
− a formal methods presenter and animator −

Peter Padawitz

May 28, 2017

Expander2 is a flexible multi-purpose workbench for interactive rewriting, theorem proving, constraint
solving, flow graph analysis and related procedures that build up proofs or other computation sequences.
The associated GUI provides 2D representations of terms and formulas ranging from trees and rooted
graphs to a variety of pictorial representations, including tables, matrices, alignments, partitions, fractals
and turtle systems (see Widgets, graphs, and turtle actions).

The user may interact with the system at three levels of decreasing control over proofs and computations.
At the first level, rules like induction and coinduction are applied locally and step by step. At the second
level, goals are rewritten or narrowed, i.e. axioms are applied exhaustively and iteratively. At the
third level, built-in rules (some of them execute Haskell programs) simplify, i.e. (partially) evaluate
terms and formulas, and thus hide routine steps of a proof or computation (see Overview). Proofs are
automatically translated into proof terms that can be evaluated and modified later. This allows one to
design functional-logic programs as proof carrying code that a client can validate by running the proof
term evaluator (proof checker).

Expander2 has been written in O’Haskell, an extension of Haskell with object-oriented features for
reactive programming and a typed interface to Tcl/Tk. Besides a comfortable GUI the design goals of
Expander2 were to integrate testing, proving and visualizing deductive methods, admit several degrees of
interaction and keep the system open for extensions or adaptations of individual components to changing
demands.

Proofs and computations performed with Expander2 follow the rules and the semantics of swinging
types. Swinging types combine constructor-based visible types with state-based hidden ones and have
unique initial models that interpret relations as the least or greatest solutions of their axioms.

Please email comments, bugs, etc. to Peter Padawitz. Any suggestions for further applications,
improvements, extensions or project proposals are welcome!

3

http://www.cs.chalmers.se/~nordland/ohaskell
http://www.haskell.org
http://ls5-www.cs.uni-dortmund.de/~peter/Swinging.html
http://ls5-www.cs.uni-dortmund.de/~peter/Swinging.html
http://ls5-www.cs.uni-dortmund.de/~peter/index.html

Contents

1 Main Commands 6

2 Overview 8

3 Overall code structure 10

4 Starting the system 11

5 Solver window 12

6 Solver state variables 13

7 Built-in signature 16

8 Mouse and key events 21

9 Trees menu 22

10 Font menu 24

11 Subtrees menu 25

12 Specification menu 31

13 Signature/map menu 32

14 Axioms menu 33

15 Theorems menu 35

16 Graph menu 36

17 Substitution menu 38

18 Further Buttons 39

19 Grammar 45

20 Axioms and theorems 47

21 Derivations 49

22 Variables 51

23 Simplifications 52

24 Examples 62

25 Widgets, graphs, and turtle actions 65

4

Contents

26 Alignments and palindromes 74

27 Dissections and partitions 77

5

1 Main Commands

A command followed by a letter in round brackets is executed when the corresponding key is pushed
after the keyboard has been activated by placing the cursor over the entry resp. label field and pressing
the left mouse button. The keys for add spec, load text and save tree work if the entry field has been
activated. The keys for parse up and parse down work if the text field has been activated. The keys for
other commands work if the label field has been activated.

add map from add spec from file ←↩

apply axioms for symbols
apply clause from entry field
left to right a - right to left b

apply axioms in text field apply clause from text field
left to right - right to left

apply coinduction apply fixpoint induction
apply map apply strong coinduction
apply strong fixpoint induction apply substitution
apply to variable: apply transitivity
build/check build equations e

build graph g build relation r

build unifier call enumerator
check proof term c clear subtrees
collapse collapse levelwise
combine trees w coordinates
copy create Hoare invariant
create induction hypotheses create subgoal invariant
decompose atom decrease current ↑
enclose/replace by entry expand
flatten (co-)Horn clause generalize
hide/show h Horn axioms for copredicates
increase current ↓ instantiate
invert axioms for symbols label graph l

label roots load text from file ↑
mark narrow/rewrite n

negate axioms for symbols numbers
paint parse up ↑
parse down ↓ polarities
positions redraw z

remove displayed tree remove entry&label
remove from entry field remove other trees
remove spec remove subtrees
remove text rename
replace by other sides replace by tree of Solver1/2
reverse save spec to file
save proof to file p save proof term to file t

6

save tree to file ↓ save tree in eps format to file i

shift factors shift summands
set show axioms for symbols x

show changed show map
show sig simplify s

split tree m stretch conclusion
stretch premise subsume
turn local def into function application unify
← unify/match unify with tree of Solver1/2
unlabel graph u ← /→ ← / →
+1/-1

Save commands store into files of the Examples subdirectory of your home directory. If this subdirectory
does not exist, nothing will be saved! File parameters of add or load commands are first looked for in
this subdirectory. Those that do not exist there are searched for in the synonymous system directory.

7

2 Overview

The main components of Expander2 are the solver, the painter, the simplifier, the enumerator and
the recorder of proofs and computation sequences.

The solver is accessed via a window for entering, editing and displaying trees or graphs that represents
a disjunction or conjunction of logical formulas or a sum of functional terms. A proper (non-singleton)
sum results from a computation obtained by nondeterministic rewriting. The solver window has a
canvas for the two-dimensional representation of the list of current trees (among which one browses by
moving the slider below the window) and a text field for their string representation. With the parse up
and parse down buttons one switches between the tree (or graph) and the string representation. Both
representations are editable. As the usual cut, copy and paste operate on substrings in the text field, so
do corresponding mouse-triggered functions when the cursor is moved over subtrees on the canvas.

After a widget interpreter has been selected from the pict type menu, pushing the paint button opens
a painter window and the pictorial representations of all interpretable subtrees of the solver’s current
trees will be shown. Pictures are lists of widgets that can be edited in the painter window and completed
to widget graphs. Widgets are built up of path, polygon and turtle action constructors that admit the
definition of a variety of pictorial representations ranging from tables and matrices via string alignments,
piles and partitions to complex fractals generated by turtle systems [18], which define a picture in terms
of a sequence of actions that a turtle would perform when drawing the picture while moving over a
canvas. The turtle works recursively in two ways: it maintains a stack of positions and orientations
where it may return to, and it may give birth to subturtles, i.e. call other turtle systems.

The solver and its associated painter are fully synchronized: the selection of a tree in the solver window
is automatically translated to a selection of the tree’s pictorial representation in the painter window and
vice versa. Hence rewriting, narrowing and simplification steps can be carried out from either window.

The enumerator provides algorithms that enumerate trees or graphs and passes their results both to the
solver and the painter. Currently, two algorithms are available: a generator of all sequence alignments
[4, 12] satisfying constraints that are partly given by axioms, and a generator of all nested partitions of
a list with a given length and satisfying constraints given by particular predicates. The painter displays
an alignment in the way DNA sequences are usually visualized. A nested partition is displayed as the
corresponding rectangular dissection of a square.

Expander2 allows the user to control proofs and computations at three levels of interaction.

At the high level, analytic or synthetic inference rules or other syntactic transformations are applied
individually and locally to selected subtrees (see Subtrees menu). The rules cover single axiom applica-
tions, substitution or unification steps, Noetherian, Hoare, subgoal or fixpoint induction and coinduction.
Derivations are correct if, in the case of trees representing terms, their sum is equivalent to the sum of
their sucessors or, in the case of trees representing formulas, their dis- resp. conjunction is implied
by the dis- resp. conjunction of their successors. The underlying models are determined by built-in
data types and the least/greatest interpretation of Horn/co-Horn axioms. Incorrect deduction steps are
detected and cause a warning. All proper tree transformations are recorded, be they correct proofs or
other transformations. Terms and formulas are built up from the symbols of the current signature (see

8

 solver

 painter

 simplifier

signaturesaxioms

theorems

sums
of terms

rooted
graphs

widgets
graphs

Haskell
functions

 recorderdisplays

consumes
and

produces

evaluates

draws

derivations

files

respect

respect

derivations

perform
perform

enumerator

stepwise
partial

evaluation
Haskell

functions

evaluates

paths, polygons,
tables, matrices,

turtle systems

dis/conjunctions
of formulas

inference
rules

alignments,
partitions

produces

apply

uses

apply

proof terms

constructs

evaluates

uses

Figure 2.1: Components of Expander2

Solver state variables). For more details on the syntax and semantics of axioms, theorems and goals, see
Axioms and theorems and Swinging Types.

At the medium level, rewriting and narrowing realize the iterated and exhaustive application of all
axioms for the defined functions, predicates and copredicates of the current signature. Terminating
rewriting sequences end up with normal forms, i.e. terms consisting of constructors and variables.
Terminating narrowing sequences end up with the formula True, False or solved formulas that represent
solutions of the initial formula. Since the axioms are functional-logic programs in abstract logical syntax,
rewriting and narrowing agree with program execution. Hence the medium level allows one to test such
programs, while the inference rules of the high level provide a "tool box" for program verification. In
the case of finite data sets, rewriting and narrowing is often sufficient even for program verification.
Besides classical relations or deterministic functions, non-deterministic functions (e.g. state transition
systems) and "distributed" transition systems like Maude programs [3] or algebraic nets [19] may also be
axiomatized and verified by Expander2. The latter are executed by applying associative-commutative
rewriting or narrowing on bag terms, i.e. multisets of terms.

At the low level, built-in Haskell functions simplify or (partially) evaluate terms and formulas and thereby
hide most routine steps of proofs or computations. The functions comprise arithmetic, list, bag and set
operations, term equivalence and inequivalence (that depend on the current signature’s constructors)
and logical simplifications that turn formulas into nested Gentzen clauses. Evaluating a function f at
the medium level means narrowing upon the axioms for f , Evaluating f at the low level means running
a built-in Haskell implementation of f . This allows one to test and debug algorithms and visualize their
results. For instance, translators between different representations of Boolean functions were integrated
into Expander2 in this way. In addition, an execution of an iterative algorithm can be split into its
loop traversals such that intermediate results become visible, too. Currently, the computation steps
of Gaussian equation solving, automata minimization [7], OBDD optimization, LR parsing, data flow
analysis and global model checking can be carried out and displayed (see Simplifications).

9

http://ls5-www.cs.uni-dortmund.de/~peter/Swinging.html

3 Overall code structure

The code of Expander2 consists of four O’Haskell modules:

• Eterm contains data types and functions for generating, manipulating or checking terms and
formulas, such as unification, matching, reduction and expansion of collapsed trees.

• Epaint provides Haskell functions for parsing terms and formulas and computing and displaying
their graphical representations that are built up from Tk canvas widgets. Collections of various
pictorial elements can be defined as movements over the plane according to a turtle interpretation
(see Widgets, graphs, and turtle actions). The reactive components for animating the turtle and
displaying graphical objects are gathered in the painter, crawler and slowActor templates
(= classes). The colorFlasher template animates the error messages appearing in label fields
(see below).

• Esolve encapsulates translators between string, tree and graphical representations of terms and
formulas. Esolve also contains the simplifier that partially evaluates terms and formulas. More-
over, the basic inference rules for applying axioms and theorems are implemented here. Esolve also
contains the enumerator template that provides a GUI for running tree enumeration algorithms
(see the sections Alignments and palindromes and Dissections and partitions). They are called
from the solver template, which is part of Ecom.

• Ecom configures the GUI and provides all string- or tree-generating, -manipulating or -translating
commands that the user may call for carrying out proofs or computations and presenting their
results interactively. Multiple tree-shaped results can be displayed and browsed through on the
canvas of a solver and in some cases interpreted graphically and displayed in the painter window
of a solver (see the paint button). Ecom closes with the main program of the system that creates
the main objects, partly in a mutually recursive way:

main tk = do
win1 <- tk.window []
win2 <- tk.window []
swing1 <- colorFlasher tk
swing2 <- colorFlasher tk
swing3 <- colorFlasher tk
swing4 <- colorFlasher tk
fix solve1 <- solver tk "Solver1" win1 solve2 "Solver2" enum1 paint1 swing3

solve2 <- solver tk "Solver2" win2 solve1 "Solver1" enum2 paint2 swing4
paint1 <- painter tk swing1 solve1
paint2 <- painter tk swing2 solve2
enum1 <- enumerator tk solve1
enum2 <- enumerator tk solve2

solve1.configSolve (0,20)
solve2.configSolve (20,40)
win2.iconify

The colorFlasher, solver, painter and enumerator templates make use of the O’Haskell module Tk.hs,
which provides the interface to Tcl/Tk (see the O’Hugs computing environments.

10

Eterm.hs
Epaint.hs
Esolve.hs
Ecom.hs
http://www.cs.chalmers.se/~sydow/envs/index.html

4 Starting the system

Unpack Ohugs.tar.gz and adapt flags and file paths to your machine. This might apply to CFLAGS and
LDFLAGS in src/Makefile, the OS flag in src/prelude.h, the INSTLIB and INSTBIN paths in Makefile
and the LD_LIBRARY_PATH in the scripts ohugs and rohugs. Compile O’Hugs with make and make
install.

The enclosed O’Hugs package contains a special version of the Tk interface module Tk.hs. In contrast to
the CVS version, it provides a function that returns the font dependent width of a string. This is needed
for the optimal placement of tree node labels. Moreover, three constants in src/prelude.h have been
increased: NUM_OFFSETS = 2048, NUM_STACK = Pick(1800,12000,256000), NUM_ADDRS =
Pick(28000,60000,640000).

Unpack Expander2.tar.gz, call ohugs -h12000k Ecom and run main. Two solvers and their painters
will be created. The window of the first solver is opened. In case of installation problems contact me.

Figure 4.1: The solver window shows axioms of a list specification.

11

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Ohugs.tar.gz
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2.tar.gz
mailto:peter.padawitz@udo.edu

5 Solver window

Viewed from top to bottom, a solver window consists of the following widgets:

• a scrollable canvas,

• a horizontal slider for selecting the tree to be shown on the canvas,

• a scrollable and line-editable text field,

• an entry field for entering file names, node entries or integers,

• a vertical and a horizontal slider for stretching or shrinking the tree horizontally resp. vertically,

• a horizontal slider for changing the size of the node label font,

• nine boldface-titled menus described below,

• eighteen framed buttons described below,

• a vertical slider for changing the relative vertical size of the canvas and the text field,

• a label field for displaying messages.

12

6 Solver state variables

• actions, boolFun, dissects, finals, finalsL, labels, fixPositions, matrixU, matrixL, tran-
sitions and transitionsL may occur as function symbols in terms or formulas. Their values are
stored by rewriting steps, retrieved and modified by simplification steps and represented pictorially
by applying a suitable widget interpreter. The purpose of these state variables is to hide complex
function parameters from the screen whose current values are needed by the simplifier needs for
evaluating built-in iterative Haskell functions (see Simplifications).

• The current axioms and theorems are applied to conjectures/constraints and build up the high-
or medium-level steps of a computation or proof. Axioms and theorems are applied by rewriting
or narrowing. A narrowing/rewriting step starts with unifying/matching a subtree (the redex)
with/against an axiom. Narrowing applies (guarded) Horn or co-Horn clauses, rewriting applies
only unconditional, but possibly guarded, equations. The guard of an axiom is a subformula to
be solved before the axiom is applied. See also the Axioms menu, Axioms and theorems and the
narrow/rewrite button.

• curr holds the position of the actually displayed tree in the list of current trees.

• formula indicates whether the list of current trees represents a disjunction or conjunction of
formulas or a sum of terms, respectively. Conditional equations (see Axioms and theorems) applied
to a formula should be valid in the initial model of the underlying swinging type, while conditional
equations applied to a term may represent rewrite rules that are not valid equations. The results
of the applications of several rewrite rules applied to the same term are combined with <+> to a
sum of terms (see Built-in signature).

• The widget interpreter pictEval recognizes paintable terms and transforms them into their picto-
rial representations (see Widgets, graphs, and turtle actions).

• The current proof records the sequence of derivation steps performed since the last initialization
of the list of current trees (by parsing the contents of the text field; see Derivations). Each element
of the current proof consists of a description of a rule application, the resulting list of current
trees and the resulting values of treeMode, curr, treeposs, varCounter, solPositions, fixPositions,
substitution and subsDom.

• The current proof term represents the current proof as an executable expression for the purpose
of later proof checking. It is built up automatically when a derivation is carried out and can be
saved to a user-defined file. A saved proof term is loaded by writing its name into the entry field
and pushing check proof term from file. This action overwrites the current proof term. The proof
represented by the loaded proof term is carried out (and thus checked) on the current tree by
pushing the → button. Each click triggers a proof step. The proof term is entered into the text
field. POINTER precedes the rule applied next. If you push the check button, Expander2 leaves the
proof check mode, i.e. the state variables proof and proof term will be handled as in the (default)
proof build mode. This allows you to extend (a prefix of) a stored proof by new rule applications.

• rule indicates whether the list of current trees is the result of narrowing steps, rewriting steps,

13

6 Solver state variables

simplification steps or other rule applications.

