Co/algebraic essentials

and their impact on languages and compilers

Peter Padawitz
TU Dortmund

February 3, 2011

Road map

1 Constructor and destructor signatures, Reg and Accept 3
2 Signatures induce functors with fixpoints 11
3 Invariants and induction, congruences and coinduction 15
4 Context-free grammars are constructor signatures 17
5 Derivative parser for regular expressions 20
6 Context-free grammars are systems of Reg-equations 22
7 Extending the derivative parser to parsers for CFGs 24

Constructor and destructor signatures, Reg and Accept

Let S be a set of sorts. An S-sorted set A is a family $\left\{A_{s} \mid s \in S\right\}$ of sets.
An S-sorted function $f: A \rightarrow B$ is a family $\left\{f_{s}: A_{s} \rightarrow B_{s} \mid s \in S\right\}$ of functions.

Given $B S \subseteq S$ and a $B S$-sorted set $B A, S e t_{B A}^{S}$ denotes the category whose objects are pairs $\left(A, f:\left.A\right|_{B S} \xrightarrow{\sim} B A\right)$ consisting of an S-sorted set A and a $B S$-sorted bijection f and whose morphisms from (A, f) to (B, g) are S-sorted functions $h: A \rightarrow B$ such that for all $s \in B S, g_{s} \circ h_{s}=f_{s}$.

For all $s_{1}, \ldots, s_{n}, s, s^{\prime} \in S$,

$$
\begin{aligned}
A_{1} & ={ }_{\operatorname{def}}\{*\}, \\
A_{s_{1} \times \cdots \times s_{n}} & =A_{\text {def }} \quad A_{s_{1}} \times \ldots \times A_{s_{n}}={ }_{\operatorname{def}}\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in A_{s_{i}}, 1 \leq i \leq n\right\}, \\
A_{s_{1}+\cdots+s_{n}} & ={ }_{\operatorname{def}} A_{s_{1}}+\cdots+A_{s_{n}}={ }_{\operatorname{def}}\left\{(a, i) \mid a \in A_{s_{i}}, 1 \leq i \leq n\right\}, \\
A_{s^{s^{\prime}}} & ={ }_{\operatorname{def}}\left(A_{s^{\prime}} \rightarrow A_{s}\right) .
\end{aligned}
$$

The set of signatures is defined inductively as follows:

- $\Sigma=(S, F)$ is a signature if S is a set of sorts and F is an $S^{*} \times S^{+}$-sorted set of function symbols.
- $\Sigma=(S, F, B \Sigma)$ is a signature if $B \Sigma$ is a signature, called the base signature of Σ, and (S, F) is a signature such that S and F contain the sorts resp. function symbols of the base signature.
$f: v \rightarrow w \in F \backslash B F$ is a constructor if $w \in S \backslash B S . f$ is a destructor if $v \in S \backslash B S$.
Σ is a constructor signature if $F \backslash B F$ consists of constructors. S and F implicity include sum sorts $s_{1}+\cdots+s_{n}$ and injections $\iota_{i}: s_{i} \rightarrow s_{1}+\cdots+s_{n}$ for all $s_{1}, \ldots, s_{n} \in S$.
Σ is a destructor signature if $F \backslash B F$ consists of destructors. S and F implicity include product sorts $s_{1} \times \cdots \times s_{n}$, projections $\pi_{i}: s_{1} \times \cdots \times s_{n} \rightarrow s_{i}$, power sorts $s^{s^{\prime}}$ and applications $\$ a: s^{s^{\prime}} \rightarrow s$ for all $s_{1}, \ldots, s_{n}, s \in S, s^{\prime} \in B S, a \in B A_{s^{\prime}}$ and $B S$-sorted sets $B A$.

A signature for regular expressions

$$
\begin{aligned}
R e g= & (S, F, B \Sigma) \\
= & (\quad\{r e g, \text { symbol }\}, \\
& \{\emptyset, \epsilon: \epsilon \rightarrow \text { reg }, \\
& \quad: \text { symbol } \rightarrow \text { reg }, \\
& -l_{-}: \text {reg reg } \rightarrow \text { reg }, \\
& -_{-}: \text {reg reg } \rightarrow \text { reg }, \\
& \text { star : reg } \rightarrow \text { reg }\}, \\
& (\{\text { symbol }\}, \emptyset))
\end{aligned}
$$

既 A signature for acceptors

$$
\begin{aligned}
\text { Accept }= & (S, F, B \Sigma) \\
= & (\{\text { state }, \text { symbol }, \text { bool }\}, \\
& \left\{\delta: \text { state } \rightarrow \text { state }{ }^{\text {symbol }},\right. \\
& \text { final }: \text { state } \rightarrow \text { bool }\}, \\
& (\{\text { symbol, bool }\}, \emptyset))
\end{aligned}
$$

Let $\Sigma=(S, F, B \Sigma)$ be a signature, X be an S-sorted set of variables and Y be an S-sorted set of covariables.

