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1. Introduction 

In the past few years there has been quite a proliferation of formal semantics for 
programming languages, or at least of different descriptive terms, for example, opera- 
tional, interpretive, fixed point, predicate calculus, denotational, algebraic, mathemati- 
cal, synthesized, W-grammar, axiomatic, inherited, declarative, continuation, process, 
and now initial algebra semantics. Moreover,  mathematical concepts, said to be deep, or 
strange, or new, are asserted to he relevant, for example, continuous lattices, lterative 
algebraic theories, infimtary logic, and bicategories This is quite perplexing. How do 
these things fit together, if at all? In fact, what is "syntax"; what is "semantics"? 

This paper is not going to answer all these questions. But we believe the subject cannot 
be said to be in very good shape when such questions are ignored or glossed over, and 
when "practical" and "theoretical" approaches have so little to say to each other. In this 
paper we offer a unified approach to these questions with some preliminary answers 
which expose a surprising and beautiful unity in the apparent diversity of approaches. 

The key concept is very simple: An algebra S is init:al in a class C of algebras lff for 
every A in C there exists a unique homomorphlsm ha : S ~ A. 1 
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In the cases we examine,  syntax ts an initial algebra in a class of algebras, and any 
other algebra A in the class ts a possible semantic domain (or semantic algebra); the 
semantic funct ion is the uniquely determined homomorphtsm hA : S ~ A, assigning a 
meaning hA(s) in A to each syntactic structure s in S. From this viewpoint  it becomes clear 
that a major  aspect of formal semantics (both practical and theoretical) is constructing 
mtended semantic algebras for particular programming languages. We believe that is 
what Scott and Strachey [65] and thetr followers are doing with the tools outlined by 
Scott [60] and more fully developed m [62-64].  

We use abstract syntax (cf. McCarthy [36]), but without employing any "concrete"  
verston such as in the Vienna Defmitlon Language [35] What  is abstract about "abstract  
syntax" is captured by the following propositton.2 

PROPOSITION 1 1. I f  S a n d S '  are both initial in a class C o f  algebras, then S a n d S '  are 
isomorphic. I f  S" is tsomorphic to an intttal algebra S, then S" ts also initial. 

PROOF z If S and S'  are imtiai in the class C of algebras we have (unique) homomor-  
phtsms hs, : S ~ S' and hs : S' --> S. The composite of hs, followed by hs (denoted hs ohs ,) 
is a homomorphtsm from S to S. The tdentity function, l s ,  ts also a homomorphism; so 
hs ° hs, = l s  by untqueness Similarly hs, ° hs = Is,, thus hs is an isomorphism. 

I fS  ts tnittal and S" is tsomorphtc to S, then hs. • S --> S" must be the isomorphism. For  
any algebra A in C, we have hA : S ~ A so that ha o h~J is a homomorphism from S" to A.  
If g : S" ~ A is any other  such homomorphism then g o hs,  : S ~ A so g o hs,  = ha and g = 
ha ° h ~ .  Thus S" as initial. [] 

Rather  than assume "that  programs are ' real ly '  abstract,  hierarchically structured data 
objects . . .  ," as in Reynolds [53], we avoid t roublesome questions of definition and 
notation by identifying "abstract  syntax" with "initial a lgebra";  Proposit ion 1.1 says 
abstract syntax ~s independent  of notational varmtlon - as it should be. For  example,  if 
as a ranked alphabet ,  4 define a E-tree to be an e lement  of an imtial Z-algebra.  In this way 
we are not t~ed to any particular representatton of trees (Pohsh notation,  infix terms, 
prefix parenthesized terms, functions defined on tree domains,  or  certain directed 
ordered labeled graphs).  This abstract syntax for trees depends only on the essential 
algebraic-structural propert ies  that characterize trees 

Because of the connection with abstract syntax, the initial algebra approach as implicit 
m McCarthy's  [36] proposals for a "Mathematacal Science of ComputaUon" and tn Iron 's  
pioneering paper  [29] on syntax directed translation. The approach becomes more 
exphcit at least as far back as Landin [31] and Petrone [50], as well as in McCarthy and 
Painter [38], Knuth [30], Burstall and Landln [10], Nivat [48], and Morris [46, 47]. Of 
these, Burstall and Landin first use universal algebra (a la Cohn [13]) and (implicitly) the 
initiality proper ty ,  Morris [46, 47] brings m many-sorted algebras, which are essential 
for any applications of algebraic semantics to mterestmg programming languages. 

This paper  makes the mitml algebra approach to semantics completely explicit, 
providing the necessary algebraic background and several examples.  Our  principal new 
result is the existence of initial continuous algebras. This extends the applicabdity of 
mttial algebra semantics by combining the algebraic insights of Burstall.  Landin,  and 
Morris with the ( lamce-)  order-theoret ic  ideas of Scott and Strachey. We consider 
solutions of equations in continuous algebras and show, for example,  how Scott 's lattice 
of flow diagrams [61] is a specml case ~ an inttial continuous algebra. 

Section 2 makes the notion of many-sorted algebra precise. That  material  is not 
mathematically new and has a survey character.  However ,  our presentat ion is different 

2 In order to prove existence of initial algebras, we have to employ a concrete construction, but once done, we 
can forget about that construction and rely solely on Proposition 1 1 

This proof depends exactly on the assumptions about C mentioned in the footnote to the deflmtlon of 
"Initial " 
4 A ranked alphabet is a family ( 2 , ) , ~  of  disjoint  sets indexed by the na tura l  numbers  2~ is the set of operator 
symbols  of  rank k, There  are more  details  in Section 2 Note  that  the assumpt ion  that  the 2 ,  are  disjoint  is not  
necessary (or even desirable  m g e n e r a l - s e e  Tha tche r  [67]), we adop t  it here  to sJmphfy the exposi t ion 
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from the l i terature (we hope it is simpler) and seems to us to be of fundamental  
importance.  A careful reading of Section 2 serves multiple purposes,  because the 
material  there can be extended to almost any initial algebra situation, including mttlal 
continuous algebras (Section 4). 

Section 3 contains applications (examples) of initial many-sorted algebras.  Section 4 
defines "continuous a lgebra"  and constructs initial continuous algebras.  Apphcat ions  of 
this, including Scott 's lattice of flow dmgrams [61], are m Section 5. Section 6 contains 
some questions and problems.  

Some of the subject mat ter  included here is being prepared  for inclusion in the second 
part  of the first repor t  of the ADJ  series [23] 5 

2. Many-Sorted Algebras 

An algebra in the sense of Birkhoff [6] (see also Cohn [13] and Graetzer  [27]) is simply a 
set, called the carrier of the algebra,  together  with an indexed family of operat ions 
(functions) defined on (Cartesian powers of) that set. A many-sorted algebra consists of 
an indexed family of sets (called carriers) and an indexed family of  operat ions defined on 
Cartesian products of those sets. Generalizing to many-sorted algebras is very natural for 
computer  science. The index set for carriers is called the set of sorts, and might be,  for 
example, {real, int, bool}. An algebra A of this kind would have three carriers, Areal, Aint, 
and A bool ,  together  with some operations such as "1" . A real × A int ~ A real or ~ : A bool X 
A,e,~ × A,e,~ ~ A,,,~, which might be exponent ia t lon or  conditional,  respectively. 

A finite automaton,  in the sense of Rabin and Scott [52], is an algebra with two sorts: 
states named S and mputs named E, i.e. an {S, E}-sorted algebra. The transition function 
is an operat ion M of " type"  (S~, S) ( M .  S × E ~ S, using the sort symbols to denote  the 
carrters, an ambiguous but common practice).  The initial state is a constant So of sort S (So 
E S ) .  

The definition below is equivalent to Birkhoff and Lipson's  [7] "heterogeneous  
algebra" and therefore (according to them) is equivalent to Hlggins' [28] "a lgebra  with a 
scheme of opera tors . "  Btrkhoff and Ltpson show that the conventional  theory of 
"universal a lgebra"  (as in [6, 13, 27]) carries over  "with undiminished force" to the 
theory of many-sorted algebras.  In part icular,  the concepts of subalgebra,  homomor-  
phlsm, quotient ,  congruence relat ion,  product ,  word algebras,  and free algebras general- 
lze naturally and easily. Al though Birkhoff and Lipson give some computer  science 
examples,  the first explicit use for new results in computer  science seems to be in 
Malbaum [41, 42]. The concept appears  to have originated with B6nabou [5] in a 
category theoretic form. 

Let  S be a set whose elements  are called sorts. An S-sorted operator domain or 
stgnature ~ is a family (~w,8) of disjoint sets indexed by S* × S. ~w.8 is the set of operator 
symbols of  type (w, s ), arity w, sort s, and rank lg (w ) (lg (w ) is the length of w, h ~ S* is the 
empty string, and lg(h) = 0). A E-algebra A consists of a famdy (As)~es of sets called the 
carriers o f A  (A, is the career ofsorts  E S); and for each (w, s) ~ S* × S and for each o- 
Ew,s, an operat ion O'A of type (w,s) ,  i.e era : Aw, × • " • × Aw~ -->A~ where w = w~ • • • 
w~ and w, E S for t = 1, • • • , n.  An operat ion era of type (h, s) is a constant of sort s ,  i.e 
O'A ~ As 

For fixed S and varying E we have the class of S-sorted algebras, and as S varies too,  
the class of many-sorted algebras. 

When # S  = 1, we have the conventional case of (one-sorted) a l g e b r a s - h e r e  the 
opera tor  domain is just as well Indexed by to = {0, 1, 2, • • • }, and tr E E,  names an 
operat ion era : A  n ~ A m an algebra A (the single carrter and the algebra being 
ambiguously denoted  by the same symbol).  

5 The set of authors of thJs paper ~s referred to as "ADJ". the series referenced here is devoted 1o an 
exploration of "the junction between category theory and computer scwnce " 
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Returning to the general case, if A and A '  are both E-algebras, a E - h o m o m o r p h i s m  

h : A ~ A '  is a family of functions (hs : A s  ~ A~)s~s  that preserve the operations, i.e. 
(0) if tr ~ `z~,s, then hs(O'A) = ora, ; 

(1) If ~ ~ E . . . . . .  and (ai, "'" , a,) E As, × "'" × As,, then 

hs(tra(al, ' ' '  , a,)) = o'a, (hs I (a l ) ,  "" ", hs,  (a,)). 
The utility of iniUal algebra semantics rests heavily on being able to handle many- 

sorted algebras with as much clarity and notational simplicity as the one-sorted (conven- 
tional) case. Indeed, the generalization from sets and functions to S-indexed families of 
sets and S-indexed famflms of functions ~s not that great a jump. If A is an S-indexed 
family of sets (A = (,4s)s~s) and w = s l • • • s ,  E S*, then generalizing A n, define A w to be 
the Cartesian product A,, × . ' .  × As,. Similarly, for an S-indexed family of functions 
h : A --->A' ((hs : As-- -~A~)sEs) ,  defineh w : A t e - - - ) A ' U ' b y h W ( a l ,  • "" , an )  = (hs, (a l ) ,  "" • , 

hs. (a,)), which generahzes h"  : A "  ~ A ' " ,  The special case w = h (n = 0) is handled 

uniformly by A ° = A ~ = {~.}, and a function o'a with source A ~ IS identified with the 
"constant" which IS ItS value (ra(X) at ItS single a rgument?  

Now with this notation, an S - s o r t e d  "Z-algebra A consists of: a carrier (ambiguously 
denoted) A,  which is an S-indexed family of sets; and, for each operator symbol (r ~ Ew.s, 
a function t ra :  A w ~ A s .  An S - s o r t e d  ~ h o m o m o r p h i s m  h from A to A '  IS an S-indexed 
family of functions (hs : As --~ A~) such that hs (O'a (a)) = o'A, (h ~ (a)) ,  i.e. 

(/'4 
A u • A, 

cr A , 
A TM ~ A', 

commutes for all o" ~_ Ew.s and a ~ A w. This has now become only a minor varmtmn on 
the one-sorted definition. 

Letting A l g z  denote the class of Z-algebras with E-algebra homomorphism, we state 
the first basic result concerning initml algebras. 

PROPOSITION 2.1 T h e  c lass  A l g z  o f ` z - a l g e b r a s  has  an  mi t la l  a lgebra;  cal l  tt T~ .  [] 

This IS a well-known result, at least for the one-sorted case (see Blrkhoff [6] or Cohn 
[13] or Graetzer [27]), and the many-sorted case is treated in Birkhoff and Llpson [7]. 
T z is often called the Z - w o r d  a l gebra  and the carriers are sometimes callod the H e r b r a n d  

u n t v e r s e  for `Z. The set T~,s (the carrier of T~ of sort s) can be thought of as the set of well- 
formed expressions (or trees) of sort s built up m the usual way (to be made preose in a 
moment)  from the operator symbols of `Z. But we emphastze that this characterization is 
(mathematically) mlportant o n l y  for the proof of Proposition 2.1. Once proved, we do 
not n e e d  to know how a particular initial algebra was cons t ruc t ed -we  use only initiality. 
Comments about expressions (or pictures of trees) occur only to aid understanding. 

Let E (ambiguously) denote the set of all operator symbols in the S-sorted operator 
domain E. Now let (T~.s)ses be the smallest family of sets contained in (E t./ {(,)})* 
satisfying the following two condmons (here {(,)} is a two-element set disjoint from E): 

(0 )  E~,s c T_~,s; 
( 1 ) l f o - ~  E ..... w = s ,  ' ' '  s , ,  n > 0 ,  a n d T , ~  Tz,s ,, t h e n  o-(t~ . . .  tn) ~ Tz ,s  

Then make the family (Tz ,s)  into a Z-algebra T z by defimng the operations: 
(0 )  fo r  cr ~ `Z~,~, o- ,  = o" ~ T,=,s; ~ 

(1) for cr @ Ew.s, w = s l  • • • sn, and t, @ T~ .... o'v(tl ,  • • • , ta)  = o'f f l  • • • tn) E Tz,s .  

