$Co/algebraic\ essentials$

and their impact on languages and compilers

Peter Padawitz TU Dortmund

February 3, 2011

Road map

3
11
15
17
20
22
24

Constructor and destructor signatures, Reg and Accept

Let S be a set of sorts. An S-sorted set A is a family $\{A_s \mid s \in S\}$ of sets.

An S-sorted function $f : A \to B$ is a family $\{f_s : A_s \to B_s \mid s \in S\}$ of functions.

Given $BS \subseteq S$ and a BS-sorted set BA, Set_{BA}^S denotes the category whose objects are pairs $(A, f : A|_{BS} \xrightarrow{\sim} BA)$ consisting of an S-sorted set A and a BS-sorted bijection f and whose morphisms from (A, f) to (B, g) are S-sorted functions $h : A \to B$ such that for all $s \in BS$, $g_s \circ h_s = f_s$.

For all
$$s_1, \ldots, s_n, s, s' \in S$$
,
 $A_1 =_{def} \{*\},$
 $A_{s_1 \times \cdots \times s_n} =_{def} A_{s_1} \times \cdots \times A_{s_n} =_{def} \{(a_1, \ldots, a_n) \mid a_i \in A_{s_i}, 1 \le i \le n\},$
 $A_{s_1 + \cdots + s_n} =_{def} A_{s_1} + \cdots + A_{s_n} =_{def} \{(a, i) \mid a \in A_{s_i}, 1 \le i \le n\},$
 $A_{s'} =_{def} (A_{s'} \to A_s).$

The set of **signatures** is defined inductively as follows:

- $\Sigma = (S, F)$ is a signature if S is a set of **sorts** and F is an $S^* \times S^+$ -sorted set of function symbols.
- $\Sigma = (S, F, B\Sigma)$ is a signature if $B\Sigma$ is a signature, called the **base signature of** Σ , and (S, F) is a signature such that S and F contain the sorts resp. function symbols of the base signature.

 $f: v \to w \in F \setminus BF$ is a constructor if $w \in S \setminus BS$. f is a destructor if $v \in S \setminus BS$.

 Σ is a **constructor signature** if $F \setminus BF$ consists of constructors. S and F implicity include **sum sorts** $s_1 + \cdots + s_n$ and **injections** $\iota_i : s_i \to s_1 + \cdots + s_n$ for all $s_1, \ldots, s_n \in S$.

 Σ is a **destructor signature** if $F \setminus BF$ consists of destructors. S and F implicitly include product sorts $s_1 \times \cdots \times s_n$, projections $\pi_i : s_1 \times \cdots \times s_n \to s_i$, power sorts $s^{s'}$ and applications $\$a : s^{s'} \to s$ for all $s_1, \ldots, s_n, s \in S, s' \in BS, a \in BA_{s'}$ and BS-sorted sets BA.

A signature for regular expressions

$$\begin{array}{ll} Reg \ = \ (\ S, F, B\Sigma \) \\ & = \ (\ \{reg, symbol\}, \\ & \{ \emptyset, \ \epsilon : \epsilon \rightarrow reg, \\ & _ : symbol \rightarrow reg, \\ & _ : symbol \rightarrow reg, \\ & _ : reg \ reg \rightarrow reg, \\ & _ : reg \ reg \rightarrow reg, \\ & star : reg \rightarrow reg \}, \\ & (\{symbol\}, \emptyset) \) \end{array}$$

$\mathbf{E} = \mathbf{A} \text{ signature for acceptors}$

$$\begin{array}{ll} Accept &= (\ S,F,B\Sigma \) \\ &= (\ \{state,symbol,bool\}, \\ & \{\delta:state \rightarrow state^{symbol}, \\ & final:state \rightarrow bool\}, \\ & (\{symbol,bool\}, \emptyset) \) \end{array}$$

Let $\Sigma = (S, F, B\Sigma)$ be a signature, X be an S-sorted set of variables and Y be an S-sorted set of covariables.

The S-sorted set $T_{\Sigma}(X)$ of Σ -terms over X is inductively defined as follows:

- For all $s \in S$, $X_s \subseteq T_{\Sigma}(X)_s$.
- For all $f: s_1 \dots s_n \to s \in F$ and $t_i \in T_{\Sigma}(X)_{s_i}, 1 \leq i \leq n, f\langle t_1, \dots, t_n \rangle \in T_{\Sigma}(X)_s$.

Given $t \in T_{\Sigma}(X)$, var(t) denotes the set of variables occurring in t.