The S-sorted set $T_{\Sigma}(X)$ of Σ-terms over X is inductively defined as follows:

- For all $s \in S, X_{s} \subseteq T_{\Sigma}(X)_{s}$.
- For all $f: s_{1} \ldots s_{n} \rightarrow s \in F$ and $t_{i} \in T_{\Sigma}(X)_{s_{i}}, 1 \leq i \leq n, f\left\langle t_{1}, \ldots, t_{n}\right\rangle \in T_{\Sigma}(X)_{s}$. Given $t \in T_{\Sigma}(X), \operatorname{var}(t)$ denotes the set of variables occurring in t.

The S-sorted set $\cos _{\Sigma}(Y)$ of Σ-coterms over X is inductively defined as follows:

- For all $s \in S, Y_{s} \subseteq c o T_{\Sigma}(Y)_{s}$.
- For all $f: s \rightarrow s_{1} \ldots s_{n} \in F$ and $t_{i} \in \operatorname{co}_{\Sigma}(Y)_{s_{i}}, 1 \leq i \leq n,\left[t_{1}, \ldots, t_{n}\right] f \in \operatorname{co} T_{\Sigma}(Y)_{s}$.

Given $t \in \operatorname{co} T_{\Sigma}(Y), \operatorname{cov}(t)$ denotes the set of covariables occurring in t.

A term resp. coterm t over \mathbb{N}^{*} such that all function symbols of t belong to $F \backslash B F$ and for all $x \in \operatorname{var}(t) \cup \operatorname{cov}(t)$, $\operatorname{sort}(x) \in B S$ and $t(x)=x$, is called a Σ-generator resp. Σ-observer.

The tree representing the term $f_{1}\left\langle f_{2}\left\langle x, f_{5}\left\langle x, f_{6}\langle y\rangle, x\right\rangle, z\right\rangle, f_{3}\left\langle f_{6}\langle y\rangle, f_{8}\langle x, x\rangle\right\rangle\right\rangle$ or the coterm $\left[\left[\left[x,\left[x,[y] f_{6}, x\right] f_{5}, z\right] f_{2},\left[[y] f_{6},[x, x] f_{8}\right] f_{3}\right] f_{1}\right.$

1 The Reg-terms over $X_{\text {symbol }}$ are the regular expressions over $X_{\text {symbol }}$.
4 For each Accept-observer t there are $a_{1}, \ldots, a_{n} \in Z={ }_{\text {def }} B A_{\text {symbol }}$ such that

$$
\begin{aligned}
& t=\operatorname{parse}\left({ }_{-}, a_{1} \ldots a_{n}\right)={ }_{\text {def }} \text { final }\left(\delta^{*}\left({ }_{-}, a_{1} \ldots a_{n}\right)\right) \\
& =_{\text {def }} \operatorname{final}\left(\delta \left(\ldots\left(\delta\left(\delta\left(\left(_{-}, a_{1}\right), a_{2}\right), \ldots, a_{n}\right)\right)=_{\text {def }}\left[\left[\ldots\left[[[x] \text { final }] \delta \$ a_{n}\right] \ldots\right] \delta \$ a_{2}\right] \delta \$ a_{1} .\right.\right.
\end{aligned}
$$

Hence t is representable by $a_{1} \ldots a_{n} \in Z^{*}$.

A Σ-algebra A consists of an S-sorted set, the carrier of A, also denoted by A, and

- for each $f: w \rightarrow s_{1} \ldots s_{n} \in F$, a function $f^{A}: A_{w} \rightarrow A_{s_{1}+\cdots+s_{n}}$, such that
- for all injections $\iota_{i}: s_{i} \rightarrow s_{1}+\cdots+s_{n}, a \in A_{s_{i}}, \iota_{i}^{A}(a)=(a, i)$,
\bullet for all projections $\pi_{i}: s_{1} \times \cdots \times s_{n} \rightarrow s_{i}$ and $a \in A_{s_{1} \times \cdots \times s_{n}}, \pi_{i}^{A}(a)=a_{i}$,
- for all applications $\$ a: s^{s^{\prime}} \rightarrow s$ and $f: A_{s^{\prime}} \rightarrow A_{s},(\$ a)^{A}(f)=f(a)$.