• matching indicates the current strategy used for narrowing/rewriting (see the ← unify/match
button).

• The current signature consists of symbols denoting

– basic specifications (specs) consisting of signatures and axioms,

– predicates (preds) interpreted as the least solutions of their (Horn) axioms,

– copredicates (copreds) interpreted as the greatest solutions of their (co-Horn) axioms,

– constructors (constructs) for building up data,

– defined functions (defuncts) specified by (Horn) axioms or implemented as Haskell functions
called by the simplifier,

– coinductive functions (cofuncts) specified by (Horn) axioms,

– first-order variables (fovars) that may be instantiated by terms or formulas,

– higher-order variables (hovars) that may be instantiated by functions or (co)predicates.

For more details, see Built-in signature.

• The current signature map is a signature morphism from the current signature to the current sig-
nature of the other solver. It is initialized as the identity map on strings. Example (STACK2IMPL):

just→ entry

=→∼

• The list solPositions consists of the positions of solved formulas resp. normal forms among the
current trees.

• The current substitution maps the variables of its domain (= actual value of subsDom) to terms
over the current signature. It is generated, modified and applied by particular buttons (see the
Substitution menu and the apply to variable: button).

• treeMode indicates whether the list trees of current trees (or other rooted graphs) is a single-
ton (treeMode=tree) or represents a disjunction of formulas (treeMode=summand), a conjunction
of formulas (treeMode=factor) or a sum (= disjoint union) of terms (treeMode=term). True,
False and () is the respective zero element (see Built-in signature). The label of the trees
menu shows the actual tree mode: If treeMode=tree”, then the label is term resp. formula. If
treeMode=summand/factor, then the label tells us how many summands resp. factors the set of
current trees consists of. The slider between the canvas and the text field of a solver window allows
one to browse among the current trees and to select the one to be displayed on the canvas. For the
commands that may change trees, see the Trees menu, the Subtrees menu and the Graph menu.

• The list treeposs consists of the positions of selected subtrees of the actually displayed tree.
Subtrees are selected (and moved) by pushing the left mouse button while placing the cursor over
their roots (see Mouse and key events).

14

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STACK2IMPL

• varCounter maps a variable x to the maximal index i such that xi occurs in the current proof.
varCounter is updated when new variables are needed.

After each rule application the current proof term is entered into the text field such that the constant
POINTER precedes the command that will be executed next. If a new step has been performed during
the proof check, the proof term is adapted accordingly, i.e., the rest of the proof to be checked is replaced
by the new step. The current proof term is set to [] whenever the contents of the text field is parsed and
thus turned into a new list of current trees.

15

7 Built-in signature

The built-in signature reads as follows:

preds: <= >= < > » ~/~ ~~ == § any ‘disjoint‘ ‘gives‘ ‘in‘ Int ‘not_in‘ null
Real ‘shares‘ zipAny INV

copreds: ~ § all zipAll

constructs: <+> () [] {} : 0 bool fun lin pile piles suc

defuncts: + ++ - * ** / ˆ bag bisim count dnf drop foldl head init last length
max ‘meet‘ min minimize ‘mod‘ nerode obdd optimize parse permute postflow
product range reverse sat set stateflow subsflow sum tail take get0 get1
get2... upd0 upd1 upd2... x0 x1 x2...

fovars: i z

hovars:

<=, >=, <, > are predefined on integers, reals, strings and the defined functions x0,x1,x2,... (used
in OBDDs; see below and Grammar). <=, ‘in‘ and ‘not_in‘ denote the subset, membership and
non-membership relations, respectively, on collections, i.e. terms C(t1, . . . , tn) where C is one of the
constructors [] or {} or C(t1, . . . , tn) = t1∧. . .∧tn. ‘in‘ treats a triple (i, x, [i1, . . . , in]) where i, i1, . . . , in
are integers and x is any string as the list [(i, x, i1), . . . , (i, x, in)]. ‘gives‘ denotes the inverse of ‘in‘,
but is simplified differently (see Simplifications).

Int(t) and Real(t) return True if t is an integer or real number, respectively. Int(t) and Real(t)
return False if t is a real or an integer number, respectively.

any(P)(as) return True if as contains an element that satisfies P . all(P)(as) return True if
all elements of as satisfy P . zipAny(P)([a1,..,an])([b1,..,bn]) return True if for some
1 ≤ i ≤ n, (ai, bi) satisfies P . zipAll(P)([a1,..,an])([b1,..,bn]) return True if for all
1 ≤ i ≤ n, (ai, bi) satisfies P .

Formulas involving » or INV are generated whenever an induction hypothesis or a (Hoare or subgoal)
invariant is created (see Subtrees menu). For the use of §, see enclose/replace by entry.

The infix constructor <+> builds sums of terms (see Solver state variables). The simplifier transforms a
term of the form f(. . . , t1<+>. . .<+>tn, . . .) into the sum f(. . . , t1, . . .)<+>. . .<+>f(. . . , tn, . . .) and an
atom of the form p(. . . , t1<+>. . .<+>tn, . . .) into the disjunction p(. . . , t1, . . .)| . . . |p(. . . , tn, . . .). More-
over, given normal forms p1, . . . , pn, fun(p1,t1)<+>...<+>fun(pn,tn) stands for the abstraction
λp1.t1| . . . |λpn.tn.

(), [] and {} denote product, list resp. set constructors of arbitrary finite arity. As a nullary con-
structor, () denotes "undefined" and is neutral with respect to the sum constructor <+>. The sim-

16

plifier transforms terms containing () into () and atoms containing () into False. A term of the form
f((t1, . . . , tn)) is identified with f(t1, . . . , tn) provided that f is not a collector. Accordingly, for a vari-
able x, f(x) unifies with f(t1, . . . , tn). The constructor : appends an element to a list from the left.
0 and suc are the natural number constructors. If applied to a number list s, suc returns the next
permutation of s in reverse lexicographic order. If s is sorted, then suc(s) = reverse(s).

bool and lin embed formulas into terms (see Graph menu). pile and piles are widget constructors
(see Widgets, graphs, and turtle actions).

+, -, *, **, /, ‘mod‘, max, min are defined on integer and real numbers. +, -, *, / work also for
polynomials (* and / only as scalar operators).

Given finite lists or sets s, s′ and integers m,n, s− s′ and range(m,n) denote the list of elements of s
that are not in s′ and the interval [m..n] of integers, respectively. Haskell shortcuts of integer lists like
[k,m..n] may also be used. ++, drop, foldl, head, init, last, length, map, null, product,
sum, tail, take, reverse, zip and zipWith are defined on collections as the synonymous Haskell
functions are defined on lists. Morever,length(t1, . . . , tn) is simplified to n.

any, all, map, foldl, zip, zipAny, zipAll and zipWith also occur in LIST and LISTEVAL with
(recursive) axioms. The synonymous built-in symbols are interpreted as partial non-recursive functions.
For instance, a rewriting step via LIST transforms the term map(suc)(x : s) into x : map(suc)(s), while
the simplifier does not modify this term, but would turn map(suc)[x, y, z] into [suc(x), suc(y), suc(z)].
Of course, axioms introduced for built-in symbols should comply with their built-in interpretation that
is realized by the simplifier.

map, zip and zipWith do not occur in the above list of built-in symbols because LIST treats them as
defined functions, while STREAM declares them as constructors.

count(ts, t) counts the number of occurrences of t in the list ts. ts ‘disjoint‘ us checks whether the
lists ts and us are disjoint. ts ‘meet‘ us computes the intersection of the lists ts and us. ts ‘shares‘
us checks whether the lists ts and us are not disjoint.

As in Haskell, $ denotes the apply operator whose first argument is a higher-order term t that represents
a predicate or function f . The other arguments of $ are the arguments of f , i.e. $(t, t1, . . . , tn) stands
for t(t1, . . . , tn).

get0, get1, get2,. . . and upd0, upd1, upd2,. . . return resp. update the first, second, third,. . .
component of a tuple or element of a collection. x0, x1, x2,. . . are used—besides 0 and 1—as node
labels of OBDDs.

bag transforms a list into a bag and flattens terms built up with the infix operator ˆ (see below). set
transforms a list or bag into a set. Many functions defined on lists are also defined on other collections.
If count, ‘disjoint‘, ‘in‘, ‘meet‘, ‘not_in‘, ‘shares‘, ++, - and <= are applied to such
collections where their evaluation needs an equality on the elements of the collections, the simplifier
transforms them only if they consist of ground constructor terms!

obdd transforms a DNF represented as a list of strings of the same positive length whose characters are
0, 1 or # into an equivalent minimal OBDD. dnf transforms OBDDs into equivalent minimal DNFs. If
applied to a DNF, minimize minimizes the number of summands of a DNF. If applied to an OBDD,
minimize minimizes the number of nodes of an OBDD according to the two reduction rules for OBDDs
[17].

17

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTEVAL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STREAM

7 Built-in signature

Figure 7.1: A DNF (QUAD2), its minimal OBDD and its Karnaugh diagram

ˆ is an infix operator for building bags and treated by the unification algorithm as an associative and
commutative function. When a bag term t1 ∧ . . . ∧ tn in the displayed tree is to be unified with another
bag term u, then the unification succeeds even if only a permutation of t1 ∧ . . . ∧ tn unifies with u. If
there are several unifiers, those are preferred, which substitute only variables for variables. Among these
unifiers those are preferred, which substitute variables only for variables of u.

Axioms of the form

{guard⇒} (t1 ∧ . . . ∧ tk∧! ∧ tk+1 ∧ . . . ∧ tn = t {⇐= prem}) (*)

are called AC equations because they take into account that ∧ is an associative-commutative function.
(*) can be applied to a bag term u1 ∧ . . . ∧ um if a list L1 = [ui1 , . . . , uim] of elements of L = [u1, . . . , um]
unifies with [t1, . . . , tn] and if the unifier satisfies the guard. At first, a substitution f that unifies
L′ = [t1, . . . , tk] with members of L is looked for. Then f must be extendable to a substitution g that
satisfies the guard and unifies [tk+1, . . . , tm] with a permutation of the list L2 = [v1, . . . , vn−k] that
consists of all elements of L, which were not unified with elements of L′. The search is performed by
traversing the permutations of L2 in reverse lexicographic order. If a suitable permutation has been
found, the elements of L1 are replaced by the instance of t by g, while the remaining elements of L are
replaced with their instances by g. At most 720 permutations of L2 are checked. If this case is reached
without achieving a unifier, then the application of (*) consists of replacing L2 by the permutation
achieved at last. Further permutations may then be tried by re-applying the AC equation.

For instance, repeated applications of the AC equation (see MOD)

i‘mod‘j = 0⇒! ∧ i ∧ j = j

(see PRIMS) to
2 ∧ 3 ∧ 4 ∧ 5 ∧ 6 ∧ 7 ∧ 8 ∧ 9 ∧ 10 ∧ 11 ∧ 12 ∧ 13 ∧ 14 ∧ 15,

sift out the primes and thus end up with

2 ∧ 3 ∧ 5 ∧ 7 ∧ 11 ∧ 13.

ACCOUNT, HANOI, PUZZLE and the algebraic net specifications PHIL and ECHO also contain AC
equations. In contrast to the pure AC unification of bag terms, the AC equation (*) may be applicable
to a bag term u1 ∧ . . . ∧ un even if n is greater than k +m.

Set brackets used in clauses enclose optional subformulas, i.e. guard and prem in (*) may be empty.

18

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUAD2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MOD
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PRIMS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ACCOUNT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/HANOI
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PUZZLE
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHIL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ECHO

Figure 7.2: Snapshots of a run of the echo algorithm (cf. [19])

The operators &, |, =, ==, =/=, ˜, ˜˜, ˜/˜, +, *, ˆ, {}, <+> are interpreted as permutators, i.e., the
order of their arguments is irrelevant. Consequently, AC unification as described above for ∧ replaces
ordinary unification whenever two argument lists of a permutator are to be unified.

The operators ˆ, <+> ,++ are interpreted as associative operators and thus may have an arbitrary
finite number of arguments. The parser and the simplifier flatten compositions of the same associative
operator. For instance, t1 ∧ ((t2 ∧ t3)∧ t4) is turned into a tree with root label ∧ and four maximal proper
subtrees: t1, t2, t3, t4. While two terms t1 and t2 with root label ∧ may unify with each other even if the
number of maximal proper subtrees of t1 resp. t2 is different (see above), this does not hold true for
<+> and ++ instead of ∧. Hence axioms for these operators could not be applied to terms with arities
of <+> and ++ that are different from the corresponding arities in the axioms. But such axioms are not
needed because the parser and the simplifier already reduce <+>- and ++-rooted terms to their minimal
representations according to the usual meaning of <+> and ++. This includes the idempotency of <+>,
the neutrality of empty collections with respect to ++ and the axiom (x : s) + +s′ = x : (s++s′).

˜, ˜˜ and == are supposed to be congruence relations. ˜ is declared as a copredicate because it denotes
behavioral equivalence. Axioms for the predicate ˜˜ are introduced and used when clauses of the form
prem⇒ t ∼ u are proved by coinduction.

<, >, =/= ,˜/˜ are the complements of >=, <= ,=, ˜, respectively. For each other predicate or copredicate
P , not_P denotes the complement of P . Axioms for the complement of P are added to the set of current
axioms if P is entered into the entry field and the button negate axioms for symbol is pushed.

Subformulas involving built-in functions or predicates are (partially) evaluated when the displayed tree
is simplified. This includes the stepwise execution of built-in functions with state variable parameters
(see Simplifications).

Here is a user-defined signature (the one of OBDD):

defuncts: restrict forall exists quantor x X Y F and or not

fovars: u2 u1 u t2 t1 t j i b

hovars: F{and,or} X{x} Y{x}

F{and,or} denotes that the defined functions and and or are the only admissable instances of the
higher-order variable F . In general, the list following a higher-order variable F must consist of characters.
All terms starting with one of the characters is an admissable instance of F . If F is not followed by a
list of characters, all terms are admissable.

Keywords (specs:, preds:, copreds:, constructs:, defuncts:, cofuncts:, fovars: and
hovars:) may appear at any place in the list of symbols that builds up a signature. To be recognized
as keywords they must be separated from their context by blanks.

19

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD

7 Built-in signature

User-defined signatures automatically inherit the built-in signature. Symbols that are to be interpreted
as infix operators must start and end with the character ‘ or consist of characters among

: + - * < = ˜ > / ˆ #

(see Grammar).

Symbols used in axioms, theorems or conjectures that do not belong to the current signature are inter-
preted as (undefined) function symbols (see Grammar). This facilitates certain applications, but may
also lead to unexpected unification failures when axioms or theorems shall be applied. To exclude misin-
terpretations of symbols one should use the respective buttons for showing the current signature, axioms
or theorems or even parse up the latter.

20

8 Mouse and key events

A subtree t is selected (or deselected if it has already been selected) by clicking on the left mouse
button while placing the cursor over its root. If the mouse is moved while the button is pressed, t is
shifted over the canvas. If the button is released while the root of t is placed over the root of another
subtree u, u is replaced by t. If u is an existentially (resp. universally) quantified variable and the scope
of u has positive (resp. negative) polarity, then all occurrences of u within the scope are replaced by t
(see Derivations). Replaced subterms are colored in blue.

Subtrees are deselected backwards with respect to the order in which they were selected by moving
the cursor away from the displayed tree and pushing the left mouse button. All selected subtrees are
deselected simultaneously if the clear subtrees button is pushed. If you stop moving a subtree before
inserting it into the displayed tree, it will stay at the place where you released the mouse button. Then
push the redraw button and the subtree will be returned to its previous place within the displayed tree.

If a subtree t has been selected and the move of t is started with a click on the middle mouse button,
t will be removed from the displayed tree and replaced by the variable zn where the index n is increased
each time a subtree is removed or a new variable is needed when an axiom is flattened (see below).
Moreover, the current substitution is extended by the assignment of t to zn.

By moving the mouse and pushing the middle button outside the root of a selected subtree the entire
displayed tree is shifted over the canvas. By pressing the right mouse button while placing the cursor
over a node x a pointer (edge) from x to the root of the last selected subtree t is drawn and all successors
of x are removed. The arc is colored in orange if it closes a circle consisting of edges of t. Otherwise
the arc is colored in magenta. Subtree replacements and substititutions for variables adapt the pointer
values.

A command followed by a letter in round brackets is executed when the key with the letter is pressed
after the cursor has been placed over the label field and the left mouse button has been pushed (see
Commands).

21

9 Trees menu

The commands of the trees menu create or transform the current trees or the current proof.

• call enumerator opens a submenu listing tree enumeration algorithms. When you push the
button for one of these algorithms, you will be prompted to enter sequences of strings (in the case
of the alignment or palindrome enumerator), numbers (in the case of the dissection enumerator)
or the length of a list (in the case of the partition enumerator) and certain constraints (see the
sections Alignments and palindromes and Dissections and partitions). After the "go" button has
been pushed, the resulting trees are assigned to Solver1/2 and may be browsed through with the
canvas slider.

