs) Ycons = (5, OPcons)
state sorts Sstate and constrained sorts Scons and
observable sorts Sops loose sorts Stoose
observable contexts C(Xobs) constructor terms T (Xcons)
observational Xops-equality Y.Cons-generated part
Ao, d C Ax A Geny, (A) CA
fully abstract algebra reachable algebra
observational algebra constructor-based algebra
Ry oA 1S a X-congruence Geny,,, . (A) is a E-subalgebra of A
observational black box functor constructor-based black box functor
BBsoy, : Algons(Zobs) — Alg(X) BB cons + Al8Cons(Xcons) = Alg(X)
observational satisfaction constructor-based satisfaction
A Froy ¢ A Fscon ¢
interpret “=" by “~y,. A" use valuations o : X — Geny,, . (A)
observational specification constructor-based specification
SPobs = (Xobs, AX) SPcons = (Xcons, AxX)
Modops (SPobs) = Modcons (SPcons) =
{A € Algops(Zons) | A o, Ax} | {A € Algeons(Econs) | A Esoo, Ax}
observational logic institution constructor-based logic institution

Table 1
Comparing Observability and Reachability

First, there is an obvious syntactic correspondence between an observational
signature and a constructor-based signature which, on the one hand, leads
to the notion of observable contexts and, on the other hand, leads to the
definition of constructor terms.

22

In both cases, the syntactic notions induce a semantic relation on any -
algebra A. In the observational case we obtain a binary relation ~x,_ 4, called
observational equality, and in the constructor case we obtain a unary relation
Geng,,,.(A), called Ycons-generated part. Then we require that the opera-
tions of an algebra are compatible with the given relations. This means, in
the observational case, that the observational equality is a X-congruence thus
leading to the notion of an observational algebra. In the constructor case, this
means that the Xco,s-generated part is a X-subalgebra thus leading to the
notion of a constructor-based algebra. In each case we can construct a black
box functor which, in the observational approach, identifies indistinguishable
elements of an algebra and, in the constructor-based approach, abstracts from
junk values.

In order to satisfy our working hypothesis of the Introduction, we have relaxed
the standard satisfaction relation such that, in the observational case, equality
is considered as observational equality and, in the constructor case, variables
are interpreted only by values of the constructor generated part. Then it is
straightforward to introduce the notions of observational and constructor-
based specifications whose semantics are defined according to the generalized
satisfaction relations. Finally we have shown that both frameworks lead to an
institution by using appropriate notions of signature morphisms.

It is still important to stress that there are also corresponding specification
methods when writing observational and constructor-based specifications. In
the observational case, the idea is to specify the effect of each non-observer op-
eration (in a coinductive style) by a (complete) case distinction w.r.t. the given
observers. A general schema for observer complete definitions is studied in [7].
As a standard example, consider again streams of booleans with observers
head : stream — bool and tail : stream — stream, and consider an observa-
tional specification of an alternating merge function merge : streamx stream —
stream and of a reverse function rev : stream — stream that reverses each bit
of the stream. Both functions are specified by the following complete case
distinctions w.r.t. the observers head and tail as follows.

head(merge(sl, s2)) = head(sl)
tail(merge(sl, s2)) = merge(s2, tail(sl))
head(rev(s)) = not(head(s))
tail(rev(s)) = rev(tail(s))

Analogously it is well-known that in the constructor case it is a standard
technique to specify the non-constructor operations in an inductive style by
a (complete) case distinction w.r.t. the given constructors. In the categorical
framework of algebras and coalgebras this analogy is described in [24].

23

5 Logical Consequences of Specifications and Corresponding Proof
Systems

So far we have emphasized the fact that the model class semantics of a spec-
ification should reflect all its correct realizations. According to our working
hypothesis, a program P is a correct realization of SPy if it determines a
Sig y (SPx)-algebra which belongs to Modx (SPx).'? In the following we will
refer to Modx(SPx) as the glass box semantics of a specification since it
reveals its correct realizations. Glass box semantics is appropriate from an
implementor’s point of view.

Of equal importance are the logical consequences of a given specification. In
this section we focus on the properties ¢ that can be inferred from a given
specification SPx. This means that we are interested in statements SPx x5,
¢ which express that Modx(SPx) s, ¢ holds, and in corresponding proof
systems.

For this purpose it is convenient to abstract the models of a specification into
“idealized” models, such that the consequences of the actual models of the
specification of interest, in the chosen logic, are exactly the consequences of the
idealized models, in standard first-order logic. Hence to any specification SPx
we will associate the class of its “idealized” models (which lie in the standard
algebraic institution), and this class will be called the black box semantics of
the specification. Black box semantics is appropriate from a client’s point of
view.

Formally, the black box semantics of a specification SPx will be defined as
the class BBx, (Modx(SPx)) obtained by applying the black box functors (of
Definitions 10 and 31) to the model class of the given specification.

5.1 Black Box Semantics and Proof Systems for Observational Specifications

Definition 43 (Black box semantics) Let SPoys be an observational spec-
ification with signature Sigon(SPobs) = Zops- Its black box semantics is de-

ﬁned by [[SPObs]] déf BBZObS<MOdObs(SPObs))~
As a consequence of Theorem 12 we obtain the following fact.

Corollary 44 (Observational consequences) Let SPops be an observa-
tional specification with signature Xons and let @ be a X-formula. Then:

13 We use the subscript x to denote the fact that we work either in the observational
logic institution or in the constructor-based logic institution.

24

SPobs Fxew. ¢ if and only if [SPops] = ¢-

This fact shows the adequacy of the black box semantics in the observational
case. In this case the black box semantics can be characterized as follows.

Theorem 45 (Black box semantics relies on fully abstract models)

Let SPops = (Xobs, Ax) be a basic observational specification. Then we have:
[SPons] = {X—algebra A | A = Ax and A is fully abstract w.r.t. ~y,,_a}.

