
Expander2:

program verification between interaction and automation

Peter Padawitz

TU Dortmund

February 3, 2021

1



�
�

�

Contents

1. Components of Expander2 4

2. Types and functions 8

3. Relations, quotients and substructures 10

4. 3 specifications 11

5. Deduction at a glance 14

6. Duality of narrowing and co/induction 16

7. Deduction in more detail 18

8. 3 kinds of rules 20

9. The bottom level: Simplifications 22

10. Subsumption 25

11. The medium level: narrowing and rewriting 29

12. The top level: induction and coinduction 35

13. 3 proofs 49

14. Ongoing work 53

2



15. The top level: More expansions 54

16. More examples 65

3



�
�

�

Components of Expander2

4



• 3 representations of a formula/term:

textual, tree-like (tree with additional forward or backward egdes) and pictorial

(list of 2-dimensional widgets).

Terms may involve constants denoting state variables whose—usually hidden—values

can be generated by equational axioms or an enumerator, modified by the simplifier and

drawn by the painter. State variables are used for testing iterative algorithms.

All representations can be edited, moved and scaled.

Sets of pictorial representations can also be rotated and completed to graphs by adding

arcs of different shapes.

5



Example NDA (TRANS0)

defuncts: states

fovars: n

axioms: states = [0..10] &

(n < 6 & n ‘mod‘ 2 = 0 ==> n -> [n,n+1]) &

(n < 6 & n ‘mod‘ 2 =/= 0 ==> n -> n+1) &

6 -> [1,3,5,7..10]

<+>

0 []

1 () ()

2 0

()

[] 1

()

2 2

()

3 0

[] 3

()

1

4 4

4

2

[] 5

3

6

4

5

5

6

7 8 9 10

6



&

=

0

=

1

=

0 2

=

0

1 3

=

1 2

2 4

=

2

3 5

=

3 4

4 6

4

5

5 6

6

1 3 5 7 8 9 10 4 2

7



�
�

�

Types and functions

• Sums
∐

i∈I ti formalize case analysis and type extension.

Products
∏

i∈I ti formalize/implement tupling and type restriction.

• A recursively defined type T is created from

constructors

polyType(T )
c→ T

represent

data generated by,

context-free languages,

“finite”, “inductive” data

initial T -algebra

or

destructors

T
d→ polyType(T )

represent

transition systems,

“non-deterministic” functions,

streams and other “infinite” data

final T -coalgebra

• Functions T
f→ polyType(T ) are defined as initial catamorphisms (recursion).

Functions polyType(T )
g→ T are defined by as final anamorphisms (corecursion).

8



×

×

×

×

×

c1

+

+

+

+

+

d1

e3d2

e4

c2 c3

c4

+

+

+++

d1

d3d2

d4

An element of an initial algebra and a final coalgebra, respectively

9



�
�

�

Relations, quotients and substructures

• Horn clauses r(t)⇐ ϕ define a predicate (least relation)

(safety predicate, transition system)

as the least solution of r(t)⇐ ϕ in r.

Co-Horn clauses r(t)⇒ ϕ define a copredicate (greatest relation)

(liveness predicate, non-inductive property)

as the greatest solution of r(t)⇒ ϕ in r.

• The complement of a predicate/copredicate is a copredicate/predicate.

• Properties of least relations are proved by induction.

Properties of greatest relations are proved by coinduction.

• Least/greatest congruences ≡: t× t and quotients A/≡A
formalize visible/hidden abstraction.

Least/greatest invariants all : t and substructures allA ⊆ A

formalize visible/hidden restriction.

10



�
�

�

3 specifications

Example Partitioning and flattening finite lists (LIST and LISTEVAL)

constructs: [] :

defuncts: flatten

preds: part

fovars: x y s s’ p

axioms: part([x],[[x]]) &

(part(x:y:s,[x]:p) <=== part(y:s,p)) &

(part(x:y:s,(x:s’):p) <=== part(y:s,s’:p)) &

flatten[] = [] &

flatten(s:p) = s++flatten(p)

11



Example Streams (infinite lists) (STREAM)

specs: NAT BOOL

constructs: [] :

defuncts: head tail eq blink

preds: exists

copreds: fair

fovars: x y s

hovars: f

axioms: head(x:s) = x &

tail(x:s) = s &

head(blink) = 0 &

tail(blink) = 1:blink &

eq(x)(x) = true &

(x =/= y ==> eq(x)(y) = false) &

(f(head(s)) = true ==> exists(f)(s)) &

(f(head(s)) = false

==> (exists(f)(s) <=== exists(f)(tail(s)))) &

(fair(f)(s) ===> exists(f)(s) & fair(f)(tail(s)))

12



Example Model checking (CTLlab)

constructs: a b

preds: P true OD Y ->

copreds: false OB X

fovars: x st st’

hovars: P

axioms: true(st) &

(false(st) ===> False) &

(OD(x)(P)(st) <=== (st,x) -> st’ & P(st’)) &

(OB(x)(P)(st) ===> ((st,x) -> st’ ==> P(st’))) &

(X(st) ===> Y(st)) &

(X(st) ===> OB(b)(X)(st)) &

(Y(st) <=== OD(a)(true)(st)) &

(Y(st) <=== OD(b)(Y)(st)) &

(2,b) -> 1 & (2,b) -> 3 & (3,b) -> 3 & (3,a) -> 4 &

(4,b) -> 3

13



'

&

$

%Deduction at a glance

• Top-down derivations transform logical formulas into True or other solved formulas.

prove ϕ: ϕ ` True

solve ϕ: ϕ ` r(c)

refute ϕ: ¬ϕ ` True

verify p: p(x)⇒ ϕ ` True

evaluate p: p(x)⇐ ϕ ` True

evaluate t: t ≡ x ` c ≡ x

• Rewrite sequences generate/modify/normalize terms.

14



• Rules at three levels of automation/interaction:

• bottom: Simplifications are equivalence transformations that partially evaluate

terms and formulas.

