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1 Introduction

This paper shall become the new manual of Expander2 and Expander3. The old one is available here.

Both systems have the same features. The underlying functions are written in Haskell. For the reactive

and GUI parts, Expander2 uses O’Haskell, including a module (Tk.hs) with an interface to Tcl/Tk,

while Expander3 implements these parts with the help of Haskell’s GTK+ libraries.

Expander2 is a flexible multi-purpose workbench for interactive term rewriting, graph transformation,

theorem proving, constraint solving, flow graph analysis and other procedures that build up proofs or

computation sequences. Moreover, tailor-made interpreters display terms as two-dimensional structures

ranging from trees and graphs to a variety of pictorial representations that include tables, matrices,

alignments, partitions, fractals and various tree-like or rectangular graph layouts (see section 8). Proofs

and computations performed with Expander2 follow the rules and the semantics of swinging types.

Swinging types are based on many-sorted predicate logic and combine constructor-based types with

destructor-based (e.g. state-based) ones. The former come as initial term models, the latter as final

models consisting of context interpretations. Relation symbols are interpreted as least or greatest

solutions of their respective axioms.

The user may interact with the system at three levels of decreasing control over proofs and computations.

At the top level, rules like induction and coinduction are applied locally and step by step. At the medium

level, goals are rewritten or narrowed, i.e. axioms are applied exhaustively and iteratively. At the bottom

level, built-in rules (some of them executing Haskell programs) simplify, i.e. (partially) evaluate terms

and formulas, and thus hide routine steps of a proof or computation. Proofs are automatically translated

into proof terms that can be evaluated and modified later. This allows one to design functional-logic

programs as proof carrying code that a client can validate by running the proof term evaluator (proof

checker).

Expander2 has been written in O’Haskell, an extension of Haskell with object-oriented features for

reactive programming and a typed interface to Tcl/Tk. Besides a comfortable GUI the design goals of

Expander2 were to integrate testing, proving and visualizing deductive methods, admit several degrees

of interaction and keep the system open for extensions or adaptations of individual components to

changing demands.

Send comments, bugs, etc. to Peter Padawitz. Any suggestions for improvements, extensions, applica-

tions or project proposals are welcome!

The main components of Expander2 are the solver, the painter, the simplifier, the enumerator and

a recorder of proofs and computation sequences.

https://fldit-www.cs.tu-dortmund.de/~peter/Expander2/Manual.html
https://wiki.haskell.org/O'Haskell
http://fldit-www.cs.tu-dortmund.de/~peter/Swinging.html
https://wiki.haskell.org/O'Haskell
http://www.haskell.org
mailto:peter.padawitz@udo.edu
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The solver is accessed via a window for editing and displaying trees that represents a disjunction or

conjunction of logical formulas or a sum of functional terms. A proper (non-singleton) sum results from

a computation obtained by nondeterministic rewriting. The solver window has a canvas for the two-

dimensional representation of the list of current trees (among which one browses by moving the slider

below the window) and a text field for their string representation. With the parse buttons one switches

between the tree (or graph) and the string representation. Both representations are editable. As the

usual cut, copy and paste operate on substrings in the text field, so do corresponding mouse-triggered

functions when the cursor is moved over subtrees on the canvas.

After a widget interpreter has been selected from the pict type menu, pushing the paint button opens a

painter window and the pictorial representations of all interpretable subtrees of the solver’s current trees

will be shown. Pictures are lists of widgets that can be edited in the painter window and completed

to widget graphs. Widgets are built up of path, polygon and turtle action constructors that admit the

definition of a variety of pictorial representations ranging from tables and matrices via string alignments,

piles and partitions to complex fractals generated by turtle systems [22], which define a picture in terms

of a sequence of actions that a turtle would perform when drawing the picture while moving over a

canvas. The turtle works recursively in two ways: it maintains a stack of positions and orientations

where it may return to, and it may give birth to subturtles, i.e. call other turtle systems. The solver and

its associated painter are fully synchronized: the selection of a tree in the solver window is automatically

translated to a selection of the tree’s pictorial representation in the painter window and vice versa. Hence
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rewriting, narrowing and simplification steps can be carried out from either window.