Proof. Let A be a Y-algebra, where Y is the standard signature underlying
Z:Obs-

C: Assume A € [SPops]. Then A = BBy, (B) for some B € Modops(SPops)-
Hence A is fully abstract and, since B =5, Ax, by Theorem 12, A |= Ax.
O: Assume A |= Ax and A is fully abstract. Then obviously A g, Ax as
well, and A can be considered as a Yops-algebra, hence A € Modops(SPops)-
Since A is fully abstract, A = BBy, (A), hence A € [SPops]. O

We have shown in Corollary 44 how to relate the observational consequences
of an observational specification to the consequences in standard first-order
logic of the black box semantics of the given specification. The next step is
to find an adequate axiomatization of the black box semantics in order to be
able to define sound and complete proof systems. According to Theorem 45
this amounts to finding an axiomatic characterization of full abstractness. The
next definition provides the required axiomatization which, however, can only
be stated by using infinitary first-order formulas.

Definition 46 (Fully abstract axiom) Let X be an observational signa-
ture with underlying signature 3. The fully abstract axiom associated to Xops
is the sentence FA(Xons) defined by:

FA(EObS) déf /\ FA(EObs)s

sESstate

where for each state sort s € Ssiate, FA(Xons)s s defined by:

FA(Sobs)s 2 Ve, yis. (A VVar(c). clz] =cfy] | =z =y."

s'€S0bs, CGC(EObs)S%SI

Lemma 47 Let Ygns be an observational signature with underlying signature
Y. A XY-algebra A is fully abstract w.r.t. Xops if and only if A = FA(Xops)-

Now let Iliroreq be a sound and complete proof system for infinitary first-
order logic with equality (see [26]). From Iljrorr, we obtain a sound and
complete proof system for observational logic by adding to it, as an extra
axiom, FA(Zops)-

4 yVar(c) is an abbreviation for Va1:s1. . .. Va,:5,, where o1, . . . , ,, are the variables
(of sort s1,...,sy,) of the context ¢, apart from its context variable z;.

25

Theorem 48 For any observational signature Yops, let Tops def iroreq U
FA(Xops). Then for any basic observational specification SPops = (Xobs, AX)
and any X-formula ¢, we have:

SPobs Fxop, ¢ if and only if Ax b, ¢.

Proof. SPops Fx,,. ¢ iff, by Corollary 44, [SPows] = ¢ iff, by Theorem 45,
{X—algebra A | A = Ax and A is fully abstract w.r.t. =g, 4} | ¢ iff, by
Lemma 47, AxUFA (Xos) | ¢ iff, by soundness and completeness of Iiporgq;
Ax U FA(ZObS) l_HIFOLEq (Y2 IH, by definition of HObsa Ax l_HObs @. O
The difficulty with the above proof system is that it uses infinitary formulas
(and also infinitary proof rules of Iporrq). An alternative is to restrict to
finitary formulas and to use only a particular set of infinitary proof rules (see
the discussion in [6]). The idea now is, instead of “capturing” full abstractness
by the infinitary axiom FA(Xops), to “capture” it by specialized infinitary
proof rules called infinitary coinduction. These infinitary rules are necessary
to ensure completeness. A further step will then be to implement (in a theorem
prover) these infinitary rules by finite (but incomplete) coinduction schemes,
as discussed at the end of this section.

Definition 49 (Infinitary coinduction) Let Yo be an observational sig-
nature with underlying signature ¥. The infinitary coinduction rule iCI(Xops)
associated to Xops is defined by iCI(Xops) def {iCI(Xobs)s | § € Sstate} where
for each state sort s € Ssiate, ICLH(Xons)s s defined by:

for all observable sorts s' € Sops
‘ ¢ = YVar(c). c[z] = c[y]
iCL(Zons)s and all contexts ¢ € C(Xops)s_ss

p=x=Yy

where ¢ denotes an arbitrary first-order ¥-formula.

Now let IlroLrq be a sound and complete proof system for finitary first-order
logic with equality. From the finitary proof system Ilporr, We obtain a sound
and complete (semi-formal) proof system for observational logic by adding to
it the extra infinitary proof rules iCI(Xops).

Theorem 50 For any observational signature Xops, let H%bs def HroLEq U
iCL(Xops). Then for any basic observational specification SPops = (Xobs, AX)
and any X-formula ¢, we have:

SPobs Fxon, ¢ if and only if Ax Pz, o

Proof. Again, as in the proof of Theorem 48, SPops =y, @ iff Ax UFA(Xops)
= ¢. Hence, it is sufficient to show that the latter is equivalent to Ax I—H% 2

26

The soundness, i.e., Ax Frz, ¢ implies Ax UFA(Zons) E , is obvious and
can be proved by induction on the length of the derivation. The completeness,
i.e., Ax UFA(Xobs) = ¢ implies Ax bz ¢, has been shown in [20] for
the case where all operations with non-observable arguments are observers.
The completeness proof given in [20] relies on the omitting types theorem
(see [12]). A generalization of this proof to an arbitrary set of observers is
straightforward. O

A last step is then to implement (in a theorem prover) the above infinitary
rules by finite (but incomplete) adequate coinduction schemes. In practice, for
proving the infinitely many hypotheses p = VVar(c). c[z] = c[y] of the rule
iCI(Xops)s, one would use a coinduction scheme according to the coinductive
definition of the contexts C(Xoms)s—s (see Definition 2).

For instance, to prove that Vs:stream. rev(rev(s)) = s is an observational
consequence of the observational specification of streams, one would have to
prove:
Vs:stream. head(rev(rev(s))) = head(s) and
(Vs:stream. c[rev(rev(s))] = c[s]) =

(Vs:stream. c[tail(rev(rev(s)))] = c[tail(s)])
where ¢ denotes an arbitrary observable context.

Indeed both proof obligations can easily be discharged due to the coinductive
definition of the operation rev.

5.2 Black Box Semantics and Proof Systems for Constructor-Based Specifi-
cations

Definition 51 (Black box semantics) Let SPcons be a constructor-based
specification with signature Sigoons(SPcons) = Lcons- Its black box semantics

is defined by [SPcons] = BB, (Modcons (SPcons)).-
As a consequence of Theorem 33 we obtain the following fact.

Corollary 52 (Inductive consequences) Let SPags be a constructor-based
specification with signature Xcons and let ¢ be a X-formula. Then:

SPCons Fson. ¢ if and only if [SPcons] F ¢-

This fact shows the adequacy of the black box semantics in the constructor-
based case. Again, we can provide also in this case a characterization of the
black box semantics.

