Initial Algebra Semantics and Continuous Algebras

J. A. GOGUEN

UCLA, Los Angeles, California
AND

J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

IBM Thomas J Watson Research Center, Yorkiown Heights, New York

ABSTRACT Many apparently divergent approaches to specifying formal semantics of programming languages
are applications of imtial algebra semantics In this paper an overview of initial algebra semantics 1s provided
The major technical feature 15 an 1mtial continuous algebra which permits unified algebraic treatment of
tterative and recursive semantic features i the same framework as more basic operations

KEY WORDS AND PHRASES algebraic semantics, algebras, free algebras, continuous algebras, posets, pro-
gramming language semantics. flow diagrams, syntax directed translation, solutions of equations

CR CATEGORIES 5 23,5 24

1. Introduction

In the past few years there has been quite a prolhferation of formal semantics for
programming languages, or at least of different descriptive terms, for example, opera-
tional, interpretive, fixed point, predicate calculus, denotational, algebraic, mathemati-
cal, synthesized, W-grammar, axiomatic, inherited, declarative, continuation, process,
and now nitial algebra semantics. Moreover, mathematical concepts, said to be deep, or
strange, or new, are asserted to be relevant, for example, continuous lattices, iterative
algebraic theories, infinitary logic, and bicategories This 1s quite perplexing. How do
these things fit together, if at all? In fact, what 1s “syntax”’; what is “‘semantics’?

This paper 1s not going to answer all these questions. But we believe the subject cannot
be said to be mn very good shape when such questions are ignored or glossed over, and
when “‘practical” and *‘theoretical” approaches have so little to say to each other. In this
paper we offer a unified approach to these questions with some prehiminary answers
which expose a surprising and beautiful unity in the apparent diversity of approaches.

The key concept 1s very simple: An algebra S is initial in a class C of algebras 1ff for
every A in C there exists a unique homomorphism A, : S — A.!

Copyright © 1977, Association for Computing Machimnery, Inc General permission to republish, but not for
profit, all or part of this materal 1s granted provided that ACM’s copyright notice 1s given and that reference 1s
made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by
permussion of the Association for Computing Machinery.

This 15 a revised and expanded version of a paper entitled “Imtial Algebra Semantics,” which was presented at
the 15th IEEE Symposium on Switching and Automata Theory, October 1974

The work of J A Goguen was partially supported by the Naropa Institute, Boulder, Colorado, and the
Unmiversity of Colorado, Boulder, Colorado.

Authors’ addresses: J A Goguen, Computer Science Department, UCLA, Los Angeles, CA 90024, J W
Thatcher, E G Wagner, and J B Wright, IBM Thomas J] Watson Research Center, Yorktown Heights, NY
10598

! We are assumung that C comes with an ‘‘appropriate” class of homomorphisms which 1s closed under
associative composition and ncludes an identity for each algebra More f~rmally, we assume that C 1s a
category. The reader seeking a more comprehensive algebraic context may want to consult [23] and/or {39]

Journal of the A for Comp g Mach y, Vol 24, No 1, January 1977, pp 68-95

Irutial Algebra Semantics and Continuous Algebras 69

In the cases we examine, syntax is an imtial algebra 1n a class of algebras, and any
other algebra A 1n the class 1s a possible semantic domain (or semantic algebra); the
semantic function is the uniquely determined homomorphism k, : § — A, assigning a
meaning h,(s) 1n A to each syntactic structure s in §. From this viewpoint it becomes clear
that a major aspect of formal semantics (both practical and theoretical) is constructing
intended semantic algebras for particular programming languages. We believe that is
what Scott and Strachey [65] and their followers are doing with the tools outlined by
Scott [60] and more fully developed in [62-64].

We use abstract syntax (cf. McCarthy [36}), but without employing any ‘‘concrete”
version such as in the Vienna Definition Language [35] What s abstract about ‘“‘abstract
syntax’’ 1s captured by the following proposition.?

ProposiTioN 1 1. IfS and S’ are both initial in a class C of algebras, then S and S’ are
isomorphic. If §" is isomorphic to arn initial algebra S, then S” 1s also initial.

Proor?® If S and §’ are imtial in the class C of algebras we have (unique) homomor-
phisms Ay : S — S and hg : §’ — S. The composite of A followed by kg (denoted hgohy)
is 2 homomorphism from § to S. The 1dentity function, 1g, 1s also a homomorphism; so
hge hg = 15 by umiqueness Similarly hg o hg = 1g, thus Ag is an isomorphism.

If § 1s 1nitial and §” is 1somorphic to S, then kg © S — S” must be the isomorphism. For
any algebra A 1n C, we have h, : S— A so thath, chg is a homomorphism from $” to A.
Ifg: §"— A is any other such homomorphism thengohg: S—>Asogohg=hyandg =
hyohz. Thus §” 15 nitial. O

Rather than assume ““‘that programs are ‘really’ abstract, hierarchically structured data
objects ... ,” as in Reynolds [53], we avoid troublesome questions of definition and
notation by identifying “abstract syntax” with “imtial algebra”; Proposition 1.1 says
abstract syntax 1s independent of notational variation —as 1t should be. For example, if
1s a ranked alphabet,* define a Z-free to be an element of an imtial 2-algebra. In this way
we are not tied to any particular representation of trees (Polish notation, infix terms,
prefix parenthesized terms, functions defined on tree domams, or certamn directed
ordered labeled graphs). This abstract syntax for trees depends only on the essential
algebraic-structural properties that characterize trees

Because of the connection with abstract syntax, the imtial algebra approach 1s implicit
in McCarthy’s {36] proposals for a “Mathematical Science of Computation” and in Iron’s
proneering paper [29] on syntax directed translation. The approach becomes more
explicit at least as far back as Landin [31] and Petrone [50], as well as in McCarthy and
Painter [38], Knuth [30], Burstall and Landin {10], Nivat [48], and Morris [46, 47]. Of
these, Burstall and Landin first use universal algebra (a la Cohn [13]) and (implicitly) the
imtiality property, Morris [46, 47] brings 1n many-sorted algebras, which are essential
for any applications of algebraic semantics to interesting programming languages.

This paper makes the iitial algebra approach to semantics completely explicit,
providing the necessary algebraic background and several examples. Our principal new
result 1s the existence of initial continuous algebras. This extends the applicability of
mtial algebra semantics by combining the algebraic insights of Burstall, Landin, and
Morris with the (lattice-) order-theoretic 1deas of Scott and Strachey. We consider
solutions of equations in continuous algebras and show, for example, how Scott’s lattice
of flow diagrams [61] 1s a special case of an imitial continuous algebra.

Section 2 makes the notion of many-sorted algebra precise. That material is not
mathematically new and has a survey character. However, our presentation s different

% In order to prove existence of inttial algebras, we have to employ a concrete construction, but once done, we
can forget about that construction and rely solely on Proposition 1 1

® Thus proof depends exactly on the assumptions about € mentioned 1n the footnote to the defimuion of
“intial >

* A ranked alphaber 1s a family (3,),¢,, of disjont sets indexed by the natural numbers 3 1s the set of operator
symbols of rank k. There are more details in Section 2 Note that the assumption that the 2, are disjoint 1s not
necessary (or even desirable mn general —see Thatcher [67]), we adopt it here to simplify the expositton

70 J. A. GOGUEN, J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

from the literature (we hope it is simpler) and seems to us to be of fundamental
importance. A careful reading of Section 2 serves multiple purposes, because the
material there can be extended to almost any initial algebra situation, including mnitial
continuous algebras (Section 4).

Section 3 contans applications (examples) of initial many-sorted algebras. Section 4
defines “‘continuous algebra” and constructs 1nitial continuous algebras. Applications of
this, including Scott’s lattice of flow diagrams [61], are 1n Section 5. Section 6 contains
some questions and problems.

Some of the subject matter included here 1s being prepared for inclusion in the second
part of the first report of the ADJ senies [23] ®

2. Many-Sorted Algebras

An algebra in the sense of Birkhoff [6] (see also Cohn [13] and Graetzer [27]) 1s simply a
set, called the carrier of the algebra, together with an indexed family of operations
(functions) defined on (Cartesian powers of) that set. A many-sorted algebra consists of
an indexed famuly of sets (called carriers) and an indexed family of operations defined on
Cartesian products of those sets. Generalizing to many-sorted algebras is very natural for
computer science. The index set for carners is called the set of sorts, and might be, for
example, {real, int, bool}. An aigebra A of this kind would have three carriers, A real, Aint,
and A yoof, together with some operations such as 1 . A yeal X Ajnt —> A real O = : Apool X
Avent X Apeq = A, which might be exponentiation or conditional, respectively.

A finite automaton, in the sense of Rabin and Scott [52], is an algebra with two sorts:
states named $ and mputs named 2, i.e. an {S, 2}-sorted algebra. The transition function
is an operation M of “type” (SZ, S) (M . S X 2 — S, using the sort symbols to denote the
carriers, an ambiguous but common practice). The initial state is a constant s, of sort S (s,
€ 9).

The defimtion below 1s equivalent to Birkhoff and Lipson’s [7] ‘heterogeneous
algebra” and therefore (according to them) is equivalent to Higgins’ [28] *“algebra with a
scheme of operators.” Birkhoff and Lipson show that the conventional theory of
“universal algebra” (as n [6, 13, 27]) carries over “with undiminished force™ to the
theory of many-sorted algebras. In particular, the concepts of subalgebra, homomor-
phism, quotient, congruence relation, product, word algebras, and free algebras general-
1ze naturally and easily. Although Birkhoff and Lipson give some computer science
examples, the first explicit use for new results in computer science seems to be in
Maibaum [41, 42]. The concept appears to have originated with Bénabou [5] n a
category theoretic form.

Let § be a set whose elements are called sorts. An S-sorted operator domain or
signature 2 1s a family (%, ;) of disjoint sets indexed by $* X S. 3, ;1s the set of operator
symbols of type (w, s), arity w, sort s, and rank Ig(w) (Ig(w) is the length of w, A € $* is the
empty string, and Ig(A\) = 0). A X-algebra A consists of a famly (A;)c of sets called the
carriers of A (A, is the carrier of sort s € S); and for each {w, s) € §* X Sand foreacho €

2,5, N Operation o4 of type (w,s),i.e 04 : Ay X --+ XA,, > A, wherew =w, - -~
wyandw, € Sforz =1, --- n. An operation o, of type (X, s) is a constant of sorts, i.e
Ts = AS

For fixed S and varying 2 we have the class of S-sorted algebras, and as S varnes too,
the class of many-sorted algebras .

When #S = 1, we have the conventional case of (one-sorted) algebras—here the
operator domain is just as well mdexed by @ = {0, 1,2, --- }, and o € 2, names an
operation o, : A" — A 1 an algebra A (the single carrier and the algebra being
ambiguously denoted by the same symbol).

5 The set of authors of this paper 1s referred to as “ADJ”, the senes referenced here 1s devoted to an
exploration of “‘the junction between category theory and computer science ”

Initial Algebra Semantics and Continuous Algebras 71

Returning to the general case, if A and A’ are both 3-algebras, a 2-homomorphism
h : A— A'isafamily of functions (b : A;— A;)ses that preserve the operations, i.e.

(0) if o € 3, ,, then hyo,) = oy;

WMo, s and{a, -, a,) EA, X - X Ay, then

hloalar, -, an)) = ou hy, @), - -, by, (@)

The utility of initial algebra semantics rests heavily on being able to handle many-
sorted algebras with as much clarity and notational simplicity as the one-sorted (conven-
tional) case. Indeed, the generalization from sets and functions to S-indexed families of
sets and S-indexed families of functions 1s not that great a jump. If A 1s an S-indexed
family of sets (A = (A)ses) andw =5, + - - 5, € §*, then generalizing A™, define A* to be
the Cartesian product A, x -+ X A, . Similarly, for an S-indexed family of functions
h:A—>A ((hy: A= Ades), define h® : A — A byh¥(ay, - -+ ,a,) = (hg, (@), -,
hy (a.)), which generalizes h" : A® — A'". The special case w = A (n = 0) 1s handled
uniformly by A® = A* = {)\}, and a function o, with source A* 1s 1dentified with the
“constant” which 1s 1ts value o,(\) at 1ts single argument.®

Now with this notation, an S-sorted X-algebra A consists of: a carrier (ambiguously
denoted) A, which 1s an S-indexed family of sets; and, for each operator symbol o € 3,5,
a function o4 : A¥ = A,. An S-sorted 2-homomorphism h from A to A’ 1s an S-indexed
famuly of functions (h, : A; — A}) such that k; (o4 (@) = o4 B* (@), i.€.

Oy
Ax ———————> A,

A _L_) Al

commutes for all o € 3, ; and a € A®. This has now become only a minor variation on
the one-sorted definition.

Letting Algs denote the class of 2-algebras with 2-algebra homomorphism, we state
the first basic result concerning initial algebras.

Prorosimion 2.1 The class Algs of 3-algebras has an minal algebra; callu Ty, O

This 1s a well-known result, at least for the one-sorted case (see Birkhoff [6] or Cohn
[13] or Graetzer [27]), and the many-sorted case is treated in Birkhoff and Lipson [7].
Ty is often called the 2-word algebra and the carriers are sometimes called the Herbrand
unwerse for . The set Ty ; (the carrier of T of sorts) can be thought of as the set of well-
formed expressions (or trees) of sort s built up 1n the usual way (to be made precise n a
moment) from the operator symbols of 2. But we emphasize that this characterization is
(mathematically) important only for the proof of Proposition 2.1. Once proved, we do
not need to know how a particular initial algebra was constructed — we use only initiality.
Comments about expressions (or pictures of trees) occur only to aid understanding.

