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1 What are Expander2 and Expander3?

Expander2 and Expander3 are term rewriter and theorem proofer with the ability to transform and analyze graphs,
solve constraints as well as other procedures to build up proofs. Furthermore customized functions can be provided by
the user to display the restulting terms in a pleasing way. Expander2 has been developed in O’Haskell an extension
to the Haskell 1 while Expander3 is a Haskell native version. Both should be equal in functionality even though
Expander3 can be expected to have better performance. This guide should work on both of them. A complete Manuel
can be found here.

1.1 Installation

1.1.1 Expander2

Expander2 requires the rohugs O’Haskell compiler to be itself compiled with support for tcl and tk. The source is
included in the archive provided here. In order to compile rohugs correctly it is advised to edit the appropriate lines
in Makefile and prelude.h for your platform. If your platform is not listed in either of them and you happend to be
able to compile rohugs it would be greatly appreciated if you would inform Peter Padawitz or Jos Kusiek.

1.1.2 Expander3

Expander3’s source can be downloaded from here. Follow that page for instructions how to install Expander3.

2 Starting Screen

There are a number of very important interface elements which are furthmore referred to by name. There is the Entry
Field for loading files, the Text Field for direct text input, the Canvas where the terms are displayed graphically,
and the Label where response messages are presented.

1https://www.haskell.org/
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3 The first Term

To enter a single term into Expander, the term can be entered in the Text Field. Terms are represented as trees in
Expander and have to be translated into a two dimensional text form. In that representation a leaf is just the content
of the leaf and an inner node is the content of the node followed by a ordered list of child nodes in parentheses. So
the Tree

root

firstChild secondChild

can be translated to root(firstChild, secondCchild) and then be entered into Expander. So enter root(firstChild, secondCchild)
into the Text Field. The term is parsed by Expander upon pressing the parse up button (See 2 #1). This gives

you the following result. You know created your first term using Expander.

4 Simple Functions

In this chapter a selection of simple functions to modify terms are introduced. All modifications that are made to a
term can be displayed by

1. term > show proof term

This will also hold true in the future, when the focus shifts to more proof oriented work with Expander.

4.1 Common Term Functions

Create the Term f(a, b) in Expander, refer to 3 if you are unsure how to do that. 2

1. Copying by Dragging: Now by dragging the f to the b you are able to copy the tree with the root at f to the

position of b resulting in: to

2. Copying by Command: Copying can also be accomplished by using command from the selection menu (See 2
#2).

(a) Click on the tree to copy, it should be highlighted in red

(b) selection > copy (c)

(c) Click on the node that should be replaced

(d) selection > insert/replace by text (i)

This results in same thing as before.

3. Reverse Tree: To reverse the order of the childtrees, select the subtree you want to work on.

(a) selection > reverse (v)

This changes to .

4. Remove: To remove a seleted subtree:
2Rules for top level interaction can be found at [2], Chapter 6

3



(a) Select subtree

(b) selection > remove (r)

For example f1(f2(a, b), f3(a, b)) becomes f1(f2(a, b)) when you select the subtree f3(a, b) and choose the
remove (r) button.

5. Remove Node: To remove a single node and move there childern one level up the tree:

(a) Select node to remove

(b) selection > remove node (o)

Used on our previous example with f1(f2(a, b), f3(a, b)) with f3(a, b) selected results in f1(f2(a, b), a, b).

6. Replace by Tree of SolverX: Assuming you, have a tree is loaded into the Solver1 one window, a subtree can
be replaced by the tree loaded into the Solver2.

(a) selection > replace by tree of Solver2

For example, assuming f(a, b, c) is loaded into Solver1 and you just did some term rewriting for a in Solver2
to g(x), you might want transfer the result from Solver2 to Solver1. You can select the subtree a in Solver1
and than choose replace by tree of Solver2 resulting in f(g(x), b, c). The reverse way is possible by using
replace by tree of Solver1 in the Solver1 window.

7. Saving modified Terms: Once a term is modified, you might want to save the term for later use. In order to save
it, the term must be translated back into the linear representation aka into text form.

(a) parse down (See 2 #3)

This outputs the text representation of the term currently displayed in the Canvas down in the Text Field.
From there it be copied into a file for later use.

8. Loading Term from File: A term can be loaded from a file to the text field by using built in commands.

(a) Enter a filename in the Entry Field

(b) load or term > load from text file

The filename is relative to the ExpanderLib which usually is set to be ~/ExpanderLib but it might be different.

