
Expander2, a Haskell-based prover and rewriter

fldit-www.cs.uni-dortmund.de/∼peter/Expander2.html

Peter Padawitz
TU Dortmund

7. Oktober 2011

1. Expander2 components 2

2. O’Haskell types 4

3. Non-simplifying inference rules 9

4. Examples 18

1

http://fldit-www.cs.uni-dortmund.de/~peter/Expander2.html

�
�

�

Expander2 components

2

3

�
�

�

O’Haskell types

Data types

data Datatype = constructor1 type11 ... type1n1 |
constructor2 type21 ... type2n2 |
...

a = constructor1 term11 ... term1n1
b = constructor2 term21 ... term2n2

4

Records

struct Record = selector1 :: type1 -> type1'
selector2 :: type2 -> type2'

record = struct selector1 t1 = term1 (non-recursive)
selector2 t2 = term2 (non-recursive)

oder

record = struct selector1 = selector1
selector2 = selector2

where selector1 t1 = term1 (recursive)
selector2 t2 = term2 (recursive)

a = record.selector1
b = record.selector2

5

Subtyping

struct RecordS < Record = selectorS1 :: typeS1
selectorS2 :: typeS2

Action < Cmd ()
Request a < Cmd a
Template a < Cmd a

struct Methods = method1 :: type11 ... type1n1 -> Action
method2 :: type21 ... type2n2 -> Request type2

Supertyping

data DatatypeS > Datatype = constructorS1 typeS11 ... typeS1nS1 |
constructorS2 typeS21 ... typeS2nS2 |

6

Object classes (templates)

class :: type1 -> type2 -> ... -> Template Methods

class x1 x2 ... = template stateVar1 := term1
stateVar2 := term2

in struct method1 = action monad_term1 (non-recursive)
method2 = request monad_term2 (non-recursive)

where <local definitions>
oder

class x1 x2 ... = template stateVar1 := term1
stateVar2 := term2

in let <local definitions including
recursive actions or requests>

method1 = action monad_term1 (recursive)
method2 = request monad_term2 (recursive)

in struct ..Methods
where <local definitions>

a <- class a1 a2 ...

7

Main program of Expander2

module Ecom where

import Tk

main tk = do
win1 <- tk.window []
win2 <- tk.window []
fix solve1 <- solver tk "Solver1" win1 solve2 "Solver2" enum1 paint1

solve2 <- solver tk "Solver2" win2 solve1 "Solver1" enum2 paint2
paint1 <- painter tk "Solver1" solve1 "Solver2" solve2
paint2 <- painter tk "Solver2" solve2 "Solver1" solve1
enum1 <- enumerator tk solve1
enum2 <- enumerator tk solve2

solve1.buildSolve (0,20) solve1.skip
solve2.buildSolve (20,20) solve1.skip
win2.iconify

8

�
�

�

Non-simplifying inference rules

Resolution Let p be a least predicate. AXp is applied to an atom pt:

pt∨k
i=1 ∃Zi : (ϕiσi ∧ ~x = ~xσi)

m

where AXp = {pt1 ⇐ ϕ1, . . . , ptn ⇐ ϕn},

(∗) ~x is a list of the variables of t,
for all 1 ≤ i ≤ k, tσi = tiσi and Zi = var(ti, ϕi),
for all k < i ≤ n, t is not unifiable with ti.

Coresolution Let p be a greatest predicate. AXp is applied to an atom pt:

pt∧k
i=1 ∀Zi : (ϕiσi ∨ ~x 6= ~xσi)

m

where AXp = {pt1 ⇒ ϕ1, . . . , ptn ⇒ ϕn} and (∗) holds true.

9

Deterministic narrowing

Let f be a defined function. AXf is applied to a Σ-operation ft:

r(. . . , ft, . . .)∨k
i=1 ∃Zi : (r(. . . , ui, . . .)σi ∧ ϕiσi ∧ ~x = ~xσi) ∨∨l

i=k+1(r(. . . , ft, . . .)σi ∧ ~x = ~xσi)

where r is a predicate,
AXf = {γ1 ⇒ (ft1 = u1 ⇐= ϕ1), . . . , γn ⇒ (ftn = un ⇐= ϕn)},

(∗∗) ~x is a list of the variables of t,
for all 1 ≤ i ≤ k, tσi = tiσi, γiσi ` True and Zi = var(ti, ui, ϕi),
for all k < i ≤ l, σi is a partial unifier of t and ti,
for all l < i ≤ n, t is not partially unifiable with ti.

10

Nondeterministic narrowing

Let → be a transition predicate. AX→ is applied to an atom t ∧v → t′:

t ∧v → t′∨k
i=1 ∃Zi : ((ui

∧v)σi = t′σi ∧ ϕiσi ∧ ~x = ~xσi) ∨∨l
i=k+1((t ∧v)σi → t′σi ∧ ~x = ~xσi)

where AX→ = {γ1 ⇒ (t1 → u1 ⇐= ϕ1), . . . , γn ⇒ (tn → un ⇐= ϕn)}, (∗∗) holds true
and σi is a unifier modulo associativity and commutativity of ∧.