A l t h o u g h  this  u n i f o r m i t y  ~s m a t h e m a t m a l l y  race ,  it Is o f t en  m o r e  c o n v e n i e n t  to s e p a r a t e  o u t  t he  c o n s t a n t s  
f r o m  the  m o r e  g e n e r a l  o p e r a t o r s ,  for  the  m o s t  pa r t  this  wdl be  d o n e  in the  s eque l  

We  are  wr i t ing  o-r i n s t ead  o f  O-cr~ 
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Under  the natural identification of elements of A w with strings aw, • • • am. such that 

aw, E Aw,, (1) immediately above can be rewritten: 
for all (r ~ Ew,s and t E T~,  (rr (t) = tr(t). 

As an artificial example, S = {a, b}, Z~,a = {xa}, Ex.b = {Xb}, E~b,a = {f}, and Eb,b = 
{g}. Then T~., contains terms xa, f (XaXb) , f (xag (Xb)), f ( f ( x j b ) X b ) ,  etc., while T~,b contains 
Xb, g(Xb), g(g(xD),  etc. Much less artificial is the correspondence, in Section 3, of any 
context-free grammar to an imtial N-sorted algebra (where N is the set of nontermmals).  

In any algebra A in the class Alga ,  if cr E ~ ,~  and a ~ A w, then crA(a ) ~ As. This 
algebraic structure on the set T~ (making it the initial E-algebra) seems to be "synthetic 
syntax" [36], and o-r is familiar as the "constructor function" denoted m k  - or in Reynolds 
[53]. 

On the other hand, "analyUc syntax" [36] is based on 
PROPOSITION 2.2. For any t ~ T~, s there exist unique n -> O, s~ • • • sn E S*,  o" E 

E<s, s,.s>, and t, E Tz,s. (1 -< i -< n) such that t = o'r(q, • • • , tn). [] s 
The notation in Reynolds [53] can be generalized to many sorts as follows: For each o- 
E,  is - o" tests whether its argument is of the form o'r(q, • • • , t,), taking values in the 

set {true, false}; is - s tests whether Its argument could be of sort s; and for each pair (o', 
i) with 1 _< i -< rank(o-), s<~,,> is the "selector function" defined iff i s - o "  is true by 
s<~,,> (o-r(q, " • , t,,)) = t,. These functions are well defined by Proposition 2.2, and ff 
is - tr(t) is true, then 

m k  - -  t r  ( s~o , ,> ( t ) ,  " ' "  , S<a,n>(t))  = t .  

Moreover, if o- ~ X<, . . . .  ,> and if is - s,(t,) is true for 1 -< z -< n ,  then 

s < , ~ , d m k  - o'( t~ , . . .  , t , ) )  = t , .  

In [53] the various selector funcaons are given names (e.g. opr,  opnd,  etc.), but of 
course this isn't  necessary. In fact, as an example below illustrates, the "language" of 
synthetic and analytic syntax is unnecessary with the mittal algebra approach to abstract 
syntax. 

We now introduce "freely generated" X-algebras in order to get a concise definition of 
"derived operator";  for notatmnal simplicity we consider the one-sorted case first. 

Let X be a set (whose elements are called variables) disjoint from E. We form a new 
ranked alphabet, denoted E(X), by adjoining the varmbles as new constant symbols: 
E(X)o = Eo t.J X and ~(X)k = Ek for all k > 0. By Proposition 2.1, Tx(x) ts the tmtial 
X(X)-algebra. The trees whtch are m its carrier differ from those in Tx only m that they 
may have variables on the leaf nodes as well as constants from Eo Now Tx(x> has E(X) as 
tts signature, whereas we want to thmk of Tx<x) as a X-algebra Since the operations (and 
constants) named by X(X) include those named by E, we can do thts just by "forgetting" 
that the variables have names in the stgnature; that is, we define a new X-algebra, 
denoted Tx(X) .  wtth carrier that of T,~x) and with operations those named by ~ in T.~x). It 
~s the free X-algebra generated by X ,  in the following sense. 

PROPOSITmN 2 3. I f  h : X ~ A ts any funct ion mapping  X into the carrter o f  a X- 
algebra A ,  then there exists a unique Z - h o m o m o r p h i s m  tt : Tx(X) ~ A extending h, t.e 
~ ( x O  = h ( x ) ?  

PROOf. A is a E-algebra. Given h : X --> A ,  make  A mto a E(X)-algebra by having x 
name h(x) in A (xa = h(x)). By Proposition 2.1, there ~s a unique E(X)-homomorpbism 
/t . Tx<x)~ A ,  and (by clause (0) of the definition of hornomorphism) [t(XT) = Xa = h(x); 
because /~ is a E(X)-homomorphtsm, ~t ts immediately a E-homomorph~sm. For the 
untqueness part, ifg : T~(X) ~ A ts a E-bomomorph~sm with g(x~) = h(x), then tt IS also 
a E(X)-homomorphism, and thus g = h. [] 

a This is famil iar  for  wel l - formed expressions a n d / o r  Z- t rees ,  and  that  is sufficient p roof  because  o f  Proposi t ion  
1 1  
a Note  that  xT is wha teve r  the zero-ary  symbol  x ~ X names  m the mlual  a lgebra  T ~ r ) - m  the above  concre te  
c o n s t r u c t i o n  ~r  = x ,  but  we can ' t  assume that  since we are  depend ing  o n l y  on the mflmhty of T~a) 
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This  const ruct ion  is typical of initial a lgebra  semanucs .  The  phrase ,  " m a k e  B into a Z- 
a lgebra  by • • . ,  " is fundamenta l  because making  B into a Z-a lgebra  gives the un ique  
h o m o m o r p h i s m  hB : T~ --* B by lnitiality. In the p roof  of  Proposi t ion 2.3 this was 
part icularly e a s y - A  was a l ready a Z-a lgebra  and we made  it a Z(X)-a lgebra  In genera l ,  
if B ts any set (later,  any family indexed by S),  we make  B into a E-a lgebra  by defining 
appropr ia te  opera t ions  cr B : B" ~ B for each (r ~ E . ;  then (zap!) h9 : T~ ~ B. 

We are now m a posi t ion to define the very impor tan t  not ion of  der ived  opera to r .  The  
intmtive idea is that the terms m Tz(X) (like polynomials  m ordinary  a lgebra)  do not  
have values,  since they contain variables,  but they do def ine  funct ions on any Y-algebra 
by assigning values to the variables.  Because  this gives rise to new opera to rs  on E-  
algebras A c o m p o u n d e d  out  of those named  by E,  the new opera to rs  are called der ived  
opera tors  

First,  let X ,  = {x~, • • • , x,,}, and call t E T ~ ( X , )  a E- term m n varmbles  or an n-ary E- 

term.  Now given a E-a lgebra  A and t E T~(X, , ) ,  we want  to def ine  its cor responding  
der ived  opera tor  on A ,  ta : A "  ---> A .  This  employs  Proposi t ion  2.3 as follows: G iven  
(al, • • • , an) E A " ,  let a .  Xn --~ A be def ined by s e n d i n g x ,  ~ a~ for  1 -~ t -~ n ;  then ,  by 
Proposi t ion 2.3,  there  exists a un ique  E - h o m o m o r p h l s m  d : T~(Xn) ~ A extending  
a : Xn ~ A;  now we define tA(a~, " " " , an) to have value d(t) .  Thus we are let t ing a vary in 
the expression d(t), while keeping t f ixed;  d(t) ts the " e v a l u a t i o n "  in A of the n-ary  te rm t 
in which the var iable  x, is given the value  a, m A,  using the opera t ions  of  the E-a lgebra  A .  

For  the special cases when A is of  the form A = Tz (Xm) ,  the above  gives us a precise 
formula t ion  of the opera t ion  of substi tut ion of m-ary  E- te rms  for  var iables .  (When 
variables  are assigned to terms,  " e v a l u a t i o n "  ~s just subst i tu t ion.)  

That  is, g iven t ~ Tz (Xn)  and an n- tuple  of m-ary  E- te rms  t '  = (t~, - . .  , t~) 
(T~(Xm))  n, we again identify t '  with the mapping  f rom Xn to Tz(Xm)  which sends x, to t; 
for 1 ~- i -< n. The  result  of  s imul taneously  substi tut ing t,' for  x, in t for  i = 1, • • • , n is 
precisely F(t). We write t ~-- t '  for the substi tut ion of  (the n- tuple  of  m-ary  Z- te rms)  t '  in 
the n-ary term t. 

If  we take t to be a p- tuple  of  n-ary E- te rms  t = (t~, • • • , tp) E ( Z ~ ( X n ) )  p ra ther  than just 
a single n-ary E- t e rm,  then we could def ine  t ~-- t '  as (6 ~ t ' ,  • • • , tp ~-- t ' ) .  H o w e v e r ,  
by exploi t ing the co r re spondence  be tween  p- tuples  t E (Tz(Xn)) p and mappings  
t : X p  ---> T z ( X n ) ,  we can more  succinctly def ine  t ~-- t '  as i'ot ("o" is a funct ion com- 
posi t ion) .  

x ,  x ,  

t '  
T~(X,,) • Tz(X,.  ) 

Then  t ~ t' = i '  ot : Xp  ~ T~(Xm) and the " l th  c o m p o n e n t "  of  this " p - t u p l e "  is (t ~-- t ')(x,)  
= (i' o t)(x,) = i ' ( t(x,))  = i'(t,) = t, ~-- t '  just as before.  

With th~s defini t ion it is easy to show that  substi tut ion is associat ive.  For  given 

t : X p - - *  T x ( X n ) ,  t : X .  ~ Tz(Xm), and t " :  Xm- -~  T z ( X q ) ,  

we have  

X.  X.  X,. 

| ~ t '  
T~(X.) ) T~(X,.) • T~(X.) 
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(t + - t ' )  + - t "  = ([' ot) + - t "  = i" o ([, ot) = ([, o/,)  ot by def ini t ion o f + - .  But  t h e n / "  or '  and 

? ' o i '  are  bo th  h o m o m o r p h i s m s  Tz(X,~) ~ T~(Xa)  extending  t "o t ' ,  and so Proposi t ion  2.3 
says they are  equal ,  whence  q + - t ' )  + - t "  = ( i "o i ' )o t  = ( i " ~ ) o t  = t +-  ( i "o t ' )  = t +-  (t' +- t " )  

as desired.  Thus  we have  
PROVOSXTION 2.4.  S u b s t i t u t i o n  is a s soc ta t t ve  F o r  t : X v  ~ T~(Xn) ,  t '  : Xn ~ T~.(Xm) 

a n d  t" : Xm --+ T~(Xq),  t h e n  (t +- t ' )  +-  t" = t +- (t '  +-  t"). [] lo 

Just  as we can ex tend  subst i tut ion to p- tuples ,  so we can ex tend  the no t ion  of  de r ived  
opera to rs  to p - t u p l e s  of n-ary  S - t e rms .  Given  t = (q ,  • • • , t o) : X p  --+ T_~(Xm), we def ine  
tA : A m ~ A p to be such that ,  for each a ~ A 'n (i.e. a : X,n ~ A ) ,  ta(a) = ci o t, which,  for t 
= ( t l ,  " ' "  , tp) ,  g i v e s  t a ( a )  = ( t ( x ~ ) a ( a ) ,  " ' "  , t ( x p ) a ( a ) )  = ( ( t l ) A ( a ) ,  " ' "  , ( t v ) A ( a ) ) .  NOW 

given 

X~ X,  X,. 

T~(X.) ) F~(X,.) I. A 

which is a trtwal modification of the dmgram for substitution, the proof of Proposition 
2.4 Is immedia te ly  modi f ied  to yield 

PROPOSITION 2.5.  (t +- t')A = ta ° t ]  ( w h e r e  the  r i g h t - h a n d  s ide  ts f u n c t i o n  c o m p o -  

s i t ion  a n d  the  l e f t - h a n d  s ide  is s u b s t i t u t i o n ) .  [] 
Some  famflmr funcnons  on t rees  or  express ions  are fur ther  examples  of  initial a lgebra  

semantics  
Fron t t e r .  Make E~ into a Z-a lgebra .  
(0) For  o- ~ ~o, let o- be  o- ~ Eo*. 
( 1 ) F o r ~ r  E E , ,  wa, " .  , w ,  E E g ,  letcr(w~, " "  ,w,~) = wl " ' "  w, .  

The  un ique  E - h o m o m o r p h i s m f r  : Tz --) E~ is the f ron t ie r  (or yield) funct ion.  
Genera l ly  Ws clear  and ntce to write era to specify what  ~r names  m the a lgebra  A,  but  

th,s gets t i resome,  and m fact it is not  conven t iona l  pract ice For  Abe l i an  groups one  
doesn ' t  see +c  and 0G, but  Just + and 0, the symbols  indeed name  the funct ions and 
constants .  

Whtle the conven t ion  of  using the ope ra to r  symbols  to deno te  the funct ions m 
(different) algebras can lead to some ra ther  strange looking expressions (cf. case (0) in 
the example  above  and m the two that  fol low),  it Js a r ecogmzed  c o n v e m e n c e  and avotds 
naming  algebras m these examples  and the resul t ing complex  subscrtpts.  

H e i g h t .  Make o) = {0, 1 , 2 ,  • - .}11 into a Z-a lgebra :  

(0) Fo r  ~r ~ E0, let o- = 1. 
(1) For  o- E E,,, k~, . .  • , k, ~ w, let o'(k,, - . .  , k,,) = max,(k,) + 1. 

The  un ique  ~ - h o m o m o r p h i s m  hg  : Tz ~ co is the height  f u n c t i o n - i n  t ree  t e rmino logy ,  
the length of  the longest  path f rom the root  to a terminal  node  ( +  1). 

