Expander2:

program verification between interaction and automation

Peter Padawitz TU Dortmund

February 3, 2021

Contents

1. Components of Expander2	4
2. Types and functions	8
3. Relations, quotients and substructures	10
4. 3 specifications	11
5. Deduction at a glance	14
6. Duality of narrowing and co/induction	16
7. Deduction in more detail	18
8. 3 kinds of rules	20
9. The bottom level: Simplifications	22
10. Subsumption	25
11. The medium level: narrowing and rewriting	29
12. The top level: induction and coinduction	35
13. 3 proofs	49
14. Ongoing work	53

- 15. The top level: More expansions
- 16. More examples

65

54

Components of Expander2

• 3 representations of a formula/term:

textual, **tree-like** (tree with additional forward or backward egdes) and **pictorial** (list of 2-dimensional widgets).

Terms may involve constants denoting **state variables** whose—usually hidden—values can be generated by equational axioms or an enumerator, modified by the simplifier and drawn by the painter. State variables are used for testing iterative algorithms. All representations can be edited, moved and scaled.

Sets of pictorial representations can also be rotated and completed to graphs by adding arcs of different shapes.

Example NDA (TRANS0)

defuncts: states
fovars: n
axioms: states = [0..10] &
 (n < 6 & n 'mod' 2 = 0 ==> n -> [n,n+1]) &
 (n < 6 & n 'mod' 2 =/= 0 ==> n -> n+1) &
 6 -> [1,3,5,7..10]

Types and functions

- Sums $\prod_{i \in I} t_i$ formalize case analysis and type extension. Products $\prod_{i \in I} t_i$ formalize/implement tupling and type restriction.
- A recursively defined type T is created from

• Functions $T \xrightarrow{f} polyType(T)$ are defined as initial catamorphisms (recursion). Functions $polyType(T) \xrightarrow{g} T$ are defined by as final anamorphisms (corecursion).

An element of an initial algebra and a final coalgebra, respectively

Relations, quotients and substructures

- Horn clauses r(t) ⇐ φ define a predicate (least relation) (safety predicate, transition system) as the least solution of r(t) ⇐ φ in r.
 Co-Horn clauses r(t) ⇒ φ define a copredicate (greatest relation) (liveness predicate, non-inductive property) as the greatest solution of r(t) ⇒ φ in r.
- The **complement** of a predicate/copredicate is a copredicate/predicate.
- Properties of least relations are proved by **induction**. Properties of greatest relations are proved by **coinduction**.
- Least/greatest congruences ≡: t × t and quotients A/≡^A formalize visible/hidden abstraction.
 Least/greatest invariants all : t and substructures all^A ⊆ A formalize visible/hidden metriction.

formalize visible/hidden restriction.

3 specifications

Example Partitioning and flattening finite lists (LIST and LISTEVAL)

constructs:	[] :	
defuncts:	flatten	
preds:	part	
fovars:	хуѕѕ'р	
axioms:	part([x],[[x]])	&
	<pre>(part(x:y:s,[x]:p) <=== part(y:s,p))</pre>	&
	<pre>(part(x:y:s,(x:s'):p) <=== part(y:s,s':p))</pre>	&
	<pre>flatten[] = []</pre>	&
	<pre>flatten(s:p) = s++flatten(p)</pre>	

Example Streams (infinite lists) (STREAM)

specs:	NAT BOOL				
constructs:	[] :				
defuncts:	head tail eq blink				
preds:	exists				
copreds:	fair				
fovars:	хуѕ				
hovars:	f				
axioms:	head(x:s) = x	&			
	tail(x:s) = s	&			
	head(blink) = 0	&			
	<pre>tail(blink) = 1:blink</pre>	&			
	eq(x)(x) = true	&			
	(x = /= y = => eq(x)(y) = false)	&			
	$(f(head(s)) = true \implies exists(f)(s))$	&			
	(f(head(s)) = false				
	==> (exists(f)(s) <=== exists(f)(tail(s))))	&			
	(fair(f)(s) ===> exists(f)(s) & fair(f)(tail(s)))				

Example Model checking (CTLlab)

```
constructs: a b
preds: P true OD Y ->
copreds: false OB X
fovars: x st st'
hovars: P
axioms: true(st)
                                                                        X.
             (false(st) ===> False)
                                                                        &
             (OD(x)(P)(st) <=== (st,x) -> st' & P(st'))
                                                                        &
             (OB(x)(P)(st) ===> ((st,x) \rightarrow st' ==> P(st')))
                                                                        &
             (X(st) ==> Y(st))
                                                                        X.
             (X(st) ==> OB(b)(X)(st))
                                                                        &
             (Y(st) <=== OD(a)(true)(st))
                                                                        &
             (Y(st) <=== OD(b)(Y)(st))
                                                                        &
             (2,b) \rightarrow 1 \& (2,b) \rightarrow 3 \& (3,b) \rightarrow 3 \& (3,a) \rightarrow 4
                                                                        &.
             (4,b) \rightarrow 3
```


Deduction at a glance

- **Top-down derivations** transform logical formulas into *True* or other solved formulas.
- **Rewrite sequences** generate/modify/normalize terms.

- Rules at three levels of automation/interaction:
 - *bottom:* **Simplifications** are equivalence transformations that partially evaluate terms and formulas.
 - *medium:* Narrowing and rewriting apply axioms to goals, exhaustively or selectively, interactively or automatically, stepwise or iteratively.
 - *top:* **Induction** and **coinduction** and other proper **expansions** are applied interactively and stepwise.

Induction and coinduction apply **goals** (hypotheses) to **axioms** and that way prove the former by solving the latter.

Duality of narrowing and co/induction

Narrowing applies axioms to conjectures.

The proof proceeds by transforming the modified conjectures. Coinduction and fixpoint induction apply conjectures to axioms. The proof proceeds by transforming the modified axioms.

Narrowing on a predicate p is a rule for evaluating p. Fixpoint induction on p is a rule for verifying p.

Narrowing on a copredicate q is a rule for verifying q. Coinduction on q is a rule for evaluating q.

Can co/induction be lifted to the medium level of automation?

Deduction in more detail

Analytical, top-down proofs of φ_1 like

$$\varphi_1 \vdash \varphi_2 \vdash \ldots \vdash \varphi_n$$

are sound (w.r.t. the initial/final specification model):

$$\varphi_1 \notin \varphi_2 \notin \ldots \notin \varphi_n$$

Deterministic or non-deterministic rewritings of t_1 :

$$t_1 \rightarrow t_{21} < +> \ldots < +> t_{2k_2} \rightarrow \ldots \rightarrow t_{n1} < +> \ldots < +> t_{nk_n}$$

The term () denotes *undefined*.