4 The regular expressions over $B A_{\text {symbol }}$ form the Reg-algebra $T_{\text {Reg }}(B A)$.
4 The languages over $B A_{\text {symbol }}$ form the Reg-algebra $\operatorname{Lang}(B A)$.
4叉 Let $B A_{\text {bool }}=2 . \operatorname{Lang}(B A)$ is also an Accept-algebra: For all $L \subseteq Z^{*}$ and $a \in Z$,

$$
\begin{aligned}
& \operatorname{Lang}(B A)_{\text {state }} \\
& =_{\text {def }} \mathcal{P}\left(Z^{*}\right), \\
& \delta^{\operatorname{Lang}(B A)}(L, a)==_{\text {def }}\left\{w \in Z^{*} \mid a w \in L\right\}, \\
& \operatorname{final}^{\text {Lang }(B A)}(L)={ }_{\text {def }}(\epsilon \in L) .
\end{aligned}
$$

The Accept-subalgebra

$$
\langle L\rangle=\operatorname{def}\left\{\left(\delta^{*}\right)^{\operatorname{Lang}(B A)}(L, w) \mid w \in Z^{*}\right\}
$$

is a minimal acceptor of L.

Let A and B be Σ-algebras, $h: A \rightarrow B$ be an S-sorted function and $f \in F$.
h is a Σ-homomorphism if for all $f \in F$,

$$
h \circ f^{A}=f^{B} \circ h .
$$

Let $B A$ be a $B \Sigma$-algebra.
A $\Sigma \downarrow B A$-algebra (A, g) is a pair consisting of a a Σ-algebra A and a $B \Sigma$-isomorphism $g:\left.A\right|_{B \Sigma} \rightarrow B A$.
Given $\Sigma \downarrow B A$-algebras (A, f) and (B, g), a Σ-homomorphism $h: A \rightarrow B$ is a $\Sigma \downarrow B A$ homomorphism if $\left.g \circ h\right|_{\Sigma}=f$.
$A l g_{\Sigma \downarrow B A}$ denotes the category of $\Sigma \downarrow B A$-algebras and $\Sigma \downarrow B A$-homomorphisms.

Term evaluation _ ${ }^{A}: T_{\Sigma}(X) \rightarrow\left(A^{X} \rightarrow A\right)$ is inductively defined as follows:
Let $g \in A^{X}$.

- For all $x \in X, x^{A}(g)=g(x)$.
- For all $f: s_{1} \ldots s_{n} \rightarrow s \in F \backslash B F$ and $t_{i} \in T_{\Sigma}(X)_{s_{i}}, 1 \leq i \leq n$,

$$
\left(f\left\langle t_{1}, \ldots, t_{n}\right\rangle\right)^{A}(g)=f^{A}\left(t_{1}^{A}(g), \ldots, t_{n}^{A}(g)\right) .
$$

4 For all regular expressions $R \in T_{\text {Reg }}(B A), R^{\text {Lang }(B A)}\left(i d_{B A}\right)$ is the language of R.

Coterm evaluation ${ }^{A}: \cot _{\Sigma}(Y) \rightarrow(A \rightarrow A \cdot Y)$ is inductively defined as follows:

- For all $s \in S, x \in Y_{s}$ and $a \in A_{s}, x^{A}(a)=(a, x)$.
- For all $f: s \rightarrow s_{1} \ldots s_{n} \in F \backslash B F, t_{i} \in \operatorname{coT}_{\Sigma}(X)_{s_{i}}, 1 \leq i \leq n$, and $a \in A_{s}$,

$$
f^{A}(a)=(b, i) \Rightarrow\left(\left[t_{1}, \ldots, t_{n}\right] f\right)^{A}(a)=t_{i}^{A}(b) .
$$

(19) For all Accept-observers parse $\left({ }_{-}, a_{1} \ldots a_{n}\right)$ and $L \subseteq Z^{*}$,

$$
\operatorname{parse}\left({ }_{-}, a_{1} \ldots a_{n}\right)^{\operatorname{Lang}(B A)}(L)=\left(a_{1} \ldots a_{n} \in L\right) .
$$

Signatures induce functors with fixpoints

Let $B S$ be the sorts of $B \Sigma$ and $B A$ be a $B S$-sorted set.

