

September 3, 2007

Expander2 is a flexible multi-purpose workbench for interactive term rewriting, graph transformation, theorem proving, constraint
solving, flow graph analysis and other procedures that build up proofs or computation sequences. Moreover, tailor-made interpreters
display terms as two-dimensional structures ranging from trees and graphs to a variety of pictorial representations that include
tables, matrices, alignments, partitions, fractals and various tree-like or rectangular graph layouts (see Widget interpreters). Proofs
and computations performed with Expander2 follow the rules and the semantics of swinging types. Swinging types are based on
many-sorted predicate logic and combine constructor-based types with destructor-based (e.g. state-based) ones. The former come
as initial term models, the latter as final models consisting of context interpretations. Relation symbols are interpreted as least or
greatest solutions of their respective axioms.

The user may interact with the system at three levels of decreasing control over proofs and computations. At the top level, rules like
induction and coinduction are applied locally and step by step. At the medium level, goals are rewritten or narrowed, i.e. axioms are
applied exhaustively and iteratively. At the bottom level, built-in rules (some of them executing Haskell programs) simplify, i.e.
(partially) evaluate terms and formulas, and thus hide routine steps of a proof or computation (see Overview). Proofs are
automatically translated into proof terms that can be evaluated and modified later. This allows one to design functional-logic
programs as proof carrying code that a client can validate by running the proof term evaluator (proof checker).

Expander2 has been written in O'Haskell, an extension of Haskell with object-oriented features for reactive programming and a typed
interface to Tcl/Tk. Besides a comfortable GUI the design goals of Expander2 were to integrate testing, proving and visualizing
deductive methods, admit several degrees of interaction and keep the system open for extensions or adaptations of individual
components to changing demands.

Send comments, bugs, etc. to Peter Padawitz. Any suggestions for improvements, extensions, applications or project proposals are
welcome!

 Contents

Overview Main commands Overall code structure Solver features

Solver state variables Built-in signature term/formula menu Mouse and key events

font menu transform-selection menu specification menu signature menu

axioms menu theorems menu substitution menu graph menu

parse buttons narrow/rewrite buttons simplify button paint buttons

Further buttons Grammar Axioms and theorems Derivations

Variables Simplifications Examples Widget interpreters

pict type menu Alignments and palindromes Dissections and partitions References

 Main commands

A command followed by a letter in round brackets is executed when the corresponding key is pushed after the keyboard has been
activated by placing the cursor over the entry resp. label field and pressing the left mouse button. The keys for add spec, apply
clause, load text and save tree work if the entry field has been activated. The keys for parse up and parse down work if the text
field has been activated. The keys for other commands work if the label field has been activated.

add map add spec from file (Return) apply for symbols

apply clause (a/b)
left to right (Left) - right to left (Right)

apply (axioms) in text field apply map

apply substitution apply to variable: build equations

build graph build list build Trans/TransL

build unifier call enumerator check proof term (c)

clear subtrees coinduction collapse

collapse levelwise coordinates copy

create Hoare invariant create induction hypotheses create subgoal invariant

decompose atom decrease current (Left) derive/stop

enclose/replace by text expand fixpoint induction

flatten (co-)Horn clause generalize heap numbers

height numbers hide/show Horn axioms for copredicates

increase current (Right) instantiate invert for symbols

label graph with Atoms label roots with entry load text from file (Up)

http://fldit-www.cs.uni-dortmund.de/%7Epeter/Swinging.html
http://www.cs.chalmers.se/%7Enordland/ohaskell
http://www.haskell.org
mailto:peter.padawitz@udo.edu
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS0

move up quantifiers (m) narrow/rewrite (n) negate for symbols

paint parse up (Up) parse down (Down)

polarities positions preorder numbers

redraw (z) remove entry&label remove from entry field

remove other trees re-add/remove spec remove subtrees

remove text rename replace by other sides

replace by tree of Solver1/2 reverse (r) save spec to file

save proof to file save proof term to file (p) save tree to file (Down)

save tree in eps format to file (i) shift subformulas set

show axioms for symbols (x) show changed show map

show node infos show sig simplify (s)

split/join store graph stretch conclusion

stretch premise subsume turn local def into function application

unify unify with tree of Solver1/2 use transitivity

<---/---> (Down/Up) +1/-1

Create two subdirectories of your home directory and call them Examples and Pics, respectively. The save commands of Expander2
store strings into files of Examples and graphs (in eps format) into files of Pics. If the directories do not exist, nothing is saved! A
file parameter of add or load commands is looked up first in your Examples directory. If it is not found there, it is searched for in the
synonymous system directory. Gif files used as widgets (see Widget interpreters) are also looked up in the Examples directory.

 Overview

The main components of Expander2 are the solver, the painter, the simplifier, the enumerator and a recorder of proofs and
computation sequences.

Fig. 1. Components of Expander2

The solver is accessed via a window for editing and displaying trees that represents a disjunction or conjunction of logical formulas
or a sum of functional terms. A proper (non-singleton) sum results from a computation obtained by nondeterministic rewriting. The
solver window has a canvas for the two-dimensional representation of the list of current trees (among which one browses by moving
the slider below the window) and a text field for their string representation. With the parse buttons one switches between the tree
(or graph) and the string representation. Both representations are editable. As the usual cut, copy and paste operate on substrings
in the text field, so do corresponding mouse-triggered functions when the cursor is moved over subtrees on the canvas.

After a widget interpreter has been selected from the pict type menu, pushing the paint button opens a painter window and the
pictorial representations of all interpretable subtrees of the solver's current trees will be shown. Pictures are lists of widgets that
can be edited in the painter window and completed to widget graphs. Widgets are built up of path, polygon and turtle action
constructors that admit the definition of a variety of pictorial representations ranging from tables and matrices via string alignments,
piles and partitions to complex fractals generated by turtle systems [RS], which define a picture in terms of a sequence of actions
that a turtle would perform when drawing the picture while moving over a canvas. The turtle works recursively in two ways: it
maintains a stack of positions and orientations where it may return to, and it may give birth to subturtles, i.e. call other turtle
systems. The solver and its associated painter are fully synchronized: the selection of a tree in the solver window is automatically
translated to a selection of the tree's pictorial representation in the painter window and vice versa. Hence rewriting, narrowing and
simplification steps can be carried out from either window.

The enumerator provides algorithms that enumerate trees or graphs and passes their results both to the solver and the painter.

Currently, two algorithms are available: a generator of all sequence alignments [Gie,P01] satisfying constraints that are partly given
by axioms, and a generator of all nested partitions of a list with a given length and satisfying constraints given by particular
predicates. The painter displays an alignment in the way DNA sequences are usually visualized. A nested partition is displayed as
the corresponding rectangular dissection of a square.

Expander2 allows the user to control proofs and computations at three levels of interaction.

At the high level, analytic or synthetic inference rules or other syntactic transformations are applied individually and locally to
selected subtrees (see the transform-selection menu). The rules cover single axiom applications, substitution or unification steps,
Noetherian, Hoare, subgoal or fixpoint induction and coinduction. Derivations are correct if, in the case of trees representing terms,
their sum is equivalent to the sum of their sucessors or, in the case of trees representing formulas, their dis- resp. conjunction is
implied by the dis- resp. conjunction of their successors. The underlying models are determined by built-in data types and the
least/greatest interpretation of Horn/co-Horn axioms. Incorrect deduction steps are detected and cause a warning. All proper tree
transformations are recorded, be they correct proofs or other transformations. Terms and formulas are built up from the symbols of
the current signature (see Solver state variables). For more details on the syntax and semantics of axioms, theorems and goals, see
Axioms and theorems and Swinging Types.

At the medium level, rewriting and narrowing realize the iterated and exhaustive application of all axioms for the defined functions,
predicates and copredicates of the current signature. Terminating rewriting sequences end up with normal forms, i.e. terms
consisting of constructors and variables. Terminating narrowing sequences end up with the formula True, False or solved formulas
that represent solutions of the initial formula. Since the axioms are functional-logic programs in abstract logical syntax, rewriting
and narrowing agree with program execution. Hence the medium level allows one to test such programs, while the inference rules of
the high level provide a "tool box" for program verification. In the case of finite data sets, rewriting and narrowing is often sufficient
even for program verification. Besides relations and deterministic functions, non-deterministic transition systems employing
structured states, such as Maude programs [C] or algebraic nets [SMÖ], may also be axiomatized and verified by Expander2. The
latter are executed by applying associative-commutative rewriting or narrowing on bag terms, i.e. multisets of terms.

At the low level, built-in Haskell functions simplify or (partially) evaluate terms and formulas and thereby hide most routine steps of
proofs or computations. The functions comprise arithmetic, list, bag and set operations, term equivalence and inequivalence (that
depend on the current signature's constructors) and logical simplifications that turn formulas into nested Gentzen clauses.
Evaluating a function f at the medium level means narrowing upon the axioms for f, Evaluating f at the low level means running a
built-in Haskell implementation of f. This allows one to test and debug algorithms and visualize their results. For instance,
translators between different representations of Boolean functions were integrated into Expander2 in this way. In addition, an
execution of an iterative algorithm can be split into its loop traversals such that intermediate results become visible, too. Currently,
the computation steps of Gaussian equation solving, automata minimization [HMU], OBDD optimization, LR parsing, data flow
analysis and global model checking can be carried out and displayed (see Simplifications).

 Overall code structure

The code of Expander2 consists of four O'Haskell modules:

Eterm contains data types and functions for generating, manipulating or checking terms and formulas, such as unification,
matching, reduction and expansion of collapsed trees.

Epaint provides Haskell functions for parsing terms and formulas and computing and displaying their graphical representations
that are built up from Tk canvas widgets. Pictures can be defined as turtle movements over the plane (see Widget interpreters).
The reactive components for animating the turtle and displaying graphical objects are part of the painter, crawler and slowActor
templates (= classes). The oscillatortemplate iterates a command with oscillating parameters. It is used for coloring error
messages appearing in label fields and for animating dangling pointers.

Esolve encapsulates translators between string, tree and graphical representations of terms and formulas. Esolve also contains
the simplifier that partially evaluates terms and formulas. Moreover, the basic inference rules for applying axioms and theorems
are implemented here. Esolve also contains the enumerator template that provides a GUI for running tree enumeration algorithms
(see the sections Alignments and palindromes and Dissections and partitions). They are called from the solver template, which
is part of Ecom.
Ecom configures the GUI and provides all string- or tree-generating, -manipulating or -translating commands that the user may
call for carrying out proofs or computations and presenting their results interactively. Multiple tree-shaped results can be
displayed and browsed through on the canvas of a solver and in some cases interpreted graphically and displayed in the painter
window of a solver (see the paint buttons). Ecom closes with the main program of the system that creates the main objects,
partly in a mutually recursive way:

 main tk = do
 win1 <- tk.window []
 win2 <- tk.window []
 fix solve1 <- solver tk "Solver1" win1 solve2 "Solver2" enum1 paint1
 solve2 <- solver tk "Solver2" win2 solve1 "Solver1" enum2 paint2
 paint1 <- painter tk solve1
 paint2 <- painter tk solve2
 enum1 <- enumerator tk solve1
 enum2 <- enumerator tk solve2
 solve1.buildSolve (0,20) solve1.buildSolveMore
 solve2.buildSolve (20,40) solve2.buildSolveMore
 win2.iconify

The solver, painter and enumerator templates make use of the O'Haskell module Tk.hs that provides the interface to Tcl/Tk (see the
O'Hugs computing environments).

http://fldit-www.cs.uni-dortmund.de/%7Epeter/Swinging.html
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Eterm.hs
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Epaint.hs
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Esolve.hs
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Ecom.hs
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Tkhs
http://www.cs.chalmers.se/%7Esydow/envs/index.html

Fig. 2. The solver window shows four axioms of a list specification.

 Solver features

Viewed from top to bottom, a solver window consists of the following widgets:

a label field for displaying messages,
a scrollable canvas,
a horizontal slider for setting the number of tree nodes to be shown on the canvas,
a horizontal slider for selecting the tree to be shown on the canvas,
a scrollable and line-editable text field,
an entry field for entering file names, node entries or integers,
a vertical and a horizontal slider for stretching or osciing the tree horizontally resp. vertically,
a horizontal slider for changing simultaneously the size of the canvas, text field, entry field and label field fonts,
boldface-titled menus described below,
framed buttons described below,
a vertical slider for changing the relative vertical size of the canvas and the text field.

 Solver state variables

The current signature consists of symbols denoting
basic specifications (specs) consisting of signatures, axioms, theorems and/or conjectures,
predicates (preds) interpreted as the least solutions of their (Horn) axioms,
copredicates (copreds) interpreted as the greatest solutions of their (co-Horn) axioms,
constructors (constructs) for building up data,
defined functions (defuncts) specified by (Horn) axioms or implemented as Haskell functions called by the simplifier,
first-order variables (fovars) that may be instantiated by terms or formulas,
higher-order variables (hovars) that may be instantiated by functions or (co)predicates.

For more details, see Built-in signature.
The current axioms and theorems build up the high- or medium-level steps of a computation or proof. Axioms and theorems
are applied to conjectures by rewriting or narrowing. A narrowing/rewriting step starts with unifying/matching a subtree (the
redex) with/against an axiom. Narrowing applies (guarded) Horn or co-Horn clauses, rewriting applies only unconditional
(guarded) equations. The guard of an axiom is a subformula to be solved before the axiom is applied. See also the axioms
menu, theorems menu, Axioms and theorems and the narrow/rewrite buttons.
The current conjectures is a list of arbitrary formulas derivable from the Grammar.
curr holds the position of the actually displayed tree in the list of current trees (see below).
formula indicates whether the list of current trees represents a disjunction or conjunction of formulas or a sum of terms,
respectively. Conditional equations (see Axioms and theorems) applied to a formula should be valid in the initial model of the
underlying swinging type, while conditional equations applied to a term may represent rewrite rules that are not valid
equations. The results of the applications of several rewrite rules applied to the same term are combined with <+> to a set of
terms (see Built-in signature).
The Boolean variable hideState indicates whether selected subtrees are hidden or shown when the hide/show button is
pressed. If no subtrees have been selected, pushing the hide/show button leads to a change of the value of hideState.
The integer variable maxHeap yields the position of the maximal node w.r.t. the heap ordering up to which the current tree will
be displayed. The value of maxHeap is set with the slider located directly below the canvas.
The integer variable matching indicates the current strategy used for narrowing/rewriting (see the narrow/rewrite buttons).
The Boolean variable oneTree indicates whether or not the current trees are split after narrowing, rewriting or simplification
steps that are performed when no subtrees have been selected. If the split/join button is pushed, the current tree is split or
joined, respectively, and the value of oneTree is changed.
The widget interpreter pictEval recognizes paintable terms and transforms them into their pictorial representations. It is called
via the pict type menu.
The current proof records the sequence of derivation steps performed since the last initialization of the list of current trees (by
parsing the contents of the text field; see Derivations) as a list of proof states each of which contains a description of the rule

that has been applied at last, the value of treeposs before the rule has been applied, the resulting list of current trees and the
resulting values of treeMode, curr, varCounter, solPositions, fixPositions, substitution and subsDom. One may browse among
the proof states of the list by pushing the <--- or ---> button. If you push a button that triggers a proof step, the proof is
continued in the state that you have switched to at last, i.e. subsequent states of the original proof are overwritten.
The current proof term represents the current proof as an executable expression for the purpose of later proof checking. It is
built up automatically in parallel to the construction of a derivation and can be saved to a user-defined file. A saved proof term
is loaded by writing its name into the entry field and pushing check proof term from file. This action overwrites the current proof
term. Starting out from the current tree, the proof represented by the loaded proof term is carried out stepwise by pushing the -
--> button. Each click triggers a proof step and the proof term is entered into the text field with the constant POINTER preceding
the command that will be executed next. If the entry field contains a positive natural number n, n proof steps are performed
sequentially and only the final proof state is displayed. By pushing the <--- button one goes backwards. If the stop button is
pushed, Expander2 leaves the proof check mode, i.e. the not-yet-evaluated part of the proof term is removed and all buttons
regain their original function. Whenever the contents of the text field is parsed and thus turned into a new list of current trees,
the proof term is initialized with commands that set the current values of matching (see above), removeBit and simplifyBit (see
below).
If the Boolean variable removeBit is set to True, a non-narrowable logical atom P(t) with normal form t is reduced to False if P
is a predicate and to True if P is a copredicate. A non-rewritable term f(t) with normal form t is reduced to () (see Built-in
signature). This may lead to undesired effects if some function or (co)predicate has not been specified completely or if
narrowing/rewriting is used in a match mode! For instance, the simplifier turns a formula Not(F) into a negation-free formula
that may contain unspecified complement predicates. Moreover, since () is a constructor, () = () is simplified to True, while ()
=/= () is simplified to False. Atoms of the form () -> t are also simplified to False (see the narrow/rewrite buttons).
rule indicates whether the list of current trees is the result of narrowing steps, rewriting steps, simplification steps or other
rule applications.
The rules that may be applied in narrowing or rewriting steps either agree with the current axioms or are given by the clauses
stored in the state variable rules. In the first case, rules is empty.
The current signature map is a signature morphism from the current signature to the current signature of the other solver. It is
initialized as the identity map on strings. Example (STACK2IMPL):
 just -> entry
 = -> ~
If the Boolean variable simplifyBit is set to True, correct reducts of apply clause, coinduction, fixpoint induction, instantiate,
narrow/rewrite, remove or replace by other sides is automatically simplified by at most 100 simplification steps (see the
simplify button).
The list solPositions consists of the positions of solved formulas resp. normal forms among the current trees.
The pair spread=(hor,ver) yields the current horizontal resp. vertical space between adjacent nodes of some current tree (see
below). spread is -- like the font of node labels -- also used by the painter associated with the solver.
The current substitution maps the variables of its domain (= actual value of subsDom) to terms over the current signature. It
is generated, modified and applied by particular buttons (see the substitution menu and the apply to variable: button).
treeMode indicates whether the list current trees (= rooted graphs) is a singleton (treeMode = tree) or represents a
disjunction of formulas (treeMode = summand), a conjunction of formulas (treeMode = factor) or a sum (= disjoint union) of
terms (treeMode = term). True, False and () are the respective zero elements (see Built-in signature). The label of the
term/formula menu shows the actual tree mode: If treeMode = tree", then the label is term resp. formula. If treeMode =
summand/factor, then the label tells us how many summands resp. factors the set of current trees consists of. The slider
between the canvas and the text field of a solver window allows one to browse among the current trees and to select the one
to be displayed on the canvas. For the commands that may change trees, see the term/formula menu, the transform-selection
menu and the graph menu.
treeposs lists the positions of selected subtrees of the actually displayed tree. Subtrees are selected (and moved) by pushing
the left mouse button while placing the cursor over their roots (see Mouse and key events).
varCounter maps a variable x to the maximal index i such that xi occurs in the current proof. varCounter is updated when new
variables are needed.