Theorem 53 (Black box semantics relies on reachable models)
Let SPaons = (Econs, AX) be a basic constructor-based specification. Then:

27

[SPcons] = {X—algebra A | A = Ax and A is reachable w.r.t. Xcons}-

Proof. Let A be a Y-algebra, where ¥ is the standard signature underlying
ZCons-

C: Assume A € [SPcops]. Then A = BBy, (B) for some B € Modcons(SP cons)-
Hence A is reachable and, since B |=y, . Ax, by Theorem 33, A |= Ax.

O: Assume A = Ax and A is reachable. Then obviously A =y, Ax as well,
and A can be considered as a Ycons-algebra, hence A € Modons(SPcons)- Since
A is reachable, A = BBy, (A), hence A € [SPcons]- O

We have shown in Corollary 52 how to relate the inductive consequences of
a constructor-based specification to the consequences in standard first-order
logic of the black box semantics of the given specification. Again, the next step
is to find an adequate axiomatization of the black box semantics in order to
be able to define sound and complete proof systems. According to Theorem 53
this amounts to finding an axiomatic characterization of reachability which is
provided in the next definition (again using infinitary first-order formulas).

Definition 54 (Reachability axiom) Let Xcons be a constructor-based sig-
nature with underlying signature ¥. The reachability axiom associated to Xcons

is the sentence REACH (X cons) defined by:
REACH(ECOHS) déf /\ R’EACH(ECOHS)S

s€SCons

where for each constrained sort s € Scons, REACH(Xcons)s 18 defined by:
REACH(Xcons)s el s, \/ dVar(t). x =t .1

tET(ECons)S

Lemma 55 Let Yous be a constructor-based signature with underlying signa-

ture 3. A X-algebra A is reachable w.r.t. Xcons if and only if A = REACH(Zcons) -

To obtain a sound and complete proof system for constructor-based logic we
can now add to the proof system Iljporg, for infinitary first-order logic the
extra axiom REACH(Xcons)-

Theorem 56 For any constructor-based signature Xcons, let oons def iroLeq
U REACH (X cons)- Then for any basic constructor-based specification SPcons =
(Xcons, Ax) and any X-formula ¢, we have:

SPons Fxay. @ if and only if Ax b, ©.

Proof. SPcons Fxe,,. ¢ iff, by Corollary 52, [SPcons] | ¢ iff, by Theo-
rem 53, {¥—algebra A | A = Ax and A is reachable w.r.t. Ycons} = ¢ iff,
by Lemma 55, Ax U REACH(X¢ons) E ¢ iff, by soundness and complete-

ness of HIFOLEq; Ax U REACH(ZCOHS) l_HIFOLEq 2 IH, by definition of HCon57
15 3Var(t) is an abbreviation for 3x1:s1. . .. 3,8, where x1, .. . , ¥, are the variables
(of sort s1,...,sy) of the constructor term .

28

AX l_HCOHS SO ° =

The above proof system uses again infinitary formulas. To restrict to finitary
formulas and to use only a particular set of infinitary proof rules the idea is
now, instead of expressing reachability by the infinitary axiom REACH(X¢ons),
to “capture” it by infinitary induction rules (which are necessary to ensure
completeness).

Definition 57 (Infinitary induction) Let Yo be a constructor-based sig-

nature with underlying signature 3. The infinitary induction rule il(X¢ons) a@s-
sociated to Noons 05 defined by il(Xcons) def {il(Xcons)s | € Scons} where for

each constrained sort s € Scons, 1L1(Zcons)s 15 defined by:

o[t/ x] for all constructor terms t € T (Xcons)s

iI(ECOHS)S v
TS5, @

where ¢ denotes an arbitrary first-order X-formula (with at least one free
variable x of sort s).

From the finitary proof system Ilrorg, for first-order logic we obtain a sound
and complete (semi-formal) proof system for constructor-based logic by adding
to it the extra infinitary proof rules il(Xcops)-

Theorem 58 For any constructor-based signature Ycons, let H%OHS def HroLeq

U il(Xcons). Then for any basic constructor-based specification SPcons
(Xcons, Ax) and any X-formula ¢, we have:

SPons Fxea. @ if and only if Ax '_H%ons .

Proof. Again, as in the proof of Theorem 56, SPcons Fxg,,. ¢ iff Ax U
REACH(Xcons) = ¢. The latter is equivalent to SP,.cqen = ¢ where

SP,cach e reach (3, Ax) with OP cops

according to the definition of specifications with reachability operators in [21].
For those specifications it has been shown in [21] (Corollary 3.18) that our
proof system with the infinitary induction rules is sound and complete. O

In practice, for proving the infinitely many hypotheses ¢[t/z] of the rule
iI(Xcons)s; one would use an induction scheme like structural induction with
respect to the constructor terms 7 (Xcons)s- For instance, to prove a property
Vax:nat. ¢ on natural numbers, it is enough to prove ¢[zero/x] and Va:nat. p =

p[succ(x)/z].

29

5.8 A Further Comparison

Taking into account the results of Sections 5.1 and 5.2, Table 1 of Section 4
can now be extended as shown in Table 2 below.

Observability Reachability
black box semantics black box semantics
def def
[[SPObs]] = BBEObS (MOdObs(SPObs)) [[SPCOHS]] = BBZCons (MOdCons(SPCons))
observational consequences inductive consequences
SPobs |:EObs @ iff [[SPObs]]): 2 SPcons):ECons 2 iff [[SPCOHS]]): 2
black box semantics relies on black box semantics relies on
fully abstract algebras reachable algebras
fully abstract axiom FA(X0ps) reachability aziom REACH(Zcons)
nfinitary proof system Ilops infinitary proof system Ilcons
infinitary coinduction rules iCI(Xops) infinitary induction rules iI(Xcons)
semi-formal proof system H%bs semi-formal proof system H%OHS
coinduction proof scheme induction proof scheme

Table 2
Comparing Observability and Reachability (cont.)

6 Formalizing the Duality

In this section we establish a formal duality of the observability and reacha-
bility concepts considered in the previous sections. For this purpose we first
need a precise notion of duality which is provided by category theory.