(a) Notes about ExpanderLib: ExpanderLib is the directory from which your own specifications are going
to be loaded where Expander is saving pictures and other files it’s trying to save to the hard drive. The
location is configured in System.hs for Expander2 and in System/Expander.hs for Expander3.

4.2 Node

Many informations about a tree can be displayed by the expander.

1. Depth: Expander can display the depth of nodes in a tree:

(a) nodes > level numbers

2. Prefix Order: When the prefix order of the nodes is needed:

(a) nodes > preorder numbers

3. Heap Order: The same can be done for the heap order:

(a) nodes > heap numbers

4.3 Graph

Graphs are a common structure in proofs and Expander offers ways to interact with them. The most common ways
are display and modification of graphs, which are presented next.
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4.3.1 Show

There is more than one way to look at the graph. In the following section a few ways are examplified.3 Add

states == [1..4] &
1 -> 2 &
2 -> 3 &
3 -> 4 &
4 -> 2 &
3 -> 1

to the axioms by clicking the add button in the axiom menu on the right side, the can be added either from file or
from text field. This code tells you, that there are the states 1 through 4 and the transitions 1 → 2, 2 → 3, etc. For
a more detailed description of Specifications refer to Chapter 6.

1. Graph of transitions: If you added these axioms, you can see the resulting graph by the following steps:

(a) specification > build Kripke model

(b) graph > of transitions > here

This should result in the following:

2. Graph of Kripke model: Even if you created a more complex Kripke Model, it can be displayed:

(a) specification > build Kripke model

(b) graph > of Kripke model > here

In this case, the resulting graph stays the same.

3. Boolean matrix: The transitions can also be displayed in form of a boolean matrix.

(a) specification > build Kripke model

(b) graph > show Boolean matrix > of transitions

Resulting in:

4. Transitionrelation: To see the transitionrelation, a set of pairs of states and sets of state (State×P(State)), you
can also use the graph menu.

(a) specification > build Kripke model

(b) graph > show binary relation > of transitions

Resulting in a tree like:

5. Iterative Equations: The iterative equations for a graph can be displayed by the following steps

(a) specification > build Kripke model

(b) graph > build iteratiove equations

Iterative equiations are a way to discribe the transitions of a graph.
3A more involved example can be found at [1], Model checking as simplification, trans0
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4.3.2 Modifications

Graphs can be modified in many different ways. To get a first impression how Expander handels modifications considere
the following examples.

1. Collapse of Nodes (1):

(a) graph > collapse –>

Equal nodes can be collapsed together. The "–>" signals that only the right most node remains and all nodes
that are equal to that node are replaced with a pointer to that node. These pointers are arrows to the node.

For example f(a, b, a) turns into f(pos 2, b, a). In pictures turns into . The pointer is marked by pos
followed by descriptive coordinates for the position. Summarized positions are counted from left to right and
top to bottom. See 5 for a more detailed description.

2. Collapse for Nodes (2):

(a) graph > collapse <–

In comparison collapse –>, the left most node remains. So f(a, b, a) turns into f(a, b, pos 0) or to

3. Remove Cycles: The cycles in a graph can be removed from it. Note that this step might not be semantically
correct. For such operations expander informs you about that in the Label field with the Message "..CAUTION:
This step may be semantically incorrect!..". If you have a graph loaded in the canvas, cycles can be removed by:

(a) graph > split cycles

5 Pointers

Pointers are the way nodes can be refered to by other nodes in the tree. They are identified by the position in the
tree. Starting with "pos", for each child an index is added from left to right. For a node identified with p the children
are identified by p i for each child from left to right, starting with 0. Consider the following tree as an example.

pos

pos 1

pos 1 1pos 1 0

pos 0

pos 0 1pos 0 0

Pointers are displayed differently to normal tree edges. Are they pointing to a node on the same level, they are
displayed in a purple color, pointers pointing to a node on a higher level are drawn in yellow. If they are pointing to
a node on a lower level, they are colored red.

If you are unsure which node in a tree has which position, you can replace all nodes with there positions by

1. nodes > positions

6 Specifications

Up until know, only simple functions were described that worked on terms and graphs directly, but didn’t require any
involved knowledge what kind of graph and what it represents is needed. Now we shift to more interesting examples.
These examples more often than not require encapsulated describtions of the model. These desribtions are called
Specifications. To load a Sepcification it needs to be stored in the ExpanderLib/ directory.
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6.1 Design Graphs

You already have seen a Specification that represents a graph with its transitions. The difference was, that it wasn’t
loaded as a Specification but as the axioms directly. Now we want to have a separate file for it. This is a simple
example, but still useful when a graph is needed. The only difference for this example is, that you specify which blocks
of the file are what. In this case only a single block, an axioms block, is needed. A block is introduced by its identifier
and terminated either by a different identifier or by the end of file. Axioms are connected with one another with the
& operator.

axioms:
states == [1..4] &
1 -> 2 &
2 -> 3 &
3 -> 4 &
4 -> 2 &
3 -> 1

6.2 Functions

Functions are defined in the axioms block in a specification. Consider this example.