 Built-in signature

 preds: -> <= >= < > >> _ all any zipAll zipAny `disjoint` `in` `NOTin` null `shares` `subset` `NOTsubset`
 Int Real reduced INV ~/~ ~/~0 ~/~1 ~/~2 ...
 copreds: ~ ~0 ~1 ~2 ...
 constructs: <+> () [] ^ {} : 0 from_to bool cond fun lin inj0 inj1 inj2 ... suc
 defuncts: . ; + ++ - * ** / auto bag bisim blink concat count dnf drop foldl get0 get1 get2 ... head height
 init iter last length map mapt max `meet` min minimize `mod` nerode obdd parse permute postflow
 product reverse sat set shuffle stateflow subsflow sum tail take `then` tup upd0 upd1 upd2 ...
 zip zipWith
 fovars: i j x y z

-> denotes a (labelled or unlabelled) transition relation (see below). <=,>=,<,> are predefined on integers, reals, strings and the
defined functions x_0,x_1,x_2,... (used as node labels of OBDDs; see below). `subset` and `in` denote the subset resp. membership
relation on all collections, i.e. terms C(t1,...,tn) where C is one of the constructors [] or {} or C(t1,...,tn)=t1^...^tn. reduced checks
whether its argument is a variable-free tree without defined functions.

Int(t) and Real(t) return True if t is an integer or real number, respectively. Int(t) and Real(t) return False if t is a real or an integer
number, respectively. all(P)(as) return True if all elements of as satisfy P. any(P)(as) return True if as contains an element that
satisfies P. zipAll(P)([a1,..,an])([b1,..,bn]) return True if for all 1 <= i <= n, (ai,bi) satisfies P. zipAny(P)([a1,..,an])([b1,..,bn])
return True if for some 1 <= i <= n, (ai,bi) satisfies P.

If n > 1, then length(t1,...,tn) simplifies to n. shuffle[ts] shuffles the lists of ts before concatenating them. height(t) simplifies to
the height of t, regardless of the semantics of t.

Formulas involving >> or INV are generated whenever an induction hypothesis or a (Hoare or subgoal) invariant is created (see the
transform-selection menu). For the use of the underline symbol, see enclose/replace by text.

Terms combined with the infix constructor <+> are called sum terms. Semantically, <+> is a set union resp. insertion operator. The
simplifier transforms a term of the form f(...,t1<+>...<+>tn,...) into the sum f(...,t1,...)<+>...<+>f(...,tn,...).

$ denotes the apply operator whose first argument is a higher-order term t that represents a predicate or function f. The other
arguments of $ are the arguments of f, i.e. $(t,t1,...,tn) stands for t(t1,...,tn).

Given terms p1,...,pn,c and a formula u,

 t = fun(p1,...,pn,bool(c)`then`u)

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STACK2IMPL

denotes a conditional λ-abstraction. The simplifier evaluates a corresponding application t(t1,...,tn) of t to (t1,...,tn) by matching
(t1,...,tn) to (p1,...,pn), applying the unifier f to c and then to u provided that c[f] simplifies to True and (t1,...,tn) does not contain
variables that are bound in t. Otherwise the simplification fails.

Given terms f1,...,fk, the application (f1;...;fk)(t1,...,tn) is simplified to fi(t1,...,tn) if i is the least m such that the simplification
of fm(t1,...,tn) does nor fail.

tup(f1,...,fn)(t) is simplified to the list [f1(t),...,fn(t)]. Given a collector c, c(f1,...,fn)(t) is simplified to the collection
c(f1(t),...,fn(t)).

A unary function f is applied repeatedly if a term of the form iter(f)(t) is simplified: n simplification steps transform this term into
iter(f)(u) where u represents the value of f^n(t).

(), [] and {} denote tuple, list resp. set constructors of arbitrary finite arity. If () has no arguments, then () denotes "undefined"
and is neutral with respect to the sum constructor <+>. A term of the form f((t1,...,tn)) is identified with f(t1,...,tn) provided that f
is not a collector. Accordingly, for a variable x, f(x) unifies with f(t1,...,tn). The constructor : appends an element to a list from the
left. 0 and suc are the natural number constructors. If applied to a number list s, suc returns the next permutation of s in reverse
lexicographic order. In particular, if s is sorted, then suc(s)=reverse(s). The constructors inj0,inj1,inj2,... denote the first, second,
third,... injection into a sum type. The simplifier decomposes (in)equations with the same leading constructor on both sides. The
simplifier also replaces (in)equations with different leading constructors on both sides by False (True).

bool, cond and lin embed formulas into terms (see the Grammar).

+,-,*,**,/,`mod`,max,min are defined on integer and real numbers. +,-,*,/ work also for polynomials (* and / only as scalar operators).

Given finite lists or sets s,s' and integers i,k, s-s' and [i..k] denote the list of elements of s that are not in s' and the interval of
integers from i to k, respectively. from_to is an internal constructor. For instance, the parser translates the string [t..u] to the term
from_to(t,u), while the simplifier compiles from_to(t,u) to the corresponding interval if t and u have been evaluated to integers.
Haskell shortcuts like [i,k..n] may also be used. ., ++, concat, drop, foldl, head, init, last, length, map, null, product, sum, tail, take,
reverse, zip and zipWith are defined as the synonymous Haskell functions. Some functions on lists also apply to bags and sets.

any, all, map, foldl, zip, zipAny zipAll and zipWith also occur in LIST and LISTEVAL with (recursive) axioms. The synonymous built-in
symbols are interpreted as partial non-recursive functions. For instance, a rewriting step via LIST transforms the term map(suc)(x:s)
into x:map(suc)(s), while the simplifier does not modify this term, but would turn map(suc)[x,y,z] into [suc(x),suc(y),suc(z)]. Of
course, axioms introduced for built-in symbols should comply with their built-in interpretation that is realized by the simplifier.

count(ts,t) counts the number of occurrences of t in the list ts. ts `disjoint` us checks whether the lists ts and us are disjoint. ts
`meet` us computes the intersection of the lists ts and us. ts `shares` us checks whether the lists ts and us are not disjoint.

get0,get1,get2,... and upd0,upd1,upd2,... return resp. update the first, second, third,... component of a tuple or element of a
collection.

bag transforms a list into a bag and flattens terms built up with the infix operator ^ (see below). set turns a list or bag into a set.
Many functions defined on lists are also defined on other collections. For obvious semantical reasons, the simplifier applies count,
`disjoint`, `in`, `meet`, `shares`, ++, - and <= only to variable-free terms without defined functions.

Fig. 3. A DNF (DNF5), its minimal OBDD and its Karnaugh diagram

obdd transforms a DNF represented as a list of strings of the same positive length whose characters are 0, 1 or # into an equivalent
minimal OBDD. dnf transforms OBDDs into equivalent minimal DNFs. If applied to a DNF, minimize minimizes the number of
summands of a DNF. If applied to an OBDD, minimize minimizes the number of nodes of an OBDD according to the two reduction
rules for OBDDs [Bry].

^ is an infix operator for building bags and treated by the unification algorithm as an associative and commutative function. When a
bag term t1^...^tn in the displayed tree is to be unified with another bag term u, then the unification succeeds even if only a
permutation of t1^...^tn unifies with u. If there are several unifiers, those are preferred, which substitute only variables for
variables. Among these unifiers those are preferred, which substitute variables only for variables of u.

Axioms of the form

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTEVAL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD

 {guard ==>} (t1^...^tn -> u {<=== prem}) (*)

are called transitional axioms. (*) can be applied to a bag term t = u1^...^um if the list [t1,...,tn] unifies with a list [ui1,...,uin] of
elements of t such that 1<=i1<... <=m, the unifier f satisfies guard and t is the left-hand side of a transitional atom t -> t'. This
atom is then replaced by the instance of the formula

 (u^uk1^...^uk(m-n) = t' {& prem}

by f. If u = [v1,...,vk] for some k>1, then (*) is treated as a conjunction of the clauses

 {guard ==>} (t1^...^tn -> v1 {<=== prem})
 ...
 {guard ==>} (t1^...^tn -> vk {<=== prem})

Set brackets used in clauses enclose optional subformulas, i.e. guard and prem in axiom (*) may be empty.

If the application of (*) to t fails, the elements of t are permuted. If after 100 permutations (*) is still inapplicable, the last
permutation of t will be returned as result - and yield a new starting point for further attempts to apply (*).

For instance, repeated applications of the AC rule

 i`mod`j = 0 ==> i^j -> j

(see PRIMS) to 2^3^4^5^6^7^8^9^10^11^12^13^14^15 sift out the primes and thus end up with 2^3^5^7^11^13.
ACCOUNT, BOTTLEAC, PUZZLE and the algebraic net specifications PHILAC and ECHOAC also contain AC rules.

Fig. 4. Snapshots of a run of the echo algorithm (cf. [SMÖ])

The symbols &,|,=,=/=,+,*,^,{},<+>,~,~0,~1,~2,...,~/~,~/~0,~/~1,~/~2,... are permutators, i.e. the order of their arguments is
irrelevant. Consequently, AC unification replaces ordinary unification whenever the respective arguments of a permutator are to be
unified.

The symbols ^,{},++ and <+> are treated as associative operators and thus may have an arbitrary finite number of arguments. {} and
<+> are idempotent. [] is neutral with respect to ^,{} and ++. () is neutral with respect to <+>.

Actions,Atoms,Finals,FinalsL,Fix,Matrix,MatrixL,Perm,Trans and TransL denote state terms to be initialized by equational axioms and
modified by simplifications (see also the narrow button).

~,~0,~1,~2,... are declared as copredicates and used as congruence relations. They are supposed to denote behavioral equalities.
<,>,=/=,~/~,~/~0,~/~1,~/~2,... are the complements of >=,<=,=,~,~0,~1,~2,..., respectively. The simplifier replaces behavioral
(in)equations with different leading injections or tuples of different length on both sides by False (True).

For each other predicate or copredicate P, notP denotes the complement of P. Axioms for the complement of P are added to the
current axioms if P is entered into the entry field and the button negate axioms for symbol is pushed.

Subformulas involving built-in functions or predicates are (partially) evaluated when the displayed tree is simplified. This includes
the stepwise execution of built-in functions with state term parameters (see Simplifications).

The declaration of a copredicate p overwrites preceding declarations of p as a predicate or constructor. The declaration of a predicate
or defined function f overwrites preceding declarations of f as a constructor. The declaration of a defined function x overwrites
preceding declarations of x as a first-order variable (like in OBDD).

For example, the signature OBDD reads as follows:

 defuncts: restrict forall exists quantor x X Y F and or not
 fovars: u2 u1 u t2 t1 t j i b
 hovars: F{and,or} X{x} Y{x}

F{and,or} denotes that the defined functions and and or are the only admissable instances of the higher-order variable F. In general,
the list of strings following a higher-order variable F consists of symbols that are admissable for F. In addition to the symbols of the
list, all higher-order variables are admissable for F. If F is not followed by a list of of strings, then all symbols of the current
signature are admissable for F.

Keywords (specs:, preds:, copreds:, constructs:, defuncts:, fovars: and hovars:) may appear at any place in the list of symbols that
builds up a signature. To be recognized as keywords they must be separated from their context by blanks. User-defined signatures
automatically inherit the built-in signature. Symbols that are to be interpreted as infix operators must start and end with the
character ` or consist of characters among

 : + - * < = ~ > / ^ #

(see the language generated by infixToken in the Grammar). Symbols used in axioms, theorems or conjectures that do not belong to
the current signature are interpreted as (undefined) function symbols (see the Grammar). This facilitates certain applications, but
may also lead to unexpected unification failures when axioms or theorems are applied.

 Mouse and key events

A subtree t is selected (or deselected if it has already been selected) by clicking on the left mouse button while placing the cursor
over its root. If the mouse is moved while the button is pressed, t is shifted over the canvas. If the button is released while the root
of t is placed over the root of another subtree u, u is replaced by t. If u is an existentially (resp. universally) quantified variable and
the scope of u has positive (resp. negative) polarity, then all occurrences of u within the scope are replaced by t. Hence, in these
cases, the replacement works like instantiate.

Subtrees are deselected backwards with respect to the order in which they were selected by moving the cursor away from the

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PRIMS
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ACCOUNT
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLEAC
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PUZZLE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHILAC
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ECHOAC
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD

displayed tree and pushing the left mouse button. All selected subtrees are deselected simultaneously if the clear subtrees button
is pushed. If you stop moving a subtree before inserting it into the displayed tree, it will stay at the place where you released the
mouse button. Then push the redraw button and the subtree will be returned to its previous place within the displayed tree.

If a subtree t has been selected and the move of t is started with a click on the middle mouse button, t will be removed from the
displayed tree and replaced by the variable zn where the index n is increased each time a subtree is removed or a new variable is
needed when an axiom is flattened (see below). Moreover, the current substitution is extended by the assignment of t to zn.

By moving the mouse and pushing the middle button outside the root of a selected subtree the entire displayed tree is shifted over
the canvas. By pressing the right mouse button while placing the cursor over a node x a pointer (edge) from x to the root of the
last selected subtree t is drawn and all successors of x are removed. The arc is orange-colored if it closes a circle consisting of
edges of t. Otherwise it is magenta-colored. Subtree replacements and substititutions for variables adapt the pointer values.

A command followed by a letter in round brackets is executed when the key with the letter is pressed after the cursor has been
placed over the label field and the left mouse button has been pushed (see Commands).

 term/formula menu

The commands of the term/formula menu create or transform the current trees or the current proof.

call enumerator opens a submenu listing tree enumeration algorithms. When you push the button for one of these algorithms,
you will be prompted to enter sequences of strings (in the case of the alignment or palindrome enumerator), numbers (in the
case of the dissection enumerator) or the length of a list (in the case of the partition enumerator) and certain constraints (see
the sections Alignments and palindromes and Dissections and partitions). After the "go" button has been pushed, the resulting
trees are assigned to Solver1/2 and may be browsed through with the canvas slider.
remove other trees eliminates all current trees except the current one.
show changed selects all maximal elements within the set of subtrees that have been modified during the last transformation
of the displayed tree.
show proof enters the current proof into the text field.
.. in text field of Solver1/2 opens Solver1/2 and enters the current proof into its text field.
save proof to file (p) saves the current proof to Examples/file if file is the string in the entry field.
show proof term enters the current proof term into the text field.
.. in text field of Solver1/2 opens Solver1/2 and enters the current proof term into its text field.
save proof term to file (t) saves the current proof term to Examples/file if file is the string in the entry field.
check proof term in file (c) assigns the contents of the file in the entry field to the current proof term provided that the
contents is a proof term.
.. text field assigns the contents of the text field to the current proof term provided that the contents is a proof term.
create induction hypotheses prepares the displayed tree cl for a proof by Noetherian induction. The command assumes that cl
is a formula and that free or universal induction variables x1,...,xn of cl have been selected, which will be prefixed by an
exclamation mark. Non-selected free variables are turned into universal ones. If cl has the form prem ==> conc, then the clauses

 conc' <=== (x1,...,xn) >> (!x1,...,!xn) & prem'
 prem' ===> ((x1,...,xn) >> (!x1,...,!xn) ==> conc')

are added to the current theorems. The primed formulas are obtained from the unprimed ones by replacing xi with !xi, 1 <= i
<= n. If cl is not an implication, then

 cl' <=== (x1,...,xn) >> (!x1,...,!xn)

is added to the current theorems.
flatten (co-)Horn clause assumes that the displayed tree is a Horn or co-Horn clause cl (see Axioms and theorems). If
subterms t1,...,tn of cl are selected and F is the set of roots of t1,...,tn, then cl is replaced by an equivalent formula where
each f ∈ F occurs only at the outermost position of the left- or right-hand side of an equation. If no subterms are selected, F is
the set of all defined functions of the current signature. For instance, the LISTEVAL-axiom

 sort(x:(y:s)) = merge(sort(x:s1),sort(y:s2)) <=== split(s) = (s1,s2)
is turned into
 sort(x:(y:s)) = merge(z0,z1) <=== split(s) = (s1,s2) & sort(x:s1) = z0 & sort(x:s2) = z1
if F = {sort} and into
 sort(x:(y:s)) = z0 <=== split(s) = (s1,s2) & merge(z1,z2) = z0 & sort(x:s1) = z1 & sort(y:s2) = z2
if F = {sort,merge}.
turn local def into function application takes the last local definition (= equation with a normal form p on the right-hand side)
in the displayed tree, which is supposed to be a conditional equation, and transforms it into an equivalent function application.
For instance,
 l=r <=== prem & t=p becomes l=fun(p,r)(t) <=== prem.
save tree to file saves the string representation of the displayed tree to Examples/file if file is the string in the entry field.
save tree in eps format to file (i) saves the current tree in Encapsulated PostScript format to Pics/file if file is the string in the
entry field.
save trees to file saves the string representation of the disjunction, conjunction or sum, respectively, of the current trees to
Examples/file if file is the string in the entry field.
load text opens a submenu of files. The contents of the selected file is entered into the text field.

 font menu

consists of buttons for choosing the font to be used for the text in tree nodes and pictorial term representations. The font size is
controlled by a slider (see Solver features).

 transform-selection menu

The commands of this menu transform the subtrees that were selected with the left mouse button. If no subtree has been selected,
the entire displayed tree is regarded as being selected. Most commands call inference rules and deliver messages that tell us
whether or not the executed rule application is sound with respect to the initial model induced by the current signature and axioms
(see Derivations).

copy adds a copy of the subtree selected at last to the children of its parent node.
remove removes all selected subtrees if they are summands/factors of the same disjunction/conjunction with positive/negative