6.1 Categorical Duality

We briefly review categorical duality, for more details see, e.g., [30,1]. A cate-
gory C consists of a class of objects, also denoted by C, and for all A, B € C of
a set of arrows (or morphisms) C(A, B). The dual (or opposite) category CP
has the same objects and arrows C°?(A, B) = C(B, A). We write A° and f°P
for A€ Cand f € C(B, A) to indicate when we think of A as an object in C°P
and of f as an arrow in C°?(A, B). Duality can now be formalized as follows.
Let P be a property of objects or arrows in C. We then say that:

An object A (arrow f, respectively) in C has property co-P
iff A° (f°P, respectively) has property P.

30

For example, an object A is co-initial in C (usually called terminal or final) iff
AP is initial in C°P; a morphism f € C(A, B) is co-mono (usually called epi)
iff f°P is mono; C'= A+ B is a co-product (disjoint union in the case of sets)
iff C°P is the product A°P x B°P.

The duality principle can also be extended to functors. The dual of a func-
tor ' : C — D is the functor F°P : C°® — D° which acts on objects and
morphisms as F' does. For instance, for an endofunctor F', the category of
F-coalgebras is (isomorphic to) the dual of the category of F°P-algebras. And
a functor F' is left adjoint to G iff F*°P is right adjoint to G°P.

The notions of quotient/embedding and kernel/image can be recognized as
duals with the help of factorization systems. A factorization system (£, M)
for C consists of classes £, M of arrows of C satisfying (1) both £ and M
contain all isomorphisms and are closed under composition, (2) every arrow
f in C has a factorization f = moe with e € £, m € M, and (3) this
factorization is essentially unique. ! We call the arrows in £ and M quotients
and embeddings, respectively, and, given a factorization f = m o e, we call e
the kernel of f and m the image of f. Note that (M, &) is a factorization
system for C°P. 17

6.2 Algebras and Coalgebras

The categorical description of signatures, observational algebras, and construc-
tor-based algebras relies on the notions of functor, coalgebra for a functor, and
algebra for a functor, respectively.

For the remainder of Section 6 we assume a category X with a factorization
system called the base category. X will be the category of the carriers of
our models, usually Set (single-sorted) or Set® (S-sorted). We first recall the
definition of algebra and coalgebra for a functor (cf. [24] for more information).
Let Q,=2: X — X be functors. Then an 2-algebra is an arrow w : QX — X
in X', a =-coalgebra is an arrow £ : X — ZX in X. An artow [: X — Y
in X is an Q-algebra morphism f : w — w' if the left-hand diagram below
commutes and a =-coalgebra morphism f : & — £’ if the right-hand diagram

16 That is, if f = moe = m/o¢’ are two (£, M)-factorizations then there is a unique
isomorphism h such that f =m/ohoe.

17See [1] for more information on factorization systems and e.g. [38] for a typical
application to algebraic specifications.

31

below commutes.

0X 2. X X _S.=x
N I
a <.y y o=y

Together with their respective morphisms {2-algebras form a category Alg(£2)
and Z-coalgebras a category Coalg(Z). Coalgebras are dual to algebras, that is,
Coalg(Z)°P ~ Alg(=°P). Note that the functors €2, = play the role of signatures
as explained in the following remarks.

Remark 59 The concept of an Q2-algebra includes algebras in the usual sense.
For instance, with X = Set and QX =14+ X + X x X, 1 denoting a one-
element set, an algebra [fo, f1,f2] : 1+ X + X x X — X is given by a
constant fo : 1 — X, a unary operation f; : X — X, and a binary operation
fo: X x X — X. Generally, for a single-sorted signature with a set OP of
operation symbols f with arities ar(f) € N we let QX = [I;eop XY, For
an S-sorted signature (S, OP), the functor) : Set® — Set® has components,
for each s € S,
QX)) = J] Xox...xX,
OP:S1,.eySn—>S

where X denotes an element of Set® with components X;, t € S, and op ranges
over all operation symbols in OP with result sort s. Finally, let us mention that
it 18 natural to incorporate given parameter sets into the functors. For example,
to describe lists over a given set of elements D we can use the single-sorted
functor QX =1+ D x X giving rise to algebras [nil, cons] : 1+ D x X — X.

Remark 60 The concept of a =-coalgebra includes algebras with operations
having precisely one arqgument of a state sort. For instance, fizing two sets
O and I, an automaton with output o : X — O and transition function ¢ :
X x I — X can be considered as a coalgebra (0,0) : X — O x X! for the
functor Z : Set — Set given by EX = O x XI. Generally, let (S, OP) be a
signature with the properties that (i) the sorts are divided into two disjoint
parts S = Ssiate U Sparam called state sorts and parameter sorts and that (ii)
an operation op : s1,...,S8, — S 1s i OP only if precisely one of the argument
sorts s; 18 in Sstate- Then the functor = : SetSstate _y GetState g components,
for each s € Sstate,

(EX)S _ H YVS/ Psy x..xPs; y xPs;

. . . !
OP:S1,..»8i—1,5,Si41,e:sSn—>S

X...X Psy

where X denotes an element of SetSstate ith components Xy, t € Ssiate, and
op ranges over all operation symbols in OP that have an argument of sort s,
and P; denotes the set interpreting the parameter sort t € Sparam, and Yy is
Xy for s € Ssiate and Py for s’ € Sparam- Finally, let us mention that the

32

functors = described above have been characterized in [29] as those functors
that, making the dependency on the parameters explicit, have a left adjoint.
The relationship of coalgebras and hidden algebra [15] is discussed e.g. in [13]
and [35].

6.3 The Duality Principle for Observability and Reachability

The essence of our categorical description of observational and constructor-
based signatures and models is the following. In the case of observability,
a set of observer symbols is represented by a functor O : X — X, each
X € X is considered as an interpretation of the state sorts and each coalgebra
X -2+ OX is considered as an interpretation of the observer operations. In
the reachability case, a set of constructor symbols is represented by a functor
R: X — X, each X € X is considered as an interpretation of the constrained
sorts and each algebra RX -2+ X is considered as an interpretation of the
constructors.

An observational signature as defined in Section 2 specifies observer and non-
observer operations. As described above the observers are represented by a
functor O : X — X and their interpretation is modeled as a coalgebra
X -2 OX. In the categorical framework, the non-observer operations may be
interpreted as algebras w : 29X — X or as coalgebras ¢ : X — =X depending
on their type (as discussed in Remark 63 below). Hence, in general, an obser-
vational signature is represented by one functor O : X — X corresponding
to the observers and by two functors Q,Z : X — A corresponding to the
non-observer operations.