If Σ is a constructor signature, then Σ and $B A$ induce the functor $\Sigma_{B A}: \operatorname{Set}_{B A}^{S} \rightarrow \operatorname{Set}_{B A}^{S}$: For all $A \in \operatorname{Set}_{B A}^{S}$ and $s \in S$,

$$
\Sigma_{B A}(A)_{s}=d_{d e f} \begin{cases}\amalg_{f: s_{1} \ldots s_{n} \rightarrow s \in F}\left(A_{s_{1}} \times \ldots \times A_{s_{n}}\right) & \text { if } s \in S \backslash B S, \\ A_{s} & \text { if } s \in B S .\end{cases}
$$

${ }^{182} \quad \operatorname{Reg}_{B A}(A)_{\text {reg }}=\operatorname{def} 1+1+B A_{\text {symbol }}+A_{\text {reg }}^{2}+A_{\text {reg }}^{2}+A_{\text {reg }}$.
If Σ is a destructor signature, then Σ and $B A$ induce the functor $\Sigma_{B A}: \operatorname{Set}_{B A}^{S} \rightarrow \operatorname{Set}_{B A}^{S}$: For all $A \in S e t_{B A}^{S}$ and $s \in S$,

$$
\Sigma_{B A}(A)_{s} \quad=\operatorname{def} \begin{cases}\prod_{f: s \rightarrow s_{1} \ldots s_{n} \in F}\left(A_{s_{1}}+\cdots+A_{s_{n}}\right) & \text { if } s \in S \backslash B S, \\ A_{s} & \text { if } s \in B S .\end{cases}
$$

$\operatorname{Accept}{ }_{B A}(A)_{\text {state }}=\operatorname{def} A_{\text {state }}^{B A_{\text {symbol }}} \times 2$.

A $\Sigma_{B A}$-algebra $\Sigma_{B A}(A) \xrightarrow{\alpha} A$ is an S-sorted function and uniquely corresponds to a $\Sigma \downarrow B A$-algebra A : For all $s \in S \backslash B S$ and $f: s_{1} \ldots s_{n} \rightarrow s \in F \backslash B F$,

α_{s} is the coproduct extension
of the interpretations in A
of all constructors f of Σ

Since $\Sigma_{B A}$ preserves colimits of increasing ω-chains, the category $A l g_{\Sigma_{B A}}$ of $\Sigma_{B A}$-algebras has an initial object ini: $\Sigma_{B A}\left(\mu \Sigma_{B A}\right) \xrightarrow{\sim} \mu \Sigma_{B A}$ and thus a fixpoint of $\Sigma_{B A}$.
For all $s \in S \backslash B S, \mu \Sigma_{B A, s}=\coprod_{t \in G e n_{\Sigma, s}} B A^{\operatorname{var}(t)}$.
n帠 The Reg-algebra $T_{\text {Reg }}(B A)$ of regular expressions over $B A_{\text {symbol }}$ is initial in $A l g_{R e g \downarrow B A}$:

$$
\left(\mu R e g_{B A}\right)_{\text {reg }}=\coprod_{t \in G e n_{\text {Reg }, \text { reg }}} B A^{v a r(t)}=T_{\text {Reg }}(B A)
$$

A $\Sigma_{B A}$-coalgebra $A \xrightarrow{\alpha} \Sigma^{B A}(A)$ is an S-sorted function and uniquely corresponds to a $\Sigma \downarrow B A$-algebra A : For all $s \in S \backslash B S$ and $f: s \rightarrow s_{1} \ldots s_{n} \in F \backslash B F$,

Since $\Sigma_{B A}$ preserves limits of decreasing ω-chains, the category $\operatorname{coAlg}_{\Sigma_{B A}}$ of $\Sigma^{B A}$-algebras has a final object fin: $\nu \Sigma_{B A} \xrightarrow{\sim} \Sigma_{B A}\left(\nu \Sigma_{B A}\right)$ and thus a fixpoint of $\Sigma_{B A}$.