3 levels of automation \sim 3 kinds of rules

• A simplification $\frac{\varphi}{\psi}$ $\$ is applicable to any $C[\varphi]$:

• An expansion $\frac{\varphi}{\psi}$ \uparrow is applicable to $C[\varphi]$ if φ is a *positive* subformula of $C[\varphi]$:

 $polarity(position(\varphi), C[\varphi]) = true \implies \frac{C[\varphi]}{C[\eta/\imath]} \Uparrow$

• A contraction $\frac{\varphi}{\psi} \Downarrow$ is applicable to $C[\varphi]$ if φ is a *negative* subformula of $C[\varphi]$:

 $polarity(position(\varphi), C[\varphi]) = false \implies \frac{C[\varphi]}{C[\varphi]} \uparrow$

 $\frac{C[\varphi]}{C[\psi]} \updownarrow$

- ➤ The simplifier simplifies logical formulas and partially evaluates terms w.r.t. built-in types.
- Narrowing applies axioms to formulas. Rewriting applies axioms to terms. If all applicable axioms are applied at a given position, then narrowing is an equivalence transformation and thus a simplification!
- \succ Induction, coinduction and other expansions are applied locally and stepwise.

The bottom level: Simplifications

• Elimination of zeros and ones

$$\begin{array}{ccc} \underline{\varphi \wedge True} & \underline{\varphi \vee False} & \underline{\varphi \wedge False} & \underline{\varphi \wedge False} & \underline{\varphi \vee True} & \underline{() \rightarrow t} & \underline{t <+>()} \\ \bullet \ \mathbf{Flattening} \end{array}$$

$$\frac{\varphi \wedge (\psi_1 \wedge \dots \wedge \psi_n)}{\varphi \wedge \psi_1 \wedge \dots \wedge \psi_n} \quad \frac{\varphi \vee (\psi_1 \vee \dots \vee \psi_n)}{\varphi \vee \psi_1 \vee \dots \vee \psi_n}$$

• **Disjunctive normal form** Let f be a function and p be a co/predicate.

$$\frac{f(\ldots,t_1 < +> \ldots < +> t_n,\ldots)}{f(\ldots,t_1,\ldots) < +> \ldots < +> f(\ldots,t_n,\ldots)}$$

$$\frac{p(\ldots,t_1 < +> \ldots < +> t_n,\ldots)}{p(\ldots,t_1,\ldots) \lor \cdots \lor p(\ldots,t_n,\ldots)}$$

$$\frac{\varphi \wedge \forall \vec{x}(\psi_1 \vee \cdots \vee \psi_n)}{\forall \vec{x}((\varphi \wedge \psi_1) \vee \cdots \vee (\varphi \wedge \psi_n))} \text{ if no } x \in \vec{x} \text{ occurs freely } \varphi$$

• Term decomposition Let c and d be different constructors.

$$\frac{c(t_1,\ldots,t_n)=c(u_1,\ldots,u_n)}{t_1=u_1\wedge\cdots\wedge t_n=u_n} \quad \frac{c(t_1,\ldots,t_n)=d(u_1,\ldots,u_n)}{False}$$

$$\frac{c(t_1,\ldots,t_n)\neq c(u_1,\ldots,u_n)}{t_1\neq u_1\vee\cdots\vee t_n\neq u_n} \quad \frac{c(t_1,\ldots,t_n)\neq d(u_1,\ldots,u_n)}{True}$$

• Quantifier distribution

$$\frac{\forall \vec{x}(\varphi_1 \wedge \dots \wedge \varphi_n)}{\forall \vec{x}\varphi_1 \wedge \dots \wedge \forall \vec{x}\varphi_n} \quad \frac{\exists \vec{x}(\varphi_1 \vee \dots \vee \varphi_n)}{\exists \vec{x}\varphi_1 \vee \dots \vee \exists \vec{x}\varphi_n} \quad \frac{\exists \vec{x}(\varphi \Rightarrow \psi)}{\forall \vec{x}\varphi \Rightarrow \exists \vec{x}\psi}$$

$$\frac{\exists \vec{x}(\varphi_1 \wedge \dots \wedge \varphi_n)}{\exists \vec{x_1}\varphi_1 \wedge \dots \wedge \exists \vec{x_n}\varphi_n} \quad \frac{\forall \vec{x}(\varphi_1 \vee \dots \vee \varphi_n)}{\forall \vec{x_1}\varphi_1 \vee \dots \vee \forall \vec{x_n}\varphi_n}$$

if $\vec{x} = \vec{x_1} \cup \cdots \cup \vec{x_n}$ and for all $1 \le i \le n$, no variable of $\vec{x_i}$ occurs freely in some φ_j , $1 \le j \le n, j \ne i$.

- Removal of negation. Negation symbols are moved to literal positions where they are replaced by complement predicates: $\neg P(t)$ is reduced to $not_P(t)$, $\neg not_P(t)$ is reduced to P(t). Co-Horn/Horn axioms for not_P can be generated automatically from Horn/Co-Horn axioms for P.
- Removal of quantifiers. Unused bounded variables are removed. Successive quantifiers are merged.

Subsumption

$$\frac{\varphi \Rightarrow \psi}{True} \quad \frac{\varphi \Leftrightarrow \psi}{\psi \Rightarrow \varphi} \quad \frac{\psi \Leftrightarrow \varphi}{\psi \Rightarrow \varphi} \quad \frac{\varphi \land (\psi \Rightarrow \theta)}{\varphi \land \theta} \quad \text{if } \varphi \text{ subsumes } \psi$$
$$\frac{\varphi_1 \lor \cdots \lor \varphi_n}{\varphi_1 \lor \cdots \lor \varphi_{n-1}} \quad \text{if } \varphi_1 \land \cdots \land \varphi_{n-1} \text{ subsumes } \varphi_n$$
$$\frac{\varphi_1 \lor \cdots \lor \varphi_n}{\varphi_1 \lor \cdots \lor \varphi_{n-1}} \quad \text{if } \varphi_n \text{ subsumes } \varphi_1 \lor \cdots \lor \varphi_{n-1}$$

Subsumption is the least binary relation on terms and formulas that satisfies the following implications: Let \sim be the syntactic equality of formulas modulo the re-arrangement of arguments of permutative operators and θ denote a renaming of variables.