Elimination of irreducible atoms and terms (“negation as failure”)

pt

False

qt

True

r(. . . , ft, . . .)

r(. . . , (), . . .)

t→ t′

()→ t′

where p 6=→ is a least predicate, q is a greatest predicate, f is a defined function and pt,
qt, ft and t→ t′ are irreducible, i.e., none of the above rules is applicable.

11

Let p : e be a least predicate of P ′ and ψp : e be a Σ-formula that shall be proved to
follow from p.

Predicate induction A goal p⇒ ψp is applied to AXp:

p⇒ ψp∧
pt⇐ϕ∈AX(ϕ[ψp/p | p ∈ P ′]⇒ ψpt)

⇑

Equality induction = induction upon a function

f (x) = y ⇒ ψf(x, y)∧
f(t)=u⇐ϕ∈flat(AXf)(ϕ[ψf/(f (_) = _)]⇒ ψf(t, u))

⇑

Let p : e be a greatest predicate of P ′ and ψp : e be a Σ-formula that shall be proved to
imply p.

Predicate coinduction A goal ψp ⇒ p is applied to AXp:

ψp ⇒ p∧
pt⇒ϕ∈AX(ψpt⇒ ϕ[ψp/p | p ∈ P ′])

⇑

12

Noetherian induction

Select a list of free or universal induction variables x1, . . . , xn in the conjecture

ϕ = (prem⇒ conc).

Then the induction hypotheses

conc′ ⇐= (x1, . . . , xn)� (x′1, . . . , x
′
n) ∧ prem′

prem′ =⇒ ((x1, . . . , xn)� (x′1, . . . , x
′
n) ⇒ conc′)

are added to the current theorems.

If ϕ is not an implication, then

ϕ′ ⇐= (x1, . . . , xn)� (x′1, . . . , x
′
n)

is added.

Primed formulas are obtained from unprimed ones by priming the occurrences of x1, . . . , xn.

� denotes the induction ordering. Each left-to right application of an added theorem
corresponds to an induction step and introduces an occurrence of �.

After axioms for � have been added to the current axioms, narrowing steps upon �
should remove the occurrences of � because the transformation is correct only if ϕ can
be derived to True.

13

Incremental versions of predicate induction and coinduction

Let p : e be a least predicate of P ′ and ψp : e be a Σ-formula that shall be proved to
follow from p.

Predicate induction

(1)
p⇒ ψp∧

pt⇐ϕ∈AX(ϕ[qp/p | p ∈ P ′]⇒ ψpt)
qp ⇒ ψp is added to AX

(2)
qp ⇒ δp∧

pt⇐ϕ∈AX(ϕ[qp/p | p ∈ P ′]⇒ δpt)
qp ⇒ δp is added to AX

The proof starts by adding to P a predicate qp, first for ψp and – when the second rule
is applied – for a generalization ψp ∧ δp of ψp.

Between the applications of (1) resp. (2), coresolution steps upon the added axiom
qp ⇒ ψp must be confined to redex positions with negative polarity, i.e., the number
of preceding negation symbols in the entire formula must be odd. Otherwise the axiom
added when (2) is applied might violate the soundness of the coresolution steps.

Coresolution upon qp at any redex position becomes sound as soon as the set of axioms
for qp is not extended any more.

14

By inferring True from the conclusions of (1) and (2) one shows, roughly speaking, that
the predicate ψp ∧ δp solves the axioms for p. Since p itself represents the least solution,
we conclude p⇒ ψp ∧ δp, in particular the original goal p⇒ ψp.

Let p : e be a greatest predicate of P ′ and ψp : e be a Σ-formula that shall be proved to
imply p.

Predicate coinduction

(1)
ψp ⇒ p∧

pt⇒ϕ∈AX(ψpt⇒ ϕ[qp/p | p ∈ P ′])

qp ⇐ ψp and – only if p denotes a
congruence relation – equivalence
axioms for qp are added to AX

(2)
δp ⇒ qp∧

pt⇒ϕ∈AX(δpt⇒ ϕ[qp/p | p ∈ P ′])
qp ⇐ δp is added to AX

15

The proof starts by adding to P a predicate qp, first for ψp and – when the second rule
is applied – for a generalization ψp ∨ δp of ψp.

Between the applications of (1) resp. (2), resolution steps upon the added axiom qp ⇐ ψp
must be confined to redex positions with positive polarity, i.e., the number of preceding
negation symbols in the entire formula must be even. Otherwise the axiom added when
(2) is applied might violate the soundness of the resolution steps.

Resolution upon qp at any redex position becomes sound as soon as the set of axioms for
qp is not extended any more.

By inferring True from the conclusions of (1) and (2) one shows, roughly speaking, that
the predicate ψp∨ δp (or its equivalence closure if p denotes a congruence relation) solves
the axioms for p. Since p itself represents the greatest solution, we conclude ψp∨ δp ⇒ p,
in particular the original goal ψp ⇒ p.