The enumerator provides algorithms that enumerate trees or graphs and passes their results both

to the solver and the painter. Currently, two algorithms are available: a generator of all sequence

alignments [5, 15] satisfying constraints that are partly given by axioms, and a generator of all nested

partitions of a list with a given length and satisfying constraints given by particular predicates. The

painter displays an alignment in the way DNA sequences are usually visualized. A nested partition is

displayed as the corresponding rectangular dissection of a square.

canvas

maximal number of visible nodes

position of the tree on the CANVAS in the list of all trees  

text field

entry field

TREE SIZE

label field

Figure 1. The solver window

Expander2 allows the user to control proofs and computations at three levels of interaction:

At the high level, analytic or synthetic inference rules or other syntactic transformations are applied

individually and locally to selected subtrees (see the transform-selection menu). The rules cover single

axiom applications, substitution or unification steps, Noetherian, Hoare, subgoal or fixpoint induction

and coinduction. Derivations are correct if, in the case of trees representing terms, their sum is equivalent

to the sum of their sucessors or, in the case of trees representing formulas, their dis- resp. conjunction

is implied by the dis- resp. conjunction of their successors. The underlying models are determined by

built-in data types and the least/greatest interpretation of Horn/co-Horn axioms. Incorrect deduction

steps are detected and cause a warning. All proper tree transformations are recorded, be they correct

proofs or other transformations. Terms and formulas are built up from the symbols of the current

signature. For more details on the syntax and semantics of axioms, theorems and goals, see section 5

and [11].

At the medium level, rewriting and narrowing realize the iterated and exhaustive application of all

axioms for the defined functions, predicates and copredicates of the current signature. Terminating

rewriting sequences end up with normal forms, i.e. terms consisting of constructors and variables.
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Terminating narrowing sequences end up with the formula True, False or solved formulas that represent

solutions of the initial formula. Since the axioms are functional-logic programs in abstract logical syntax,

rewriting and narrowing agree with program execution. Hence the medium level allows one to test such

programs, while the inference rules of the high level provide a ”tool box” for program verification. In the

case of finite data sets, rewriting and narrowing is often sufficient even for program verification. Besides

relations and deterministic functions, non-deterministic transition systems employing structured states,

such as Maude programs [3] or algebraic nets [23], may also be axiomatized and verified by Expander2.

The latter are executed by applying associative-commutative rewriting or narrowing on bag terms, i.e.

multisets of terms.

At the low level, built-in Haskell functions simplify or (partially) evaluate terms and formulas and

thereby hide most routine steps of proofs or computations. The functions comprise arithmetic, list,

bag and set operations, term equivalence and inequivalence (that depend on the current signature’s

constructors) and logical simplifications that turn formulas into nested Gentzen clauses. Evaluating

a function f at the medium level means narrowing upon the axioms for f , Evaluating f at the low level

means running a built-in Haskell implementation of f . This allows one to test and debug algorithms and

visualize their results. For instance, translators between different representations of Boolean functions

were integrated into Expander2 in this way. In addition, an execution of an iterative algorithm can

be split into its loop traversals such that intermediate results become visible, too. Currently, the

computation steps of Gaussian equation solving, automata minimization [8], OBDD optimization, LR

parsing, data flow analysis and global model checking can be carried out and displayed (see section 6).

For an introduction, see also Expander2 as a Prover and Rewriter, sections 1 and 2.