The S-sorted set $coT_{\Sigma}(Y)$ of Σ -coterms over X is inductively defined as follows:

- For all $s \in S$, $Y_s \subseteq coT_{\Sigma}(Y)_s$.
- For all $f: s \to s_1 \dots s_n \in F$ and $t_i \in coT_{\Sigma}(Y)_{s_i}, 1 \leq i \leq n, [t_1, \dots, t_n]f \in coT_{\Sigma}(Y)_s$.

Given $t \in coT_{\Sigma}(Y)$, cov(t) denotes the set of covariables occurring in t.

A term resp. coterm t over \mathbb{N}^* such that all function symbols of t belong to $F \setminus BF$ and for all $x \in var(t) \cup cov(t)$, $sort(x) \in BS$ and t(x) = x, is called a Σ -generator resp. Σ -observer.

The tree representing the term $f_1\langle f_2\langle x, f_5\langle x, f_6\langle y \rangle, x \rangle, z \rangle, f_3\langle f_6\langle y \rangle, f_8\langle x, x \rangle \rangle \rangle$ or the coterm $[[[x, [x, [y]f_6, x]f_5, z]f_2, [[y]f_6, [x, x]f_8]f_3]f_1$

The *Reg*-terms over X_{symbol} are the regular expressions over X_{symbol} .

For each Accept-observer t there are
$$a_1, \ldots, a_n \in Z =_{def} BA_{symbol}$$
 such that
 $t = parse(_, a_1 \ldots a_n) =_{def} final(\delta^*(_, a_1 \ldots a_n))$
 $=_{def} final(\delta(\ldots(\delta(\delta(_, a_1), a_2), \ldots, a_n))) =_{def} [[\ldots[[x]final]\delta^{a_n}] \ldots]\delta^{a_2}]\delta^{a_1}$
Hence t is representable by $a_1 \ldots a_n \in Z^*$.

A Σ -algebra A consists of an S-sorted set, the carrier of A, also denoted by A, and

• for each $f: w \to s_1 \dots s_n \in F$, a function $f^A: A_w \to A_{s_1 + \dots + s_n}$,

such that

- for all injections $\iota_i : s_i \to s_1 + \dots + s_n, a \in A_{s_i}, \iota_i^A(a) = (a, i),$
- for all projections $\pi_i : s_1 \times \cdots \times s_n \to s_i$ and $a \in A_{s_1 \times \cdots \times s_n}, \pi_i^A(a) = a_i$,
- for all applications $a: s^{s'} \to s$ and $f: A_{s'} \to A_s$, $(a)^A(f) = f(a)$.
- The regular expressions over BA_{symbol} form the Reg-algebra $T_{Reg}(BA)$.
- The languages over BA_{symbol} form the *Reg*-algebra *Lang*(*BA*).

Let $BA_{bool} = 2$. Lang(BA) is also an Accept-algebra: For all $L \subseteq Z^*$ and $a \in Z$,

$$\begin{aligned} Lang(BA)_{state} &=_{def} & \mathcal{P}(Z^*), \\ \delta^{Lang(BA)}(L,a) &=_{def} & \{w \in Z^* \mid aw \in L\}, \\ final^{Lang(BA)}(L) &=_{def} & (\epsilon \in L). \end{aligned}$$

The Accept-subalgebra

$$\langle L \rangle =_{def} \{ (\delta^*)^{Lang(BA)}(L, w) \mid w \in Z^* \}$$

is a minimal acceptor of L.

Let A and B be Σ -algebras, $h : A \to B$ be an S-sorted function and $f \in F$.

h is a Σ -homomorphism if for all $f \in F$,

$$h \circ f^A = f^B \circ h.$$

Let BA be a $B\Sigma$ -algebra.

A $\Sigma \downarrow BA$ -algebra (A, g) is a pair consisting of a a Σ -algebra A and a $B\Sigma$ -isomorphism $g: A|_{B\Sigma} \to BA$.

Given $\Sigma \downarrow BA$ -algebras (A, f) and (B, g), a Σ -homomorphism $h : A \to B$ is a $\Sigma \downarrow BA$ -homomorphism if $g \circ h|_{\Sigma} = f$.

 $Alg_{\Sigma \downarrow BA}$ denotes the category of $\Sigma \downarrow BA$ -algebras and $\Sigma \downarrow BA$ -homomorphisms.

Term evaluation $_^A : T_{\Sigma}(X) \to (A^X \to A)$ is inductively defined as follows: Let $g \in A^X$.