$$\begin{split} \varphi \sim \psi \implies \varphi \text{ subsumes } \psi \\ \varphi \text{ subsumes } \psi \implies \neg \psi \text{ subsumes } \neg \varphi \\ \varphi' \text{ subsumes } \varphi \text{ and } \psi \text{ subsumes } \psi' \implies \varphi \Rightarrow \psi \text{ subsumes } \varphi' \Rightarrow \psi' \\ \exists 1 \leq i \leq n : \varphi \text{ subsumes } \psi_i \implies \varphi \text{ subsumes } \psi_1 \lor \cdots \lor \psi_n \\ \forall 1 \leq i \leq n : \varphi \text{ subsumes } \psi \implies \varphi_1 \lor \cdots \lor \varphi_n \text{ subsumes } \psi \\ \forall 1 \leq i \leq n : \varphi \text{ subsumes } \psi_i \implies \varphi \text{ subsumes } \psi_1 \land \cdots \land \psi_n \\ \exists 1 \leq i \leq n : \varphi \text{ subsumes } \psi \implies \varphi_1 \land \cdots \land \varphi_n \text{ subsumes } \psi \\ \varphi(\vec{x}) \text{ subsumes } \psi(\vec{x}) \implies \exists \vec{x}\varphi(\vec{x}) \text{ subsumes } \forall \vec{y}\psi(\vec{y}) \\ \varphi(\vec{x}) \text{ subsumes } \psi(\vec{x}) \implies \forall \vec{x}\varphi(\vec{x}) \text{ subsumes } \forall \vec{y}\psi(\vec{y}) \\ \exists \theta, \vec{t} : \varphi\theta \sim \psi(\vec{t}) \implies \varphi \text{ subsumes } \forall \vec{x}\psi(\vec{x}) \\ \exists \theta, \vec{t} : \varphi(\vec{t}) \sim \psi\theta \implies \forall \vec{x}\varphi(\vec{x}) \text{ subsumes } \psi \\ \exists \theta, \vec{t}, \{i_1, \dots, i_k\} \subset \{1, \dots, n\} : (\varphi_{i_1} \land \cdots \land \varphi_{i_k})\theta \sim \psi(\vec{t}) \\ \implies \forall \vec{x}\varphi(\vec{x}) \text{ subsumes } \forall_i \forall (\vec{x}) \\ \exists \theta, \vec{t}, \{i_1, \dots, i_k\} \subset \{1, \dots, n\} : \varphi(\vec{t}) \sim (\psi_{i_1} \lor \cdots \lor \psi_{i_k})\theta \\ \implies \forall \vec{x}\varphi(\vec{x}) \text{ subsumes } \psi_1 \lor \cdots \lor \psi_n \end{aligned}$$

• Elimination of equations and inequations. Let $x \in \vec{x} \setminus var(t)$.

$$\frac{\exists \vec{x}(x=t \land \varphi)}{\exists \vec{x} \varphi[t/x]} \quad \frac{\forall \vec{x}(x \neq t \lor \varphi)}{\forall \vec{x} \varphi[t/x]}$$

$$\frac{\forall \vec{x}(x=t \land \varphi \Rightarrow \psi)}{\forall \vec{x}(\varphi \Rightarrow \psi)[t/x]} \quad \frac{\forall \vec{x}(\varphi \Rightarrow x \neq t \lor \psi)}{\forall \vec{x}(\varphi \Rightarrow \psi)[t/x]}$$

• Substitution by normal forms. Let $x \in \vec{x} \setminus var(t)$ and t be a normal form.

$$\frac{\exists \vec{x}(x=t \land \varphi)}{\exists \vec{x}(x=t \land \varphi[t/x])} \quad \frac{\forall \vec{x}(x \neq t \lor \varphi)}{\forall \vec{x}(x \neq t \lor \varphi[t/x])}$$

$$\frac{\forall \vec{x}(x=t \land \varphi \Rightarrow \psi)}{\forall \vec{x}(x=t \land \varphi[t/x] \Rightarrow \psi[t/x])} \quad \frac{\forall \vec{x}(\varphi \Rightarrow x \neq t \lor \psi)}{\forall \vec{x}(\varphi[t/x] \Rightarrow x \neq t \lor \psi[t/x])}$$

• Universal quantification of implications

$$\frac{\exists \vec{x} \varphi \Rightarrow \psi}{\forall \vec{x} (\varphi \Rightarrow \psi)} \quad \frac{\psi \Rightarrow \forall \vec{x} \varphi}{\forall \vec{x} (\psi \Rightarrow \varphi)}$$

if no variable of \vec{x} occurs freely in ψ .

• Implication splitting

$$\frac{\forall \vec{x}(\varphi_1 \lor \cdots \lor \varphi_n \Rightarrow \psi)}{\forall \vec{x}(\varphi_1 \Rightarrow \psi) \land \cdots \land \forall \vec{x}(\varphi_n \Rightarrow \psi)} \quad \frac{\forall \vec{x}(\varphi \Rightarrow \psi_1 \land \cdots \land \psi_n)}{\forall \vec{x}(\varphi \Rightarrow \psi_1) \land \cdots \land \forall \vec{x}(\varphi \Rightarrow \psi_n)}$$

• Uncurrying

$$\frac{\varphi \Rightarrow (\theta \Rightarrow \psi_1) \lor \psi_2}{\varphi \land \theta \Rightarrow \psi_1 \lor \psi_2}$$

The medium level: narrowing and rewriting

Axioms and theorems are Horn clauses ((1)-(7)), co-Horn clauses ((8)-(12)) or tautologies ((13) and (14)).

Let f be a defined function, p be a predicate, q be a copredicate and at_1, \ldots, at_n be atoms.

(1)	$\{guard \Rightarrow\}$	$(\underline{f(\vec{t})} = u$	$\{\Leftarrow prem\}$
(2)	$\{guard \Rightarrow\}$	$(\underline{t_1 \land \dots \land t_n} \to u$	$\{\Leftarrow=prem\}$
(3)	$\{guard \Rightarrow\}$	$(\underline{p(\vec{t})}$	$\{\Leftarrow prem\}$
(4)		$\underline{t} = u$	$\{\Leftarrow=prem\}$
(5)		$\underline{q(ec{t})}$	$\{\Leftarrow prem\}$
(6)		$\underline{at_1} \wedge \cdots \wedge \underline{at_n}$	$\{\Leftarrow prem\}$
(7)		$\underline{at_1} \lor \cdots \lor \underline{at_n}$	$\{\Leftarrow=prem\}$
(8)	$\{guard \Rightarrow\}$	$(\underline{q(ec{t})}$	$\implies conc)$
(9)		$\underline{t} = u$	$\Longrightarrow conc$
(10)		$\underline{p(\vec{t})}$	$\implies conc$
(11)		$\underline{at_1} \wedge \cdots \wedge \underline{at_n}$	$\Longrightarrow conc$
(12)		$\underline{at_1} \lor \cdots \lor \underline{at_n}$	$\Longrightarrow conc$
(13)		conc	
(14)		$\neg prem$	

narrowing upon a predicate p

where
$$\gamma_1 \Rightarrow (p(t_1) \iff \varphi_1), \dots, \gamma_n \Rightarrow (p(t_n) \iff \varphi_n)$$
 are the axioms for p ,