Definition 61 (Observational signature) An observational signature
(Q;0,Z) over X consists of functors Q,O,Z : X — X such that a final O-
coalgebra ¢ : 7 — OZ exists. '®

A model for the observational signature (2; O, =) is a triple (w, 0,§) with w €
Alg(2), o € Coalg(0), ¢ € Coalg(Z). A morphism f : (w,0,§) = (W', 0,&)
is an arrow f that is, at the same time, an algebra-morphism w — &', a
coalgebra-morphism o — o/, and a coalgebra-morphism £ — & (compare the
diagrams (1)). The category of (£2; O, E)-models is denoted by Mod(Q2; O, =).

Example 62 The observational signature for streams can be represented by

18 Final coalgebras allow a convenient definition of observational equality (Defini-
tion 64), but it is possible to use weaker conditions which still guarantee a well-
behaved notion of observational equality. For example, it is enough to require that
A has cointersections (see [27], Section 1.2.3, for details), a condition which is sat-
isfied by Set”.

33

the following functors:

o QX = X4+ X xX corresponding to the operations [rev, merge] : X+X x X —
X,
e OX =B x X corresponding to the observers (head, tail) : X — B x X,

and, assuming a derived observer nth : X x N — B to determine the n-th
successor of x,

o ZX =B corresponding to the operation X — BY obtained by currying nth.

Remark 63 In contrast to the definition of an observational signature in Sec-
tion 2, Definition 61 does not allow observers with more than one argument
of a state sort. More precisely, note first that X € X interprets the state
sorts and that observable sorts are interpreted by given parameters. Then,
with X = Set™s=t only operations of the following type can be modeled: ob-
server operations of type (1) Ax X, — Y and non-observer operations of type
(2a) A x Xq, % ...x X, — X and of type (2b) A x Xy — B, where X,
Xs,, ... X, denote the interpretations of state sorts, A denotes a product of
interpretations of observable sorts, B denotes the interpretation of an observ-
able sort and 'Y denotes the interpretation of an arbitrary sort. Operations of
type (1) are considered coalgebraically X, — Y4 and determine the functor
O (see Remark 60 taking O for Z), operations of type (2a) determine Q0 (see
Remark 59), and operations of type (2b) are modeled coalgebraically via = (see
Remark 60). Operations of type (2b) can be considered as derived observers.

The following provides a categorical definition of observational equality by
means of coalgebras.

Definition 64 (Observational equality) Given M = (w,0,§) in
Mod(©2; O, =), the observational equality of M is the kernel of ! : X — Z
where ! is the morphism to the final O-coalgebra ¢ : Z — OZ; see the diagram
below.

X — 0X

N

707
Remark 65 In case of X = Set®, writing (X,)ses € Set® for the carrier of
M and (!5)ses for!, we say that z,y € X, are observationally equal, denoted
by x =y, iff (x) = i(y). Indeed this definition is adequate since the notion
of observational equality considered in Section 2 coincides with the equivalence
relation defined by the unique morphism into the final coalgebra; see e.g. [13],
Corollary 11.

The next definition characterizes those models whose non-observer operations

34

do not contribute to distinguish states (in the sense of observational algebras
in Section 2). It generalizes the definition of an (2, O)-structure in [19,28] in
that an additional =-part (for derived observers) is taken into account.

Definition 66 (Observational models) (w,0,{) € Mod(Q2; O, =) is called
an observational model for the observational signature (2; O, =) if there are
dotted arrows such that the following diagrams commute

9![![\! \E! (3)
OF oo - 7 A =7

where ! is the unique coalgebra morphism ! : o — (into the final O-coalgebra
(:Z — OZ; cf. diagram (2). The full subcategory of observational models
is denoted by Modops(£2; O, Z). A model is fully abstract if ! : 0 — (is an
embedding (i.e. injective in case X = Set”).

Remark 67

(1) The diagrams express in an abstract way the condition for observational
algebras of Definition 5. Indeed, assuming X = Set®, both diagrams state
that w and & do not allow to distinguish observationally equal states. More
precisely, observational equality (as in Remark 65) is a congruence for)-
operations iff the dotted arrow in the left-hand diagram of (3) exists (see
[19,28]) and, moreover, observational equality is a Z-bisimulation iff the
dotted arrow in the right-hand diagram of (3) exists. '

(2) Another way to explain Definition 66 is the following. Let M = (w,0,§) €
Modops(2; O,) with carrier X € Set® and denote by e : X — X the
quotient of X w.r.t. observational equality. Then there is a unique M €
Modows(2; O, Z) with carrier X such that e is a morphism M — M. That
is, in Modops(Q; O, Z) fully-abstract quotient models exist. *°

(3) Morphisms of Modops(§2; O, Z) are inherited from Mod(€2; O, E). Corol-
lary 78 below describes how to obtain from Modops(§2; O, Z) a category
(called C there) with observational morphisms as in Definition 7.

We now give a dual treatment of reachability.

Definition 68 (Constructor-based signature) A constructor-based signa-
ture (Q, R; Z) over X consists of functors Q, R, = : X — X such that an initial

19 Two states are Z-bisimilar iff they can be identified by some Z-coalgebra mor-
phism (for example, observational equality is O-bisimilarity).

20 A proof that the existence of fully-abstract quotient models is indeed equivalent
to the condition expressed by the diagrams (3) is analogous to [28], Theorem 3.5.
This proof generalizes from X = Set® to categories X with factorization systems if
we assume that € preserves quotients and = preserves embeddings.

35

R-algebra v : RI — I exists.

A model for the signature (2,R;Z) is a triple (w,p,&) with w € Alg(Q),
p € Alg(R), £ € Coalg(Z). A morphism f : (w,p, &) — (&', 0,) is an arrow f
that is, at the same time, an algebra-morphism w — ', an algebra-morphism

p — p', and a coalgebra-morphism & — &'. The category of models is denoted
by Mod(£2, R; Z).

Example 69 The constructor-based signature for natural numbers can be rep-
resented by the following functors:

e QX =X X X corresponding to the operation add : X x X — X,
e RX =1+ X corresponding to the constructors |zero, succ] : 1+ X — X,

and, assuming an additional operation iszero : X — B,
o =X =B corresponding to the operation X — B.