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTEVAL

polarity. Otherwise the greatest lower bound of the selected subtrees is removed.
reverse (r) reverses the list of at least two selected subtrees. The reduct implies the redex if the subtrees have the same
direct predecessor x and if x is a permutator (see Built-in signature). If only one subtree t is selected, then the operation is
applied to the list of maximal proper subtrees of t.
enclose/replace by text (e) assumes the selection of subtrees t1,...,tm. Moreover, the text field is supposed to contain a tree
u with n leaves labelled with a wildcard symbol (_). If n=0, then u is substituted for t1,...,tm. If n=1 and t1,...,tm are
orthogonal to each other or if n>1 and m=1, then for all 1<=i<=m, u[ti/_] is substituted for ti. Otherwise t1 is supposed to
enclose t2,...,tm and m-1 is supposed to be equal to n. Then t1 is replaced by the term obtained from u by replacing the n
leaves of u labelled with _ by t2,...,tm, respectively.
instantiate assumes the selection of a quantified variable x. If x is existential resp. universal and the scope of x has positive
resp. negative polarity (see Derivations), then all occurrences of x are replaced by the term in the entry field. See also Mouse
and key events.
unify assumes the selection of two factors or summands t and u of a conjunction resp. disjunction. If t and u are unifiable and
the unifier instantiates only existential resp. universal variables of the conjunction resp. disjunction, then t is removed and the
unifier is applied to the remaining conjunction resp. disjunction.
generalize combines the last selected subformula F of the displayed tree with the formula G in the entry field. If F has positive
polarity, then F&G replaces F. Otherwise F|G replaces F. A generalization of F may be necessary before F can be proved by
Noetherian induction, fixpoint induction or coinduction.
decompose atom assumes the selection of an atom t=t', t~t' or t~k t' for some natural number k with positive polarity or an
atom t=/=t', t~/~t' or t~/~k t' for some natural number k with negative polarity. The selected atom is decomposed in
accordance with the assumption that =, ~ and ~k are compatible with all function symbols (see Built-in signature).
replace by other sides of equations assumes that the subtree t selected at first is an implication/conjunction and the other
selected subtrees t1,...,tn are subterms of t. For all 1 <= i <= n, the command searches for an atom ti=ui or ui=ti in the
premise or among the other factors of t, respectively. For all 1 <= i <= n, ti is replaced by ui. The replacement of t is correct
whenever = is compatible with all function and relation symbols (see Built-in signature).
.. of inequations assumes that the subtree t selected at first is an implication/disjunction and the other selected subtrees
t1,...,tn are subterms of t. For all 1 <= i <= n, the command searches for an atom ti=/=ui or ui=/=ti in the conclusion or
among the other summands of t, respectively. For all 1 <= i <= n, ti is replaced by ui. The replacement of t is correct whenever
= is compatible with function and relation symbols (see Built-in signature).
use transitivity assumes the selection of an atom t R t' with positive polarity or factors t1 R t2, t2 R t3, ..., t(n-1) R tn of a
conjunction with negative polarity (see Derivations) such that R is among =, ~, ~k, <=, >=, <, >. The selected atoms are
decomposed resp. composed in accordance with the assumption that R is transitive (see Built-in signature).
apply clause in entry field applies the n-th clause cl in the text field to all selected subtrees provided that the current trees are
formulas and the entry field contains the number n. cl may be applied from left to right or from right to left where left/right
refers to t resp. u if cl has the form tRu <=== prem where R is symmetric and to the formula left/right of <=== resp. ===> in all
other cases. If cl is distributed, then cl's atoms must unify componentwise with the selected subtrees. Otherwise cl is applied
to each selected subtree (see Axioms and theorems).
.. in text field applies the clause in the text field analogously to the previous command.
.. and save redex adds the redex disjunctively/conjunctively to the reduct if the clause is a non-distributed Horn/co-Horn
clause. The correctness of this version of the rule does not depend on the polarity of the redex.
move up quantifiers assumes the selection of quantified arguments of a propositional operator op, i.e. op in {&, |, Not or
==>}. The quantifiers are shifted in front of op after all bound variables that also occur freely in some argument or in more
than one argument of op have been renamed. For instance, a distributed clause of type (9) or (11) cannot be applied to
existentially quantified factors and a clause of distributed type (8) or (10) cannot be applied to universally quantified
summands (see Axioms and theorems). Hence moving the quantifiers out of the conjunction resp. disjunction may be
necessary.
shift subformulas shifts all selected factors of the premise and all selected summands of the conclusion of an implication
prem==>conc to conc and prem, respectively. Such a transformation may be necessary if prem==>conc shall be proved by fixpoint
induction or coinduction.

For each predicate, copredicate or function p, let AX(p) be the set of axioms for p.

coinduction assumes the selection of conjectures

 {prem1 ==>} p(t11,..,t1n)
 & ... (A)
 & {premk ==>} p(tk1,..,tkn)

about a copredicate p that does not depend on any predicate or function occurring in premi. A is stretched into

 p(x1,...,xn) <=== {prem1 &} x1=t11 & ... & xn=t1n
 | ... (A')
 | {premk &} x1=tk1 & ... & xn=tkn

x1,...,xn are variables. In fact, only those terms among ti1,..,tin are replaced by variables that are not variables or occur more
than once among ti1,..,tin. Morever, a new predicate p' is added to the current signature and

 p'(x1,...,xn) <=== {prem1 &} x1=t11 & ... & xn=t1n
 | ... (AX0)
 | {premk &} x1=tk1 & ... & xn=tkn

become the axioms for p'.

Let m be the number in the entry field (default: m=0). For all p(t)===>F in AX(p), let G be the result of submitting F to a
sequence of m inference steps each of which consists of the parallel application of AX(p) to all current redices. AX0 is applied to
p'(t)==>G[p'/p]. The conjunction of the resulting clauses replaces the original conjecture A.

k>1 conjectures of the form A may be selected, which are assumed to be factors of the same conjunction and to deal with
different copredicates p1,...,pk. Then the above described transformation is applied to the set of k selected conjectures.

.. and save redex works the same as the preceding command except that each at===>F in AX(p) is replaced by at===>F|at.
fixpoint induction assumes the selection of conjectures

 p(t11,..,t1n) ==> conc1
 & ... (B)
 & p(tk1,..,tkn) ==> conck

about a predicate p that does not depend on any predicate or function occurring in conci or a conjecture of the form

 f(t11,..,t1n) = t1 ==> conc1
 & ... (C)
 & f(tk1,..,tkn) = tk ==> conck
or
 f(t11,..,t1n) = t1 {& conc1}
 & ... (D)
 & f(tk1,..,tkn) = tk {& conck}

about a defined function f that does not depend on any predicate or function occurring in ti or conci. (B), (C) and (D) are
stretched into

 p(x1,...,xn) ===> (x1=t11 & ... & xn=t1n ==> conc1)
 & ... (B')
 & (x1=tk1 & ... & xn=tkn ==> conck),

 f(x1,...,xn) = x ===> (x1=t11 & ... & xn=t1n & x=t1 ==> conc1)
 & ... (C')
 & (x1=tk1 & ... & xn=tkn & x=tk ==> conck)
and
 f(x1,...,xn) = x ===> (x1=t11 & ... & xn=t1n ==> x=t1 {& conc1})
 & ... (D')
 & (x1=tk1 & ... & xn=tkn ==> x=tk {& conck}),

respectively. x1,...,xn,x are variables. In fact, only those terms among ti1,..,tin are replaced by variables that are not variables
or occur more than once among ti1,..,tin. Morever, a new predicate p' resp. f' is added to the current signature and

 p'(x1,...,xn) ===> (x1=t11 & ... & xn=t1n ==> conc1)
 & ... (AX0)
 & (x1=tk1 & ... & xn=tkn ==> conck)
resp.
 f'(x1,...,xn,x) ===> (x1=t11 & ... & xn=t1n & x=t1 ==> conc1)
 & ... (AX0)
 & (x1=tk1 & ... & xn=tkn & x=tk ==> conck)
resp.
 f'(x1,...,xn,x) ===> (x1=t11 & ... & xn=t1n ==> x=t1 {& conc1})
 & ... (AX0)
 & (x1=tk1 & ... & xn=tkn ==> x=tk {& conck})

become the axioms for p' resp. f'.

Let m be the number in the entry field (default: m=0). For all p(t)<===F ∈ AX(p) resp. f(t)=u<===F ∈ flat(AX(f)), let G be the
result of submitting F to a sequence of m inference steps each of which consists of the parallel application of AX(p) resp.
flat(AX(f)) to all current redices. AX0 is applied to G[p'/p]==>p'(t) resp. G[f'/(f(-)=-)]==>f'(t,u). The conjunction of the
resulting clauses replaces the original conjecture B/C/D.

k>1 conjectures of the form B/C/D may be selected, which are assumed to be factors of the same conjunction and to deal with
different predicates p1,...,pk resp. functions f1,...,fk. Then the above described transformation is applied to the set of k
selected conjectures.

.. and save redex works the same as the preceding command except that each at<===F ∈ AX(p) resp. at<===F ∈ AX(f) is
replaced by at<===F&at.

create Hoare invariant assumes the selection of a conjecture of the form

 f(t1,..,tn) = t ==> conc (A)
or
 f(t1,..,tn) = t {& conc} (B)

such that f is a derived function, i.e. f has a single axiom of the form

 f(x1,...,xn) = g(u1,...,uk)

or, if ti in A/B has been selected (in addition to A/B itself), f has a single axiom of the form

 f(x1,...,xn) = g(xi,...,xn,u1,...,uk)

with distinct variables x1,...,xn. Let

 INV(x1,...,xn,u1,...,uk) (INV1)
 g(xi,...,xn,y1,...,yk) = z & INV(x1,...,xn,y1,...,yk)
 ==> (x1=t1 & ... & xn=tn & x=t ==> conc) (INV2)
 g(xi,...,xn,y1,...,yk) = z & INV(x1,...,xn,y1,...,yk)
 ==> (x1=t1 & ... & xn=tn ==> x=t {& conc}) (INV3)

A is turned into INV1 & INV2, while B is turned into INV1 & INV3. If ti has not been selected in A/B, then g(xi,...,xn,y1,...,yk)
reduces to g(y1,...,yk). Usually, the proof proceeds by narrowing INV1, shifting INV(x1,...,xn,y1,...,yk) from the premise to the
conclusion of INV2/INV3 and submitting the resulting formula to fixpoint induction.
create subgoal invariant works the same as the preceding command except that a selected conjecture of the form A or B is
turned into INV1 & INV2 and INV1 & INV3, respectively,where

 INV(xi,...,xn,u1,...,uk,z) ==> (x1=t1 & ... & xn=tn & x=t ==> conc) (INV1)
 g(xi,...,xn,y1,...,yk) = z ==> INV(xi,...,xn,y1,...,yk,z) (INV2)
 g(xi,...,xn,y1,...,yk) = z ==> INV(xi,...,xn,y1,...,yk,z) (INV3)

Usually, the proof proceeds by narrowing INV1 and submitting INV2/INV3 to fixpoint induction.
replace by tree of Solver1/2 replaces the subtree selected at last by the displayed tree of Solver1/2.
unify with tree of Solver1/2 unifies the subtree selected at last with the displayed tree of Solver1/2.
build unifier assumes the selection of two subtrees. If they are unifiable, the most general unifier is assigned to the current
substitution. Otherwise the reason for the failure is reported.
subsume assumes the selection of the premise t and the conclusion u of an implication or two factors t and u of a conjunction

or two summands t and u of a disjunction. If t subsumes u, then t==>u is replaced by True or u is removed from the
conjunction or t is removed from the disjunction, respectively.
stretch premise assumes the selection of a formula of the form B/C/D (see above). The formula is turned into the
corresponding co-Horn clause of the form B'/C'/D'.
stretch conclusion assumes the selection of a formula of the form A (see above). The formula is turned into the corresponding
Horn clause of the form A'.

 specification menu

re-add removes the current specification and re-adds the specification contained in the file that has been added at last (and
possibly modified in the meantime).
remove removes the current specification except for the built-in symbols. The current signature map is set to the identity map
and the widget interpreter pictEval to matrix (see the pict type menu).
save to file saves the current specification to Examples/file if file is the string in the entry field.
load text opens a submenu of files. The contents of the selected file is entered into the text field.
add opens a submenu of specification files. The files may contain signature elements, axioms, theorems and/or conjectures (in
this order!). Signature elements, axioms, theorems are added to the current signature, axioms, theorems and conjectures,
respectively. Then all conjectures are entered into the text field. Axioms, theorems and conjectures must be preceded by the
keywords axioms:, theorems: and conjects:, respectively. Axioms must be given as a conjunction of guarded Horn or co-Horn
clauses. Theorems must be given as a conjunction of Horn or co-Horn clauses (see Axioms and theorems and the narrow
button). Conjectures may be given as sums of terms or conjunctions of formulas.

 signature menu

remove map reduces the current signature map to the identity.
show sig enters the current signature into the text field.
show map enters the current signature map into the text field.
apply map applies the current signature map to the current tree and displays the result in the other solver.
save map to file saves the current signature map to Examples/file if file is the string in the entry field.
add map opens a submenu of files whose contents is compiled into an extension of the current signature map when the
respective menu button is pushed.

 axioms menu

remove axioms removes the current axioms.
.. in entry field removes the n-th clause in the text field from the current axioms provided that the entry filed contains the
number n.
.. for symbols removes the axioms for the roots of the subtrees selected at last (or the symbols in the entry field if no
subtrees have been selected) from the current axioms.
remove rules empties the state variable rules.
set rules to clauses in entry field assumes that the entry field contains a list of numbers of clauses in the text field. These
clauses are assigned to rules.
.. to axioms for symbols assigns to i>rules the axioms for the roots of the selected subtrees (or for the symbols in the entry
field if no subtrees have been selected).
negate for symbols adds axioms for the complements of the roots of the subtrees selected at last (or the (co)predicates in the
entry field if no subtrees have been selected) to the current axioms. For instance, Horn axioms for sorted read as follows (see
LIST):

 sorted[]
 sorted[x]
 sorted(x:(y:s)) <=== x <= y & sorted(y:s)

negate for symbols transforms them into the following co-Horn axioms for NOTsorted:

 NOTsorted[] ===> False
 NOTsorted[x] ===> False
 x <= y ==> (NOTsorted(x:(y:s)) ===> NOTsorted(y:s))

invert for symbols transforms the axioms for the roots of the subtrees selected at last (or the (co)predicates in the entry field
if no subtrees have been selected) into a single (co-)Horn clause that represents the inverse of the axioms. The clause
expresses the least/greatest fixpoint semantics of the predicates and is thus added to the current theorems. For instance,
invert for symbols turns the above Horn axioms for sorted into the following co-Horn theorem:

 sorted(z) ===> z = [] |
 Any x: z = [x] |
 Any x y s: (z = x:(y:s) & x <= y & sorted(y:s))

The clause resulting from inverted axioms is indeed a theorem with respect to the underlying least/greatest fixpoint semantics
of predicates/copredicates.
Kleene axioms for symbols transforms the axioms for the roots of the subtrees selected at last (or for the symbols in the entry
field if no subtrees have been selected) into equivalent (co-)Horn axioms (see [P03]). For instance, the above co-Horn axioms
for NOTsorted are turned into (equivalent) Horn axioms:

 NOTsorted(z) <=== All i: NOTsortedLoop(i,z)
 NOTsortedLoop(0,z)
 NOTsortedLoop(suc(i),z) <=== z =/= [] &
 All x: z =/= [x] &
 All x y s: (z = x:(y:s) & x <= y ==> NOTsortedLoop(i,y:s))

The above Horn axioms for sorted are turned into (equivalent) coHorn axioms:

 sorted(z) ===> Any i: sortedLoop(i,z)
 sortedLoop(0,z) ===> False
 sortedLoop(suc(i),z) ===> z = [] |

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST

 Any x: z =/= [x] &
 Any x y s: (z = x:(y:s) & x <= y & sortedLoop(i,y:s))

The old axioms for the symbols are deleted. Copredicates become predicates. Predicates become copredicates. Axioms for
functions are not handled.
show axioms enters all current axioms into the text field.
.. for symbols enters into the text field the axioms for the roots of the selected subtrees (or for the symbols in the entry field
if no subtrees have been selected).
.. in text field of Solver1/2 enters all current axioms of Solver 1/2 into the text field of Solver1/2.
add opens a submenu of files, each one containing a disjunction of at most two conjunctions of guarded Horn or co-Horn
clauses (see Axioms and theorems). The factors of the conjunctions are added to the current axioms. Signature elements
declared in the file are added to the current signature. In this case, the factors must be preceded by the keyword axioms:.

 theorems menu

remove theorems removes the current theorems.
.. in entry field removes the n-th clause in the text field from the current theorems provided that the entry filed contains the
number n.
remove conjects removes the current conjectures.
.. in entry field removes the n-th term or formula in the text field from the current conjectures provided that the entry field
contains the number n.
show theorems enters all current theorems into the text field.
... for symbols enters the theorems for the roots of the subtrees selected at last (or the symbols in the entry field if no
subtrees have been selected) into the text field.
... in text field of Solver1/2 enters all current theorems of Solver 1/2 into the text field of Solver1/2.
show conjects enters all current conjectures into the text field.
save to file saves the current theorems to Examples/file if file is the string in the entry field.
add theorems opens a submenu of files, each one containing a conjunction of Horn or co-Horn clauses (see Axioms and
theorems). The factors of the conjunction are added to the current theorems. Signature elements declared in the file are added
to the current signature. In this case, the factors must be preceded by the keyword theorems:.
add conjects opens a submenu of files, each one containing a sum of terms or a conjunction of formulas. They are added to
the set of current conjectures. All conjectures are entered into the text field. Signature elements declared in the file are added
to the current signature. In this case, the term or formula must be preceded by the keyword conjects:.

 graph menu

redraw (z) redraws the displayed tree. This removes junk from the canvas (see Mouse and key events).
expand dereferences all pointers of the displayed tree or the selected subtrees, respectively. If the entry field contains a
positive number n (default: n = 0), each circle in the trees is unfolded n times.
expand leaves dereferences all pointers to leaves of the displayed tree or the selected subtrees, respectively.
collapse --> and collapse <-- identify all common subtrees of the displayed tree or the selected subtrees, respectively. If there
is a number n in the entry field, cycles are unfolded n times. Otherwise cycles are not unfolded. collapse --> creates pointers to
the right, collapse <-- produces pointers to the left.

(n < 6 & n `mod` 2 = 0 ==> n -> [n,n+1]) &
(n < 6 & n `mod` 2 =/= 0 ==> n -> n+1) &
6 -> [1,3,5,7..10]

Fig. 5A. A transition system (TRANS0)
as a conjunction of transitional axioms, a bipartite graph, a list of (state,successors)-pairs

and a conjunction of regular equations.