• split tree m decomposes a conjunction, disjunction or sum into its factors, summands and
terms, respectively, provided that the list of current trees is a singleton

• combine trees w combines all current trees into a disjunction, conjunction or sum, respectively.

• remove other trees eliminates all current trees except the current one.

• remove displayed tree eliminates the displayed tree.

• show changed selects all maximal elements within the set of subtrees that have been modified
during the last transformation of the displayed tree.

• show proof enters the current proof into the text field.

• show proof in text field of Solver1/2 opens Solver1/2 and enters the current proof into its
text field.

• save proof to file p saves the current proof to the file in the entry field.

• show proof term enters the current proof term into the text field.

• show proof term in text field of Solver1/2 opens Solver1/2 and enters the current proof term
into its text field.

• save proof term to file t saves the current proof term to the file in the entry field.

• check proof term from file c assigns the contents of the file in the entry field to the current
proof term provided that the contents is a proof term.

• check proof term from text field assigns the contents of the text field to the current proof
term provided that the contents is a proof term.

• create induction hypotheses prepares the displayed tree cl for a proof by Noetherian induction.
The command assumes that cl is a formula and that free or universal induction variables x1, . . . , xn

22

of cl have been selected, which will be decorated with an exclamation mark. Non-selected free
variables are turned into universal variables. If cl has the form prem⇒ conc, then the clauses

conc′ ⇐=(x1, . . . , xn) >> (x′1, . . . , x
′
n) & prem′

prem′ =⇒((x1, . . . , xn) >> (x′1, . . . , x
′
n)⇒ conc′)

are added to the set of current theorems. The primed formulas are obtained from the unprimed
ones by replacing xi with x′i, 1 ≤ i ≤ n. If cl is not an implication, then

cl′ ⇐= (x1, . . . , xn) >> (x′1, . . . , x
′
n)

is added to the set of current theorems.

• flatten (co-)Horn clause assumes that the displayed tree is a Horn or co-Horn clause cl (see
Axioms and theorems). If subterms t1, . . . , tn of cl are selected and F is the set of roots of t1, . . . , tn,
then cl is replaced by an equivalent formula where each f ∈ F occurs only at the outermost position
of the left- or right-hand side of an equation. If no subterms are selected, F is the set of all defined
functions of the current signature. For instance, the LISTEVAL-axiom

sort(x : (y : s)) = merge(sort(x : s1), sort(y : s2))⇐= split(s) = (s1, s2)

is turned into

sort(x : (y : s)) = merge(z0, z1)

⇐= split(s) = (s1, s2)&sort(x : s1) = z0&sort(x : s2) = z1

if F = {sort} and into

sort(x : (y : s)) = z0

⇐= split(s) = (s1, s2) & merge(z1, z2) = z0

& sort(x : s1) = z1 & sort(y : s2) = z2

if F = {sort,merge}.

• turn local def into function application takes the last local definition (= equation with a
normal form on the right-hand side) in the displayed tree, which is supposed to be a conditional
equation, and transforms it into an equivalent function application. For instance,

t = u⇐= prem & v = nf becomes t = fun(nf, u)(v)⇐= prem.

• save tree to file ↓ saves the string representation of the displayed tree to the file in the entry
field.

• save tree in eps format to file i saves the current tree in Encapsulated PostScript format
to the file in the entry field.

• save trees to file saves the disjunction, conjunction or sum, respectively, of the current trees to
the file in the entry field.

• load text from opens a submenu of files. The term or formula in the selected file is entered into
the text field. Signature elements declared in the file are added to the current signature. In this
case, the formula must be separated from the term resp. formula by the keyword conjectures:.
Files containing only signature elements are not allowed here.

23

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTEVAL

10 Font menu

consists of buttons for choosing the font to be used for the text in tree nodes and pictorial term repre-
sentations. The font size is controlled by a slider (see Solver window).

24

11 Subtrees menu

The commands of this menu transform the subtrees that were selected with the left mouse button. If no
subtree has been selected, the entire displayed tree is regarded as being selected. Most commands call
inference rules and deliver messages that tell us whether or not the executed rule application is sound
with respect to the initial model induced by the current signature and axioms (see Derivations).

• copy adds a copy of the subtree selected at last to the children of its parent node.

• remove removes all selected subtrees if they are summands/factors of the same disjunction/con-
junction with positive/negative polarity. Otherwise the greatest lower bound of the selected sub-
trees is removed.

• generalize combines the last selected subformula cl of the displayed tree with the formula cl′ in
the entry field. If cl has positive polarity, then cl&cl′ replaces cl. Otherwise cl | cl′ replaces cl.
A generalization of cl may be necessary before cl can be proved by Noetherian induction, fixpoint
induction or coinduction.

• instantiate assumes the selection of a quantified variable x. If x is existential resp. universal and
the scope of x has positive resp. negative polarity (see Derivations), then all occurrences of x are
replaced by the term in the entry field. The replaced variables are colored in blue.

• subsume assumes the selection of the premise t and the conclusion u of an implication or two
factors t and u of a conjunction or two summands t and u of a disjunction. If t subsumes u,
then t ⇒ u is replaced by True or u is removed from the conjunction or t is removed from the
disjunction, respectively.

• unify assumes the selection of two factors or summands t and u of a conjunction resp. disjunction.
If t and u are unifiable and the unifier instantiates only existential resp. universal variables of
the conjunction resp. disjunction, then t is removed and the unifier is applied to the remaining
conjunction resp. disjunction.

• reverse reverses the list of at least two selected subtrees. The reduct implies the redex if the
subtrees have the same direct predecessor x and if x is a permutator (see Built-in signature). If
only one subtree t is selected, then the operation is applied to the list of maximal proper subtrees
of t.

• decompose atom assumes the selection of an atom tR t′ with positive polarity such that R is
among =,∼ or an atom tR t′ with negative polarity such that R is among 6=, 6∼. The selected atom
is decomposed in accordance with the assumption that R is compatible with function symbols (see
Built-in signature).

• apply transitivity assumes the selection of an atom tR t′ with positive polarity or factors
t1R t2, t2R t3, . . . , tn−1R tn of a conjunction with negative polarity (see Derivations) such that
R is among =,∼,∼∼,≤,≥, <,>. The selected atoms are changed in accordance with the assump-
tion that R is transitive (see Built-in signature).

25

11 Subtrees menu

• apply clause from entry field applies the n-th clause cl in the text field to all selected subtrees
provided that the entry field contains the number n. cl may be applied from left to right a or
from right to left b where the direction refers to the left resp. right argument of the clause’s
leading symbol (=, =⇒ or ⇐=). If cl is distributed (see Axioms and theorems), then cl′s atoms
must unify componentwise with the selected subtrees. Otherwise cl is applied sequentially to each
selected subtree.

• ... and save redex adds the redex disjunctively/conjunctively to the reduct if the clause is a
non-distributed Horn/co-Horn clause. The correctness of this version of the rule does not depend
on the polarity of the redex.

• apply clause from text field applies the clause in the text field analogously to apply clause from
entry field.

• shift factors shifts to the conclusion of an implication prem ⇒ conc all selected factors of the
premise (see [10, section 5]). This may be necessary before prem ⇒ conc is submitted to a proof
by fixpoint induction.

• shift summands shifts to the premise of an implication prem ⇒ conc all selected summands of
the conclusion (see [10, section 5]). This may be necessary before prem⇒ conc is submitted to a
proof by coinduction.

• stretch premise assumes the selection of a formula of the form (B), (C) or (D). The formula is
turned into the corresponding co-Horn clause of the form (B’), (C’) resp. (D’).

• stretch conclusion assumes the selection of a formula of the form (A). The formula is turned
into the corresponding Horn clause of the form (A’).

• apply coinduction assumes the selection of conjectures

{prem1 ⇒} p(t11 , . . . , t1n)

& . . . (A)
&{premk ⇒} p(tk1 , . . . , tkn)

about a copredicate p that does not depend on any predicate or function occurring in premi. (A)
is turned into

p(x1, . . . , xn)⇐={prem1&}x1 = t11& . . .&xn = t1n

| . . . (A’)
|{premk&}x1 = tk1& . . .&xn = tkn .

x1, . . . , xn are variables. In fact, only those terms among ti1 , . . . , tin are replaced by variables that
are not variables or occur more than once among ti1 , . . . , tin . Morever, a new predicate p’ is added
to the current signature and

p′(x1, . . . , xn)⇐={prem1&}x1 = t11& . . .&xn = t1n

| . . . (*)
|{premk&}x1 = tk1& . . .&xn = tkn

becomes the axiom for p′. All occurrences of p in the axioms for p are replaced by p′. Then (*)
is applied to all occurrences of p′ in the transformed axioms for p. The conjunction of the clauses
resulting from these applications replaces the original conjecture (A).

26

The primed version of the copredicate ∼ (see Built-in signature) is denoted by ∼∼ and regarded as
an equivalence relation. This takes into account the equivalence closure involved in the coinduction
rule for ∼ (see, e.g., [16, Section 9.2]).

If n > 1 conjectures of the form (A) have been selected, they are assumed to be factors of the same
conjunction and deal with different copredicates p1, . . . , pn. The n stretched versions of the form
(A’) are applied to the axioms for p1, . . . , pn.

• apply strong coinduction (see [6, 16]) also assumes the selection of conjectures (A) and turns
them into (A’). Morever, a new predicate p′ is added to the current signature and

p′(x1, . . . , xn)⇐={prem1&}x1 = t11& . . .&xn = t1n

| . . . (*)
|{premk&}x1 = tk1& . . .&xn = tkn ,

p′(x1, . . . , xn)⇐=p(x1, . . . , xn) (**)

become the axioms for p′. Each axiom p(t1, . . . , tn) =⇒ conc for p is replaced by

p(t1, . . . , tn) =⇒ conc | p(t1, . . . , tn).

All occurrences of p in the original part of the extended axioms for p are replaced by p′. Then (*)
and (**) are applied to all occurrences of p′ in the transformed axioms for p. The conjunction of
the clauses resulting from these applications replaces the original conjecture (A).

• apply fixpoint induction assumes the selection of conjectures

p(t11 , . . . , t1n)⇒ conc1

& . . . (B)
&p(tk1 , . . . , tkn)⇒ conck

about a predicate p that does not depend on any predicate or function occurring in conci or a
conjecture of the form

f(t11 , . . . , t1n) = t1 ⇒ conc1

& . . . (C)
&f(tk1 , . . . , tkn) = tk ⇒ conck

or

f(t11 , . . . , t1n) = t1{&conc1}
& . . . (D)
&f(tk1 , . . . , tkn) = tk{&conck}

about a defined function f that does not depend on any predicate or function occurring in ti or
conci. (B) is turned into

p(x1, . . . , xn) =⇒(x1 = t11& . . .&xn = t1n ⇒ conc1)

& . . . (B’)
&(x1 = tk1& . . .&xn = tkn ⇒ conck).

(C) is turned into

f(x1, . . . , xn) = x =⇒(x1 = t11& . . .&xn = t1n&x = t1 ⇒ conc1)

& . . . (C’)
&(x1 = tk1& . . .&xn = tkn&x = tk ⇒ conck).

27

11 Subtrees menu

(D) is turned into

f(x1, . . . , xn) = x =⇒(x1 = t11& . . .&xn = t1n ⇒ x = t1{&conc1})
& . . . (D’)
&(x1 = t)k1& . . .&xn = tkn ⇒ x = tk{&conck}).

x1, . . . , xn, x are variables. In fact, only those terms among ti1 , . . . , tin are replaced by variables
that are not variables or occur more than once among ti1 , . . . , tin . Morever, a new predicate p′

resp. f ′ is added to the current signature and

p′(x1, . . . , xn) =⇒(x1 = t11& . . .&xn = t1n ⇒ conc1)

& . . . (*)
&(x1 = tk1& . . .&xn = tkn ⇒ conck)

resp.

f ′(x1, . . . , xn, x) =⇒(x1 = t11& . . .&xn = t1n&x = t1 ⇒ conc1)

& . . . (*)
&(x1 = tk1& . . .&xn = tkn&x = tk ⇒ conck)

resp.

f ′(x1, . . . , xn, x) =⇒(x1 = t11& . . .&xn = t1n ⇒ x = t1{&conc1})
& . . . (*)
&(x1 = tk1& . . .&xn = tkn ⇒ x = tk{&conck}).

becomes the axiom for p′/f ′. All occurrences of p/f in the (flattened) axioms for p/f are replaced
by p′/f ′. Replacing f actually means replacing equations f(t) = u by logical atoms f ′(t, u). Then
(*) is applied to all occurrences of p′/f ′ in the transformed axioms for p/f . The conjunction of
the clauses resulting from these applications replaces the original conjecture (B)/(C)/(D)

If n > 1 conjectures of the form (B)/(C)/(D) have been selected, they are assumed to be factors
of the same conjunction and deal with different predicates or defined functions p1, . . . , pn. The n
stretched versions of the form (B’)/(C’)/(D’) will be applied to the (flattened) axioms for p1, . . . , pn.

• apply strong fixpoint induction (see [6, 16]) also assumes the selection of conjectures (B), (C)
or (D) and turns them into (B’)/(C’)/(D’). Morever, a new predicate p′ resp. f ′ is added to the
current signature and

p′(x1, . . . , xn) =⇒(x1 = t11& . . .&xn = t1n ⇒ conc1)

& . . . (*)
&(x1 = tk1& . . .&xn = tkn ⇒ conck),

p′(x1, . . . , xn) =⇒p(x1, . . . , xn) (**)

resp.

f ′(x1, . . . , xn, x) =⇒(x1 = t11& . . .&xn = t1n&x = t1 ⇒ conc1)

& . . . (*)
&(x1 = tk1& . . .&xn = tkn&x = tk ⇒ conck),

f ′(x1, . . . , xn, x) =⇒f(x1, . . . , xn) = x (**)

28

resp.

f ′(x1, . . . , xn, x) =⇒(x1 = t11& . . .&xn = t1n ⇒ x = t1{&conc1})
& . . . (*)
&(x1 = tk1& . . .&xn = tkn ⇒ x = tk{&conck}),

f ′(x1, . . . , xn, x) =⇒f(x1, . . . , xn) = x (**)

become the axioms for p′/f ′. Each axiom p(t1, . . . , tn)⇐= prem for p is replaced by

p(t1, . . . , tn)⇐= prem&p(t1, . . . , tn).

Each axiom f(t1, . . . , tn) = t⇐= prem for f is replaced by

f(t1, . . . , tn) = t⇐= prem&f(t1, . . . , tn) = t.

All occurrences of p/f in the original part of the (flattened) axioms for p/f are replaced by p′/f ′.
Replacing f actually means replacing equations f(t) = u by logical atoms f ′(t, u). Then (*) and
(**) are applied to all occurrences of p′/f ′ in the transformed axioms for p/f . The conjunction of
the clauses resulting from these applications replaces the original conjecture (B)/(C)/(D).

• create Hoare invariant assumes the selection of a conjecture of the form (C) or (D) such that
k = 1 and f has a single axiom of the form

f(x1, . . . , xn) = loop(u1, . . . , uk) (E)

(C)/(D) is turned into (C’)/(D’). (C’)/(D’) and (E) are transformed into the following conjectures,
which characterize INV as a Hoare invariant:

INV (x1, . . . , xn, u1, . . . , uk) (INV1)
loop(y1, . . . , yk) = z&INV (x1, . . . , xn, y1, . . . , yk)⇒ conc1 (INV2)

INV2 may be provable by fixpoint induction.

• create subgoal invariant works like the preceding command except that the following conjectures
are created, which characterize INV as a subgoal invariant:

INV (u1, . . . , uk, z)⇒ conc1 (INV1)
loop(y1, . . . , yk) = z ⇒ INV (y1, . . . , yk, z) (INV2)

Again, INV2 may be provable by fixpoint induction.

• enclose/replace by entry e assumes the selection of either a single subtree t or several
subtrees t, t1, . . . , tn such that t encloses t1, . . . , tn. In the first case, the entry field must contain a
tree u with at most one occurrence of §. If u contains exactly one occurrence of §, then t is replaced
by u[t/§]. Otherwise the displayed tree v is replaced by v[u/t]. In the second case, u must contain
exactly n occurrences of §. Then these occurrences are replaced by t1, . . . , tn, respectively, and the
resulting tree replaces t in the displayed tree.

• replace by other sides assumes that the subtree t selected at first is an implication and the
other selected subtrees t1, . . . , tn are subterms of the conclusion of t. For each 1 ≤ i ≤ n, replace
by term searches for an equation eq in the premise of t whose left- or right-hand side agrees with
ti. ti is then replaced by the other side of eq.

• replace by tree of Solver1/2 replaces the subtree selected at last by the displayed tree of
Solver1/2.

29

11 Subtrees menu

• unify with tree of Solver1/2 unifies the subtree selected at last with the displayed tree of
Solver1/2.