S y m b o l s .  M a k e  ~2 p(E)  into a Z-a lgebra :  
(0) For  o- ~ E0, let (r = {~r}. 
(1) Fo r  o- ~ En, n > 0, and u , ,  • • • , un ~ p ( E ) ,  let  o-(u,, • • • , un) = {o'} O I.Lu,. 

The  un ique  E - h o m o m o r p h i s m  s y m  : T z  -+ p ( E )  is the  set o f  symbols  that  occur  in an 
express ion.  

We fimsh off  thts sect ion by showing how the impor tan t  process  of  def ining der ived  
opera to rs  works  for many-sor ted  algebras.  Whereas  m the convent tona l  case we gener-  

to From a categorical point of view what we have here is a category T~ (the algebraic theory [32] freely 
generated by ~ )  with set of ob)ects oJ; morphlsms from m to n are functions from Xm to T~(X,~), composit ion is 
substitution; and for each n ~ ~o, the mapping X n  ---, T ~ ( X , )  taking x, to x, is the identity for n 
n Throughout  we use ~ to denote the nonnegatwe integers. 
~ p(E) is the set of subsets of the set of operator  symbols E (p is for "power  set").  
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ated a free a lgebra f rom a single set, now we must have genera to rs  for each sort ,  i .e an 
S- indexed  family X Given  an S-sor ted  ope ra to r  domain  E,  def ine  an ope ra to r  domain  
E(X) by E(X)x,, = X~ tO E~,~ and E(X)~,~ = E ..... for w ~ ~; that  is, the genera to rs  are  
ad jo ined  as symbols of arity h and sort s. Again  T~x~ is v iewed as a Z-a lgebra  Tz(X), and 
we have the " f r eeness"  proposi t ion proved  exactly as Proposi t ion 2 3. 

PROPOSmON 2.6. For an S-sorted operator domain ~ and an S-mdexed faintly X ,  
T~(X) is the ~a lgebra  freely generated by X in the sense that any S-indexed family  o f  
functions, h : X ~ A ,  to the carrter o f  a Z-algebra A ,  extends untquely to a ~-homomor-  
phtsm I~ : T~(X) ~ A .  [] 

For  u = s~ • • • s .  E S*, define X~ (the analogue  of  X .  is the one-sor ted  case)  by X .  = 
{x~ .... x2 .... • • • , x .... }. X .  ts a set of  n " s o r t e d "  or  " t y p e d "  var iables  and can be v iewed  

as an S- indexed family with (X.)s = {X~,s, [ s, = s}. This specifies,  for each s,  the countable  

set {x~,~, xz,~, x3,,, • • • } of  s -sor ted  vartables via conventen t  f imte subsets X .  for u E S*. 
For  example ,  with S = {a, b} again,  Xa~b~b = {Xl,~, Xz,a, X4,a, X3,b, Xs,b}. 

In an algebra A ,  a te rm t ~ (T~(X~))s defines  a der ived ope ra to r  ta : A  ~ ~ As 
analogously  to the one-sor ted  case: View a U A ~ as an indexed family of  funct ions a : X .  

A bya,(X,,s,) = a~ ~ A~, and,  using Propos i t ion  2.6,  define tA(a) = ~(t). 

Again ,  substi tut ion is a special case. A family of  maps t : X~ ~ Tz(X. )  is like an n-  
tuple of  terms m variables  X,  except  that  t(x,.~,) has to be m T~(X~)~, so that  var iables  of  

sort s, are assigned terms of  sort s,. Also  given t' : X~ ~ T~(Xw), S-sor ted subst i tut ion is 
def ined by t ~ t '  = t ° / ' ;  t ~ t '  is again the result  of  s imul taneously  substi tut ing t~ 
= t'(X,,~,) forx,,~, in each c o m p o n e n t  o f t .  Associat ivi ty of  substi tut ion and its re la t ionship 
to der ived opera to rs  go through exactly as in Proposi t ions  2.4 and 2.5.  

3. Applications o f  lnitial Many-Sorted Algebras 

3.1 CONTEXT-FREE GRAMMARS. The most  impor tan t  and genera l  example  of  
initial many-sor ted  algebra semantics  ~s semanttcs  for context - f ree  g rammars  

Le t  G = (N,E,P> be a content - f ree  g rammar  13 with nonte rmina ls  N ,  terminals  E 
(N N E = ~ ) ,  and product ions  P C N × (N U E) +. Let  V = N to E;  for any w ~ V*, def ine  
nt(w) to be the string of  nonterminals  in w, in the same order .  (More  precisely,  nt  : V* --~ 
N* is the umque  extens ion to a mono ld  h o m o m o r p h t s m  of  the map  V ~ N* which is the 
identi ty on N and takes each o" ~ E to h E N* ) 

Now make  G into an N-sor ted  ope ra to r  domain  where ,  for each (w, A)  E N* × N ,  

Gw,a = {p E P ] p = (A ,  w')  and nt(w')  = w}. 

Thus  a product ion  A o--* uoA lulA2 • • • u . _ i A  nU. (A, E N,  u, ~ 5;*) is an ope ra to r  symbol  
of  type (A~ • • • A . ,  A0) The imtial  G-a lgebra  TG has carr iers  Tc.,a which are  parse t rees  
for der ivat ions  m G from A E N.  

Regard ing  the general i ty  of  this s i tuat ion,  we have  just  seen that  any context - f ree  
g rammar  gives rtse to an inttial N-sor ted  a lgebra .  Converse ly  (because we al low mfm~te 
g rammars ) ,  If E is any S-sor ted ope ra to r  domain ,  then there  is a context - f ree  g r a m m a r  
which gives us the initial Z-a lgebra  back again under  the const ruct ion above .  In parttcu- 
lar,  take 

= (S,E tO {(,)}, P) with P = {(s, o-(s, . . .  s . ) )  I o- ~ Es . . . .  s}. 

T h e n  one  can check that ,  under  the ident if icat ion of  the ope ra to r  symbol  (s, or(s1 • • • s .))  
m ~ with cr in E,  T~ and T z are i somorphic .  

The  impact  of  initial a lgebra semantics  here  is that any G-algebra  wha t soeve r  (a set Sn 
for each non t e rmmal  A and a funct ion ps  : Sa, × • • • × Sa. ~ SA for each  produc t ion  p 

13 Usually N, E, and P are fimte (see [19]) We don' t  have (or want) that restriction here We believe that the 
context-free grammar for the abstract syntax of many programming languages will have an infinite number  of 
terminals,  nontermmals,  and productions We don' t  consider the effective presentat ion of such systems here 
(see van Wljngaarden [77]), but this must  be carefully thought out 
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of type (Aa • • • An,  A))  provides a semantics  for the context-free language genera ted  by 
G. TG, being  initial ,  gives the un ique  homomorph i sm h s  : TG ~ S which assigns " m e a n -  
ings" in S to all syntactically wel l - formed phrases of the language (not  just  to the 
"sen tences"  genera ted  from some specified start  symbol  in N) .  

For  example ,  we make  X* into a G-algebra  (with every carrier  X*) by l e t t ingp(v l ,  • • • ,  
V n )  = U o V i U l V  2 " " " Un-lVnU a for p = (Ao, u o A l u l A 2  • • • u,~_lA,,u,~). T h e n  the un ique  
homomorph i sm d : TG---> ~* assigns to a der ivat ion t ~ TG.A the string which is der ived)4  
Note that  d : T~ ~ (X U {(,)})* gives exactly the wel l -formed X-expressions correspond-  
ing to parse trees in T~; this is the basis for proving the isomorphism of T~ and T~. 

G might  be ambiguous  (d  no t  inject ive) ,  bu t  that  is no t  a p rob lem since initial a lgebra  
semantics  (the abstract  syntax point  of view) factors ou t  the parsing p rob lem (without ,  of 
course,  e l iminat ing  i t )?  5 

Thus  even  "str ing gene ra t ed"  is an  initial  a lgebra semantzcs for context-free gram- 
mars.  K n u t h ' s  [30] synthesized at t r ibutes  (following Irons'~ [29] ideas) really do what  we 
describe here,  bu t  Knu th ' s  def ini t ions and no ta t ion  seem more  complex than is neces- 
sary. In  our  formula t ion ,  Kn u t h  constructs  a G-a lgebra  S in which each carrier  Sa is itself 
a Car tes ian  product  of  sets. The componen t s  of  that  product  are called "synthesized 
a t t r ibutes"  o f A .  Then  K n u t h ' s  "semant ic  rules"  def ine (by the componen t s )  opera t ions  
of the appropr ia te  type for each product ion .  Of  course ,  semantics  of the language is the 
un ique  homomorph l sm hs • TG ~ S )  6 

3.2.  DENOTATIONAL SEMANTICS Scott [63] begins with the mot to  "Ex tend  B NF  to 
semantics  " In fact, that is the "mo ra l "  of the previous  discussion We now know that 
BNF ~7 yields an initial  many-sor ted  algebra,  that semantics  arises from an algebra of the 
same type,  and  that  " m e a n i n g "  is the un ique  homomorph i sm.  We view the principal  
achievement  of Scott and  Strachey (say [60, 64,  65]) as providing mathemat ica l  tools for 
construct ing semant ic  domains  (many-sor ted  algebras with opera t ions  cor responding  to 
the product ions  of a context-free g r ammar )  so that  the um que  homomorph l sm is the 
in tended  (denota t ional )  mean ing  of the language.  

Scott and  Strachey seem to say (e.g. [65, p. 17]) that  they don ' t  care if the syntax of 
the language is context-free.  ( "The  last thing we want  to be dogmatic  abou t  ts lan- 
guage . " )  But  their  semantics  does depend  on  the context-free character  of the source 
language,  because the mean ing  of a phrase is a funct ion of the meanings  of its cons t i tuent  
phrases.  (From [65, p. 12], "The  semant ical  def ini t ion is syntax directed m that it follows 
the same order  of clauses and t ransforms each language construct  into the in tended  
opera t ions  on the meanings  of the pa r t s . " )  This essentially says that  syntax is context-  
free and semantics  is a homomorph i sm.  18 

In general ,  the "semant ic  equa t ions"  (typical of [65, 26], etc.)  def ine the m ean ing  of a 
syntactic construct  C as a funct ion Fc  of the meanings  of the componen t s  to that  
construct ,  and  in so doing the semant ic  equat ions  describe an algebra (the funct ion Fc  is 
the opera t ion  cor responding  to the syntactic construct  C) and  say that semant ics  is a 

~4 This is actually a generalization of the frontier function defined in Section 2 
~5 As Schwartz [59] puts it, "We have sufficwnt confidence in our understanding of syntactic analysis to be 
wdhng to make the outcome of syntactic analys~s, namely the syntax tree representaUon of program, into a 
standard starting point for our thinking on program semantics " 
18 Knuth's [30] reheated attributes are not treated in this paper, but Goguen and Zamfir (unpubhshed) have 
suggested treating them as variables (that is, new unmterpreted constants) in free algebras whose operator 
domain contains, in addition to these varmble symbols for inherited atmbutes, all the operatzons and constants 
which are employed m semantic definmons Burstall (personal communication) has suggested using [1 ~ S] as 
the carrier of a generalized semantic algebra These issues will hopefully be explored elsewhere On the other 
hand, Knuth's [30} mare result, an algorithm testing for c~rcularity of a semantic defmmon mvolwng both 
inherited and synthesmed attributes, lies outside the domain of mterest of this paper 
~7 Backus-Naur Form, a well-known and convement formulation for context-free syntax 
~8 The homomorph~c character of the semantic function must have been clear to Scott In fact, he uses the 
phrase "continuous algebraic homomorphlsm" [61, p 46] for the semantic funcUon on the lattice of flow 
diagrams (See Section 5.3) 
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homomorphism.  Usually semantic equations give the meaning with respect to an "envi- 
ronment ,"  for example [65, p. 27], 

"where p ts an environment;  ~ is the semantic function for commands with target,  say, F; 
and ~ is the semantic function for expressions wtth target T = {true, false}. The initial 
algebra " translat ion" of that semantic equation abstracts the environment variable to get 

c ~  ~ To, V,~ = hp cond(C~%i~(p), c~Vl~ (p)) * ~ e ~ .  

Now this has exactly the form of the homomorphism condition, 

and the operat ion (in the semantic target algebra) ts F ~  : T x F z ~ F, defined for all ~ @ 
T and 'y0, 'yi ~ F in terms of cond, *, and abstraction: 

F~ (~, q/o, ~i) = kp cond (~o (P), ~, (P)) * E. 

The point is that one need only define the target algebra; mmali ty yields the semantic 
homomorphism. 