(2,b) -> [1,3] &
(3,b) -> 3 &
(3,a) -> 4 &
(4,b) -> 3

Fig. 5B. A labelled transition system (TRANS1)
as a conjunction of transitional axioms, a bipartite graph, a list of (state,label,successors)-triples

and a conjunction of regular equations.

build list reverses the application of build graph, i.e. (1) a transition graph t has been selected or (2) a state term t of the form
Trans or TransL is looked for in the current tree and t is compiled into an equivalent list of pairs consisting of a state and a list

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS0
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS1

of states or into an equivalent list of triples consisting of a state s, a label and the list ofdirect successors of s. States and
labels are arbitrary constants.
build equations assumes that (1) the subtree t selected at last is a list of pairs consisting of a state s and the list of direct
successors of s or a list of triples consisting of a state s, a label and the list of direct successors of s or (2) the current tree
contains a state term t of the form Trans or TransL. build equations transforms t into an equivalent conjunction X1=t1&...&Xn=tn
of regular equations, i.e. X1,...,Xn are variables and t1,...,tn are non-variable terms.
build graph assumes that (1) the subtree t selected at last is a collection of pairs consisting of an integer state and a list of
integers or a collection of triples consisting of an integer state, a constant label and a list of integers or a conjunction of
regular equations or (2) the current tree contains a state term t of the form Trans or TransL. build graph transforms t into an
equivalent transition graph. Edge labels are turned into node labels so that the graph is actually a bipartite one. The graph is
constructed in a depth-first manner starting out from the first element of the list or conjunction. Hence only pairs, triples or
regular equations, respectively, that are "reachable" from this element are taken into account!
build Trans/TransL assumes that an occurrence of the leaf Trans or TransL has been selected in the current tree. Moreover, the
current set of axioms is supposed to contain equations states=t (and labels=u if TransL was selected) where t and u simplify to
lists of constants. If the button is pushed and the set of current axioms contains an equation Trans=t resp. TransL=t, then t is
compiled into a transition function f :: STATE -> [STATE] resp. f :: STATE -> String -> [STATE]. If the set of current axioms does
not contain such an equation, the axioms for -> that are applicable to elements of states resp. states x labels are compiled into
f. f will map all integers that are not in states resp. states x labels to the empty list. states, labels and f become arguments of
the state constructor Trans resp. TransL and the resulting state term replaces the selected leaf (see Simplifications).
label graph with Atoms labels each (integer) state s of a transition graph by the atomic formulas assigned to s in the value of
the state term Atoms (see Simplifications).
greatest lower bound colors the root of the greatest lower bound of the selected subtrees in green.
store graph translates a subterm file(F,t) into a widget graph (see the), saves its Haskell code to F and replaces file(F,t) by
file(F) (see the paint buttons and the pict type menu).
predecessors colors the predecessors of the roots of the selected subtrees in green.
successors colors the successors of the roots of the selected subtrees in blue.
variables colors the variables of the selected subtrees in blue.
free variables colors the free variables of the selected subtrees in blue.
label roots with entry labels the roots of the selected subtrees with the string in the entry field provided that the transformed
subtrees are formulas if and only if the original ones are formulas. The changed labels are colored in blue.
polarities colors the roots of all subtrees of the displayed tree. A root is colored in green if the subtree has positive polarity.
Otherwise it is colored in red.
positions replaces the nodes of the displayed tree by their tree positions. Each pointer position is labelled in red with the
position of its target node.
height numbers replaces the labels of the nodes of the displayed tree t by their tree levels (heights) within t.
preorder numbers replaces the labels of the nodes of the displayed tree t by their preorder positions within t.
heap numbers replaces the labels of the nodes of the displayed tree t by their heap order positions within t.
coordinates shows the coordinates of the node labels of the displayed tree.

 substitution menu

add from text field adds to the current substitution the substitution that is given by the conjunction of equations in the text
field.
apply applies the current substitution to the selected subtrees of the displayed tree (or to the entire tree if no subtrees have
been selected) and sets the current substitution to the empty one.
rename assumes that the entry field contains a conjunction of equations x=y between variables. All occurrences of x in the
selected subtrees are replaced by y.
remove clears the current substitution.
show enters the equations that represent the current substitution into the text field.
show in text field of Solver1/2 enters the equations that represent the current substitution of Solver2/1 into the text field of
Solver1/2.
show on canvas of Solver1/2 displays the equations that represent the current substitution of Solver2/1 on the canvas of
Solver1/2. The equations become the current trees of Solver1/2.
show solutions writes the positions of the solved formulas resp. normal forms among the current trees into the label field.

 parse buttons

parse up parses the string in the text field according to the grammar given below, initializes the list of current trees and the tree
mode and displays the first element of the list on the canvas. Term graphs are implemented as objects of the instance Term String of
the Haskell type

 data Term a = V a | F a [Term a] | Actions (STATE -> String -> ActLR) | Atoms [String] (String -> [STATE]) |
 Dissect [(Int,Int,Int,Int)] | Finals (STATE -> Bool) | FinalsL (STATE -> String -> Bool) |
 Fix [[Int]] | MatchFailureC (Term a) | Matrix [STATE] (STATE -> STATE -> [(STATE,STATE)]) |
 MatrixL [STATE] (STATE -> STATE -> [([STATE],[STATE])]) | Trans [STATE] (STATE -> [STATE]) |
 TransL [STATE] [String] (STATE -> String -> [STATE])
 type STATE = String

The constructor V encapsulates first-order variables, F encloses logical and non-logical function symbols and higher-order variables.
The other constructors are called state constructors and will be explained later (see Simplifications).

parse up expects a term or formula built up of logical operators, signature symbols and further strings that are regarded as function
symbols and displays its tree representation on the canvas. If the term resp. formula splits into numbered subexpressions, then only
the ones whose numbers are listed in the entry field will be combined by <+> resp. & and displayed.

Given natural numbers n1,..,nk, strings of the form pos n1 .. nk are interpreted as pointers (see above). Only first-order variables
and pointers are turned into objects built up with the constructor V. Subtrees whose root starts with the character @ are not
displayed.

parse down computes the textual representation of the displayed tree resp. selected subtrees, connects them with the symbol in
the entry field and writes the result into the text field provided that all selected subtrees are either terms or formulas.

 narrow/rewrite buttons

By repeatedly pushing the unlabelled button right of the match/unify button narrowing resp. rewriting steps are performed on
(selected) trees in a depth-first order until,

(1) if no subtrees have been selected: at most one narrowing/rewriting step has been performed on the current trees or the
execution time exceeds 300 seconds,
(2) if subtrees have been selected: at most one narrowing/rewriting step has been performed on each selected subtree t or on
the t enclosing atom if t is a term and the current tree is a formula,
(3) if no subtrees have been selected and the entry field contains a positive natural number n: at most n narrowing/rewriting
steps have been performed on the current trees or the execution time exceeds 300 seconds,
(4) if no subtrees have been selected and the entry field contains a positive natural number n followed by an 's':
narrowing/rewriting steps have been performed on the current trees and the execution time exceeds n seconds,
(5) if a subtree t has been selected and the entry field contains a positive natural number n: at most n narrowing/rewriting
steps have been performed on t or the execution time exceeds 300 seconds,
(6) if a subtree t has been selected and the entry field contains a positive natural number n followed by an 's':
narrowing/rewriting steps have been performed on t and the execution time exceeds n seconds.

In cases (5) and (6), subterms are modified only if they match against unconditional equations. By pressing the match/unify button
one changes between the (default) match mode, the unify mode and greedy versions of these modes that determine whether a
potential redex is matched or unified against an axiom. The unify modes admit the instantiation of redex variables by non-variables,
the match modes do not. Rewriting can only be performed in a match mode. Usually, all applicable axioms are applied in parallel and
each solution of the guard of an applicable axiom leads to a reduct. In a greedy mode, only one - randomly selected - applicable
axiom is applied, but, as in a non-greedy mode, different solutions of the guard of this axiom lead to several reducts.

Narrowing upon a predicate or copredicate p generalizes linear resolution to the simultaneous application of all axioms for p.
Narrowing also generalizes rewriting from terms to formulas and admits the instantiation of redex variables by non-variable terms.
These substitutions are supposed to build up solutions of the formula at the beginning of a narrowing sequence. Since each
narrowing step applies the definition (axioms) of a predicate, copredicate or defined function, we have also used the term unfolding
for narrowing steps [P00].

Applying all applicable (Horn) axioms for a predicate p or a defined function f simultaneously results in the replacement of the redex
by the disjunction of their premises and equations representing the computed unifiers. Applying all applicable (co-Horn) axioms for a
copredicate p simultaneously results in the replacement of the redex by the conjunction of their conclusions. Some equational or
transitional axioms may be only partially unifiable with the redex. These are applied as well, but contribute to the reduct not with
their premises resp. conclusions, but with equations representing the partial unifiers. This extension is called needed narrowing
[AEH,P96] and ensures that the iteration of narrowing steps proceeding from supertrees to subtrees leads to all solutions of the
current trees (see NEED).

A rewriting or narrowing step consists in the simultaneous application of all axioms for the outermost predicate, copredicate or
defined function of the maximal subtree to which some axiom applies (if rules is empty) or some clause of rules applies (if rules is
nonempty).

In cases (1), (3), (4), (5) and (6), reducts are simplified iff simplifyBit is set to True and simplified and refuted iff removeBit and
simplifyBit are set to True (see Solver state variables).

 simplify button

simplify performs simplification steps on (selected) trees from top to bottom and, on each level, from left to right, until,

(1) if no subtrees have been selected: at most 100 simplification steps have been performed,
(2) if subtrees have been selected: at most one simplification step has been performed on each selected subtree,
(3) if no subtrees have been selected and the entry field contains a positive natural number n: all current trees are simplified or
the number of successive simplification steps exceeds n,
(4) if a subtree t has been selected and the entry field contains a positive natural number n: t is simplified or the number of
successive rewriting/narrowing steps on t exceeds n.

 paint buttons

Fig. 6. The painter window shows the ten solutions of queens(5,ps)
obtained from applying axioms of QUEENS.

Pictorial term representations consist of widgets. A list of widgets is called a picture. A picture becomes a widget graph if some of
its widgets are connected by directed arcs. Widgets comprise circles, paths, polygons, text entries, node-labelled trees, and

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEED
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUEENS

sequences of turtle actions that admit the hierarchical construction of pictures insofar as the drawing of a picture (without arcs) is
also a turtle action.

The actual widget interpreter is selected from the pict type menu. Some built-in axiom files (see Examples) and enumerators are
automatically associated with a widget interpreter.

paint fast/slow opens a Painter window with the background color entered in the solver's entry field (see the Grammar; white is the
default color) that consists of the following widgets:

A label field for displaying messages.
A scrollable canvas.
A slider for selecting the graph to be displayed on the canvas.
The scale slider sets the scaling factor of the displayed widgets. The font and size of text widgets must be the set in the
window of the solver from which the painter was called. It is not changed by moving the scale slider! If cols/mode contains the
string s, the painter enters the space mode: subsequent moves of the scale slider do not change the scaling of the current
graphs. Instead, movements of the scale slider enlarge resp. reduce the space between adjacent widgets. The space mode is
left when s is removed from the cols/mode field before the scale slider is moved.
The color slider modifies the colors of the displayed widgets. Moving the slider by n units to the right/left changes color c to
color c+n/c-n with respect to a circular list of 306 equidistant colors (see Widget interpreters).
The delay slider selects the time interval (from 1 up to 300 milliseconds) between the paintings of two successive widgets of
the displayed picture.
The fast/slow button changes between immediate and delayed display. In the first case, the widgets of the displayed picture
are painted concurrently. In the second case, a widget is drawn n milliseconds after its predecessor has been painted where n is
set with the delay slider. A widget prefixed by the constructor fast is always painted fast (see Widget interpreters).
renew calls paint from the painter window.
narrow/rewrite and simplify induce the synonymous actions in the associated solver and display their pictorially representable
results on the canvas of the painter.
The cols/mode entry field takes a parameter for arrange widgets or connect actions (see below).
The space/combi# entry field takes a number that is interpreted as

the space between adjacent rows or columns of the matrix of widgets that is displayed if the arrange widgets button is
pushed,
the number of times the permutation successor function suc is applied if cols/mode contains the string p (see below),
the number of the representation of the current graph to be displayed (see below) if the combis button is pushed.

If the arrange widgets/copy enclosure button is pushed and no subgraph is enclosed, then the painter reads the entries of
the cols/mode and space/combi# fields and performs one of the following actions. Let d and e be the (real) number in
the space/combi# field and spread=(hor,ver) (see Solver state variables). If the space/combi# field does not contain a real
number, let d=0 and e=1.

If cols/mode contains the string s, the painter enters the space mode: subsequent moves of the scale slider do not
change the scaling of the current graphs. Instead, movements of the scale slider enlarge resp. reduce the space between
adjacent widgets. The space mode is left when s is removed from the cols/mode field.
If cols/mode contains the string q, the painter enters arrange mode q: the widgets of the current graphs are arranged in a
square matrix with a space of d units between adjacent widgets.
If cols/mode contains a positive natural number n, the painter enters arrange mode n: the widgets of the current graphs
are arranged in a matrix with n columns and a space of d units between adjacent widgets.
If cols/mode contains the string t, the painter enters arrange mode t: the current graphs are turned into a forest of
rooted graphs with a horizontal space of 3e*hor units between adjacent siblings and a vertical space of d*ver units
between adjacent tree levels.
If cols/mode contains the string b, the painter enters arrange mode b: the current graphs are turned into a forest of
rooted graphs with a horizontal space of 3e*hor units between adjacent siblings and a vertical space of d*ver units
between adjacent tree levels. Moreover, each non-tree edge of the subgraph is displayed as a B-splined arc with a red
control point for interactive reshaping.
If cols/mode contains the string c, the painter enters arrange mode c: the current graphs are turned into a forest of
rooted graphs with a horizontal space of 3e*hor units between the roots of adjacent subgraphs at the same tree level and
a vertical space of d*ver units between adjacent tree levels. The nodes of the graphs are centered around a vertical axis.
If cols/mode contains the string p, the nodes of the current graphs are reordered by applying the permutation successor
function suc one or more times (see Built-in signature). The modified graphs are displayed according to m. If the painter is
in arrange mode t, b or c, the in- or outgoing arcs of each widget w become in- resp. outgoing arcs of w, which takes its
place after the widget list has been permuted.Otherwise each widget takes its adjacent arcs to its new position.
If cols/mode contains the empty string, the current arrange mode is left.
If the button is pushed and a subgraph G is enclosed, a copy of G is placed to the right of G.

The add from/save to entry field takes the name of a file
containing a graph in Haskell code that is added to the displayed graph if the cursor is in the field and the Up key is
pushed,
the displayed graph is saved to in Haskell code or eps format (if the file has the suffix .eps) if the cursor is in the field and
the Down key is pushed (see Widget interpreters).
Files with Haskell code are looked up in resp. saved to the Examples directory, eps files are saved to the Pics directory
(see Main commands).

The connect/enclose button switches to or from a state in which one of the following actions is performed.
1. If the left mouse button is pushed and moved from widget w to widget w' and the cols/mode field does not contain the

string e, a directed arc is drawn from w1 to w2.
2. If the right mouse button is pushed and moved from widget w to widget w' and the cols/mode field does not contain the

string e, a B-splined directed arc with a red control point is drawn from w1 to w2.
3. If the left mouse button is pushed and moved from widget w to widget w' and the cols/mode field contains the string e, w1

and w2 are exchanged. If the painter is in arrange mode t, b or c, the in- or outgoing arcs of wi become in- resp. outgoing
arcs of wj where (i,j) ∈{(1,2),(2,1)}. Otherwise w1 and w2 take their adjacent arcs to their new positions.

4. If the middle mouse button is pushed and moved from northwest to southeast, a rectangle is drawn whose upper-left and
lower-right corners agree with the cursor positions when the mouse button was pressed resp. released.

The combis button browses through 15 representations of the current graph:
1. The red control points of B-splined arcs are hidden. The same holds true in the following representations.
2. Bipartite coloring: Nodes at even levels of the widget graph are colored with some color c, nodes at odd levels are colored

with the complement color of c.
3. Rainbow coloring: The root of the widget graph is colored with some color c. Nodes at level n+1 are colored with the

successor of the color of nodes at level n with respect to a circular list of n equidistant colors (see Widget interpreters)
where n is the height of the current tree the graph is constructed from.

4. The displayed graph is extended by blue arcs that form the convex hull of the graph's set of nodes.

5. In addition to 4, non-text hull nodes are numbered counter-clockwise.
6. The anchor of each displayed widget is shown as a white or grey point depending on whether the anchor is or is not part

of another widget.
7. The displayed graph is extended by a black dot at each crosspoint between two widgets.
8. The displayed graph is extended by colored lines enclosing the polygons that form intersections of overlapping widgets.

The color of a line is the dark version of the color of the widget the line belongs to.
9. The displayed graph is extended by colored lines enclosing the polygons that form unions of overlapping widgets. The color

of a line is the dark version of the color of the widget the line belongs to.
10. The displayed graph is extended by white polygons that form intersections of overlapping widgets.
11. Same as 10 except that an intersection polygon p is colored grey if the widget w p belongs to is white. Otherwise p is

colored with a light version of the color of w.
12. Same as 10 except that the intersection polygons are colored in a way that leads to the impression that they are weaved

into each other.
13. The displayed graph is extended by white polygons that form unions of overlapping widgets.
14. Same as 13 except that the, say, n holes of the union polygons are colored differently. For each two adjacent holes h and

h', the color of h is the successor of the color of h' with respect to a circular list of n equidistant colors (see Widget
interpreters).

15. Combination of 10 and 13.
If the combi# field contains a number n between 0 and 12, the n-th representation in the above list will be displayed. To
ensure that all parts of the representation are visible, press the slow button!
If the partition interpreter has been selected (see the pict type menu), the combis button browses through 6 colorings the
rectangles representing the current tree:

1. The color of a rectangle is determined by the tree level (height) of the leaf that the rectangle represents.
2. Same as 1 except that two adjacent leaves are represented by rectangles whose colors are most distant from each other.
3. The color of a rectangle is determined by the preorder position of the leaf that the rectangle represents.
4. Same as 3 except that two adjacent leaves are represented by rectangles whose colors are most distant from each other.
5. The color of a rectangle is determined by the heap order position of the leaf that the rectangle represents.
6. Same as 5 except that two adjacent leaves are represented by rectangles whose colors are most distant from each other.

back to Solver1/2 closes the painter window and opens the Solver1/2 window.
show in Solver2/1 button constructs a rooted graph from the displayed widget graph and shows it in the Solver2/1 window.
The nodes of the rooted graph are labelled with the positions of the widget in the list of widgets repesenting the widget graph.
undo revokes the immediately preceding action on the displayed graph. Note that undo cancels only the last step and there is
no redo button for revoking undo.
stop/go interrupts/resumes drawing.

The commands for creating and editing widget graphs are summarized in Figures 20 and 21 (see Widget interpreters).

If subtrees have been selected, paint combines the pictorial representations of all representable selected subtrees and displays the
resulting picture on the canvas. Using the middle mouse button, the individual widgets, which are usually displayed on top of each
other, can be pulled from each other horizontally or vertically.