(*)
$$\vec{x}$$
 is a list of the variables of t ,
for all $1 \leq i \leq k$, $t\sigma_i = t_i\sigma_i$, $\gamma_i\sigma_i \vdash True$ and $Z_i = var(t_i, \varphi_i)$,
for all $k < i \leq n$, t is not unifiable with t_i .

narrowing upon a copredicate p

$$\frac{p(t)}{\bigwedge_{i=1}^k \forall Z_i : (\varphi_i \sigma_i \lor \vec{x} \neq \vec{x} \sigma_i)}$$

where $\gamma_1 \Rightarrow (p(t_1) \Longrightarrow \varphi_1), \ldots, \gamma_n \Rightarrow (p(t_n) \Longrightarrow \varphi_n)$ are the axioms for p and (*) holds true.

narrowing upon a defined function f

$$\frac{r(\ldots, f(t), \ldots)}{\bigvee_{i=1}^{k} \exists Z_i : (r(\ldots, u_i, \ldots)\sigma_i \land \varphi_i \sigma_i \land \vec{x} = \vec{x}\sigma_i) \lor} \\ \bigvee_{i=k+1}^{l} (r(\ldots, f(t), \ldots)\sigma_i \land \vec{x} = \vec{x}\sigma_i)$$

where r is a predicate or copredicate,

 $\gamma_1 \Rightarrow (f(t_1) = u_1 \iff \varphi_1), \dots, \gamma_n \Rightarrow (f(t_n) = u_n \iff \varphi_n)$ are the axioms for f,

(**)
$$\vec{x}$$
 is a list of the variables of t ,
for all $1 \leq i \leq k$, $t\sigma_i = t_i\sigma_i$, $\gamma_i\sigma_i \vdash True$ and $Z_i = var(t_i, \varphi_i)$,
for all $k < i \leq l$, σ_i is a partial unifier of t and t_i ,
for all $l < i \leq n$, t is not partially unifiable with t_i .

narrowing upon the predicate \rightarrow

$$\begin{array}{c} t \ ^{\wedge}v \rightarrow t' \\ \hline \bigvee_{i=1}^{k} \exists Z_{i} : ((u_{i} \ ^{\wedge}v)\sigma_{i} = t'\sigma_{i} \wedge \varphi_{i}\sigma_{i} \wedge \vec{x} = \vec{x}\sigma_{i}) \lor \\ \bigvee_{i=k+1}^{l} ((t \ ^{\wedge}v)\sigma_{i} \rightarrow t'\sigma_{i} \wedge \vec{x} = \vec{x}\sigma_{i}) \end{array}$$

where $\gamma_1 \Rightarrow (t_1 \rightarrow u_1 \iff \varphi_1), \ldots, \gamma_n \Rightarrow (t_n \rightarrow u_n \iff \varphi_n)$ are the axioms for \rightarrow , (**) holds true and σ_i is a unifier modulo associativity and commutativity of \wedge

elimination of non-narrowable atoms and terms

$$\frac{p(t)}{False} \quad \frac{q(t)}{True} \quad \frac{r(\ldots, f(t), \ldots)}{r(\ldots, (), \ldots)} \quad \frac{t \to t'}{() \to t'}$$

where $p \neq \rightarrow$ is a predicate, q is a copredicate, r is a predicate or copredicate, f is a defined function, t is a normal form and for all axioms $\gamma \Rightarrow (p(u) \iff \varphi), \gamma \Rightarrow (q(u) \implies \varphi), \gamma \Rightarrow (f(u) = v \iff \varphi)$ and $\gamma \Rightarrow (u \rightarrow v \iff \varphi), t$ and u are not unifiable.

rewriting upon a defined function f

where
$$\gamma_1 \Rightarrow f(t_1) = u_1, \dots, \gamma_1 \Rightarrow f(t_n) = u_n$$
 are the axioms for f and

(*) for all
$$1 \le i \le k$$
, $t = t_i \sigma_i$ and $\gamma_i \sigma_i \vdash True$,
for all $k < i \le n$, t does not match t_i .

rewriting upon the predicate \rightarrow

$$\frac{c(t)}{c(u_1\sigma_1) < +> \ldots < +> c(u_k\sigma_k)}$$

where $\gamma_1 \Rightarrow t_1 \rightarrow u_1, \ldots, \gamma_1 \Rightarrow t_n \rightarrow u_n$ are the axioms for \rightarrow and (*) holds true.

elimination of non-rewritable terms

$$\frac{f(t)}{()}$$

where f is a defined function, t is a normal form and for all axioms $\gamma \Rightarrow f(u) = v$ and $\gamma \Rightarrow u \to v$, t and u are not unifiable.

The top level: induction and coinduction

• Noetherian induction. Select a list of free or universal induction variables x_1, \ldots, x_n in the displayed tree.

If $\varphi = (prem \Rightarrow conc)$, then the *induction hypotheses*

$$conc' \iff (x_1, \dots, x_n) \gg (x'_1, \dots, x'_n) \land prem'$$

 $prem' \implies ((x_1, \dots, x_n) \gg (x'_1, \dots, x'_n) \Rightarrow conc')$

are added to the current theorems.

If φ is not an implication, then

$$conc' \iff (x_1, \ldots, x_n) \gg (x'_1, \ldots, x'_n)$$

is added. Primed formulas are obtained from unprimed ones by priming the occurrences of x_1, \ldots, x_n .

 \gg denotes the induction ordering. Each left-to right application of an added theorem corresponds to an induction step and introduces an occurrence of \gg .

After axioms for \gg have been added to the current axioms, narrowing steps upon \gg should remove the occurrences of \gg because the transformation is correct only if φ can be derived to *True*.

The following rules are correct if the selected subformulas have positive polarity.