2 Overall code structure

Expander2 consists of six O’Haskell modules:

• Ecom.hs configures the GUI and provides all string- or tree-generating, -manipulating or -translating

commands that the user may call for carrying out proofs or computations and presenting their re-

sults interactively. Multiple tree-shaped results can be displayed and browsed through on the

canvas of a solver and in some cases interpreted graphically and displayed in the painter window of

a solver. Ecom closes with the main program of the system that creates the main objects, partly

in a mutually recursive way:

main :: TkEnv -> Cmd ()

main tk = do

mkDir $ userLibDir

mkDir $ userLib "Pix"

win1 <- tk.window []

win2 <- tk.window []

fix solve1 <- solver tk "Solver1" win1 solve2 "Solver2" enum1 paint1

solve2 <- solver tk "Solver2" win2 solve1 "Solver1" enum2 paint2

https://fldit-www.cs.tu-dortmund.de/~peter/Expander2/Prover.pdf
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paint1 <- painter 820 tk "Solver1" solve1 "Solver2" solve2

paint2 <- painter 820 tk "Solver2" solve2 "Solver1" solve1

enum1 <- enumerator tk solve1

enum2 <- enumerator tk solve2

solve1.buildSolve (0,20)

solve2.buildSolve (20,20)

win2.iconify

• Epaint.hs provides Haskell functions for parsing terms and formulas and computing and displaying

their graphical representations that are built up from Tk canvas widgets. Collections of various

pictorial elements can be defined as movements over the plane according to a turtle interpretation

(see section 8). The reactive components for animating the turtle and displaying graphical objects

are gathered in the painter, crawler and slowActor templates (= classes). The colorFlasher

template animates the error messages appearing in label fields (see below).

• Esolve.hs encapsulates translators between string, tree and graphical representations of terms

and formulas. Esolve.hs also contains the simplifier that partially evaluates terms and formulas.

Moreover, the basic inference rules for applying axioms and theorems are implemented here. Es-

olve.hs also contains the enumerator template that provides a GUI for running tree enumeration

algorithms (see Section 9). They are called from the solver template, which is part of Ecom.hs.

• Eterm.hs contains data types and functions for generating, manipulating or checking terms and

formulas, such as unification, matching, reduction and expansion of collapsed trees.

• System.hs and Tk.hs provide the interface to Tcl/Tk.

Ecom.hs

Esolve.hs

Eterm.hs

Array

Array.hs

Pos

hilbShelf
reducePath

callPaint

Epaint.hs

System.hs

Tk.hs

Figure 2. A part of the Haskell-modules use graph
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3 Named data types and their unnamed substypes

4 Arrange modes

The type of terms (see Eterm.hs)

data Term a = V a | F a [Term a] | Hidden Special deriving (Show,Eq,Ord)

data Special = Dissect [(Int,Int,Int,Int)] |

BoolMat [String] [String] [(String,String)] |

ListMat [String] [String] (Triples String String) |

ListMatL [String] (TriplesL String) |

LRarr (Array (Int,Int) ActLR) |

ERR deriving (Show,Eq,Ord)

type TermS = Term String

See From Modal Logic to (Co)Algebraic Reasoning, section 8.

5 Specifications

The type of signatures (see Eterm.hs)

struct Sig = isPred,isCopred,isConstruct,isDefunct,isFovar,isHovar,blocked

:: String -> Bool

hovarRel :: BoolFun String

safeEqs :: Bool

simpls,transitions :: [(TermS,[TermS],TermS)]

states,atoms,labels :: [TermS] -- types of a Kripke model

trans,value :: [[Int]]

transL,valueL :: [[[Int]]]

A sample specification

-- PAFL

defuncts: flatten

preds: part >>

fovars: s s' p s1

axioms:

part([x],[[x]])

& (part(x:y:s,[x]:p) <=== part(y:s,p))

& (part(x:y:s,(x:s'):p) <=== part(y:s,s':p))

https://fldit-www.cs.tu-dortmund.de/~peter/CTL.pdf
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& flatten[] == []

& flatten(s:p) == s++flatten(p)

& x:s>>s

& (s >> s' <=== s >> s1 & s1 >> s')

conjects:

part(s,p) ==> flatten(p)=s

See also Expander2 as a Prover and Rewriter, section 3, and From Modal Logic to (Co)Algebraic Rea-

soning, sections 10-22.