If no subtrees have been selected, then for each element t of the list of current trees, paint combines the pictorial representations
of all maximal representable subtrees of t. The resulting picture that corresponds to the tree displayed on the solver canvas is drawn
on the painter canvas, while the pictures derived from other elements of the list of current trees are assigned to other positions in
the list of current pictures. One may browse among the pictures by moving the graph selecting slider (see above). Expander2
provides several widget interpreters and combinators thereof. The actual one depends on the current axioms, but can also be set by
selecting from the pict type menu. For instance, Fig. 7 shows solutions of the formula

 Any pa: (loop((0,0),path[],pa) & turt(pa:place(circ(2,red),[(2,6),(6,2)])) = z)

in ss obtained by applying axioms of robot, were generated by the interpreter polygon solution that looks for solved formulas and
applies the interpreter polygon to the solving terms in these formulas. A solved formula looks as follows:

 Any Z1:x1=t1 &...& Any Zk:xk=tk & All Z(k+1):x(k+1)=/=t(k+1) &...& All Zn:xn=/=tn.

x1,...,xn are different free variables, t1,...,tn are normal forms and the transitive closure of {(i,j)|ti contains xj} is acyclic.

Fig. 7. Pictorial representations of solutions obtained by applying axioms of robot

 Further buttons

split/join decomposes a conjunction, disjunction or sum into its factors, summands and terms, respectively, provided that there
is only current tree, i.e. the state variables oneTree and treeMode have the value True and tree, respectively. If oneTree=False
and the value of treeMode is summand, factor, or sum, then the current trees are combined into a single disjunction,
conjunction or sum, respectively.

hide/show hides all selected subtrees if the state variable hideState is set to True. Otherwise the hidden parts of the selected
subtrees are shown. If hide/show is pushed while no subtrees are selected, the Boolean value of hideState changes.

Trees with hidden subtrees can also be simplified, narrowed or rewritten. This saves time because the reducts of hidden
subtrees are not displayed and is particularly useful when tree transformations are called from the painter for the purpose of
interpreting their results immediately as pictures.

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/robot
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/robot

+1/-1 increases/decreases the natural number in the entry field. If the entry field does not contain a natural number, then +1
writes 0 into it, while -1 clears it.

set selects the subtrees whose positions in heap order agree with the numbers in the entry field.

remove text clears the text field.

remove entry clears the entry field.

clear subtrees deselects all selected subtrees.

collapse levelwise identifies the common subtrees of the current tree level by level.

apply to variable: opens a menu of all variables in the domain of the current substitution f. If the button for a variable x is
pressed, all occurrences of x in the subtree selected at last are replaced by f(x). If they are bound by an existential/universal
quantifier and the respective quantified subformula t has positive/negative polarity, then all occurrences of x in t are replaced
by f(x) and x is removed from the quantifier.

<---/---> proceed one step backward/forward in the current proof and display the corresponding list of current trees. As soon
as a rule is applied to the list, its previous successors are removed from the proof.

derive/stop switches between
the (default) label "derive" indicating that removeBit and simplifyBit are set to False,
the label "derive & simplify" indicating that removeBit is set to False, simplifyBit is set to True and thus automatic
simplification steps are performed after each apply clause, coinduction, fixpoint induction, instantiate, narrow/rewrite or
replace by other sides step (see Simplifications),
the label "derive & simplify & refute" indicating that removeBit and simplifyBit are set to True and thus the additional
removal of non-narrowable/non-rewritable subtrees during narrow/rewrite steps,
the label "stop" indicating that a proof term is going to be evaluated. If the button is pushed in this state, the not-yet-
evaluated part of the proof term is removed and the current proof may be continued differently.

increase/decrease current proceed to the next/previous element of the list of current trees if the up resp. down key is pushed
after the label field has been activated. If a painter window is in the foregound, then the next/previous picture is displayed.

quit quits Solver1/2.

 Grammar

according to which parse up translates a string in the text field into a term or formula. Bold symbols are terminal.

 implication ---> disjunct ==> disjunct | disjunct <==> disjunct | disjunct ===> disjunct | disjunct <=== disjunct

disjunct ---> conjunct | conjunct | disjunct

conjunct ---> enclosedFactor | enclosedFactor & conjunct

enclosedFactor ---> (implication) | factor

factor ---> True | False | Not enclosedFactor | Any vars : enclosedFactor |

All vars : enclosedFactor | infixAtom | prefixAtom | singleTerm^singleTerm moreBag

vars ---> var | var vars

var ---> noBlanks noBlanks must derive to a first- or higher-order variable.

infixAtom ---> term infixToken term infixToken must derive to =, =/= or a predicate or copredicate.

prefixAtom ---> noBlanks | noBlanks must derive to a first-order variable.

noBlanks atomrest | noBlanks must derive to =, =/=, a predicate or a copredicate.

 (infixRelTerm) someTerms | (infixRelTerm)

atomrest ---> (relTerms) someTerms | enclosedTerms manyTerms

someTerms ---> (relTerms) someTerms | enclosedTerms someTerms | enclosedTerms

relTerms ---> relTerm | relTerm , relTerms

relTerm ---> prefixRelTerm | infixRelTerm | term

prefixRelTerm ---> preRelChars | preRelChars (relTerms) |

preRelChars must derive to =, =/=, a predicate or a copredicate.

infixRelTerm ---> (enclosedRelTerm infixToken enclosedRelTerm)

 infixToken must derive to a constructor or a defined function.

enclosedRelTerm ---> (relTerm) | prefixRelTerm

enclosedTerms ---> (terms) | list | set | (infixFun)

terms ---> term | term , terms | term .. terms

term ---> bagTerm | bagTerm <+> term

bagTerm ---> singleTerm moreInfix | singleTerm moreInfix ^ bagTerm

moreInfix ---> + singleTerm moreInfix | - singleTerm moreInfix | infixFunR bagTerm | empty

+ and - are left-associative.

 infixFun ---> infixToken infixToken must derive to a constructor or a defined function.

infixFunR ---> infixFun

infixFun must derive to a right-associative function, but not to +, -, ^ or <+>.

singleTerm ---> list | set | boolTerm | int | int curryrest | double | string | fovar | #dddddd |

RGB int int int | pos treepos | -singleTerm | () | (term) curryrest |

enclosedTerms | noDelims | noDelims curryrest

noDelims must not derive to =, =/=, a logical symbol, a predicate (except for _),

 a copredicate (except for _) or a first-order variable.

curryrest ---> enclosedTerms curryrest | empty

boolTerm ---> bool(implication) | cond(implication,terms) | lin(conjunct)

list ---> [] | [terms]

set ---> {} | {terms}

int ---> any constant of Haskell type Int

double ---> any constant of Haskell type Double

string ---> any string

fovar ---> noBlanks noBlanks must derive to a first-order variable.

treepos ---> any finite list of natural numbers separated by blanks

infixChars ---> any string that consists of characters among . ; : + - * < = ~ > / \ ^ #

infixWord ---> `any string that does not contain back quotes`

infixToken ---> infixChars | infixWord | ~k | ~/~k for all natural numbers k

noDelims ---> any string that does not contain a character among

 () [] { } , ` | & . ; : + - * < = ~ > / ^ # \t \n

noBlanks ---> any string that neither contains a blank or a character among

 () [] { } , ` | & . ; : + - * < = ~ > / ^ # \t \n

 relChars ---> any string that neither contains a blank nor a character among () , \t \n

d ---> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F

noDelims need not derive to a symbol of the current signature. Any string derived from noDelims is turned into a node with the Term
constructor F (see the parse buttons). Moreover, noDelims may derive to a string with blanks. This permits the use of symbols
consisting of several words separated by blanks.

Integers, reals and (quoted) strings are automatically interpreted as (not always nullary!) constructors. This admits, for instance,
the use of natural numbers in the tree representations of nested partitions (see Dissections and partitions).

An important technical reason for declaring a function symbol as a defined function is the fact that the outermost non-equational
symbol of each axiom must be a predicate, a copredicate or a defined function.

Newline characters followed by a dot must be avoided because this because such a string is interpreted in a particular way. When a
line with more than 120 characters is entered into the text field, it is split into several lines each of which starts with a dot. This
ensures that decomposed lines are recognized as single ones when the contents of the text field is parsed.

Line suffixes starting with -- are regarded as comments.

If the prefix x of a string x_y is parsed into a color c according to the following grammar, then x_y will be displayed on the canvas of
a solver as a c-colored y.

The color grammar:

 color ---> light color | dark color | RGB int int int | #dddddd
 color ---> black | grey | white | red | magenta
 color ---> blue | cyan | green | yellow | orange
 int ---> any constant of Haskell type Int
 d ---> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F

 Axioms and theorems

Axioms and theorems to be applied with apply clause must have a stretchable premise or conclusion or must be
Horn clauses:
 (1) {guard ==>} (f(t1,..,tn)) = u {<=== prem})
 (2) {guard ==>} (p(t1,..,tn) {<=== prem})
 (3) t = u {<=== prem}
 (4) q(t1,..,tn) {<=== prem}
co-Horn clauses:
 (5) {guard ==>} (q(t1,..,tn) ===> conc)
 (6) t = u ===> conc
 (7) p(t1,..,tn) ===> conc
distributed Horn clauses:
 (8) at1 | ... | atn {<=== prem}
 (9) at1 & ... & atn {<=== prem}
distributed co-Horn clauses:
 (10) at1 | ... | atn ===> conc
 (11) at1 & ... & atn ===> conc

f, p and q denote a defined function, a predicate and a copredicate, respectively, of the current signature. If the current trees are
terms, then the reducts must be terms and thus only premise-free clauses of the form (1) can be applied.

A clause with a guard is applied only if the guard is solvable. The solution becomes part of the unifier that is generated when the
clause is applied. For instance, the axiom

 split(s) = (s1,s2) ==> sort(x:(y:s)) = merge(sort(x:s1),sort(y:s2)),

for sort (see LISTEVAL) is guarded, while the logically equivalent axiom

 sort(x:(y:s)) = merge(sort(x:s1),sort(y:s2)) <=== split(s) = (s1,s2)

(see LIST) is unguarded. On the one hand, guarded axioms are needed for evaluating ground terms efficiently. On the other hand,
axioms and theorems used as lemmas in step-by-step derivations (see below) must be unguarded. Otherwise the search for a
solution of the guard may block the derivation process.

Narrowing is used for solving guards. In order to ensure termination, at most 100 narrowing steps, each of which followed by at
most 100 simplification steps, are performed for solving a guard.

Axioms are of type (1), (2) or (6). The step functions (or consequence operators) induced by axioms must be monotone [P00,P05].
Usually, f, p resp. q agree with the root of the redex to which a clause is applied.

For applying a non-distributed clause, select a term/atom at' with positive/negative polarity in the displayed tree such that the
leading term/atom at is unifiable with at'. at' is replaced by the corresponding instance of prem/conc.

For applying a distributed clause cl, select n atoms at1',...,atn' in a disjunction/conjunction F with positive/negative polarity of the
displayed tree such that for all 1 <= i <= n, ati is unifiable with ati'. The summands/factors of F where at1',...,atn' are selected
from must not contain universal/existential quantifiers or negation or implication symbols. at1',...,atn' are replaced by the
corresponding instance of prem/conc. The resulting summands/factors are combined conjunctively if cl is a Horn clause and
disjunctively if cl is a co-Horn clause (see [FMS,P02]).

When a formula F with a stretchable premise/conclusion is selected for application, then the premise/conclusion of F is streched and
thus F is turned into a co-Horn/Horn clause (see fixpoint induction for premise stretching and coinduction for conclusion stretching),
which is then applied as in case (3), (4), (6) or (7), respectively.

 Derivations

A proof with Expander2 is a sequence of successive values of the state variable trees. It is documented and stored in the state
variable proof. The values of proof and current trees are initialized whenever parse up parses the contents of the text field and
displays the resulting tree t on the canvas. Then trees is set to [t], tree is set to t, and proof is set to the initial values of its
components.

A proof step is correct if the transformed disjunction (or conjunction or sum) of the current trees implies (or is equivalent to) the
original one. In the case of possible incorrectness Expander2 delivers the warning

 CAUTION: This step may be semantically incorrect.

Such steps are not stored in the current proof term.

If the current trees are formulas, a proof ending up with True or False yields a proof resp. refutation of the conjunction/disjunction of
the initial trees. Other final results are given by solved formulas that represent solutions of the original conjecture in their free
variables.

Axioms of the form {guard ==>} t -> u {<=== prem} can only be applied to left-hand sides of transitional atoms t' -> v. If t and t' are
unifiable, then t' -> v is replaced by the corresponding instance of the formula u = v {& prem} provided that the unifier satisfies guard
(see Built-in signature).

If the current trees are terms, the application of an axiom yields a rewriting step from a term to a term. Hence only axioms of the
form {guard ==>} t = u or {guard ==>} t -> u may be applied: the term to be rewritten is matched against t replaced by the
corresponding instance of u provided that the corresponding instance of guard is solvable (by narrowing). If several axioms are
applicable to the same term, they are applied in parallel and the reducts are combined by <+> to a sum term. For semantical reasons,
the latter should only happen if an axiom of the form {guard ==>} t -> u is applied.

A higher-order variable F may be substituted when terms or formulas are matched or unified, but only if the symbol g substituted for
F is admissable for F (see Built-in signature) and either the outdegrees of the nodes m and n labelled with F resp. g are equal or the
outdegree of m is 0 and the entire subtree with root n is substituted for m. The correctness of a proof step depends on the polarity
of the redex with respect to its position within the displayed tree. The polarity is positive if the number of preceding negation
symbols or premise positions is even. Otherwise the polarity is negative. Fixpoint induction, coinduction, summand removal,
summand unification, applications of Horn clauses, instantiations of existential variables and term replacements (see replace by
other sides) are correct if the redex has positive polarity because here the reduct implies the redex. Atom composition, factor
removal, factor unification, applications of co-Horn clauses and instantiations of universal variables are sound if the redex has
negative polarity because here the redex implies the reduct. Simplification, rewriting, narrowing in a unify mode (see the
narrow/rewrite buttons), splitting, flattening and stretching may be applied to any possible redex within the displayed tree because
here the redex and the reduct are equivalent. Narrowing in a match mode may also be applied to any possible redex. However, if a
narrowing redex unifies, but does not match with some axiom, narrowing in a match mode is stopped with a corresponding message.
All these restrictions ensure that the resulting formula implies the original one.

The theorem-proving features of Expander2 do not aim at fully automatic proofs. Expander2 favors natural deduction in contrast to
many other provers that submit a conjecture to Skolemization and other extensive normalizations before the proof can start. This
restricts the readability and thus the controllability of derivation processes significantly, especially when induction or coinduction
steps are involved that are at the heart of any non-trivial program verification. Fortunately, the axioms, the theorems and, to some
extent, the conjectures we are faced with in program verification already come as Horn or co-Horn clauses and thus can indeed be
handled by Expander2 in their original form.

It also complies with a natural proof process that Expander2 avoids negation symbols. The simplifier drives them innermost until
they directly precede (co)predicates and can be removed completely by transforming the (co)predicates into their complements (see
negate axioms for symbol). Negation-free axioms induce monotone consequence operators. Hence predicates and copredicates have
least resp. greatest interpretations in the initial model of the underlying specification [P00,P05].

 Variables

Variables of a clause that are introduced into the current tree when the clause is applied to the tree are renamed by increasing the
number suffixes of the variables. Variables that the tree shares with the applied clause are renamed in the same way. Since variable

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/LISTEVAL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST

renaming affects the state variable varCounter, it is not performed during simplification.

Variables of a Horn or co-Horn clause are turned into existential resp. universal variables. The scope of these variables is the
respective reduct.

If a free variable x of a redex is instantiated by a term t during a rewriting or narrowing step, then the equation x=t is added to the
reduct.

 Simplifications

Narrowing removes predicates, copredicates and non-constructor functions from the current trees. The simplifier does the same with
logical operators, constructors and built-in symbols. Simplifications realize the highest degree of automation and the lowest level of
interaction (see Overview). Pushing the simplify button admits step-by-step simplification of the current trees. The rules applied by
the simplifier employ not only logical equivalences, but also the semantics of constructors, equality or inequality predicates and
other built-in symbols. For instance, an implication prem==>conc is reduced to True if prem subsumes conc, a disjunction is reduced to
its minimal summands, a conjunction to its maximal factors. Here are some examples:

 Any x y z:(x=f(y) & Q(z)) ==> Any x' y' z':(Q(z') & f(y')=x')

reduces to True.

 Any x:Q(x) & Q(suc(y)) & All x:R(x) & R(y+z) & Any x:x=suc(y) & suc(y)=y+z

reduces to Q(suc(y)) & All x:R(x) & suc(y)=y+z.

 Any x: (x = f(h(y,z),z) & P(x,y))

& All x: (x =/= f(h(y,z),z) | P(x,y))

& All x: (x = f(h(y,z),z) & P(x,y) ==> Q(x))

& All x: (P(x,y) ==> x =/= f(h(y,z),z) | Q(x)).

reduces to P(f(h(y,z),z),y) & Q(f(h(y,z),z)).

 P(x,y) & Q(z) & (P(x,y) ==> R(x,y,z))

reduces to P(x,y) & Q(z) & R(x,y,z).

 P(x,y) ==> (Q(y) ==> R(x,y,z)) | P(y,z)

reduces to P(x,y) & Q(y) ==> R(x,y,z) | P(y,z).

 2 `in` [1,2,3]

reduces to True.

 y `in` [1,x,4]

reduces to y=1 | y=x | y=4. The example shows that an atom of the form t`in`ts where t and ts are constructor terms is simplified to
a solved formula and can thus be used in the guard of an axiom.

 [2,3]++[5`mod`2,1] <+> 78 <+>{}^{9,5,5}^{9,9,5}

reduces to [2,3,1,1] <+> 78 <+> {}^{5,9}^{5,9}.

 [1,2,3]-2

reduces to [1,3].

 zipAny(=)[1,x,3,4][5,2,y,6]

reduces to x=2 | 3=y.

 zipAny(=)[1,x,3,4][1,2,y,6]

reduces to True.

 zipAll(=)[1,x,3,4][1,2,y,4]

reduces to x=2 & 3=y.

All rules applied by the simplifier and dealing with logical operators and equality or inequality predicates are listed in [Prover],
section 5. This section also contains a defintion of subsumption (see above) that captures almost all implications whose validity
follows from their syntactic structure.

Fig. 8. The environment of state terms

Some commands induce the creation of state terms. A state term consists of a state constructor and attributes of various types and
may occur as part of any other term or formula (see the parse buttons). If the simplifier encounters a state term t in the current
tree, it calls a built-in Haskell function f that operates on the attributes of t and assigns new values to the attributes of t. The
entire current tree is modified accordingly. The attributes of a state term do not appear on the canvas or in the text field of a solver.
However, the painter may be able to translate them into pictures.