For each predicate, copredicate or function p, let AX_p be the set of axioms for p. coinduction on a copredicate p

$$\frac{\psi(x) \Rightarrow p(x)}{\bigwedge_{p(t) \Rightarrow \varphi \in AX_p} (\psi(t) \Rightarrow \varphi[\psi/p])} \Uparrow$$

Realization:

 \succ Select subformulas

$$\{prem_1 \Rightarrow\} p(\vec{t_1})$$

$$\land \dots \qquad (A$$

$$\land \{prem_k \Rightarrow\} p(\vec{t_k})$$

such that p does not depend on any predicate or function occurring in $prem_i$.
(A) is turned into

$$p(\vec{x}) \iff \{prem_1 \land\} \ \vec{x} = \vec{t_1}$$

$$\lor \dots$$

$$\lor \ \{prem_k \land\} \ \vec{x} = \vec{t_k}$$
(A')

where \vec{x} is a list of variables.

> A new predicate p' is added to the current signature and

$$p'(\vec{x}) \iff \{prem_1 \land\} \ \vec{x} = \vec{t_1}$$

$$\lor \dots \qquad (AX_0)$$

$$\lor \ \{prem_k \land\} \ \vec{x} = \vec{t_k}$$

becomes the axiom for p'.

- $> AX_0$ is applied to $AX_p[p'/p]$.
- > The conjunction of the resulting clauses replaces the original conjecture A.

• *n*-level coinduction on a copredicate *p*

$$\frac{\psi(x) \Rightarrow p(x)}{\bigwedge_{p(t) \Rightarrow \varphi \in AX_p} (\psi(t) \Rightarrow \varphi'[\psi/p])} \Uparrow$$

where $\varphi \vdash_{AX_p}^n \varphi'$.

Realization:

- \succ Select subformulas of the form A and turn them into A'.
- ≻ A new predicate p' is added to the current signature and AX_0 becomes the axiom for p'.
- ➤ For all $p(t) \Rightarrow \varphi \in AX_p$, let φ' be the result of submitting φ to a sequence of n inference steps each of which consists of the parallel application of AX_p to all current redices.
- ► AX_0 is applied to $p'(t) \Rightarrow \varphi'[p'/p]$.
- \succ The conjunction of the resulting clauses replaces the original conjecture A.

• fixpoint induction on a predicate p

$$\frac{p(x) \Rightarrow \psi(x)}{\bigwedge_{p(t) \Leftarrow \varphi \in AX_p} (\varphi[\psi/p] \Rightarrow \psi(t))} \Uparrow$$

Realization:

 \succ Select subformulas

$$p(\vec{t_1}) \Rightarrow conc_1$$

$$\land \dots$$

$$\land p(\vec{t_k}) \Rightarrow conc_k$$
(B)

such that p does not depend on any predicate or function occurring in $conc_i$. (B) is turned into

$$p(\vec{x}) \implies (\vec{x} = \vec{t_1} \Rightarrow conc_1)$$

$$\land \dots \qquad (B')$$

$$\land (\vec{x} = \vec{t_k} \Rightarrow conc_k)$$

where \vec{x} is a list of variables.

> A new predicate p' is added to the current signature and

$$p'(\vec{x}) \implies (\vec{x} = \vec{t_1} \Rightarrow conc_1)$$

$$\land \dots \qquad (AX_0)$$

$$\land (\vec{x} = \vec{t_k} \Rightarrow conc_k)$$

becomes the axiom for p'.

 $> AX_0$ is applied to $AX_p[p'/p]$.

> The conjunction of the resulting clauses replaces the original conjecture B.

• n-level fixpoint induction on a predicate p

$$\frac{p(x) \Rightarrow \psi(x)}{\bigwedge_{p(t) \Leftarrow \varphi \in AX_p} (\varphi'[\psi/p] \Rightarrow \psi(t))} \Uparrow$$

where $\varphi \vdash_{AX_p}^n \varphi'$.

Realization:

- \succ Select subformulas of the form B and turn them into B'.
- ≻ A new predicate p' is added to the current signature and AX_0 becomes the axiom for p'.
- ➤ For all $p(t) \Leftarrow \varphi \in AX_p$, let φ' be the result of submitting φ to a sequence of n inference steps each of which consists of the parallel application of AX_p to all current redices.
- $\succ AX_0$ is applied to $\varphi'[p'/p] \Rightarrow p'(t)$.
- \succ The conjunction of the resulting clauses replaces the original conjecture B.

• fixpoint induction on a function f

$$\frac{f(x) \equiv y \Rightarrow \psi(x, y)}{\bigwedge_{f(t) \equiv u \Leftarrow \varphi \in flat(AX_f)} (\varphi[\psi/(f(_) \equiv _)] \Rightarrow \psi(t, u))} \Uparrow$$

Realization:

or

 \succ Select subformulas

$$f(\vec{t_1}) = u_1 \implies conc_1$$

$$\land \dots \qquad (C)$$

$$\land f(\vec{t_k}) = u_k \implies conc_k$$

$$f(\vec{t_1}) = u_1 \{\land conc_1\}$$

$$\land \dots \qquad (D)$$

$$\land f(\vec{t_k}) = u_k \{\land conc_k\}$$

such that f does not depend on any predicate or function occurring in u_i or $conc_i$.

(C) is turned into

$$f(\vec{x}) = z \implies (\vec{x} = \vec{t_1} \land z = u_1 \implies conc_1)$$

$$\land \dots$$

$$\land (\vec{x} = \vec{t_k} \land z = u_k \implies conc_k),$$

(C')

(D) is turned into

$$f(\vec{x}) = z \implies (\vec{x} = \vec{t_1} \Rightarrow z = u_1 \{ \land conc_1 \})$$

$$\land \dots \qquad (D')$$

$$\land (\vec{x} = \vec{t_k} \Rightarrow z = u_k \{ \land conc_k \})$$

where \vec{x} is a list of variables and z is a variable.

 \succ A new predicate f' is added to the current signature and

$$f'(\vec{x}, z) \implies ((\vec{x} = \vec{t_1} \land z = t_1) \implies conc_1)$$

$$\land \dots \qquad (AX_0)$$

$$\land ((\vec{x} = \vec{t_k} \land z = t_k) \implies conc_k)$$

resp.

$$f'(\vec{x}, z) \implies (\vec{x} = \vec{t_1} \Rightarrow (z = t_1 \{\land conc_1\}))$$

$$\land \dots \qquad (AX_0)$$

$$\land (\vec{x} = \vec{t_k} \Rightarrow (z = t_k \{\land conc_k\}))$$

becomes the axiom for f'.

➤ AX_0 is applied to $flat(AX_f)[f'/(f(_) \equiv _)].$

> The conjunction of the resulting clauses replaces the original conjecture C/D.