- For all $x \in X$, $x^A(g) = g(x)$.
- For all $f: s_1 \dots s_n \to s \in F \setminus BF$ and $t_i \in T_{\Sigma}(X)_{s_i}, 1 \le i \le n$,

$$(f\langle t_1,\ldots,t_n\rangle)^A(g)=f^A(t_1^A(g),\ldots,t_n^A(g)).$$

For all regular expressions $R \in T_{Reg}(BA)$, $R^{Lang(BA)}(id_{BA})$ is the language of R.

Coterm evaluation $_^A : coT_{\Sigma}(Y) \to (A \to A \cdot Y)$ is inductively defined as follows:

- For all $s \in S$, $x \in Y_s$ and $a \in A_s$, $x^A(a) = (a, x)$.
- For all $f: s \to s_1 \dots s_n \in F \setminus BF$, $t_i \in coT_{\Sigma}(X)_{s_i}$, $1 \le i \le n$, and $a \in A_s$,

$$f^{A}(a) = (b, i) \implies ([t_1, \dots, t_n]f)^{A}(a) = t_i^{A}(b).$$

For all Accept-observers
$$parse(_, a_1 \dots a_n)$$
 and $L \subseteq Z^*$,

$$parse(_, a_1 \dots a_n)^{Lang(BA)}(L) = (a_1 \dots a_n \in L).$$

Signatures induce functors with fixpoints

Let BS be the sorts of $B\Sigma$ and BA be a BS-sorted set.

If Σ is a constructor signature, then Σ and BA induce the functor $\Sigma_{BA} : Set_{BA}^S \to Set_{BA}^S$: For all $A \in Set_{BA}^S$ and $s \in S$,

$$\Sigma_{BA}(A)_s =_{def} \begin{cases} \prod_{f:s_1...s_n \to s \in F} (A_{s_1} \times \ldots \times A_{s_n}) & \text{if } s \in S \setminus BS, \\ A_s & \text{if } s \in BS. \end{cases}$$

$$\mathbb{R} = Reg_{BA}(A)_{reg} =_{def} 1 + 1 + BA_{symbol} + A_{reg}^2 + A_{reg}^2 + A_{reg}.$$

If Σ is a destructor signature, then Σ and BA induce the functor $\Sigma_{BA} : Set_{BA}^S \to Set_{BA}^S$: For all $A \in Set_{BA}^S$ and $s \in S$,

$$\Sigma_{BA}(A)_s =_{def} \begin{cases} \prod_{f:s \to s_1 \dots s_n \in F} (A_{s_1} + \dots + A_{s_n}) & \text{if } s \in S \setminus BS, \\ A_s & \text{if } s \in BS. \end{cases}$$

R.

$$Accept_{BA}(A)_{state} =_{def} A_{state}^{BA_{symbol}} \times 2.$$

A Σ_{BA} -algebra $\Sigma_{BA}(A) \xrightarrow{\alpha} A$ is an S-sorted function and uniquely corresponds to a $\Sigma \downarrow BA$ -algebra A: For all $s \in S \setminus BS$ and $f : s_1 \dots s_n \to s \in F \setminus BF$,

 α_s is the coproduct extension

of the interpretations in A

of all constructors f of Σ

Since Σ_{BA} preserves colimits of increasing ω -chains, the category $Alg_{\Sigma_{BA}}$ of Σ_{BA} -algebras has an initial object $ini : \Sigma_{BA}(\mu \Sigma_{BA}) \xrightarrow{\sim} \mu \Sigma_{BA}$ and thus a fixpoint of Σ_{BA} . For all $s \in S \setminus BS$, $\mu \Sigma_{BA,s} = \coprod_{t \in Gen_{\Sigma,s}} BA^{var(t)}$.

The *Reg*-algebra $T_{Reg}(BA)$ of regular expressions over BA_{symbol} is initial in $Alg_{Reg\downarrow BA}$:

$$(\mu Reg_{BA})_{reg} = \coprod_{t \in Gen_{Reg, reg}} BA^{var(t)} = T_{Reg}(BA).$$

A Σ_{BA} -coalgebra $A \xrightarrow{\alpha} \Sigma^{BA}(A)$ is an S-sorted function and uniquely corresponds to a $\Sigma \downarrow BA$ -algebra A: For all $s \in S \setminus BS$ and $f : s \to s_1 \dots s_n \in F \setminus BF$,

Since Σ_{BA} preserves limits of decreasing ω -chains, the category $coAlg_{\Sigma_{BA}}$ of Σ^{BA} -algebras has a final object $fin: \nu \Sigma_{BA} \xrightarrow{\sim} \Sigma_{BA}(\nu \Sigma_{BA})$ and thus a fixpoint of Σ_{BA} . For all $s \in S \setminus BS$, $\nu \Sigma_{BA,s} \subseteq \prod_{t \in Obs_{\Sigma_s}} (BA \times cov(t))$.