• medium: Narrowing and rewriting apply axioms to goals,

exhaustively or selectively, interactively or automatically, stepwise or iteratively.

• top: Induction and coinduction and other proper expansions are applied

interactively and stepwise.

Induction and coinduction apply goals (hypotheses) to axioms and that way prove

the former by solving the latter.

15



�
�

�

Duality of narrowing and co/induction

φ(x)  ==> p(x)

φ(x)  ==> q(x)

p(x) ==> φ(x)

q(x) ==> φ(x)

True / False /
solved formula

axioms(p)[φ/p]

axioms(q)[φ/q]

fixpoint induction

coinduction

narrowing

predicate predicate

copredicatecopredicate

proof

proof

evaluation

evaluation

narrowing

narrowing

narrowing

16



Narrowing applies axioms to conjectures.

The proof proceeds by transforming the modified conjectures.

Coinduction and fixpoint induction apply conjectures to axioms.

The proof proceeds by transforming the modified axioms.

Narrowing on a predicate p is a rule for evaluating p.

Fixpoint induction on p is a rule for verifying p.

Narrowing on a copredicate q is a rule for verifying q.

Coinduction on q is a rule for evaluating q.

Can co/induction be lifted to the medium level of automation?

17



�
�

�

Deduction in more detail

Analytical, top-down proofs of ϕ1 like

ϕ1 ` ϕ2 ` . . . ` ϕn

are sound (w.r.t. the initial/final specification model):

ϕ1 ⇐ ϕ2 ⇐ . . . ⇐ ϕn

Deterministic or non-deterministic rewritings of t1:

t1 → t21<+> . . . <+>t2k2 → . . . → tn1<+> . . . <+>tnkn

The term () denotes undefined.

18



prove ϕ1: ϕn = True

refute ϕ1: ϕn = False

solve ϕ1: ϕn has the form

∃ Z1 : x1 = c1 ∧ · · · ∧ ∃ Zk : xk = ck∧
∀ Zk+1 : xk+1 6= ck+1 ∧ · · · ∧ ∀ Zn : xn 6= cn,

x1, . . . , xn are different free variables,

c1, . . . , cn consist of constructors,

{(i, j) | ci contains xj}+ is acyclic.

evaluate t: ϕ1 = (t = x), ϕn = (x = c)

rewrite t logically: ϕ1 = (t→ x), ϕn = (x = c1) ∧ · · · ∧ (x = ck)

19



�
�

�

3 levels of automation ; 3 kinds of rules

• A simplification
ϕ

ψ
m is applicable to any C[ϕ]:

C[ϕ]

C[ψ]
m

• An expansion
ϕ

ψ
⇑ is applicable to C[ϕ]

if ϕ is a positive subformula of C[ϕ]:

polarity(position(ϕ), C[ϕ]) = true =⇒ C[ϕ]

C[ψ]
⇑

• A contraction
ϕ

ψ
⇓ is applicable to C[ϕ]

if ϕ is a negative subformula of C[ϕ]:

polarity(position(ϕ), C[ϕ]) = false =⇒ C[ϕ]

C[ψ]
⇑

20



polarity(w,ψ) = f (w,ψ, true)

f (0w,ϕ⇒ ψ, b) = f (w,ϕ, not(b))

f (1w,ϕ⇒ ψ, b) = f (w,ψ, b)

f (0w,ϕ∧∨ψ, b) = f (w,ϕ, b)

f (1w,ϕ∧∨ψ, b) = f (w,ψ, b)

f (0w,∀∃ xϕ), b) = f (w,ϕ, b)

f (ε, ϕ, b) = b

â The simplifier simplifies logical formulas and partially evaluates terms w.r.t. built-in

types.

â Narrowing applies axioms to formulas. Rewriting applies axioms to terms.

If all applicable axioms are applied at a given position, then narrowing is an equiv-

alence transformation and thus a simplification!

â Induction, coinduction and other expansions are applied locally and stepwise.

21



�
�

�

The bottom level: Simplifications

• Elimination of zeros and ones

ϕ ∧ True

ϕ

ϕ ∨ False

ϕ

ϕ ∧ False

False

ϕ ∨ True

True

()→ t

False

t <+> ()

t

• Flattening
ϕ ∧ (ψ1 ∧ · · · ∧ ψn)

ϕ ∧ ψ1 ∧ · · · ∧ ψn
ϕ ∨ (ψ1 ∨ · · · ∨ ψn)

ϕ ∨ ψ1 ∨ · · · ∨ ψn
• Disjunctive normal form Let f be a function and p be a co/predicate.

f (. . . , t1 <+> . . . <+> tn, . . . )

f (. . . , t1, . . . ) <+> . . . <+> f (. . . , tn, . . . )

p(. . . , t1 <+> . . . <+> tn, . . . )

p(. . . , t1, . . . ) ∨ · · · ∨ p(. . . , tn, . . . )

ϕ ∧ ∀~x(ψ1 ∨ · · · ∨ ψn)

∀~x((ϕ ∧ ψ1) ∨ · · · ∨ (ϕ ∧ ψn))
if no x ∈ ~x occurs freely ϕ

22



• Term decomposition Let c and d be different constructors.

c(t1, . . . , tn) = c(u1, . . . , un)

t1 = u1 ∧ · · · ∧ tn = un

c(t1, . . . , tn) = d(u1, . . . , un)

False

c(t1, . . . , tn) 6= c(u1, . . . , un)

t1 6= u1 ∨ · · · ∨ tn 6= un

c(t1, . . . , tn) 6= d(u1, . . . , un)

True

• Quantifier distribution

∀~x(ϕ1 ∧ · · · ∧ ϕn)

∀~xϕ1 ∧ · · · ∧ ∀~xϕn
∃~x(ϕ1 ∨ · · · ∨ ϕn)

∃~xϕ1 ∨ · · · ∨ ∃~xϕn
∃~x(ϕ⇒ ψ)

∀~xϕ⇒ ∃~xψ

∃~x(ϕ1 ∧ · · · ∧ ϕn)

∃~x1ϕ1 ∧ · · · ∧ ∃ ~xnϕn
∀~x(ϕ1 ∨ · · · ∨ ϕn)

∀~x1ϕ1 ∨ · · · ∨ ∀ ~xnϕn
if ~x = ~x1 ∪ · · · ∪ ~xn and for all 1 ≤ i ≤ n, no variable of ~xi occurs freely in some ϕj,

1 ≤ j ≤ n, j 6= i.