• n-level fixpoint induction on a function f

$$\frac{f(x) \equiv y \Rightarrow \psi(x, y)}{\bigwedge_{f(t) \equiv u \Leftarrow \varphi \in flat(AX_f)} (\varphi'[\psi/(f(_) \equiv _)] \Rightarrow \psi(t, u))} \uparrow$$

where $\varphi \vdash_{flat(AX_f)}^n \varphi'$.

Realization:

- > Select subformulas of the form C/D and turn them into C'/D'.
- > A new predicate f' is added to the current signature and AX_0 becomes the axiom for f'.
- ➤ For all $f(t) \equiv u \Leftrightarrow \varphi \in flat(AX_f)$, let φ' be the result of submitting φ to a sequence of *n* inference steps each of which consists of the parallel application of $flat(AX_f)$ to all current redices.
- $> AX_0$ is applied to $\varphi'[f'/(f(_-) \equiv _-)] \Rightarrow f'(t, u).$
- > The conjunction of the resulting clauses replaces the original conjecture C/D.

• Hoare induction. Select a subformula of the form

$$f(t_1, \dots, t_n) = t \Rightarrow conc$$
 (A)

or

$$f(t_1,\ldots,t_n) = t \{\land conc\}$$
(B)

such that f is a **derived function**, i.e. f has a single axiom of the form

$$f(x_1,\ldots,x_n)=g(u_1,\ldots,u_k)$$

or, if the term t_i in A/B has been selected (in addition to A/B itself), f has a single axiom of the form

$$f(x_1,\ldots,x_n)=g(x_i,\ldots,x_n,u_1,\ldots,u_k)$$

with distinct variables x_1, \ldots, x_n . A is turned into $INV1 \wedge INV2$ where

$$INV(x_1, \dots, x_n, u_1, \dots, u_k)$$
(INV1)
$$g(x_i, \dots, x_n, y_1, \dots, y_k) = z \land INV(x_1, \dots, x_n, y_1, \dots, y_k)$$
$$\Rightarrow (x_1 = t_1 \land \dots \land x_n = t_n \land x = t \Rightarrow conc)$$
(INV2)

while B is turned into $INV1 \wedge INV3$ where

$$g(x_i, \dots, x_n, y_1, \dots, y_k) = z \land INV(x_1, \dots, x_n, y_1, \dots, y_k)$$

$$\Rightarrow \quad (x_1 = t_1 \land \dots \land x_n = t_n \Rightarrow x = t \{\land conc\}$$
(INV3)

If t_i has not been selected in A/B, then $g(x_i, \ldots, x_n, y_1, \ldots, y_k)$ reduces to $g(y_1, \ldots, y_k)$. Usually, the proof proceeds by narrowing INV1, shifting

 $INV(x_1,\ldots,x_n,y_1,\ldots,y_k)$

from the premise to the conclusion of INV2/INV3 and submitting the resulting formula to fixpoint induction.

• Subgoal induction works the same as Hoare induction except that a selected conjecture of the form A is turned into $INV1 \wedge INV2$ where

$$INV(x_i, \dots, x_n, u_1, \dots, u_k, z)$$

$$\Rightarrow \quad (x_1 = t_1 \land \dots \land x_n = t_n \land x = t \Rightarrow conc \quad (INV1)$$

$$g(x_i, \dots, x_n, y_1, \dots, y_k) = z \Rightarrow INV(x_i, \dots, x_n, y_1, \dots, y_k, z) \quad (INV2)$$

while a selected conjecture of the form B is turned into $INV1 \wedge INV3$ where

$$g(x_i, \dots, x_n, y_1, \dots, y_k) = z \implies INV(x_i, \dots, x_n, y_1, \dots, y_k, z)$$
 (INV3)

Usually, the proof proceeds by narrowing INV1 and submitting INV2/INV3 to fixpoint induction.

3 proofs

Example PARTproof

```
part(s,p) ==> s = flatten(p)
```

Applying fixpoint induction w.r.t.

part([x],[[x]])

- & (part(x:y:s,[x]:p) <=== part(y:s,p))
- & (part(x:y:s,x:s':p) <=== part(y:s,s':p))

at position [] of the preceding formula leads to

```
All x:([x] = flatten[[x]]) &
All x y s p:(y:s = flatten(p) ==> x:y:s = flatten([x]:p)) &
All x y s p s':(y:s = flatten(s':p) ==> x:y:s = flatten(x:s':p))
```

The reducts have been simplified.

Applying the axiom resp. theorem

flatten(s:p) = s++flatten(p)

at positions [2,0,1,1], [2,0,0,1], [1,0,1,1], [0,0,1] of the preceding form

[] = flatten[]

The reducts have been simplified.

Narrowing the preceding formula leads to

True

Example FAIRBLINK

fair(eq(0))(blink) & fair(eq(0))(1:blink)

Applying coinduction w.r.t.

```
(fair(f)(s) ===> exists(f)(s) & fair(f)(tail(s)))
```

at position [] of the preceding formula leads to

exists(eq(0))(1:blink) & tail(blink) = 1:blink & exists(eq(0))(blink) |
exists(eq(0))(1:blink) & tail(blink) = blink & exists(eq(0))(blink)

The reducts have been simplified.

Narrowing the preceding formula (3 steps) leads to

True

Example CTLlabproof

X(3) & X(4)

Applying coinduction w.r.t.

(X(st) ===> Y(st)) & (X(st) ===> OB(b)(X)(st))

at position [] of the preceding formula leads to

Y(3) & Y(4) & OB(b)(X0)(3) & OB(b)(X0)(4)

The reducts have been simplified.

Narrowing the preceding formula (25 steps) leads to

True

Ongoing work

- compilers translating Haskell, Maude or Curry programs into simplification rules
- generating certain axioms or lemmas automatically from the given ones like it is already done with
 - axioms for complements
 - lemmas expressing the fixpoint property of a co/predicate
 - Horn axioms derived from co-Horn axioms
 - (Noetherian) induction hypotheses
 - axiom flattening
 - λ -applications derived from axiom premises
- integrating genuinely coalgebraic concepts into Expander2
 - subtypes
 - invariants
- application to the specification and verification of OO programs
- maybe: O'Haskell interface to Java (replacing Tcl/Tk)

The top level: More expansions

- Instantiation. Select an existentially/universally quantified variable x. If the scope of x has positive/negative polarity, then all occurrences of x in the scope are replaced by the term in the solver's entry field. Alternatively, the replacing term t may be taken from the displayed tree and moved to a position of x in the scope. Again, all occurrences of x in the scope are replaced by t.
- Generalization. Select a subformula φ and enter a formula ψ into the solver's entry field. If φ has positive/negative polarity, then φ is combined conjunctively/disjunctively with ψ .