R Let $BA_{bool} = 2$. The Accept-algebra Lang(BA) of languages over BA_{symbol} is final in $Alg_{Accept\downarrow BA}$:

$$(\nu Accept_{BA})_{state} = \prod_{t \in Obs_{Accept,state}} (BA_{Bool} \times \{x\}) = \prod_{t \in Obs_{Accept,state}} BA_{Bool} = 2^{BA^*_{symbol}}$$
$$= \mathcal{P}(BA^*_{symbol}) = Lang(BA)_{state}.$$

Given $(A, g) \in Alg_{\Sigma \downarrow BA}$, the unique $\Sigma \downarrow BA$ -homomorphism $fold^A : \mu \Sigma_{BA} \to A$ is defined as follows: For all $s \in S$ and $t \in T_{\Sigma}(BA)_s$,

$$fold_s^A(t) = \begin{cases} t^A(id_A) & \text{if } s \in S \setminus BS, \\ g^{-1}(t) & \text{if } s \in BS. \end{cases}$$

Given $(A, g) \in Alg_{\Sigma \downarrow BA}$, the unique $\Sigma \downarrow BA$ -homomorphism $unfold^A : A \to \nu \Sigma_{BA}$ is defined as follows: For all $s \in S$ and $a \in A_s$,

$$unfold_s^A(a) = \begin{cases} (t^A(a))_{t \in Obs_{\Sigma,s}} & \text{if } s \in S \setminus BS, \\ g(a) & \text{if } s \in BS. \end{cases}$$

Invariants and induction, congruences and coinduction

Let $\Sigma = (S, F, B\Sigma)$ be a constructor signature and A be a $\Sigma \downarrow BA$ -algebra.

An S-sorted subset *inv* of A is a Σ -invariant or Σ -subalgebra of A if for all $f: w \to s \in F \setminus BF$ and $a \in A_w$,

 $a \in inv$ implies $f^A(a) \in inv$,

and for all $s \in BS$, $inv_s = A_s$.

Let $A = \mu \Sigma_{BA}$ and $B \in Alg_{\Sigma \downarrow BA}$. Since A is initial,

A is the only Σ-invariant of A,
 image(fold^B) is the least Σ-invariant of B.

By (1), induction is sound: Let $R \subseteq A$.

 $A \subseteq R \iff inv \subseteq R$ for some Σ -invariant inv of A

 \iff least Σ -invariant of $A = \cap \{inv \mid inv \text{ is a } \Sigma$ -invariant $inv \text{ of } A\} \subseteq R$

Since $T_{Reg}(BA) = \mu Reg_{BA}$, induction justifies the inductive definition of a function on regular expressions.

Let $\Sigma = (S, F, B\Sigma)$ be a destructor signature and A be a $\Sigma \downarrow BA$ -algebra.

An S-sorted binary relation ~ is a Σ -congruence on A if for all $f: s \to w \in F \setminus BF$ and $a, b \in A_s$,

 $a \sim b$ implies $f^A(a) \sim f^A(b)$,

and for all $s \in BS$, $\sim_s = \Delta_{A,s}$.

Let $A = \nu \Sigma_{BA}$ and $B \in Alg_{\Sigma \downarrow BA}$. Since A is final,

Δ_A is the only Σ-congruence on A,
 kernel(unfold^B) is the greatest Σ-congruence on B.

By (1), coinduction is sound: Let $R \subseteq A \times A$.

 $R \subseteq \Delta_A \iff R \subseteq \sim \text{ for some } \Sigma\text{-congruence } \sim \text{ on } A$ $\iff R \subseteq \text{greatest } \Sigma\text{-congruence on } A$ $= \cup \{\sim \mid \sim \text{ is a } \Sigma\text{-congruence } \sim \text{ on } A\}$

Since $Lang(BA) = \nu Accept_{BA}$, coinduction provides a method for proving that two given languages agree with each other.