Remark 70 According to Definition 68, the constrained sorts Scens in the
sense of Section 3 are modeled by choosing X = Set>¢» and the loose sorts
are interpreted by given parameters.

The following provides a categorical definition of a constructor-generated part
(in the sense of Section 3) by means of algebras.

Definition 71 (Generated part) Given M = (w,p,§) € Mod(2, R; Z), the
generated part of M is the image of 7 : [— X where 7 is the morphism from
the initial R-algebra ¢ : RI — I as depicted below.

X2 RX

?‘ ‘R? (4)

I —"RI

Remark 72 Instantiating the definition with X = Set® and writing I =
(Is)ses € Set® and 7 = (75)ses, the sets 74(1s) contain all elements of M
of sort s that can be constructed according to p.

The next definition characterizes those models whose non-constructor opera-
tions preserve the generated part (in the sense of constructor-based algebras

in Section 3). It is the formal dual of Definition 66.

Definition 73 (Constructor-based models) (w,p,&) € Mod(2, R;E) is
called a constructor-based model for the signature (Q, R; =) if there are dotted

36

arrows such that the following diagrams commute

3

w

E?’ ‘?’ ’? ’m (5)
Y I J <eveeiens Or

where 7 is the unique algebra-morphism 7 : v — p from the initial R-algebra
LRI — I; see diagram (4). The full subcategory of constructor-based models
is denoted by Modcons(€2, R;Z). A model is reachable if 7 : « — p is a quotient
(i.e. surjective in case of X = Set®).

Remark 74

(1) The diagrams express in an abstract way the condition for constructor-
based algebras of Definition 26. Indeed, assuming X = Set®, both dia-
grams state that the image of 7 is closed under operations w and &.

(2) Another way to explain Definition 73 is the following. Let M = (w, p,§) €
Modcons(Q, R; E) with carrier X € Set® and generated part m : X< X.
Then there is a unique M e Modcons(£2, R; Z) with carrier X such that m
is a morphism M — M. That is, in Modcons(£2, R; Z) reachable submodels
exist. 2t

(3) Morphisms of Modcons(£2, R; Z) are inherited from Mod(§2, R;=). Corol-
lary 82 describes how to obtain from Modcons(£2, R;Z) a category (called
Cr there) with constructor-based morphisms as in Definition 28.

Definitions 66 and 73 give rise to a duality principle for constructor-based
and observational models which is stated formally by the following isomor-
phisms of categories:

(MOdObS(Q; (’), E))Op = MOdCons(Eopa Oop; QOP)?

(Modcons(€2, R; Z))°P = Modops(Z°P; RP, Q°P).

The two isomorphisms map models (w, f,£)° (with f = o0 and f = p, respec-
tively) to (£°P, f°P, w°P). In the following theorem, we identify (w, f,£)°® with
(&°P, foP, wOP).

As a consequence of the duality principle we obtain:

Theorem 75

(1) A model M € Mod(2;O,Z) is an observational model iff M°P is a
constructor-based model.

2L A proof that the existence of reachable submodels is equivalent to the condition
expressed by the diagrams (5) is dual to [28], Theorem 3.5.

37

(2) A model M € Mod(Q2,R;Z) is a constructor-based model iff M is an
observational model.

(3) A model M is reachable iff M°P is fully abstract.

(4) A model M is fully abstract iff M°P is reachable.

The first theorem similar to part 3 and 4 of Theorem 75 is due to Kalman [25]
and was proved for linear systems in control theory. Later, Arbib and Manes
(see [2] and [3]) brought to light the general principles underlying this duality
by considering—essentially—systems as (2-algebras for functors 2. Compared
to [3] the main point of our formalization consists in the use of coalgebras
to formalize the notion of observational equality and in the consideration of
observability and reachability constraints as expressed by the diagrams (3) and
(5) which formalize in a category-theoretic way the conditions for observational
and constructor-based algebras.

6.4 The Duality of Behavior and Restrict Functors

We show that much of the structure unveiled in Sections 2 and 3 can be derived
from a simple abstract description of the respective black box semantics.

Definition 76 (Behavior functor) Let B : C — C be an operation on the
objects of a category C. Assume that there is a family n of epimorphisms
ny : M — BM, M €C, and an operation (-)* mapping morphisms f :
M — BN to “lifted” morphisms f* such that the diagram

fﬁ
BM—BN
s [
M

commutes. Then (B,n, (-)*), or sometimes B itself, is called a behavior functor.
We denote by CB the full subcategory of C consisting of objects isomorphic to
some BM, M € C.

We call BM the behavior of M and C? the category of behaviors. Intuitively,
Ny is the quotient map from M onto its behavior. The existence of the lifting
expresses that f cannot distinguish elements that are identified by 7)), that
is, f preserves observational equality.

The reader not familiar with monads [30] can skip the next proposition and
continue with its corollary and the following example.

Proposition 77 A behavior functor (B,n, (-)*) is a monad whose multiplica-
tion is an isomorphism.

38

Proof. It is easy to verify that (B,n, (-)*) satisfies the conditions of a Kleisli-
triple and that the multiplication-morphisms gy, = (idpy)*, M € C, are
isomorphisms (details can be found in [28]). O

The fact that B is a monad with isomorphic multiplication determines the
structure described in the following corollary.

Corollary 78 First, defining Bf = (nqy o f)* for f : M — N in C, B is
indeed a functor. Second, there is a category Cg that has the same objects as
C and morphisms Cg(M,N) = C(M,BN). The identity on M € Cg is ny and
composition of f : L — BM, g : M — BN is given by g o f. Third, we obtain
the following relationships

CB
II
/
B C C z B
\\
H CB

where B', B", and G map an object to its behavior, 1" is the inclusion of
behaviors, and H is the identity on objects, all satisfying I'B' = B = GH,
B"H = B', I'B" = G. Moreover, behavior is left adjoint to inclusion (B' 4 1")
and B" is an equivalence of categories.