We illustrate this m more detail with a simple apphcative language which we call 
SAL,  drawn (and modified) from Reynolds [53]. TM Let X = {xi, x2, "" "} be a set of 
variables 0dentiflers).  In specifymg SAL syntax we give each rule a name m order  to 
have mnemonics for defining a semantic algebra; those with subscript x represent  
families, one member  for each x ~ X. There ts one nonterminal ,  (exp), and all boldfaced 
symbols are terminals.  Thus varmbles occur as terminal symbols, just as, say, if does. 
The (context-free) productions of SAL are the foliowmgZ°: 

(%) (exp) : := x 
(cond) (exp) : := if (exp) then (exp) else (exp) 
(apply) (exp) : := (exp) ((exp)) 
(abs~) (exp) : := lamhda x ((exp)) 
(lets) (exp) : := l e t x  be (exp) in (exp) 
(let-reck) (exp) :: = let recursive x be (exp) in (exp) 

From Scott [63 ] there is a complete lattice 21 V of values satisfying the isomorphism, 

v ~  1 + n + [ V ~  V], (*) 

where I and B represent  respectively the mtegers and the Boolean values {true, false} as 
lattices with ~ and -1- adjoined,  and [V ~ V] is the complete lattice of continuous 
functions from V to V. The +-opera t ion  on the right-hand side of (*) is the "coalesced 
lattice sum ''22 (disjoint union with mimmum (and maximum) elements identified).  For X 

{1, B, [V--~ V]}, let j~ be the in ject tonja  : X--~ I + B + [V---~ V], and let ~b be the 
isomorphism ¢b : V "~ I + B + [V---~ V]. Then V ts equipped with injection tx : X---~ V (Ix 
= qb -I Olx ) and also "proJections" 7rx : V ~ X such that 

f~b(V) If ~b(V)EX, 
~ x ( V )  = otherwise 

19 O u r  language  differs subs tanhal ly  f rom Reynolds ' s  m that  his employs  a call-by-value in terpre ta t ion  of  
application 
20 The fact that  this is an ambiguous  g r a m m a r  Is i r relevant  for  our  purposes  
21 We dISCUSS completeness ,  cont inui ty ,  and  al ternat ives  to lattices in Section 4 For  now,  a complete lattice is a 
partmlly ordered  set where  every subset has a least uppe r  bound ,  a function is continuous lff it preserves  least 
upper  bounds  of directed subsets ,  and  D is directed lff every finite subset of D has an uppe r  bound  in D The 
min imum and  maximum elements  of a comple te  lattice are denoted  ~ and * ,  respectively 
~2 For  lattices (and analogously  for posets,  with only ~ ) .  the coalesced ~um of two lattices Lj and  L2 consists of  
the disjoint  union  (say) L1 x { 1 } U L2 × {2} with (-% 1) and  (-r, 1) identified respectively with (_t_, 2), (-% 2) u n d e r  
the obvious order ing  The separated sum is the disjoint union with new x and  -1- ad lomted ,  x C (1, z) C_ -r for  all 1 
E L, and  i ~ {1, 2}. 
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We wish variables to have values in V. Thus let E be the set of environments ,  1.e. of all 
total functions from X to V, E = V x as a complete lattice with componentwise ordering 
e E_ e' iffe(x) ~ e'(x) in V for allx ~ X. Finally, meanings of expressions are continuous 
functions from environments to values, M = [E ~ V]. 

M becomes a semantic algebra when we define an operation on M for each production 
of SAL; letx, let-recx, and apply are of rank 2, functions M 2 ~ M; cond is rank 3; absx is 
rank 1; and vx is rank 0, a constant. 

To carry this out, we define some auxdiary continuous functions (and functionals). 
Our presentation here is rather sketchy since this development Is what Scott, Strachey, 
and followers do anyway, and our aim here is just to show that the relation to the mitml 
algebra framework. 

(3.1) access~ : E ~ V is the evaluation function on V x at x ~ X:  access~(e) = e(x). 
(3.2) c : V 3 ~ V is some conditional, say: 

i -r if vl =-r ,  
c(v~, v2, v3) = v× ffv~ = true, 

v3 flY1 = false, 
_L otherwise. 

(3.3) ap : V 2 -~ V is application: ap(vl ,  v2) = (~'~v--,v~(vl))(v2), where 7rfwvl is the in- 
dicated projection; see discussion following (*) above. 

(3.4) assign~ : E × V ~ E is our friend the assignment operator: 

{~ i fy  = x, 
assigns (e, v) = e'  where e'@) = e@) otherwise. 

Al l  o f  the above have etther been shown to be cont inuous or can eastly be shown  to be 
such.  In addttion, Scott 1-63] defines 

(3.5) abstract : [D × D '  ~ D"] ~ [D ~ [D' ~ D"]] by ((abstract(f))(x))(y) = f (x ,y )  
for a l l f ~  [D × D'  ~ D"], x ~ D,  a n d y  E D' .  

Here we too enjoy some notational amblgmty by writing "abstract" instead of 
"abstracto.D,,o,"; and similarly in other cases. 

(3.6) The least fixed point operator Y : [D ~ D] ~ D is continuous. 
(3.7) If m, : E ~ V, (1 -< i -< k) are continuous, then [ml, "'" , mk] : E --~ V1 × ""  × 

V~ defined by [ml, "'" , mk](e) = (ml(e),  " "  , ink(e)) Is continuous (called target-tupling) 
(3.8) For continuous functions f : D ~ D'  and f '  : D '  ~ D", the composite f '  o f is 

continuous; and so is composition itself, o : ([D' --~ D"] z [D ~ D']) ~ [D ~ D"]. 
Now make M = [V x ~ V] into a SAL-algebra by gwmg an appropriate operation for 

each production of SAL: 
v x = access ~ 
cond(ml ,  ms ,  m3) = c o Ira1, m2, m3] 
apply(m1, m2) = ap o [ml,  mz] 
abs z(m ) = t[v~vl o abstract(m o assign x) 
letx(ml,  m2) = ms ° asstgnx o [1E, ml] 
let-recx(ml, m2) = letx(y ° abstract(ml o assign×), m2) 
Actually the defimtions of most of these operations seem to be clearer as dmgrams, 

since the source and target of each funcuon is exphot .  "Abstract ion" is regarded as a 
way of getting one function from another The funcUon "assumed" (or given) appears on 
the top, the function "deduced" appears below it, and the process is represented by a 
line between them; thus 

D × D ' - f ~ D "  

~' D"] D ---~ [ D'  ---~ 

for g = abstract(f).  Then the first five definitions are: 
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(1) vx = E ...... ~V 

(2) cond(ml ,  m2, m3) = E ["!: . . . . .  J~, V 3 ..5_, V 

(3) apply(m, ,  rn2) E ~ V 2 "p '~ g 

E x V .... g"~ ' E ~ V 
(4) abs~(m) = E --~ [ V  --* V] ...... , V 

(5) letz(ml,  m~) E I-I~'m~1, E X V  .... u,~ ,,~ = E - - - - ~ V  

With M a SAL-algebra ,  tlae unique homomorphlsm hu  : TG --~ M is a semantics for 
SAL.  There is no claim for great gains in perspicuity, but our mode of definition does 
illuminate the places where semantic choices are made.  It is through the Introduction of 
standard mathematical  func t ions-compos iUon,  tupilng, injecUon, and the l i k e - t h a t  
these choices are clarified, and this process has the addmonal  benefit  of getting nd  of the 
need for-"dragging along" the variable for environments.  

Given the particular conditional and application functions ((3.2) and (3.3) respec- 
tively), then the functions cond and apply ((2) and (3) respectively) on the semantic 
carrier M are essentially the only choices possible; this differs from Reynold 's  meta- 
circular interpreters in that he presumes a "defining language" m which the Interpreters 
are written and the semantic choices have not been completely made for that meta- 
language. In the semantic ca ree r  E---~V, there is simply no way to make a distinction 
between order  of evaluation of opera tor  and operand in (2), for example.  If expressions 
had side effects and E---~ExV were taken as carrier,  then the two orders of evaluation 
would be clearly represented in 

m2 mlXl~) 
E ~ E x V  E x V x V  - k . ~ - ~ E x V  

and 

E - - 4 E x V  ,,,,×1, E x V x V  z'×a.P'~ExV, 

where ap'(vl ,  v2) = ap(v2, vl) = v2(vl) and f x g ( a ,  b) = ( f (a) ,  g(b)) 
3.3. SYNTAX DIRECTED TRANSLATION. The noUon of syntax directed translation 

pioneered by Irons [29] has been mathematically treated by several authors [1-3,  30, 35, 
50, 63, 73]. We can wew these technical interpretations of syntax directed translation as 
special cases of initml algebra semantics with the "semantic a lgebra" nearly f lee.  There 
are two problems: First,  we aren ' t  yet sure how best to treat "nondetermimst ic"  
translation and therefore don ' t .  Second, we only formulate various concepts,  giving 
neither new results nor simplified proofs We hope that the reader,  faced with these 
remarkably simple definmons,  may be moved to simplify and expand the theoretical  
development .  

Just as generahzed sequentml machines [19] map E* to X'* (for alphabets  ~, and 
X'),  syntax directed maps go from T~ to T x, (for opera tor  domains X and X') .  Just as 
one later restricts a generalized sequential machine to a subset of  X* (e.g. a context-free 
language), one can later consider a syntax directed map on a subset of T~, say a set of 
derivation or parse trees 

Thatcher [69] shows that many prior formulations of syntax translation are special 
cases of a general algebrmc formulaUon. So do we here,  but with even greater  s implioty,  
if less mtumve transparency. 

Definition 3.1 A k-state root to frontier syntax map  from T x into T x, is the unique 
homomorphlsm h : Tx ~ (T~,) k guaranteed by lnltmhty of Tx after making (Tx,) k into a 
E-algebra.  The set [k] = {1, 2, • • • , k} is the set of  states. Ifh(t)  = (It, • • • , tk), then t, is 
the image of t under the syntax map from start state t. [] 

The standard example (cf. Rounds [57], Thatcher [69]) is polynomial  derivative.  
Take X0 = {0, 1, x}, Xz = {+, x} and define a (2-state) syntax map (from Tx to T~) by 
placing the following X-structure on (Ts)Z: 
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(t'l, t i ) +  (t~, t 2 )  = (t~ + t~,t i  + t2) 
(t'l, t l )  × (t~, t2) = ((t~ × t2) + (tl × t~) , t l  × tz) 

o = <o, o)  
i = <o, 1) 
x = (1,  x )  

These  " e q u a t i o n s , "  especia l ly  the last th ree ,  may  be somewha t  confusing;  of  course  the 
symbols  + ,  × ,  0, 1, x are f rom X and,  for  e x a m p l e ,  the last equa t ion  says tha t  x in X 
names  the pa i r  (1, x)  in (T~) 2 of ob jec t s  n a m e d  by 1 and x (each m Tx). 

Now h : Tx--~ (T=) 2 yields h(t) = (t ' ,  t); the left  m e m b e r  of the pa i r  is the (uns impl i f ied)  
der iva t ive  and the right m e m b e r  is lust  t again.  

The def imt ion  s imphfies  and  encompasses  Tha tche r ' s  [69] " r o o t  to f ront ie r  au toma-  
ton with o u t p u t "  (cal led "f ini te  s tate t r ans fo rma t ion"  in [68]).  In tu i t ive ly ,  if t = or(t', t"), 
t~ is the  t rans la t ion  of  t '  f rom root  (s tar t )  s ta te  t, and  t~' is the t rans la t ion  of t" f rom state  
:,  then  o'((t~, . . -  , t~>, (t~, . - .  , t~))~ is the t rans la t ion  of  or(t', t") f rom state  1. 

I f k  = 1 and the E-s t ruc ture  on T~, is u n i f o r m  m the sense that  for  each o- ~ E,, there  ts 
a t e rm t ,  in T x , ( X , )  such tha t  for  all t '  ~ Tz,, or(t~, • • • , t;,) = t ,  ,,-- (t~, • • • , t~,), then  the 
resul t ing syntax m a p  is ca l led  a h o m o m o r p h t s m ,  genera l iz ing  the h o m o m o r p h i s m s  of 
o rd ina ry  formal  language  theory  If, m add i t ion ,  each t ,  is hnea r  (no repe t i t ions  of  
var iables) ,  then the resul t ing maps  include the "syntax  d i rec ted  t rans la t ions"  of Lewis  
and  Stearns  [34] and the syntax d i rec ted  t rans la t ion  schemes  of A h o  and UI lman  [1]. If 
k >- 1 and the X-structure on (Tx,) k is uni form in the above  sense,  our  syntax maps  include 
the gene rahzed  syntax d i rec ted  t ransla t ion schemes  of  A h o  and Ul lman  [2]. 

The  o ther  case of syntax d i rec ted  t rans la t ion  we want  to cons ider  is f ront ie r  to roo t  
t ransla t ion.  Outs ide  t ree  a u t o m a t a  theory  (1.e. outs ide  B a k e r  [3], Mag ido r  and M o r a n  
[40], Tha tche r  [69], e tc . )  we d o n ' t  seem to f ind f ron t ie r  to root  t rans la t ion  as much as 
root  to f ront ie r  maps ,  except  when they coincide  (k = 1). But  the def ini t ion of  finite s ta te  
fronUer to root  syntax map  is r emark ab ly  s imple  and par t icular ly  in teres t ing  in that  it ~s 
ob t a ined  by replac ing " k t h  p o w e r "  in Def in i t ion  3.1 by " p r o d u c t  with k . "  (More  
technical ly,  we replace  the "k - fo ld  produc t  of  Tx," wxth its ca tegory  theore t ic  dual ,  the 
"k - fo ld  coproduc t  of Tx,.") 

D e f i m t t o n  3 2. A k-state f ront ier  to roo t  syn tax  m a p  f rom Tx to Tx, Is the un ique  
h o m o m o r p h i s m  h : T~ ~ [k] × T~, gua ran t eed  by ml t iah ty  of T~ af ter  making  [k] × T~, 
into a E-a lgebra .  The  set [k] = {1, 2, • • • , k} is the set o f  states.  If  h(t) = (:, t ' ) ,  then t '  is 
the image  of t and  the t e rmina t ing  state is i .  [] 

Fo r  example ,  a t ree  a u t o m a t o n  ( D o n e r  [15], Tha tche r  and  Wr igh t  [70]) with transi-  
t ion funct ion M : X × [k]" ~ [k] is imi ta ted  as a f ron t ie r  to roo t  syntax m a p  by making  
[k] x T z into a E - a l g e b r a  with or(<i~, t ,) ,  • - • , ( i , ,  t ,))  = (M(or, i, ,  • • • , i~), or(t, • • • t , ) ) ,  
the second componen t  is the ~dentlty. 

3 4. SYSTEMS or  EQUATIONS. If  A is a E-a lgebra ,  we m a k e  p A  (the set of  subsets  
of  A )  in to  a Z-a lgebra  with the "subse t  cons t ruc t ion" :  

(0) F o r  or ~ Xo, OvA = {orA}. 
(1) F o r n  > 0 ,  or G X, ,  and ut ,  . . .  , u , ~ p A ,  

o r ~  ( u , ,  . - .  , u , )  = {ora(t, ,  " - "  , t , )  i t ,  ~ u , ,  1 -< ~ - n} .  