Fig. 9. All dissections of a 3x3-rectangle that satisfy area(2):
each dissection consists of ceiling(9/2)=5 subrectangles.

The following Haskell programs executed (stepwise) by the simplifier use and modify state terms:

auto computes a nondeterministic automaton from a regular expression;
bisim computes bisimilar states of a labelled transition system by table filling [HMU];
gauss solves linear equations by applying the Gaussian algorithm;
nerode computes behaviorally equivalent states of a deterministic Moore or Mealy automaton by table filling [HMU];
parse runs an LR(1) parser with respect to given transition and action tables;
permute permutes the list of Boolean variables of a DNF or OBDD;
postflow verifies an iterative program by the backward propagation of a postcondition through its flowgraph;
sat computes the set of states satisfying a given CTL formula;
stateflow computes the set of states satisfying a given μ-calculus formula F by the backward propagation of state sets through
a flowgraph that represents F (the validity of F in a given state can be proved by applying induction, coinduction and narrowing
with respect to the axioms of CTL or LTL);
subsflow interprets an iterative program by the forward propagation of sets of substitutions through its flowgraph.

The programs receive their input by initializing the associated state terms. The initialization consists in rewriting synomymous
constants upon particular equational axioms or calling build Trans/TransL:

The constant Actions is rewritten to the state term Actions f by applying an axiom Actions=t where t simplifies to a collection of
triples (s,x,a) consisting of a state (constant) s, a terminal symbol (constant) x and an action (constant represented as a string
with blanks) a. x may be the empty word (denoted by the string end or equal to the string other. a must be equal to shift or
error or denote a grammar rule r, given by a sequence of constants separated by blanks: the first, second and remaining
constants are regarded as the name, the left-hand side and the right-hand side of r, respectively. A triple (s,other,a) of u
stands for the list of triples (s,x1,a),...,(s,xn,a) where {x1,...,xn} is the set of terminal symbols x =/= other for which no triple
(s,x,b) occurs in u. t is complied into f :: STATE -> String -> ActLR.
The constant Atoms is rewritten to the state term Atoms atoms f by applying an axiom Atoms=t where t simplifies to a collection of
pairs consisting of a state (constant) and a list of state predicates (constants). t is complied into atoms :: [String] and f ::
String -> STATE.
The constant Finals is rewritten to the state term Finals f by applying an axiom Finals=t where t simplifies to a list of states
(constants). t is complied into f :: STATE -> Bool.
The constant FinalsL is rewritten to the state term FinalsL f by applying an axiom FinalsL=t where t simplifies to a collection of
pairs consisting of a state (constant) and a label (constant). t is complied into f :: STATE -> String -> Bool.
The constant Trans is rewritten to the state term Trans states f by applying an axiom Trans=t where t simplifies to a collection of
pairs consisting of a state (constant) and the list of its direct successors (constants; see the matrix interpreter in Widget
interpreters). t is compiled into states :: [STATE] and the transition function f :: STATE -> [STATE]. Trans can also be initialized
by selecting the constant Trans in the current tree and pushing build Trans/TransL. Then f is generated from the axiom Trans=t or
from axioms for -> and an axiom states=u where u simplifies to a list of constants.
The constant TransL is rewritten to the state term TransL states labels f by applying an axiom TransL=t where t simplifies to a
collection of triples consisting of a state s, a label (constant) and the list of direct successors of s (constants; see the matrix
interpreter in Widget interpreters). t is compiled into states :: [STATE], labels :: [String] and the transition function f :: STATE -
> String -> [STATE]. TransL can also be initialized by selecting the constant TransL in the current tree and pushing build
Trans/TransL. Then f is generated from the axiom TransL=t or from axioms for -> and axioms states=u and labels=v where u and v
simplify to lists of constants.

The individual programs are executed as follows:

auto: Given a regular expressions built up from the following grammar, rewrite auto(e).

 exp ---> eps | mt | symb | exp*exp | exp+exp | iter(exp) | star(exp) | refl(exp)

symb ---> any string

Fig. 10. A run of bisim on the left-hand LTS (see COIN1)
results in 6 classes of equivalent states: [0], [1], [2], [3,4,8,9], [5], [6], [7].

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LTL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COIN1

bisim: Enter an axiom states=t and an axiom TransL=t or axioms for -> (see above) and rewrite bisim(TransL) (see COIN1, COIN2
and CYCLE). Deselect selected subtrees. Simplify the entire displayed tree step by step. Since the simplification steps lead to
pictorially representable results (here: triangular matrices), they may be executed from the painter window so that the change
of results may be viewed directly in terms their pictorial representations.

Fig. 11. Two snapshots of a run of gauss on the conjunction
(10*x)+(5*y)-(2*z) = 1 & (3*x)-(8*y)-z = 9 & x-y+(5*z) = 12

of linear equations (see gauss1)

gauss: Select the widget interpreter linear equations in the pict type menu, enter a term of the form lin(t) where t is a
conjunction of linear equations and simplify lin(t) step by step.

Fig. 12. A run of nerode on the left-hand LTS (see auto1) results in 4 classes of equivalent states:
[1,4], [2,6], [3], [5].

nerode: Enter axioms states=t and labels=u and an axiom TransL=t or axioms for -> (see above) and an axiom Finals=u or
FinalsL=u for the final states resp. (state,label)-pairs of a Moore resp. Mealy automaton. Rewrite nerode1(TransL,Finals) or
nerode2(TransL,FinalsL), respectively and proceed as in the case of bisim (see auto1).

Fig. 13. Three snapshots of a run of parse on lr1

parse: Enter an axiom TransL=t or axioms for -> (see above) and an axiom Actions=u for the action table of an LR(1) grammar.
Given a sequence input of terminal symbols separated by blanks, rewrite parse(input,[0],TransL,Actions) and proceed as in the
case of bisim.

Fig. 14. Three snapshots of a run of permute on DNF4

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COIN1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COIN2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CYCLE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/gauss1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GAUSS1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/auto1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/auto1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/lr1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD

Fig. 15. Three snapshots of a run of permute on OBDD4

permute: Enter a term of the form permute(t) where t is a DNF or OBDD (see Built-in signature). A simplification step leads to
permute(t,t,[0,...,n]) where n+1 is the length of the minterms of the DNF t or n is the greatest index of a variable of the OBDD
t, respectively. Replace [0,...,n] by a permutation L of this list and perform a further simplification step. It leads to
permute(t,t',L') where t' is the DNF/OBDD obtained from t by rearranging the variables of t according to L and L' is the
successor of L (see Built-in signature).

Fig. 16. Two snapshots of a run of postflow on the factorial program:
x := n; y := 1; while x > 0 & fact(n)=fact(x)*y do y := x*y; x := x-1 od

The invariant fact(n)=fact(x)*y had to be added to the loop entering condition x > 0
for ensuring that postflow terminates.

postflow: Enter axioms flow=bool(X1=t1&...&Xn=tn) for the flowgraph F of an iterative program P and post=bool(t) for a
postcondition of P. X1=t1&...&Xn=tn must be a set of regular equations representing F. t must be a formula over the current
signature (see factpost). Enter postflow(flow,post), rewrite flow and post and simplify the entire displayed tree step by step. The
commands and tests of F are colored in green. Simplification steps modify the assertions attached to bool nodes. In the
snapshots shown above, some assertions are hidden behind @. If the simplification has started out from the postcondition post
of P (the condition at the out node) and terminates, the formula at the in node is the corresponding precondition, i.e. pre
implies post upon termination of P. The termination of postflow cannot be guaranteed! If P involves loops, the loop entering
conditions must be generalized to loop invariants (see Fig. 16). Moreover, the stability check of a flowgraph depends on the
proof that its current node valuation is equal to the one before the preceding simplification step. But here the nodes are
valuated by assertions and thus equality means logical equivalence! Hence it might be necessary to simplify or normalize
assertions in order to prove their logical equivalence.

Fig. 17. Snapshots of a run of sat on CTLmutex2

sat: Enter an axiom Trans=t or axioms for -> (see above) and an axiom Atoms=u for the labelling of states with atomic formulas.
Given a CTL formula ctl, rewrite sat(ctl,Trans,Atoms) (see CTLmutex1 and CTLmutex2). The result is a term of the form
satisfying states(G,Trans,Atoms) where G is the transition graph of t. A node N of G is labelled with OK if the state N represents
satisfies ctl. Otherwise N is labelled with NO Selecting the root of Trans and pressing build graph will substitute the original
transition graph G' of t for Trans (see lower-left picture of Fig. 17). Selecting the root of G' and pressing label graph leads to a
recoloring of G' such that each node N of G' is labelled with the atomic formulas that the state N represents satisfies (see 4th
picture of Fig. 17). The corresponding function is stored in Atoms (see above).

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTPOST
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLMUTEX2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLMUTEX1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLMUTEX2

Fig. 18. Snapshots of a run of stateflow on the transition system trans1
(see Fig. 5B) and the modal formula νx.(μy.(< a>true \/ < b>y) /\ [b]x).

Fix stores the minimal alternating fixpoint positions.

stateflow: Enter an axiom TransL=t or axioms for -> (see above) and axioms flow=bool(X1=t1&...&Xn=tn) for the flowgraph F of a
μ-calculus formula and Atoms=u for the labelling of certain leaves of F with atomic formulas. X1=t1,...,Xn=tn must be regular
equations representing F (see trans1 and trans2). Rewrite stateflow(flow,TransL,Atoms) and simplify the entire displayed tree
step by step. The actions of F are colored in green. Simplification steps modify the state set valuations attached to the nodes
of F. Once a fixpoint subformula obtains a simplified value, it is replaced by an out node carrying the value. Selecting the root of
TransL and pressing build graph will substitute the transition graph G of t for TransL (see 5th picture of Fig. 18). Selecting the
root of G and pressing label graph leads to a recoloring of G such that each node N of G is labelled with the atomic formulas
that the state N represents satisfies. The corresponding function is stored in Atoms (see above).

Fig. 19. Two snapshots of a run of subsflow on the factorial program:
x := n; y := 1; while x > 0 do y := x*y; x := x-1 od

subsflow: Enter an axiom flow(z1,...,zk)=bool(X1=t1&...&Xn=tn) for the flowgraph F of an iterative program P. X1=t1&...&Xn=tn
must be a set of regular equations representing F (see FACTSUBS). Rewrite a term of the form subsflow(flow(a1,...,ak)) and
simplify the reduct step by step. The commands and tests of F are colored in green. Simplification steps modify the program
variables' values attached to the nodes of F. In the snapshot above, some of these values are hidden behind @. If F is
simplified, the out node carries the final values (see [KU]).

 Examples

specification or axioms theorems conjectures derivation or proof term

alignments ALIGN

arithmetic
and simplifications

NAT
WIRTH
PRIMS

NATths

EVEN POLY
GAUSS1 GAUSS2 GAUSS3
REGEQS SET1
SIMPL SIMPL1
SIMPL2 SIMPL3

ASSOCproof
COMMproof
DIVproof DIVterm
EVproof EVterm
EVODproof
EXPproof
FIBproof
POTproof POTterm
PRIMSproof
WIRTHproof WIRTHterm

binary trees BTREE REPMIN
COBINTREE

REPMINproof REPMINterm
MIRRORproof

Boolean functions BOOL OBDD
SWAP

concept formation FRUIT FRUITths FRUITconjs FRUIT1proof ...
FRUIT4proof

finite sequences
LIST LISTEVAL
PARTN LISTREV

FILTER MAP MAP2
SPLIT MERGE
SORT FLATTEN
ZIP1 ZIP2
ZIP3 ZIP4

PARTproof PARTterm
PARTproof2 PARTterm2
SORTproof PERMproof
MERGEproof
PARTNproof PARTNterm
PARTN2proof PARTN2term
SPLITNproof LISTREVproof

imperative programs FACTPOST
FACTSUBS

PROG1 PROG2
PROG3 PROG4

infinite sequences
STREAM
ABP
FIBEQ

STREAMths STREAMconjs

FAIRBLINK proof term
BLINKZIP proof term
ODDSZIP EVENSZIP
ITER1ITER2 proof term
ITERLOOP proof term
ODDSEVENS proof term
MAPFACT proof term
MAPITER1 proof term
MAPLOOP proof term
MAPLOOP0 proof term
NATLOOP proof term
INVINV MORSE
ZIPODDS proof term

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/trans1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/trans2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTSUBS
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ALIGN
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NAT
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/WIRTH
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PRIMS
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NATths
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVEN
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POLY
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GAUSS1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GAUSS2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GAUSS3
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REGEQS
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SET1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SIMPL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SIMPL1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SIMPL2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SIMPL3
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ASSOCproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COMMproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/DIVproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/DIVterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVODproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EXPproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FIBproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POTproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POTterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PRIMSproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/WIRTHproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/WIRTHterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BTREE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REPMIN
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COBINTREE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REPMINproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/REPMINterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MIRRORproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOOL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/OBDD
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SWAP
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUIT
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUITths
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUITconjs
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUIT1proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FRUIT4proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LIST
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTEVAL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTN
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTREV
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FILTER
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAP
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAP2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SPLIT
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MERGE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SORT
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FLATTEN
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIP1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIP2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIP3
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIP4
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTproof2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTterm2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SORTproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PERMproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MERGEproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTNproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTNterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTN2proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTN2term
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SPLITNproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LISTREVproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTPOST
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FACTSUBS
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PROG1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PROG2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PROG3
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PROG4
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STREAM
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ABP
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FIBEQ
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STREAMths
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STREAMconjs
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FAIRBLINK
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/FAIRBLINKterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BLINKZIP
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BLINKZIPterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ODDSZIP
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/EVENSZIP
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ITER1ITER2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ITER1ITER2term
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ITERLOOP
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ITERLOOPterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ODDSEVENS
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ODDSEVENSterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPFACT
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPFACTterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPITER1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPITER1term
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPLOOP
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPLOOPterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPLOOP0
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MAPLOOP0term
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NATLOOP
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NATLOOPterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/INVINV
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MORSE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIPODDS
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ZIPODDSterm

ABPproofA1 ABPproofA2
ABPproofB ABPproofC
ABPproofD ABPproofE
ABPproofF

needed narrowing NEED NEEDproof NEEDterm
NEED1proof NEED2proof

parser LR1 LR2 LR1run LR2run

permutations
and partitions

LOG LOGproof LOGproof1
LOGproof2 PARTsols

pictures CARPET
NICETREE PYTREE

files whose names start
with a small letter

regular expressions COREGS
TRANS0

CORproof

sets and relations

SET GRAPHS
RELALG
RELALGDB
RELALGP
NEWMAN

SET1

SETproof
RELALG1proof RELALG2proof
RELALGP1proof RELALGP1term
RELALGP2proof RELALGP2term
NEWMANproof NEWMANterm
NEWMAN2proof NEWMAN2term

stacks STACK STACKIMPL
STACKIMPL2

TOPEMPTYproof TOPEMPTYterm
TOPPUSHproof TOPPUSHterm
POPEMPTYproof POPEMPTYterm
POPPUSHproof POPPUSHterm
PUSHCOMPproof PUSHCOMPterm
UPDproof UPDterm

transition systems
and model checking

ACCOUNT AUTO1
COIN1 COIN2
BOTTLE BOTTLEAC
CTL CTLlab
CTLlist CTLlablist
CTLMUTEX1 CTLMUTEX2
CYCLE
ECHO ECHOAC
HANOI KNIGHT
LTL MUTEX
PHIL PHILAC
PUZZLE QUEENS
ROBOT ROBOTacts
TRANS0 TRANS1
TRANS2

ACCOUNTsol
BOTTLEsols CTLproof
CTLlabproof CTLlabterm
CTLlablistproof
ECHOproof ECHOACproof
KNIGHTsols MUTEXproof
PHIL1proof PHIL2proof
PHILAC1proof PHILAC2proof
PUZZLEproof
ROBOTsol ROBOTsols
ROBOTsols2 ROBOTactsproof

 Widget interpreters

Built on top of the Tk interface module Tk.hs, the module Epaint provides features for creating and editing pictorial term
representations. These are displayed in the painter window of a solver when a paint button is pushed. The scroll region of this
window is adapted automatically to the displayed picture.

Expander2 provides several widget interpreters and combinators thereof, which recognize paintable terms and transform them into
pictorial representations. The actual widget interpreter can be selected from the pict type menu. The default interpreter is matrices.
The alignment enumerator and the palindrome enumerator are associated with the alignment interpreter, the dissection enumerator
with rectangles and the partition enumerator with partition.

The basic elements of pictorial term representations are called widgets. A picture is a list of widgets. A widget graph G is a pair
consisting of a picture [w1,...,wn] and a list [as1,...,asn] of sublists of [1,...,n] that represents the set A of arcs of G:

A = {(wi,wj) | j ∈ asi, 1 <= i,j <= n}.

For editing widget graphs, see Figures 20 and 21 and the paint buttons.

A graph is saved in Haskell code to Examples/file or in eps format to Pics/file.eps by writing file resp. file.eps into the save to field
and pushing the Down key while the cursor is in this field.

Widgets are encoded in Haskell as follows:

 data Widget_ = Arc Color ArcStyleType Point Float (Float,Float) |

Arc0 State ArcStyleType Float Float |

 Arc0, Path0 and Tree0 are abstract versions of Arc, Path resp. Tree

which they are turned into before being displayed.

Bunch Widget_ [Int] |

 Bunch w ns represents widget w together with arcs leading from w

to the widgets at positions ns.

Circ State Float | CircA State Float | Dot Color Point |

 CircA and RectA ignore the scale of enclosing turtles.