Proof. 1t follows from B being a monad: B is functorial, Cp is a category, the
equations, the adjunctions, and B” is full and faithful. Since the multiplication
is iso, the category of algebras for the monad B is indeed C?, and I’ is full
and faithful and every object in C? is isomorphic to an object in the image of
B" (compare [11], Vol.2, Proposition 4.2.3). O

Intuitively, C consists of all possible realizations of a specification whereas C?
only contains the black box views. Cp combines both aspects. The models
are the same as in C but the morphisms incorporate the black box view,
Cz(M,N)=C®(BM,BN).

Example 79 Let Yops be an observational signature as in Section 2. Denote
by C the category of observational algebras with standard algebra-morphisms
and let B be the operation that maps an observational algebra to its black
box view (given by the quotient w.r.t. observational equality). Then Cg is
the category Algoys(Zons) of observational algebras (with observational mor-
phisms as in Definition 7). CP is the full subcategory of C consisting of the
fully abstract algebras. The observational black box functor BBs,, s given by

cp 25 P Alg(X). It is full and faithful since B" is full and faithful.

39

The relationship between behaviors and the different categories of models has
been studied in [28]. We now dualize our results to describe restrict functors.

Definition 80 (Restrict functor) Let R : C — C be an operation on the
objects of a category C. Assume that there is a family € of monomorphisms
ey : RM — M, M € C, and an operation (-)* mapping morphisms f : RN —
M to “lifted” morphisms f* such that the diagram

fﬁ
RM~<—RN

| A

M

commutes. Then (R, ¢, (-)*), or sometimes R itself, is called a restrict functor.
We denote by C® the full subcategory of C consisting of objects isomorphic to
some RM, M € C.

We call RM the generated part of M. Intuitively, 5, is the inclusion from
the generated part RM into M. The existence of the lifting expresses that
morphisms f preserve the generated part.

Proposition 81 A restrict functor (R,e,(+)*) is a comonad whose comulti-
plication is an isomorphism.

Corollary 82 First, defining Rf = (foen)* for f : N — M in C, R is
indeed a functor. Second, there is a category Cg that has the same objects as
C and morphisms Cr(N, M) = C(RN,M). The identity on M € Cg is ey and
composition of f : RM — L, g : RN — M s given by fog*. Third, we obtain
the following relationships

CR

where R', R", and G map an object to its generated part, I' is the inclusion
of generated parts, and H is the identity on objects, all satisfying 'R’ = R =
GH, R"H = R, I'R" = G. Moreover, restriction to generated parts is right
adjoint to inclusion (I' 4 R') and R" is an equivalence of categories.

Example 83 Let Ycous be a constructor-based signature as in Section 3. De-
note by C the category of constructor-based algebras with standard algebra-
morphisms and let R be the operation that maps a constructor-based alge-
bra to its black box view (given by the generated part). Then Cg is the cate-
gory Algcons(Xcons) of constructor-based algebras (with constructor-based mor-

40

phisms as in Definition 28). C® is the full subcategory of C consisting of the
reachable algebras. The constructor-based black box functor BBs,, . s given by

Cr 25 CF < Alg(X). It is full and faithful since R" is full and faithful.
6.5 On the Usefulness of the Duality Principle

In contrast to Kalman [25], in our duality principle the models M and M°P live
in different categories. In particular, if M is a model over the base category Set,
M°®P is a model over Set°P, i.e. over complete atomic Boolean algebras. Though
Arbib and Manes [3] use this to deal with ‘Boolean machines’, complete atomic
Boolean algebras are certainly of limited usefulness as a base category. Never-
theless, it is worthwhile to formalize the duality underlying reachability and
observability in algebraic specifications for at least three reasons:

(1) As long as we prove something about e.g. reachability for models over
Set using only properties shared by Set as well as Set°?, we immediately
obtain a dual result about observability for models over Set.

(2) The formal duality expressed by the diagrams in Definitions 66 and 73
emphasizes the adequacy of the concepts introduced for observational
and constructor-based logic. Moreover, having these diagrams in mind is
a good heuristic means to support informal reasoning about reachability
and observability. For instance, the notion of a constructor-based algebra
originated from the question what would it mean to dualize the diagram
in Definition 66.

(3) Since the categorical setting forced us to abstract from syntactic details,
we were able to give a simple description of the models of coalgebraic
specifications satisfying observability constraints (see [28]). Using the du-
ality, we also obtain a simple categorical description of the models of
algebraic specifications satisfying reachability constraints. Furthermore,
since the coalgebraic signature functors =, O can be used to describe par-
tial functions and non-determinism, the approach of this section provides
a perspective to incorporate these features into observational logic and
constructor-based logic.

7 Conclusion

In this paper we have studied and formalized the duality between observability
and reachability concepts used in algebraic approaches to software develop-
ment. Our study is based on a loose semantics taking into account that the
model class of a specification SP should describe the correct realizations of
SP.

41

As a particular outcome, we have presented the novel institution of construc-
tor-based logic. The formal dualization of the categorical representation of
observational logic in [19] gave us the intuition to find the adequate notions
of constructor-based logic which provide sufficient flexibility to describe the
semantically correct realizations of a specification from the reachability point
of view (in the same way as observational logic does from the observational
point of view).

This work focuses on a comparison of the two concepts and not on their
integration. In the meanwhile our approaches to observability and reacha-
bility have been integrated in the so-called COL-institution (Constructor-
based Observational Logic) introduced in [8]. The (more general) observational
equality relation used in this integrated approach takes into account also the
constructor-generated elements and hence is strongly related to the notion of
partial observational equality considered e.g. in [10] and [23].

References

[1] J. Adamek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories.
John Wiley & Sons, 1990.

[2] M.A. Arbib and E.G. Manes. Foundations of system theory: decomposable
systems. Automatica, 10:285-302, 1974.

[3] M.A. Arbib and E.G. Manes. Adjoint machines, state-behaviour machines, and
duality. Journal of Pure and Applied Algebra, 6:313-344, 1975.

[4] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Briickner, P.D. Mosses, D.
Sannella, and A. Tarlecki. CAsL: The Common Algebraic Specification
Language. Theoretical Computer Science, 286(2):153-196, 2002.

[5] E. Astesiano, H.-J. Kreowski, and B. Krieg-Briickner, editors. Algebraic
Foundations of Systems Specification. Springer, 1999.