23



• Removal of negation. Negation symbols are moved to literal positions where they

are replaced by complement predicates: ¬P (t) is reduced to not P (t), ¬not P (t) is

reduced to P (t). Co-Horn/Horn axioms for not P can be generated automatically from

Horn/Co-Horn axioms for P .

• Removal of quantifiers. Unused bounded variables are removed. Successive

quantifiers are merged.

24



�
�

�

Subsumption

ϕ⇒ ψ

True

ϕ⇔ ψ

ψ ⇒ ϕ

ψ ⇔ ϕ

ψ ⇒ ϕ

ϕ ∧ (ψ ⇒ θ)

ϕ ∧ θ
if ϕ subsumes ψ

ϕ1 ∨ · · · ∨ ϕn
ϕ1 ∨ · · · ∨ ϕn−1

if ϕ1 ∧ · · · ∧ ϕn−1 subsumes ϕn

ϕ1 ∨ · · · ∨ ϕn
ϕ1 ∨ · · · ∨ ϕn−1

if ϕn subsumes ϕ1 ∨ · · · ∨ ϕn−1

Subsumption is the least binary relation on terms and formulas that satisfies the follow-

ing implications: Let∼ be the syntactic equality of formulas modulo the re-arrangement

of arguments of permutative operators and θ denote a renaming of variables.

25



ϕ ∼ ψ =⇒ ϕ subsumes ψ

ϕ subsumes ψ =⇒ ¬ψ subsumes ¬ϕ
ϕ′ subsumes ϕ and ψ subsumes ψ′ =⇒ ϕ⇒ ψ subsumes ϕ′ ⇒ ψ′

∃ 1 ≤ i ≤ n : ϕ subsumes ψi =⇒ ϕ subsumes ψ1 ∨ · · · ∨ ψn
∀ 1 ≤ i ≤ n : ϕi subsumes ψ =⇒ ϕ1 ∨ · · · ∨ ϕn subsumes ψ

∀ 1 ≤ i ≤ n : ϕ subsumes ψi =⇒ ϕ subsumes ψ1 ∧ · · · ∧ ψn
∃ 1 ≤ i ≤ n : ϕi subsumes ψ =⇒ ϕ1 ∧ · · · ∧ ϕn subsumes ψ

ϕ(~x) subsumes ψ(~x) =⇒ ∃~xϕ(~x) subsumes ∃~yψ(~y)

ϕ(~x) subsumes ψ(~x) =⇒ ∀~xϕ(~x) subsumes ∀~yψ(~y)

∃ θ,~t : ϕθ ∼ ψ(~t) =⇒ ϕ subsumes ∃~xψ(~x)

∃ θ,~t : ϕ(~t) ∼ ψθ =⇒ ∀~xϕ(~x) subsumes ψ

∃ θ,~t, {i1, . . . , ik} ⊂ {1, . . . , n} : (ϕi1 ∧ · · · ∧ ϕik)θ ∼ ψ(~t)

=⇒ ϕ1 ∧ · · · ∧ ϕn subsumes ∃~xψ(~x)

∃ θ,~t, {i1, . . . , ik} ⊂ {1, . . . , n} : ϕ(~t) ∼ (ψi1 ∨ · · · ∨ ψik)θ
=⇒ ∀~xϕ(~x) subsumes ψ1 ∨ · · · ∨ ψn

26



• Elimination of equations and inequations. Let x ∈ ~x \ var(t).
∃~x(x = t ∧ ϕ)

∃~xϕ[t/x]

∀~x(x 6= t ∨ ϕ)

∀~xϕ[t/x]

∀~x(x = t ∧ ϕ⇒ ψ)

∀~x(ϕ⇒ ψ)[t/x]

∀~x(ϕ⇒ x 6= t ∨ ψ)

∀~x(ϕ⇒ ψ)[t/x]

• Substitution by normal forms. Let x ∈ ~x \ var(t) and t be a normal form.

∃~x(x = t ∧ ϕ)

∃~x(x = t ∧ ϕ[t/x])

∀~x(x 6= t ∨ ϕ)

∀~x(x 6= t ∨ ϕ[t/x])

∀~x(x = t ∧ ϕ⇒ ψ)

∀~x(x = t ∧ ϕ[t/x]⇒ ψ[t/x])

∀~x(ϕ⇒ x 6= t ∨ ψ)

∀~x(ϕ[t/x]⇒ x 6= t ∨ ψ[t/x])

27



• Universal quantification of implications

∃~xϕ⇒ ψ

∀~x(ϕ⇒ ψ)

ψ ⇒ ∀~xϕ
∀~x(ψ ⇒ ϕ)

if no variable of ~x occurs freely in ψ.

• Implication splitting

∀~x(ϕ1 ∨ · · · ∨ ϕn ⇒ ψ)

∀~x(ϕ1 ⇒ ψ) ∧ · · · ∧ ∀~x(ϕn ⇒ ψ)

∀~x(ϕ⇒ ψ1 ∧ · · · ∧ ψn)

∀~x(ϕ⇒ ψ1) ∧ · · · ∧ ∀~x(ϕ⇒ ψn)

• Uncurrying
ϕ⇒ (θ ⇒ ψ1) ∨ ψ2

ϕ ∧ θ ⇒ ψ1 ∨ ψ2

28



�
�

�

The medium level: narrowing and rewriting

Axioms and theorems are Horn clauses ((1)-(7)), co-Horn clauses ((8)-(12)) or tau-

tologies ((13) and (14)).

Let f be a defined function, p be a predicate, q be a copredicate and at1, . . . , atn be atoms.