16

Rewriting upon a defined function f

c(f (t))

c(u1σ1)<+> . . . <+>c(ukσk)

where γ1 ⇒ f (t1) = u1, . . . , γ1 ⇒ f (tn) = un are the axioms for f and

(∗) for all 1 ≤ i ≤ k, t = tiσi and γiσi ` True,
for all k < i ≤ n, t does not match ti.

Rewriting upon the predicate →

c(t)

c(u1σ1)<+> . . . <+>c(ukσk)

where γ1 ⇒ t1 → u1, . . . , γ1 ⇒ tn → un are the axioms for → and (∗) holds true.

Elimination of non-rewritable terms

f (t)

()

where f is a defined function, t is a normal form
and for all axioms γ ⇒ f (u) = v and γ ⇒ u→ v, t and u are not unifiable.

17

�
�

�

Examples

-- nat

preds: Nat even odd eq neq
defuncts: div fib loop fibL loop1 loop2 sum
fovars: q r n
hovars: f

axioms:

sum(0) = 0
& sum(suc(x)) = sum(x)+x+1
& (x < y ==> div(x,y) = (0,x))
& (0 < y & y <= x & div(x-y,y) = (q,r) ==> div(x,y) = (suc(q),r))
--& (0 < y & y <= x ==> div(x,y) == case(div(x-y,y),(q,r),(suc(q),r)))
& fib(0) == 0
& fib(1) == 1
& fib(suc(suc(n))) == fib(n)+fib(suc(n))
& (Nat(0) <==> True)

18

& (Nat(suc(x)) <==> Nat(x))
& even(0)
& (even(suc(x)) <=== odd(x))
& (odd(suc(x)) <=== even(x))
& eq(x)(x)
& (x =/= y ==> neq(x)(y))

-- & div(x,y) = loop(y,0,x)
& (loop(y,q,r) = (q,r) <=== r < y)
& (loop(y,q,r) = loop(y,q+1,r-y) <=== r >= y)
& (INV(x,y,q,r) <=== x = (y*q)+r)

& fibL(n) = loop1(n,0,1)
& loop1(0,x,y) = x
& loop1(suc(n),x,y) = loop1(n,y,x+y)

& loop2(f)(0)(x) == x
& loop2(f)(suc(n))(x) == f$loop2(f)(n)(x)

& suc(x) >> x
& Nat(0)

19

& (Nat(suc(x)) <=== Nat(x))

-- & (INV(n,x,y,z) <=== n >= x & y = fib(n-x) & z = fib(n-x+1))
& (x >> y <=== x > y)

conjects:

(sum(x) = y ==> x*(x+1) = 2*y) -- sum1
& (div(x,y) = (q,r) ==> x = (y*q)+r & r < y) -- div
& (x = (y*q)+r ==> loop(y,q,r) = div(x,y)) -- divloop
& (Nat(x) ==> x+y = y+x) -- comm
& (Nat(x) ==> x+(y+z) = (x+y)+z) -- assoc
& (Nat(x) ==> x < 2**x) -- exp
& (Nat(x) ==> even(x) | odd(x)) -- evod
& fibL(x) = fib(x) -- fib
& (Nat(x) ==> suc(x)*x = x**2+x) -- pot
& (Nat(n) ==> loop2(f)(n)fx = f$loop2(f)(n)(x)) -- natloop

& div(5,4) = x
& div(5,x) = (1,1)
& Any x y:(x < y & div(5,3)=(x,y))

20

terms:
fun((suc(x),y),x+x+y)(6,10) <+>
fun((suc(x),y),fun(z,x+y+z)(5))(suc(z),10) <+>
filter(rel(x,x<5))[1,2,3,4,5,6] <+>
filter(rel(x,Int(x)))[1,2,3.6,4,5,6]

-- sum

Derivation of

sum(x) = y ==> (x*(x+1)) = (2*y)

Adding

(sum0(x,y) ===> (x*(x+1)) = (2*y))

to the axioms and applying FIXPOINT INDUCTION wrt

sum(0) = 0

21

& (sum(suc(x)) = ((z0+x)+1) <=== sum(x) = z0)

at position [] of the preceding formula leads to

All x z0:((0*(0+1)) = (2*0)) &
All x z0:((suc(x)*(suc(x)+1)) = (2*((z0+x)+1)) <=== sum0(x,z0))

SIMPLIFYING the preceding formula (23 steps) leads to

All x z0:(sum0(x,z0) ==> ((x+(x+(x*x)))+x) = ((z0+x)+(z0+x)))

NARROWING the preceding formula (1 step) leads to

All x z0:((x*(x+1)) = (2*z0) ==> ((x+(x+(x*x)))+x) = ((z0+x)+(z0+x)))

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (3 steps) leads to

True

22

Number of proof steps: 4

-- NatEvenOdd

Derivation of

Nat(x) ==> even(x) | odd(x)

Adding

(Nat0(x) ===> even(x) | odd(x))

to the axioms and applying FIXPOINT INDUCTION wrt

Nat(0)
& (Nat(suc(x)) <=== Nat(x))

at position [] of the preceding formula leads to

All x:(even(0) | odd(0)) & All x:(even(suc(x)) | odd(suc(x)) <=== Nat0(x))

23

NARROWING the preceding formula (1 step) leads to

All x:(True | odd(0)) & All x:(even(suc(x)) | odd(suc(x)) <=== Nat0(x))

The axioms were MATCHED against their redices.