-- example 1
defuncts: repeat length
fovars: x xs a n

axioms:

repeat(0, a) == [] &
repeat(n, a) == a : repeat(n-1, a) &

length([]) == 0 &
length(x:xs) == 1+length(xs)

The function names defined in a specification are listed in the defuncts block at the beginning of a specification. Even
though not strictly necessary, variables should also be listed at the top of the specification, because behavior differes
if the Expander knows that a symbol is used as a variable. Variables are separated into two groups. First order
variables (fovars), the most common variables you will encounter and higher order variables (hovars). A function is
defined by the way it input relates to its output. For example the function repeat relates the input (0, a) for any a to
the empty list and the input (n, a) for any n or a to the list with a at the beginning and the tail repeate(n − 1, a).
Generelly, the left side (the inputs) are separated from the outputs by a ==. Load this specification in the Expander
by creating a file in your ExpanderLib and copy the contents into it. The enter the file name in the Entry Field and
press enter. If the specification is loaded successfully The Label is set to ”The axioms in example1 have been added.”
where ”example1” is replaced by whatever filename you chose. To evaluate a function:

1. Load a term with the function into the canvase

2. Push the simplify button. 4, 5

3. The term will be simplified ie. functions are evaluated by applying axioms 100 times.

4. This number can be changes by inserting the desired number in the Entry Field

6.3 Predicates

Similarly, predicates can be defined. Predicates define relations, as such functions and predicates can express the same
ideas. But, depending on the circumstances, one or the other can be more effective. Especially then proofs are the

4The Evaluation Strategy ([1], Chapter 8) can be changed with the button on the left.
5Simplification rules can be found at [2], Chapter 5
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main concern. Predicates are defined by describing which inputs relate to an output. For example, lengthP, the first
line of the definition defines that [] and 0 are in the relation lengthP . As is a list x : xs and n if xs and n − 1 in
the relation lengthP . The ”execution” of a term like lengthP ([1, 2, 3, 4], 4) happens from left to right, this means that
lengthP ([1, 2, 3, 4], 4) is ”executed” to lengthP ([2, 3, 4], 4−1). The intuitiv idea behind this is that you try to complete
the implication to proof the statement lengthP ([1, 2, 3, 4], 4). So what you try to derive is lengthP ([1, 2, 3, 4], 4) ⇐
lengthP ([2, 3, 4], 3)⇐ lengthP ([3, 4], 2)⇐ lengthP ([4], 1)⇐ lengthP ([], 0)⇐ True. Expander can do this ”execution”
and does so when you press the narrow button. Note though that the you may need to use the simplify button
inbetween of narrowing steps because the function (−) is used and Expander does not perform simplification in between
narrowing steps on its own. The here defined predicates use Horn Clauses. There are also coHorn Clauses 6 which
can also define logic programms.

-- example 1
preds: repeatP lengthP
fovars: x xs a n

axioms:

lengthP([], 0) &
(lengthP(x:xs, n) <=== lengthP(xs, n-1)) &

repeatP(0, a, []) &
(repeatP(n, a, a:xs) <=== repeatP(n-1, a, xs))

6.4 Induction

Induction is one of the most famous proof principle. It’s based on the fact that many statements can be prooven
by showing the statement for a base case and then derive the statement for bigger cases under the assumption that
the statement hold for the smaller case. Consider the specification of 6.2. It seems rather obvious that the following
statement hold: "For all n ∈ N if x = repeat(n, a) then length(x) = n". This statement can be prooven by hand but
it can also be automated by using the Expander. For better understanding of the induction principle, first the "by
hand method" will be considered. As outlined before, the base case is considered first. In case of the natural number
0 is the smallest number and therefore the base case.

Proof. Base n = 0: x = repeat(n, a) = repeat(0, a) = [], therefore length(x) = length([]) = 0
Induction Hypothesis: ∀n′ ≤ n.x = repeat(n′, a)⇒ length(x) = n
Induction Step n → n + 1: x = repeat(n + 1, a) = a : repeat(n, a), therefore length(x) = length(a : repeat(n, a)) =
1 + length(repeat(n, a)) =InductionHypothesis 1 + n.