Assoc i a t ed  with each t ~ T x ( X , )  is a de r ived  o p e r a t o r  tEA : ( p A ) "  - + p A ;  extending  this 
idea  to sets of  te rms,  if r C_ p T ~ ( x , ) ,  def ine  

rvA(U,, " ' "  , Un)  = I,.J{tea ( U , ,  " - "  , Un) i t  ~ r } .  

E : Xn  ~ p T z ( X , )  is cal led a sys t em o f  equat :ons  (in n var iab les )  which de t e rmines  a 
function Epa : (pA)" ~ (pA) ", by E~A = [E(XOeA, " " " , E(xn)pa] ( target- tupling),  called the 
sys t em f u n c t i o n  by Meze l  and  Wright  [45], who show that  EeA is o - con t inuous ,  i .e .  
least  uppe r  bounds  of  o -cha ins  in (pA)"  are  p rese rved .  The re fo re  Epa has a m i n i m u m  
fixed po in t ,  cal led its so lu t ion ,  say (s~, • • • , s , )  G WA)";  in fact ,  

(s,,  . . .  , s , )  = tJkE~A(O, " ' "  , ~ ) .  
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A subset of A is equational iff it is a component  of a solution of a system of equations.  
The entire theory of equational sets (cf. Mezel and Wright [45], Eilenberg and Wright 
[16], Bhkle [8], and Nlvat [48]) flows from these definitions, from mitiality (to get 
derived operators)  and from the fixed-point theorem (to get solutions). 

4 Continuous Algebras 
We begin with some prehmlnartes on partially ordered sets (posets) and the poset of 
partial functions in particular.  Ordered structures have played an important  role in many 
different approaches to the semantics of programming;  see Beki6 [4], Gordon  [26], 
Manna [43], Nivat [48], Park [49], Reynolds [53, 54], Scott [61-64],  Scott and Strachey 
[65], Wagner  [73, 74], and Wand [75], among others. This diversity of effort has 
resulted m a diversity of terminology, leading to a certain amount  of c o n f u s i o n -  
heightened by the fact that the various key words have been used by different authors for 
different concepts. "Comple te"  sometimes refers to the existence of least upper  bounds 
of arbitrary sets [62], or of directed sets [26[; and "cont inuous" modifies lattices [62], 
algebraic theories [11], categories [23], algebras here,  and most often, functions Scott 
[64] and Reynolds [53, 54] speak of "domains"  as complete,  countably based,  continu- 
ous lattices, but then Gordon [26] argues that "semidomains"  are more appropria te  
than "domains ,"  where his domains are complete lattices and his semidomalns are 
directed-set-complete posets. 

In addit ion,  it ~s not clear that there is just one "r ight"  order  structure for semantics. 
Thus in this paper  we suggest a terminology and mathematical  development  which 
hopefully eliminates confusion and permits the expression of general theorems about 
varied forms of completeness and conhnulty.  Our  presentat ion ts admittedly biased 
toward posets over lattices, ~3 based in part on the sometimes greater  complexity of the 
structures which the lattice approach generates,  as well as upon the difficulty of gtwng 
concrete computat ional  interpretat ions to these addit ional elements when they arise. At  
first stght ~t might seem that there is no real difficulty, because one can merely add 
enough "overdef ined"  elements to a sufficiently complete poset to get a complete lattice 
(and often one element  "- r"  will do; see (4.3) below). But more sophisticated construc- 
tions, when constrained to start with lattices, may produce far more than one addit ional  
element.  For example,  coproducts (over index set I )  produce free (generated by I )  
Boolean algebras of overdefined elements,  and our initial continuous algebra construc- 
tion produces an infinite and unruly collection of objects revolving substitution instances 
of -1- m mflmte trees (see discussion after Proposition 4.2) 

The reader  should bear  in mind, however,  that the algebraic approach does not impose 
any choice between (say) directed complete posets and lattices. It is the marriage 
between the algebraic and the order  theoretic approaches that is important .  

Following Scott, we use E_ for the order  in a poset P ,  u (read "cup")  for binary (or 
finite) least upper bounds,  and H (read "mug")  for least upper  bounds of arbitrary sets. 
We assume all posets have a minimum element  denoted .a_ ( "bo t tom") ,  whde -r ( " top" )  
denotes  the maximum element  if it exists. A subset S of P is directed fff every finite subset 
of S h a s a n  upper  bound in S A f u n c t i o n f :  P ~  P'  from a p o s e t  P t o a p o s e t  P ' i s  
monotonic iff for allp0 E_ p~ in P,f(Po) ~- f(P~) in P ' .  

In order  to be able to introduce concepts such as "comple te"  and "cont inuous" in a 
uniform manner,  it is convenient to introduce the following notation. We say a subset S 
of P is a 

u-set 
to-set 
~-set 
A-set 
H-set 

If S if fimte nonempty,  
if S is an to-chain, 
if S is nonempty,  and linearly ordered (i.e. a chain), 
if S is directed, 
if S t s  nonempty 

23 For further discussions of the relative merits of lattices versus posets see after Corollary 4 12 and also 
Gordon [26] and Lewis and Rosen 133, Pt 2] 
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For each symbol Z E {u, co, g, A, I.I}, a function f : P ~ P' is Z-continuous iff it preserves 
all least upper  bounds (that exist) of Z-sets  in P;  a poset P is Z-complete iff all Z-sets  
have least upper  bounds in P .  Each of these symbols can be modified by a " d o t "  to 
indicate boundedness:  A Z-set is a Z-set  with an upper  bound in P and, e.g. ,  a poset is Z-  
complete iff each bounded Z-se t  has a least upper  bound in P .  P IS Z-bounded tff every 
Z-set  has an upper  bound in P (is a Z-set) .  Finally we need the modifier "s t r ic t" :  P is 
strict iff P contains a minimum element  a_ (we only consider strict posets here):  f : P 
P '  is strict iff it preserves _c. 

Examples  of the use of these conventions are: 
(4 1) A function f : P ~ P '  is Z-cont inuous iff it is Z-cont inuous.  
(4.2) A poset  is g-complete  iff it is A-complete (cf. [13] and [44]). 

(4.3) Let  pT be the poset P with -1- adjoined (i .e. -i- ~ p and p ~ -1- for all p ~ P). Then 
P" is H-complete (a complete lattice) lff P is H-complete;  and P"  is u-complete (an 
upper-semilat t ice)  iff P is u-complete.  

(4.4) Some of the modifier symbols are ordered (oJ C g C A C H), so P U-complete 
implies P A-complete implies P g-complete  implies P w-complete.  

(4.5) S C P is directed lff S is nonempty and u-bounded.  
(4.6) For  each of our Z, f Z-continuous lmphes f monotonic,  because p0 c_pl in P 

implies {po, Pl} is a Z-set  having at least upper  bound (namelyp l ) .  Thusf(p0 u Pl) = f ( P 0  
= f(Po) o f (p , ) ,  sof(p0)  c f(Pl).  

(4.7) Least  upper  bounds of Z-sets  work by components  on Cartesian products,  i e. 

H ( p , . , ,  . ' .  , p k , , )  = ( H  p , , , ,  ' ' '  , II Pk , , )  
IE I  t e l  t e l  

for any Z-set  {(P1,,, " • " , Pk.,)},~, in P~ × • • • × Ph 
(4.8) For  Z ~ {to, g, A}, f : P~ × • • • × Pk --* R is Z-continuous i f f f  is Z-continuous 

componentw~se, i .e. iff 

f (U  p,  .... . - .  , H p k , , , ) =  H f(P, .... "'" ,Pk.,,). 

For sets A, B, let [A ~ B] be the poset  ofpartMl functions z4 from A to B. Since we 
have fixed source and target,  the elements  of [A --o-, B] correspond to functtonal subsets 
o f A  x B; i.e. i f ( a ,  b ) ~ f a n d  (a, b')Ef, then b = b ' .  The order  relation on [A ~ B] is 
simply set inclusion, and the least upper  bound (when it exists) is set union; it exists iff 
the set union is a function F o r f : A - * ~  B and C C _ A , f  1 C =  {(a ,b)  l a  E C a n d  
(a, b) ~ f}  is the restriction o f f  to C; def(f) = {a { (a, b) ~ f}  is the domain ofdefifinttion of 
f .  The following are well-known facts about [A ~ B]. 

(4 9) [A ~ B] is strict A-complete and H-complete. 
(4.10) Iff .~H,atf  in [A ~ B] where def(f)  is fimte and {f},~1 is directed, thenfc_f~ for 

somejE1 .  This says the finite part ial  functions are A-compact 
So much for preliminaries We now turn to the definition of "X-trees" which provide 

the carriers of mi0al "continuous algebras " The idea is based on the well-known device 
of representing a X-tree as a function defined on a prefix closed subset of to* (called a 
tree domain; see [67]) taking values in X In Figure l ( a )  (Xo = {b, xo, x~}, Xz = {f}, and 
X, = ~5 for i # 0, 2}), the tree (expressJonf(tlflxoxi)b)xo)) is represented by the function 
t : {h. 0, 1, 00, 01 ,000 ,001}-~  {f, b, xo, x,} where h, 0, 00 ~ f ;  1,000 ~ x o :  01 ~ b; and 
001 ~ x~. The first generalization considers the representat ion as a partial  function on 
to* for which the domain of definition has the tree domain property.  This subsumes the 
previous formulation and immediately includes infinite trees. Figure l ( b )  is such, 
represented by t : to* ~ {f, b} with 0* ~ f ;  0"1 ~ b; and t undefined otherwise.  (This 
example solves the equation x = f (x ,  b); see Section 5.1 .) Finally we allow trees to be 
partial,  the effect being that leaves can be unlabeled (or labeled with .a_; see Proposit ion 
4.4).  The third tree in the sequence (chain) of Figure 2 is the partial  function t : to* -o-, 

a4 F A--O-, B designates a function A to B with a possible "hole " 
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{f, b} with h, 0, 00 ~ f ;  1, 01 ,001  ~ b, and undef ined  otherwise .  The  natural  o rder  
re la t ion on these trees is the one  ob ta ined  f rom [~o* ~ {b, f}] ,  and the least upper  
bound  of  the chain of  Figure 2 is the tree of  Figure 1 (b). 

We now give the precise de f inmon  of Z- t ree  m the s impler  one-sor ted  case and 
consider  many-sor ted  ope ra to r  domains  at the end of  this section 

Let  (E,),~o be a one-sor ted  ope ra to r  domain  (i e a ranked a lphabet )  A Z - t r e e  is a 
partial  function t : co* ~ E such that ,  for all u ~ oJ* and t ~ o~, 

(a) ui  E deist)  implies  u E deis t ) ;  

(b) ui  E de f l t )  implies  t (u)  ~ E,, and i < n for some n > 0. (Note  that ui  E de f ( t )  does  
n o t  imply u k  E de f l t )  for any o ther  k.) 

Let  C T ~  denote  the set of  Z- t rees :  and let FF~ denote  the subset of  all f inite ~ - t rees  
( those trees t for  which def l t )  is f imte ) The order ing on [oJ* ~ E] Induces an order ing  =_ 
on C T z  (and F , ) .  If  a set of  parttal funct ions sahsfying (a) and (b) has a least  upper  
bound  (set u n l o n ) f  m [o~* -~, E], t h e n f a l s o  sahsfles (a) and (b); so least upper  bounds  
in [w* ~ E] are least upper  bounds  in C T ~  Thus,  f rom (4.9) ,  

PROPOSITION 4.1 CT, :  is a s tr ic t  b - c o m p l e t e  a n d  U - c o m p l e t e  p o s e t .  [] 

Let  oJ (') be the subset of  oo* con ta imng strings of  length less than n; then I..In~,~o~ (') = ~o*. 
And  taking t ('~ = t 1 ~o ('), then t = I.l,~oot ~') By condi t ion (b), each t (') is f inite (even 
though oo ~") Is infinite);  thus 

PROPOSITION 4.2 F o r  a n y  t E C T z ,  t = Une~o t (') a n d  t ('> E F~ .  [] 

Now make C T x  into a I - a l g e b r a .  
(0) For  o- ~ ~0, let o-<.r = {(X, o')}. 
(1) For  o- ~ Z,,, n > 0, and t~, . • • , t,, ~ C T ~ ,  let  

o-~.(t , ,  . - .  , t,,) = { (x ,  o-)} t3 u , < ,  {(iu, o")1  (u,  o-') ~ t,+,}. 
Ift~, . . .  , t,, E C T ~  and o- ~ E,,, then O-cr(t~, " '" , t,,) U C T , ;  in fact, If the t, are finite,  
then so ~s O'CT(tl, " '"  , t,,). Thus we have also given Z-s t ructure  to F~ 

The order ing on C T ~  is re la ted to this algebraic structure as follows 
PROPOSITION 4.3.  I n  C T ~ ,  t .~ t '  t f f  t = ~ o r  t = t '  = O ' c r  ~ ~o o r  t he re  ex i s t  o- E E,, 

a n d  t~, • .  • , tn, t'~, • .  • , t~ m C T  z s u c h  tha t  t = ~rcr(t~, • • • , t~), t '  = O'cr(t~, • " • , t¢,),. 

a n d t ,  E t l f o r  l <_t ~ _ n .  