Let 2 (ambiguously) denote the set of all operator symbols in the S-sorted operator
domain 2. Now let (Ts oses be the smallest family of sets contamed in (2 U {(,))})*
satisfying the following two conditions (here {(,)} 1s a two-element set disjoint from X):

(0) 33, C Ts

WDifo €2, w=s5 "5, n>0,and T, E Ty, thenalt, - t,) € Ty,
Then make the family (T) into a 2-algebra T by defining the operations:

O forece€l ,,or=0€ Ty "

(Nforag €25, w=5, - sg,andt, € Ty, oplty, * - 1) =0ty - 1) € Ty

¢ Although this umformity 1s mathematically nice, 1t 1s often more convenient to separate out the constants
from the more general operators, for the most part this will be done 1n the sequel
7 We are writing oy instead of oer,

72 J. A. GOGUEN, J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

Under the natural identification of elements of A* with strings a,, * - a,, such that
ay € Ay,, (1) immediately above can be rewritten:
foralloc €3,,andt € TY, ap (t) = o(t).

As an artificial example, S = {a, b}, Zy0 = &a}, Znp = o} Zape = {f}, and 2y, =
{g}. Then Tz, contains terms x4, f(xoXxp), f(x.g (3)), f(f (X .X3)x3), €tc., while T'g , contains
Xp, £(xp), g(gxs)), etc. Much less attificial is the correspondence, in Section 3, of any
context-free grammar to an initial N-sorted algebra (where N is the set of nonterminals).

In any algebra A in the class Algs, if ¢ € %, and a € A¥, then g4(a) € A,. This
algebraic structure on the set 7y (making 1t the initial 3-algebra) seems to be “‘synthetic
syntax” [36], and oy is familiar as the ““constructor function’’ denoted mk — o in Reynolds
[53]).

On the other hand, “analytic syntax’ [36] is based on

Prorosition 2.2. For any t € T, there exist unique n = 0, s, - -- 5, € §*, ¢ €
(s, swop and t, € Tz, (1 =i <n)suchthatt = op(ty, -~ ,t). O°F

The notation in Reynolds [53] can be generalized to many sorts as follows: For each o
€ %, is — o tests whether its argument is of the form o (¢, - - - , ¢,), taking values in the
set {true, false}; is — s tests whether its argument could be of sort s; and for each pair {o,
i) with 1 =< i = rank(0), s4.,, is the “selector function” defined iff is—o is true by
S (orlty, <+ -, £,)) = ¢,. These functions are well defined by Proposition 2.2, and if
is — o(t) is true, then

mk ~ 0 (S.05(), *** ,Sea) =1
Moreover, if o € 3, ssy and if is — s,(t,) 15 true for 1 <1 < n, then
Soamk — oty , - ,8)) =1t.

In [53] the various selector functions are given names (e.g. opr, opnd, etc.), but of
course this isn’t necessary. In fact, as an example below illustrates, the “language” of
synthetic and analytic syntax 1s unnecessary with the 1nitial algebra approach to abstract
syntax.

We now introduce “‘freely generated” Z-algebras in order to get a concise defmition of
“derived operator”; for notational simplicity we consider the one-sorted case first.

Let X be a set (whose elements are called variables) disjoint from 2. We form a new
ranked alphabet, denoted 3(X), by adjoining the variables as new constant symbols:
2(X)y = 2o U X and I(X), = I, for all & > 0. By Proposition 2.1, Ty, 1s the nitial
3(X)-algebra. The trees which are m its carrier differ from those in Tz only n that they
may have variables on the leaf nodes as well as constants from 2, Now Ty, has 2(X) as
1ts signature, whereas we want to think of Ty, as a S-algebra Since the operations (and
constants) named by 3.(X) include those named by X, we can do this just by “forgetting”
that the variables have names in the signature; that is, we define a new 3-algebra,
denoted Tx(X). with carrier that of Tgy, and with operations those named by 3 in T y,. It
15 the free Z-algebra generated by X, in the following sense.

ProrosiTioN 2 3. Ifh : X — A 1s any function mapping X nto the carrier of a -
algebra A, then there exists a unique 3-homomorphism h : Tx(X) — A extending h, 1.e
h(xr) = h(x).?

PrOOF. A is a Z-algebra. Given h : X — A, make A into a 2(X)-algebra by having x
name h(x) in A (x, = h(x)). By Proposition 2.1, there 1s a umque E(X) -homomorphism
k. Ty, — A, and (by clause (0) of the definition of homomorphism) A(xy) = x, = A(x);
because & is a S(X)-homomorphism, 1t 1s immediately a 3-homomorphism. For the
uniqueness part, if g : Tx(X) — A 1s a 2-homomorphism with g(x;) = h(x), then 1t 1s also
a Z(X)-homomorphism, and thus g = h. O

& This 1s famihiar for well-formed expressions and/or 2-trees, and that 1s sufficient proof because of Propositton
11

® Note that x; 1s whatever the zero-ary symbol x € X names in the mitial algebra Txy,—1n the above concrete
construction x; = x, but we can’t assume that since we are depending only on the imtiality of T,

Initial Algebra Semantics and Continuous Algebras 73

This construction 1s typical of imtial algebra semantics. The phrase, “make B into a 3-
algebra by - - -, ” is fundamental because making B nto a X-algebra gives the unique
homomorphism 4y : Ts — B by mtality. In the proof of Proposition 2.3 this was
particularly easy —A was already a 3-algebra and we made it a 3(X)-algebra In general,
if B 1s any set (later, any family indexed by §), we make B into a Z-algebra by defining
appropriate operations o : B* — B for cach o € 3,; then (zap!) hy : Ts — B.

We are now 1n a position to define the very important notion of derived operator. The
intuttive 1dea 1s that the terms 1n 7T3(X) (like polynomials tn ordinary algebra) do not
have values. since they contain varijables, but they do define functions on any 2-algebra
by assigning values to the variables. Because this gives rise to new operators on 3-
algebras A compounded out of those named by 3., the new operators are called derived
operators

First, let X, = {x;, - - , x,}, and call 1 € Tx(X,) a 3-ferm n n variables or an n-ary 3-
term. Now given a 3-algebra A and r € Ty(X,), we want to define its corresponding
derived operator on A, t, : A" — A. This employs Proposition 2.3 as follows: Given
(a1, -+ ,a,) € A" leta . X,— A be defined by sending x, — a, for 1 <1 < n; then, by
Proposition 2.3, there exists a unique X-homomorphism a : Tx(X,) — A extending
a : X,— A;now we define t4(a,, - - - , a,) to have value a(t). Thus we are letting a vary in
the expression 4(f), while keeping t fixed; a(?) 1s the “evaluation” in A of the n-ary term ¢
in which the variable x, is given the value a, 1n A, using the operations of the 3-algebra 4.

For the special cases when A s of the form A = Ty(X,,), the above gives us a precise
formulation of the operation of substitution of m-ary 2-terms for variables. (When
variables are assigned to terms, “‘evaluation” 1s just substitution.)

That 1s, given ¢t € Ts(X,) and an n-tuple of m-ary 2-terms t' = (), --- , th) €
(Ts(X,,))", we agam dentify ¢’ with the mapping from X, to Tx(X,,) which sends x, to 1/
for 1 = i = n. The result of simultaneously substituting ¢, for x, m¢fori= 1, --- ,n1s

precisely 7'(r). We write ¢ «<— ¢’ for the substitution of (the n-tuple of m-ary 3-terms) ¢’ in
the n-ary term ¢.

If we take ¢ to be a p-tuple of n-ary 3-termst = (¢, - - - , 1) € (Ts(X,))* rather than just
a single n-ary 2-term, then we could define t «—t' as {t;, < ', -+ - , t, < t'). However,
by exploiting the correspondence between p-tuples ¢ € (75(X,))” and mappings
t : X, = Tx(X,), we can more succinctly define ¢ «— ¢ as ¢'ot (‘“°” is a function com-
position).

XP X'l

g

Ty(X,) ——— Tx(X,)

Thent « ¢ = t':ot : Xp— Tx(X,,) and the “sth component” of this “p-tuple” is (¢ < 1')}(x,)
= (" ot)x,) = t'(tlx)) = £'(t) = t, « ¢ just as before.
With this definition it is easy to show that substitution is associative. For given
L X, —> Te(X,), t: X,— Ts(Xy,), and ¢ X, — Tx(X,),
we have
Xy X, X

3

!
LX) =————> Ty(X,) —> T(X,)

74 J. A. GOGUEN, J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

(t—t)—t"= (" ot) 1" ={"o(f' of) = (" of') ot by definition of «. But then¢" o¢' and
"ot are both homomorphisms Tx(X,) — Tx(X,) extending #"=¢', and so Proposition 2.3
says they are equal, whence (f < ') <" = (("of')ot = (Fot' Jot =t «({"ot') =t < (' <1")
as desired. Thus we have

Prorosimion 2.4. Substitution is associative Fort : X, — Ts(X,), t' 1 X, =~ Ts(Xy)
and t" : Xy —> T(X), then t —t) 1t =t < (' «¢). OV

Just as we can extend substitution to p-tuples, so we can extend the notion of derived

operators to p-tuples of n-ary 3-terms. Givent = {t;, - -+ ,1,) : X, — Ts(X,,), we define
ty: A™ — A? to be such that, for eacha € A™ (i.e. a : X,,— A), t4(a) = aot, which, for¢
=(ty, * 1, b, gives ty@) = (tx)aa), - -+, Hxpa@)) = ((t)al@), -+, (1)a(@)). Now
given
X, X, X
t t' a
TyX) ——> T3(X,) ——> 4

which is a trivial modification of the diagram for substitution, the proof of Proposition
2.4 1s immediately modified to yield

PrOPOSITION 2.5. (t < ¢'), = tyoty (where the right-hand side 1s function compo-
sition and the left-hand side is substitution). O

Some famihar functions on trees or expressions are further examples of initial algebra
semantics

Frontier. Make 2§ nto a -algebra.

(0) Foro € 3, let o be o € 3¢.

(WForag €3, wy, -+ ,w, EXF, leta(wy, ~++ , wy) = w; -+ w,.

The unique 3-homomorphism fr : Ty — 3} is the frontier (or yield) function.

Generally 1t’s clear and nice to write g, to specify what o names 1n the algebra A, but
this gets tiresome, and 1 fact it is not conventional practice For Abelian groups one
doesn’t see +, and O, but just + and 0, the symbols indeed name the functions and
constants.

While the convention of using the operator symbols to denote the functions
(different) algebras can lead to some rather strange looking expressions (cf. case (0) in
the example above and 1n the two that follow), 1t 1s a recognized convenience and avoids
naming algebras in these examples and the resulting complex subscripts.

Height. Make o = {0, 1, 2, - - -} mnto a 2-algebra:

0)Forag €3, letg = 1.

(1) Foroa €%, ki, -+ , ky Ew, let olky, --- , k) = max(k,) + 1.

The unique 2-homomorphism hg : Tsx — 1s the height function—in tree terminology,
the length of the longest path from the root to a terninal node (+1).

Symbols. Make!? p(2) into a Z-algebra:

(0) For o € 3. let o = {o}.

(1) Forog€3,,n>0,andu,, - ,u, EpS), let aluy, -+ , uy) = {o} U Uu,.
The unique Z-homomorphism sym : Ts — p(2) is the set of symbols that occur in an
expression.

We finish off this section by showing how the important process of defining derived
operators works for many-sorted algebras. Whereas in the conventional case we gener-

** From a categorical pomnt of view what we have here 1s a category Ty (the algebraic theory [32] freely
generated by 3) with set of objects w; morphisms from m to » are functions from X, to Ts(X,), composition 1s
substitution; and for each n € w, the mapping X,, — Tx(X,) taking x, to x, 1s the wdentity for n

' Throughout we use w to denote the nonnegative ntegers.

2 p(Z) is the set of subsets of the set of operator symbols X (p s for “power set™).

Ininal Algebra Semantics and Continuous Algebras 75

ated a free algebra from a single set, now we must have generators for each sort, i.e an
S-indexed family X Given an S-sorted operator domain X, define an operator domain
2(X) by Z(X),, = X, U 2, and 2(X), . = X, for w # A; that 15, the generators are
adjomed as symbols of arity A and sort s. Again Ty, 1s viewed as a J-algebra T(X), and
we have the “‘freeness” proposition proved exactly as Proposition 2 3.

ProrosiTioN 2.6. For an S-sorted operator domain % and an S-indexed family X,
T{(X) is the 2-algebra freely generated by X in the sense that any S-indexed family of
functions, h : X — A, to the carrier of a 3-algebra A, extends uruquely to a 2-homomor-
phism h : T<(X) > A. O

Foru =s; - - - 5, € §*, define X, (the analogue of X, is the one-sorted case) by X, =
150 Xasss " 5 Xnsnt- Xy 18 aset of n “sorted” or “typed” variables and can be viewed
as an S-indexed family with (X,); = {x,;, | 5, = s}. Thus specifies, for each s, the countable
set {x,, X2.5» X35, * - *} Of s-sorted variables via convement finite subsets X, for u € §*.
For example, with S = {a, b} agam, Xuapap = X105 X2.a5 X4.0> X305 X555«

In an algebra A, a term ¢ € (Tx(X,))s defines a derived operator #4 : A* — A,
analogously to the one-sorted case: View a € A¥ as an indexed family of functions a : X,
— A byaylx,;) = a, € A, and, using Proposition 2.6, define t4(a) = afr).