• build unifier assumes the selection of two subtrees. If they are unifiable, the most general unifier
is assigned to the current substitution. Otherwise the reason for the failure is reported.

30

12 Specification menu

• remove removes the set of current axioms. The current signature is reduced to the built-in
symbols, the current signature map is set to the identity map and the widget interpreter pictEval
to matrix (see Widgets, graphs, and turtle actions).

• save to saves the current specification to the file in the entry field.

• load text from opens a submenu of files. The contents of the selected file is entered into the text
field.

• add from opens a submenu of files. Signature elements declared in the file are added to the current
signature, while formulas are added to the set of current axioms. The formulas must be entered
as a disjunction of at most two conjunctions of guarded Horn or co-Horn clauses (see Axioms and
theorems). The first conjunction is regarded as a set of eager axioms, the second conjunction as a
set of lazy axioms (see the narrow/rewrite button).

31

13 Signature/map menu

• remove map reduces the current signature map to the identity.

• show sig enters the current signature into the text field.

• show map enters the current signature map into the text field.

• apply map applies the current signature map to the current tree and displays the result in the
other solver.

• load text from file loads to the text field the file whose name is in the entry field.

• add map from opens a submenu of files whose contents is compiled into an extension of the
current signature map when the respective menu button is pushed.

32

14 Axioms menu

• remove all removes the set of current axioms.

• remove from entry field removes the n-th clause in the text field from set of current axioms
provided that the entry filed contains the number n.

• apply axioms in text field performs at most 5 narrow/rewrite steps upon the axioms in the
text field. If subtrees have been selected, then each selected subtree is transformed only once and
only at the root.

• apply axioms for symbols writes the axioms for the symbols in the entry field into the text field
and performs at most 5 narrow/rewrite steps upon these axioms. If subtrees have been selected,
then each selected subtree is transformed only once and only at the root.

• negate axioms for symbols adds axioms for the complements of the roots of the subtrees
selected at last (or the (co)predicates in the entry field if no subtrees have been selected) to the
set of current axioms. The current signature automatically includes symbols for the complements
of all its predicates and copredicates (see Built-in signature).

• invert axioms for symbols transforms the axioms for the roots of the subtrees selected at last
(or the (co)predicates in the entry field if no subtrees have been selected) into a single (co-)Horn
clause that represents the inverse of the axioms. The clause expresses the least/greatest fixpoint
semantics of the predicates and is thus added to the current theorems. For instance, Horn axioms
for sorted (see LIST) read as follows:

sorted[]

sorted[x]

x ≤ y ⇒ (sorted(x : (y : s))⇐= sorted(y : s))

The equivalent Horn axiom is:

sorted(z) =⇒z = []

|Any x : z = [x]

|Any xys : (z = x : (y : s)&x ≤ y&sorted(y : s))

The clause resulting from inverted axioms is indeed a theorem with respect to the underlying
least/greatest fixpoint semantics of predicates/copredicates.

• Horn axioms for copredicates transforms the co-Horn axioms for the roots of the subtrees
selected at last (or the copredicates in the entry field if no subtrees have been selected) into
equivalent Horn axioms (see [11, Def. 2.10]). For instance, co-Horn axioms for unsorted (see
LIST) read as follows:

unsorted[] =⇒ False

unsorted[x] =⇒ False

x ≤ y ⇒ (unsorted(x : (y : s)) =⇒ unsorted(y : s))

33

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST

14 Axioms menu

The equivalent Horn axioms are:

unsorted(z)⇐= All i : unsortedLoop(i, z)

unsortedLoop(0, z)

unsortedLoop(suc(i), z)

⇐= z 6= []

&Allx : z 6= [x]

&Allxys : (z = x : (y : s)&x ≤ y ⇒ unsortedLoop(i, y : s))

The old axioms for the copredicates are deleted and the copredicates are turned into predicates.

• show axioms for symbols x enters the axioms for the roots of the subtrees selected at last
(or the symbols in the entry field if no subtrees have been selected) into the text field.

• show enters all current axioms into the text field.

• show in text field of Solver1/2 enters all current axioms of Solver 1/2 into the text field of
Solver1/2.

• load text from opens a submenu of files. The contents of the selected file is entered into the text
field.

• add from opens a submenu of files. Signature elements declared in the file are added to the current
signature, while formulas are added to the set of current axioms. The formulas must be entered
as a disjunction of at most two conjunctions of guarded Horn or co-Horn clauses (see Axioms and
theorems). Files containing only signature elements are not allowed here.

34

15 Theorems menu

• remove all removes the set of current theorems.

• remove from entry field removes the n-th clause in the text field from set of current theorems
provided that the entry filed contains the number n.

• show enters all current theorems into the text field.

• show in text field of Solver1/2 enters all current theorems of Solver 1/2 into the text field of
Solver1/2.

• save to file saves the current theorems to the file in the entry field.

• load text from opens a submenu of files. The contents of the selected file is entered into the text
field.

• add from opens a submenu of files. Signature elements declared in the file are added to the
current signature, while formulas are added to the set of current theorems. The formulas must be
entered as a conjunction of Horn or co-Horn clauses (see Axioms and theorems). Files containing
only signature elements are not allowed here.

35

16 Graph menu

• redraw z redraws the displayed tree. This removes junk from the canvas (see Mouse and key
events).

• expand dereferences all pointers of the displayed tree or the selected subtrees, respectively. If the
entry field contains a positive number n (default: n = 0), each circle in the trees is unfolded n
times.

• expand leaves dereferences all pointers to leaves of the displayed tree or the selected subtrees,
respectively.

• collapse → and collapse ← identify all common subtrees of the displayed tree or the selected
subtrees, respectively. If there is a number n in the entry field, cycles are unfolded n times.
Otherwise cycles are not unfolded. collapse → creates pointers to the right, collapse ← produces
pointers to the left.

• build equations e assumes that the subtree t selected at last is a list of pairs consisting of
an integer (a node) and a list of integers (the direct successors) or a list of triples consisting of
an integer (a node), a term (an edge label) and a list of integers (the direct successors). build
equations transforms t into an equivalent conjunction x1 = t1& . . .&xn = tn of regular equations,
i.e. x1, . . . , xn are variables and t1, . . . , tn are terms that may contain these variables.

• build graph g assumes that the subtree t selected at last is a collection of pairs consisting
of an integer and a list of integers or a collection of triples consisting of an integer, a term and a
list of integers or a conjunction of regular equations. build graph transforms t into an equivalent
(edge-labelled) graph. Edge labels are turned into node labels so that the graph is actually a
bipartite one. The graph is constructed in a depth-first manner starting out from the first element
of the list or conjunction. Hence only pairs, triples or regular equations, respectively, that are
"reachable" from this element are considered!

• label graph l labels the nodes of a graph representing an (edge-)labelled or unlabelled tran-
sition system on integer state by the labels stored in the state variable labels (see Simplifications).

Figure 16.1: A labelled transition system (see TRANS1) as a list of (node,label,successors)-triples, a
conjunction of regular equations and a bipartite graph.

36

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS1

• unlabel graph u restores the nodes of a (node-)labelled graph representing an (edge-)labelled
or unlabelled transition system on integer states.

• build relation r reverses the application of build graph, i.e. an (edge-labelled) graph is
transformed into an equivalent list of pairs consisting of an integer (a node) and a list of integers
(the direct successors) or an equivalent list of triples consisting of an integer (a node), a term (an
edge label) and a list of integers (the direct successors).

• greatest lower bound colors the root of the greatest lower bound of the selected subtrees in
green.

• predecessors colors the predecessors of the roots of the selected subtrees in green.

• successors colors the successors of the roots of the selected subtrees in blue.

• variables colors the variables of the selected subtrees in blue.

• free variables colors the free variables of the selected subtrees in blue.

• label roots with entry labels the roots of the selected subtrees with the string in the entry field.
The root types (F or V) are preserved. If the replacing string or the replaced string belong to the
current signature, both strings must be of the same type. The changed labels are colored in blue.

• polarities colors the roots of all subtrees of the displayed tree. A root is colored in green if the
subtree has positive polarity. Otherwise it is colored in red.

• positions replaces the nodes of the displayed tree by their tree positions. Each pointer position
is labelled in red with the position of its target node.

• numbers replaces the labels of the nodes of the displayed tree by their positions in the breadthfirst
node ordering.

• coordinates shows the coordinates of the node labels of the displayed tree.

37

17 Substitution menu

• add from text field adds to the current substitution the substitution that is given by the con-
junction of equations in the text field.

• apply applies the current substitution to the selected subtrees of the displayed tree (or to the
entire tree if no subtrees have been selected) and sets the current substitution to the empty one.

• rename assumes that the entry field contains a conjunction of equations x = y between variables.
All occurrences of x in the selected subtrees are replaced by y.

• remove clears the current substitution.

• show enters the equations that represent the current substitution into the text field.

• show in text field of Solver1/2 enters the equations that represent the current substitution of
Solver2/1 into the text field of Solver1/2.

• show on canvas of Solver1/2 displays the equations that represent the current substitution of
Solver2/1 on the canvas of Solver1/2. The equations become the current trees of Solver1/2.

• show solutions writes the positions of the solved formulas resp. normal forms among the current
trees into the label field.

38

18 Further Buttons

Pictorial term representations consist of widgets. A list of widgets is called a picture. A picture
becomes a widget graph if some of its widgets are connected by directed arcs. Widgets comprise
circles, paths, polygons, text entries, node-labelled trees, and sequences of turtle actions that admit
the hierarchical construction of pictures insofar as the drawing of a picture (without arcs) is also a
turtle action. For the complete list of widgets, see Widgets, graphs, and turtle actions. The actual
widget interpreter is selected from the pict type menu. Some built-in axiom files (see Examples) and
enumerators are automatically associated with a widget interpreter.

• paint opens a Painter window that consists of the following widgets:

– A scrollable canvas.

– A slider for selecting the graph to be displayed on the canvas.

– The size slider sets the scaling factor of the displayed widgets.

– The speed slider and the fast button select the painting speed.

– The renew button calls paint from the painter window.

– The narrow/rewrite button and the simplify button trigger the synonymous actions in
the associated solver and display their pictorially representable results on the canvas of the
painter.

– The combine: entry field recognizes numbers describing the source and layout of pictures
to be copied from the list of current graphs and added to the displayed one. combine: is
activated by pushing the Up key while the cursor is in the entry field.

– The replace by:/save to: entry field may contain either

∗ the name of a file containing a picture term or, if the file does not exist (neither in the
user’s Examples directory nor in the synonymous system directory), a picture term that
shall be inserted into the displayed graph, or

∗ the name of a file where the displayed graph shall be saved to, in eps format or as an
object of the Haskell type (Nodes,Arcs) for widget graphs (see Widgets, graphs, and
turtle actions).

The first action is executed when the Up key is pushed while the cursor is in the entry field.
The second action is executed when the Right key is pushed while the cursor is in the entry
field.

– The connect/enclose button switches to or from a state in which arcs between widgets of
the displayed graph may be drawn (if the left or right mouse button is pressed) or widgets

39

18 Further Buttons

Figure 18.1: The painter window shows a graph consisting of the ten solutions of queens(5, X), obtained
from applying axioms of QUEENS. The "5" in the add field denotes that (at most) 5 pictures
are listed in one line. "1..9" says that the pictures at (slider) positions 1,. . . ,9 are added to
the displayed one (at position 0).

may be grouped for admitting simultaneous modifications.

– The undo button revokes the immediately preceding action on the displayed graph.

– The points/hull button hides/shows the (arc shaping) point widgets of the displayed graph
or draws the convex hull of all displayed widgets, respectively. The widgets of the hull may
be numbered counter-clockwise.

– The stop/go button interrupts/resumes the painting of the displayed graph.

– The close button finishes painting and closes the painter window, but keeps the actual size
and speed values. For closing a painter window, use only this button!

– A label field for displaying messages.

A complete description of the features for creating and editing widget graphs is given in the section
Widgets, graphs, and turtle actions.

If subtrees have been selected, paint combines the widget interpretations of all pictorially repre-
sentable selected subtrees and displays the resulting picture on the canvas. With the middle mouse
button, the individual widgets, which are usually displayed on top of each other, can be drawn
horizontally and vertically away from each other.

If no subtrees have been selected, then for each element t of the list of current trees, paint combines
the widget interpretations of all maximal pictorially representable subtrees of t. The resulting
picture that corresponds to the tree displayed on the solver canvas is drawn on the painter canvas,
while the pictures derived from other elements of the list of current trees are assigned to other

40

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUEENS

Figure 18.2: Pictorial representations of solutions obtained by applying axioms of ROBOT

positions in the list of current pictures. One may browse among the pictures by moving the
graph selecting slider (see above).

Expander2 provides several widget interpreters and combinators thereof. The actual one depends
on the current axioms, but can also be set by selecting from the pict type menu. For instance, Fig.
18.2 shows solutions of the formula

AnyPS : (robot([(2, 6), (6, 2)], PS)

&Acts = [pathS(PS), O, J(2), R, J(6),

circ(2, red), B, J(4), R, J(4), circ(2, red), C]),

obtained by applying axioms of ROBOT, were generated by the interpreter polygon solution that
looks for solved formulas and applies the interpreter polygon to the solving terms in these formulas.
A solved formula looks as follows:

AnyZ1 : x1 = t1& . . .&AnyZk : xk = tk

&AllZk+1 : xk+1 6= tk+1& . . .&AllZn : xn 6= tn.

x1, . . . , xn are different free variables, t1, . . . , tn are normal forms and the transitive closure of
{(i, j) | ticontainsxj} is acyclic.

• hide/show h hides all unhidden selected subtrees by replacing them with the character @
and restores all selected subtrees that are hidden, i.e. had been replaced by @. If the entry field
contains a natural number n and no subtrees were selected, then hide/show hides all unhidden
subtrees at level n and restores the hidden ones. If the entry field does not contain a natural
number and no subtrees were selected, then hide/show restores all hidden subtrees.

Trees with hidden subtrees can also be simplified, narrowed or rewritten. This saves the time for
displaying reducts and is particularly useful when simplification, rewriting or narrowing steps are
carried out from the painter because a pictorial representation of reducts is preferred to the tree
representation.

• +1/-1 increases/decreases the natural number in the entry field. If the entry field does not contain
a natural number, then +1 writes 0 into it, while -1 clears it.

• set selects the subtree whose position in the breadthfirst node ordering agrees with the number in
the entry field.

• parse up ↑ parses the string in the text field according to the grammar given below, initializes

41

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOT

18 Further Buttons

the list of current trees and the tree mode and displays the first element of the list on the canvas.
Trees are coded as objects of the instance Term String of the Haskell type

data Term a = V a | F a [Term a] | state variable constructors

The first constructor precedes first-order variables, the second one logical and non-logical function
symbols and higher-order variables. For the state variable constructors, see Simplifications.

parse up expects a term or formula built up of logical operators, signature symbols and further
strings a that are regarded as function symbols. If the term is a sum or the formula is a disjunction
or conjunction, the respective summands or factors become the list of current trees. Otherwise
this set is a singleton consisting of the entire parsed tree. If the entry field contains an index i of a
list of axioms or theorems or a substitution in the text field, parse up parses and displays the i-th
element of the list or the i-th equation of the substitution, respectively.

Given natural numbers n1, . . . , nk, strings of the form pos n1 . . . nk are interpreted as pointers (see
above). Only first-order variables and pointers are turned into objects built up with the constructor
V . Subtrees whose root starts with the character @ is not printed (see the hide/show button).

• remove text clears the text field.

• remove entry&label clears the entry and the label field.

• parse down ↓ computes the textual representation of the displayed tree resp. selected subtrees,
connects them with the symbol in the entry field and writes the result into the text field provided
that all selected subtrees are either terms or formulas.

• narrow/rewrite n performs narrowing/rewriting steps and, between each two steps, at most
100 simplification steps, from top to bottom and from left to right, first to the displayed tree and
then to other current trees, until,

1. no subtrees have been selected and the entry field does not contain a positive natural number:
at most one narrowing/rewriting step has been performed,

2. if the current trees are terms/formulas, no subtrees have been selected and the entry field
contains a positive natural number n: all current trees are non-rewritable/non-narrowable or
the number of successive rewriting/narrowing steps exceeds n,

3. if subtrees have been selected and the entry field does not contain a positive natural number:
at most one rewriting/narrowing step has been performed on each selected subtree (if the
subtree is a term t and the current trees are formulas, then the step is performed on the t
enclosing atom),

4. if subtrees have been selected and the entry field contains a positive natural number n: the
number of successive rewriting/narrowing steps performed on subtrees of the subtree selected
at last has reached n.

• The ← unify/match button switches between the (default) unification mode, the matching
mode and the greedy versions of these modes when formulas are narrowed or terms are rewritten.
The unification mode admits the instantiation of redex variables, the matching mode does not.
Usually, all applicable axioms are applied in parallel and for each guarded axiom, each solution of

42

the guard leads to a reduct. In a greedy mode, only the first applicable axiom is applied to a given
redex, but, again, if the axiom is guarded, each solution of the guard leads to a reduct.