For all $s \in S \backslash B S, \nu \Sigma_{B A, s} \subseteq \prod_{t \in O b_{s, s}}(B A \times \operatorname{cov}(t))$.
nes Let $B A_{\text {bool }}=2$. The $A c c e p t$-algebra $\operatorname{Lang}(B A)$ of languages over $B A_{\text {symbol }}$ is final in $A l g_{\text {Accept } \downarrow B A}$:

$$
\begin{aligned}
& \left.\left(\nu A_{c c e p t}\right)_{B A}\right)_{\text {state }}=\prod_{t \in \text { Obs } s_{\text {cceept,tstate }}}\left(B A_{\text {Bool }} \times\{x\}\right)=\prod_{t \in \text { Obs }}^{\text {Acceppt,state }} \\
& B A_{\text {Bool }}=2^{B A_{\text {symbol }}^{*}} \\
& =\mathcal{P}\left(B A_{\text {symbol }}^{*}\right)=\operatorname{Lang}(B A)_{\text {state }} .
\end{aligned}
$$

Given $(A, g) \in A l g_{\Sigma \downharpoonright B A}$, the unique $\Sigma \downarrow B A$-homomorphism fold ${ }^{A}: \mu \Sigma_{B A} \rightarrow A$ is defined as follows: For all $s \in S$ and $t \in T_{\Sigma}(B A)_{s}$,

$$
f o l d_{s}^{A}(t)= \begin{cases}t^{A}\left(i d_{A}\right) & \text { if } s \in S \backslash B S, \\ g^{-1}(t) & \text { if } s \in B S\end{cases}
$$

Given $(A, g) \in A l g_{\Sigma \downarrow B A}$, the unique $\Sigma \downarrow B A$-homomorphism unfold ${ }^{A}: A \rightarrow \nu \Sigma_{B A}$ is defined as follows: For all $s \in S$ and $a \in A_{s}$,

$$
\operatorname{unfold}_{s}^{A}(a)= \begin{cases}\left(t^{A}(a)\right)_{t \in O b_{s,, s}} & \text { if } s \in S \backslash B S, \\ g(a) & \text { if } s \in B S .\end{cases}
$$

Invariants and induction, congruences and coinduction
Let $\Sigma=(S, F, B \Sigma)$ be a constructor signature and A be a $\Sigma \downarrow B A$-algebra.

An S-sorted subset inv of A is a Σ-invariant or Σ-subalgebra of A if for all $f: w \rightarrow s \in F \backslash B F$ and $a \in A_{w}$,

$$
a \in \operatorname{inv} \text { implies } f^{A}(a) \in i n v,
$$

and for all $s \in B S, i n v_{s}=A_{s}$.

Let $A=\mu \Sigma_{B A}$ and $B \in A l g_{\Sigma \downarrow B A}$. Since A is initial,
(1) A is the only \sum-invariant of A,
(2) image $\left(\right.$ fold $\left.^{B}\right)$ is the least Σ-invariant of B.

By (1), induction is sound: Let $R \subseteq A$.

```
A\subseteqR\Longleftrightarrowinv\subseteqR for some }\sum\mathrm{ -invariant inv of }
    \Longleftrightarrow least }\sum\mathrm{ -invariant of A=П{inv | inv is a }\Sigma\mathrm{ -invariant inv of A}}\subseteq
```

n習 Since $T_{\text {Reg }}(B A)=\mu \operatorname{Reg}_{B A}$, induction justifies the inductive definition of a function on regular expressions.

Let $\Sigma=(S, F, B \Sigma)$ be a destructor signature and A be a $\Sigma \downarrow B A$-algebra.

An S-sorted binary relation \sim is a Σ-congruence on A if for all $f: s \rightarrow w \in F \backslash B F$ and $a, b \in A_{s}$,

$$
a \sim b \text { implies } f^{A}(a) \sim f^{A}(b),
$$

and for all $s \in B S, \sim_{s}=\Delta_{A, s}$.

Let $A=\nu \Sigma_{B A}$ and $B \in A l g_{\Sigma \backslash B A}$. Since A is final,
(1) Δ_{A} is the only Σ-congruence on A,
(2) kernel $\left(u n f o l d{ }^{B}\right)$ is the greatest Σ-congruence on B.