PROOF. Both  dtrect ions are qu~te clear  f rom the defini t ions,  especmlly sufficiency 
For  necessity,  if de f ( t )  = ~ ,  then t = _t_. If  de f ( t )  ¢ 0 ,  then X ~ de f ( t )  and t(h) = t '(X); 
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so if t(h) ~ X,,, define t, = {(u, ~r') [ (m, or') ~ t} and t', = {(u, ~r'> I (iu, o"> E t'}. By the 
definition of operat ions O'cr and the order  relation on [to* ~ 2],  t = O'cr(tt, • • • , t , ) ,  
t' = O'er(rE, "" • , t[,), and t, c t~. [] 

PROPOSITION 4.4. Fz is the free S-algebra on one generator 2_; i.e. it is ann imtial 
X(2_)-algebra. [] 

We won' t  burden the reader  with a proof  of Proposit ion 4.4 here because it is fairly 
obvious and a good exercise. It can be done in two ways: ei ther show there is a unique 
X(2_)-homomorphism hA : Fx --~ A for any other  X(2_)-algebra A, or show that Fx is 
isomorphic to (say) the usual algebra of  Z(2_)-expressions (defined in Section 2) and then 
use Proposition 1,1. Ei ther  way, the result depends on the uniqueness of  decomposi t ion 
inFx;  either t = 2_, t ~ 20, or there exist unique n > 0, ~r ~ Z , ,  and tl, . . .  , t ,  E F x  such 
that t = O'cT(tl, "'" , tn). 

PROPOSITION 4.5 The operations o f  CTx are [i-continuous. 
PROOF. ASSURe [i,stqL,, "'" , t,,,) exists in CTE. Then by (4.7) it equals 
iU~ttl,,, " " ,  [i~sltn,,), and we need 

O'CT ( U t I t ,  " ' "  U tB,,) = U 10gCCT(tl,1, " ' "  , in . i ) .  
IEI ' ' t e l  z 

The left-hand side is 

{ix, o-)} u u {<ju, o" ) l  /u, o - '>~  U t~+,,,} 

= {iX, or)} U U U {( ju ,  o-'> I lu,  o-'> ~ t++,,,} 
-J<a t e l  

-- u i{<~., o->} u u {(ju, o-'> I <u, o-'> e t,+,.,}), 

which is the right-hand side. [] 
Because everything in the proof  of 4.5 is finite when restricted to F~, the same proof  

yields: 
PROPOSITION 4.6 The operations o f  Fx are [l-continuous. [] 
Let  an ordered E-algebra be a E-algebra whose carrier  is a poset  with 2_ and whose 

operat ions are monotonic.  A homomorph i sm  of ordered E-algebras is a strict monotonic  
Z-homomorphism.  Let  Palgx  be a class of ordered E-algebras.  Since the operat ions of 
Fx are monotonic (Proposit ion 4.6 and (4,6)) ,  Fx is an ordered  X-algebra. In fact, 

PROPOSmON 4.7.  Fz is initial in Pa lgx .  
PROOF. L e t A  be an ordered  X-algebra; make it into a X(2_)-algebra by letting 2_a be 

the minimum element.  Then by Proposit ion 4.4 there is a unique X(2_)-homomorphlsm 
h : F z ~ A which, of course, is also a X-homomorphism Fz ~ A preserving 2_. We show 
h is monotonic.  I f t  c t '  in Fx, then by Proposit ion 4.3 ei ther t = 2_ (in which case h(t) = 2_a 
c_h(t')), or t = t '  = crcr E X0 (in which case h(t) g h(t')), or there are o- ~ X, and t~, . . . ,  tn, 

• t . .  ~ • ~ t , , ,  t ¢ h,  -,  t ,  in CT~ such that  t = ¢rcr(h, "" , t,) _O'er(h, , t~) = and t+ gt~. By induction 
on the cardinality of def(t), we can assume h(t,) c h(t~). But h(t) = h(~rcr(h , " . ' ,  t,)) = 
o'a(h(h), " " ,  h(t,)) c (monotomclty of O'A) ~ra(h(t~, . ' . ,  h(t~)) = h(~rcr(t'~, " " ,  t[3) = 
h(t'). [] 

A X-algebra is to-continuous iff its carrier IS strict to-complete and its operat ions are to- 
continuous. By Proposit ions 4.1 and 4.5, CTx IS an w-continuous algebra. 

THEOREM 4.8. CTx  is initial in the class o f  to-continuous I-algebras with strict A- 
continuous X-homomorphtsms .  

PROOF. The main idea is that every to-continuous Z-algebra  A is in Palgz  so there is a 
unique homomorphism hA : Fx ~ A which can be extended using Proposit ion 4.2 : kth(t) 
= u,~o,,a~,' i. (,o,)~]. We must prove h A is a X-homomorphlsm,, is A-continuous, and is unique . 

L e t A  be an to-continuous X-algebra. It is also m P a l g x ,  so by Proposition 4.7 there is a 
unique (monotonic)  X-homomorphism ha : Fx ~ A.  We show it has a unique A- 
continuous extension/~a : CTx ~ A which is a X-homomorphism.  In fact, define ha(t) = 
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H~hA(t (')) which exists because A is to-complete. 25 Now umqueness :  If h '  extends  ha and  
is A-cont inuous  (even to-continuous),  then h'(t) = h'(Hnt tm = Hnh'(# m) = H,~ha(t in)) = 
hA(t). 

Next,  hA is mono ton ic  Assume to E t~ in CT x with to = I.l,,t~ ") and t~ = Hdl'° . For  each 
k,  t(0 k) E_ t~k); by monotonic i ty  of hA, ha(t~ I'') E hn(t~k)); and thus/~a(t0) = Hk-hn(t(0 k)) g- 
Hkh A(t(1 h)) = ]~A(tl) .  

Now we show/~a is A-cont inuous.  Assume t = I.l,~lt, for some directed set {t~}~z in 
CTx. We must  show that/~a(t) = U~lha(tt). First,  t, c t for all t, so by monotontc i ty  of 
]~A, ]~a(t,) ~- ha(t) for all t; i .e.  ha(t) is an upper  b o u n d  for {l~A(t,)},e~. L e t b  be any other  
upper  bound/~a(t,) ~ b for all t ~ I.  For  each n ,  t t') c t = I.l,~tt, and {t~} ~s directed;  so 
by (4.10) ,  t TM 7_ t~ for some / .  Thus  for each n there is s o m e / w i t h  hA(t (")) g l~a(t~) g.b; 1.e. 
I-I,/~a(t (')) = ,~A(t) g. b. Thus we have l~A(t) = Hl~lha(tt) as required.  (This may be 

surprising;  since A is only w-complete ,  there is no  a priori  reason for LI ,etha(t,) to exist.) 
Now we have only to show that h a  is indeed a X-homomorphism.  First check that 

. . . . .  t(~-~q for k > 1 and that  t (°) ~ .  T h e n  ~cv(t ~, " , t,) (~) ff cv(t(~ - ' ,  ", , . = 

ha(O'CT(t,, """, tn)) = kH hA(O'cr(t~, " " ,  tn) (e') 

= H ha(o.cv(t~k-1), . . . ,  tntk-,)) 
k 

= H ~A(ha(t~h-'), " " ,  ha(t(nh-~')) k 

= tra(~l ha(t~k-~)), - ' "  , U hA(t(n#-~')) 
k 

= O ' a ( h h ( t ~ )  , . ' -  , h a ( t . ) )  

(defini t ion of/~a) 

(defini t ion of t (k)) 

(ha a homomorph i sm)  

( to-contmmty of O'A) 

(defini t ion of/~A). [] 

The following result  is a corollary of the proof  of Theo rem  4.8.  We proved there was a 
un ique  strict w-cont inuous  Z - h o m o m o r p h i s m  from CTx to A ,  and  then we were able to 
show (surprisingly) that m fact that  homomorph i sm was A-cont inuous.  

COROLLARY 4.9.  CTx ts initial in the class o f  w-continuous E-algebras with strict w- 
continuous homomorphisms. [] 

A n  algebra is A-continuous iff its carrier  is A-complete and its opera t ions  are A- 
cont inuous .  Let  &algz be the class of A-cont inuous  E-algebras with strict A-cont inuous  
X-homomorph~sms. Since CTz is in this class, which is a subclass of that described in 
Theorem 4.8,  we have 

COROLLARY 4.10.  CT~ ts inttial in class &alg z o f  A-continuous I-algebras with strtct 
A-continuous homomorphisms. [] 

There  are confusingly many  initiality results for CT~. For  example ,  the following 
nei ther  implies nor  is implied by Th eo rem 4.8;  details will be  provided elsewhere when  
the relevance of the result is bet ter  unders tood .  

THEOREM 4.1 1. CTx is mitial in the class o f  Z-algebras with to-complete carrters, 
operations that are both to-contmuous and u-continuous and homomorphisms that are 
strict U-continuous E-homomorphisms. [] 

Since the following is a subclass of that  in Theorem 4 . l  i and  conta ins  CTx, we have 
COROLLARY 4.12.  CTx is mittal in the class o f  E-algebras with strict A-complete 

carriers, H-continuous operattons and strict H-continuous homomorphtsms [] 
Before considering propert ies  of der ived opera t ions  on Initial cont inuous  algebras,  we 

can now offer a bit more  to the lattice versus poset  "dispute  " Since Tz ts t.l-complete 
(Propos i tmn 4.1) ,  it follows that  CT~ is a complete  lattice (4.3) Make  CT~ into a E- 
algebra by requir ing that if any a rgumen t  to Crcv IS -r, the value is -r (the opera t ions  
preserve -r). It  follows immedia te ly  from Corollary 4.10 that  CT~ is initial in the class of 
Z-algebras  with carriers which are complete  lattices, opera t ions  which are A-cont inuous  
and preserve ± ,  and  homomorph i sms  whtch are doubly  strict A-cont inuous  (also pre- 

2s When the range of the index ~s obvious (as m th~s proof, n E to), we delete that extra notation, e g LI~ = 
~.Jn Eoo 
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serve -r). It Is fairly clear that  the homomorph i sms  of  lattice algebras should be doubly  
strict A-cont inuous ,  bu t  it is equal ly clear that  once the "overdef ined"  e l emen t  -r IS 
in t roduced (we would  say, artificially) to make  the poset  H-complete,  then we do not  
necessari ly want  the opera t ions  to preserve -r. In order  to get the initial  a lgebra in the 
class of lat t ice-E-algebras with A-cont inuous  opera t ions  and doubly  strict A-cont inuous  
homomorph i sms ,  one  hag to pu t  the obvious  ( though cumbersome)  order  on the algebra 
CTx(-r)  (the a lgebra freely genera ted  by {T}). A c o m m o n  a rgumen t  in suppor t  of lattices 
is that the on ly  cost of  using complete  lattices is the occasional  addi t ion  of an extra "over-  
def ined"  -r to the domain .  This initlality discussion shows that the a rgumen t  is somewhat  
of an overs imphficat lon,  since many  curious te rms in CTx(T) involving 7- have been  
added  and are of dubious  in terpre ta t ion .  

Having  established the existence of imtml con t inuous  algebras,  we can, as in Section 2, 
consider  der ived operators .  Let  A be any Z-cont inuous  algebra (strict Z-comple te  
carr ier ,  Z-cont inuous  opera t ions)  and  let a : X,, ~ A ;  then  d : CTx(X,,) ~ A is the 
un ique  homomorph i sm de t e rmined  by making  A into a E(X~)-algebra.  As before tA(a) = 
ti(t). One  can check that  if a ~ a' (i.e. a(x,) c a'(x,),  1 -< j ~- n).  then  d g_ ci' (i.e d(t) :_ 
,~'(t), t ~ T~(X.)).  

PROPOSITION 4.13.  For  each n ~ to, t E C T x ( X , ) ,  and  Z-cont inuous  E-algebra A ,  the 
derived operator t 4 : A n --~ A is Z-cont inuous  f o r  Z ~ {to, A, ~}. 

PROOF. Let  {a,},~i be a Z-set  in A"; then by the observa t ion  above,  {5~(t)}~1 is also a 
Z-set ,  and by Z-comple teness  of A we can define 6(t) = H,~6,(t), We want  to show that ti 
is a homomorph l sm.  

5(O'cT(tl, "'" , t,,)) = LI d ~ ( O ' c T ( t l ,  " ' "  , t,,)) (defini t ion of 5), 

= LI o'a(h,(h), "'" , ,~,(t,)) (6, a homomorph i sm) ,  

= cr4(I.I h,(tO, "'" ,H 5,(t,)) (Z -con t l nm ty ,  (4 .8)) ,  
~1  1~1 

= ora(h(ti), "'" , 5(tn)) ( Z - c o n t m m t y ,  d) 

Clearly,  5 extends Ll,~1a,, and now we know 5 is a E -homomorph l sm,  so 5 = Ll~la,. 
Thus  ta(Ll,~ta~) = ti(t) = U~la~(t) = 13,~tta(a~). [] 

Exactly as m Section 2, subst i tu t ion is def ined as a specml case of derwed operators ,  
and ~t ~s assocmtive; in fact. subst i tut ion IS itself A-cont inuous .  and  this depends  on 
mitiality of CTx.  

tR PROPOSITION 4.14.  Substitution is A-continuous,  i.e. ~-- : C T x ( X n )  x CT~(Xk)  
CT~(Xk)  ts a A-continuous funct ton on the (A-complete) Cartesian product  o f  A-complete 
sets. 