As you might noticed, there is nothing interesting going on. The only thing that is happening, is that the definitions
of repeat and length are used and the induction hypothesis is used. And in fact, the same steps are taken in most
proofs by induction and can therefore be automated away to make life easier.

To use a proof automator like the Expander, the statement needs to be translated into the representation used by the
tool in question. In case of Expander it’s a fairly straight forward translation. x = repeat(n, a) ==> length(x) = n.
Variables like n and a are all-quantified 6. To proof the statement follow these steps:

1. Load the specification into Expander

2. Load the term x = repeat(n, a) ==> length(x) = n into the Canvas

3. Choose selection > induction

This should derive to the value True. This tells the user that the induction finished in one induction step, as the proof
by hand, and derived that the statement is true. But notes should be taken. For one, this is a fairly simple proof and
sometimes custom steps like simplification might be needed or more than one induction step is needed. Second, in the

6A description of these can be found at [1] Chapter 9.
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proof by hand, a specialised induction is used called natural induction over natural number. Expander, by default,
uses a more general form of induction called fixpoint induction.7 Other forms are available as well. 8

Of course the same proposition can be proven for the predicates. The proof is a good example of a proof that needs
more manuel work. This is because of the nature of predicates. Use the specification in 6.3 for the following proof.

1. Load the specification into Expander

2. Load the term repeateP(n, a, xs) ==> lengthP(xs, n)

3. Choose selection > induction, resulting in

4. Choose narrow

5. Choose simplify, resulting in

6. Choose narrow

7. Choose narrow

8. Choose simplify, resulting in true

A third type of induction that should be mentioned in noetherian induction.9 In order for noetherian induction to
work, a order needs to be defined. More specifically >> needs to be defined. Consider the following specification.

-- gauss
defuncts: sumTo
fovars: n
preds: >>

axioms:

sumTo(0) == 0 &
sumTo(n) == n+sumTo(n-1) &
(x >> y <=== x > y)

It defines >> as the normal greater than order on natural numbers. How the order needs to be defines depends on
the conjecture that you want to proof. To use noetherian induction follow these steps:

1. Load the specification into Expander

2. Load the term ((n ∗ (n+ 1))/2) = x ==> sumTo(n) = x

3. ??

6.4.1 Saving and Demonstrating your Proof

As you can see, the proof involves custom narrow and simplify steps. The steps are not directly obvious so you
might want to write them down to share or to replay. Both of those can be handled by the Expander. To save a
finished proof, enter a name name into the Entry Field and choose formula > save proof to file (s). This creates

7Rules for a fixpoint induction can be found at [2], Chapter 6
8See [2] for a full list.
9Rules for a Noetherian induction can be found at [2], Chapter 6
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two files, nameP and nameT . nameP is a human readable version of the proof giving the steps and their results.
nameT is a so called proof term. It is used to replay the proof.

A proof is not worth much if you can’t easily convince someone else that it is correct. If the proof is saved, Expander
can show anyone how the proof works. To replay a proof follow these steps:

1. Load the specification

2. Load the term with which the proof starts

3. Enter the name of file containing the proof term into the Entry Field 10

4. Choose formula > check proof term from file

Note that the proof term only contains the step taken. This means that the proof replayed with the wrong term in
the canvas might not crash Expander but will propably create unexpected results. Refer to 7 for more Information
about Check Proof Mode.

The human readable proof created by Expander might look like the following.

0. Derivation of
repeate(n,a) = xs ==> length(xs) = n
All simplifications are admitted.
Equation removal is safe.

1. Adding
(repeate0(n,a,xs) ===> length(xs) = n)
to the axioms and applying FIXPOINT INDUCTION wrt
at positions
[]
of the preceding trees leads to
True

This is the proof which we did by hand befor. Depending on what you are expecting one might be easier to understand,
but the advantage is obvious, you do not need to write it by hand.11

7 Check Proof Mode

Check Proof Mode is the mode Expander uses when in a proof replay. It doesn’t allow normal functions like copy to
be used but it makes it possible to go through the different results in the proof. To get into Check Proof Mode start
replaying a proof as in 6.4.1. This replays the proof to completion. Click stop run in the bottom right. This allows
you to go back and forward in the proof by using the <– and –> respectively. To start the replay process again, click
run proof. To exit Check Proof Mode use the quit check button. When stop run is activated, it is possible to use
paint to enter the Painter-Window. See 8 for more details. All other functions may result in undocumented behavior.