6 Simplifications

See also Expander2 as a Prover and Rewriter, section 5, and From Modal Logic to (Co)Algebraic Rea-

soning, section 8.

7 Narrowing, rewriting and (co)induction

Animation of interactive proofs of the conjecture of PAFL by fixpoint and Noetherian induction, re-

spectively.

See Expander2 as a Prover and Rewriter, sections 6 and 7, and From Modal Logic to (Co)Algebraic

Reasoning, section 9.

8 From trees to graphs of widgets

Figure 3. The painter window

Painter types (see Epaint.hs)

type Point = (Float,Float)

https://fldit-www.cs.tu-dortmund.de/~peter/Expander2/Prover.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/CTL.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/CTL.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/Expander2/Prover.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/CTL.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/CTL.pdf
http://fldit-www.cs.tu-dortmund.de/~peter/Expander2/PAFL.mp4
https://fldit-www.cs.tu-dortmund.de/~peter/Expander2/Prover.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/CTL.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/CTL.pdf
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type Line_ = (Point,Point)

type Lines = [Line_]

type Path = [Point]

type State = (Point,Float,Color,Int) -- (center,orientation,hue,lightness)

type Graph = (Picture,Arcs)

type Picture = [Widget_]

type Arcs = [[Int]]

-- ([w1,...,wn],[as1,...,asn]) :: Graph represents a graph with node set

-- {w1,...,wn} and edge set {(wi,wj) | j in asi, 1 <= i,j <= n}.

data Widget_ = Arc State ArcStyleType Float Float | Bunch Widget_ [Int] |

-- Bunch w is denotes w together with outgoing arcs to the

-- widgets at positions is.

Dot Color Point | Fast Widget_ | Gif String Widget_ | New |

Oval State Float Float | Path State Int Path |

Path0 Color Int Int Path | Poly State Int [Float] Float |

Rect State Float Float | Repeat Widget_ | Skip |

Text_ State Int [String] [Int] |

Tree State Int Color (Term (String,Point,Int)) |

-- The center of Tree .. ct agrees with the root of ct.

Tria State Float | Turtle State Float TurtleActs | WTree TermW

deriving (Show,Eq)

type TurtleActs = [TurtleAct]

data TurtleAct = Close | Draw |

-- Close and Draw finish a polygon resp. path starting at the

-- preceding Open command.

Jump Float | JumpA Float | Move Float | MoveA Float |

-- JumpA and MoveA ignore the scale of the enclosing turtle.

Open Color Int | Scale Float | Turn Float | Widg Bool Widget_

-- The Int parameter of Open determines the mode of the path

-- ending when the next Close/Draw command is reached;

-- see drawWidget (Path0 c i m ps).

-- Widg False w ignores the orientation of w, Widg True w

-- adds it to the orientation of the enclosing turtle.

deriving (Show,Eq)

type WidgTrans = Widget_ -> Widget_

type PictTrans = Picture -> Picture

type TermW = Term Widget_

type TermWP = Term (Widget_,Point)
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Ecom/getInterpreter

widgetTree searchPic

widgets

parseActs widgConst widgConsts widgTrans pictTrans

matrix

boolMatrix listMatrix widgMatrix

widgConstC

alignment
dissection

palindrome

linearEqs

termMatrix

rectMatrix

Figure 4. Eight graphic term interpreters

Specifications of the Examples directory containing terms processable by a term inter-

preter

• diagrams (widget trees; see below)

• flowers

• graphs (widget trees)

• grow

• morphs

• overlaps

• polygons

• rainbows

• rotate

• shelves

• shine

• widgets (many examples)