29



(1) {guard⇒} (f (~t) = u {⇐= prem})
(2) {guard⇒} (t1

∧ . . . ∧tn → u {⇐= prem})
(3) {guard⇒} (p(~t) {⇐= prem})
(4) t = u {⇐= prem}
(5) q(~t) {⇐= prem}
(6) at1 ∧ · · · ∧ atn {⇐= prem}
(7) at1 ∨ · · · ∨ atn {⇐= prem}
(8) {guard⇒} (q(~t) =⇒ conc)

(9) t = u =⇒ conc

(10) p(~t) =⇒ conc

(11) at1 ∧ · · · ∧ atn =⇒ conc

(12) at1 ∨ · · · ∨ atn =⇒ conc

(13) conc

(14) ¬prem

30



narrowing upon a predicate p

p(t)∨k
i=1 ∃Zi : (ϕiσi ∧ ~x = ~xσi)

where γ1 ⇒ (p(t1)⇐= ϕ1), . . . , γn ⇒ (p(tn)⇐= ϕn) are the axioms for p,

(∗) ~x is a list of the variables of t,

for all 1 ≤ i ≤ k, tσi = tiσi, γiσi ` True and Zi = var(ti, ϕi),

for all k < i ≤ n, t is not unifiable with ti.

narrowing upon a copredicate p

p(t)∧k
i=1 ∀Zi : (ϕiσi ∨ ~x 6= ~xσi)

where γ1 ⇒ (p(t1) =⇒ ϕ1), . . . , γn ⇒ (p(tn) =⇒ ϕn) are the axioms for p and (∗) holds

true.

31



narrowing upon a defined function f

r(. . . , f (t), . . . )∨k
i=1 ∃Zi : (r(. . . , ui, . . . )σi ∧ ϕiσi ∧ ~x = ~xσi) ∨∨l

i=k+1(r(. . . , f (t), . . . )σi ∧ ~x = ~xσi)

where r is a predicate or copredicate,

γ1 ⇒ (f (t1) = u1 ⇐= ϕ1), . . . , γn ⇒ (f (tn) = un ⇐= ϕn) are the axioms for f ,

(∗∗) ~x is a list of the variables of t,

for all 1 ≤ i ≤ k, tσi = tiσi, γiσi ` True and Zi = var(ti, ϕi),

for all k < i ≤ l, σi is a partial unifier of t and ti,

for all l < i ≤ n, t is not partially unifiable with ti.

narrowing upon the predicate →

t ∧v → t′∨k
i=1 ∃Zi : ((ui

∧v)σi = t′σi ∧ ϕiσi ∧ ~x = ~xσi) ∨∨l
i=k+1((t

∧v)σi → t′σi ∧ ~x = ~xσi)

where γ1 ⇒ (t1 → u1 ⇐= ϕ1), . . . , γn ⇒ (tn → un ⇐= ϕn) are the axioms for →, (∗∗)
holds true and σi is a unifier modulo associativity and commutativity of ∧

32



elimination of non-narrowable atoms and terms

p(t)

False

q(t)

True

r(. . . , f (t), . . . )

r(. . . , (), . . . )

t→ t′

()→ t′

where p 6=→ is a predicate, q is a copredicate, r is a predicate or copredicate, f is a defined

function, t is a normal form and for all axioms γ ⇒ (p(u) ⇐= ϕ), γ ⇒ (q(u) =⇒ ϕ),

γ ⇒ (f (u) = v ⇐= ϕ) and γ ⇒ (u→ v ⇐= ϕ), t and u are not unifiable.

33



rewriting upon a defined function f

c(f (t))

c(u1σ1)<+> . . . <+>c(ukσk)

where γ1 ⇒ f (t1) = u1, . . . , γ1 ⇒ f (tn) = un are the axioms for f and

(∗) for all 1 ≤ i ≤ k, t = tiσi and γiσi ` True,

for all k < i ≤ n, t does not match ti.

rewriting upon the predicate →

c(t)

c(u1σ1)<+> . . . <+>c(ukσk)

where γ1 ⇒ t1 → u1, . . . , γ1 ⇒ tn → un are the axioms for → and (∗) holds true.

elimination of non-rewritable terms

f (t)

()

where f is a defined function, t is a normal form

and for all axioms γ ⇒ f (u) = v and γ ⇒ u→ v, t and u are not unifiable.

34



�
�

�

The top level: induction and coinduction

• Noetherian induction. Select a list of free or universal induction variables x1, . . . , xn
in the displayed tree.

If ϕ = (prem⇒ conc), then the induction hypotheses

conc′ ⇐= (x1, . . . , xn)� (x′1, . . . , x
′
n) ∧ prem′

prem′ =⇒ ((x1, . . . , xn)� (x′1, . . . , x
′
n) ⇒ conc′)

are added to the current theorems.

If ϕ is not an implication, then

conc′ ⇐= (x1, . . . , xn)� (x′1, . . . , x
′
n)

is added. Primed formulas are obtained from unprimed ones by priming the occurrences

of x1, . . . , xn.

� denotes the induction ordering. Each left-to right application of an added theorem

corresponds to an induction step and introduces an occurrence of �.

After axioms for � have been added to the current axioms, narrowing steps upon �
should remove the occurrences of� because the transformation is correct only if ϕ can

be derived to True.

35



The following rules are correct if the selected subformulas have positive polarity.

For each predicate, copredicate or function p, let AXp be the set of axioms for p.

• coinduction on a copredicate p

ψ(x) ⇒ p(x)∧
p(t)⇒ϕ∈AXp

(ψ(t)⇒ ϕ[ψ/p])
⇑

Realization:

â Select subformulas

{prem1 ⇒} p(~t1)

∧ . . . (A)

∧ {premk ⇒} p(~tk)

such that p does not depend on any predicate or function occurring in premi.

36



(A) is turned into

p(~x) ⇐= {prem1 ∧} ~x = ~t1

∨ . . . (A’)

∨ {premk ∧} ~x = ~tk

where ~x is a list of variables.