Again, substitution is a special case. A family of maps ¢ : X, = Tx(X,) 1s like an n-
tuple of terms in variables X, except that #(x, ;) has to be 1n T<(X,); so that variables of
sort s, are assigned terms of sorts,. Also given ¢’ : X, — T(X,), S-sorted substitution is
defined by ¢t « t' = tot’; 1t « ¢’ is again the result of simultaneously substituting ¢,
=1t'(X,,) forx, , in each component of ¢. Associativity of substitution and its relationship
to derived operators go through exactly as in Propositions 2.4 and 2.5.

3. Applications of Initial Many-Sorted Algebras

3.1 ConNTEXT-FREE GramMars. The most important and general example of
initial many-sorted algebra semantics 1s semantics for context-free grammars

Let G = (N,X,P) be a content-free grammar'® with nonterminals N, terminals &
(NN X =), and productions PC N x (N U 3)*. Let V=N U I; foranyw € V*, define
nt(w) to be the string of nonterminals in w, in the same order. (More precisely, nt : V* —
N* is the umique extension to a monoid homomorphism of the map V — N* which is the
1dentity on N and takes each o0 € 3 to A € N*)

Now make G nto an N-sorted operator domain where, for each (w, A) € N*XN,

Gua={p EP|p=(A,w) and nt(w’) = w}.

Thus a production Ay — ueA Ay« Uy yAplin (A, € N, u, € 3*)is an operator symbol
of type (A4, - -+ A,, Ay} The initial G-algebra T has carriers Tg, 4 which are parse trees
for derivations in G from A € N.

Regarding the generality of this situation, we have just seen that any context-free
grammar gives rise to an inttial N-sorted algebra. Conversely (because we allow infinite
grammars), if ¥ is any S-sorted operator domain, then there 1s a context-free grammar 3
which gives us the mitial Z-algebra back again under the construction above. In particu-
lar, take

= (SIULOL Py with P={(s, a6, - s |0 €3, 4.

no

Then one can check that, under the 1dentification of the operator symbol (s, o'(s, - - - 5,))
n $ with o in I, T; and Ty are 1somorphic.

The impact of initial algebra semantics here is that any G-algebra whatsoever (a set S,
for each nonterminal A and a function ps : §4, X -+ - X §,, = §, for each production p

3 Usually N, X, and P are finite (see [19]) We don’t have (or want) that restriction here We believe that the
context-free grammar for the abstract syntax of many programming languages will have an mnfinite number of
termnals. nonterminals, and productions We don't consider the effective presentation of such systems here
(see van Wyngaarden [77]), but this must be carefully thought out

76 J A. GOGUEN, J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

of type (A, - - - A,, A)) provides a semantics for the context-free language generated by
G. Tg, being initial, gives the umque homomorphism ks : T¢ — S which assigns “mean-
ings” in S to all syntactically well-formed phrases of the language (not just to the
“sentences” generated from some specified start symbol in N).

For example, we make 2* into a G-algebra (with every carrier 3*) by letting p(v,, * - -,
Vi) = UVilhyVe " Ug Vol fOr p = (Ag,ueA Ay - -+ UyyAauy). Then the unique
homomorphism d : T¢—> Z* assigns to a derivation ¢ € Tg 4 the string which is derived .
Note thatd : Tz — (T U {(,)D* gives exactly the well-formed Z-expressions correspond-
ing to parse trees in Ts; this is the basis for proving the isomorphism of Tz and Ts.

G might be ambiguous (d not injective), but that is not a problem since imtial algebra
semantics (the abstract syntax point of view) factors out the parsing problem (without, of
course, eliminating 1t)."

Thus even “string generated” 1s an imtial algebra semantics for context-free gram-
mars. Knuth’s [30] synthesized attributes (following Irons’s [29] 1deas) really do what we
describe here, but Knuth’s definitions and notation seem more complex than is neces-
sary. In our formulation, Knuth constructs a G-algebra S in which each carrier Sy 1s itself
a Cartesian product of sets. The components of that product are called “‘synthesized
attributes” of A. Then Knuth’s “semantic rules” define (by the components) operations
of the appropriate type for each production. Of course, semantics of the language is the
unique homomorphism h; * T — S.16

3.2. DENOTATIONAL SEMANTICS Scott [63] begins with the motto “Extend BNF to
semantics In fact, that is the “moral” of the previous discussion We now know that
BNF'? yields an initial many-sorted algebra, that semantics arises from an algebra of the
same type, and that “meaning” 1s the umque homomorphism. We view the principal
achievement of Scott and Strachey (say [60, 64, 65]) as providing mathematical tools for
constructing semantic domains (many-sorted algebras with operations corresponding to
the productions of a context-free grammar) so that the unique homomorphism 1s the
intended (denotational) meaning of the language.

Scott and Strachey seem to say (e.g. [65, p. 17]) that they don’t care if the syntax of
the language 1s context-free. (“The last thing we want to be dogmatic about 1s lan-
guage.””) But their semantics does depend on the context-free character of the source
language, because the meaning of a phrase is a function of the meanings of 1ts constituent
phrases. (From [65, p. 12], ““The semantical definition is syntax directed in that 1t follows
the same order of clauses and transforms each language construct nto the intended
operations on the meanings of the parts.”) This essentially says that syntax 1s context-
free and semantics is a homomorphism.!®

In general, the “‘semantic equations” (typical of [65, 26], etc.) define the meaning of a
syntactic construct C as a function F, of the meanings of the components to that
construct, and 1n so doing the semantic equations describe an algebra (the function F 1s
the operation corresponding to the syntactic construct C) and say that semantics is a

 This 1s actually a generalization of the frontier function defined n Section 2

5 As Schwartz [59] puts 1t, “We have sufficient confidence in our understanding of syntactic analysis to be
willing to make the outcome of syntactic analysis, namely the syntax tree representation of program, mnto a
standard starting point for our thinking on program semantics ”

18 Knuth’s [30] inhented attributes are not treated in this paper, but Goguen and Zamfir (unpublished) have
suggested treating them as variables (that is, new uninterpreted constants) m free algebras whose operator
domain contamns, in addition to these variable symbols for mherited attributes, all the operations and constants
which are employed 1n semantic defimtions Burstall (personal communication) has suggested using [I — S] as
the carnier of a generahzed semantic algebra These 1ssues will hopefully be explored elsewhere On the other
hand, Knuth’s [30] main result, an algorithm tesung for circularty of a semantic definition mvolving both
mhented and synthesized attributes, lies outside the domain of interest of this paper

7 Backus-Naur Form, a well-known and convenient formulation for context-free syntax

'8 The homomorphic character of the semantic function must have been clear to Scott In fact, he uses the
phrase “‘continuous algebraic homomorphism™ (61, p 46] for the semantic function on the lattice of flow
diagrams (See Section 5.3)

Inutial Algebra Semantics and Contnuous Algebras 77

homomorphism. Usually semantic equations give the meaning with respect to an “envi-
ronment,” for example [65, p. 27],

e = vo. v 1(p) = cond(€l v, (p), €Ly](p)) * €llel,

“where p 1s an environment; 4 1s the semantic function for commands with target, say, I';
and € is the semantic function for expressions with target T = {true, false}. The initial
algebra “translation” of that semantic equation abstracts the environment variable to get

€le = vo, v:] = rp cond(€[y,1(p), €[y.] (o)) * 8l

Now this has exactly the form of the homomorphism condition,

(g[[_)(€>70,71)]] = F—)(%[[E]] 7(6[[')’0]] ,(gﬂ%l]),

and the operation (in the semantic target algebra)is F_, : T x I'?— T, defined forall ¢ €
T and y,, ¥, € I' 1n terms of cond, *, and abstraction:

F—> (€5’909 i’]) = >\P Cond (‘70 (p): ’?] (p)) * é'

The point 1s that one need only define the target algebra; initiality yields the semantic
homomorphism.

We illustrate this in more detail with a simple applcative /anguage which we call
SAL, drawn (and modified) from Reynolds [53].*° Let X = {x,, x,, - - -} be a set of
varwables (1dentifiers). In specifying SAL syntax we give each rule a name 1n order to
have mnemonics for defining a semantic algebra; those with subscript x represent
families, one member for each x € X. There 1s one nonterminal, {(exp), and all boldfaced
symbols are terminals. Thus variables occur as terminal symbols, just as, say, if does.
The (context-free) productions of SAL are the following?:

(v,) {exp) = x

(cond) ({exp) ::= if (exp) then {exp) else {exp)
(apply) ({exp) ::= <{exp) ({exp))

(abs,) (exp) ::= lambdax ({exp))

(let,) (exp) ::= letx be {(exp) in (exp)

(let-rec,) (exp) ::= let recursive x be (exp) in (exp)

From Scott [63] there is a complete lattice?! V of values satisfying the isomorphism,
V=I+B+[V->V], *)

where I and B represent respectively the mtegers and the Boolean values {true, false} as
lattices with + and T adjoined, and [V — V] 1s the complete lattice of continuous
functions from V to V. The +-operation on the right-hand side of (*) 1s the “coalesced
lattice sum”’?2 (disjoint union with minimum (and maximum) elements identified). For X
€ {l, B, [V — V]}, let j; be the injection j; : X - I + B + [V — V], and let ¢ be the
tsomorphism ¢ : V=1+ B + [V — V]. Then V 1s equipped with injection 1y : X — V (1
= ¢ 1ojy) and also “projections” 7, : V — X such that

_ Jo(V) of ¢(VIEX,
(V) = {J- otherwise

9 Our language differs substantially from Reynolds’s 1n that his employs a call-by-value interpretation of
application

2 The fact that this 1s an ambiguous grammar 1s irrelevant for our purposes

21 We discuss completeness, continuity, and alternatives to lattices in Section 4 For now, a complete lattice 1s a
partially ordered set where every subset has a least upper bound, a function 1s continuous ff 1t preserves least
upper bounds of directed subsets, and D 1s directed 1ff every fintte subset of D has an upper bound 1n D The
mimmum and maximum elements of a complete lattice are denoted + and ~, respectively

For lattices (and analogously for posets, with only 1), the coalesced sum of two lattices L, and L, consists of
the disjoint union (say) L, X {1} U L, X {2} with {1, 1) and (T, 1) rdentified respectively with (+,2), (T, 2) under
the obvious ordering The separated sum 1is the disjoint union with new + and + adjonted, + C {{,1) C + for all/
€ L,and ; € {1, 2}.

78 J. A. GOGUEN, J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

We wish variables to have values in V. Thus let E be the set of environments, 1.e. of all
total functions from X to V, E = VX as a complete lattice with componentwise ordering
e c e iffe(x) e'(x)inV for allx € X. Finally, meanings of expressions are continuous
functions from environments to values, M = [E — V].

M becomes a semantic algebra when we define an operation on M for each production
of SAL; let,, let-rec,, and apply are of rank 2, functions M2 — M; cond is rank 3; abs, is
rank 1; and v, is rank 0, a constant.

To carry this out, we define some auxiliary continuous functions (and functionals).
Our presentation here is rather sketchy since this development 1s what Scott, Strachey,
and followers do anyway, and our aim here is just to show that the relation to the initial
algebra framework.

(3.1) access, : E — V 1s the evaluation function on V¥ at x € X: access(e) = e(x).

(3.2) ¢ : V¥ — Vis some conditional, say:

T ifv, =T,
vy ifv, = true,
vy 1f v; = false,
+ otherwise.

C(vl’ Vs, V3) =

(3.3) ap : V2 — Vs application: ap(vy, vo) = (mpy—i(v1))(ve), where mpy_.p is the in-
dicated projection; see discussion following (*) above.
(3.4) assign, : E X V — E is our friend the assignment operator:

v fy =x,

assign, (e, v) = ¢’ where e'(y) = {e(y) otherwise.

All of the above have either been shown to be continuous or can easily be shown to be
such. In addition, Scott [63] defines

(3.5) abstract : [D X D' — D"]— [D — [D' — D"]] by ({abstract(f))(x))y) = fix,y)
forallfe[Dx D'—- D', x €D, andy € D',

Here we too enjoy some notational ambiguity by writing “abstract” 1nstead of
“abstracty, . p»”’; and similarly in other cases.

(3.6) The least fixed point operator Y : [D — D] — D is continuous.

(3.7) Ifm, : E—= V, (1 =i =<k) are continuous, then [m,, --- ,my] : E—> V; X -+ X
Vi defined by [m,, - -+, mJ(e) = (m,le), - -+ , myle)) 1s continuous (called target-tupling)

(3.8) For continuous functions f : D — D’ and f' : D' — D", the composite f' o f is
continuous; and so 1s composition itself, o : (D' — D"} X [D — D’]) - [D — D"].

Now make M = [V¥ — V]nto a SAL-algebra by giving an appropriate operation for
each production of SAL:

vy = access,

cond(m,, m,, ms) = ¢ o [m,, my, ms)

apply(m,, my) = ap © [m,, m,]

abs () = gy abstract(m © assign)

let ,(my, my) = my o assign, o [15, m]

let-rec .(m,, my) = let ,(y © abstract(m, o assign,), ms)

Actually the definitions of most of these operations seem to be clearer as diagrams,
since the source and target of each function is explicit. ““Abstraction” 1s regarded as a
way of getting one function from another The function “assumed” (or given) appears on
the top, the function “deduced” appears below it, and the process is represented by a
line between them; thus

DxD 5D
D i [Dl — Dll]

for g = abstract(f). Then the first five definitions are:

Initial Algebra Semanucs and Continuous Algebras 79

(1) v.l‘ = E access V

(2) cond(my, my, my) = E

[my. my, ms), Ve, y
(3) apply(m,, my) = EZemd, y2 2,y
assign,

Exy =, g Ly
E>[V— V] 4 p

(5) letz(ml,mQ) =F M’Exv assign , E v

(4) abs (m) =

With M a SAL-algebra, the unique homomorphism 4y : T — M 1s a semantics for
SAL. There is no claim for great gains in perspicuity, but our mode of definition does
illuminate the places where semantic choices are made. It 1s through the introduction of
standard mathematical functions—composition, tupling, injection, and the lIike —that
these choices are clarified, and this process has the additional benefit of getting rid of the
need for-‘‘dragging along” the variable for environments.