NARROWING the preceding formula (1 step) leads to

All x:(True | odd(0)) & All x:(odd(x) | odd(suc(x)) <=== Nat0(x))

The axioms were MATCHED against their redices.

NARROWING the preceding formula (1 step) leads to

All x:(True | odd(0)) & All x:(odd(x) | even(x) <=== Nat0(x))

The axioms were MATCHED against their redices.

NARROWING the preceding formula (1 step) leads to

24

All x:(True | odd(0)) & All x:(odd(x) | even(x) <=== even(x) | odd(x))

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (1 step) leads to

True

Number of proof steps: 6

-- natloop

Derivation of

Nat(n) ==> ((loop2(f)$n)$f(x)) = f((loop2(f)$n)$x)

Adding

(Nat0(n) ===> ((loop2(f)$n)$f(x)) = f((loop2(f)$n)$x))

25

to the axioms and applying FIXPOINT INDUCTION wrt

Nat(0)
& (Nat(suc(x)) <=== Nat(x))

at position [] of the preceding formula leads to

All x x0 f:
(Nat0(x) ==> f((loop2(f)$x)$f(x0)) = f(f((loop2(f)$x)$x0)))

The reducts have been simplified.

NARROWING the preceding formula (1 step) leads to

All x x0 f:
(All f0 x1:(((loop2(f0)$x)$f0(x1)) = f0((loop2(f0)$x)$x1)) ==>
f((loop2(f)$x)$f(x0)) = f(f((loop2(f)$x)$x0)))

The axioms were MATCHED against their redices.
The reducts have been simplified.

26

SUBSTITUTING f FOR f0 to the preceding formula leads to

All x x0 f:
(All x1:(((loop2(f)$x)$f(x1)) = f((loop2(f)$x)$x1)) ==>
f((loop2(f)$x)$f(x0)) = f(f((loop2(f)$x)$x0)))

The reducts have been simplified.

SUBSTITUTING x0 FOR x1 to the preceding formula leads to

All x x0 f:
(((loop2(f)$x)$f(x0)) = f((loop2(f)$x)$x0) ==>
f((loop2(f)$x)$f(x0)) = f(f((loop2(f)$x)$x0)))

The reducts have been simplified.

REPLACING THE SUBTREES at position [0,1,0] of the preceding formula leads to

All x x0 f:
(((loop2(f)$x)$f(x0)) = f((loop2(f)$x)$x0) ==>
f((loop2(f)$x)$f(x0)) = f(f((loop2(f)$x)$x0)))

27

The reducts have been simplified.

REPLACING THE SUBTREES at position [0,1,1,0] of the preceding formula leads to

True

The reducts have been simplified.

Number of proof steps: 6

28

-- list

specs: nat
preds: P any zipAny sorted part NOTsorted
copreds: all zipAll ~
defuncts: F bag map foldl sum product flatten ext scan zip zipWith

evens odds mergesort split merge isort insert
fovars: ys xs x y z s s' s1 s2 z1 z2 p
hovars: F P

axioms:

x:s >> s
& (s >> s' <=== s >> s1 & s1 >> s')
& bag(x:s) = x^bag(s)
& bag(s++s') = bag(s)^bag(s')
& map(F)[] = []
& map(F)(x:s) = F(x):map(F)(s)
& foldl(F)(x)[] = x
& foldl(F)(x)(y:s) = foldl(F)(F(x,y))(s)
& sum(s) = foldl(+)(0)(s)

29

& product(s) = foldl(*)(1)(s)
& flatten[] = []
& flatten(s:p) = s++flatten(p)
& ext(F)(s) = flatten(map(F)(s))
& scan(F)(x)[] = [x]
& scan(F)(x)(y:s) = x:scan(F)(F(x,y))(s)
& zip[][] = []
& zip(x:s)(y:s') = (x,y):zip(s)(s')
& zipWith(F)[][] = []
& zipWith(F)(x:s)(y:s') = F(x,y):zipWith(F)(s)(s')
& (any(P)(x:s) <=== P(x) | any(P)(s))
& (all(P)(x:s) ===> P(x) & all(P)(s))
& (zipAny(P)(x:s)(y:s') <=== P(x,y) | zipAny(P)(s)(s'))
& (zipAll(P)(x:s)(y:s') ===> P(x,y) & zipAll(P)(s)(s'))
& (x `in` s <=== any(eq(x))(s))
& (x `NOTin` s <=== all(neq(x))(s))
& part([x],[[x]])
& (part(x:y:s,[x]:p) <=== part(y:s,p))
& (part(x:y:s,(x:s'):p) <=== part(y:s,s':p))
& evens[] = []
& evens(x:s) = x:odds(s)