By (1), coinduction is sound: Let $R \subseteq A \times A$.

$$
\begin{aligned}
R \subseteq \Delta_{A} & \Longleftrightarrow R \subseteq \sim \text { for some } \Sigma \text {-congruence } \sim \text { on } A \\
& \Longleftrightarrow R \subseteq \text { greatest } \Sigma \text {-congruence on } A \\
& =\cup\{\sim \mid \sim \text { is a } \Sigma \text {-congruence } \sim \text { on } A\}
\end{aligned}
$$

n晦 Since $\operatorname{Lang}(B A)=\nu A_{\text {ccept }}^{B A}$, coinduction provides a method for proving that two given languages agree with each other.

A context-free grammar (CFG) $G=(S, Z, P, B \Sigma, B G)$ consists of

- a signature $B \Sigma=\left(B S, B F, B \Sigma^{\prime}\right)$,
- a $B \Sigma$-Algebra $B G$,
- a finite set S of sorts (nonterminals) including a set $B S$,
- a set Z of terminals that includes the carriers of $B G$,
- a finite set P of rules (productions) of the form $s \rightarrow w$ with $s \in S \backslash B S$ and $w \in(S \cup Z \backslash B G)^{*}$.

The constructor signature

$$
\Sigma(G)=(S, F, B \Sigma)
$$

with

$$
F=\left\{f_{p}:\left.s_{1} \ldots s_{n} \rightarrow s\right|^{p=\left(s \rightarrow w_{0} s_{1} w_{1} \ldots s_{n} w_{n}\right) \in P,} \begin{array}{l}
\left.w_{0}, \ldots, w_{n} \in Z^{*}, s_{1}, \ldots, s_{n} \in S\right\}
\end{array}\right\}
$$

is called the abstract syntax of G.
$\Sigma(G)$-terms are called syntax trees of G.
$\operatorname{Word}(G)$, the word algebra of G
For all $s \in S$,

$$
\operatorname{Word}(G)_{s}==_{d e f} \begin{cases}B G_{s} & \text { if } s \in B S \\ Z^{*} & \text { otherwise }\end{cases}
$$

For all $p=\left(s \rightarrow w_{0} s_{1} w_{1} \ldots s_{n} w_{n}\right) \in P$ with $w_{0}, \ldots, w_{n} \in Z^{*}$ and $s_{1}, \ldots, s_{n} \in S$,

$$
\begin{aligned}
f_{p}^{\operatorname{Word}(G)}: \operatorname{Word}(G)_{s_{1}} \times \ldots \times \operatorname{Word}(G)_{s_{n}} & \rightarrow \operatorname{Word}(G)_{s} \\
\left(v_{1}, \ldots, v_{n}\right) & \mapsto w_{0} v_{1} w_{1} \ldots v_{n} w_{n}
\end{aligned}
$$

The language $L(G)$ of G is the image of $T_{\Sigma(G)}$ under fold ${ }^{\text {Word }(G)}$: For all $A \in S \backslash B S$,

$$
L(G)_{s}=\operatorname{def}\left\{\text { fold }^{W o r d}(G)(t) \mid t \in T_{\Sigma(G), s}\right\} .
$$

compiler $_{G}=$ generic compiler for G
$M=$ monad with unit $\eta \quad M$ determines error messages and the number of results parse $_{G}=$ parser for $G \quad(1)=$ completeness $\quad(2)=$ correctness
fold ${ }^{\text {Target }}=$ syntax-tree compiler
$(3)=$ correctness
Sem $S=$ source language semantics $\quad S e m T=$ target language semantics
19 of 26

Derivative parser for regular expressions

n29 $T_{\text {Reg }}(B A)$ is an Accept-algebra: For all $x, y \in Z$ and $R, R^{\prime} \in T_{\text {Req,reg }}$,

$$
\begin{aligned}
& \delta^{T}(\emptyset, x)=\emptyset, \\
& \delta^{T}(\epsilon, x)=\emptyset, \\
& \delta^{T}(x, y)=\text { if } x=y \text { then } \epsilon \text { else } \emptyset, \\
& \delta^{T}\left(R \mid R^{\prime}, x\right)=\delta^{T}(R, x) \mid \delta^{T}\left(R^{\prime}, x\right), \\
& \delta^{T}\left(R \cdot R^{\prime}, x\right)=\delta^{T}(R, x) \cdot R^{\prime} \mid \text { if final }{ }^{T}(R) \text { then } \delta^{T}\left(R^{\prime}, x\right) \text { else } \emptyset, \\
& \delta^{T}(\operatorname{star}(R), x)=\delta^{T}(R, x) \cdot \operatorname{star}(R), \\
& \text { final }^{T}(\emptyset)=\text { False, } \\
& \text { final }^{T}(\epsilon)=\text { True, } \\
& \text { final }^{T}(x)=\text { False, } \\
& \text { final }{ }^{T}\left(R \mid R^{\prime}\right)=\text { final }^{T}(R) \vee \text { final }^{T}\left(R^{\prime}\right) \text {, } \\
& \operatorname{final}^{T}\left(R \cdot R^{\prime}\right)=\text { final }^{T}(R) \wedge \text { final }^{T}\left(R^{\prime}\right) \text {, } \\
& \operatorname{final}^{T}(\operatorname{star}(R))=\text { True. }
\end{aligned}
$$