Given the particular conditional and application functions ((3.2) and (3.3) respec-
tively), then the functions cond and apply ((2) and (3) respectively) on the semantic
carrier M are essentially the only choices possible; this differs from Reynold’s meta-
circular interpreters in that he presumes a *‘defining language” 1n which the interpreters
are written and the semantic choices have not been completely made for that meta-
language. In the semantic carrier E—V, there 1s simply no way to make a distinction
between order of evaluation of operator and operand in (2), for example. If expressions
had side effects and E—E XV were taken as carrier, then the two orders of evaluation
would be clearly represented in

E D ExV M EXV xV 2 Exy
and

E I5Exy M, ExV xy 2%, ExV,

where ap'(vy, v} = ap(v,, vi) = v,(v,) and fxgla. b) = (f(a), g(b))

3.3. Syntax Directep TransLatioN. The notion of syntax directed translation
pioneered by Irons [29] has been mathematically treated by several authors [1-3, 30, 35,
50, 63, 73]. We can view these technical interpretations of syntax directed translation as
special cases of initial algebra semantics with the “‘semantic algebra” nearly free. There
are two problems: First, we aren’t yet sure how best to treat ‘“‘nondeterministic”
translation and therefore don’t. Second, we only formulate various concepts, giving
neither new results nor simplified proofs We hope that the reader, faced with these
remarkably simple definitions, may be moved to simplify and expand the theoretical
development.

Just as generahized sequential machines [19] map X* to 3'* (for alphabets 2, and
3'), syntax directed maps go from T to Ty, (for operator domans 3, and 3'). Just as
one later restricts a generalized sequential machine to a subset of 3* (e.g. a context-free
language), one can later consider a syntax directed map on a subset of T, say a set of
derivation or parse trees

Thatcher [69] shows that many prior formulations of syntax translation are special
cases of a general algebraic formulation. So do we here, but with even greater simplicity,
if less intuitive transparency.

Definition 3.1 A k-state root to frontier syntax map from Ty into Ty, is the unique
homomorphism £ : Tx — (T:.)* guaranteed by initiality of Ty after making (Ts)* into a
J-algebra. The set [k]1= {1, 2, - - - , k}is the set of states. If A(t) = (t,, - - - , t;), then ¢, is
the image of ¢ under the syntax map from start state 1. 0O

The standard example (cf. Rounds [57], Thatcher [69]) 1s polynomial derivative.
Take 3, = {0, 1, x}, T, = {+, %X} and define a (2-state) syntax map (from Ty to Ty) by
placing the following Z-structure on (Ts)*:

80 J A GOGUEN, J. W THATCHER, E. G. WAGNER, AND J B. WRIGHT

(L t)+ (s,)=+ 1,6 + 1)
(1, 1) X {ts, 6)= ((t] X ta) + (t; X 13), 1, X t3)

0 =0, 0)
1=40,1)
x = {1, x)

These “‘equations,” especially the last three, may be somewhat confusing; of course the
symbols +, X, 0, 1, x are from £ and, for example, the last equation says that x in %
names the pair (1, x) in (T)? of objects namhed by 1 and x (each n Ty).

Now h : Ts — (Ty)? yields h(r) = (¢, t); the left member of the pair is the (unsimplified)
derivative and the right member 1s just ¢ agamn.

The definition simplifies and encompasses Thatcher’s [69] *‘root to frontier automa-
ton with output” (called “finite state transformation” in [68]). Intuitively, if t = o(¢', ¢"),
t; is the translation of ' from root (start) state 1, and ¢, is the translation of ¢’ from state
1, then o({ty, <+ ,), (1, + -+ , th)), is the translation of o(¢', t") from state j.

If k = 1 and the Z-structure on Ty, is uniform n the sense that for each o &€ 3, there 1s
aterm{,in Ty (X)) such that for allt’ € Ty, o(t}, -+ , ;) = t, < {1, - -+ , t), then the
resulting syntax map 1s called a homomorphism, generalizing the homomorphisms of
ordinary formal language theory If, in addition, each ¢, 1s Iinear (no repetitions of
variables), then the resulting maps include the ‘‘syntax directed translations” of Lewis
and Stearns [34] and the syntax directed translation schemes of Aho and Ullman {1]. If
k = 1 and the Z-structure on (Ty)* 1s uniform in the above sense, our syntax maps include
the generalized syntax directed translation schemes of Aho and Ullman [2].

The other case of syntax directed translation we want to consider is frontier to root
translation. Outside tree automata theory (1.e. outside Baker [3], Magidor and Moran
[40], Thatcher [69], etc.) we don’t seem to find frontier to root translation as much as
root to frontier maps, except when they coincide (k = 1). But the definition of finite state
frontier to root syntax map is remarkably simple and particularly interesting in that 1t 1s
obtained by replacing ‘“kth power” in Definition 3.1 by “product with k.” (More
technically, we replace the ‘“‘k-fold product of Ty,” with its category theoretic dual, the
“k-fold coproduct of Ts..”)

Defiution 3 2. A k-state frontier to root syntax map from Ty to Ty s the unique
homomorphism h : Ts — [k] X Ty guaranteed by matiality of Ts after making [k] X Ty
into a S-algebra. The set [k] = {1, 2, - - - , k} 1s the set of states. If h(t) = (1,¢'), then ¢' is
the image of ¢ and the terminating state isi. O

For example, a tree automaton (Doner [15], Thatcher and Wright [70]) with trans-
tion function M : X x [k]* — [k] is imtated as a frontier to root syntax map by making
[k] x Tsinto a 3 -algebra with o({i;, 1;), - -+ , (i, 1)) = Mo, iy, =+ L in), ot~ * 1)),
the second component is the 1dentity.

3 4. Svstems oF EquaTions. If A is a X-algebra, we make pA (the set of subsets
of A) into a 2-algebra with the “subset construction™:

(0) For o € 2y, 0,4 = {04}

(1) Forn > 0,0 €3,,andu,, -+ ,u, EpA,

UpA(ul, vun) ={0'A(t1’ >tn)‘t1€uu 1Sl$n}.

Associated with each ¢t € Tx(X,) is a derived operator ¢, : (pA)" — pA; extending this
idea to sets of terms, if r C pTs(x,), define

rpA(ub e Uy = U{tpA Uy, -~ ’un)iter}-

E : X, — pTs(X,) is called a system of equations (in n variables) which determines a
function E,, : (pA)"— (pA)", by E,s = [E(x)pa, " " - » E(xa)p4] (target-tupling), called the
system function by Mezer and Wright [45], who show that E,, is w-continuous, i.e.
least upper bounds of w-chains in (pA)" are preserved. Therefore E,, has a minimum
fixed point, called its solution, say (s, - * - , s») € (pA)"; in fact,

(sh Y sn) = UkEpkA(@> T @)

Ininal Algebra Semantics and Continuous Algebras 81

A subset of A is equational iff 1t 1s a component of a solution of a system of equations.
The entire theory of equational sets (cf. Meze1 and Wright [45], Eilenberg and Wright
[16], Blikle [8], and Nivat [48]) flows from these definitions, from itiality (to get
derived operators) and from the fixed-point theorem (to get solutions).

4 Continuous Algebras

We begin with some preliminanies on partially ordered sets (posets) and the poset of
partial functions in particular. Ordered structures have played an important role in many
different approaches to the semantics of programming; see Bekié¢ [4], Gordon [26],
Manna [43], Nivat [48], Park [49], Reynolds [53, 54], Scott [61-64], Scott and Strachey
[65], Wagner [73, 74), and Wand [75], among others. This dwversity of effort has
resulted 1n a diversity of terminology, leading to a certain amount of confusion—
heightened by the fact that the various key words have been used by different authors for
different concepts. “Complete” sometimes refers to the existence of least upper bounds
of arbitrary sets [62], or of directed sets [26]; and “continuous” modifies lattices [62],
algebraic theories [11], categories [23], algebras here, and most often, functions Scott
[64] and Reynolds [53, 54] speak of ““domains” as complete, countably based, continu-
ous lattices, but then Gordon [26] argues that “semidomains’ are more appropriate
than ‘“‘domamns,” where his domains are complete lattices and his semidomains are
directed-set-complete posets.

In addition, it 1s not clear that there 1s just one “right” order structure for semantics.
Thus in this paper we suggest a terminology and mathematical development which
hopefully eliminates confusion and permits the expression of general theorems about
varied forms of completeness and continuity. Our presentation 1s admittedly biased
toward posets over lattices,?® based in part on the sometimes greater complexity of the
structures which the lattice approach generates, as well as upon the difficulty of giving
concrete computational mterpretations to these additional elements when they arise. At
first sight 1t might seem that there 1s no real difficulty, because one can merely add
enough “overdefined” elements to a sufficiently complete poset to get a complete lattice
(and often one element *“T”” will do; see (4.3) below). But more sophisticated construc-
tions, when constrained to start with lattices, may produce far more than one additional
element. For example, coproducts (over index set /) produce free (generated by I)
Boolean algebras of overdefined elements, and our imitial continuous algebra construc-
tion produces an nfinite and unruly collection of objects involving substitution instances
of T in infinite trees (see discussion after Proposition 4.2)

The reader should bear 1n mind, however, that the algebraic approach does not impose
any choice between (say) directed complete posets and lattices. It is the marriage
between the algebraic and the order theoretic approaches that is important.

Following Scott, we use t for the order in a poset P, u (read “cup”) for binary (or
finite) least upper bounds, and U (read ‘‘mug”) for least upper bounds of arbitrary sets.
We assume all posets have a minimum element denoted + (*‘bottom™), while T (“top”)
denotes the maximum element if 1t exists. A subset S of P 1s directed iff every finite subset
of S has an upper bound in S A function f: P — P’ from a poset P to a poset P’ is
monotonic iff for all p, © p, in P, f(p,) € f(p,) in P’.

In order to be able to introduce concepts such as “‘complete” and “continuous” in a
uniform manner, 1t 1s convenient to ntroduce the following notation. We say a subset S
of Pisa

u-set if S if finite nonempty,

w-set 1f § is an w-cham,

¢-set if S 1s nonempty, and linearly ordered (1.e. a chain),
A-set if S 1s directed,

U-set if S 1s nonempty

For further discussions of the relative ments of lattices versus posets see after Corollary 4 12 and also
Gordon {26] and Lewis and Rosen [33, Pt 2]

82 J. A. GOGUEN, J. W. THATCHER, E. G WAGNER, AND J. B WRIGHT

For each symbol Z € {u, w, ¢, A, U}, a function f : P— P’ 15 Z-continuous iff it preserves
all least upper bounds (that exist) of Z-sets in P; a poset P is Z-complete iff all Z-sets
have least upper bounds in P. Each of these symbols can be modified by a ““dot” to
mndicate boundedness: A Z-set is a Z-set with an upper bound in P and, e.g., a poset is Z-
complete iff each bounded Z-set has a least upper bound 1n P. P 1s Z-bounded 1ff every
Z-set has an upper bound in P (1s a Z-set). Finally we need the modifier “strict”: P 1s
strict iff P contains a minimum element + (we only consider strict posets here): f: P—
P’ is strict iff 1t preserves L.

Examples of the use of these conventions are:

(4 1) A function f: P— P’ 1s Z-continuous iff it is Z-continuous.

(4.2) A poset 1s ¢-complete iff it is A-complete (cf. [13] and [44]).

(4.3) Let P” be the poset Pwith T adjomed (i.e. ™ &€ Pandp & Tforallp € P). Then
P is U-complete (a complete lattice) 1ff P is U-complete; and P is u-complete (an
upper-semilattice) iff P is u-complete.

(4.4) Some of the modifier symbols are ordered (w C € CA C U), so P U-complete
implies P A-complete implies P £-complete implies P w~complete.

(4.5) § C P is directed 1ff S 1s nonempty and u-bounded.

(4.6) For each of our Z, f Z-continuous implies f monotonic, because p, ¢ p, in P
wmplies {p,, p;} is a Z-set having at least upper bound (namely p,). Thus f{p, u p,) = f(p))
= flpo) ufp1), 50 f(py) € fips).

(4.7) Least upper bounds of Z-sets work by components on Cartesian products, 1 €.
tléll <pl,17 T pk.:) = (,léll Pias "7 xgl pl\‘,l>

for any Z-set {(p,,, * -+, Prther M Py X - - X Py

(48) For Z€ {w, ¢, A},f: P X -+ X P,— Ris Z-continuous iff f is Z-continuous

componentwise, i.e. iff
flu Pias "7 u pk,u.) = U P vp}c.u)-
u€l uEl W VE L X X,

For sets A, B, let [A <> B] be the poset of partial functions® from A to B. Since we
have fixed source and target, the elements of [A ->> B] correspond to functional subsets
of A X B;i.e.1if {a, bYEf and (a, b')ES, then b = b’. The order relation on [A ~> B] is
simply set inclusion, and the least upper bound (when 1t exists) is set union; it exists 1ff
the set union is a function Forf: A<= Band CCA,f 1 C={@a,b)|a € Cand
{a,b) € f}is the restricion of fto C; def(f) = {a | {a, b) € [} is the domain of definution of
f. The following are well-known facts about {4 <> B].