In case (1), (2) or (4), non-narrowable logical atoms P (t) with normal form t are simplified to
False if P is a predicate and by True if P is a copredicate. Analogously, non-narrowable terms
f(t) with normal form t are simplified to the undefinedness constant () (see Built-in signature).
This transformation may lead to undesired results if some function or (co)predicate occurring in
a (simplified) conjecture has not been specified completely or if narrowing/rewriting is used in a
matching or greedy mode! For instance, the simplifier turns a negated formula Not(F) into a
formula without negation, which may contain unspecified complement predicates. This is one
reason why explicit negation should be avoided!

Narrowing upon a predicate or copredicate p generalizes linear resolution to the simultaneous
application of all axioms for p. Narrowing also generalizes rewriting from terms to formulas and
admits the instantiation of redex variables by non-variable terms. These substitutions are supposed
to build up solutions of the formula at the beginning of a narrowing sequence. Since each narrowing
step applies the definition (axioms) of a predicate, copredicate or defined function, we have also
used the term unfolding for narrowing steps [15].

Applying all applicable (Horn) axioms for a predicate p or a defined function f simultaneously
results in the replacement of the redex by the disjunction of their premises and equations rep-
resenting the computed unifiers. Applying all applicable (co-Horn) axioms for a copredicate p
simultaneously results in the replacement of the redex by the conjunction of their conclusions.
Some equational axioms may be only partially unifiable with the redex. These are applied as
well, but contribute to the reduct not with their premises resp. conclusions, but with equations
representing the partial unifiers. This extension is called needed narrowing [1, 14] and ensures
that the iteration of narrowing steps proceeding from supertrees to subtrees leads to all solutions
of the current trees.

The set of current axioms splits into the set of eager axioms and the set of lazy axioms. A
rewriting or narrowing step consists in the simultaneous application of all axioms for the leading
predicate, copredicate or defined function of the maximal subtree to which eager axioms apply or, if
no eager axiom applies, lazy axioms apply. Common candidates for lazy axioms are AC equations
(see Built-in signature) that have several overlapping redices and thus may prevent other axioms
from being applied to subredices.

• simplify s performs simplification steps, from top to bottom and from left to right, first to the
displayed tree and then to other current trees, until,

1. if no subtrees have been selected and the entry field contains a positive natural number n: all
current trees are simplified, i.e. no further simplification rule is applicable, or the number of
successive simplification steps exceeds n,

2. if no subtrees have been selected and the entry field does not contain a positive natural number:
at most one simplification step has been performed,

3. if subtrees have been selected and the entry field does not contain a positive natural number:
at most one simplification step has been performed on each selected subtree,

4. if subtrees have been selected and the entry field contains a positive natural number n: the
number of successive simplification steps performed on subtrees of the subtree selected at last
has reached n.

43

18 Further Buttons

• clear subtrees deselects all selected subtrees.

• collapse levelwise identifies the common subtrees of the current tree level by level.

• apply to variable: opens a menu of all variables in the domain of the current substitution f . If the
button for a variable x is pressed, all occurrences of x in the subtree selected at last are replaced
by f(x). If they are bound by an existential/universal quantifier and the respective quantified
subformula t has positive/negative polarity, then all occurrences of x in t are replaced by f(x) and
x is removed from the quantifier.

• ←/→ ← / → proceed one step backward/forward in the current proof and display the corre-
sponding list of current trees. As soon as a rule is applied to the list, its previous successors are
removed from the proof.

• build/check switches between the (default) proof build mode and the proof check mode. In the
latter, you can evaluate a loaded proof term step by step by pushing the → button. Hence the
proof term will not be modified in this mode, even if you apply new rules to the current tree,
In the proof build mode, however, new rule applications will be added to the proof term. More
precisely, the proof term will be kept until the actual position of the proof term pointer and from
there extended by the new rule applications.

• increase/decrease current ↑ / ↓ proceed to the next/previous element of the list of current
trees if the Up resp. Down key is pushed after the label field has been activated. If a Painter window
is in the foregound, then the next/previous picture is displayed.

• quit quits Solver1/2.

44

19 Grammar

according to which parse up translates a string in the text field into a term or formula. Boldface-typed
symbols are terminal.

implication −→ disjunct ==> disjunct | disjunct ===> disjunct | disjunct <=== disjunct
disjunct −→ conjunct | conjunct | disjunct
conjunct −→ enclosedFactor | enclosedFactor & conjunct
enclosedFactor −→ (implication) | factor

factor −→ True | False | Not enclosedFactor | Any vars : enclosedFactor | All vars :
enclosedFactor | infixAtom | prefixAtom | singleTermˆsingleTerm moreBag

vars −→ var | var vars

var −→ noBlanks noBlanks must derive to a first- or higher-order
variable of the current signature.

infixAtom −→ term infixPred term

prefixAtom −→

noBlanks noBlanks must derive to a first-order variable of
the current signature.

| noBlanks moreTerms
noBlanks must derive to a predicate, a copred-
icate or a higher-order variable of the current
signature.

moreTerms −→ (relTerms) moreTerms | enclosedTerms moreTerms | enclosedTerms
enclosedTerms −→ (terms) | [terms] | {terms} | (infixFun)
relTerms −→ relTerm | relTerm , relTerms

relTerm −→
relChars | relChars (relTerms) | prefixAtom | term

relChars must derive to =, =/=, a predicate or a
copredicate of the current signature.

infixPred −→ infixChars | infixWord infixPred must derive to =, =/=, a predicate or
a copredicate of the current signature.

term −→ singleTerm termrest
terms −→ term | term , terms | term .. terms
termrest −→ bagop term moreBag(bagop) | moreInfix
moreBag(bagop) −→ bagop term moreBag(bagop) | empty
bagop −→ ˆ | <+> | ++ Nested bag terms are flattened: t1∧ t2 ∧ t3∧. . .

singleTerm −→

list | set | boolTerm | double | int | int curryrest | string | fovar | pos treepos
| -singleTerm | () | (term) | enclosedTerms | noDelims | noDelims curryrest

noDelims must not derive to =, =/=, a logical
symbol, a predicate (except for §), a copredicate
(except for §) or a first-order variable of the cur-
rent signature.

curryrest −→ enclosedTerms curryrest | empty
moreInfix −→ infixFunL singleTerm moreInfix | infixFunR term | empty

infixFunL −→ + | -
Functions derived from infixFunL are left-
associative: (((t1+t2)-t3)+t4)-t5.

infixFunR −→ infixChars | infixWord

infixFunR must derive to a constructor or de-
fined function o of the current signature, but not
to <+> or ∧. o is right-associative:
t1 o (t2 o (t3 o (t4 o t5))).

boolTerm −→ bool(implication) | cond(disjunct,terms) | lin(conjunct)
list −→ [] | [terms]

45

19 Grammar

set −→ {} | {terms}
int −→ any constant of the Haskell type int
double −→ any constant of the Haskell type double
string −→ any string

fovar −→ noBlanks fovar must derive to a first-order variable of the
current signature.

treepos −→
any finite list of natural numbers separated by blanks

For instance, pos 2 1 3 denotes a pointer to the
node at position [2,1,3].

infixWord −→ ‘any string that does not contain back quotes‘

infixChars −→ any string except ∧ and <+> that consists of characters among
: + - * < = ˜ > / ˆ #

noDelims −→ any string that does not contain a character among
() [] { } , ‘ | & : + - * < = ˜ > / ˆ # \t \n

noBlanks −→ any string that neither contains a blank nor an element of the preceding char-
acter list

relChars −→ any string that neither contains a blank nor a character among
() , \t \n

noDelims need not derive to a symbol of the current signature. Any string derived from noDelims is
turned into a node with the Term constructor F (see the parse up button). Moreover, noDelims may
derive to a string with blanks. This permits the use of symbols consisting of several words separated by
blanks.

Integers, reals and (quoted) strings are automatically interpreted as (not always nullary!) constructors.
This admits, for instance, the use of natural numbers in the tree representations of nested partitions (see
Dissections and partitions).

x0,x1,x2,... are interpreted as defined functions (see Built-in signature.) An important technical
reason for declaring a function symbol as a defined function is the fact that the leading non-equational
symbol of each axiom must be a predicate, a copredicate or a defined function.

Newline characters followed by a dot must be avoided because this because such a string is interpreted
in a particular way. When a line with more than 80 characters is entered into the text field, it is split
into several lines each of which starts with a dot. This ensures that decomposed lines are recognized as
single ones when the contents of the text field is parsed.

Line suffixes starting with -- are regarded as comments.

46

20 Axioms and theorems

Axioms and theorem to be applied in derivations are Horn clauses

(1) {guard⇒}(f(t1, . . . , tn)) = u{⇐= prem}) or

(2) {guard⇒}(p(t1, . . . , tn) {⇐= prem}) or

(3) t = u{⇐= prem} or

(4) q(t1, .., tn){⇐= prem},

co-Horn clauses

(5) {guard⇒}(f(t1, .., tn)) = u =⇒ conc) or

(6) {guard⇒}(q(t1, .., tn) =⇒ conc) or

(7) t = u =⇒ conc or

(8) p(t1, .., tn) =⇒ conc,

distributed Horn clauses

(9) at1 | · · · | atn {⇐= prem} or

(10) at1& . . .&atn {⇐= prem}

or distributed co-Horn clauses

(11) at1 | · · · | atn =⇒ conc or

(12) at1& . . .&atn =⇒ conc

Curly brackets enclose optional parts. f , p and q denote a defined function, a predicate and a copredicate,
respectively, of the current signature. If the current trees are terms, then the reducts must be terms and
thus only premise-free clauses of the form (1) can be applied.

Axioms are of type (1), (2) or (6). The step functions (or consequence operators) induced by axioms
must be monotone [15, 11]. Usually, f , p resp. q agree with the root of the redex to which a clause
is applied. The redex is unified with the head of the clause and the instance of the body (prem resp.
conc) by the unifier is the reduct that replaces the redex. In case (3), the redex must be unifiable with
the term t. In case (7), the redex must be unifiable with the equation t = u. The co-Horn clause that
is created when fixpoint induction is called is of type (7) and applied to a redex t′ = u′ only if neither t
nor t′ is a variable.

47

20 Axioms and theorems

Defined functions need not be total and not even deterministic! Undefinedness is expressed by the
constructor constant (). Multiple values are combined with the sum constructor <+> (see Built-in
signature).

For applying a distributed clause, select n atoms a′t1 , . . . , a
′
tn in a disjunction/conjunction F of the

displayed tree such that for all 1 ≤ i ≤ n, a′ti is unifiable with ati . The summand/factor of F where
a′ti is selected from must consist of disjunctions, conjunctions and existential/universal quantifiers only
(see [16, 10]). a′ti is replaced by the corresponding instance of prem/conc. The resulting reducts are
combined conjunctively in the case of a Horn clause and disjunctively in the case of a co-Horn clause.

A clause with a guard is applied only if the guard is solvable. The solution becomes part of the unifier
that is generated when the clause is applied. For instance, the axiom

split(s) = (s1, s2)⇒ sort(x : (y : s)) = merge(sort(x : s1), sort(y : s2)),

for sort (taken from LISTEVAL) is guarded, while the logically equivalent axiom

sort(x : (y : s)) = merge(sort(x : s1), sort(y : s2))⇐= split(s) = (s1, s2)

(taken from LIST) is unguarded. On the one hand, guarded axioms are needed for evaluating ground
terms efficiently. On the other hand, axioms and theorems used as lemmas in step by step derivations
(see below) must be unguarded. Otherwise the search for a solution of the guard may block the derivation
process.

48

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTEVAL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST

21 Derivations

A proof with Expander2 is a sequence of successive values of the state variable trees. It is documented
and stored in the state variable proof. The values of proof and current trees are initialized whenever
parse up parses the contents of the text field and displays the resulting tree t on the canvas. Then trees
is set to [t], tree is set to t, and proof is set to the initial values of its components.

A proof step is correct if the transformed disjunction (or conjunction or sum) of the current trees
implies (or is equivalent to) the original one. In the case of possible incorrectness Expander2 delivers
the warning

CAUTION: This step may be incorrect.

Such steps are not stored in the current proof term.

If the current trees are formulas, a proof ending up with True or False yields a proof resp. refutation
of the conjunction/disjunction of the initial trees. Other final results are given by solved formulas that
represent solutions of the original conjecture in their free variables.

If the current trees are terms, only rewriting steps may be applied. If a rewriting step leads to several
reducts, the applied axioms specify a non-deterministic function: each reduct is a possible value and will
become an element of the sum of the current trees.

The correctness of a proof step depends on the polarity of the redex with respect to its position
within the displayed tree. The polarity is positive if the number of preceding negation symbols or
premise positions is even. Otherwise the polarity is negative. Fixpoint induction, coinduction, summand
removal, summand unification, applications of Horn clauses, instantiations of existential variables and
term replacements (see replace by other sides) are correct if the redex has positive polarity because
here the reduct implies the redex. Atom composition, factor removal, factor unification, applications
of co-Horn clauses and instantiations of universal variables are sound if the redex has negative polarity
because here the redex implies the reduct. Simplifications, rewriting, narrowing, splitting, flattening and
stretching may be applied to any possible redex within the displayed tree because here the redex and
the reduct are equivalent. The restrictions guarantee that the transformed displayed tree implies the
original one.

The theorem-proving features of Expander2 do not aim at fully automatic proofs. Expander2 favors
natural deduction in contrast to many other provers that submit a conjecture to Skolemization and
other extensive normalizations before the proof can start. Avoiding this enhances the readability and thus
the controllability of the generated proofs significantly. This is particularly necessary when induction or
coinduction steps are involved, which are at the heart of any non-trivial program verification. Fortunately,
the axioms, the theorems and, to some extent, the conjectures we are faced with in program verification
already come as Horn or co-Horn clauses and thus can indeed be handled by Expander2 in their original
form.

It also complies with a natural proof process that Expander2 avoids negation symbols. The simpli-
fier drives them innermost until they directly precede (co)predicates and can be removed completely

49

21 Derivations

by transforming the (co)predicates into their complements. Axioms for the complement not_P of a
(co)predicate P can usually be constructed from those for P . If P is a predicate, then not_P is a
copredicate. If P is a copredicate, then not_P is a predicate. Axioms without negation ensure that the
induced step functions (or consequence operators) are monotone. Hence they have least resp. greatest
solutions, which interpret predicates resp. copredicates in the initial model [15, 11].

50

22 Variables

Variables of a clause that are introduced into the current tree when the clause is applied to the tree
are renamed by increasing the number suffixes of the variables. Variables that the tree shares with
the applied clause are renamed in the same way. Since variable renaming affects the state variable
varCounter (see Solver state variables), it is not performed during simplification.

Variables of a Horn or co-Horn clause are turned into existential resp. universal variables. The scope of
these variables is the respective reduct.

If a free variable x of a redex is instantiated by a term t during a rewriting or narrowing step, then the
equation x = t is added to the reduct.

All integers starting with a backslash are regarded as variables. They are used for the new variables
introduced by the formula transformations create Hoare/subgoal invariant, stretch premise/conclusion,
apply fixpoint induction, apply coinduction and flatten (co-)Horn clause (see Subtrees menu) and when
a subtree is cut out of the displayed tree (see Mouse and key events).

51

23 Simplifications

Narrowing removes predicates, copredicates and defined functions of the current signature from the
current trees. The simplifier does the same with logical operators, constructors and symbols of the built-
in signature. Simplifications realize the highest degree of automation and the lowest level of interaction
(see Overview). The reducts of rewriting or narrowing steps are simplified automatically. Pushing the
simplify button admits step-by-step simplification of the current trees.

The simplifier turns formulas into minimal nested Gentzen clauses of the form

Allx1 . . . xi : (Any y1 . . . yj : (t1& . . .&tm)⇒ All z1 . . . zk : (u1 | · · · | un)).

from the current trees. “Nested” means that the clause is derivable by the following grammar:

S −→ A
S −→ B
A −→ A1

A −→ C
B −→ B1

B −→ C
A1 −→ Any x1 . . . xk : (B& . . .&B)
B1 −→ Allx1 . . . xk : (A | · · · | A)
C −→ Allx1 . . . xk : (A1 ⇒ B1)
C −→ atom

The rules applied repeatedly by the simplifier are equivalence transformations. The main ones are given
in [10]. They employ not only logical equivalences, but also the semantics of constructors, equality,
inequality and other built-in symbols. For instance, an implication prem ⇒ conc is reduced to True
if prem subsumes conc [10], a disjunction is reduced to its minimal summands, a conjunction to its
maximal factors. Here are some examples:

Any xyz : (x = f(y)&Q(z))⇒ Any x′y′z′ : (Q(z′)&f(y′) = x′)

reduces to True.

Any x : Q(x)&Q(suc(y))&Allx : R(x)&R(y + z)&Any x : x = suc(y)&suc(y) = y + z

reduces to Q(suc(y))&Allx : R(x)&suc(y) = y + z.