Fast Widget_ | File_ String | Gif String Point | New | Old | Path Color Int [Point] |

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ABPproofA1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ABPproofA2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ABPproofB
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ABPproofC
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ABPproofD
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ABPproofE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ABPproofF
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEED
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEEDproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEEDterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEED1proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEED2proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LR1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LR2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LR1run
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LR2run
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOG
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOGproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOGproof1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LOGproof2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PARTsols
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CARPET
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NICETREE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PYTREE
http://fldit-www.cs.uni-dortmund.de/%7Epeter/Expander2/Examples
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COREGS
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS0
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CORproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SET
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GRAPHS
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/RELALG
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/RELALGDB
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/RELALGP
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEWMAN
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SET1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/SETproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/RELALG1proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/RELALG2proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/RELALGP1proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/RELALGP1term
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/RELALGP2proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/RELALGP2term
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEWMANproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEWMANterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEWMAN2proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/NEWMAN2term
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STACK
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STACKIMPL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/STACKIMPL2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TOPEMPTYproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TOPEMPTYterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TOPPUSHproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TOPPUSHterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POPEMPTYproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POPEMPTYterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POPPUSHproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/POPPUSHterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PUSHCOMPproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PUSHCOMPterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/UPDproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/UPDterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ACCOUNT
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/AUTO1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COIN1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/COIN2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLEAC
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLlab
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLlist
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLlablist
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLMUTEX1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLMUTEX2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CYCLE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ECHO
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ECHOAC
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/HANOI
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/KNIGHT
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/LTL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MUTEX
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHIL
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHILAC
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PUZZLE
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/QUEENS
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOT
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTacts
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS0
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS1
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ACCOUNTsol
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLEsols
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLlabproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLlabterm
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/CTLlablistproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ECHOproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ECHOACproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/KNIGHTsols
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/MUTEXproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHIL1proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHIL2proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHILAC1proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PHILAC2proof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/PUZZLEproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTsol
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTsols
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTsols2
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ROBOTactsproof
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Tkhs

Path0 State Int [Point] | Poly State Int [Float] Float | Rect State Float Float |

RectA State Float Float | Repeat Widget_ | Snow State Int Float | Text_ State [String] |

Tree Color Color (Term TNode) | Tree0 State String Color [Term TNode] |

Tria State Float | Turtle State Float [TurtleAct] | White

data TurtleAct = Move Float | MoveA Float | Jump Float | JumpA Float | Turn Float |

MoveA and JumpA ignore the scale of the enclosing turtle.

Open Color Int | Scale Float | Close | Draw | Widg Widget_ | WidgB Widget_

 Widg w ignores the orientation of the enclosing turtle,

WidgB w adds it to the orientation of w.

type State = (Point,Float,Color,Int)

type TNode = (String,Point)

type Point = (Float,Float)

A widget is a two-dimensional object with state. The state is a quadruple (p,a,c,i) consisting of the widget's actual position (as
Cartesian coordinates), orientation (in degrees), (brilliant) color and lightness (see the picture operators newLight and nextLight
described below). Only color and lightness can be set directly by the user. The standard values of p and a are (0,0) and 0,
respectively. Other values are computed by the painter in dependence of picture (generating or modifying) operators called by the
user.

Certain picture operators interpreted by polygon (see below) have a color parameter c that is used as the first element of a list cs of
equidistant colors, i.e. the difference between the RGB values of two subsequent colors of cs is always the same. The colors are
ordered like in a rainbow.For ensuring the correct computation of cs from c, c should be a pure (hue) color, i.e. c is neither black
nor white and at most one of the R-, G- and B-values of c is different from both 0 and 255. If you want the picture operator to create
a light or dark version of the colors of cs, you must apply it to the pure version of c and then apply to the result the picture operator
newLight or nextLight with the desired lightness value i (see below). Then all colors of cs will be lightened (or darkened if i is
negative) as desired.

Colors must be entered as strings generated by the color grammar (see the Grammar).

Each widget interpreter is a Haskell function of type Term String -> Maybe Picture.

A displayed graph is always aligned to the top and the left of the painter's canvas. The available graph editing commands are shown
in Figures 20 and 21.

Fig. 20. Graph editing actions I

Fig. 21. Graph editing actions II
In all states reachable from rect, the displayed graph contains a rectangle whose enclosed widgets are processed differently from

the rest of the graph.

 pict type menu

The actual widget interpreter is set in the pict type menu. The interpreters, the term patterns they recognize and the widget graphs
they display on the canvas of a painter read as follows.

alignment recognizes syntax trees generated by the grammar G1 or G2 of section Alignments and palindromes are displayed as
horizontal alignments.

graph transforms the current tree into a widget graph. Subterms of the form widg(t1,...,tn,t) such that polygon (see below)
recognizes t as a single widget w is turned into the subgraph w(g1,...,gn) where gi is the widget graph for ti, 1<=i<=n. Other non-
pointer nodes are turned into text widgets. Each non-tree edge of the current tree is compiled into a B-splined arc with a red control
point for interactive reshaping.

t1 t2 p w

Fig. 22. Simplifying and rewriting term t1 with axioms of trans0
leads to term t2, which is further simplified to a term that is compiled by graph into picture p and by matrix into widget w.

linear equations: A term of the form p1=r1 & ... & pn=rn where p1,...,pn are polynomials and r1,...,rn are real numbers is interpreted
as a system of linear equations and displayed as the corresponding matrix of coefficients. The variables occurring in the equations
must be part of the current signature (see gauss1).

matrix interprets the following rooted graphs and displays them as corresponding matrices.

Rooted graphs generated by the following grammar G1 are regarded as labelled transition systems.

 LTS ---> stateGraph | stateGraph <+> LTS

stateGraph ---> state(labelGraph) | position of a state node

labelGraph ---> label(rooted)

state ---> string

label ---> string

Rooted graphs generated by the following grammar G2, but not by G1, are regarded as unlabelled transition systems.

 TS ---> stateGraph | stateGraph <+> TS

rooted ---> state(stateGraph) | position of a state node

state ---> string

A term of the form ["b1",...,"bn"] where b1,...,bn are words over {0,1,#} of the same length is interpreted as a DNF and
displayed as the equivalent Karnaugh diagram (see Built-in signature).
Haskell objects of the form Matrix f ss and MatrixL f ss are displayed as triangular matrices with a row and a column for each
element of ss. Symmetric relations represented by triangular matrices are generated when, e.g., a bisim or nerode term is
simplified (see Simplifications).
Given constants x11,...,x1m1,...,xk1,...,xkmk,y11,...,y1n1,...,yk1,...,yknk, a collection (see Built-in signature)

 C(([x11,...,x1m1],[y11,...,y1n1]),...,([xk1,...,xkmk],[yk1,...,yknk]))

is displayed as a matrix representing the Boolean function that maps (xir,yis), 1 <= i <= k, 1 <= r <= mi, 1 <= s <= ni, to
True and all other pairs to False.
Given constants x11,...,x1m1,...,xk1,...,xkmk,y11,...,y1n1,...,yk1,...,yknk and lists L1,...,Lk of terms, a collection

 C(([x11,...,x1m1],[y11,...,y1n1],L1),...,([xk1,...,xkmk],[yk1,...,yknk],Lk))

is displayed as a matrix representing the partial function f that maps (xir,yjs), 1 <= i <= k, 1 <= r <= mi, 1 <= s <= ni, to Li.
The elements of Li are written vertically below each other. Moreover, a triple (x,"else",L) in the graph of f is interpreted as the
set of all triples (x,y,L) such that y =/= "else", (z,y,us) is in the domain of f for some z and us, but (x,y,us) is not in the
domain of f for all us.
Any other collection or tuple

 C(f1(t11,...,t1n1),...,fk(tk1,...,tknk))

is displayed as the list of the lists [f1,t11,...,t1n1],...,[fk,tk1,...,tknk]. For all 1 <= i <= k, fi is colored red and the elements of
the list [f1,t11,...,t1n1] are written vertically.

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/TRANS0
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/GAUSS1

matrix solution recognizes each solved formula

 Any Z1:x1=t1 &...& Any Zk:xk=tk & All Z(k+1):x(k+1)=/=t(k+1) &...& All Zn:xn=/=tn

and submits the terms t1,...,tn to matrix.

matrices combines the maximal subgraphs of the current graphs that are recognizable by matrix.

partition interprets the displayed tree t as a nested partition (see Dissections and partitions) and draws t as a square combined of
colored rectangles each of which represents a leaf of t. The coloring method can be changed by pushing the combis button (see the
paint buttons).

Fig. 23. Widgets drawn by the polygons interpreter

Fig. 24. More widgets drawn by the polygons interpreter

polygon interprets the following rooted graphs and displays them as corresponding pictures. ps denotes a list of pictures (with or
without enclosing square brackets).

arc(r,a) and arc(r,a,c) display the outline resp. c-colored plane of a segment with opening angle a of a circle with radius r.
bar(i,h,c) displays a container of height h, filled with i c-colored units. The number i is written below the container.
barn(n) and barnA(n) display a black Barnsley fern of depth n (see [Dre], Example 2.7.1). barnA(n) uses an array for memorizing
recursive calls.
Let fract ∈ {barnC,bush,bush2,dragon,fern,fernD,gras,grasF,grasR,koch,pytree,wide} (see [Dre], Examples 2.6.2 and 2.7.1 and
Figures 2.30 and 2.32).
fract(n) and fract(n,c) display the respective fractal of depth n. The first level of the fractal is colored in black resp. c. If the k-
th level is colored in c, then the (k+1)-th level is colored with the successor of c with respect to a circular list of n equidistant
colors (see above).
blos(n,d,c) displays the c-colored outline of a blossom with n leaves built up from lines of length d.
blosF(n,h,d,c) displays a c-colored (filled) blossom with n leaves of height h and width d <= h.
blosR(n,h,d) displays a blossom b with n leaves of height h and width d. For each two adjacent leaves l and l', the color of l is
the successor of the color of l' with respect to a circular list of n equidistant colors.
blosS(n,d,a,c) displays a c-colored blossom with n leaves built up from smooth lines of length d and angle a at the vertex of
two adjacent lines.
circ(r) and circ(r,c) display the outline resp. c-colored plane of a circle with radius r.
clear clears the canvas.
colbars(c) represents a color RGB r g b with r,g,b >= 0 as three containers of height 127, filled with r, g resp. b r-, g- resp. b-
colored units. The numbers r/2,g/2 and b/2 are written below the respective container.
dark(ps) displays light(-14,ps) (see below).
fadeB(w) and fadeW(w) return the picture consisting of copies of widget w that fade to black resp. white in 42 steps and then back
to the original lightness of w.
fast(w) provokes the fast painting of widget w.
fern2(n,d,r) and fern2(n,d,r,c) display a black resp. c-colored fern fractal of depth n, apical delay d, internode elongation rate r
(see [Pru], Section 5.3).
flash(w) returns the picture consisting of 102 copies of widget w each of which is colored with the successor of the color of its
predecessor with respect to a circular list of 102 equidistant colors.
flipH(ps) and flipV(ps) flip the pictures of ps horizontally resp. vertically.
gif(F) displays the contents of file F.gif.
grow(ps) places the first two widgets v and w of the pictures of ps on the two upper sides of a trunk (see below). Each term
constructed from trunk and grow is displayed as a Pythagorean tree t. For each two adjacent branches b and b', the color of b is
the successor of the color of b' with respect to a circular list of height(t) equidistant colors.
grow5(n,ps) places the first five widgets of the pictures of ps at the five leaf positions of a branch rhomb5(n) (see below). Each
term constructed from rhomb5(n), grow5, growR (see below) and any leaf widget is displayed as a tree t.
growR(n,ps) builds the same tree t as grow5(n,ps) does, except for the coloring of the branches of t. For each two adjacent
branches b and b', the color of b is the successor of the color of b' with respect to a circular list of height(t) equidistant colors.
hdots(ps) displays the vertices of the outlines of the widgets of the pictures of ps in dark versions of the colors of the respective
widgets.
hframe(ps) displays the outlines of the widgets of the pictures of ps in dark versions of the colors of the respective widgets.
hframe2(ps) displays the widgets of the pictures of ps and their outlines in dark versions of the colors of the respective widgets.
hilb(n) displays a smooth Hilbert curve of depth n.
hilb(n,c) displays a Hilbert curve of depth n. The first level is c-colored. If the k-th level is d-colored, then the (k+1)-th level is
colored with the successor of d with respect to a circular list of n equidistant colors.
leaf/S(d,a) displays leaf/S(d,a,green).
leaf(d,a,c) displays a c-colored leaf built up from lines of length d and angle a at the vertex of two adjacent lines.
leafF(h,d) displays leafF(h,d,green).
leafF(h,d,c) displays a c-colored (filled) leaf of height h and width d <= h.
leafS(d,a) displays leafS(d,a,green).
leafS(d,a,c) displays a c-colored leaf built up from smooth lines of length d and angle a at the vertex of two adjacent lines.
light(ps) displays light(21,ps).
matrix(t) displays the widget obtained by applying matrix to t (see above).
meet(n,ps) displays the (n+6)-th representation of ps (see combis in the paint buttons section).
new creates a new picture scanner that will process subsequent widgets and run in parallel to the running scanners. The new
scanner is put on top of the stack of all running scanners.
newLight(i,n,ps) modifies the lightness of the pictures of ps. The range of lightness values starting from black and ending with

white is divided into n intervals of equal length. The lightness corresponding to the lower bound of the i-th interval is assigned
to all pictures of ps.
nextLight(i,ps) also modifies the lightness of the pictures of ps. Here the range of lightness values is divided into 84 intervals
of equal length. The lightness corresponding to the lower bound of the k-th interval is represented in the state of a widget w by
l(w)=k-42. In terms of the color c of w, l(w)=0 represents the most brilliant version of c, positive values of l(w) light and
negative values dark versions of c. For all widgets w of ps, nextLight(i,ps) increases l(w) by i. If i is positive, ps becomes
lighter, otherwise ps becomes darker.
old pops the stack of running scanners by one element. Hence subsequent widgets will be processed by the new stack top.
osciL(h,c) oscillates the height of a c-colored leaf (leafF; see above) between 1 and h pixels.
osciP(n,d,c,c') oscillates the slope angles of a c- resp. c'-colored smooth plait (see below) with n peaks and slope length d
between 1 and 85 degrees.
osciW(n,d,c) oscillates the slope angle of a c-colored smooth wave (see below) with n peaks and slope length d between 1 and
85 degrees.
outline(ps) displays the outlines of the widgets of the pictures of ps in dark versions of the colors of the respective widgets.
path/S/F/SF[ps] displays path/S/F/SF([ps],black).
path([(x1,y1),...,(xn,yn)],c) displays a c-colored path with vertices (0,0),(x2-x1,y2-y1),...,(xn-x1,yn-y1) and rotation point (0,0).
pathS(ps,c) computes the value of path(ps,c) and displays a B-splined version of the computed path.
pathF([(x1,y1),...,(xn,yn)],c) displays a c-colored (filled) polygon with vertices (0,0),(x2-x1,y2-y1),...,(xn-x1,yn-y1) and rotation
point (0,0). Since the Tk interface does not cope with lines or polygons with more than 100 vertices, they are split into smaller
ones before being drawn. Unfortunately, this may lead to additional vertices of smooth lines or additional edges of filled
polygons!
pathSF(ps,c) displays a smooth version of pathF(ps,c).
peaks/R(w) displays peaks/R(w,33).
peaks(w,m) and peaksR(w,m) changes the number n of peaks of a polygon w. Starting out from n, the number of peaks is first
increased up to m'=min(m,33) (if w has an odd number of vertices) or m'=min(m,50) (if w has an even number of vertices),
then decreased down to three (if w has an odd number of vertices) or two (if w has an even number of vertices) and, finally,
increased again up to n. peaksR changes the color of w such that each copy of w is colored with the successor of the color of its
predecessor with respect to a circular list of m'-1 equidistant colors.
pie(n,r) displays a pie with n pieces and radius r. For each two adjacent pieces p and p', the color of p is the successor of the
color of p' with respect to a circular list of n equidistant colors.

Fig. 24. The two solutions of loop(7,[(0,0)],ps)
obtained from applying axioms of BOTTLE (cf. [P01], Section 3.3)

pile(i,h) displays a container, consisting of h squares filled with i light blue units.
place(w,(x1,y1),...,(xn,yn)) and place(w,[(x1,y1),...,(xn,yn)]) display widget w at positions (x1,y1),...,(xn,yn).
plait/S(n,d,a,c) displays wave/S(n,d,a,c). Two widgets plait/S(n,d,a,c) and plait/S(n,d,-a,c) are drawn on the same baseline.
poly/S/F/SF(k,[rs]) displays poly/S/F/SF(k,[rs],black).
poly(k,[r1,...,rn],c) and polyF(k,[r1,...,rn],c) displays the c-colored outline resp. c-colored (filled) plane of a polygon with
m=k*n' vertices p1i1,...,p1in',...,pki1,...,pkin' where [ri1,...,rin'] is the sublist of nonzero elements of [r1,...,rn] and for all 1 <=
i <= k and all i1 <= j <= in', (rj,((i-1)*n+j)*360/m) are the polar coordinates of pij. If m > 100, the polygon is decomposed
with possibly undesired effects (see pathF)!
polyR(k,[r1,...,rn]) and polyRS(k,[r1,...,rn]) display a colored polygon with k*n' vertices as in the case of poly. The polygon
consists of k*n triangles such that one vertex of each triangle coincides with the anchor of the polygon. For each two adjacent
triangles t and t', the color of t is the successor of the color of t' with respect to a circular list of k*n equidistant colors. polyRS
displays smooth versions of the triangles in a way that the anchor vertex of each triangle remains at its original place.
polyS(k,[r1,...,rn],c) and polySF(k,[r1,...,rn],c) display smooth versions of poly(k,[r1,...,rn]) and polyF(k,[r1,...,rn],c),
respectively. If k*n > 99, the polygon is decomposed with possibly undesired effects (see pathF)!
pulse(w) displays the turtle widget consisting of 20 copies of widget w each of which is smaller than its predecessor. Then,
again in 20 steps, w is enlarged up to the original size.
rainbow(w) displays rainbow(w,102,0,0,2).
rainbow(w,n) displays rainbow(w,n,0,0,2).
rainbow(w,n,d) displays rainbow(w,n,d,360,2).
rainbow(w,n,d,a) displays rainbow(w,n,d,a,2).
rainbow(w,n,d,a,sc) displays n copies of widget w each of which is colored differently from its predecessor. For each two
successive copies w1 and w2 of w, the color of w1 is the successor of the color of w2 with respect to a circular list of n
equidistant colors. Moreover, copy i of w is the result of scaling down w by the factor c, turning w by an angle of b degrees and
moving it by d pixels where b=i*360/n if a >= 360 and b=a otherwise and where c=(n-i)/n if sc > 1 and c=sc otherwise.
rainbow2(w) displays rainbow2(w,102,0,0,2).
rainbow2(w,n) displays rainbow2(w,n,0,0,2).
rainbow2(w,n,d) displays rainbow2(w,n,d,360,2).
rainbow2(w,n,d,a) displays rainbow2(w,n,d,a,2).
rainbow2(w,n,d,a,sc) displays rainbow(w,n,d,a,sc) except that the list of equidistant colors is permuted such that the successor of
a color c is most distant from c.
rect(b,h) and rect(b,h,c) display the outline resp. c-colored plane of a rectangle with breadth 2*b and height 2*h.
repeat(ps) repeats the display of the pictures of ps until the stop or back to Solver1/2 button is invoked (see the paint buttons
).
reverse(ps) displays the reversal of the concatenation of the pictures of ps.
rframe(ps) displays a rectangular frame around each widget of the pictures of ps, colored with the respective complements of
the colors of the widgets.
rhomb displays rhomb(green)
rhomb(c) displays a c-colored leaf.
rhomb5(n) displays a brown branch with five green leaves. The number n indicates where the individual leaves are placed at the
branch (see [Dre], Example 3.3.3).
rotate(w) displays rotate(w,10).
rotate(w,a) displays 360/a copies of widget w. copy i+1 is the result of turning copy i by an angle of a degrees. copy i is painted
white before copy i+1 is drawn.
rotateC(w) displays rotateC(w,10).
rotateC(w,a) displays 360/a copies of widget w. copy i+1 is the result of turning copy i by an angle of a degrees. The canvas is
cleared before copy i+1 is drawn.
shineB/W(w) displays shineB/W(w,0,0).
shineB(w,d) and shineW(w,d) display 43 copies of widget w each of which is lightened darker (blacker) resp. lighter (whiter) than