Context-free grammars are constructor signatures

A context-free grammar (CFG) $G = (S, Z, P, B\Sigma, BG)$ consists of

- a signature $B\Sigma = (BS, BF, B\Sigma')$,
- a $B\Sigma$ -Algebra BG,
- a finite set S of sorts (nonterminals) including a set BS,
- a set Z of **terminals** that includes the carriers of BG,
- a finite set P of rules (productions) of the form $s \to w$ with $s \in S \setminus BS$ and $w \in (S \cup Z \setminus BG)^*$.

The constructor signature

$$\Sigma(G) = (S, F, B\Sigma)$$

with

$$F = \{ f_p : s_1 \dots s_n \to s \mid \frac{p = (s \to w_0 s_1 w_1 \dots s_n w_n) \in P,}{w_0, \dots, w_n \in Z^*, \ s_1, \dots, s_n \in S \} } \}$$

is called the **abstract syntax of** G.

 $\Sigma(G)$ -terms are called **syntax trees of** G.

Word(G), the word algebra of G

For all $s \in S$, $Word(G)_s =_{def} \begin{cases} BG_s & \text{if } s \in BS, \\ Z^* & \text{otherwise.} \end{cases}$ For all $p = (s \to w_0 s_1 w_1 \dots s_n w_n) \in P$ with $w_0, \dots, w_n \in Z^*$ and $s_1, \dots, s_n \in S,$ $f_p^{Word(G)} : Word(G)_{s_1} \times \dots \times Word(G)_{s_n} \to Word(G)_s$ $(v_1, \dots, v_n) \mapsto w_0 v_1 w_1 \dots v_n w_n$

The language L(G) of G is the image of $T_{\Sigma(G)}$ under $fold^{Word(G)}$: For all $A \in S \setminus BS$, $L(G)_s =_{def} \{fold^{Word(G)}(t) \mid t \in T_{\Sigma(G),s}\}.$

Derivative parser for regular expressions

 \mathbb{R} $T_{Reg}(BA)$ is an Accept-algebra: For all $x, y \in Z$ and $R, R' \in T_{Reg, reg}$,

$$\begin{split} \delta^{T}(\emptyset, x) &= \emptyset, \\ \delta^{T}(\epsilon, x) &= \emptyset, \\ \delta^{T}(x, y) &= if \ x = y \ then \ \epsilon \ else \ \emptyset, \\ \delta^{T}(R|R', x) &= \delta^{T}(R, x) \mid \delta^{T}(R', x), \\ \delta^{T}(R \cdot R', x) &= \delta^{T}(R, x) \cdot R' \mid if \ final^{T}(R) \ then \ \delta^{T}(R', x) \ else \ \emptyset, \\ \delta^{T}(star(R), x) &= \delta^{T}(R, x) \cdot star(R), \\ final^{T}(\emptyset) &= False. \end{split}$$

$$final^{T}(\psi) = False,$$

$$final^{T}(\epsilon) = True,$$

$$final^{T}(x) = False,$$

$$final^{T}(R|R') = final^{T}(R) \lor final^{T}(R'),$$

$$final^{T}(R \cdot R') = final^{T}(R) \land final^{T}(R'),$$

$$final^{T}(star(R)) = True.$$

The derivate parser:

$$T_{Reg,reg} \times Z^* \xrightarrow{(\delta^*)^T} T_{Reg,reg} \xrightarrow{final^T} Bool$$

Moreover, the unique $Reg \downarrow BA$ -homomorphism

 $fold^{Lang(BA)}: T_{Reg}(BA) \to Lang(BA)$

is $Accept \downarrow BA$ -homomorphic.

Hence $fold^{Lang(BA)}$ agrees with the unique $Accept \downarrow BA$ -homomorphism

 $unfold^{T_{Reg}(BA)}: T_{Reg}(BA) \to Lang(BA).$

Hence the derivative parser is correct, i.e., for all $R \in T_{Reg}(BA)$ and $w \in Z^*$,

$$parse^{T}(R,w) = True \iff w \in L(R) = fold^{Lang(BA)}(R),$$

and

the greatest Accept-congruence on $T_{Reg}(BA)$, $kernel(unfold^{T_{Reg}(BA)})$, agrees with $kernel(fold^{Lang(BA)})$ and thus is a Reg-congruence

and

the least Reg-invariant of Lang(BA), $image(fold^{Lang(BA)})$, agrees with $image(unfold^{T_{Reg}(BA)})$ and thus is an Accept-invariant.

Context-free grammars are systems of *Reg*-equations

Let X be an S-sorted set of variables. An S-sorted function

 $E: X \to T_{\Sigma}(X)$

is called a system of **recursive** Σ -equations.

E is **ideal** if for all $x \in X$ $E(x) \notin X$.