Any x : (x = f(h(y, z), z)&P (x, y))

&Allx : (x 6= f(h(y, z), z) | P (x, y))
&Allx : (x = f(h(y, z), z)&P (x, y)⇒ Q(x))

&Allx : (P (x, y)⇒ x 6= f(h(y, z), z) | Q(x)).

reduces to P (f(h(y, z), z), y)&Q(f(h(y, z), z)).

P (x, y)&Q(z)&(P (x, y)⇒ R(x, y, z))

52

term with
state variable

names

 Solver

state variables

 rewriting
 with axioms

term with
state variable

values

 simplifier
term with

state variable
values

 saver

 loader

term with
state variable

names

term with
state variable

values
 painter

pictures

 enumerator

state variable
values

Figure 23.1: How the solver processes terms with state variable names

reduces to P (x, y)&Q(z)&R(x, y, z).

P (x, y)⇒ (Q(y)⇒ R(x, y, z)) | P (y, z)

reduces to P (x, y)&Q(y)⇒ R(x, y, z) | P (y, z).

2‘in‘[1, 2, 3]

reduces to True.
[1, x, 4]‘gives‘y

reduces to y = 1 | y = x | y = 4. While ‘in‘ may only be applied to constructor terms, the arguments of
‘gives‘ may be arbitrary terms. The example shows that an atom of the form ts‘gives‘t where ts and t
are constructor terms is simplified to a solved formula and can thus be used in the guard of an axiom.

[2, 3] + +[5‘mod‘2, 1]<+> 78<+> {} ∧ {9, 5, 5} ∧ {9, 9, 5}

reduces to [2, 3, 1, 1]<+> 78<+> {} ∧ {5, 9} ∧ {5, 9}.

[1, 2, 3]− 2

reduces to [1, 3].
zipAny(=)[1, x, 3, 4][5, 2, y, 6]

reduces to x = 2 | 3 = y.
zipAny(=)[1, x, 3, 4][1, 2, y, 6]

reduces to True.
zipAll(=)[1, x, 3, 4][1, 2, y, 4]

reduces to x = 2&3 = y.

Some simplifications depend on solver state variables that hold actual parameters for the function to
be simplified. For this purpose, certain terms can be rewritten into state variable names the serve as

53

23 Simplifications

Figure 23.2: All dissections of a 3x3-rectangle that satisfy area(2): each dissection consists of d9/2e = 5
subrectangles.

placeholders for the dynamically changing values of state variables. If the simplifier encounters a state
variable constant c in the tree to be simplified, the actual value of c is loaded from the solver and, after
the simplification step using this value has been performed, the modified value of c is saved by the solver.
This allows the simplifier to evaluate Haskell functions directly on Haskell data that otherwise would
have to be translated from and into — often complex — terms over the current signature. The above
diagram shows that besides simplification also rewriting and widget interpretation have an interface to
state variable values: certain axioms produce reducts that involve state variable values; certain state
variable values can be translated into pictures. The latter feature allows one to make state changes
visible in terms of representations that are not the symbolic ones given by formulas or algebraic terms.
Currently, the following state variables are available. Each of them is associated with a constructor of
Term a (see the parse up button):

• actions :: Int -> String -> ActLR (constructor Actions) holds a function from states
and strings to actions of an LR(1) parser.

• boolFun :: (String -> Bool,Int) (constructor Perm) holds a Boolean function and the
number n of its Boolean arguments. Perm has two arguments: boolFun and a permutation of
[1..n].

• dissects :: [[(Int,Int,Int,Int)]] (constructor Dissect) holds a list of lists of quadru-
ples of integers. Dissect has two arguments: an index and an element of dissects. This state
variable is used by the dissection enumerator for storing dissections such that the painter can access
them directly instead of interpreting their (large) term representations.

• finals :: Int -> Bool (constructor Finals) holds a Boolean function on states.

• finalsL :: Int -> String -> Bool (constructor FinalsL) holds a Boolean function on
states and constructor constants.

• labels :: Int -> [String] (constructor Labels) holds a function from states to sets of
constructor constants.

• fixPositions :: [[Int]] (constructor Fix) holds a list of tree positions.

• matrixU :: Int -> Int -> [(Int,Int)] (constructor Matrix) holds a square matrix of
lists of pairs of states. Matrix has two arguments: states and matrixU.

• matrixL :: Int -> Int -> [([Int],[Int])] (constructor MatrixL) holds a square ma-
trix of lists of pairs of lists of states. MatrixL has two arguments: states and matrixL. Similary
to dissects, matrixU and matrixL allow the painter to access their values directly instead of
interpreting their (large) term representations.

54

• theorems :: [Term a] (constructor Theorems) holds the current set of theorems.

• transitions :: Int -> [Int] (constructor Trans) holds the transition function (mapping
a state to its successor states) of an unlabelled transition system. Trans has two arguments:
states and transitions.

• transitionsL :: Int -> String -> [Int] (constructor TransL) holds the transition
function (mapping a state and a label to their successor states) of labelled transition system.
TransL has two arguments: states and transitionsL.

Each of the following Haskell functions evaluated by the simplifier employs some of the above state
variables:

• gauss: the Gaussian algorithm for solving linear equations;

• bisim: computation of bisimilar states of a labelled transition system by table filling [7];

• nerode: computation of behaviorally equivalent states of a deterministic Moore or Mealy automa-
ton by table filling [7];

• optimize: optimization of an OBDD by enumerating (in reverse lexicographic order) its variable
orderings;

• parse: running an LR(1) parser with goto and action tables;

• permute: enumeration of the variable orderings of a DNF and adaptation of the DNF to the
orderings;

• postflow: program verification by the backward propagation of a postcondition through the
flowgraph of an iterative program,

• stateflow: global model checking by the backward propagation of state sets through the flow-
graph that represents a µ-calculus formula (in contrast, local model checking amounts to proofs by
induction and coinduction, see LOCMODAL and LOCTRANS);

• subsflow: program interpretation by the forward propagation of sets of substitutions through
the flowgraph of an iterative program.

Here are the details on how these functions are called and executed:

• bisim: Enter an axiom trans = (t, u) for the state set and the transition function of a labelled
transition system. t must be a list of integers. u must be a list of triples consisting of a state,
a constructor constant denoting a label and the list of respective successor states (see COIN1,
COIN2, CYCLE). Enter bisim(trans) and rewrite trans. Deselect selected subtrees. Simplify the
entire displayed tree step by step. Since the simplification steps lead to pictorially representable
results (here: triangular matrices), they may be executed from the painter window so that the
change of results may be viewed directly in terms their pictorial representations.

• gauss: Select the widget interpreter linear equations (see Widgets, graphs, and turtle actions),
enter a term of the form lin(t) where t is a conjunction of linear equations and simplify lin(t) step
by step.

55

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOCMODAL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOCTRANS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COIN1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COIN2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CYCLE

23 Simplifications

Figure 23.3: A run of bisim on the left LTS (see COIN1) results in the state equivalence on the right:
only the sink states 3,4,8 and 9 are bisimilar.

Figure 23.4: Two snapshots of a run of gauss on the conjunction
(10x) + (5y)− (2z) = 1&(3x)− (8y)− z = 9&x− y + (5z) = 12
of linear equations (see GAUSS1)

Figure 23.5: Two snapshots of a run of nerode on AUTO1

56

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COIN1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GAUSS1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/AUTO1

Figure 23.6: Two snapshots of a run of optimize on OBDD6

Figure 23.7: Three snapshots of a run of parse on TRANSACTS. The three arguments denote the input,
the LR stack and the generated syntax tree.

• nerode: Enter axioms trans = (t, u) for the state set and the transition function and finals = v
for the output function of a deterministic Moore or Mealy automaton. t must be a list of integers.
u must be a list of triples consisting of a state, a constructor constant denoting an input symbol and
the respective successor state. v must be a list of states (in the case of a Moore automaton) or pairs
consisting of a state and a constructor constant denoting an input symbol (in the case of a Mealy
automaton; see AUTO1). Enter nerode1(trans, finals) (in the case of a Moore automaton) or
nerode2(trans, finals) (in the case of a Mealy automaton), rewrite trans and finals and proceed
as in the case of bisim.

• optimize: Enter a term of the form optimize(t) where t is an OBDD. Simplify the entire displayed
tree step by step. t is changed towards an optimal OBDD. The argument of Perm (see above)
denotes the actual variable ordering of the OBDD.

• parse: Enter axioms trans = (t, u) for the state set and the goto table and acts = v for the action
table of an LR(1) grammar. t must be a list of integers. u must be a list of triples consisting of
a state, a constructor constant denoting a grammar symbol and the respective successor state. v
must be a list of triples consisting of a state, a constructor constant denoting a terminal symbol
and a list of constructor constants denoting a grammar rule (TRANSACTS). Given a list input
of terminal grammar symbols (constructor constants), enter parse(input, [0], trans, acts), rewrite
trans and acts and proceed as in the case of bisim.

• permute: Enter a term of the form permute(t) where t is a DNF (see above). Simplify the entire
displayed tree step by step. permute(t) is changed to permute(t, u, t′) where t′ is the DNF obtained

Figure 23.8: A snapshot of a run of permute on DNF1

57

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD6
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANSACTS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/AUTO1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANSACTS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/DNF1

23 Simplifications

Figure 23.9: Two snapshots of a run of postflow on the factorial program: x := n; y := 1;
while x > 0 & fact(n)=fact(x)*y do y := x*y; x := x-1 od The invari-
ant fact(n)=fact(x)*y had to be added to the loop condition for ensuring that postflow
terminates.

from t by rearranging the variables according to the permutation u.

• postflow: Enter axioms flow = bool(X1 = t1& . . .&Xn = tn) for the flowgraph F of an iterative
program P and post = bool(t) for a postcondition of P . X1 = t1& . . .&Xn = tn must be a set of
regular equations representing F . tmust be a formula over the current signature (see FACTPOST).
Enter postflow(flow, post), rewrite flow and post and simplify the entire displayed tree step by
step. The commands and tests in F are colored in green. In the snapshots depicted above, some
intermediate postconditions are hidden behind @. Having starting out from the postcondition post
of P (= valuation of the out node of F), postflow will — if it terminates — end up with a formula
pre at the in node of F such that pre implies post.

The postcondition valuation (of the nodes) of F changes with each simplification step. The valua-
tion is stable when F cannot be simplified any more. This simplification includes the reduction of
intermediate postconditions by applying current theorems in the non-greedy matching mode (see
the ← unify/match button). Hence postflow depends on the set of current theorems and, con-
versely, the set can be modified between simplification steps and thus tailored to their respective
results. The incorporation of theorem application into simplification is necessary here. Otherwise
postflow may not notice that the postcondition valuation of F has become stable and thus would
not terminate. The point is that a valuation is stable if it is equal to the preceding one, but, in the
case of postconditions, equality means logical equivalence! The application of tailor-made theo-
rems to intermediate postconditions may turn them into “normal forms” so that logical equivalence
amounts to syntactic equality. For running FACTPOST, we used the theorems of FACTTHS.

58

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTPOST
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTPOST
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTTHS

Figure 23.10: Two snapshots of a run of sat on CTLMUTEX1

Figure 23.11: Three snapshots of a run of stateflow on the transition system TRANS1 (see upper left
corner) and the modal formula νx.(µy.(< a > true∨ < b > y) ∧ [b]x)

• sat: Enter axioms ctl = v′ for a CTL formula, trans = (t, u) for the state set and the transition
function of an unlabelled transition system and labels = v for the labelling of states with atomic
formulas. t must be a list of integers. u must be a list of pairs consisting of a state and the
list of respective successor states. v must be a list of pairs consisting of a state and a list of
constructor constants (see CTLMUTEX1 and CTLMUTEX2). Enter sat(ctl, trans, labels), rewrite
ctl, trans and labels and simplify the entire displayed tree. The result is a term of the form
satisfying states(g1, g2) where g1 and g2 are graph representations of the transition function u.
If a node of g1 is labelled with a state s, the corresponding node of g2 is labelled with the atomic
formulas satisfied by s. If the node is colored in green, s satisfies ctl, otherwise s does not satisfy
ctl.

• stateflow: Enter axioms flow = bool(X1 = t1& . . .&Xn = tn) for the flowgraph F of a µ-calculus
formula, trans = (t, u) for the state set and the transition function of a labelled transition system
and labels = v for the labelling of leaves of F with atomic formulas. X1 = t1& . . .&Xn = tn
must be a set of regular equations representing F . t must be a list of integers. u must be a list
of triples consisting of a state, a constructor constant denoting an action and the list of respective
successor states. v must be a list of pairs consisting of a state and a list of constructor constants
(see TRANS1 and TRANS2). Enter stateflow(flow, trans, labels), rewrite flow, trans and labels
and simplify the entire displayed tree step by step. The actions in F are colored in green.

59

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLMUTEX1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLMUTEX1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLMUTEX2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS2

23 Simplifications

Figure 23.12: Two snapshots of a run of subsflow on the factorial program:
x := n; y := 1; while x > 0 do y := x*y; x := x-1 od

The state set valuation (of the nodes) of F changes with each simplification step. The valuation is
stable when F cannot be simplified any more. The arcs emanating from Fix point to the (fixpoint)
subformulas whose state set value is not yet stable. Once such a formula obtains a stable value, it
is replaced by an out node carrying the value.

• subsflow: Enter axioms flow = bool(X1 = t1& . . .&Xn = tn) for the flowgraph F of an iter-
ative program P and subs = t for an initial set of substitutions of program variables. X1 =
t1& . . .&Xn = tn must be a set of regular equations representing F . t must be a list of pairs
consisting of a (program) variable x and a term over the current signature (see FACTSUB). Enter
subsflow(flow, subs), rewrite flow and subs and simplify the entire displayed tree step by step.
The commands and tests in F are colored in green. In the snapshots depicted above, some inter-
mediate postconditions are hidden behind @. The substitution set valuation (of the nodes) of F
changes with each simplification step. The valuation is stable when F cannot be simplified any
more. (see [8]).

The following rewriting steps among the above-mentioned ones transform state variable names into state
variable values (see Fig. 23.1):

• If t can be simplified to a list of triples consisting of an integer, a constructor constant and a list
of constructor constants, then the application of the axiom acts = t to acts results in the reduct
Actions f where f :: Int→ String → ActLR represents t.

• If t can be simplified to a list of integers, then the application of the axiom finals = t to finals
results in the reduct Finals f where f :: Int→ Bool represents t.

60

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTSUB

• If t can be simplified to a list of pairs consisting of an integer and a constructor constant denoting
an input symbol, then the application of the axiom finals = t to finals results in the reduct
FinalsL f where f :: Int→ String → Bool represents t.

• If t can be simplified to a list of pairs consisting of an integer and a list of constructor constants,
then the application of the axiom labels = t to labels results in the reduct Labels f where f ::
Int→ [String] represents t.

• If t can be simplified to a list of integers and u can be simplified to a list of pairs consisting of an
integer and a list of integers, then the application of the axiom trans = (t, u) to trans results in
the reduct TransL f where f :: Int→ [Int] represents t.

• If t can be simplified to a list of integers and u can be simplified to a list of triples consisting
of an integer, a constructor constant and a list of integers, then the application of the axiom
trans = (t, u) to trans results in the reduct TransL f where f :: Int→ String → [Int] represents
t.