30

& odds[] = []
& odds(x:s) = evens(s)
& (mergesort(x:y:s) = merge(mergesort(x:s1),mergesort(y:s2))

<=== split(s) = (s1,s2))
& mergesort[] = []
& mergesort[x] = [x]
& (split(x:(y:s)) = (x:s1,y:s2) <=== split(s) = (s1,s2))
& split[] = ([],[])
& split[x] = ([x],[])
& (merge(x:s,y:s') = x:merge(s,y:s') <=== x <= y)
& (merge(x:s,y:s') = y:merge(x:s,s') <=== x > y)
& merge([],s) = s
& merge(s,[]) = s
& isort[] = []
& isort[x] = [x]
& isort(x:s) = insert(x,isort(s))
& insert(x,[]) = [x]
& (insert(x,y:s) = x:y:s <=== x <= y)
& (insert(x,y:s) = y:insert(x,s) <=== x > y)
& sorted([])
& sorted([x])

31

& (sorted(x:y:s) <=== x <= y & sorted(y:s))
& (s ~ s' ===> bag(s) = bag(s'))

theorems:

NOTsorted(s) <=== Not(sorted(s))
& (sorted(s) & sorted(s') ===> sorted(merge(s,s')))
& (sorted(s) ===> sorted(insert(x,s)))
& (split(s) = (s1,s2) ===> s ~ s1++s2)
& (s ~ merge(s1,s2) <=== s ~ s1++s2)
& (s ~ insert(x,s') <=== s ~ x:s')
& (sorted(x:s) ===> sorted(s))
& (sorted(x:s) & sorted(y:s') & x <= y & sorted(s1) & s1~(s++y:s') ===> sorted(x:s1))
& (x > y ===> y <= x)
& y:x:s++s' ~ x:s++y:s'
& s'++x:s ~ x:s++s'

conjects:

(part(s,p) ==> s = flatten(p)) &
(mergesort(s) = s' ==> sorted(s')) &

32

(mergesort(s) = s' ==> s ~ s') &
(isort(s) = s' ==> sorted(s')) &
(isort(s) = s' ==> s ~ s') &
(merge(s1,s2) = s & sorted(s1) & sorted(s2)

==> sorted(s) & s ~ s1++s2) &
(map(F)(s) = s' ==> lg(s) = lg(s')) &
zip(evens(s),odds(s)) = s &
-- prem subsumes conc:
All x s z:
(sorted(x:s) & All s': (NOTsorted(s') | x:s = s')

==> NOTsorted(z++[x]) | x:s = z++[x])

terms: merge([1,3,5],[2,4,6,8])

-- partflatten

Derivation of

part(s,p) ==> s = flatten(p)

33

Adding

(part0(s,p) ===> s = flatten(p))

to the axioms and applying FIXPOINT INDUCTION wrt

part([x],[[x]])
& (part(x:(y:s),[x]:p) <=== part(y:s,p))
& (part(x:(y:s),(x:s'):p) <=== part(y:s,s':p))

at position [] of the preceding formula leads to

All x y s p s':
([x] = flatten[[x]]) &

All x y s p s':
((x:(y:s)) = flatten([x]:p) <=== part0(y:s,p)) &

All x y s p s':
((x:(y:s)) = flatten((x:s'):p) <=== part0(y:s,s':p))

NARROWING the preceding formula (1 step) leads to

34

All x y s p s':
([x] = ([x]++flatten[])) &

All x y s p s':
((x:(y:s)) = flatten([x]:p) <=== part0(y:s,p)) &

All x y s p s':
((x:(y:s)) = flatten((x:s'):p) <=== part0(y:s,s':p))

The axioms were MATCHED against their redices.

NARROWING the preceding formula (1 step) leads to

All x y s p s':
([x] = ([x]++[])) &

All x y s p s':
((x:(y:s)) = flatten([x]:p) <=== part0(y:s,p)) &

All x y s p s':
((x:(y:s)) = flatten((x:s'):p) <=== part0(y:s,s':p))

The axioms were MATCHED against their redices.

NARROWING the preceding formula (1 step) leads to

35

All x y s p s':
([x] = ([x]++[])) &

All x y s p s':
((x:(y:s)) = ([x]++flatten(p)) <=== part0(y:s,p)) &

All x y s p s':
((x:(y:s)) = flatten((x:s'):p) <=== part0(y:s,s':p))

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (7 steps) leads to

All y s p:(part0(y:s,p) ==> (y:s) = flatten(p)) &
All x y s p s':
(part0(y:s,s':p) ==> (x:(y:s)) = flatten((x:s'):p))

NARROWING the preceding formula (1 step) leads to

All y s p:((y:s) = flatten(p) ==> (y:s) = flatten(p)) &
All x y s p s':
(part0(y:s,s':p) ==> (x:(y:s)) = flatten((x:s'):p))

36

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (1 step) leads to

All x y s p s':
(part0(y:s,s':p) ==> (x:(y:s)) = flatten((x:s'):p))

NARROWING the preceding formula (1 step) leads to

All x y s p s':
((y:s) = flatten(s':p) ==> (x:(y:s)) = flatten((x:s'):p))

The axioms were MATCHED against their redices.