â A new predicate p′ is added to the current signature and

p′(~x) ⇐= {prem1 ∧} ~x = ~t1

∨ . . . (AX0)

∨ {premk ∧} ~x = ~tk

becomes the axiom for p′.

â AX0 is applied to AXp[p
′/p].

â The conjunction of the resulting clauses replaces the original conjecture A.

37



• n-level coinduction on a copredicate p

ψ(x)⇒ p(x)∧
p(t)⇒ϕ∈AXp

(ψ(t)⇒ ϕ′[ψ/p])
⇑

where ϕ `nAXp
ϕ′.

Realization:

â Select subformulas of the form A and turn them into A’.

â A new predicate p′ is added to the current signature and AX0 becomes the axiom

for p′.

â For all p(t) ⇒ ϕ ∈ AXp, let ϕ′ be the result of submitting ϕ to a sequence of n

inference steps each of which consists of the parallel application of AXp to all current

redices.

â AX0 is applied to p′(t)⇒ ϕ′[p′/p].

â The conjunction of the resulting clauses replaces the original conjecture A.

38



• fixpoint induction on a predicate p

p(x) ⇒ ψ(x)∧
p(t)⇐ϕ∈AXp

(ϕ[ψ/p]⇒ ψ(t))
⇑

Realization:

â Select subformulas

p(~t1) ⇒ conc1

∧ . . . (B)

∧ p(~tk) ⇒ conck

such that p does not depend on any predicate or function occurring in conci.

(B) is turned into

p(~x) =⇒ (~x = ~t1 ⇒ conc1)

∧ . . . (B’)

∧ (~x = ~tk ⇒ conck)

where ~x is a list of variables.

39



â A new predicate p′ is added to the current signature and

p′(~x) =⇒ (~x = ~t1 ⇒ conc1)

∧ . . . (AX0)

∧ (~x = ~tk ⇒ conck)

becomes the axiom for p′.

â AX0 is applied to AXp[p
′/p].

â The conjunction of the resulting clauses replaces the original conjecture B.

40



• n-level fixpoint induction on a predicate p

p(x)⇒ ψ(x)∧
p(t)⇐ϕ∈AXp

(ϕ′[ψ/p]⇒ ψ(t))
⇑

where ϕ `nAXp
ϕ′.

Realization:

â Select subformulas of the form B and turn them into B’.

â A new predicate p′ is added to the current signature and AX0 becomes the axiom

for p′.

â For all p(t) ⇐ ϕ ∈ AXp, let ϕ′ be the result of submitting ϕ to a sequence of n

inference steps each of which consists of the parallel application of AXp to all current

redices.

â AX0 is applied to ϕ′[p′/p]⇒ p′(t).

â The conjunction of the resulting clauses replaces the original conjecture B.

41



• fixpoint induction on a function f

f (x) ≡ y ⇒ ψ(x, y)∧
f(t)≡u⇐ϕ∈flat(AXf )

(ϕ[ψ/(f ( ) ≡ )]⇒ ψ(t, u))
⇑

Realization:

â Select subformulas

f (~t1) = u1 ⇒ conc1

∧ . . . (C)

∧ f (~tk) = uk ⇒ conck

or
f (~t1) = u1 {∧ conc1}

∧ . . . (D)

∧ f (~tk) = uk {∧ conck}
such that f does not depend on any predicate or function occurring in ui or conci.

42



(C) is turned into

f (~x) = z =⇒ (~x = ~t1 ∧ z = u1 ⇒ conc1)

∧ . . . (C’)

∧ (~x = ~tk ∧ z = uk ⇒ conck),

(D) is turned into

f (~x) = z =⇒ (~x = ~t1 ⇒ z = u1{∧ conc1})
∧ . . . (D’)

∧ (~x = ~tk ⇒ z = uk{∧ conck})

where ~x is a list of variables and z is a variable.

43



â A new predicate f ′ is added to the current signature and

f ′(~x, z) =⇒ ((~x = ~t1 ∧ z = t1) ⇒ conc1)

∧ . . . (AX0)

∧ ((~x = ~tk ∧ z = tk) ⇒ conck)

resp.

f ′(~x, z) =⇒ (~x = ~t1 ⇒ (z = t1{∧ conc1}))
∧ . . . (AX0)

∧ (~x = ~tk ⇒ (z = tk{∧ conck}))
becomes the axiom for f ′.

â AX0 is applied to flat(AXf)[f ′/(f ( ) ≡ )].

â The conjunction of the resulting clauses replaces the original conjecture C/D.

44



• n-level fixpoint induction on a function f

f (x) ≡ y ⇒ ψ(x, y)∧
f(t)≡u⇐ϕ∈flat(AXf )

(ϕ′[ψ/(f ( ) ≡ )]⇒ ψ(t, u))
⇑

where ϕ `nflat(AXf )
ϕ′.

Realization:

â Select subformulas of the form C/D and turn them into C’/D’.

â A new predicate f ′ is added to the current signature and AX0 becomes the axiom

for f ′.

â For all f (t) ≡ u ⇐ ϕ ∈ flat(AXf), let ϕ′ be the result of submitting ϕ to a

sequence of n inference steps each of which consists of the parallel application of

flat(AXf) to all current redices.

â AX0 is applied to ϕ′[f ′/(f ( ) ≡ )]⇒ f ′(t, u).

â The conjunction of the resulting clauses replaces the original conjecture C/D.