- Vertical shift of quantifiers. Select quantified arguments of a propositional operator op, i.e. $op \in \{\land, \lor, \neg, \Rightarrow\}$. The quantifiers are shifted in front of op after all bound variables that also occur freely in some argument or in more than one argument of op have been renamed. For instance, a clause of type (6) or (11) cannot be applied to existentially quantified factors and a clause of type (7) or (12) cannot be applied to universally quantified summands. Hence moving the quantifiers out of the conjunction resp. disjunction may be necessary.
- Horizontal shift of subformulas. Select an implication

 $prem_1 \wedge \cdots \wedge prem_m \Rightarrow conc_1 \vee \cdots \vee conc_n,$

premises $prem_{i_1}, \ldots, prem_{i_k}$ and/or conclusions $conc_{j_1}, \ldots, conc_{j_l}$. The implication is turned into

$$prem_{i'_{1}} \wedge \dots \wedge prem_{i'_{r}} \wedge \neg conc_{j_{1}} \wedge \dots \wedge \neg conc_{j_{l}}$$
$$\Rightarrow \neg prem_{i_{1}} \vee \dots \vee \neg prem_{i_{k}} \vee conc_{j'_{1}} \vee \dots \vee conc_{j'_{s}}$$

where $i'_1, \ldots, i'_r = \{1, \ldots, m\} \setminus \{i_1, \ldots, i_k\}$ and $j'_1, \ldots, j'_s = \{1, \ldots, n\} \setminus \{j_1, \ldots, j_l\}$. Such a transformation may be necessary if the original implication shall be proved by fixpoint induction or coinduction. • Unification. Select two factors of a conjunction

$$\varphi = \exists \vec{x}(\varphi_1 \wedge \dots \wedge \varphi_n)$$

with positive polarity or two summands of a disjunction

$$\psi = \forall \vec{x} (\varphi_1 \lor \cdots \lor \varphi_n)$$

with negative polarity.

If they are unifiable and the unifier instantiates only variables of \vec{x} , then one of them is removed and the unifier is applied to the remaining conjunction/disjunction.

- Copy. Select a subtree ϕ whose parent node holds a conjunction or disjunction symbol. A copy of ϕ is added to the children of the subtree's parent node.
- **Removal.** Select summands/factors ϕ_1, \ldots, ϕ_n of the same disjunction/conjunction with positive/negative polarity.
 - ϕ_1, \ldots, ϕ_n are removed from the displayed tree.
- **Reversal.** Select subtrees, which are arguments of the same occurrence of a *permuta-tive* operator. Currently, the permutative operators are:

$$\&, |, =, = / =, \sim, \sim / \sim, +, *, \ ^{\wedge}, \{\}.$$

The list of selected subtrees is reversed.

• Atom decomposition.

$$\frac{f(t_1,\ldots,t_n)=f(u_1,\ldots,u_n)}{t_1=u_1\wedge\cdots\wedge t_n=u_n} \Uparrow \qquad \frac{f(t_1,\ldots,t_n)\neq f(u_1,\ldots,u_n)}{t_1\neq u_1\vee\cdots\vee t_n\neq u_n} \Downarrow$$

• Replacement by other sides.

• Transitivity. Select an atom tRt' with positive polarity or n-1 factors

$$t_1Rt_2, t_2Rt_3, \ldots, t_{n-1}Rt_n$$

of a conjunction with negative polarity such that R is among $<, \leq, >, \geq, =, \sim$. The selected atoms are decomposed resp. composed in accordance with the assumption that R is transitive.

• Narrowing on particular axioms. Select subtrees ϕ_1, \ldots, ϕ_n with positive/negative polarity and write Horn/co-Horn axioms into the text field or a signature symbol f into the solver's entry field.

Narrowing/rewriting steps upon the axioms in the text field or the axioms for f, respectively, are applied to ϕ_1, \ldots, ϕ_n .

• Axiom/theorem application. Select subtrees ϕ_1, \ldots, ϕ_n with positive/negative polarity and write the number of a Horn/co-Horn axiom or theorem into the solver's entry field.

The selected axiom or theorem ψ is applied from left to right or from right to left to ϕ_1, \ldots, ϕ_n . Left/right refers to t resp. u if ψ has the form $tRu \iff prem$ where R is symmetric and to the formula left/right of \iff resp. \implies in all other cases. The transformation is correct if the conclusion/premise of ψ has positive/negative polarity.

A clause of type (6), (7), (11) or (12) is applied to atoms at'_1, \ldots, at'_n each of which is part of a conjunction or disjunction: Let \vec{z} consist of the free variables of *prem* resp. *conc* that do not occur in at_1, \ldots, at_n .

application of (6)
$$\frac{\varphi_1(at'_1) \wedge \dots \wedge \varphi_n(at'_n)}{(\bigwedge_{i=1}^n \varphi_i(\exists \vec{z}(prem\sigma \wedge \bigwedge_{x \in dom(\sigma)} x \equiv x\sigma)))} \uparrow$$

where for all $1 \leq i \leq n$, $at'_i \sigma = at_i \sigma$ and φ_i does not contain existential quantifiers or negation or implication symbols.

application of (7)
$$\frac{\varphi_1(at'_1) \vee \cdots \vee \varphi_n(at'_n)}{(\bigwedge_{i=1}^n \varphi_i(\exists \vec{z}(prem\sigma \land \bigwedge_{x \in dom(\sigma)} x \equiv x\sigma)))} \uparrow$$

where for all $1 \leq i \leq n$, $at'_i \sigma = at_i \sigma$ and φ_i does not contain universal quantifiers or negation or implication symbols.

application of (11)
$$\frac{\varphi_1(at'_1) \wedge \dots \wedge \varphi_n(at'_n)}{(\bigvee_{i=1}^n \varphi_i(\forall \vec{z}(\bigwedge_{x \in dom(\sigma)} x \equiv x\sigma \Rightarrow conc\sigma)))} \Downarrow$$

where for all $1 \leq i \leq n$, $at'_i \sigma = at_i \sigma$ and φ_i does not contain existential quantifiers or negation or implication symbols.

application of (12)
$$\frac{\varphi_1(at'_1) \vee \cdots \vee \varphi_n(at'_n)}{(\bigvee_{i=1}^n \varphi_i(\forall \vec{z}(\bigwedge_{x \in dom(\sigma)} x \equiv x\sigma \Rightarrow conc\sigma)))} \Downarrow$$

where for all $1 \leq i \leq n$, $at'_i \sigma = at_i \sigma$ and φ_i does not contain universal quantifiers or negation or implication symbols.