8 Painter

Painter is a subsystem of Expander. It can be entered by clicking the paint button on the left side in the Expander
window. The term currently displayed in the canvas is copied other to the Painter window for modification. It allows
aesthetic modifications to the terms. The main tool here is the mouse. You can use it to move nodes in the canvas
and rearrange them however you like.

8.1 Combinations

The Term is displayed in different modes called combinations. You can cycle through them by using the combis
button in the center of the button area. The most useful combinations are discussed now.

10Without the T. So when checking proofT proof needs to be entered.
11More Sample Proofs can be found at [2], Chapter 7
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1. Combination 0 displays the term in a simple fashion. The main the feature here is, that you can move each
edges support point. This makes it possible to not only move nodes but edges as well. The support points are
displayed as red dots.

2. Combination 1 simply removes the support point to save the picture.

3. Combination 2 colors the level in the term in two alternating colors. From level to level the color switches. It
does not color the nodes according to the coloring problem.

4. Combination 3 colors the nodes according to there level through the whole color circle.

5. Combination 4 adds the convex cover of the graph.

8.2 Saving a picture

1. Saving to Haskell Code: The graph can be saved as the corresponding Haskell Code by entering the name in the
text field in the lower center of the window and pressing the down arrow key.

2. Saving to Picture: To save the graph as a picture enter in the same text field the name of the file with the file
extension of the format you want. For example test.png creates a PNG file. Supported formats are:

11



(a) Portable Network Graphics with the .png extension

(b) Encapsulated PostScript with the .eps extension

(c) Graphics Interchange Format with the .gif extension

8.3 Save Modification Sequence

When you want a sequence of modifications to be saved Expander can do that. Enter a directory name into the entry
field and choose set dir. When ever save pic to dir either in a Painter or Expander window a new picture is created
that directory with a new number. Also in ExpanderLib a .html file with the name of the directory is created. This
file contains a site that allows to go through the pictures in the corresponding directory.

8.4 Widgets

Widgets allow the user to add frames and colors to nodes. This is done using wtree function. Consider this example
drawS == wtree $ fun(sat$st,frame$text$st). The argument to wtree is a λ-function. This particular function does a
pattern match and frames any node that has a sat constructor in front of it. Further examples can be taken from the
widget-specification distributed with Expander.
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9 Commands

Command Prerequisites Effect
selection > copy selected subtree subtree is saved in a clipboard
selection > insert/replace by text (i) tree in clipboard selected subtree is replaced by the tree

selected subtree in the clipboard
selection > reverse (v) selected subtree reverses order of children
selection > remove selected subtree removes the subtree
selection > remove node (o) selected subtree only removes the root of the subtree,

children are moved up one level
selection > replace by tree of SolverX selected subtree replaces selected subtree with tree from

SolverX
parse down term in canvas turns term in canvas into the linear text

from of the term
load > load from text file file name in the loads the term from the file into

Entry Field the canvase
node > level numbers tree in canvas replaces nodes with their depth in

the tree
nodes > preorder numbers tree in canvas replaces nodes with their preorder number
nodes > heap numbers tree in canvas replaces nodes with their heap number
specification > build Kripke model specification builds the Kirpke model of the transition

loaded system in the specification
graph > of transitions > here Kripke model displays graph of the transition model
graph > of Kripke model > here Kripke model displays graph of the kripke model
graph > show Boolean matrix > of transitions Kripke model displays transitions in form of an

adjacency matrix
graph > show binary relation > of transitions Kripke model displays the transition relation
graph > build iteratiove equations Kripke model displays the iterativ equations for

the graph
graph > collapse –> graph in canvas collapses equal nodes into each other

keeping the rightmost occurrence
graph > collapse <– graph in canvas collapses equal nodes into each other

keeping the leftmost occurrence
graph > split cycles graph in canvas removes cycles by unfolding them.
simplify term in canvas tries to evaluate the term by using the

function in scope
narrow term in canvas tries to derive term by using the

predicates in scope
selection > induction term in canvas tries to derive term by using the

principle of induction and the
predicates in scope

paint term in canvas opens Painter-Window for further
not in proof run modifications

stop run / run proof in Check Proof stop/restart proof run at current
Mode position

quit proof in Check Proof exit Check Proof Mode
Mode

<– - undo
–> - redo
combis in Painter window cycles through the combinations

available
set dir name in entry field sets the directory value
save pic to dir set dir creates new picture in directory
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