45



• Hoare induction. Select a subformula of the form

f (t1, . . . , tn) = t ⇒ conc (A)

or

f (t1, . . . , tn) = t {∧ conc} (B)

such that f is a derived function, i.e. f has a single axiom of the form

f (x1, . . . , xn) = g(u1, . . . , uk)

or, if the term ti in A/B has been selected (in addition to A/B itself), f has a single

axiom of the form

f (x1, . . . , xn) = g(xi, . . . , xn, u1, . . . , uk)

with distinct variables x1, . . . , xn. A is turned into INV 1 ∧ INV 2 where

INV (x1, . . . , xn, u1, . . . , uk) (INV1)

g(xi, . . . , xn, y1, . . . , yk) = z ∧ INV (x1, . . . , xn, y1, . . . , yk)

⇒ (x1 = t1 ∧ . . . ∧ xn = tn ∧ x = t ⇒ conc) (INV2)

while B is turned into INV 1 ∧ INV 3 where

g(xi, . . . , xn, y1, . . . , yk) = z ∧ INV (x1, . . . , xn, y1, . . . , yk)

⇒ (x1 = t1 ∧ . . . ∧ xn = tn ⇒ x = t {∧ conc} (INV3)

46



If ti has not been selected in A/B, then g(xi, . . . , xn, y1, . . . , yk) reduces to g(y1, . . . , yk).

Usually, the proof proceeds by narrowing INV1, shifting

INV (x1, . . . , xn, y1, . . . , yk)

from the premise to the conclusion of INV2/INV3 and submitting the resulting formula

to fixpoint induction.

47



• Subgoal induction works the same as Hoare induction except that a selected con-

jecture of the form A is turned into INV 1 ∧ INV 2 where

INV (xi, . . . , xn, u1, . . . , uk, z)

⇒ (x1 = t1 ∧ . . . ∧ xn = tn ∧ x = t ⇒ conc (INV1)

g(xi, . . . , xn, y1, . . . , yk) = z ⇒ INV (xi, . . . , xn, y1, . . . , yk, z) (INV2)

while a selected conjecture of the form B is turned into INV 1 ∧ INV 3 where

g(xi, . . . , xn, y1, . . . , yk) = z ⇒ INV (xi, . . . , xn, y1, . . . , yk, z) (INV3)

Usually, the proof proceeds by narrowing INV1 and submitting INV2/INV3 to fixpoint

induction.

48



�
�

�

3 proofs

Example PARTproof

part(s,p) ==> s = flatten(p)

Applying fixpoint induction w.r.t.

part([x],[[x]])

& (part(x:y:s,[x]:p) <=== part(y:s,p))

& (part(x:y:s,x:s’:p) <=== part(y:s,s’:p))

at position [] of the preceding formula leads to

All x:([x] = flatten[[x]]) &

All x y s p:(y:s = flatten(p) ==> x:y:s = flatten([x]:p)) &

All x y s p s’:(y:s = flatten(s’:p) ==> x:y:s = flatten(x:s’:p))

The reducts have been simplified.

Applying the axiom resp. theorem

49



flatten(s:p) = s++flatten(p)

at positions [2,0,1,1],[2,0,0,1],[1,0,1,1],[0,0,1] of the preceding formula leads to

[] = flatten[]

The reducts have been simplified.

Narrowing the preceding formula leads to

True

50



Example FAIRBLINK

fair(eq(0))(blink) & fair(eq(0))(1:blink)

Applying coinduction w.r.t.

(fair(f)(s) ===> exists(f)(s) & fair(f)(tail(s)))

at position [] of the preceding formula leads to

exists(eq(0))(1:blink) & tail(blink) = 1:blink & exists(eq(0))(blink) |

exists(eq(0))(1:blink) & tail(blink) = blink & exists(eq(0))(blink)

The reducts have been simplified.

Narrowing the preceding formula (3 steps) leads to

True

51



Example CTLlabproof

X(3) & X(4)

Applying coinduction w.r.t.

(X(st) ===> Y(st))

& (X(st) ===> OB(b)(X)(st))

at position [] of the preceding formula leads to

Y(3) & Y(4) & OB(b)(X0)(3) & OB(b)(X0)(4)

The reducts have been simplified.

Narrowing the preceding formula (25 steps) leads to

True

52



�
�

�

Ongoing work

• compilers translating Haskell, Maude or Curry programs into simplification rules

• generating certain axioms or lemmas automatically from the given ones like it is already

done with

• axioms for complements

• lemmas expressing the fixpoint property of a co/predicate

• Horn axioms derived from co-Horn axioms

• (Noetherian) induction hypotheses

• axiom flattening

• λ-applications derived from axiom premises

• integrating genuinely coalgebraic concepts into Expander2

• subtypes

• invariants

• application to the specification and verification of OO programs

• maybe: O’Haskell interface to Java (replacing Tcl/Tk)

53



�
�

�

The top level: More expansions

• Instantiation. Select an existentially/universally quantified variable x.

If the scope of x has positive/negative polarity, then all occurrences of x in the scope

are replaced by the term in the solver’s entry field.

Alternatively, the replacing term t may be taken from the displayed tree and moved to

a position of x in the scope. Again, all occurrences of x in the scope are replaced by t.

• Generalization. Select a subformula ϕ and enter a formula ψ into the solver’s entry

field. If ϕ has positive/negative polarity, then ϕ is combined conjunctively/disjunctively

with ψ.

54



• Vertical shift of quantifiers. Select quantified arguments of a propositional op-

erator op, i.e. op ∈ {∧,∨,¬,⇒}. The quantifiers are shifted in front of op after all

bound variables that also occur freely in some argument or in more than one argument

of op have been renamed. For instance, a clause of type (6) or (11) cannot be applied

to existentially quantified factors and a clause of type (7) or (12) cannot be applied to

universally quantified summands. Hence moving the quantifiers out of the conjunction

resp. disjunction may be necessary.

• Horizontal shift of subformulas. Select an implication

prem1 ∧ · · · ∧ premm ⇒ conc1 ∨ · · · ∨ concn,

premises premi1, . . . , premik and/or conclusions concj1, . . . , concjl. The implication is

turned into

premi′1
∧ · · · ∧ premi′r ∧ ¬concj1 ∧ · · · ∧ ¬concjl

⇒ ¬premi1 ∨ · · · ∨ ¬premik ∨ concj′1 ∨ · · · ∨ concj′s
where i′1, . . . , i

′
r = {1, . . . ,m} \ {i1, . . . , ik} and j′1, . . . , j

′
s = {1, . . . , n} \ {j1, . . . , jl}.