• Tautology introduction. Let $True \implies conc$ and $False \iff prem$ be valid in the specification's initial/final model.

application of (13)
$$\frac{\varphi}{\forall \vec{z} conc \Rightarrow \varphi} \clubsuit$$
application of (14)
$$\frac{\varphi}{\neg \varphi \Rightarrow \exists \vec{z} prem} \clubsuit$$

• **Strong coinduction.** Select subformulas of the form A and turn them into A'. Each axiom

$$p(\vec{t}) \quad \Longrightarrow \quad conc$$

is transformed into

$$p(\vec{t}) \implies conc[p'/p] \lor p(\vec{t}).$$

A' is applied to the transformed axioms for p. The conjunction of the resulting clauses replaces A. p' is added as a new predicate to the current signature and

$$p'(\vec{x}) \iff \{prem_1 \land\} \vec{x} = \vec{t_1}$$

$$\land \dots$$

$$\land \qquad \{prem_k \land\} \vec{x} = \vec{t_k},$$

$$p'(\vec{x}) \iff p(\vec{x})$$

become the axioms of p'.

• Strong fixpoint induction. Select subformulas of the form B/C/D and turn them into B'/C'/D'. Each axiom

$$p(\vec{t}) \iff prem$$

is transformed into

$$p(\vec{t}) \iff prem[p'/p] \wedge p(\vec{t}).$$

Each axiom

$$f(\vec{t}) = t \quad \Leftarrow \quad prem$$

is transformed into

$$f(\vec{t}) = t \quad \Leftarrow \quad prem[f'(\vec{u}, u)/f(\vec{u}) = u] \wedge f(\vec{t}) = t.$$

B'/C'/D' is applied to the transformed (and flattened) axioms for f resp. p. The conjunction of the resulting clauses replaces B/C/D. p' resp. f' is added as a new predicate to the current signature and

$$p'(\vec{x}) \implies (\vec{x} = \vec{t_1} \Rightarrow conc_1)$$

$$\land \qquad \dots$$

$$\land \qquad (\vec{x} = \vec{t_k} \Rightarrow conc_k),$$

$$p'(\vec{x}) \implies p(\vec{x})$$

resp.

$$f'(\vec{x}, x) \implies ((\vec{x} = \vec{t_1} \land x = t_1) \Rightarrow conc_1)$$

$$\land \qquad \dots \qquad \land \qquad \dots \qquad ((\vec{x} = \vec{t_k} \land x = t_k) \Rightarrow conc_k),$$

$$f'(\vec{x}, x) \implies f(\vec{x}) = x$$

$$f'(\vec{x}, x) \implies (\vec{x} = \vec{t_1} \Rightarrow (x = t_1 \{\land conc_1\}))$$

$$\land \qquad \dots \qquad \land \qquad \dots \qquad (\vec{x} = \vec{t_k} \Rightarrow (x = t_k \{\land conc_k\}))$$

resp.

$$\begin{array}{rcl} f'(\vec{x},x) & \Longrightarrow & (\vec{x}=\vec{t_1} \ \Rightarrow \ (x=t_1\{\wedge \ conc_1\})) \\ & & \wedge & \dots \\ & & & \wedge & (\vec{x}=\vec{t_k} \ \Rightarrow \ (x=t_k\{\wedge \ conc_k\})), \\ f'(\vec{x},x) & \Longrightarrow & f(\vec{x})=x \end{array}$$

become the axioms for p' resp. f'.

More examples

Example Five queens (QUEENS)

preds: cmp loop queens

fovars: n x y xs ys ps s s'

conjects: queens(5,ps)
ps =
$$[(1,4), (2,2), (3,5), (4,3), (5,1)]$$

| ps = $[(1,3), (2,5), (3,2), (4,4), (5,1)]$
| ps = $[(1,5), (2,3), (3,1), (4,4), (5,2)]$
| ps = $[(1,4), (2,1), (3,3), (4,5), (5,2)]$
| ps = $[(1,5), (2,2), (3,4), (4,1), (5,3)]$
| ps = $[(1,1), (2,4), (3,2), (4,5), (5,3)]$
| ps = $[(1,2), (2,5), (3,3), (4,1), (5,4)]$
| ps = $[(1,2), (2,5), (3,3), (4,2), (5,4)]$
| ps = $[(1,3), (2,1), (3,4), (4,2), (5,5)]$
| ps = $[(1,2), (2,4), (3,1), (4,3), (5,5)]$

	1	2	3	4	5
1					
2					
3					
4					
5					

Example Labelled transition relation (TRANS1)

	а	b
2		1
2		3
3	4	3
4		3

Example Pathfinder (ROBOT)

preds: loop constructs: turt path place circ red defuncts: cs fovars: x' y' p q ps pa axioms:

conjects:

Any pa: (loop((0,0),path[],pa) & turt(pa:place(circ(2,red),cs)) = z)

Example Plan formation (ROBOTACTS)

preds: loop constructs: turt pathS place circ red O C blue M R L defuncts: cs fovars: x' y' s s' act act' acts acts1 acts2

axioms:

conjects:

Example Pythagorean trees (PYTREE)

x y	
trunk -> flipV(trunk)	&
trunk -> grow(trunk,trunk)	&
flipV(flipV(x)) -> x	
trunk	<+>
flipV(trunk)	<+>
grow(trunk,trunk)	<+>
<pre>grow(trunk,flipV(trunk))</pre>	<+>
pytree1	<+>
pytree2	<+>
<pre>file(pytree1code)</pre>	
	<pre>x y trunk -> flipV(trunk) trunk -> grow(trunk,trunk) flipV(flipV(x)) -> x trunk flipV(trunk) grow(trunk,trunk) grow(trunk,flipV(trunk)) pytree1 pytree2 file(pytree1code)</pre>
Example Various trees (NICETREE)

fovars: n x rhomb -> leaf(1.5,20) axioms: & rhomb \rightarrow leafF(15,6) & rhomb -> turt(blosF(10,5,2,red),blosF(5,3,1,yellow)) & rhomb \rightarrow polyR(5,[9,3]) & $rhomb \rightarrow rhomb5(1)$ & rhomb -> flipV(rhomb) & rhomb -> grow5(1,rhomb,rhomb,rhomb,rhomb) & rhomb -> growR(1,rhomb,rhomb,rhomb,rhomb) & & . . . $flipV(flipV(x)) \rightarrow x$