(4 9) [A - B] 1s strict A-complete and U-complete.

(4.10) Iffcl,c,f, in[A > B] where def(f) is fimite and {f},¢; 1s directed, then f&f, for
some j&I. This says the finite partial functions are A-compact

So much for preliminaries We now turn to the definition of “2-trees” which provide
the carriers of 1nitial “contmuous algebras ”” The 1dea 1s based on the well-known device
of representing a X-tree as a function defined on a prefix closed subset of w* (called a
tree domain; see [67]) taking values 1n 3 In Figure 1(a) (3, = {b, x4, x,}, 22 = {f}, and
2, = fori # 0, 2}, the tree (expression fAf(x,x)b)x,)) 1s represented by the function
t {10, 1,00, 01, 000, 001} — {f, b, x,, x,} where A, 0,00 = f; 1,000 = x,: 01 + b; and
001 & x,. The first generalization considers the representation as a partial function on
* for which the domain of definition has the tree domain property. This subsumes the
previous formulation and immediately includes mfinite trees. Figure 1(b) 1s such,
represented by ¢ @ w* <> {f, b} with 0* ~ f; 0*1 ~ b; and ¢ undefined otherwise. (This
example solves the equation x = f(x, b); see Section 5.1.) Finally we allow trees to be
partial, the effect being that leaves can be unlabeled (or labeled with +; see Proposition
4.4). The third tree 1n the sequence (chain) of Figure 2 1s the partial function ¢ : @* >

F A-0> B designates a function A to B with a possible ‘“‘hole ”

Initial Algebra Semantics and Continuous Algebras 83

Xo

(a)

Fic 2

{f, b} with A, 0, 00 ~ f; 1, 01, 001 — b, and undefined otherwise. The natural order
relation on these trees is the one obtained from [w* <> {b, f}], and the least upper
bound of the chain of Figure 2 1s the tree of Figure 1(b).

We now give the precise definttion of 3-tree in the simpler one-sorted case and
consider many-sorted operator domains at the end of this section

Let (Z,)c, be a one-sorted operator domain (i e a ranked alphabet) A Z-free is a
partial function ¢ : @* -> 2, such that, for all ¥ € * and | € w,

(a) ui € def(t) 1mplies u € defir);

(b) ui € defit) umplies t(u) € 3, and i < n for some n > 0. (Note that ui € def(t) does
not 1imply uk € deflr) for any other k.)

Let CT, denote the set of 3-trees; and let Fy denote the subset of all finite X-trees
(those trees ¢ for which defir) 1s fimite) The ordering on [w* <> 2] mduces an ordenng c
on CTs (and F,). If a set of partial functions satisfying (a) and (b) has a least upper
bound (set union) fin {w* <> X}, then f also satisfies (a) and (b); so least upper bounds
mn [w* <> 3] are least upper bounds in CT; Thus, from (4.9),

Prorosition 4.1 CTs is a strict A-complete and U-complete posetr. O

Let o™ be the subset of w* contaiming strings of length less than n; then U, c,0™ = o*.
And taking 1 = 1@, then t = U,/ By condition (b), each ¢ 1s finite (even
though ' 1s infinite); thus

ProrosiTioN 4.2 Foranyt € CTs, t = Uy, i and 1 € F. O

Now make CT, nto a X-algebra.

(0) For o € 3, let arr = {(A, o)}

(1) Foro €%, n>0,andy,, --- ,t, € CTy, let
(TCT(tls RS tn) = {O\s O')} U U1<n {(iu, UI) | (u, UJ) € tl+l}'
Ift,, -+ ,1, € CTys and o € 3, then ocflt,, -+ ,t,) € CTy; in fact, if the ¢, are finite,
then so 18 o¢rft;, --- , 1,). Thus we have also given 3-structure to Fs

The ordering on CTy 1s related to this algebraic structure as follows

PropoOSITION 4.3. In CTs,tCt' ifft = L ort =1t = ocp € 2 or there exist ¢ € 3,
and £, -~ Jty, by~ tpn CTysuch that t = ocqlty, -+ ,), ¢ = ocltl, « , th),
andt, S t, forl <1 =<n.

Proor. Both directions are quite clear from the definitions, especially sufficiency
For necessity, if def(t) = &, thent = 1. If def(t) # &, then X € def(r) and t(\) = t'(\);

84 J. A. GOGUEN, J. W. THATCHER, E G. WAGNER, AND J. B. WRIGHT

so if t(A\) € 3, define t, = {(u, ') | (u, ') Et} and £, = {u, o'} | (iu, a’) € t'}. By the
definition of operations o¢r and the order relation on [w* <> 3], t = acr(ty, < , 1),
4 =0'C1‘(t;3 v ’t;l)7 and L c t;' g

ProrosimioN 4.4. Fs is the free 3-algebra on one generator L; i.e. it is an inutial
S(+)-algebra. O

We won’t burden the reader with a proof of Proposition 4.4 here because it is fairly
obvious and a good exercise. It can be done in two ways: either show there 1s a unique
Z(+)-homomorphism h, : Fy — A for any other Z(+)-algebra A, or show that Fs 1s
isomorphic to (say) the usual algebra of Z(+)-expressions (defined in Section 2) and then
use Proposition 1.1. Either way, the result depends on the uniqueness of decomposition

in Fy;eithert = +, t €3,, orthere existumquen >0, ¢ €3,,andy,, --- ,¢, € Fy such
that ¢ = gcrlty, -+, 1),
ProrosiTioN 4.5 The operations of CTx are U-continuous.
Proor. Assume U,(t,, -+ , t,,) existsin CTE. Then by (4.7) it equals
(quIII,n T UIEItn,l), and we need
0-CT(LI tl,n T, u tn,l) = u UCT(’],I’ T, tn,z)-
1ef el €]

The left-hand side is
0 o} U Y (G, 0] e o VE Ut

= {0} U U Y {Gu, o) | {u, 0') € t11}

<n

= YN o)} U U G, o) [, o) € s,

which is the right-hand side. O

Because everything in the proof of 4.5 is finite when restricted to Fy, the same proof
yields:

ProrosItioN 4.6 The operations of Fx are U-continuous. O

Let an ordered 3-algebra be a Z-algebra whose carrier is a poset with — and whose
operations are monotonic. A homomorphism of ordered Z-algebras is a strict monotonic
3-homomorphism. Let Palgs be a class of ordered Z-algebras. Since the operations of
F; are monotonic (Proposition 4.6 and (4.6)), Fy is an ordered Z-algebra. In fact,

Proposition 4.7. Fs is instial in Palgs.

Proor. LetA be an ordered Z-algebra; make 1t into a 2(+)-algebra by letting -4 be
the minimum element. Then by Proposition 4.4 there is a unique %(+)-homomorphism
h : Fz— A which, of course, is also a 2-homomorphism Fs — A preserving 2. We show
h is monotonic. If 1 ¢’ 1n Fg, then by Proposition 4.3 either f = (in which case A(f) = +,
Ch(t), ort =t = ggp € 3,4 (in which case h{t) Ch(t')), or there are a €3, and 1y, -+ -, 1y,

"1y, o,y in CTg such thatt = ooty -+, t,) Eoerlty, -+, ty) = t' and ¢, Ct;. By induction
on the cardinality of def(), we can assume A(t) € k(). But h(t) = h(ofdty, . 1) =
o4lh(ty), -+, hit,) © (monotonicity of a,) auh(ty, ---, hit,) = h(ogdty, -+, 1) =
h(t"). O

A Z-algebra is w-continuous iff its carner 1s strict w-complete and its operations are w-
continuous. By Propositions 4.1 and 4.5, CTy 1s an w-continuous algebra.

THEOREM 4.8. CTy is inttial in the class of w-continuous X-algebras with strict A-
continuous 3-homomorphisms.

Proor. The main idea is that every w-continuous Z-algebra A is in Palgs so there 1s a
unique homomorphism 4, : Fx — A which can be extended using Proposition 4.2 : (¢
= U, A (™). We must prove A, is a 2-homomorphism, is A-continuous, and 15 unique.

Let A be an w-continuous 3-algebra. It is also in Palgy, so by Proposition 4.7 there 1s a
unique (monotonic) 3-homomorphism #, : Fy — A. We show 1t has a unique A-
contmuous extension i, : CTy— A which is a 2-homomorphism. In fact, define A 4(¢) =

Inutial Algebra Semantics and Continuous Algebras 85

U,/ 4(t™) which exists because A 1s w-complete.?> Now uniqueness: If 2’ extends h, and
is A-continuous (even w-continuous), then A'(t) = h'(U, ™ = U A'¢™) = U,h,(?) =
h ().

Next, i, is monotonic Assumet, C ¢; 1n CTy witht, = |5 and £, = U4 . For each
k, £ c *»; by monotonicity of &4, hu(t}) © h,¢®); and thus Aty = Uk (§) ©
Uih4(19) = ha(ty).

Now we show h, is A-continuous. Assume t = [, for some directed set {f,}.c; In
CTs. We must show that f2,(z) = U,c/A4(t,). First, ¢, c ¢ for all z, so by monotonicity of
hy, halt) © Ry for all 1 i.e. hiy(¢) is an upper bound for {f1,(¢)}.c;. Let b be any other
upper bound A4(t) © b forall: €1. Foreachn, ™ C t = {Jgt,, and {t,} 15 directed; so
by (4.10), £ c ¢, for some;. Thus for each n there is some; wath 7, (#™) © h4(t) ch;1.e.
U, /(™) = hut) c b. Thus we have Ay (t) = U, hat) as required. (This may be
surprising; since A is only w-complete, there is no a priori reason for U,e h4(t,) to exist.)

Now we have only to show that k, is indeed a S-homomorphism. First check that

oorlty,)P = ootV - 1% VY fork > 1 and that £ = L, Then
haloerlts, 7+, 1) = U hylacrltss -, t)*) (definition of /1,)

= Uhyo er(tfEY, e, 1)) (definition of 1)

= Uoaha(877), -, Ryt ™)) (h4 a homomorphism)

O'A(E h g0y, - -, ‘12] h(eF 1)) (w-continuty of o,)
aalhaty), -, halty) (definition of &,). O

The following result 1s a corollary of the proof of Theorem 4.8. We proved there was a
unique strict w-continuous E-homomorphism from CT; to A, and then we were able to
show (surprisingly) that in fact that homomorphism was A-continuous.

CoroLLARY 4.9. CTy s initial in the class of w-continuous 2-algebras with strict o-
continuous homomorphisms. [

An algebra is A-continuous iff its carrier is A-complete and its operations are A-
continuous. Let Aalgs be the class of A-continuous 3-algebras with strict A-continuous
3-homomorphisms. Since CTy is 1n this class, which is a subclass of that described in
Theorem 4.8, we have

CoROLLARY 4.10. CTy, is inttial in class Aalgy of A-continuous 2-algebras with strict
A-continuous homomorphisms. 0O

There are confusingly many initiality results for CTs. For example, the following
neither implies nor is implied by Theorem 4.8; details will be provided elsewhere when
the relevance of the result is better understood.

THEOREM 4.11. CTy is mitial in the class of 3-algebras with w-complete carriers,
operations that are both w-continuous and u-continuous and homomorphisms that are
strict U-continuous %-homomorphisms. O

Since the following is a subclass of that in Theorem 4.11 and contains CT's, we have

CoRrOLLARY 4.12. CTy is mitial in the class of 3-algebras wuh strict A-complete
carriers, U-continuous operations and strict U-continuous homomorphisms O

Before considering properties of derived operations on mitial continuous algebras, we
can now offer a bit more to the lattice versus poset “‘dispute * Since T 1s U-complete
(Proposition 4.1), it follows that CT3 is a complete lattice (4.3) Make CTy into a -
algebra by requiring that if any argument to o¢y 18 T, the value 1s 7T (the operations
preserve T). It follows immediately from Corollary 4.10 that CT75 is initial in the class of
Z-algebras with carriers which are complete lattices, operations which are A-continuous
and preserve 1, and homomorphisms which are doubly strict A-continuous (also pre-

% When the range of the index 1s obvious (as in this proof, n € w), we delete that extra notation, e g U, =
UIIE&I

86 J A. GOGUEN, J W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

serve T). It 1s fairly clear that the homomorphisms of lattice algebras should be doubly
strict A-continuous, but 1t 1s equally clear that once the “overdefined” element T 1s
mtroduced (we would say, artificially) to make the poset U-complete, then we do not
necessarily want the operations to preserve 7. In order to get the initial algebra in the
class of lattice-2-algebras with A-continuous operations and doubly strict A-continuous
homomorphisms, one has to put the obvious (though cumbersome) order on the algebra
CTg(™) (the algebra freely generated by {T}). A common argument in support of lattices
is that the only cost of using complete lattices is the occasional addition of an extra “over-
defined” T to the domain. This initiality discussion shows that the argument is somewhat
of an oversimplification, since many curious terms in CTg(™) mnvolving T have been
added and are of dubious interpretation.

Having established the existence of initial continuous algebras, we can, as in Section 2,
consider derived operators. Let A be any Z-continuous algebra (strict Z-complete
carrier, Z-continuous operations) and let a : X, — A; then ¢ : CTg(X,) = A is the
unique homomorphism determined by making A into a 2(X,,)-algebra. As before t4(a) =
a(t). One can check thatif a ca’ (1e.a(x)ca'(x), 1 =j=n), thendaca' (ie a(t)c
a'), 1 € Ts(X,).

ProrositioN 4.13. Foreachn € w, t € CT<(X,), and Z-continuous %-algebra A, the
derived operator t | : A® — A is Z-continuous for Z € {w, A, £}.