The derivate parser:

$$
T_{\text {Reg,reg }} \times Z^{*} \xrightarrow{\left(\delta^{*}\right)^{T}} T_{\text {Reg,reg }} \xrightarrow{\text { final }{ }^{T}} \text { Bool }
$$

Moreover, the unique $\operatorname{Reg} \downarrow B A$-homomorphism

$$
\operatorname{fold}^{\operatorname{Lang}(B A)}: T_{R e g}(B A) \rightarrow \operatorname{Lang}(B A)
$$

is $A c c e p t \downarrow B A$-homomorphic.
Hence fold ${ }^{\operatorname{Lang(BA)}}$ agrees with the unique $A c c e p t \downarrow B A$-homomorphism

$$
\operatorname{unfold}^{T_{R e g}(B A)}: T_{R e g}(B A) \rightarrow \operatorname{Lang}(B A)
$$

Hence the derivative parser is correct, i.e., for all $R \in T_{R e g}(B A)$ and $w \in Z^{*}$,

$$
\operatorname{parse}^{T}(R, w)=\operatorname{True} \Longleftrightarrow w \in L(R)=\operatorname{fold}^{\operatorname{Lang}(B A)}(R)
$$

and
the greatest Accept-congruence on $T_{\text {Reg }}(B A)$, $\operatorname{kernel}\left(u n f o l d^{T_{R e g}(B A)}\right)$, agrees with kernel (fold $\left.{ }^{\operatorname{Lang}(B A)}\right)$ and thus is a Reg-congruence and
the least $R e g$-invariant of $\operatorname{Lang}(B A)$, image $\left(\right.$ fold $\left.d^{\operatorname{Lang}(B A)}\right)$, agrees with image (unfold ${ }^{T_{\text {Reg }}(B A)}$) and thus is an Accept-invariant.

Context-free grammars are systems of Reg-equations
Let X be an S-sorted set of variables. An S-sorted function

$$
E: X \rightarrow T_{\Sigma}(X)
$$

is called a system of recursive Σ-equations.
E is ideal if for all $x \in X E(x) \notin X$.

Let A be a Σ-algebra. E induces the step function

$$
\begin{aligned}
E_{A}: A^{X} & \rightarrow A^{X} \\
f & \mapsto \lambda x \cdot E(x)^{A}(f)
\end{aligned}
$$

Fixpoints of E_{A} coincide with solutions of E in A.

Let $G=(S, Z, P, B \Sigma, B G)$ be a context-free grammar. We add the base sorts as regconstants to Reg. The Reg-algebra Lang interprets $s: \epsilon \rightarrow$ reg by $B G_{s}$.
G can be represented as an ideal system of recursive Reg-equations:

$$
\begin{aligned}
E(G): S \backslash B S & \rightarrow T_{R e g}(S \backslash B S) \\
s & \mapsto \sum_{s \rightarrow \varphi \in P} \varphi
\end{aligned}
$$

$$
\begin{aligned}
\beta: S \backslash B S & \rightarrow \text { Lang } \\
s & \mapsto L(G)_{s}
\end{aligned}
$$

is the least solution of $E(G)$ in Lang.

If G is non-left-recursive $(s \not \overbrace{G}^{+} s w)$, then there is exactly one solution of $E(G)$ in Lang.

Is used for proving that a given language coincides with $L(G)$.