The part of diagrams that specifies Figures 2 and 4

defuncts: draw

fovars: com solve paint term tk

egi wit wis mat les ali dis pal bm lm tm wm rm pas wc search

axioms:

draw == wtree $ fun(edge(x),frameS(5)$text$x,
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red(x),light red$frameF(5)$black$text$x,

x,frame(5)$text$x)

conjects:

-- Equations for Figure 2

com = string(Ecom.hs)(solve,string(edge$callPaint)$paint) &

solve = string(Esolve.hs)(term,string(edge$hilbShelf reducePath)$paint) &

paint = string(Epaint.hs)(term,(string$System.hs)$tk) &

term = string(Eterm.hs)(string(edge$Array)$string(Array.hs),

string(edge$Pos)$tk) &

tk = string(Tk.hs) &

-- Equations for Figure 4

egi = string(Ecom/getInterpreter)(wit,search,les) &

wit = string(red$widgetTree)(wis) &

wis = string(red$widgets)(pas,wc,widgConsts,widgTrans,pictTrans,mat) &

mat = string(red$matrix)(bm,lm,wm,tm) &

les = string(red$linearEqs)(tm) &

bm = boolMatrix(rm) & lm = listMatrix(rm) & tm = termMatrix(rm) &

wm = widgMatrix(rm,widgConstC$wc) &

rm = rectMatrix &

pas = string(red$parseActs)(wis) &

wc = widgConst &

search = string(edge$searchPic)(wis,mat,string(red$alignment),

string(red$dissection),

string(red$palindrome))

How to build, save and load Figure 4:

◦ enter diagrams into the entry field

◦ press the return key: diagrams is compiled to a specification

◦ press (the) theorems > show conjects (button): the conjectures of diagrams are listed in the text

field

◦ cut out the equations for Figure 2 (see above)

◦ press parse up: the equations for Figure 4 are displayed on the canvas

◦ press simplify: the term arguments of string are converted to strings

◦ press graph > show graph button: the equations are translated to a graph

◦ for changing node positions, move the tree size sliders

◦ enter Figure4S.png into the entry field

◦ press the down arrow key: the graph on the solver canvas is saved to ExpanderLib/Pix/Figure4S.png

◦ enter Figure4S.eps into the entry field

◦ move the lower-right corner of the solver window in order to remove empty space below or right

to the graph on the canvas
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◦ press the down arrow key: the entire solver canvas is saved to the ExpanderLib/Pix/Figure4S.eps

◦ enter draw into the entry field

◦ press the tree button in the menu below paint

◦ press the paint button: the graph on the canvas is converted to an object of type Graph (see above)

and displayed in a painter window

◦ for changing node or (red) edge support point positions, click and move them with the left mouse

button

◦ enter 1 into the save/combi field and push combis: support points are removed

◦ enter Figure4 into the add from/save to field

◦ press the down arrow key: the Haskell code of the figure on the painter canvas is saved to Ex-

panderLib/Figure4

◦ enter Figure4.png into the add from/save to field

◦ press the down arrow key: the graph on the painter canvas is saved to ExpanderLib/Pix/Figure4.png

◦ enter Figure4.eps into the add from/save to field

◦ move the lower-right corner of the solver window in order to remove empty space below or right

to the graph on the canvas

◦ press the down arrow key: the entire painter canvas is saved to the ExpanderLib/Pix/Figure4.eps

◦ delete the entry in the add from/save to field

◦ press the up arrow key: the graph on the painter canvas is deleted

◦ enter Figure4 into the add from/save to field

◦ press the up arrow key: by executing the Haskell code in ExpanderLib/Figure4, Figure 4 is re-

displayed on the painter canvas

See also Picture construction and animation with Expander2, sections 3-11, and the Painter manual,

sections 3-6.

9 Loading and saving terms, proofs or pictures

10 Building and verifying transition systems

See From Modal Logic to (Co)Algebraic Reasoning, sections 1-7 and 10-17.

11 Enumerators
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