Proor. Let {a,},c; be a Z-set in A”; then by the observation above, {@{(f)},c; 1s also a
Z-set, and by Z-completeness of A we can define a(f) = U,c;a,(f). We want to show thatg
1s a homomorphism.

aocrltr, o+, 1)) = Wafoert, -, 1) (definition of a),
= zléll aaaey), -+, alty) (a, a homomorphism),
= 0’4(}215101), ,lle.ll afty)) (Z-continuity, (4.8)),
= oaa(y), -+, aty)) (Z-continwity, @)

Clearly, a extends U,¢,a,, and now we know g is a 2-homomorphism, so @ = U,ga,.
ThUS tA(quIaz) = d(t) = UIEIal(t) = U1EItA(al)- O

Exactly as m Section 2, substitution 1s defined as a special case of derived operators,
and 1t 15 associative; 1n fact, substitution 1s itself A-continuous. and this depends on
Initiality of CTs.

Prorosition 4.14. Substitution is A-continuous, i.e. «— : CT¥(X,) X CTi(X;) —
CTE(X) 1s @ A-continuous function on the (A-complete) Cartesian product of A-complete
sets.

Proor. For ¢ - X,, - CTs(X,) and ¢’ : X, — CTx(X,), recall from Section 2 that
t <t : X, — CT(Xy) is defined by (t < ¢')(x,) = #(t(x,));1.e.t < ' = ot where ' 1s
the unique homomorphic extension of #'. For A-continuity we can consider each argu-
ment separately. Let {t},c; be a A-set Then (U,cpt) < ¢ = (definition) # o (Ugt) =
is A-continuous) U,,(¢' © t) = (defimition) U,c,(t, < ¢'). For the other argument, t «
(L)) = (definition) Uyct! o ¢ = (as in proof of Proposition 4.13) (Ueg]) ot = (by
3.8) U t; © &) = (defimtion) U, (t «-¢). O

A simple example (arrived at with Steve Bloom) exemplifies substitution and shows
that it is not u-continuous. Let 3, = {a} and take { = {1, 2} with ¢, = a(+x,) and £, =
a(x,+); then 1, v t, = a(x;x), and (¢, U t) <« (t, u 1) = ala(xx)alx,x;)); but
(6 <t) u (ta < 1) = a(+a(+xy)) v ala(x L)L) = ala(xLa(+x,)) # alalxxdalxx,)).

The promised S-sorted mitial continuous Z-algebra 1s a simple modification of the one-
sorted case. A 2-tree of sort s € § 1s a partial function ¢ : @* > 3 such that:

(0) If A € deflr), then #(\) has sort s.

(1) Hw € w*, i € w, and wi € deflf), then

(a) w € deflr);
(b) if #(w) has anity 5, -+ - 5, then { < n and #(wj) has sorts,,,.

Irutial Algebra Semantics and Continuous Algebras 87

Then CTy has carniers CTx,, consisting of all s-sorted 3-trees (including <) It gets -
structure just as in the one-sorted case, and we have

THEOREM 4.15 CTy is wnitwal in the class of w-conninuous 3-algebras with strict A-
continuous X-homomorphisms O

5. Applications of Initnal Continuous Algebras

Initiality of CTy has important consequences 1n the theory of computation Just as
mitiahity of Ty clarifies and simplifies “‘tree manipulation,” CTx clarifies and simplifies
work with infinite trees which, for example, arise in the semantics of flow diagrams,
recursive schemes, and other data structures.

CTy has advantages 1n 1ts abstract form (an 1nitial A-continuous X-algebra) and in 1ts
concrete form (we can visualize elements of CTs as (infinite) 3-trees). The abstract
formulation facilitates defining derived operations and solving equations 1n A-continu-
ous Z-algebras; n fact, this is easier than the conventional formulation employing the
subset construction. The concrete representation permits clear understanding of the
objects in CTy; for example, our formulation of the lattice of flow diagrams 1s simpler, as
well as more convincing than the inverse limit construction employed by Scott [61].

We know three papers?® with general notions related to initial continuous algebras:
Wand's [75] free u-clones, Nivat’s [48] algebra of schematic languages, and Bloom and
Elgot’s [9] free iterative algebraic theories. The diversity of these approaches, plus the
somewhat sketchy character of the first two references and the novelty of initial continu-
ous algebras, make 1t hard to describe all relationships between these approaches, but we
do point out several connections

The discussion and examples below focus on the class Aalgs of A-continuous 2-
algebras with strict A-continuous ¥-homomorphisms, thus we use Corollary 4.10, that
CT; is imual in Aalgy Although what we say applies to other classes of algebras (e.g
those mentioned in Theorems 4.8 and 4.11, and Corollaries 4.9 and 4.12), we don’t give
applications for these

5.1. Systems ofF (REGULAR) EQuaTIONs. Section 3 4 related mitial algebra seman-
tics to solving equations 1n the imitial many-sorted S-algebra We used the phrase “‘make
PA mto a 2-algebra by . . .” to define a derived operator ¢, : (pA)* — pA for eacht €
T5(X,). An apparently ad hoc step then followed: extending derived operators to sets of
terms by taking unions of values. For a A-continuous 3-algebra, this 1sn’t necessary since
its order structure permits equations expressed in CTs to be solved directly

A system of n equations (expressed) in CTs is a function E : X, - CTg(X,). This
simplifies the informal definition ** . a sequence or set of equations of the form x, = ¢,
where 7, 1s a term 1n n variables, x,, --- , x,,.” To read our system that way, write x, =
E(x,); E(x,) 1s the right-hand side of the 1th equation.2”

For any A-continuous algebra A, E, : A®» — A" 1s the derived operator of E over A;
recall from Section 2 that (E,(a)), = E(x,) (@) = a(E(x))) for alla € A®and 1 =i =< n. By
Proposition 4.13, each component, E(x,), * A" — A, of E, is A-continuous, and by (3.7)
so is their target-tuple E, = [E(x,),, <=+, E(x,),] : A® = A™

Thus E, has a mmmum fixed-point denoted | E, | € A" and called the solution of E
over A We know that| E, | = U, E5(~, - -+,); that E,(| E, |) =) E, |; and that for all
a € A" of E,(a) = a, then | E, | ca. For the special case A = CTs, we write | E | for the
solution of E over CTy.

Familiar results 1n the theory of equational sets follow nicely 1n this setting Recalling
that 4, * CTs — A is the unigque A-continuous X-homomorphism from CTs to the A-
continuous X-algebra A, we write | E |, for h%(| E |).

% Reynolds’s work [55] employmg some methods of this paper will probably also mterest the reader, and
should appear soon after this paper does

* The notation E(x,) 1s correct because E 1s a function with source X,, = {x,, . Xu}, but note that E(x,) 1s an
element of CTx(X,) possibly mnvolving all the variables x,, , X

88 J. A. GOGUEN, J W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT

The following analogue of Mezei and Wright [45, Th. 5.5] says that solving equations
in the initial algebra, then interpreting the solution; and interpreting the equations, and
then solving in the algebra, give the same answer. (Engelfriet and Schmidt [18] appropri-
ately refer to these as “Mezei-Wright-like results”; cf. the following proposition.)

ProrosiTioNn 5.1. For any system of equations E : X, — CTy(X,) and any A-
continuous 3-algebra A, | E|, = | E4 |-

Proor. By induction on k and Proposition 2.5, hy(Ex (+, -, 1)) = Ef(L,, -+, 1,)
where, for clarity, + 1s minimum i CTs and +, is minnmum mm A (In general,
BH(E(@y, -+, 1)) = Eg(ha(ty), -+, hy(12)).) Then hy(] E|) = hy(UEM~, ---, +)) = (by
continuty of h,) Uph,(E*(x, -+, L)) = UEl(L,, -+ , 1) =|E,|. O

Call a system E : X, — CT(X,) ideal (cf. Elgot [17}) iff each E(x,) is nontnvial, i.e.
forsome m >0, o €X,,and s, -+ , t,, € CTs(X,), E(x) = acrlty, -+, tw).

THEOREM 5.2. Solutions of ideal systems of equations over CT are unique

Proor. We indicate the method of proof; full detail will appear elsewhere. If t =
{tgy * 0 ,,) is a solution for a system E : X, = CT(X,), then for all k, t = Eft) =

£ « E « --- « E «— E,~t. By nduction on length of strings in *, one shows for ideal

"

k
E,of w € def(t,) has length k, then w € def(E¥(+, --- , 1),); 1.e. def(t,) C def(| E |,); but
|Elct,so| E|=¢ O

This rather surprising result seems to say the order relation on CTs 1s superfluous once
solutions are obtained. This suggests a strong connection with Elgot’s {17] iterative
algebraic theonies where, in effect, ideal equations must have umque solutions and no
ordering 1s involved.

A system E of equations 1s finite iff each right-hand side 1s finite; i.e. E : X, — Fx(X,).
Now E, can be defined over any ordered algebra A (Proposition 4 7) anda € A" is the
solution of E over A iff 1t is the minimum fixed poimnt of E,.

An ordered algebra A is equationally complete 1ff every finite system of equations has a
solution over A Obviously every A-continuous (even w-continuous) algebra is equation-
ally complete —1n fact, complete with respect to arbitrary systems of equations —but an
ordered Z-algebra can be equationally complete without having an w-complete carrier.
The following important case illustrates this

Let Ry denote the set of equational elements of CTy; ie Ry = {|{E| |E: X, =
Fs(X,),n > 0and 1 =i < n}. The “R” in Ry stands for ‘‘recognizable” or “‘regular” as
applied to sets of finite trees in Doner [15] and in Thatcher and Wright [70]. (For
appropriate 2, discussed below, Scott [61] calls Fy rational, Ry algebraic, and CTy — Ry
transcendental) The following two propositions indicate the connection.

ProrosiTioN 5.3. For each t € Ry, there exists a recogmizable subset R, of Fs such
that t = UR,

Proor Using Proposition 4.4, we transform a system E : X, — Fx(X,) of equations
over CTs to the system E : X, —>p(Fv(X,,)) n the Meze1-Wright sense [45] by E(x) =
{E(x,), -L} (cf. Section 3.4) Let| E | be the solution of E over Fs as in Mezei-Wright,
each| E |(x,) is a recogmizable subset of Fx These recognizable sets are called **schematic
languages” by Nivat [48)], who shows that every schematic language 1s directed (in fact a
lattice) with respect to the ordering on Fs. So U | E | exists in CTs, (Proposition 4.1) and

we want to show | E'| = U| E |. We know | E | = U E*~, ---, +) and, by mduction on &,
{E¥(x, -~ ,L)}C|E |,sothat| E | c U| E |.Onthe otherhand foreacht € [E | there
exists k such that¢ & E*(+, - - -, +) (by induction on the definition of | £ { = U,Ens (&,

, D)) so|El 2 UE| e |E|=U|E| O
The second result relating the equational elements to recogmzability uses the concrete
construction of CT given in Section 4; we leave its proof to the reader.
Prorosimion 5.4. In the concrete construction of CTs, if t € Ry, then for each o €
2, 'Y(g) C o* is a regular subset of {0, 1, -+ , k}* for some k. O
As indicated 1n the proof of Proposition 5 3, a schematic language (Nivat [48]) is a
recognizable subset of Fs (viewed as the imtial 3(+) algebra) defined by equations (in

Initial Algebra Semantics and Continuous Algebras 89

the Mezei-Wright sense) whose right-hand sides are of the form {t, +} C F; By reversing
the translation in the proof of Proposition 5 3, it is easy to see that the least upper bound
of any schematic language 1s an equational element of CTs. Nwvat [48] shows that the
schematic languages form a 3-algebra, and his proof also shows that Ry is a subalgebra of
CTy. Because Ry is equationally complete by definition, we have

ProrosiTiON 5.5. Ry is the smallest equationally complete subalgebra of CTy. O

5.2 THE LatTicE oF FLow Diagrams. Our construction of initial continuous alge-
bras permits simple alternative formulations of Scott’s [61] lattice of flow diagrams.
Since those alternatives are specific initial algebras, the lattice of flow diagrams appears
as a special case of a very general situation. Our comparison 1s slightly encumbered by
the fact that Scott uses complete lattices (U-complete posets), while we favor strict A-
complete posets.

Most simply put, Scott’s lattice of flow diagrams 1s the solution to the domain equation

={l} + F+ EXE + BXEXE, *)

where + 1s the coalesced lattice sum, X 1s the usual lattice product, and {/}, F, and B are
the (‘“flat””) lattices which result from adjoining + and T to, respectively, the set
consisting of a stngle function symbol I denoting the identity function, a set F of function
symbols (operations occurring 1n boxes of a flow diagram), a set B of predicate symbols
(occurring as tests 1n flow diagram). So if the set F = {f}, - - - , fa}, then the lattice for F

| N,
/

Scott’s inverse limit construction provides a solution for £ as a complete lattice.
However, Gordon [26] argues the advantages of A-complete posets (calling them
semidomains) over complete lattices (domains) and shows the nverse limit construction
(using separated sum) works just as well in that context. Passing over pragmatic and
aesthetic points discussed earlier (Section 4), we make our comparison with Gordon’s
solution to (*), thinking of 1t as the serudomain of flow diagrams.

We describe three semidomains of flow diagrams; each 1s simply C7Ts for a natural
choice of %. The first two are different 1n interesting ways; the third differs from the
second trivially and 1s included for completeness while providing an example of an initial
many-sorted A-continuous 2-algebra

For all three the algebraic approach (as opposed to the pure ordered structure
approach) leads directly to algebras of flow diagrams rather than ordered sets of flow
diagrams. (Nivat [48] stresses this point, and 1t seems that Scott also saw it [61, Sec. 4].)
We hope this creates a stronger position from which to consider the questions about
equivalence of flow diagrams raised by Scott [61, Secs. 8 and 9].