Such a transformation may be necessary if the original implication shall be proved by

fixpoint induction or coinduction.

55



• Unification. Select two factors of a conjunction

ϕ = ∃~x(ϕ1 ∧ · · · ∧ ϕn)

with positive polarity or two summands of a disjunction

ψ = ∀~x(ϕ1 ∨ · · · ∨ ϕn)

with negative polarity.

If they are unifiable and the unifier instantiates only variables of ~x, then one of them is

removed and the unifier is applied to the remaining conjunction/disjunction.

56



• Copy. Select a subtree φ whose parent node holds a conjunction or disjunction symbol.

A copy of φ is added to the children of the subtree’s parent node.

• Removal. Select summands/factors φ1, . . . , φn of the same disjunction/conjunction

with positive/negative polarity.

φ1, . . . , φn are removed from the displayed tree.

• Reversal. Select subtrees, which are arguments of the same occurrence of a permuta-

tive operator. Currently, the permutative operators are:

&, |,=,= / =,∼,∼/∼,+, ∗, ∧, {}.

The list of selected subtrees is reversed.

57



• Atom decomposition.

f (t1, . . . , tn) = f (u1, . . . , un)

t1 = u1 ∧ · · · ∧ tn = un
⇑ f (t1, . . . , tn) 6= f (u1, . . . , un)

t1 6= u1 ∨ · · · ∨ tn 6= un
⇓

• Replacement by other sides.

t = u ∧ ϕ(t)

t = u ∧ ϕ(u)
m t 6= u ∨ ϕ(t)

t 6= u ∨ ϕ(u)
m

t = u ∧ ϕ(t)⇒ ψ(t)

t = u ∧ ϕ(u)⇒ ψ(u)
m ϕ(t)⇒ t 6= u ∨ ψ(t)

ϕ(u)⇒ t 6= u ∨ ψ(u)
m

• Transitivity. Select an atom tRt′ with positive polarity or n− 1 factors

t1Rt2, t2Rt3, . . . , tn−1Rtn

of a conjunction with negative polarity such that R is among <,≤, >,≥,=,∼ . The

selected atoms are decomposed resp. composed in accordance with the assumption that

R is transitive.

58



• Narrowing on particular axioms. Select subtrees φ1, . . . , φn with positive/negative

polarity and write Horn/co-Horn axioms into the text field or a signature symbol f into

the solver’s entry field.

Narrowing/rewriting steps upon the axioms in the text field or the axioms for f , respec-

tively, are applied to φ1, . . . , φn.

• Axiom/theorem application. Select subtrees φ1, . . . , φn with positive/negative

polarity and write the number of a Horn/co-Horn axiom or theorem into the solver’s

entry field.

The selected axiom or theorem ψ is applied from left to right or from right to left to

φ1, . . . , φn. Left/right refers to t resp. u if ψ has the form tRu ⇐= prem where R

is symmetric and to the formula left/right of ⇐= resp. =⇒ in all other cases. The

transformation is correct if the conclusion/premise of ψ has positive/negative polarity.

A clause of type (6), (7), (11) or (12) is applied to atoms at′1, . . . , at
′
n each of which is

part of a conjunction or disjunction: Let ~z consist of the free variables of prem resp.

conc that do not occur in at1, . . . , atn.

59



application of (6)
ϕ1(at

′
1) ∧ · · · ∧ ϕn(at′n)

(
∧n
i=1 ϕi(∃~z(premσ ∧

∧
x∈dom(σ) x ≡ xσ)))

⇑

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain existential quantifiers or

negation or implication symbols.

application of (7)
ϕ1(at

′
1) ∨ · · · ∨ ϕn(at′n)

(
∧n
i=1 ϕi(∃~z(premσ ∧

∧
x∈dom(σ) x ≡ xσ)))

⇑

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain universal quantifiers or

negation or implication symbols.

application of (11)
ϕ1(at

′
1) ∧ · · · ∧ ϕn(at′n)

(
∨n
i=1 ϕi(∀~z(

∧
x∈dom(σ) x ≡ xσ ⇒ concσ)))

⇓

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain existential quantifiers or

negation or implication symbols.

application of (12)
ϕ1(at

′
1) ∨ · · · ∨ ϕn(at′n)

(
∨n
i=1 ϕi(∀~z(

∧
x∈dom(σ) x ≡ xσ ⇒ concσ)))

⇓

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain universal quantifiers or

negation or implication symbols.

60



• Tautology introduction. Let True =⇒ conc and False ⇐= prem be valid in the

specification’s initial/final model.

application of (13)
ϕ

∀~zconc⇒ ϕ
m

application of (14)
ϕ

¬ϕ⇒ ∃~zprem
m

61



• Strong coinduction. Select subformulas of the form A and turn them into A’. Each

axiom

p(~t) =⇒ conc

is transformed into

p(~t) =⇒ conc[p′/p] ∨ p(~t).

A’ is applied to the transformed axioms for p. The conjunction of the resulting clauses

replaces A. p′ is added as a new predicate to the current signature and

p′(~x) ⇐= {prem1 ∧} ~x = ~t1

∧ . . .

∧ {premk ∧} ~x = ~tk,

p′(~x) ⇐= p(~x)

become the axioms of p′.

62



• Strong fixpoint induction. Select subformulas of the form B/C/D and turn them

into B’/C’/D’. Each axiom

p(~t) ⇐= prem

is transformed into

p(~t) ⇐= prem[p′/p] ∧ p(~t).

Each axiom

f (~t) = t ⇐= prem

is transformed into

f (~t) = t ⇐= prem[f ′(~u, u)/f (~u) = u] ∧ f (~t) = t.

B’/C’/D’ is applied to the transformed (and flattened) axioms for f resp. p. The

conjunction of the resulting clauses replaces B/C/D. p′ resp. f ′ is added as a new

predicate to the current signature and

p′(~x) =⇒ (~x = ~t1 ⇒ conc1)

∧ . . .