61

24 Examples

axioms theorems conjectures derivation or proof term
alignments ALIGN

arithmetic
and simplifi-
cations

NAT
WIRTH
MOD

NATTHS

NATCONJS
EVEN POLY
GAUSS1
GAUSS2
GAUSS3
REGS1 REGS2
SET1
SIMPL1 SIMPL2
SIMPL3 SIMPL4
SIMPLTERM
WIRTH2 PRIMS

ASSOCPROOF
COMMPROOF
DIVPROOF
EVPROOF proof term
EVODPROOF
EXPPROOF
FIBPROOF
POTPROOF proof term
WIRTHPROOF proof term

binary trees BTREE
REPMIN

BTREE1
REPMIN1 REPMIN1PROOF

Boolean
functions

OBDD
SWAP

DNF1 DNF2
DNF3
PARITY
QUAD1 QUAD2
QUAD3
OBDD1 OBDD2
OBDD3 OBDD4
OBDD5
OQUAD1
OQUAD2
OQUAD3

concept
formation FRUIT FRUITTHS FRUITCONJS

FRUIT1PROOF
FRUIT2PROOF
FRUIT3PROOF
FRUIT4PROOF

finite lists
LIST
LISTEVAL
PARTN

LISTTHS

LISTCONJS
FILTER MAP
SPLIT MERGE
SORT FLATTEN
ZIP1 ZIP2 ZIP3
ZIP4

PARTPROOF proof term
PARTPROOF2 proof term
SORTPROOF
PERMPROOF
MERGEPROOF
PARTNPROOF
LGOK

imperative
programs

FACTPOST
FACTSUBS FACTTHS

POSTFLOW
SUBSFLOW
PROG1 PROG2
PROG3

62

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ALIGN
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NAT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/WIRTH
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MOD
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NATTHS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NATCONJS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVEN
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POLY
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GAUSS1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GAUSS2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GAUSS3
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REGS1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REGS2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SET1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SIMPL1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SIMPL2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SIMPL3
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SIMPL4
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SIMPLTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/WIRTH2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PRIMS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ASSOCPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COMMPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/DIVPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVODPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EXPPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FIBPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POTPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POTPROOFTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/WIRTHPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/WIRTHTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BTREE
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REPMIN
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BTREE1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REPMIN1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REPMIN1PROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SWAP
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/DNF1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/DNF2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/DNF3
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARITY
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUAD1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUAD2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUAD3
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD3
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD4
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD5
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OQUAD1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OQUAD2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OQUAD3
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUIT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUITTHS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUITCONJS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUIT1PROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUIT2PROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUIT3PROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUIT4PROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTEVAL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTN
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTTHS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTCONJS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FILTER
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAP
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SPLIT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MERGE
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SORT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FLATTEN
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIP1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIP2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIP3
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIP4
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTPROOF2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTTERM2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SORTPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PERMPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MERGEPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTNPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LGOK
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTPOST
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTSUBS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTTHS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POSTFLOW
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SUBSFLOW
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PROG1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PROG2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PROG3

axioms theorems conjectures derivation or proof term

infinite
sequences STREAM STREAMTHS STREAMCONJS

FAIRBLINK proof term
BLINKZIP proof term
EVENSZIP proof term
ITER1ITER2 proof term
ITERLOOP proof term
ODDSEVENS proof term
MAPFACT proof term
MAPITER1 proof term
MAPLOOP proof term
MAPLOOP0 proof term
NATLOOP proof term
REVREV proof term
ZIPODDS proof term

modal
formulas

CTLMUTEX1
CTLMUTEX2
TRANS1
TRANS2
LOCTRANS
LOCMODAL

CTLSAT STATE-
FLOW LOC-
MOD1

LOCMOD1PROOF

needed
narrowing NEED NEED1 NEEDPROOF

parser TRANSACTS
LR

PARSE
PARSERUN LRRUN

permutations
and
partitions

LOG

PART1 PART2
PART3 PART4
PERM1 PERM2
PERM3

PERM3PROOF

pictures

RTC TURTLE
SEXTAGON
OCTAGON
LEAF PIX SIX
STAR STAR2
VIBE

relational
algebra REL REL1

stacks
STACK
STACKIMPL
STACKIMPL2

STACKTHS STACKCONJS

TOPEMPTY TOPPUSH
POPEMPTY POPPUSH
PUSHCOMP PUSHCOMP2
UPDEQ

state
equivalence

AUTO1 COIN1
COIN2 CYCLE NERODE BISIM

63

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STREAM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STREAMTHS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STREAMCONJS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FAIRBLINK
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FAIRBLINKTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BLINKZIP
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BLINKZIPTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVENSZIP
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVENSZIPTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ITER1ITER2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ITER1ITER2TERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ITERLOOP
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ITERLOOPTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ODDSEVENS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ODDSEVENSTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPFACT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPFACTTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPITER1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPITER1TERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPLOOP
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPLOOPTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPLOOP0
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPLOOP0TERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NATLOOP
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NATLOOPTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REVREV
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REVREVTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIPODDS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIPODDSTERM
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLMUTEX1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLMUTEX2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOCTRANS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOCMODAL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLSAT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STATEFLOW
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STATEFLOW
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOCMOD1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOCMOD1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOCMOD1PROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEED
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEED1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEEDPROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANSACTS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LR
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARSE
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARSERUN
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LRRUN
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOG
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PART1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PART2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PART3
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PART4
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PERM1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PERM2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PERM3
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PERM3PROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/RTC
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TURTLE
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SEXTAGON
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OCTAGON
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LEAF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PIX
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SIX
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STAR
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STAR2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/VIBE
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REL1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STACK
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STACKIMPL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STACKIMPL2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STACKTHS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STACKCONJS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TOPEMPTY
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TOPPUSH
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POPEMPTY
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POPPUSH
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PUSHCOMP
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PUSHCOMP2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/UPDEQ
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/AUTO1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COIN1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COIN2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CYCLE
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NERODE
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BISIM

24 Examples

axioms theorems conjectures derivation or proof term

transition
systems

ACCOUNT
BOTTLE
BOTTLEF
BOTTLEAC
ECHO
HANOI
KNIGHT
MUTEX
PHIL
PUZZLE
QUEENS
QUEENSF
ROBOT
ROBOTF
ROBOTACTS
ROBOTACTSF

ACCOUNT1
BOTTLE1
BOTTLEAC1
ECHO1 ECHO2
HANOI1
KNIGHT1
MUTEX1
PHIL1 PHIL2
PUZZLE1
QUEENS1
QUEENSF1
ROBOT1
ROBOTF1
ROBOTACTS1
ROBOTACTSF1

ACCOUNTSOL
BOTTLESOLS
ECHO2PROOF
KNIGHTSOLS
MUTEX1PROOF
PHIL2PROOF
QUEENS4 QUEENS5
ROBOTSOL ROBOTSOLS
ROBOTSOLS2
ROBOT2PROOF

64

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ACCOUNT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLE
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLEF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLEAC
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ECHO
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/HANOI
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/KNIGHT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MUTEX
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHIL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PUZZLE
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUEENS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUEENSF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOT
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTACTS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTACTSF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ACCOUNT1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLE1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLEAC1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ECHO1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ECHO2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/HANOI1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/KNIGHT1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MUTEX1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHIL1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHIL2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PUZZLE1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUEENS1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUEENSF1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOT1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTF1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTACTS1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTACTSF1
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ACCOUNTSOL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLESOLS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ECHO2PROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/KNIGHTSOLS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MUTEX1PROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHIL2PROOF
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUEENS4
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUEENS5
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTSOL
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTSOLS
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTSOLS2
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOT2PROOF

25 Widgets, graphs, and turtle actions

Built on top of the Tk interface module , the module Epaint provides features for creating and editing
pictorial term representations. These are displayed in the painter window of a solver when the paint
button is pushed. The scroll region of this window is adapted automatically to the displayed picture.

Expander2 provides several widget interpreters and combinators thereof, which recognize paintable terms
and transform them into pictorial representations. The actual widget interpreter can be selected from
the pict type menu. Some built-in axiom files (see Examples) and enumerators are automatically as-
sociated with a widget interpreter: ALIGN and the alignment and the palindrome enumerator with
alignment, the dissection enumerator with rectangles, the partition enumerator with partition, QUEENS
with matrix solution, BOTTLE, BOTTLEF, ROBOTF and ROBOTACTSF with polygon and ROBOT
and ROBOTACTS with polygon solution. The default interpreter is matrix.

The basic elements of pictorial term representations are called widgets. A picture is a list of widgets.
A widget graph G is a pair consisting of a list of widgets = [w1, . . . , wn] and a list arcs = [s1, . . . , sn]
of sublists of [1, . . . , n]. k is element of si iff an arc leads from wi to wk. For editing widget graphs, see
Fig. 25.3 and the paint button. A displayed graph is saved to a file F (in eps format or as a Haskell
object of type (Nodes,Arcs); see below) by writing F into the save to: field and pushing the → key
while the cursor is in this field.

Widgets are Haskell objects of the following type:

data Widget_ = Circ Color Float Float Float | File_ String |
Gif String Float Float | Path Color [(Float,Float)] |
PathS Color [(Float,Float)] | Point Color Float Float |
Poly Color [(Float,Float)] |
PolyC Color Float Float [Float] [Float] Float |
Rect Color Float Float Float Float Float |
Snow Color Int Float Float Float Float |
Text_ Color Float Float [String] |
Tree Color Color (Term (String,Float,Float)) |
Tria Color Float Float Float Float |
Turtle Color Float Float Float [TurtleAct]

type Nodes = [Widget_]

type Arcs = [[Int]]

data TurtleAct = Move Float | Jump Float | Turn Float | Pict Nodes |
Open Color | OpenP Color | OpenS Color | Close

The constructor Pict makes a picture into a turtle action. Given terms t1, . . . , tn that represent
turtle actions, the widget interpreter polygon translates the list term [t1, . . . , tn] into a single widget of
the form

65

Tk.hs

25 Widgets, graphs, and turtle actions

Turtle c x y a [a1,...,an]

(see below). Each widget interpreter is a Haskell function of type

Term String -> Maybe Picture.

In the sequel, we list, for each interpreter, the terms it recognizes and describe the pictures displayed on
the canvas of a painter.

Given a file F that contains a Haskell object G of type (Nodes,Arcs), all widget interpreters translate
the term file(F) into the corresponding widget graph denoted by G.

Given a file F and a picture term t, simplifying the term file(F, t) means translating t into a Haskell
object of type (Nodes,Arcs), saving it to F and replacing file(F, t) by file(F).

alignment recognizes syntax trees generated by the grammar G1 or G2 of section Alignments and
palindromes are displayed as horizontal alignments.

linear equations: A term of the form p1 = r1& . . .&pn = rn where p1, . . . , pn are polynomials and
r1, . . . , rn are real numbers is interpreted as a system of linear equations and displayed as the corre-
sponding matrix of coefficients. The variables occurring in the equations must be part of the current
signature (see GAUSS1).

matrix:

• Matrix f ss and MatrixL f ss are displayed as triangular matrices (see Simplifications).

• Unlabelled transition graphs are terms generated by the grammar

stateTerm −→ state(stateTerm) | position of a state node
state −→ integer number

They are displayed as the corresponding adjacency matrices.

• Labelled transition graphs are terms generated by the grammar

stateTerm −→ state(labelTerm) | position of a state node
labelTerm −→ label(stateTerm)
state −→ integer number
label −→ constructor of the current signature

They are displayed as the corresponding adjacency matrices.

• A term of the form pix((x1, y1), . . . , (xn, yn)) where x1, . . . , xn, y1, . . . , yn are integers is displayed
as a matrix of pixels. Pixels at positions (x1, y1), . . . , (xn, yn) are red. Pixels at other positions are
invisible.

• A term of the form pix((x1, y1, c1), . . . , (xn, yn, cn)) where x1, . . . , xn, y1, . . . , yn are integers and
c1, . . . , cn are pixels is displayed as a matrix of pixels. The pixel at position (xi, yi), 1 ≤ i ≤ n, has
color ci. Pixels at other positions are invisible.

66

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GAUSS1

• A term of the form [”b1”, . . . , ”bn”] where b1, . . . , bn are words over {0,1,#} of the same length is
interpreted as a DNF and displayed as the equivalent Karnaugh diagram.

• A collection C((x1, y1), . . . , (xn, yn)) (see Built-in signature) where x1, . . . , xn are integers and
y1, . . . , yn are integers or constructor constants is displayed as the matrix that represents the
Boolean function, which maps (xi, yi), 1 ≤ i ≤ n, to True and other pairs to False.

• A collection C((x1, y1, t1), . . . , (xn, yn, tn)) where x1, . . . , xn are integers, y1, . . . , yn are integers or
constructor constants and t1, . . . , tn are single terms or lists of terms is displayed as a matrix that
represents the partial function, which maps (xi, yi), 1 ≤ i ≤ n, to ti. Several elements of ti are
listed vertically.

• A collection C(t1, . . . , tn) such that all ti are neither collections nor tuples is displayed as a hori-
zontal listing of t1, . . . , tn. If ti is of the form f(t), then f is regard as a column name and written
in red. t is displayed below f . If t is a collection C(u1, . . . , uk), then the terms u1, . . . , uk are
listed vertically below fi. For instance, f1, . . . , fn may represent places of an algebraic Petri net.
Then f1(t1)̂ . . .̂ fn(tn) denotes a marking of f1, . . . , fn (see Built-in signature). If f(t) is of the form
pile(x, h) with natural numbers x and h, then the interpretation of f(t) by polygon (see below) is
displayed at the respective list position.

matrices recognizes the maximal subtrees of the displayed tree that are interpretable by matrix and
combines the resulting pictures into a single one.

matrix solution recognizes each solved formula

AnyZ1 : x1 = t1& . . .&AnyZk : xk = tk&AllZk+1 : xk+1 6= tk+1& . . .&AllZn : xn 6= tn

and submits the terms t1, . . . , tn to matrix.

partition interprets the displayed tree t as a nested partition (see Dissections and partitions) and draws
t as a dissection of a square that consists of colored rectangles each of which represents a leaf of t. Leaves
at the same level of t correspond to equally colored rectangles.

polygon:

• bush(n) is displayed as a bush fractal with depth n.

• bush(n, c) is displayed as a bush fractal with depth n and outermost branch color c.

• circ(r) is displayed as a circle with radius r.

• circ(r, c) is displayed as a c-colored circle with radius r.

• fern(n, d, r) is displayed as a fern fractal with depth n, apical delay d and internode elongation
rate r (see [17], Section 5.3).

• fern(n, d, r, c) is displayed as a fern fractal with depth n, apical delay d, internode elongation rate
r and color c.

• gif(f) is displayed as the contents in the file f (must be in gif format).

• gras(n) is displayed as a gras fractal with depth n.

67

25 Widgets, graphs, and turtle actions

Figure 25.1: Pictorial representations of the terms hilb(4, red), koch(4), snow(4, 6, yellow), gras(4),
fern(12, 1, 1.5), bush(4), [leaf(20,magenta, 4), leaf(16, green, 3), leaf(12, blue, 2)],
[star(15, 8, 4, blue), T (12), star(15, 6, 3, yellow), star(5, 4, 0.5, red)] and
[star(33, 8, 2, red), T (5), star(66, 7, 2, green), T (5), star(33, 3, 0.7, blue)]

68

Figure 25.2: The two solutions of bottle(0, 0, [], EPS)&PS = piles(reverse(EPS), 3, 5) obtained from
applying axioms of BOTTLE (cf. [12, Section 3.3])

• gras(n, c) is displayed as a gras fractal with depth n, green leaves and trunk color c.

• hilb(n) is displayed as a smooth Hilbert curve of depth n.

• hilb(n, c) is displayed as a Hilbert curve of depth n. The lines that build up the curve are colored
differently, starting with color c for the lines at level 0. Colors are ordered. The lines at level i ≤ n
are drawn in the i-th successor color of c.

• koch(n) is displayed as the outline of a Koch snowflake with depth n.

• koch(n, c) is displayed as the c-colored outline of a Koch snowflake with depth n.

• leaf(n) is displayed as a blossom consisting of n identically shaped outlines of a leaf of length 1.

• leaf(n, c) is displayed as a c-colored blossom consisting of n identically shaped leaves of length 1.

• leaf(n, c, d) is displayed as a c-colored blossom consisting of n identically shaped leaves of length
d.

• path[(x1, y1), . . . , (xn, yn)] is displayed as a path that consists of lines connecting the points
(x1, y1), . . . , (xn, yn) in the given order.

• pathS[(x1, y1), . . . , (xn, yn)] is displayed as a smooth path that consists of lines connecting the
points (x1, y1), . . . , (xn, yn) in the given order.

• pile(x, h) is displayed as a container of height h that is filled with x units.

• piles([(x1, y1), . . . , (xn, yn)], h1, h2) is displayed as n states of two containers c and d of height h1
and h2, respectively. For all 1 ≤ i ≤ n, (xi, yi) represents the state where c is filled with xi units
and d is filled with yi units.

• point(x, y) is displayed as a red point at position (x, y). If two widgets w1 and w2 are connected
by an arc while the right mouse button is pushed, a point p is introduced between w1 and w2 and
a smooth path is drawn from w1 via p to w2 (see below).

• poly([a1, . . . , an][r1, . . . , rn]) is displayed as a polygon with n vertices p1, . . . , pn such that for all
1 ≤ i ≤ n, pi is the point that is reached after the point (ri, 0) has been moved counter-clockwise
a1 + · · ·+ ai degrees around the center of the polygon.

• poly([a1, . . . , an][r1, . . . , rn], c) is displayed as a c-colored polygon with n vertices p1, . . . , pn such
that for all 1 ≤ i ≤ n, pi is the point that is reached after the point (ri, 0) has been moved
counter-clockwise a1 + · · ·+ ai degrees around the center of the polygon.

69

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLE

25 Widgets, graphs, and turtle actions

• rect(b, h) is displayed as a rectangle with breadth b and height h.

• rect(b, h, c) is displayed as a c-colored rectangle with breadth b and height h.

• snow(n, r) is displayed as a Koch snowflake with depth n and radius r.

• snow(n, r, c) is displayed as a colored Koch snowflake with depth n and radius r. The triangles
that build up the snowflake are colored differently, starting with color c for the two outermost
triangles. Colors are ordered. The triangles at level i ≤ n are drawn in the i-th successor color of
c.

• star(n, r, r′) is displayed as a star such that the maximum of r and r′ is the peak radius r of the
star and the minimum is the valley radius.