() Let 3 = {I},F,B) (thatis, 3, = {I}, 3, = F, 2, = B,and 3, = @ fork > 2). CTs
(see (4.3)) is a lattice of flow diagrams, with every flow diagram represented by 1ts
unfoldment. But (quite aside from questions about ™) CTy doesn’t have quite the
algebraic, or the order theoretic, structure of Scott’s lattice. The equational elements (in
Ry) represent the flow diagrams. The 1dea, to be developed formally elsewhere, 1s to
take a variable x, for each node of a flow diagram, and an equation x, = b(x,, xz), x, =
Jix,), or x, = I1f node i 1s a b-test, an f-application, or a halt, respectively.

For example, the while loop is the solution to the system {(x; = b(xy, x3), x> = f(x,), x5 =
), which can be collapsed to x, = b(f(x,), I}, and is written x; = (b — (f; x,), I) by Scott.

90 J. A. GOGUEN, J W. THATCHER, E. G. WAGNER, AND J.' B. WRIGHT

The element of Ry which is the component for the start node is the unfoldment of the
given flow diagram (cf. Goguen [20]). Conversely, any finite system of equations over
CTs can be reduced to “primitive” equations of the above form (much as in Mezei and
Wright [45] or in Wand [75, Th. 2]), from which a standard flow diagram can be
retrieved.

Wand [75] takes Scott’s construction “trivially modified” as a starting point, calling
E(Z) the lattice of flow diagrams with operator symbols 3. He says this follows Elgot’s
[17] idea of handling tests (rank 2 or greater) and operations (rank 1) uniformly. His
E(Z) seems to be our CTy; his “finite diagrams™ to be our Fy(X,), with “return codes”
fx1, -, x,} (also paralleling Elgot [17] because of the n “exits””); and his “loop-
representable” flow diagrams to be our Rg(X,) (that is, equational elements of CTgx,)) .
Wand [75] 1s rather informal, but seems to miss the distinction brought out by our second
formulation for the lattice of flow diagrams below

One can define context-free sets over initial algebras (Rounds [57]), and this applies to
initial continuous algebras as well. Alternatively (Maibaum [41, 42], Turner [71], and
Wand [76]), one can make the function symbols zero-ary and introduce a symbol for
composition; then the contexi-free sets are equational in this modified algebra

(II) In that sparit, let 2’ = (F U {I},&¥,B U {;}). Again, every flow diagram (over F and
B) is represented in CTy, by an unfoldment. But now the algebraic structure corresponds
to Scott’s idea: Every element of CTy. is either I, an element of F, (d; d’), or b(d, d’)
(written b — d, d’) for diagrams d and d’.

However, the equational elements of this algebra correspond to unfoldings of recursive
flow diagrams. For example, the solution to the equation x, = b(f;(x;f"),[}, problematic
m Scott [61, Fig. 21}, is the unfolding of the recursive flow diagram,

x; ¢ if b then (f; call x,; ') else halt.

Nivat’s [48] program schemes over (F U {I}, B) are reformulated in this setting as
primitive?® systems of equations E : X, — F5/(X,), which are connected (meaning x, < x;
for 1 <i =n, where < is the transitive closure of x, “calls” x,, i.e. if x, occurs in E(x,)).

The program schemes form a 3'-algebra, say PSg, with E, E’, and b — E;E' defined
as needed m the proof of Proposition 5.5. The function E — | E |, is a homomorphism
from PSs to Ry, but of course many program schemes give rise to the same unfoldment
in Rs.

(IIT) For our last formulation, let 2" be a {b,d}-sorted operator domain with 2}, 5 =
B, 330 =} UF, 24aqe = {;}, and Zf40.4, = {—=}. Then CTyp contains only B U {+},
but CTy, 4 is isomorphic® (in both order and algebraic structure) to Scott’s lattice E of
flow diagrams. (This corresponds, as i [41, 42, 71, 76], to making all the function
symbols of ({I}, F, B) zero-ary; the “composition symbols” are *“;* and “—”.) But all that
has been added are diagrams such as (+ — d, d’), which seem to be of little interest at
this pomnt. Because there are no operations of sort b, equations in CTy. yield the same
solutions as in the previous formulation

5.3. SemanTics oF FLow DiaGramMs Theorem 4.8 says that any A-continuous 2-
algebra is a possible semantic algebra for CTy. Looking at the second formulation for the
lattice of flow diagrams 3’ = (F U {I},&3,B U {i}), take. as Scott does, the A-complete
(4.9) poset [S > S] of “partial state transformations™ as carrier of a semantic algebra
ambiguously denoted S Given (Scott’s [61]) interpretations of the function symbols
F : F— [S - S] and predicate symbols B : B — [S > {0, 1}], make [S > §] into a 2'-
algebra by: Iy = 1g; Fg = F(f); b0, 0') = ¢ °[B(b), o, ¢’']; and ;4(o, ') = o'> 0. These
operations (bg and ;5) are A-continuous.(cf. 3.2, 3.7, 3.8), so initiality of CTy, gives a
unique homomorphism %5 : CTs, — S, Scott’s [61] “semantics” of flow diagrams. Note,
however, that & and @ uniquely determine Vs only insofar as the intended meanings of
tests and compostition are fixed

28 Much as used above, each E(x,) 1s either f € F, I, («,, ay), oF (b = ay, a,), where o, E FU{l} U X,
2 Ignoring the extra overdefined elements discussed n Section 4

Ininal Algebra Semantics and Continuous Algebras 91

To get the intended semantics of flow diagrams when expressed in CTx (2 = ({I}, F,
B)), appeal to continuations of C. Wadsworth and L. Mortris (see Reynolds (53] and
Strachey and Wadsworth [66]) seems inevitable. Taking the same carrier for the
semantic algebra, operations (f € F) are of type [S - S]— [S < S],-or equivalently
[§~> §] X §— §taking a *“‘continuation’ in [§ <> S] and a state in S giving a new state.
The extent to which continuations can be treated from an initial algebra pomt of view,
and the relationship between contmuation semantics for CTy and the semantics de-
scribed above for CTs, are interesting subjects for further investigation.?

5.4. Svystems ofF (REGuLAR) EquaTions wiTH PARAMETERS. Equational functions
can be defined much as equational elements of an algebra were. In the spint of Wagner
{73, 74] and Wand [75], a function®' E : Y, — CTs«,,(Y,) 1s a system of n-equations with
p parameters {x,, -+, x,}. For any algebra A mnAalgs and for each a € A?, make A4 nto
an %(X,)-algebra A(a) by having x, name a, The derived operator over A(a) is then
E 4 :A"— A™, which has a minimum fixed point | E 44 |. The function |[E4 | : A — A"
determined by system E is defined by | E, | (@) = | Eqm |-

The equation of Proposition 5.1 holds for equational functions as well. Given E as
above, | E | : Y, = CTyx,, (solving in CTyx,)), so | E |4 : A - A", and

ProrposiTioN 5.1'. For a system of equations E : Y, — CTs,\(Y,) with p parameters
and any A-continuous L-algebra A, | E | = | E |41 A® > A",

Proor. By definition of solution, | E, |(@) = | E4q |- But Proposition 5.1 gives
} Eqw | = | E |aw, and from the definition of derived operator, | E |y = | E |4(@). D

Solving a finite system of equations with parameters E : Y, — Fyx, (Y,) over CTgx,,
yields | E | € R%y,,, by defimtion. But as sets Ry, = Rs(X,), so we can talk about
solving a system of equations whose right-hand sides are 1n Ry,,; this gives nothing new.
(As proved by Nivat [48] within his schematic language formulation, it 1s a consequence
of the substitution theorem for context-free languages [19].)

ProrosiTioN 5 6 (Nivat). Systems of equations with right-hand sides in Ry(X,) have
solutions in R«. 0O

We believe the principal connections with Wand [75] and with Bloom and Elgot [9]
are to be found here. First, 1t seems clear that (R3(X,)) e, 18 the free u-clone generated
by =, the construction of which is Wand’s principal result. Next, let Rs(X,) be the set of
maximal elements of Rg(X}). {In the concrete construction of CTyy,,, t 1s maximal iff #(u)
€ 3, mmplies w1 € def(t), 0 < 1 < k.) The algebraic structure of (Rx(X,))pe, under
substitution (¢ : X, & Ry(X,), ¢ : X, = Rs(X,); t < ' . X, = Rz(X,); see Section 2)
gives rise to an algebraic theory (cf. Elgot [17]). Theorem 5.2 and Proposition 5.6 say
this algebraic theory 1s iterative, which means that every 1deal system of equations E : X,
N Rz(x,,>(Xn) has a unique solution | E | : X, — Rx(X,) (called ET in [17]) in the sense’
that E < | E | = | E | (this is the defmition of fixed point in CTs since E¢r(| E |} = E «
| E). We believe®? that this algebraic theory is the “free iterative theory generated by
2,7 the construction of which 1s the principal result of Bloom and Elgot [9].

6 Conclusion

Sections 3 and 5 apphed initial algebra semantics to a number of areas, with the
applicability of mitial continuous algebras exceeding even our expectations. We have
only skimmed the surface of what might be called the equational theory of continuous
algebras, and we hope to develop it fully elsewhere. The following questions and
problem areas are among those we would like to answer or see answered.

(A) How 1s the conventional theory of equational sets (e.g. Mezei and Wright [45])
expressed in the (simpler) continuous algebra setting?

(B) If every fmite system of equations has a solution in an ordered (not necessarily w-

3 Reynolds [55] considers this in careful and interesting detail
$t x and ¥, = {y,. , yn} are, techmecally, assumed to be disjoint copies of the respective sets of vanables
S Ginali proves this 1n her forthcoming Umversity ot Chicago dissertation

92 J. A. GOGUEN, J. W THATCHER, E. G. WAGNER, AND J. B. WRIGHT

complete) algebra, does it follow that | E, | = U.E%(+) anyway?

(C) How do the works of Maibaum [42], Turner [71], and Wand [76] (which identify
context-free sets over one algebra with recognizable sets in another) relate to the two
ranked alphabets 2 and 2’ n the discussion of the lattice of flow diagrams, or more
generally to the solution of regular equations versus the solution of context-free equa-
tions? Engelfriet and Schmidt [18] tackle this area (and (A) above) 1n their typically
precise way.

(D) Gordon [26] proves the equivalence of a denotational (Scott-like) semantics and
an interpretative semantics for pure Lisp. The proof is very long. Why? Could methods
here contribute to further simplification?

(E) Our 1nitial algebra formulation of denotational semantics (Section 3) differs
significantly from previous formulations. The “‘structural induction” and “‘finite approxi-
mation™ proof techniques used by Gordon are implicit n initial continuous algebras
Could these yield a more workable semantics for “real” programming languages?

(F) We know that T 1s initial i the class of Z-algebras, that CTy is initial in the class
of A-continuous X-algebras, and that these results bear fruit On either side of CT, we
ask the question: In what class of algebras is Ry (and Ry) initial, and in what class of
algebras in Nivat’s PSy, mitial? The latter is essentially the question posed in Burstall and
Thatcher [11].

(G) Chandra [12] uses infinite tree flow diagrams which are outside Ry but contained
in CTs (for appropriate 2); a clean mathematical semantics is determined by picking
appropriate A-continuous 3-algebras. But can the translations from finite counter
schema, finite stack schema, etc. into infinite tree diagrams be made more mathemati-
cal? Most relevant, how are his “meanings” defined from an imtial algebra point of
view?

(H) Can the questions raised by Scott in [61] be answered mn the 1nitial continuous
algebra setting? Should they?

(I) The practical aspects of the work reported in this paper should be further ex-
plored. Pottenger [51] has programmed a system which acts as a compiler generator:
Given % and o, for each o in 3, the function b, becomes available. The implementation
1s somewhat inefficient, but is useful as it is, and can presumably be improved in various
ways Also, there seem to be a number of implications for programming language design
which should be followed up.

(J) What is the connection of the present formulation (that is, CTy, etc.) with the V-
category formulation suggested in Goguen [20], where syntax is an ‘“‘algebraic theory”
whose hom-sets are sufficiently nice posets, and semantics is a sufficiently nicely ordered
algebra of this theory?

(K) In fact, it would be interesting to give a thorough development of semantics in
terms of algebraic theories [32]; we have restricted ourselves to initial algebras primarily
to avoid imposing odious mathematical prerequisites. The question 1s, could more than
convenience and conciseness be achieved? We are proposing some suggestions m this
direction in [25].

These are just a few questions; if the reader has faced mfinite structures from
semantics of programs or data structures, he may well have many others. We hope this
paper will stimulate such questions and that the imtial algebra viewpoint will be fruitful
in answering them.3?

ACKNOWLEDGMENTS. We individually and jointly are grateful for stimulating discussion
on these matters with R.M. Burstall and R. Milner of Edinburgh University, and D.
Berry, R. Pottenger, and C. Lucena of UCLA. We want to thank M. Gordon, S.
MacLane, B. Rosen, and M. Wand for their suggestions and criticisms. R.M. Burstall

3 Ths has actually happened to the authors of this paper, who have, subsequent to the work reported here,
proposed an imtial algebra approach to abstract data types [24]

Imiial Algebra Semantics and Continuous Algebras 93

and J.C. Reynolds deserve special gratitude for their extensive efforts to improve both
the content and presentation of the material.