NARROWING the preceding formula (1 step) leads to

All x y s p s':
((y:s) = (s'++flatten(p)) ==> (x:(y:s)) = flatten((x:s'):p))

The axioms were MATCHED against their redices.

37

NARROWING the preceding formula (1 step) leads to

All x y s p s':
((y:s) = (s'++flatten(p)) ==> (x:(y:s)) = ((x:s')++flatten(p)))

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (3 steps) leads to

True

Number of proof steps: 11

-- partflattenN

Derivation of

part(s,p) ==> s = flatten(p)

38

SELECTING INDUCTION VARIABLES at position [0,0] of the preceding formula leads to

All p:(part(!s,p) ==> !s = flatten(p))

NARROWING the preceding formula (1 step) leads to

All p:(Any x:(!s = [x] & p = [[x]]) |
Any x y s p0:
(part(y:s,p0) & !s = (x:(y:s)) & p = ([x]:p0)) |

Any x y s s' p0:
(part(y:s,s':p0) & !s = (x:(y:s)) & p = ((x:s'):p0)) ==>

!s = flatten(p))

SIMPLIFYING the preceding formula (17 steps) leads to

All x:(!s = [x] ==> [x] = flatten[[x]]) &
All p0 s y x:
(!s = (x:(y:s)) & part(y:s,p0) ==> (x:(y:s)) = flatten([x]:p0)) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

39

NARROWING the preceding formula (1 step) leads to

All x:(!s = [x] ==> [x] = ([x]++flatten[])) &
All p0 s y x:
(!s = (x:(y:s)) & part(y:s,p0) ==> (x:(y:s)) = flatten([x]:p0)) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

NARROWING the preceding formula (1 step) leads to

All x:(!s = [x] ==> [x] = ([x]++[])) &
All p0 s y x:
(!s = (x:(y:s)) & part(y:s,p0) ==> (x:(y:s)) = flatten([x]:p0)) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

SIMPLIFYING the preceding formula (1 step) leads to

All x:(!s = [x] ==> [x] = (x:[])) &
All p0 s y x:
(!s = (x:(y:s)) & part(y:s,p0) ==> (x:(y:s)) = flatten([x]:p0)) &

40

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

SIMPLIFYING the preceding formula (1 step) leads to

All x:(!s = [x] ==> x = x & [] = []) &
All p0 s y x:
(!s = (x:(y:s)) & part(y:s,p0) ==> (x:(y:s)) = flatten([x]:p0)) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

SIMPLIFYING the preceding formula (1 step) leads to

All p0 s y x:
(!s = (x:(y:s)) & part(y:s,p0) ==> (x:(y:s)) = flatten([x]:p0)) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

Applying the INDUCTION HYPOTHESIS

part(s,p) ===> (!s >> s ==> s = flatten(p))

41

at position [0,0,0,1] of the preceding formula leads to

All p0 s y x:
(!s = (x:(y:s)) & (!s >> (y:s) ==> (y:s) = flatten(p0)) ==>
(x:(y:s)) = flatten([x]:p0)) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

NARROWING the preceding formula (1 step) leads to

All p0 s y x:
(!s = (x:(y:s)) & (!s >> (y:s) ==> (y:s) = flatten(p0)) ==>
(x:(y:s)) = ([x]++flatten(p0))) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (1 step) leads to

42

All p0 s y x:
(!s = (x:(y:s)) & ((x:(y:s)) >> (y:s) ==> (y:s) = flatten(p0)) ==>
(x:(y:s)) = ([x]++flatten(p0))) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

NARROWING at position [0,0,0,1,0] of the preceding formula (1 step) leads to

All p0 s y x:
(!s = (x:(y:s)) & (True ==> (y:s) = flatten(p0)) ==>
(x:(y:s)) = ([x]++flatten(p0))) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (1 step) leads to

All p0 s y x:
(!s = (x:(y:s)) & (y:s) = flatten(p0) ==> (x:(y:s)) = ([x]++flatten(p0))) &

All p0 s' s y x:

43

(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

SIMPLIFYING the preceding formula (1 step) leads to

All p0 s y x:
(flatten(p0) = (y:s) & !s = (x:(y:s)) ==> (x:(y:s)) = ([x]++(y:s))) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

SIMPLIFYING the preceding formula (1 step) leads to

All p0 s y x:
(flatten(p0) = (y:s) & !s = (x:(y:s)) ==> (x:(y:s)) = (x:(y:s))) &

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

SIMPLIFYING the preceding formula (1 step) leads to

All p0 s' s y x:
(!s = (x:(y:s)) & part(y:s,s':p0) ==> (x:(y:s)) = flatten((x:s'):p0))

44

Applying the INDUCTION HYPOTHESIS

part(s,p) ===> (!s >> s ==> s = flatten(p))

at position [0,0,1] of the preceding formula leads to

All p0 s' s y x:
(!s = (x:(y:s)) & (!s >> (y:s) ==> (y:s) = flatten(s':p0)) ==>
(x:(y:s)) = flatten((x:s'):p0))