Extending the derivative parser to parsers for CFGs

Let $R \Sigma$ be the union of Reg, Accept, the sort word, S as additional reg-constants and the following function symbols:

$$
\begin{aligned}
\text { parse } & : \text { reg word } \rightarrow \text { Bool } \\
\delta^{*} & : \text { reg word } \rightarrow \text { reg } \\
{[] } & : \epsilon \rightarrow \text { word } \\
-:- & : \text { symbol word } \rightarrow \text { word } \\
\text { reduce } & : \text { reg } \rightarrow \text { reg } \\
\text { ite } & : \text { Bool reg reg } \rightarrow \text { reg } \\
\text { eq,in } & : \text { symbol symbol } \rightarrow \text { symbol } \\
\vee, \wedge & : \text { Bool Bool } \rightarrow \text { Bool }
\end{aligned}
$$

The parser is a set $R e d$ of rewrite rules between $R \Sigma$-terms over the set $X=\left\{R, R^{\prime}, w, x\right\}$ of variables:

$$
\begin{aligned}
\operatorname{parse}(R, w) & \rightarrow f i n a l \\
\delta^{*}(R, x: w) & \left.\rightarrow \delta^{*}(R, w)\right) \\
\delta^{*}(R,[]) & \rightarrow R \\
\delta(\emptyset, x) & \rightarrow \emptyset \\
\delta(\epsilon, x) & \rightarrow \emptyset
\end{aligned}
$$

$$
\begin{aligned}
\delta(a, x) & \rightarrow \text { ite }(e q(a, x), \epsilon, \emptyset) \text { for all } a \in Z \backslash B A \\
\delta(s, x) & \rightarrow \text { ite }(x \text { in } A, \epsilon, \emptyset) \text { for all } s \in B S \\
\delta(s, x) & \rightarrow \delta(E(G)(s), x) \text { for all } s \in S \backslash B S \\
\delta\left(R \mid R^{\prime}, x\right) & \rightarrow \delta(R, x) \mid \delta\left(R^{\prime}, x\right) \\
\delta\left(R \cdot R^{\prime}, x\right) & \rightarrow \delta(R, x) \cdot R^{\prime} \mid \text { ite }\left(\text { final }(R), \delta\left(R^{\prime}, x\right), \emptyset\right) \\
\delta(\text { star }(R), x) & \rightarrow \delta(R, x) \cdot \operatorname{star}(R) \\
\text { final }(\emptyset) & \rightarrow \text { False } \\
\text { final }(\epsilon) & \rightarrow \text { True } \\
\text { final }(a) & \rightarrow \text { False for all } a \in B S \cup Z \backslash B A \\
\text { final }(s) & \rightarrow \text { final }(E(G)(s)) \text { for all } s \in S \backslash B S \\
\text { final }\left(R \mid R^{\prime}\right) & \rightarrow \text { final }(R) \vee \text { final }\left(R^{\prime}\right) \\
\text { final }\left(R \cdot R^{\prime}\right) & \rightarrow \text { final }(R) \wedge \text { final }\left(R^{\prime}\right) \\
\text { final }(\text { star }(R)) & \rightarrow \text { True } \\
\text { ite }\left(\text { True } R, R^{\prime}\right) & \rightarrow R \\
\text { ite }\left(\text { False }, R, R^{\prime}\right) & \rightarrow R^{\prime} \\
\text { eq }(x, x) & \rightarrow \text { True } \\
e q(a, b) & \rightarrow \text { False for all } a, b \in Z \text { with } a \neq b \\
a \text { in } s & \rightarrow \text { True for all } s \in B S \text { and } a \in B A_{s} \\
a \text { in } s & \rightarrow \text { False for all } s \in B S \text { and } a \in Z \backslash B A_{s}
\end{aligned}
$$

Let A be an $R \Sigma$-algebra. A rewrite rule $t \rightarrow u$ is correct w.r.t. A if $t^{A}=u^{A}$.

We extend Lang to an $R \Sigma$-algebra by defining for all $s \in S$:

$$
s^{\text {Lang }}={ }_{\text {def }} \begin{cases}B G_{s} & \text { if } s \in B S, \\ L(G)_{s}=\text { fold }^{\text {Lang }}(E(G)(s)) & \text { otherwise }\end{cases}
$$

and interpreting the above function symbols in the obvious way.

All rewrite rules of Red are correct w.r.t. Lang.

If G is non-left-recursive, then the parser given by Red is correct, i.e., for all $s \in N \backslash B S$ und $w \in Z^{*}$,

$$
\operatorname{parse}(s, w) \xrightarrow{+}_{\text {Red }}\left\{\begin{array}{l}
\text { True if } u \in L(G)_{s}, \\
\text { False otherwise. }
\end{array} .\right.
$$