REFERENCES

(Note References {14, 21, 22, 37, 56, 58, 72} are not cited 1n the text)

1

2

11

12

13
14

16

17

18

19

20

21

22

23

24

25

26

27
28

29.

30

AHo, A V , aNnD ULLMmaNn, J D Properties of syntax directed translations J Computer and Syst. Scis. 3
(1969), 319-334

AHO, A B, anD UrtMan, J D Translations of a context-free grammar Inform and Contr 19 (1971),
439-475

BAKER, B 8 Tree transductions and families of tree languages Tech Rep TR9-73, Center for Research
m Computing Technology, Harvard U , Cambndge, Mass , 1973

Beki¢, H Definable operations in general algebra and the theory of automata and flowcharts Research
Rep , IBM Laboratory, Vienna, Austria, 1969

BéNaBou, J Structures algébriques dans les catégories These, fac sa1 , Umversité de Paris, March 1966
Also, Caluers de Topologie et Géométrie Différentielle 10 (1968), 1-126

BIRkHOFF, G Structure of abstract algebras Proc Cambridge Pl Soc 31 (1938), 433-454
BirkHOFF, G , AND Lipson, J D Heterogeneous algebras J Combinatorial Theory 8 (1970),115-133
BLikLE, A Equational languages Inform and Contr 21 (1972), 134-147

BrooM, S L . anp ELGor, C C The existence and construction of free iterative theories. Research Rep
RC-4937, IBM Thomas J Watson Research Center, Yorktown Heights, NY , 1974

BuURsTALL, R M, AND LANDIN, P J Programs and their proofs An algebraic approach Machine Intelli-
gence, Vol 4, B Meltzer and D Michie, Eds , Edinburgh U Press, Edinburgh, Scotland, 1969, pp 17-
43

BurstaLL, R M, AND THATCHER,] W The algebratc theory of recursive program schemes. Lecture Notes
in Computer Science, Vol. 25 Category Theory Applied 1o Computation and Control, Springer, Berlin,
1974, pp 126-131.

CHANDRA, A K Degrees of translatability and canonical forms of program schemes Pt I Proc Sixth
Ann ACM Symp on Theory of Computing, Seattle, 1974, pp 1-12

ConN, PM Umwversal Algebra Harper and Row, New York, 1965

CoOURCELLE, B , AND VUILLEMIN, J. Semantics and axiomatics of a simple recursive language, Proc Sixth
Ann ACM Symp on Theory of Computing, Seattle, 1974, pp 13-26

DoNEer, J E Tree acceptors and some of their applications J Computer and Syst Scis 4 (1970), 406-
451

EILENBERG. S , AND WRIGHT,] B Automata in general algebras Inform and Control 11 (1967), 452-
470

Ercot, CC Monadic computation and iterative algebraic theories Research Rep. RC-4564, IBM
Thomas J Watson Research Center, Yorktown Heights, N Y , 1973, also Proc Logic Colloquium ’73,
Bnistol, England, North-Holland Pub Co , Amsterdam, 1975, pp 175-230

ENGELFRIET,] , AND ScumipT, E M 10 and Ol Datalogisk Afdeling Rep , DAIMI PB-47, Aarhus U ,
Aarhus, Denmark, July 1975

GINSBURG, S The Mathemancal Theory of Context-Free Languages McGraw-Hill, New York, 1962
GoGueN, J A On homomorphisms, correctness, terminatton, unfoldments and equivalence of flow
diagram programs Proc 13th Ann IEEE Symp on Switching and Automata Theory, 1972, pp 52-60
A portion of this paper appears i expanded form nJ Computer and Syst Scis 8 (1974), 333-365
GoOGUEN, J A Semantics of computation Lecture Notes in Computer Science, Vol 25 Category Theory
Applied to Compuration and Control, Springer, Berlin, 1974, pp 151-163

GOGUEN, J A, AND THATCHER, § W Imitial algebra semantics Extended Abstract, Research Rep RC-
4865, IBM Thomas J Watson Research Center, Yorktown Heights, N Y , May 1974, also, Proc 15th
Ann IEEE Symp on Switching and Automata Theory, 1974, pp 63-77

GOGUEN,] A | THATCHER,] W , WAGNER, E G , AND WRIGHT, J B A junction between computer science
and category theory, I Basic definitions and examples Pt 1, Research Rep RC-4526, Pt 2, Research
Rep RC-5908, IBM Thomas J Watson Research Center, Yorktown Heights, N Y , 1973, 1976
GoOGUEN, J A , THATCHER,] W , WAGNER, E G , AND WRIGHT,] B Abstract data-types as inttial algebras
and correctness of data representations Proc. Conference on Computer Graphics, Pattern Recogmition
and Data Structure, May 1975, pp 89-93

GoOGUEN, J A , THATCHER,] W , WAGNER, E G , AND WRIGHT, J B. Programs 1n categories (summary), in
preparation

GorDON, M Models of pure LISP Ph D Th , Edinburgh U , Edinburgh, Scotland, 1973

GRAETZER, G Umnuversal Algebra Van Nostrand, Princeton, N J , 1968

HicGins, PJ Algebras with a schema of operators Math Nachr 27 (1963), 115-132

Irons, ET A syntax directed compiler for ALGOL 60 Comm ACM 4 (1961), 51-55

KNutH, D E Semantics of context-free languages Math Syst Theory 2 (1968), 127-145

94

31

32.

34
35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

J. A. GOGUEN, J. W. THATCHER, E G. WAGNER, AND J. B. WRIGHT

LaNDIN, P J A program machine symmetric automata theory Machine Intelligence 5, B Meltzer and D
Michie, Eds , Edinburgh U. Press, Edinburgh, Scotland, 1970, pp 99-120.

Lawvirg, F W Functonal semantics of algebraic theories. Proc. Nat Acad Sci. 50 (1963), 869-872.
Lewis, C H , anD Rosen, B K Recursively defined data types, Pt. 1 Proc ACM Symp on Principles of
Programming Languages, 1973, pp 125-138, Pt 2, Research Rep. RC-4713, IBM Thomas J Watson
Research Center, Yorktown Heights, N Y , 1974

Lewis, P.M II, AND STEaRNS, R E - Syntax-directed transduction J ACM 15, 3 (July 1968), 465-488
Lucas, P, LAUER, P, aND STIGLEITNER, H Method and notation for the formal defimtion of program-
ming languages Tech Rep TR 25 087, IBM Laboratory, Vienna, Austria, 1968

McCartHY. J Towards a mathematical science of computation Proc IFIP Cong . North-Holland Pub
Co , Amsterdam, 1962, pp 21-28

McCartay,] A formal description of a subset of ALGOL In “Formal Language Description Languages
for Computer Programmng,” Proc IFIP Working Conf 1964, T B Steel, Jr , Ed , North-Holland Pub
Co , Amsterdam, 1966, pp 1-12

McCarTHY, J , AND PAINTER, J Correctness of a compiler for arithmetic expressions In “Mathematical
Aspects of Computer Science,” Proc of Symposia in Apphed Mathematics, Vol 19,J T Schwartz, Ed ,
Amer Math Soc, Providence, R 1, 1967, pp 33-41

MacLaNg, S Category Theory for the Working Mathematician Springer, New York, 1971

MAGIDOR, M , AND MORGAN, G Finite automata over finite trees Tech Rep 30, Hebrew U , Jerusalem,
Israel, 1969

MaiBaum, T S E The characterization of the derivation trees of context-free sets of terms as regular sets
Proc 13th Ann IEEE Symp on Switching and Automata Theory, 1972, pp. 224-230

MaBauM, T S E Generalized grammars and homomorphic images of regular sets Research Rep CS-73-
30, U of Waterloo, Waterloo, Ontario, Canada, 1973

MaNNA, Z Properties of programs and the first-order predicate calculus J ACM 16, 2 (Apnl 1969),
244-255

Markowsky, G Chain-complete posets and directed sets with applications Resecarch Rep RC-5024,
IBM Thomas J Watson Research Center, Yorktown Heights, N Y , Aug 1974

MEZzEL J , AND WRIGHT,] B Algebraic automata and context-free sets Inform and Contr 11 (1967), 3~
29

Morris, F L Correctness of translations of programming languages Ph D Th , Computer Science
Memo CS72-303, Stanford U , Stanford, Cahf , 1972

Morris, F.L. Advice on structuring compilers and proving them correct Proc Symp on Prnciples of
Programmung Lanugages, Boston, 1973, pp 144-152

Nivat, M Languages algébraic sur le magna libre et sémantique des schémas de programme In
Auwtomata, Languages and Programming, M Nuvat (Ed), North-Holland Pub Co , Amsterdam, 1972,
pp 293-308

Park, D Fixpomt induction and proofs of program properties Machine Intelligence, Vol 5, B Meltzer
and D Michie, Eds , Edinburgh U Press, Edmburgh, Scotland, 1970, pp 59-78

PeTRONE, L Syntactic mappings of context-free languages Proc IFIP Cong 1965, Vol 2, North-
Holland Pub Co , Amsterdam, pp 590-591

PotTENGER, R ARBOL, a system for defining functions on trees A 1 Memo 3, UCLA, 1976

RaBIN, M P, anD Scorr, D Fimte automata and their decision problems [BM J Res Develop 3
(1959), 114-125

ReynoLps,] C Definmitional interpreters for hugher-order programming languages Proc 25th National
ACM Conference, Boston, Mass , Aug 1972, pp 717-740

REYNoLDs, J C On the relation between direct and continuation semantics Lecture Notes in Computer
Science, Vol 14 Automata, Languages and Programnung, Springer, Berlin, 1974, pp 141-156
ReynNoLDs, J C. Semantics of the lattice of flow diagrams. Manuscript, Syracuse U , Syracuse, N Y,
submutted for publication, July 1975

Rosen, B K Program equivalence and context-free grammars Proc 13th Ann IEEE Symp on Switch-
ing and Automata Theory, 1972, pp 7-18, revised as Research Rep RC-4822, IBM Thomas] Watson
Research Center, Yorktown Heights, N Y , 1974

Rounps, W C Mappings and grammars on trees Math Syst Theory 4 (1970), 256-287
SCHUTZENBERGER, M P Context-free languages and push down automata Inform and Contr 6 (1963),
246-264

Scawartz, J T Semantic definmtion methods In Formal Semantcs of Programmung Languages, R
Rustin, Ed , Prentice-Hall, Englewood Cliffs, N J , 1972, pp 1-23

Scort, D OQutline of a mathematical theory of computation Proc 4th Ann Princeton Conf on
Information Sciences and Systems, 1970, pp 169-176

Scotrt. D The lattice of flow diagrams Tech Monograph PRG 3, Oxford U Computing Lab , Oxford
U, Oxford, England, also, Lecture Notes in Mathemancs, Vol 182 Semanucs of Algorithmic Languages,
E Engeler, Ed , Springer, Berlin, 1971, pp 311-366

Scorr, D Continuous lattices Tech. Monograph PRG 7, Oxford U Computing Lab , Oxford U ,

Ininial Algebra Semantics and Continuous Algebras 95

73

74

75

76

77

Oxford, England, 1971, also, Lecture Notes in Mathematics, Vol 274, Sprwger, Berln, 1971, pp
97-136

Scorr, D Data types as lattices Unpublished notes, Amsterdam, 1972

Scotr, D Data types as lattices Unpublished notes, Oxford, 1974

Scott, D, AND STRACHEY, C Towards a mathematical semantics for computer languages Tech Mono-
graph PRG 6, Oxford U. Computing Lab., Oxford U., Oxford, England, 1971, also, Computers and
Automata, J Fox, Ed , Wiley, New York, 1971, pp 19-46

StrACHEY, C , AND WaDsworTH, C P Continuations — A mathematical semantics for handhng full jumps
Tech Monograph PRG-11, Programming Research Group, Oxford U Computmg Lab , Oxford, Eng-
land, 1974

. TuatcHer, J.W. Charactenizing denvation trees of context free grammars through a generalization of

finite automata theory J Computer and Syst Scis 1 (1967), 317-322

THATCHER, J W Generalized? sequential machines J Computer and Syst. Scis 4 (1970), 339-367
THarcHER, J W Tree automata® An informal survey In Currents in Computing, A'V. Aho, Ed,
Prentice-Hall, Englewood Chffs, N J , 1973, 143-172

. THATCHER,] W., AND WRIGHT, J B. Generahized finite automata theory with an apphcation to a decision

problem of second-order logic Math Systems Theory 2 (1968), 57-81
TurNEr, R Doctoral Diss , U of London, London, England, 1973

. VUiLLEMIN, J Syntaxe, Sémantique et Axiomatique d’un Langage de Programmation Sumple These

&’Etat, Umversité Pans 6, France, 1974

WAGNER, E.G An algebraic theory of recursive defimtions and recursive languages. Proc. Third Annual
ACM Symposium on Theory of Computing, 1971, pp 12-23

WaGNER, E G Languages for defiming sets in arbitrary algebras. Proc 11th Ann IEEE Symp on
Switching and Automata Theory, 1971, pp 191-201

WanD, M A concrete approach to abstract recursive defimtions In Automata, Languages and Program-
mung, M Nwvat, Ed , North-Holland Pub Co., Amsterdam, 1972, pp 331-341.

WanD, M An algebraic formulation of the Chomsky herarchy Lecture Notes in Computer Science, Vol
25 Category Theory Applied to Computation and Control, Springer, Berhn, 1974, pp 209-213

VAN WUNGAARDEN, A., Ed Report on the algorithmic language ALGOL 68 Numer Math 14 (1969),
79-218

RECEIVED JANUARY 1975, REVISED MARCH 1976

Journal of the A on for C Machmery, Vol 24, No 1, January 1977