PROOF. For  t • Xm ~ CTx(X,~) and t '  : X,, ~ CTx(Xk) ,  recall f rom Section 2 that 
t ~--t' : Xm--'~ CTx(Xk)  is def ined by (t ~- t ' ) (x , )  = i'(t(x,)); Le.  t ~---t' = i' ot  where i '  is 
the un ique  homomorph ic  extension of t ' .  For  A-cont inui ty  we can consider  each argu- 
ment  separately. Let {t,}~el be a A-set Then  (I-L~l,t~) ~-- t '  = (definition) i '  o (U,~lt,) = (i' 
is A-cont inuous)  I.l,~(t' o t,) = (definit ion) Ll,~t(t, ~-- t ' ) .  Fo r  the o ther  a rgument ,  t (-- 
(U~t~)  = (definit ion) U~tt~ o t = (as in proof  of Proposi t ion 4 .13)  (U,~t/~) ° t = (by 
3.8) U,~t(/~ o t) = (defimtion) U,~(t ~ t;). [] 

A simple example  (arrived at wtth Steve Bloom)  exemplifies subs t i tuuon  and shows 
that  it is not  u-cont inuous .  Let  X~ = {a} and  take I = {1, 2} with ta = a(z-xO and  ts = 
a ( x ~ ) ;  then t~ u t~ = a(x~x~), and (t~ u tz) ~ (t~ u tz) = a(a(x~x~)a(x~x~)); but  
(h ~--h) u (tz ~--t~) = a(~a(-a-xO) u a(a(x~-~)~) = a ( a ( x ~ ) a ( ~ x l ) )  v ~ a(a(x~x~)a(x~xO). 

The promised S-sorted initial cont inuous  E-algebra is a simple modification of the one- 
sorted case. A E-tree o f  sort s ~ S ~s a partml funct ion t : o*  --~ E such that: 

(0) If h ~ deflt), then t(h) has sort s. 
(1) If w ~ to*, i G to, and wi ~ deflt), then 

(a) w ~ deflt); 
(b) ff t(w) has arity s~ -- .  s,,, then i < n and t(wi) has sort s,+l. 
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Then  CT~ has carriers C T ~  consisting of  all s -sor ted Z- t rees  ( including .a_) It gets E- 
s t ructure just as in the one-sor ted  case, and we have 

THEORE~ 4.15 CT~ is mitlal m the class o f  w-contmuous E-algebras with strtct A- 
continuous E-homomorphtsms [] 

5. Apphcattons o f  Initial Continuous Algebras 

Initlality of  CT~ has Impor tant  consequences  in the theory  of  computa t ion  Just as 
lnltiallty of  7",- clarifies and simplifies " t ree  man ipu la t ion , "  CT,~ clarifies and simplifies 
work with infinite trees which,  for example ,  arise in the semantics  of  flow diagrams,  
recurslve schemes,  and o the r  data  structures.  

CTz has advantages  in its abstract form (an lmtial A-cont inuous E-a lgebra)  and in its 
concre te  form (we can visualize e lements  of  CT~ as (infinite) E- t rees) .  The  abstract  
formula t ion  facilitates defining der ived opera t ions  and solving e q u a h o n s  m A-continu- 
ous E-algebras;  m fact, this is easier  than the convent iona l  formula t ion  employing  the 
subset construct ion.  The  concre te  representa t ion  permits  clear  unders tanding of  the 
objects  in CT,;  for example ,  our  formula t ion  of  the lattice of  flow diagrams is s impler ,  as 
well as more  convincing than the inverse limit construct ion employed  by Scott  [61]. 

We know three papers  26 with general  not ions re la ted to initial cont inuous  algebras:  
Wand ' s  [75] free tz-clones, Nlvat ' s  [48[ a lgebra  of schematic  languages,  and B l o o m  and 
Elgot ' s  [9] free i terative algebraic theories .  The  diversi ty of  these approaches ,  plus the 
somewha t  sketchy charac ter  of the first two references  and the novel ty  of initial cont inu-  
ous algebras,  make  it hard to describe all relat ionships be tween  these approaches ,  but  we 
do point  out  several  connect ions  

The discussion and examples  below focus on the class Aalg~ of A-cont inuous  E- 
algebras  with strict A-cont inuous  ]~-homomorphisms,  thus we use Corol lary  4 .10 ,  that  
CT,: is initial in Aalg~ Al though  what we say applies to o ther  classes of  algebras (e.g 
those men t ioned  in T h e o r e m s  4.8 and 4.1 l ,  and Corol lar ies  4 .9  and 4 .12) ,  we don ' t  give 
applicat ions for these 

5.1. SYSTEMS OF (REOuLAR) EQUATIONS. Sect ion 3 4 re la ted imtial  algebra seman-  
tics to solving equat ions  in the initial many-sor ted  E-a lgebra  We used the phrase " m a k e  
pA into a E-a lgebra  by . . ." to def ine  a der ived ope ra to r  tpa : (pA) '~ --~ pA for each t E 
T~(X,,). An apparent ly  ad hoc step then fol lowed:  extending der ived  opera tors  to sets of 
terms by taking unions of  values.  For  a A-cont inuous  E-a lgebra ,  this isn't  necessary since 
its o rde r  structure permits  equat ions  expressed in CT~ to be solved directly 

A system o f  n equations (expressed) m CT~_ is a funct ion E : X,, ~ CT~(X,,). This 
simplifies the informal  def lmt lon " . a sequence  or  set of  equa t ions  of  the form x, = t, 
where  t, is a term in n variables ,  x~, . . .  , xn ."  To  read our  system that way, write x, = 
E(x,); E(x,) is the rtght-hand side of the tth equa t ion .  27 

For  any A-cont inuous algebra A, EA : A n ~ A" IS the der ived ope ra to r  of  E over  A ; 
recall f rom Section 2 that (El(a)),  = E(x,)~(a) = ~(E(x,)) for a l i a  ~ A ~ and 1 -< i -< n. By 
Proposi t ion 4.1 3, each componen t ,  E(X,)A " A ~ --> A,  of E4 is A-cont inuous,  and by (3.7)  
so is their  target- tuple EA = [E(x04,  " "  , E(X,,)A] : A" ~ A". 

Thus E4 has a min imum fixed-point  deno ted  I EA [ E A" and called the soluuon of  E 
o v e r A  We know that l  E4[  ~ ± = I.IAe~oE~( , " ' " ,  ~ ) ;  that EA(I EA I) = I Ea I; and that  for all 
a ~ A ~, lfEA(a) = a, then I EA [ 7_a. For  the special case A = CT~, we write I E I for the 
solut ion of  E over  CT,~. 

Famil iar  results in the theory  of  equa t iona l  sets fol low nicely in this sett ing Reca lhng  
that ha " CT~ ~ A is the unique  A-cont inuous  Z - h o m o m o r p h i s m  f rom CT~ to the A- 

cont inuous  E-a lgebra  A ,  we write [ E [A for h~(] E I). 

26 Reynolds's work [55] employing some methods of this paper wdl probably also interest the reader, and 
should appear soon after thzs paper does 
27 The notahon E(x,) is correcl because E is a function with source X,, = {x~, , x,,}, but note that E(x,) is an 
element of CT~(X,) possibly revolving all the varnables x~, , x, 
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The following analogue of Mezei and Wright [45, Th. 5.5] says that solving equations 
in the initial algebra, then interpreting the solution; and interpreting the equations, and 
then solving in the algebra, give the same answer. (Engelfriet and Schmldt [18] appropri- 
ately refer to these as "Mezei-Wright-like results"; cf. the following proposition.) 

PROPOSITION 5.1. For any system o f  equations E : Xn ---> CTx(X,,) and any A- 
c o n t o ,  u o u s  X-algebra A ,  I E IA = I EA I" 

PROOF. By induction on k and Proposition 2.5, hA( E k (.a_, . . . ,  - ) )  = E~ (XA, "'" , a-A) 
where, for clarity, .a_ is minimum in CTx and "A is minimum in A (In general, 
h~(E(t, ,  . . .  , t,)) = Ea(hA(t,), " " ,  hA(t,)).) Then ha(I E [) = hA(UkE~( -a-, . . . ,  2_)) = (by 
c o n t i n u i t y  o f  ha)  U k h A ( E k (  ~ ,  " " ,  ~ ) )  = LJtcEak(-a-A, • • " , -a-A) = ] E A  1. [] 

Call a system E : Xn ~ CTx(Xn) Meal (cf. Elgot [17]) lff each E(x3  is nontnvial, i.e. 
for some m > 0, ¢r E Xm, and G, "'" , t,n E CTx(X , ) ,  E(x,) = crcT(G, "'" , t ,3. 

THEOREM 5.2. Solutions o f  Ideal systems o f  equations over C T  x are unique 
PROOF. We indicate the method of proof; full detail will appear elsewhere. If t = 

(tl, • • • , t~) is a solution for a system E : Xn --> CT~(Xn), then for all k, t = E~r(t) = 
~E ~-- E ~ .~. ~ E ~ E~-- t. By induction on length of strings m to*, one shows for ideal 

k 
E, if w E def(t,) has length k, then w ~ de f (Ek(x ,  . . .  , .a_)~); i.e. def(t,) C_ def([ E I,); but 
IEl~t, solEl=t. [] 

This rather surprising result seems to say the order relation on CTx is superfluous once 
solutions are obtained. Th~s suggests a strong connection with Elgot's [17] lteratlve 
algebraic theories where, in effect, ideal equations must have unique solutions and no 
ordering Is involved. 

A system E of equations l s f imte  lff each right-hand side is fimte; i.e. E : X,, ---> F~(X,) .  
Now EA can be defined over any ordered algebra A (Proposmon 4 7) and a ~ A" is the 
solution of E over A iff it is the minimum fixed point of EA. 

An ordered algebra A is equattonally complete iff everyf int te  system of equations has a 
solution over A Obviously every A-continuous (even to-continuous) algebra is equation- 
ally c o m p l e t e - m  fact, complete with respect to arbitrary systems of equa t i ons -bu t  an 
ordered X-algebra can be equationally complete without having an to-complete carrier. 
The following important case dlustrates this 

Let Rx denote the set of equational elements o f C T x ;  i e  Rx = { [ E I s [ E : X , - - ~  
F~(X,,), n > 0 and 1 -< i -< n}. The " R "  in Rx stands for "rccogmzable" or "regular" as 
applied to sets of finite trees in Doner [15] and m Thatcher and Wright [70]. (For 
appropriate X discussed below, Scott [61] calls Fx rational, Rx algebraic, and CTx - Rx  
transcendental ) The following two propositions indicate the connection. 

PROPOSITION 5.3. For each t ~ Rx ,  there emsts a recogmzable subset Rt o f  F x such 
that t = LIRt 

PROOF Using Proposition 4.4, we transform a system E : X,, --> Fx(X, )  of equations 
over CTx to the system E : X,, ---> p(Fx(X,,)) in the Mezel-Wnght sense 145] by E(x,) = 
{E(x,), x} (cf. Section 3.4) Let I ~ I be the solution of E over FFx as in Mezel-Wnght,  
each I ~ I(x0 is a recogmzable subset of Fx These recognizable sets are called "schematic 
languages" by Nlvat [48], who shows that every schematic language is d~rected (m fact a 
lattice) with respect to the ordering on F~. So U I E [ exists in CT~ (Proposition 4.1) and 
we want to show I E I = U I E I. We know [ E I = UkEk( 2-, "'" , ~) and, by reduction on k, 
{Ek(x, . - .  , x)} C_ I/~ [, so that [ E I g U I/~ I. On the other hand, for each t E I E t there 
exists k such that t c Ek (~ ,  • • • , _L) (by induction on the definition of  [ ~7 t = UmE~F~ (~5, 

• .- , ~ ) ) ,  s o l  e l  ~ U l e l , , . e .  l E l = U , l ~ t .  [] 
The second result relating the equational elements to recogmzabihty uses the concrete 

construction of C T  gwen in Section 4; we leave its proof to the reader. 
PROPOSITION 5.4. In the concrete construction o f  CTz ,  i f  t E Rx ,  then f o r  each ~ 

X, t- l(o ") C_ to* is a regular subset o f  {0, 1, " .  , k}* f o r  some k. [] 
As indicated m the proof of Proposition 5 3, a schematic language (N~vat [48]) is a 

recognizable subset of Fx (viewed as the initial X(x) algebra) defined by equations (in 
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the Mezei-Wright sense) whose right-hand sides are of the form {t, ±} C Fz By reversing 
the translation in the proof  of Proposit ion 5 3, it is easy to see that the least upper  bound 
of any schematic language is an equational e lement  of CTx. Nlvat [48] shows that the 
schematic languages form a l~-algebra, and his proof  also shows that R~ is a subalgebra of 
CT x. Because R~ is equatlonally complete by definition, we have 

PROPOSmON 5.5. R z is the smallest equationally complete subalgebra of CTz. [] 
5.2 THE LATTICE OF FLOW DIAGRAMS. Our construction of initial continuous alge- 

bras permits simple alternative formulations of Scott 's [61] lattice of flow diagrams. 
Since those alternatives are specific initial algebras,  the lattice of flow diagrams appears  
as a special case of a very general situation. Our  comparison is shghtly encumbered by 
the fact that Scott uses complete lattices (H-complete posets),  while we favor strict A- 
complete posets. 

Most simply put, Scott 's lattice of flow diagrams is the solution to the domain equatton 
E ~ {I} + F + E x E  + B x E x E ,  (*) 

where + is the coalesced lattice sum, × is the usual lattice product ,  and {I}, F,  and B are 
the ("f la t")  lattices which result from adjoining ± and -r to, respectively," the set 
consisting of a single function symbol I denoting the Identity function, a set F of function 
symbols (operations occurring in boxes of a flow diagram),  a set B of predicate symbols 
(occurring as tests in flow diagram).  So if the set F = {fl, " " " , fn}, then the lattice for F 
lS: 

T 

Scott 's Inverse limit construction provides a solution for E as a complete lattice. 
However,  Gordon [26] argues the advantages of A-complete posets (calling them 
semldomalns) over complete lattices (domains) and shows the inverse limit construcUon 
(using separated sum) works just as well in that context.  Passing over pragmatic and 
aesthetic points discussed earl ier  (Section 4), we make our comparison with Gordon ' s  
solution to (*), thinking of it as the semtdomain of flow dtagrams. 