Let A be a Σ -algebra. E induces the step function

 $E_A : A^X \to A^X$ $f \mapsto \lambda x . E(x)^A(f)$

Fixpoints of E_A coincide with solutions of E in A.

Let $G = (S, Z, P, B\Sigma, BG)$ be a context-free grammar. We add the base sorts as *reg*constants to *Reg*. The *Reg*-algebra *Lang* interprets $s : \epsilon \to reg$ by BG_s .

G can be represented as an ideal system of recursive Reg-equations:

 $E(G): S \setminus BS \to T_{Reg}(S \setminus BS)$ $s \mapsto \sum_{s \to \varphi \in P} \varphi$

 $\begin{array}{rcl} \beta:S\setminus BS &\to &Lang\\ s &\mapsto &L(G)_s \end{array}$

is the least solution of E(G) in Lang.

If G is non-left-recursive $(s \not\rightarrow_G^+ sw)$, then there is exactly one solution of E(G) in Lang.

Is used for proving that a given language coincides with L(G).

Extending the derivative parser to parsers for CFGs

Let $R\Sigma$ be the union of Reg, Accept, the sort word, S as additional reg-constants and the following function symbols:

 $parse : reg word \rightarrow Bool$ $\delta^* : reg word \rightarrow reg$ $[] : \epsilon \rightarrow word$ $_:_: symbol word \rightarrow word$ $reduce : reg \rightarrow reg$ $ite : Bool reg reg \rightarrow reg$ $eq, in : symbol symbol \rightarrow symbol$ $\lor, \land : Bool Bool \rightarrow Bool$

The parser is a set *Red* of rewrite rules between $R\Sigma$ -terms over the set $X = \{R, R', w, x\}$ of variables:

$$parse(R, w) \rightarrow final(\delta^*(R, w))$$

$$\delta^*(R, x : w) \rightarrow \delta^*(reduce(\delta(R, x)), w)$$

$$\delta^*(R, []) \rightarrow R$$

$$\delta(\emptyset, x) \rightarrow \emptyset$$

$$\delta(\epsilon, x) \rightarrow \emptyset$$

$$\begin{split} \delta(a,x) &\to ite(eq(a,x),\epsilon,\emptyset) \quad \text{for all } a \in Z \setminus BA \\ \delta(s,x) &\to ite(x \ in \ A,\epsilon,\emptyset) \quad \text{for all } s \in BS \\ \delta(s,x) &\to \delta(E(G)(s),x) \quad \text{for all } s \in S \setminus BS \\ \delta(s,x) &\to \delta(R,x) \mid \delta(R',x) \\ \delta(R \mid R',x) &\to \delta(R,x) \cdot R' \mid ite(final(R),\delta(R',x),\emptyset) \\ \delta(star(R),x) &\to \delta(R,x) \cdot star(R) \\ final(\emptyset) &\to False \\ final(\epsilon) &\to True \\ final(a) &\to False \quad \text{for all } a \in BS \cup Z \setminus BA \\ final(s) &\to final(E(G)(s)) \quad \text{for all } s \in S \setminus BS \\ final(R \mid R') &\to final(R) \vee final(R') \\ final(star(R)) &\to True \\ ite(True, R, R') &\to R \\ ite(False, R, R') &\to R' \\ eq(x,x) &\to True \\ eq(a,b) &\to False \quad \text{for all } a, b \in Z \text{ with } a \neq b \\ a \ in \ s &\to True \quad \text{for all } s \in BS \text{ and } a \in BA_s \\ a \ in \ s &\to False \quad \text{for all } s \in BS \text{ and } a \in Z \setminus BA_s \\ \end{split}$$

Let A be an R Σ -algebra. A rewrite rule $t \to u$ is correct w.r.t. A if $t^A = u^A$.

We extend *Lang* to an $R\Sigma$ -algebra by defining for all $s \in S$:

$$s^{Lang} =_{def} \begin{cases} BG_s & \text{if } s \in BS, \\ L(G)_s = fold^{Lang}(E(G)(s)) & \text{otherwise,} \end{cases}$$

and interpreting the above function symbols in the obvious way.

All rewrite rules of Red are correct w.r.t. Lang.

If G is non-left-recursive, then the parser given by Red is correct, i.e., for all $s \in N \setminus BS$ und $w \in Z^*$,

$$parse(s,w) \xrightarrow{+}_{Red} \begin{cases} True & \text{if } u \in L(G)_s, \\ False & \text{otherwise.} \end{cases}$$