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/BOTTLE

its predecessor. Moreover, copy i of w is the result of scaling down w by the factor (42-i)/42, turning it by an angle of i degrees
and moving it by d pixels.
shineB(w,d,a) and shineW(w,d,a) work the same as shineB(w,d) resp. shineW(w,d) except that all copies of w are turned by a
constant angle of a degrees.
shuffle(ps) shuffles the widgets of the pictures of ps. More precisely, given pictures p1=[w11,...,w1n1],...,pk=[wk1,...,wknk],
shuffle draws the widgets in the order w11,...,wk1,...,w1n1,...,wknk.
slice(r,a) and slices(r,a,c) displays the outline resp. c-colored plane of a slice with opening angle a of a circle with radius r.
snow(n,r) displays the outline of a Koch snowflake with depth n and radius r.
snow(n,r,c) displays a c-colored Koch snowflake with depth n and radius r. The triangles that build up the snowflake are colored
differently, depending on the level where they are created. For each two successive levels l and l', the color of l is the successor
of the color of l' with respect to a circular list of n equidistant colors.
spline[ps] and spline([ps],c) display B-splined versions of path[ps] and path([ps],c), respectively. pathS[ps] and pathS([ps],c),
respectively, yield the same results, but call Tcl/Tk's built-in splining algorithm.
splineC[ps], splineC([ps],c) and splineF([ps],c) display B-splined versions of poly[ps], poly([ps],c) and polyF([ps],c),
respectively. polyS[ps], polyS([ps],c) and polySF([ps],c), respectively, yield the same results, but call Tcl/Tk's built-in splining
algorithm.
split(ps) extracts the widgets enclosed in a turtle widget of ps and draws them on top of each other.
splitS(sc,ps) inserts the widgets enclosed in turtle widgets of ps into ps, draws them at their original places and scales the
resulting picture with factor sc. The spacing between the extracted widgets is preserved only if sc coincides with the actual
scale factor (see the paint buttons).
squareA/B(d,ps) displays tabA/B(n,d,ps) (see below) where n is the square root of the number of widgets of ps.
star(n,r,r') and star(n,r,r',c) displays an the outline resp. c-colored plane of a star with n peaks such that the maximum of r
and r' is the peak radius and the minimum is the valley radius of the star.
tabA(n,d,ps) combines the widgets of ps to a single one and displays them as a matrix with n columns and a space of d pixels
between the anchors of adjacent widgets.
tabB(n,d,ps) combines the widgets of ps to a single one and displays them as a matrix with n columns and a space of d pixels
between the borders of adjacent widgets. (The vertical space is determined by the greatest widgets of adjacent rows.)
taichi(yin,yang,c) displays a tai chi symbol with the (left) yin part colored in c and the (right) yang part colored in the
complement d of c. Moreover, the text yin is entered into the yin part in color d and the text yang is entered into the yang part
in color c.
text(s) and text(s,c) display the string s in black resp. color c. The text font and size must be set in the window of the solver
from which the painter was called.
tree(t) and tree(t,c) display the tree t with black resp. c-colored node entries and blue edges. Pointers are not dereferenced!
tria(r) and tria(r,c) display the outline resp. c-colored plane of an equilateral triangle with peak radius r.
trunk displays trunk(blue).
trunk(c) displays the c-colored trunk of a Pythagorean tree.
turt(acts) displays the picture a turtle draws when starting in state0 (position (0,0), orientation 0, color black, lightness value
0) and executing the actions of acts sequentially. These are the possble turtle actions:

M(d): Move a distance of |d| pixels. If d is positive, move forward. If d is negative, move backward. The turtle draws a line
from its old to its new position. At the end of an action sequence, the turtle combines these lines to paths or polygons.
The shape and color depends on entries in the stack of states each of which is a sixtuple (p,a,c,n,sc,ps,w) consisting of a
position p, an orientation a, a color c, a shape value n for the path still to be drawn, a scaling factor sc, a list ps of points
to be connected and the widget w painted at last.
J(d): Jumps |d| pixels. Same as M(d), but no line is drawn.
T(a): Turn by a degrees.
L: Turn left. Returns the value of T(-90).
R: Turn right. Returns the value of T(90).
B: Turn backwards. Returns the value of T(180).
O: Open a new subpicture. Equals O(black).
O(c): Open a c-colored path. Given the stack top (p,a,c',n,sc,ps,w), the turtle pushes (p,a,c,0,sc,[p],Nothing) on top of the
stack. The path drawn upon closing will be c-colored.
OS displays OS(black).
OS(c): Open a c-colored smooth path. Given the stack top (p,a,c',n,sc,ps,w), the turtle pushes (p,a,c,1,sc,[p],Nothing) on
top of the stack.
OF displays OF(black).
OF(c): Open a c-colored polygon. Given the stack top (p,a,c',n,sc,ps,w), the turtle pushes (p,a,c,2,sc,[p],Nothing) on top of
the stack.
OFS displays OFS(black).
OFS(c): Open a c-colored smooth polygon. Given the stack top (p,a,c',n,sc,ps,w), the turtle pushes (p,a,c,3,sc,[p],Nothing)
on top of the stack.
SC(sc): Open a scaled subpicture. Given the stack top (p,a,c,n,sc',ps), the turtle pushes (p,a,c,n,sc*sc',ps) on top of the
stack.
C: Close a subpicture. Given the stack top (p,a,c,n,sc,ps,w), The turtle pops the stack and returns to the state that is now
on top of the stack. Moreover, it draws a path connecting the points it has visited since the last opening action. The shape
and the color of the path are determined by that action (see above).
D: Draw. The turtle draws the path just described, but does not pop the stack. It only removes the connected points from
the stack top. Hence, in contrast to C, the turtle does not return to its position, orientation, etc. that it took during the
last opening action.
Any widget w recognized by polygon: Given the stack top (p,a,c,n,sc,ps,v), the turtle draws w at position p with orientation
a and scaling factor sc and replaces v by w.

turt(ps) combines the widgets of ps to a single one and displays them on top of each other.
wave(n,d,a,c) displays a c-colored wave with n peaks, a slope length of d pixels and a gradient angle of a degrees.
waveS(n,d,a,c) displays a c-colored smooth wave with n peaks, a slope length of d pixels and a gradient angle of a degrees.
If c is generated by the color grammar (see the Grammar), then c(ps) colors the widgets of ps with the color denoted by c.

polygon solution recognizes each solved formula

 Any Z1:x1=t1 &...& Any Zk:xk=tk & All Z(k+1):x(k+1)=/=t(k+1) &...& All Zn:xn=/=tn

and submits the terms t1,...,tn to polygon.

polygons combines the maximal subgraphs of the current graphs that are recognizable by polygon.

rectangles interprets a term of the form [(x1,y1,b1,h1),...,(xn,yn,bn,hn)] as a collection of rectangles r1,...,rn such that for all 1 <=

i <= n, (xi,yi) is the top-left corner, bi the breadth and hi is the height of ri.

If a file F contains the Haskell code of a graph G, each interpreter compiles the term file(F) into G. Conversely, given a term t that
represents a graph G, if the command store graph is applied to the term file(t,F), it saves the Haskell code of G to F and replaces
file(t,F) by file(F) (see the graph menu).

 Alignments and palindromes

This and the following sections deal with the alignment, palindrome, dissection and partition enumerators that can be called from
the solver's term/formula menu. Other enumeration algorithms may be added accordingly. The alignment enumerator and the
palindrome enumerator compute alignments between two string sequences [Gie] or within a single sequence [GM], respectively. A
development of the Haskell program for the former can be found in [P01], Section 2.4.

After two lines xs and ys of strings separated by blanks have been entered into the text field, the alignment enumerator asks for a
constraint. There are two possibilities:

match. The alignment enumerator computes all syntax trees for xs#reverse(ys) with a maximal number of equal- or compl-nodes
according to the following grammar G:

 match : align ---> match

insert : align ---> insert

delete : align ---> delete

end : align ---> #

equal : match ---> s align s for all strings s

compl : match ---> s align compl(s) for all strings s

ins : insert ---> align s for all strings s

del : delete ---> s align for all strings s

compl is a function on strings defined by a specification that must be entered before the enumerator is called. The specification
is also supposed to contain an equational axiom labels=t where t simplifies to a list of constants. compl maps all strings that
are not in labels to # (see, e.g., ALIGN).
local. The alignment enumerator computes all syntax trees for xs#reverse(ys) with a maximal local alignment, i.e. a path
consisting of equal- or compl-nodes, according to G.

Following the assignment of complementary DNA bases, the function compl maps a to t, t to a, c to g, g to c and all other strings to
#. Corresponding axioms are loaded when the alignment or palindrome enumerator is called from the solver.

Given the sequences

 s1 = a c t a c t g c t, s2 = a g a t a g,

s3 = a d f a a a a a a, s4 = a a a a a a d f a,

the trees in Fig. 25 are the only two syntax trees of s1#reverse(s2) that meet the match-constraint and the only two syntax trees of
s3#reverse(s4) that meet the match-constraint and the local-constraint, respectively. Here compl is defined by ALIGN.

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ALIGN
https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ALIGN

Fig. 25. Alignment terms and their pictorial representations

Fig. 26. The pictorial representation of the palindrome "Ein Neger blubb mit Gazelle zagt im Recen nie".
Again, compl is defined by ALIGN.

After a sequence xs of strings separated by blanks has been entered into the text field, the palindrome enumerator computes
syntax trees for xs with a maximal number of equal- or compl-nodes according to grammar G above with end rule replaced by two
rules:

 single : match ---> s for all strings s

end : align ---> _

Moreover, the match rule is preferred to the insert and delete rules. Again, compl is a function on strings defined by a specification
that must be entered before the enumerator is called (see above).

 Dissections and partitions

Fig. 27. All dissections of a 5x4-rectangle that satisfy area(1,2)&brick&hori:
each dissection satisfies brick and consists of subrectangles covering 1 or 2 unit squares

and satisfying hori (see below).

Fig. 28. All dissections of a 6x4-rectangle that satisfy eqarea(6):
each dissection consists of 6 subrectangles that cover the same area.

Fig. 29. All dissections of a 6x6-rectangle that satisfy sizes[6]&factor(2):
each dissection consists of 6 subrectangles and the breadth b and the height h

of each subrectangle satisfy b=2*h or h=2*b.

The dissection enumerator computes dissections of a rectangle and represents them directly without a detour via term
representations. The underlying algorithm creates and modifies a triple of lists of top, left and inner subrectangles, respectively,
such that dissection elements violating certain given constraints are discarded as early as possible (see [P94], Section 4).

Constraints. The dissection enumerator returns dissections of a given rectangle with breadth b and height h that satisfy one of the
following atomic constraints or disjunctive or conjunctive combinations thereof:

constraint holds true for all dissections

area(n) consisting of ceiling((b*h)/n) subrectangles that cover at most n unit squares

https://fldit-www.cs.uni-dortmund.de/~peter/Expander2/Examples/ALIGN

area(m,n) consisting of subrectangles that cover at least m and at most n unit squares

brick consisting of subrectangles r such that for all (x,y,b,h),(x,y',b',h') ∈ r, x=0, y'=/=y+h y' or y=/=y'+h' (see below)

eqarea(n) consisting of n subrectangles that cover the same number of unit squares

factor(p) consisting of subrectangles such that the breadth b and the height h of each subrectangle satisfy b=p*h or h=p*b

hori consisting of subrectangles whose height does not exceed the breadth

sizes(ns) consisting of n ∈ ns subrectangles

True

vert consisting of subrectangles whose breadth does not exceed the height

Formulas built up of atomic constraints are parsed according to the Grammar. Each constraint is translated into a triple of the
Haskell type

 ((Int,Int,Int,Int) -> Bool, [Int], [(Int,Int,Int,Int)] -> [(Int,Int,Int,Int)] -> Bool).

The first component is a Boolean function that checks individual rectangles each of which is represented as a quadruple (x,y,b,h)
where (x,y) is the top-left corner, b the breadth and h the height of the rectangle.
The second component lists the admissable cardinalities of a dissection. The third component is a Boolean function that checks a
relation between two parts of a dissection. Such a Boolean function is needed for expressing the brick constraint.

Fig. 30. A nested partition satisfying eqout&sym of a list with 10 elements and its interpretation by partition (see the pict type
menu).

Fig. 31. The nested partitions satisfying bal&eqout of a list with 16 elements

The partition enumerator computes nested partitions of a list and represents them as trees whose nodes are labelled with the
nesting degrees of the respective subpartitions. Partitions with singleton subpartitions are not constructed.

Let s be a set with n elements and parts(s) be the set of non-nested partitions of s with at least two elements. A Haskell program
that computes the cardinality f(n) of parts(s) reads as follows:

 f 0 = 1

f n = sum (map g [0..n-1]) where g i = (fact n/(fact (n-i)*fact i))*f i

fact i = product [1..i]

For the number h(n) of nested partitions of s we obtain:

 h 2 = 1

h n | n > 2 = sum[product[h (length p) | p <- ps] | ps <- parts s]

Hence, without meeting additional constraints, the number of trees representing nested partitions increases combinatorially with the
number of leaves:

number of leaves number of trees

5 45

6 197

7 903

8 4279

9 20793

10 103049

Constraints. The partition enumerator returns nested partitions that satisfy one of the following atomic constraints or disjunctive or
conjunctive combinations thereof.

constraint holds true for all trees

alter whose nodes at even (odd) positions of a list s of all nodes with the same direct predecessor
are leaves (inner nodes) unless s consists of leaves

bal that are balanced

eqout whose inner nodes with the same direct predecessor have the same outdegree

hei(n) whose height is at most n

levmin whose inner nodes at level n have an outdegree of at least n

levmax whose nodes at level n have an outdegree of at most max(2,n)

sym that are vertically symmetric

out(m,n) whose inner nodes at level n > 1 have an outdegree between m and n

True

Formulas built up of atomic constraints are parsed according to the Grammar.

 References

[AEH] S. Antoy, R. Echahed, M. Hanus, A Needed Narrowing Strategy, Journal of the ACM 47 (2000) 776-822
[Bry] R.E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transactions on Computers 35 (1986) 677-
691
[C] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C. Talcott, Maude Manual, SRI International 2005,
Maude
[Dre] Frank Drewes, Grammatical Picture Generation, Springer 2006
[Gie] R. Giegerich, A Systematic Approach to Dynamic Programming in Bioinformatics. Parts 1 and 2: Sequence Comparison and
RNA Folding, Report 99-05, Technical Department, University of Bielefeld 1999
[GM] R. Giegerich, C. Meyer, Algebraic Dynamic Programming, Proc. AMAST 2002, Springer LNCS 2422 (2002) 249-364
[Gor] Andrew D. Gordon, Bisimilarity as a Theory of Functional Programming, Theoretical Computer Science 228 (1999) 5-47
[HMU] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, 2nd ed.,
Addison-Wesley 2001
[KU] J.B. Kam, J.D. Ullman, Global data flow analysis and iterative algorithms, Journal of the ACM 23 (1976) 158-171
[P94] P. Padawitz, Computing Rectangular Dissections, Research Report 536/1994, Dept. of Comp. Sci., University of Dortmund
1994
[P96] P. Padawitz, Inductive Theorem Proving for Design Specifications, J. Symbolic Computation 21 (1996) 41-99
[P00] P.Padawitz, Swinging Types = Functions + Relations + Transition Systems, Theoretical Computer Science 243 (2000) 93-
165
[P01] P.Padawitz, Swinging Types At Work
[Prover] P.Padawitz, Expander2 as a Prover and Rewriter
[P03] P.Padawitz, Structured Swinging Types
[P05] P.Padawitz, Dialgebraic Specification and Modeling
[sli1] P.Padawitz, Expander2: Program Verification between Interaction and Automation, slides, University of Madrid 2006
[sli2] P.Padawitz, Dialgebraic Picture Generation: A case Study in Multi-Level Data Abstraction, slides, University of Dortmund
2006
[FMS] P.Padawitz, Formale Methoden des Systementwurfs, course notes, University of Dortmund 2005
[Pru] P. Prunsinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants, Springer 1990
[RS] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Vol. 3: Beyond Words, Springer 1997
[SMÖ] M.-O. Stehr, J. Meseguer, P.C. Ölveczky, Rewriting Logic as a Unifying Framework for Petri Nets, in: H. Ehrig et al., eds.,
Unifying Petri Nets, Springer LNCS 2128 (2001)

http://maude.csl.sri.com
http://http//fldit-www.cs.uni-dortmund.de/%7Epeter/maude-manual.pdf
http://fldit-www.cs.uni-dortmund.de/%7Epeter/BehExa.ps.gz
http://fldit-www.cs.uni-dortmund.de/%7Epeter/Expander2/Prover.pdf
http://fldit-www.cs.uni-dortmund.de/%7Epeter/SST.pdf
http://fldit-www.cs.uni-dortmund.de/%7Epeter/Dialg.pdf
http://fldit-www.cs.uni-dortmund.de/%7Epeter/Expander2/MadridSlides.pdf
http://fldit-www.cs.uni-dortmund.de/%7Epeter/Expander2/Exp2Pic.pdf
http://fldit-www.cs.uni-dortmund.de/%7Epeter/FMS.html

	Contents
	Main commands
	Overview
	Overall code structure
	Solver features
	Solver state variables
	Built-in signature
	Mouse and key events
	term/formula menu
	font menu
	transform-selection menu
	specification menu
	signature menu
	axioms menu
	theorems menu
	graph menu
	substitution menu
	parse buttons
	narrow/rewrite buttons
	simplify button
	paint buttons
	Further buttons
	Grammar
	Axioms and theorems
	Derivations
	Variables
	Simplifications
	Examples
	Widget interpreters
	pict type menu
	Alignments and palindromes
	Dissections and partitions
	References