[6] M. Bidoit, M.V. Cengarle, and R. Hennicker. Proof systems for structured
specifications and their refinements. In /5], pages 385-433, 1999.

[7] M. Bidoit and R. Hennicker. Observer complete definitions are behaviourally
coherent. In Proc. OBJ/CafeOBJ/Maude Workshop at Formal Methods 99,
pages 83-94. THETA, 1999.

[8] M. Bidoit and R. Hennicker. On the integration of observability and reachability
concepts. In M. Nielsen and U. Engberg, editors, Proc. 5th Int. Conf.
Foundations of Software Science and Computation Structures (FOSSACS’02),
Grenoble, France, volume 2303 of LNCS, pages 21-36. Springer, 2002.

[9] M. Bidoit, R. Hennicker, and A. Kurz. On the duality between observability
and reachability. In F. Honsell and M. Miculan, editors, Proc. 4th Int. Conf.

42

Foundations of Software Science and Computation Structures (FOSSACS’01),
Genova, Italy, volume 2030 of LNCS, pages 72—87. Springer, 2001.

[10] M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor
specifications. Science of Computer Programming, 25(2-3):149-186, 1995.

[11] F. Borceux. Handbook of Categorical Algebra. Cambridge University Press,
1994.

[12] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, Amsterdam, 3rd
edition, 1990.

[13] C. Cirstea. Coalgebraic semantics for hidden algebra: parameterized objects
and inheritance. In F. Parisi-Presicce, editor, Recent Trends in Algebraic
Development Techniques, WADT 97, volume 1376 of LNCS, pages 174-189.
Springer, 1998.

[14] J. Goguen and R. Burstall. Institutions: abstract model theory for specification
and programming. Journal of the ACM, 39 (1):95-146, 1992.

[15] J. Goguen and G. Malcolm. A Hidden Agenda. Theoretical Computer Science,
245(1):55-101, 2000.

[16] J. Goguen and G. Rosu. Hiding more of hidden algebra. In J.M. Wing, J.
Woodcock, and J. Davies, editors, Proc. Formal Methods (FM’99), volume 1709
of LNCS, pages 1704-1719. Springer, 1999.

[17] R. Hennicker and M. Bidoit. Observational logic (long version).
Technical Report LSV-98-6, LSV, Ecole Normale Supérieure de Cachan,
June 1998. Available at www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/
rr-1sv-1998-6.rr.ps.

[18] R. Hennicker and M. Bidoit. Observational logic. In Armando Haeberer,
editor, Proc. 7th Int. Conf. Algebraic Methodology and Software Technology
(AMAST’98), Amazonia, Brazil, volume 1548 of LNCS, pages 263-277.
Springer, 1999.

[19] R. Hennicker and A. Kurz. (£,Z)-Logic: On the algebraic extension of
coalgebraic specifications. In B. Jacobs and J. Rutten, editors, Proc. Coalgebraic
Methods in Computer Science (CMCS’99), volume 19 of FElectronic Notes in
Theoretical Computer Science, pages 195-211, 1999.

[20] R. Hennicker and M. Wirsing. Behavioural specifications. In H. Schwichtenberg,
editor, Proof and Computation, International Summer School Marktoberdorf
1993, volume 139 of NATO ASI Series F, pages 193-230. Springer, 1995.

[21] R. Hennicker, M. Wirsing, and M. Bidoit. Proof systems for structured

specifications with observability operators. Theoretical Computer Science,
173(2):393-443, 1997.

[22] C.A.R. Hoare. Proofs of correctness of data representations. Acta Informatica,
1:271-281, 1972.

43

[23] M. Hofmann and D. Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logic. In P.D. Mosses, M. Nielsen, and M.I.
Schwartzbach, editors, Proc. 6th Int. Joint Conf. Theory and Practice of
Software Development (TAPSOFT’95), Aarhus, Denmark, volume 915 of
LNCS, pages 247-261. Springer, 1995.

[24] B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras and (Co)Induction.
EATCS Bulletin, 62:222-259, 1997.

[25] R.E. Kalman, P.L. Falb, and M.A. Arbib. Topics in Mathematical System
Theory. McGraw-Hill, 1969.

[26] H.J. Keisler. Model Theory for Infinitary Logic. North-Holland, 1971.

[27] A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD
thesis, Ludwig-Maximilians-Universitdt Miinchen, 2000. Available at http:
//www.informatik.uni-muenchen.de/"kurz.

[28] A. Kurz and R. Hennicker. On Institutions for Modular Coalgebraic
Specifications. Theoretical Computer Science, 280(1-2):69-103, 2002.

[29] A. Kurz and D. Pattinson. Coalgebras and modal logics for parameterised
endofunctors. Technical Report SEN-R0040, CWI, 2000. Available at http:
//www.cwi.nl/"kurz.

[30] S. Mac Lane. Category Theory for the Working Mathematician. Springer, 1971.

[31] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types.
Wiley and Teubner, 1996.

[32] P. Padawitz. Swinging types = functions + relations + transition systems.
Theoretical Computer Science, 243(1-2):93-165, 2000.

[33] E. Poll and J. Zwanenburg. A logic for abstract data types as existential
types. In J.-Y. Girard, editor, Proc. 4th Int. Conf. Typed Lambda Calculi and
Applications (TLCA’99), volume 1581 of LNCS, pages 310-324. Springer, 1999.

[34] H. Reichel. Initial computability, algebraic specifications, and partial algebras.
Oxford, Clarendon Press, 1987.

[35] G. Rosu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.

[36] D. Sannella and A. Tarlecki. On observational equivalence and algebraic
specification. Journal of Computer and System Sciences, 34:150-178, 1987.

[37] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76:165-210, 1988.

[38] A. Tarlecki. On the existence of free models in abstract algebraic institutions.
Theoretical Computer Science, 37:269-304, 1986.

[39] A. Tarlecki. Towards heterogeneous specifications. In D. Gabbay and M. van
Rijke, editors, Proc. Int. Conf. Frontiers of Combining Systems (FroCos’98),
Amsterdam, pages 337-360. Research Studies Press, 2000.

44

[40] M. Wirsing and M. Broy. A modular framework for specification and
information. In J. Diaz and F. Orejas, editors, Proc. TAPSOFT’89, volume
351 of LNCS, pages 42-73. Springer, 1989.

45