• star(n, r, r′, c) is displayed as a c-colored star such that the maximum of r and r′ is the peak radius
r of the star and the minimum is the valley radius.

• text(s) is displayed as the string s.

• text(s, c) is displayed as the c-colored string s.

• text(s) is displayed as the string s.

• text(s, c) is displayed as the c-colored string s.

• textR(s) is displayed as the string s and enclosed in a rectangle with grey outlines.

• textR(s, c) is displayed as the c-colored string s and enclosed in a rectangle with c-colored outlines.

• tree(t) is displayed as the tree that represents t. t should not contain pointers. They will not be
translated correctly.

• tria(r) is displayed as an equilateral triangle with outer radius r.

• tria(r, c) is displayed as a c-colored equilateral triangle with outer radius r.

• [act1, . . . , actn] is displayed as the picture that a turtle draws when it starts at point (0, 0) with an
orientation of 0 degrees and executes the actions act1, . . . , actn sequentially. The turtle maintains
a stack of states of the form (c, x, y, a, n) where c is a color, (x, y) is a position, a is an orientation
and p is a number, which indicates whether (x, y) belongs to a path, a polygon or a smooth path.
The terms that represent turtle actions read as follows:

– B: The turtle move backwards, i.e. turns by 180 degrees.

– C: The turtle pops the stack and returns to the new stack top, say s. Moreover, it repeats
its moves from s to the popped state, say s′, and draws a c-colored path that connects the
visited points. If n = 2, it closes the path by drawing a line from s′ to s and fills the resulting
polygon. If n = 3, it does not close, but smoothes the path. The same action takes places
before a J-, O-, OP - or OS-action is performed.

– J(d): The turtle jumps d units.

70

– L: The turtle turns left by 90 degrees.

– M(d): The turtle moves d units.

– O: Given the stack top s = (c, x, y, a, n), the turtle pushes (black, x, y, a, 1) on top of the
stack.

– O(c): Given the stack top s = (c′, x, y, a, n), the turtle pushes (c, x, y, a, 1) on top of the stack.

– OP (c): Given the stack top s = (c′, x, y, a, n), the turtle pushes (c, x, y, a, 2) on top of the
stack.

– OS(c): Given the stack top s = (c′, x, y, a, n), the turtle pushes (c, x, y, a, 3) on top of the
stack.

– R: The turtle turn right by 90 degrees.

– T (a): The turtle turns right by a degrees.

– any term that is recognized by polygon: The turtle draws the resulting picture in its current
orientation at its current position, which coincides with the center of each widget the picture
consists of. While drawing the picture the turtle may leave this position, but when it is done,
it will return to the starting point.

Most number arguments mentioned above are supposed to be integers. Only a, a1, . . . , an, d, r, r′,
r1, . . . , rn, x, x1, . . . , xn, y, y1, . . . , yn may be real numbers.

Terms representing colors must be of the form t or light t where t is of the form RGB r g b with
numbers r, g, b between 0 and 255 or t is among black, blue, cyan, green, grey, magenta,
orange, red, white, yellow.

polygons recognizes the maximal subtrees of the displayed tree that are interpretable by polygon and
combines the resulting pictures into a single one.

polygon solution recognizes each solved formula

AnyZ1 : x1 = t1& . . .&AnyZk : xk = tk&AllZk+1 : xk+1 6= tk+1& . . .&AllZn : xn . . . tn

and submits the terms t1, . . . , tn to polygon.

rectangles interprets a term of the form [(x1, y1, b1, h1), . . . , (xn, yn, bn, hn)] as a collection of rectangles
r1, . . . , rn such that for all 1 ≤ i ≤ n, (xi, yi) is the top-left corner, bi the breadth and hi is the height
of ri.

All currently available graph editing features and their state dependencies are shown in Fig. 25.3.

A displayed graph is always aligned to the top and the left of the painter’s canvas. Hence a picture
consisting of a single widget cannot be moved!

For drawing an arc from a widget to itself at least one other widget must be passed.

71

25 Widgets, graphs, and turtle actions

start

enter
number n

into
combine

field

The widgets of the
displayed graph are
arranged in a matrix

with n columns.

push
Up key

push
connect

button

push left
mouse button

place cursor
over the center

of widget W

push middle
mouse button

push right
mouse button

enter numbers
n1 ... nk into
the combine

field

The graphs at positions
n1,...,nk are combined

with the displayed one in
a matrix with n columns.

push
Up key

move cursor to
widget W’

move
cursor

right and
down

rect
A rectangle R

encloses a
subgraph G.

place cursor
over the center
of a widget W

move W

W is moved.

release
mouse
button

push left
mouse button

An arc is drawn
from W to W’.

release mouse
button

release mouse
button

push left
mouse button

place
cursor

inside R

move R

R and G are
moved.

release mouse
button

move cursor
to widget W’

A smooth arc is
drawn from W via
a red point to W’.

release mouse
button

place cursor
over the center

of widget W

clear
replace

field

The
displayed
graph is

removed.

push
Up key

The graph in F is
combined with the

displayed one.

push
Up key

enter file F with
picture term into

replace field

R is
removed.

push middle
mouse button

push right
mouse button

move cursor
left/right

G is rotated
(counter-)
clockwise.

release mouse
button

push middle
mouse button

The spacing
between the

widgets
changes.

push right
mouse button

The displayed
graph is rotated

(counter-)
clockwise.

release mouse
button

move cursor
left/right

enter file F
into save

field

The
displayed
graph is

stored to F.

Is F an
eps file?

push
Right key

yes

The Haskell
object of the

displayed
graph is

stored to F.

no

start

start

rect

place cursor
over the center
of a widget W

outside R

w is moved.

release mouse
button

move W

R and G are
copied.

push Up key in
combine field

clear
replace

field

G is
removed.

push
Up key

rect

enter (file F
with) picture

term into
replace field

(Part of) the picture in
F replaces (part of) G.

push
Up key

start

start

move cursor
right or down

release mouse
button

Figure 25.3: Moore automaton for the graph editing actions. State names are written in bold type.

72

The remaining two sections deal with the alignment, palindrome, dissection and partition enumera-
tors that can be called from the solver’s Trees menu. Other enumeration algorithms may be added
accordingly.

73

26 Alignments and palindromes

The alignment enumerator and the palindrome enumerator compute alignments between two string
sequences [4] or within a single sequence [5], respectively. A development of the Haskell program for the
former can be found in [12, Section 2.4].

After two sequences xs and ys of strings separated by blanks have been entered into the text field, the
alignment enumerator asks for a constraint. There are three possibilities:

• dna. The alignment enumerator computes all syntax trees for xs#reverse(ys) according to
the following grammar G1:

equal : start −→ a start a for all strings a
compl : start −→ a start compl(a) for all strings a
insert : start −→ match s for all nonempty sequences s of strings
delete : start −→ s match for all nonempty sequences s of strings
: start −→
equal : match −→ a start a for all strings a
compl : match −→ a start compl(a) for all strings a

Again, compl is a function on strings that is defined by the actual axioms of ALIGN.

• match. The alignment enumerator computes all syntax trees according to G1 that contain a
maximal number of equal- or compl-nodes and a minimal number of insert- or delete-nodes.

• local. The alignment enumerator computes all syntax trees according toG1 that contain a maximal
local alignment, i.e. a path consisting of equal- or compl-nodes, and a minimal number of
insert- or delete-nodes.

Following the assignment of complementary DNA bases, the function compl maps a to t, t to a, c to g,
g to c and all other strings to #. Corresponding axioms are loaded when the alignment or palindrome
enumerator is called from the solver.

Given the sequences

s1 = actactgct, s2 = agatag,

s3 = adfaaaaaa, s4 = aaaaaadfa,

the trees in Fig. 26.1 are: (1) the only derivation tree of s1#reverse(s2) that meets the match-
constraint, (2) the only derivation tree of s3#reverse(s4) satisfying the match-constraint and (3)
the only derivation tree also of s3#reverse(s4) that meets the local -constraint.

After a sequence xs of strings separated by blanks has been entered into the text field, the palindrome
enumerator computes syntax trees for xs according to the following grammar G2:

74

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ALIGN

Figure 26.1: Alignment terms and their pictorial representations

Figure 26.2: A palindrome term and its pictorial representation

75

26 Alignments and palindromes

equal : start −→ a start a for all strings a
compl : start −→ a start compl(a) for all strings a
context : start −→ s match t for all nonempty sequences s,t of strings
insert : start −→ match s for all nonempty sequences s of strings
delete : start −→ s match for all nonempty sequences s of strings
: start −→ s for all sequences s of strings
equal : match −→ a start a for all strings a
compl : match −→ a start compl(a) for all strings a

compl is a function on strings that is defined by the actual axioms of ALIGN. Only syntax trees with a
maximal number of equal - or compl -nodes and a minimal number of context-nodes are returned.

76

http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ALIGN

27 Dissections and partitions

The dissection enumerator computes dissections of a rectangle and represents them directly without
a detour via term representations. The underlying algorithm creates and modifies a triple of lists of top,
left and inner subrectangles, respectively, such that dissection elements violating certain given constraints
are discarded as early as possible (see [13, Section 4]).

Constraints. The dissection enumerator returns dissections of a given rectangle with breadth b and
height h that satisfy one of the following atomic constraints or disjunctive or conjunctive combinations
thereof:

constraint holds true for all dissections
area(n) consisting of d(b ∗ h)/ne subrectangles that cover at most n square units
area(m,n) consisting of subrectangles that cover at least m and at most n square units

brick consisting of subrectangles r such that for all (x, y, b, h), (x, y′, b′, h′) in r, x = 0,
y′ 6= y + hy′ or y = y′ + h′ (see below)

eqarea(n) consisting of n subrectangles that cover the same number of square units

factor(p) consisting of subrectangles such that the breadth b and the height h of each subrect-
angle satisfy b = p ∗ h or h = p ∗ b

hori consisting of subrectangles whose height does not exceed the breadth
sizes(ns) consisting of n in ns subrectangles
True
vert consisting of subrectangles whose breadth does not exceed the height

Formulas built up of atomic constraints are parsed according to the Grammar. Each constraint is
translated into a triple of the Haskell type

((Int, Int, Int, Int)→ Bool, [Int], [(Int, Int, Int, Int)]→ [(Int, Int, Int, Int)]→ Bool).

The first component is a Boolean function that checks individual rectangles each of which is represented
as a quadruple (x, y, b, h) where (x, y) is the top-left corner, b the breadth and h the height of the
rectangle. The second component lists the admissable cardinalities of a dissection. The third component
is a Boolean function that checks a relation between two parts of a dissection. Such a Boolean function
is needed for expressing the brick constraint.

The partition enumerator computes nested partitions of a list and represents them as trees whose
nodes are labelled with the nesting degrees of the respective subpartitions. Partitions with singleton
subpartitions are not constructed.

Figure 27.1: All dissections of a 5x4-rectangle that satisfy area(1, 2)&brick&hori: each dissection satis-
fies brick and consists of subrectangles covering 1 or 2 square units and satisfying hori (see
below).

77

27 Dissections and partitions

Figure 27.2: All dissections of a 6x4-rectangle that satisfy eqarea(6): each dissection consists of 6 sub-
rectangles that cover the same area.

Figure 27.3: All dissections of a 6x6-rectangle that satisfy sizes[6]&factor(2): each dissection consists
of 6 subrectangles and the breadth b and the height h of each subrectangle satisfy b = 2h
or h = 2b.

Figure 27.4: A nested partition satisfying eqout&sym of a list with 10 elements and its pictorial
representation

78

Figure 27.5: The nested partitions satisfying bal&eqout of a list with 16 elements

Let s be a set with n elements and parts(s) be the set of non-nested partitions of s with at least two
elements. A Haskell program that computes the cardinality f(n) of parts(s) reads as follows:

f 0 = 1
f n = sum (map g [0..n-1])

where g i = (fact n/(fact (n-i)*fact i))*f i
fact i = product [1..i]

For the number h(n) of nested partitions of s we obtain:

h 2 = 1
h n | n > 2 = sum[product[h (length p) | p <- ps] | ps <- parts s]

Hence, without meeting additional constraints, the number of trees representing nested partitions in-
creases combinatorially with the number of leaves:

number of leaves number of trees
5 45
6 197
7 903
8 4279
9 20793
10 103049

Constraints. The partition enumerator returns nested partitions that satisfy one of the following atomic
constraints or disjunctive or conjunctive combinations thereof.

79

27 Dissections and partitions

constraint holds true for all trees

alter whose nodes at even (odd) positions of a list s of all nodes with the same direct
predecessor are leaves (inner nodes) unless s consists of leaves

bal that are balanced
eqout whose inner nodes with the same direct predecessor have the same outdegree
hei(n) whose height is at most n
levmin whose inner nodes at level n have an outdegree of at least n
levmax whose nodes at level n have an outdegree of at most max(2, n)
sym that are vertically symmetric
out(m,n) whose inner nodes at level n > 1 have an outdegree between m and n
True

Formulas built up of atomic constraints are parsed according to the Grammar. Each constraint is
translated into a Boolean function of the Haskell type

Int→ [TermInt]→ Bool

that checks the constraint for each subtree st of a tree t in terms of the level of st within t (Int
parameter) and the list of maximal proper subtrees of st ([Term Int] parameter).

80

Bibliography

[1] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of the ACM, 47:
776–822, 2000.

[2] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on
Computers, 35:677–691, 1986.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F. Quesada. A Maude
Tutorial. SRI International, 2000. URL http://maude.csl.sri.com.

[4] R. Giegerich. A Systematic Approach to Dynamic Programming in Bioinformatics. Parts 1 and 2:
Sequence Comparison and RNA Folding. Technical Report Report 99-05, University of Bielefeld,
Technical Department, 1999.

[5] R. Giegerich and C. Meyer. Algebraic Dynamic Programming. In AMAST 2002, pages 349–364.
Springer LNCS 2422, 2002.

[6] Andrew D. Gordon. Bisimilarity as a Theory of Functional Programming. Theoretical Computer
Science, 228:5–47, 1999.

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2nd edition, 2001.

[8] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms. Journal of the
ACM, 23:158–171, 1976.

[9] M. Müller-Olm, D. Schmidt, and B. Steffen. Model checking: A Tutorial Introduction. In Proc.
SAS ’99, pages 330–354. Springer LNCS 1694, 1999.

[10] P. Padawitz. Expander2: Towards a Workbench for Interactive Formal Reasoning, . URL http:
//ls5-www.cs.uni-dortmund.de/~peter/Expander2/Chiemsee.ps.

[11] P. Padawitz. Structured Swinging Types, . URL http://ls5-www.cs.uni-dortmund.de/
~peter/SST.ps.gz.

[12] P. Padawitz. Swinging Types At Work, . URL http://ls5-www.cs.uni-dortmund.de/
~peter/BehExa.ps.gz.

[13] P. Padawitz. Computing Rectangular Dissections. J. Symbolic Computation, 21:41–99, 1996.

[14] P. Padawitz. Inductive Theorem Proving for Design Specifications. J. Symbolic Computation, 21:
41–99, 1996.

[15] P. Padawitz. Swinging Types = Functions + Relations + Transition systems. Theoretical Computer
Science, 243:93–165, 2000.

81

http://maude.csl.sri.com
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Chiemsee.ps
http://ls5-www.cs.uni-dortmund.de/~peter/Expander2/Chiemsee.ps
http://ls5-www.cs.uni-dortmund.de/~peter/SST.ps.gz
http://ls5-www.cs.uni-dortmund.de/~peter/SST.ps.gz
http://ls5-www.cs.uni-dortmund.de/~peter/BehExa.ps.gz
http://ls5-www.cs.uni-dortmund.de/~peter/BehExa.ps.gz

Bibliography

[16] P. Padawitz. Formale Methoden des Systementwurfs, Course Notes, 2003. URL http://
ls5-www.cs.uni-dortmund.de/~peter/TdP96.ps.gz.

[17] P. Prunsinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer, 1990.

[18] G. Rozenberg and A. Salomaa, editors. Beyond Words, volume 3 of Handbook of Formal Languages.
Springer, 1997.

[19] M.-O. Stehr, J. Meseguer, and P. C. Ölveczky. Rewriting Logic as a Unifying Framework for Petri
Nets. Lecture Notes in Computer Science, 2128:250+, 2001.

82

http://ls5-www.cs.uni-dortmund.de/~peter/TdP96.ps.gz
http://ls5-www.cs.uni-dortmund.de/~peter/TdP96.ps.gz

	Main Commands
	Overview
	Overall code structure
	Starting the system
	Solver window
	Solver state variables
	Built-in signature
	Mouse and key events
	Trees menu
	Font menu
	Subtrees menu
	Specification menu
	Signature/map menu
	Axioms menu
	Theorems menu
	Graph menu
	Substitution menu
	Further Buttons
	Grammar
	Axioms and theorems
	Derivations
	Variables
	Simplifications
	Examples
	Widgets, graphs, and turtle actions
	Alignments and palindromes
	Dissections and partitions