∧ (~x = ~tk ⇒ conck),

p′(~x) =⇒ p(~x)

63



resp.

f ′(~x, x) =⇒ ((~x = ~t1 ∧ x = t1) ⇒ conc1)

∧ . . .

∧ ((~x = ~tk ∧ x = tk) ⇒ conck),

f ′(~x, x) =⇒ f (~x) = x

resp.

f ′(~x, x) =⇒ (~x = ~t1 ⇒ (x = t1{∧ conc1}))
∧ . . .

∧ (~x = ~tk ⇒ (x = tk{∧ conck})),
f ′(~x, x) =⇒ f (~x) = x

become the axioms for p′ resp. f ′.

64



�
�

�

More examples

Example Five queens (QUEENS)

preds: cmp loop queens

fovars: n x y xs ys ps s s’

axioms: (x =/= y+n & x =/= y-n ==> cmp(x)(y,n)) &

(xs ‘gives‘ x & zipAll(cmp(x))(ys)[1..length(ys)]

==> (xs,ys) -> (xs-x,x:ys)) &

loop(xs,([],ys),zip(xs)(ys)) &

(s -> s’ ==> (loop(xs,s,ps) <=== loop(xs,s’,ps))) &

(xs = [1..n] ==> (queens(n,ps) <=== loop(xs,(xs,[]),ps)))

65



conjects: queens(5,ps)

ps = [(1,4),(2,2),(3,5),(4,3),(5,1)]

| ps = [(1,3),(2,5),(3,2),(4,4),(5,1)]

| ps = [(1,5),(2,3),(3,1),(4,4),(5,2)]

| ps = [(1,4),(2,1),(3,3),(4,5),(5,2)]

| ps = [(1,5),(2,2),(3,4),(4,1),(5,3)]

| ps = [(1,1),(2,4),(3,2),(4,5),(5,3)]

| ps = [(1,2),(2,5),(3,3),(4,1),(5,4)]

| ps = [(1,1),(2,3),(3,5),(4,2),(5,4)]

| ps = [(1,3),(2,1),(3,4),(4,2),(5,5)]

| ps = [(1,2),(2,4),(3,1),(4,3),(5,5)]

66



Example Labelled transition relation (TRANS1)

constructs: a b

defuncts: states

axioms: states = [1,2,3,4] & labels = [a,b] &

(2,b) -> [1,3] & (3,b) -> 3 & (3,a) -> 4 & (4,b) -> 3

67



a b

2

1

3

3 4 3

4 3

68



Example Pathfinder (ROBOT)

preds: loop

constructs: turt path place circ red

defuncts: cs

fovars: x’ y’ p q ps pa

69



axioms:

cs = [(2,6),(6,2)] &

((p = (x+2,y) | p = (x,y+2)) & p ‘NOTin‘ cs ==> (x,y) -> p) &

loop((8,12),path(ps),path(ps++[(8,12)])) &

(p < (8,12) & p -> q

==> (loop(p,path(ps),pa) <=== loop(q,path(ps++[p]),pa))) &

((x,y) < (x,y’) <=== y < y’) &

((x,y) < (x’,y) <=== x < x’) &

((x,y) < (x’,y’) <=== x < x’ & y < y’)

conjects:

Any pa: (loop((0,0),path[],pa) & turt(pa:place(circ(2,red),cs)) = z)

70



Example Plan formation (ROBOTACTS)

preds: loop

constructs: turt pathS place circ red O C blue M R L

defuncts: cs

fovars: x’ y’ s s’ act act’ acts acts1 acts2

axioms:

(s = (x+2,y) & s ‘NOTin‘ cs ==> (x,y) -> (s,[M(2)])) &

(s = (x,y+2) & s ‘NOTin‘ cs ==> (x,y) -> (s,[R,M(2),L])) &

loop((8,12),acts,acts) &

(s < (8,12) & s -> (s’,acts)

==> (loop(s,acts1,acts2) <=== loop(s’,acts1++acts,acts2))) &

conjects:

Any acts: (loop((0,0),[],acts) &

turt(O(blue):acts++[C,place(circ(2,red),cs)]) = z)

71



Example Pythagorean trees (PYTREE)

fovars: x y

axioms: trunk -> flipV(trunk) &

trunk -> grow(trunk,trunk) &

flipV(flipV(x)) -> x

conjects: trunk <+>

flipV(trunk) <+>

grow(trunk,trunk) <+>

grow(trunk,flipV(trunk)) <+>

pytree1 <+>

pytree2 <+>

file(pytree1code)

72



Example Various trees (NICETREE)

fovars: n x

axioms: rhomb -> leaf(1.5,20) &

rhomb -> leafF(15,6) &

rhomb -> turt(blosF(10,5,2,red),blosF(5,3,1,yellow)) &

rhomb -> polyR(5,[9,3]) &

rhomb -> rhomb5(1) &

rhomb -> flipV(rhomb) &

rhomb -> grow5(1,rhomb,rhomb,rhomb,rhomb,rhomb) &

rhomb -> growR(1,rhomb,rhomb,rhomb,rhomb,rhomb) &

... &

flipV(flipV(x)) -> x

73



$

fun

x

growR

$ 2 rhomb

fun

rhomb5

y

growR

rhomb5

3

rhomb

$ 1

2

rhomb

rhomb x

fun

z

growR

rhomb5 x x

growR 2

3

rhomb y

1 y

rhomb5

growR y

rhomb

z 2

rhomb

2

x

rhomb rhomb5 z

3

rhomb rhomb

74


	Contents
	Components
	Types + functions
	Relations
	3 specifications
	Partitioning
	Streams
	Model checking

	Deduction
	Duality
	Deduction
	Levels
	Simplifications
	Subsumption
	Narrowing
	Co/induction
	3 proofs
	PARTproof
	FAIRBLINK
	CTLlabproof

	Ongoing work
	More expansions
	More examples
	Transition relations
	LTS
	Pathfinder
	Plan formation
	Pythagorean trees
	Various trees