We describe three semldomains of flow diagrams; each is simply CTx for a natural 
choice of I~. The first two are different in interesting ways; the third differs from the 
second trivially and is included for completeness while providing an example of an initial 
many-sorted A-continuous 1E-algebra 

For  all three the algebraic approach (as opposed to the pure ordered structure 
approach) leads directly to algebras of flow diagrams rather than ordered sets of flow 
diagrams. (Nlvat [48] stresses this point,  and it seems that Scott also saw it [61, Sec. 41.) 
We hope this creates a stronger position from which to consider the questions about 
equivalence of flow dmgrams raised by Scott [61, Secs. 8 and 9]. 

(I) Let £ = ({I},F,B) (that is, E0 = {I}, E1 : F, ~2 = B, and Ek = O for k > 2). CT~ 
(see (4.3)) is a lattice of flow diagrams, with every flow diagram represented by its 
unfoldment.  But (quite aside from questions about -r) CT~ doesn ' t  have quite the 
algebraic, or the order  theoretic,  structure of Scott 's lattice. The equational elements (in 
Rx) represent  the flow diagrams. The idea, to be developed formally elsewhere,  is to 
take a variable x,.for each node t of a flow diagram, and an equation x~ = b(x, xk), x, = 
f(x~), or x, = I if node i Ls a b-test ,  an f-applicat ion,  or a halt,  respectwely.  

For  example,  the while loop is the solution to the system (xl = b(x~, x3), x2 = f(xl) ,  x3 = 
/),  which can be collapsed to x~ = b(f(x~), I), and is written x~ = (b ~ (f; x~), 1) by Scott. 
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The element of R~ which is the component for the start node is the unfoldment of the 
given flow diagram (cf. Goguen [20]). Conversely, any finite system of equations over 
CT~ can be reduced to "primitive" equations of  the above form (much as in Mezei and 
Wright [45] or in Wand  [75, Th. 2]), from which a standard flow diagram can be 
retrieved. 

Wand [75] takes Scott's construction "trivially modified" as a starting point, calling 
E(~) the lattice of flow diagrams with operator symbols ~. He says this follows Elgot's 
[17] idea of handling tests (rank 2 or greater) and operations (rank 1) uniformly. His 
E(~) seems to be our CT~; his "finite diagrams" to be our F~(X,), with "return codes" 
{xl, " "  , xn} (also paralleling Elgot [17] because of the n "exits"); and his "loop- 
representable" flow diagrams to be our R~(Xn) (that is, equational elements of  CT~xn)). 
Wand [75] IS rather informal, but seems to miss the distinction brought out by our second 
formulation for the lattice of flow diagrams below 

One can define context-free sets over initial algebras (Rounds [57]), and this apphes to 
initial continuous algebras as well. Alternatively (Maibaum [41, 42], Turner [71], and 
Wand [76]), one can make the function symbols zero-ary and introduce a symbol for 
composition; then the context-free sets are equational in this modified algebra 

(II) In that spirit, let ~' = (17 U {I},O,B U {;}). Again, every flow diagram (over F a n d  
B) is represented in CTz, by an unfoldment. But now the algebraic structure corresponds 
to Scott's idea: Every element of CTz, is either I ,  an element of F, (d; d ' ) ,  or b(d, d') 
(written b ~ d, d ')  for diagrams d and d ' .  

However,  the equauonal elements of this algebra correspond to unfoldings of recurstve 
flow diagrams. For example, the solution to the equation xl = b(f;(xl;f),I), problematic 
m Scott [61, Fig. 21], is the unfolding of the recursive flow diagram, 

xl : if b then (f; call xl; f ' )  else halt. 

Nwat's  [48] program schemes over (F U {/}, B~ are reformulated in this setting as 
pnmltwe 2s systems of equations E : Xn ~ Fx,(X~), which are connected (meaning xl < xi 
for 1 < i -< n, where < is the transitive closure of x, "calls"x,, i.e. if x, occurs in E(x,)). 

The program schemes form a ~'-algebra, say PSx,, with E,  E ' ,  and b ~ E;E' defined 
as needed in the proof of ProposiUon 5.5. The function E ~ [ E I1 is a homomorphlsm 
from PSi, to Rw, but of  course many program schemes give rise to the same unfoldment 
in Rz. 

(III) For our last formulation, let E" be a {b,d}-sorted operator domain with ~i'~,~ = 
B, ~'~.a> = {I} 0 F, ~'~ad,a> = {;}, and ~aa,d> = {--~}. Then CTx,,,b contains only B U {.a_}, 
but CT~,,a is lsomorphtc 2~ (in both order and algebraic structure) to Scott's lattice E of 
flow diagrams. (This corresponds, as m [41, 42, 71, 76], to making all the function 
symbols of ({I}, F, B) zero-ary; the "composmon symbols" are " ; "  and "---; ' .) But all that 
has been added are diagrams such as (_u ~ d, d ' ) ,  which seem to be of little interest at 
this point. Because there are no operations of  sort b,  equations m CTz~ yield the same 
solutions as m the previous formulaUon 

5.3. SEMANTICS OF FLOW DIAGRAMS Theorem 4.8 says that any A-continuous E- 
algebra is a possible semantic algebra for CT x. Looking at the second formulation for the 
lattice of flow diagrams E' = (F tA {1},f~,B tA {;}), take. as Scott does, the A-complete 
(4.9) poset [S -o  S] of "partial state transformations" as carrier of a semantic algebra 
ambiguously denoted S Given (Scott's [61]) mterpretatmns of the function symbols 
~: : F ~ [S -o  S] and predicate symbols ~ : B ~ [S-o  {0, 1}], make IS -o  S] into a E ' -  
algebra by: Is = ls; Fs = ~ ( f ) ;  b~(tr, o") = c o [~(b), o-, cr']; and ;s(tr, o-') = o-'o o'. These 
operations (bs and ;s) are A-contmuous.(cf. 3.2, 3.7, 3.8), so initmlity of CTx, gives a 
unique homomorphism ~s  : CT~, ~ S, Scott's [61] "semanttcs" of flow dmgrams. Note,  
however, that ~ and ~ umquely determine ~s  only msofar as the intended meanings of 
tests and composition are fixed 

2s Much  as used above ,  each  E(x,) is e i ther  f E F, 1, (al, az), or  (b ~ a j ,  t~), where  a,  ~ F U {1} O X,, 
Ignor ing the extra  overdef ined e lements  discussed in Secuon  4 
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To get the intended semantics of flow diagrams when expressed in CT~ (X = ({I}, F, 
B)), appeal  to contmuat tons  of C. Wadsworth and L. Morris (see Reynolds [53] and 
Strachey and Wadsworth [66]) seems inevitable. Taking the same carrier  for the 
semantic algebra,  operat ions ( f  E F)  are of type [S -o~ S] --* [S -~  S],, or equivalently 
[S ~ S] × S ~ S taking a "cont inuat ion" in [S ~ S] and a state in S giving a new state. 
The extent to which continuations can be t reated from an initial algebra point of view, 
and the relationship between continuation semantics for CT~ and the semantics de- 
scribed above for CTz, are interesting subjects for further investigation, a° 

5.4. SYSTEMS OF (REOuLAR) EQUATIONS WITH PARAMETERS. Equational  functions 
can be defined much as equational elements of an algebra were. In the spirit of Wagner  
[73, 74] and Wand [75], a function 31 E : Yn ~ CT~xp~ (Yn) is a system of n-equations with 
p parameters {xl, " " ,  xp}. For any algebra A lnAa lg~  and for each a E A v, make A into 
an Z(Xp)-algebra A(a)  by having x, name a, The derived opera tor  over A(a) is then 
EA(a) :A" --+ A " ,  which has a minimum fixed point ] EA(a) I" The funetmn ] E a [ : A p ---) A n 
determined by system E is defined by [ EA I (a) = [ EA,a)[. 

The equation of Proposition 5.1 holds for equational functions as well. Given E as 
above,  I E I : Y ,  -+ CTz,xp~ (solving in CT~(xp,), so I E la : A p + An, and 

PROPOSITION 5.1'. For a system o f  equations E : Yn -+ CTx,x,)(Y~) with p parameters 
and any A-contmuous  X-algebra A ,  I EA I = I E IA : AP ~ A" .  

PROOV. By definition of solution, lEA I(a) = lEA(a)]. But Proposition 5.1 gives 
I EA(a, I = I E IA(a), and from the definition of derived operator ,  I E IA(a, = I E la(a). [] 

Solving a finite system of equations with parameters  E : Yn "-+ Fx(x,)(Y,) over CT~(x,) 
yields ] E  ] ~ R~(x,), by defimtlon. But as sets Rx(x~) = Rx(Xp),  so we can talk about 
solving a system of equations whose right-hand sides are m Rx(xp) ; this gives nothing new. 
(As proved by Nlvat [48] within his schematic language formulation,  it is a consequence 
of the substitution theorem for context-free languages [19].) 

PROPOSITION 5 6 (Nlvat). Systems o f  equations with right-hand sides m Rx(X p) have 
solutions in R~. [] 

We believe the principal connections with Wand [75] and with Bloom and Elgot [9] 
are to be found here.  First,  it seems clear that (R~_(Xp))vE~ is the free/x-clone generated 
by E, the construction of which is Wand 's  principal result. Next,  let/~x(Xp) be the set of 
maximal elements of Rx(Xp). (In the concrete construction of CT~x,~,  t is maximal i f f t (u)  
E Xk implies ut E def(t), 0 <- t < k.)  The algebraic structure of (/~x(Xp))o~ under 
substitution (t : X ,  ~ R~(Xv),  t' : Xp --~ R~(Xq); t <-- t ' . Xn ~ Rz(X~); see Section 2) 
gives rise to an algebraic theory (cf. Elgot [17]). Theorem 5.2 and Proposit ion 5.6 say 
this algebraic theory is iterative, which means that every ~deal system of equations E : X ,  

/~Z(Xp)(X,) has a unique solutmn ] E I : Xn ~ / ~ x ( X p )  (called E?  in [17]) in the sense' 
that E *-- ] E ] = [ E ] (this is the definition of fixed point in CT~ since EcT( ] E ] ) = E 
I E [). We believe z2 that this algebraic theory is the "free i teratwe theory generated by 
X," the construction of which is the principal result of Bloom and Elgot [9]. 

6 Conclusion 

Sections 3 and 5 applied initial algebra semantics to a number of areas, with the 
applicability of initial continuous algebras exceeding even our expectations.  We have 
only skimmed the surface of what might be called the equational  theory of continuous 
algebras, and we hope to develop it fully elsewhere. The following questions and 
problem areas are among those we would like to answer or see answered. 

(A) How is the conventmnal theory of  equatmnal sets (e.g. Mezei and Wright [45]) 
expressed in the (s~mpler) continuous algebra setting? 

(B) If every finite system of equations has a solution in an ordered (not necessarily oo- 

~0 Reynolds [55] considers this in careful and interesting detad 
a~ X~ and Y~ = {y~, , y~} are, technically, assumed to be disjoint copies of the respective sets of variables 
32 S Gmah proves this in her forthcoming University of Chicago dissertation 
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complete) algebra, does it follow that lEA [ = UkE](~) anyway9 
(C) How do the works of Maibaum [42], Turner [71], and Wand [76] (which identify 

context-free sets over one algebra with recognizable sets in another) relate to the two 
ranked alphabets E and E' in the discussion of the lattice of flow diagrams, or more 
generally to the solution of regular equations versus the solution of context-free equa- 
tions? Engelfnet and Schmidt [18] tackle this area (and (A) above) m their typically 
precise way. 

(D) Gordon [26] proves the equivalence of a denotational (Scott-like) semantics and 
an interpretative semantics for pure LisP. The proof is very long. Why? Could methods 
here contribute to further slmphficatlon? 

(E) Our initial algebra formulation of denotational semantics (Section 3) differs 
significantly from previous formulations. The "structural reduction" and "finite approxi- 
mation" proof techniques used by Gordon are implicit in initial continuous algebras 
Could these yield a more workable semantics for "real" programming languages? 

(F) We know that T~ is imtial m the class of E-algebras, that CT~ is lmtial m the class 
of A-continuous E-algebras, and that these results bear fruit On either side of CT, we 
ask the question: In what class of algebras is R~ ( and /~ )  initial, and in what class of 
algebras in Nivat's PSz, initial9 The latter is essentially the question posed in Burstail and 
Thatcher [11]. 

(G) Chandra [12] uses mfinite tree flow diagrams which are outside R~ but contained 
in CT z (for appropriate E); a clean mathematical semantics is determined by picking 
appropriate A-continuous E-algebras. But can the translations from finite counter 
schema, finite stack schema, etc. into infinite tree diagrams be made more mathemati- 
cal? Most relevant, how are his "meanings" defined from an inmal algebra point of 
view? 

(H) Can the questions raised by Scott in [61] be answered in the initial continuous 
algebra setting? Should they? 

(I) The practical aspects of the work reported in this paper should be further ex- 
plored. Pottenger [51] has programmed a system which acts as a compder generator: 
Given ~ and o-~ for each o" in E, the function ha becomes available. The implementation 
is somewhat inefficient, but is useful as it is, and can presumably be improved in various 
ways Also, there seem to be a number of imphcations for programming language design 
which should be followed up. 

(J) What is the connection of the present formulation (that is, CT~, etc.) with the V- 
category formulation suggested in Goguen [20], where syntax is an "algebraic theory" 
whose horn-sets are sufficiently nice posets, and semantics is a sufficiently nicely ordered 
algebra of this theory? 

(K) In fact, it would be interesting to give a thorough development of semantics in 
terms of algebraic theories [32]; we have restricted ourselves to imtial algebras primarily 
to avoid imposing odious mathematical prerequisites. The question ~s, could more than 
convenience and conciseness be achieved? We are proposing some suggestions in this 
direction in [25]. 

These are just a few questions; if the reader has faced infinite structures from 
semantics of programs or data structures, he may well have many others. We hope this 
paper will stimulate such questions and that the imtml algebra viewpoint will be fruitful 
in answering them) z 
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