NARROWING the preceding formula (1 step) leads to

All p0 s' s y x:
(!s = (x:(y:s)) & (!s >> (y:s) ==> (y:s) = (s'++flatten(p0))) ==>
(x:(y:s)) = flatten((x:s'):p0))

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (1 step) leads to

All p0 s' s y x:

45

(!s = (x:(y:s)) & ((x:(y:s)) >> (y:s) ==> (y:s) = (s'++flatten(p0))) ==>
(x:(y:s)) = flatten((x:s'):p0))

NARROWING the preceding formula (1 step) leads to

All p0 s' s y x:
(!s = (x:(y:s)) & (True ==> (y:s) = (s'++flatten(p0))) ==>
(x:(y:s)) = flatten((x:s'):p0))

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (1 step) leads to

All p0 s' s y x:
(!s = (x:(y:s)) & (y:s) = (s'++flatten(p0)) ==> (x:(y:s)) = flatten((x:s'):p0))

NARROWING the preceding formula (1 step) leads to

All p0 s' s y x:
(!s = (x:(y:s)) & (y:s) = (s'++flatten(p0)) ==>
(x:(y:s)) = ((x:s')++flatten(p0)))

46

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (1 step) leads to

All p0 s' s y x:
(!s = (x:(y:s)) & (y:s) = (s'++flatten(p0)) ==>
(x:(y:s)) = (x:(s'++flatten(p0))))

SIMPLIFYING the preceding formula (1 step) leads to

All p0 s' s y x:
((s'++flatten(p0)) = (y:s) & !s = (x:(y:s)) ==> (x:(y:s)) = (x:(y:s)))

SIMPLIFYING the preceding formula (1 step) leads to

True

Number of proof steps: 25

47

-- zipEvensOddsL

Derivation of

zip(evens(s),odds(s)) = s

Adding

(zip0(z3,z4,z5) ===> (z3 = evens(s) & z4 = odds(s) ==> z5 = s))

to the axioms and applying FIXPOINT INDUCTION wrt

(zip[][]) = []
& ((zip(x:s)$(y:s')) = ((x,y):z6) <=== (zip(s)$s') = z6)

at position [] of the preceding formula leads to

All x s y s' z6:
((zip[][]) = []) &

All x s y s' z6:
((zip(x:s)$(y:s')) = ((x,y):z6) <=== (zip(s)$s') = z6)

48

SIMPLIFYING the preceding formula (5 steps) leads to

All x s y s':
((zip(x:s)$(y:s')) = ((x,y):(zip(s)$s')))

NARROWING the preceding formula (1 step) leads to

All x s y s':
(((x,y):(zip(s)$s')) = ((x,y):(zip(s)$s')))

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (1 step) leads to

True

Number of proof steps: 4

49

-- LTL

preds: P Q true false hatom F `U` Head
copreds: G `W` `R` `H` isPath isPathL NatStream
defuncts: blink evens odds zip
fovars: at s s'
hovars: P Q

axioms:

(true$s <==> True)
& (false$s <==> False)
& (hatom(at)$s <==> at -> head$s)

& (F(P)$s <=== P$s | F(P)$tail$s) -- finally
& (G(P)$s ===> P$s & G(P)$tail$s) -- generally
& ((P`U`Q)$s <=== Q$s | P$s & (P`U`Q)$tail$s) -- until
& ((P`W`Q)$s ===> Q$s | P$s & (P`W`Q)$tail$s) -- weak until
& ((P`R`Q)$s ===> Q$s & (P$s | (P`R`Q)$tail$s)) -- release
& ((P`H`Q)$s ===> P$s & ((P`H`Q)\/(Q`H`P)\/G(Q))$tail$s) -- alternate
& ((P->Q)$s <=== G(not(P)\/F(Q))$s) -- leads to

50

& (isPath$s ===> head$s -> head$tail$s & isPath$tail$s)
& (isPathL$s ===> Any x: (head$s,x) -> head$tail$s & isPathL$tail$s)

& (NatStream(x:s) ===> Nat(x) & NatStream(s))

& head$x:s == x
& tail$x:s == s

& head$blink == 0
& tail$blink == 1:blink

& (blink = 1:blink <==> False) -- used in fairblink2 and
-- notfairblink2

& head(evens(s)) == head(s)
& tail(evens(s)) == odds(tail(s))

& head(odds(s)) == head(tail(s))
& tail(odds(s)) == odds(tail(tail(s)))

& head(zip(s,s')) == head(s)

51

& tail(zip(s,s')) == zip(s',tail(s))

& (not(F(P)) <==> G(not(P)))
& (not(G(P)) <==> F(not(P)))
& (not(P`R`Q) <==> not(P)`U`not(Q))

& (s ~ s' ===> head(s) = head(s') & tail(s) ~ tail(s'))

theorems:

(F(Q)$s <=== (true`U`Q)$s)
& (G(P)$s <=== (P`W`false)$s)
& ((P`U`Q)$s <=== (P`W`Q)$s & F(Q)$s)
& ((P`W`Q)$s <=== (P`U`Q)$s | G(P)$s)

conjects:
G(F$(=0).head)(blink) --> True (fairblink0)

& Not(G(F$(=0).head)(blink)) --> True (notfairblink0)
& G(F$(=2).head)(blink) --> False (fairblink2)
& Not(G(F$(=2).head)(blink)) --> True (notfairblink2)
& G(F$(=!x).head)(blink) --> !x=0 | !x=1 (fairblinkx)

52

& G(F$(=0).head)(mu s.(0:1:s)) --> True (fairblinkmu)
& NatStream(mu s.(1:2:3:s)) --> True (natstream)
& NatStream(1:2:3:!s) --> !s = (3:!s) | !s = (2:(3:!s)) |

-- !s = (1:(2:(3:!s)))
-- (natstreamSol)

& zip(evens$s,odds$s) ~ s

-- fairblink

Derivation of

G(F((=0).head))$blink

Adding

(G0(z0)$z1 <=== z0 = F((=0).head) & z1 = blink)

to the axioms and applying COINDUCTION wrt

(G(P)$s ===> P(s) & G(P)$tail(s))

53

at position [] of the preceding formula leads to

All P s:(P = F((=0).head) & s = blink ===> P(s) & G0(P)$tail(s))

SIMPLIFYING the preceding formula (6 steps) leads to

F((=0).head)$blink & G0(F((=0).head))$(1:blink)

NARROWING the preceding formula (1 step) leads to

(((=0).head)$blink | F((=0).head)$tail(blink)) & G0(F((=0).head))$(1:blink)

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (6 steps) leads to

G0(F((=0).head))$(1:blink)

Adding

54

(G0(z2)$z3 <=== z2 = F((=0).head) & z3 = (1:blink))

to the axioms and applying COINDUCTION wrt

(G(P)$s ===> P(s) & G(P)$tail(s))

at position [] of the preceding formula leads to

All P s:(P = F((=0).head) & s = (1:blink) ===> P(s) & G0(P)$tail(s))

SIMPLIFYING the preceding formula (6 steps) leads to

F((=0).head)$(1:blink) & G0(F((=0).head))$blink

NARROWING the preceding formula (1 step) leads to

(((=0).head)$(1:blink) | F((=0).head)$tail(1:blink)) & G0(F((=0).head))$blink

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (7 steps) leads to

55

F((=0).head)$blink & G0(F((=0).head))$blink

NARROWING the preceding formula (1 step) leads to

(((=0).head)$blink | F((=0).head)$tail(blink)) & G0(F((=0).head))$blink

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (6 steps) leads to

G0(F((=0).head))$blink

NARROWING the preceding formula (1 step) leads to

F((=0).head) = F(rel(SEC0,SEC0 = 0).head) & blink = (1:blink) |
F((=0).head) = F(rel(SEC0,SEC0 = 0).head) & blink = blink

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (1 step) leads to

56

True

Number of proof steps: 12

-- zipEvensOddsS

Derivation of

zip(evens(s),odds(s)) ~ s

Adding

(z0 ~0 z1 <=== z0 = zip(evens(s),odds(s)) & z1 = s)

to the axioms and applying COINDUCTION wrt

(s ~ s' ===> head(s) = head(s') & tail(s) ~ tail(s'))

at position [] of the preceding formula leads to

57

All s s':(Any s0:(s = zip(evens(s0),odds(s0)) & s' = s0) ===>
head(s) = head(s') & tail(s) ~0 tail(s'))

SIMPLIFYING the preceding formula (12 steps) leads to

All s0:(zip(odds(s0),odds(tail(s0))) ~0 tail(s0))

Adding

(z2 ~0 z3 <=== z2 = zip(odds(s0),odds(tail(s0))) & z3 = tail(s0))

to the axioms and applying COINDUCTION wrt

(s ~ s' ===> head(s) = head(s') & tail(s) ~ tail(s'))

at position [0] of the preceding formula leads to

All s0:All s s':(Any s0:(s = zip(odds(s0),odds(tail(s0))) & s' = tail(s0)) ===>
head(s) = head(s') & tail(s) ~0 tail(s'))

58

SIMPLIFYING the preceding formula (12 steps) leads to

All s0:(zip(odds(tail(s0)),odds(tail(tail(s0)))) ~0 tail(tail(s0)))

NARROWING the preceding formula (1 step) leads to

All s0:(Any s1:(zip(odds(tail(s0)),odds(tail(tail(s0)))) =
zip(odds(s1),odds(tail(s1))) &
tail(tail(s0)) = tail(s1)) |

Any s:(zip(odds(tail(s0)),odds(tail(tail(s0)))) = zip(evens(s),odds(s)) &
tail(tail(s0)) = s))

The axioms were MATCHED against their redices.

SIMPLIFYING the preceding formula (2 steps) leads to

True

Number of proof steps: 6

59

	Expander2 components
	O'Haskell types
	Inference rules
	Examples

