
Expander2, a Haskell-based prover and rewriter

Peter Padawitz
TU Dortmund, Germany

Expander2 is a flexible multi-purpose workbench for interactive term rewrit-
ing, graph transformation, theorem proving, constraint solving, flow graph anal-
ysis and other procedures that build up proofs or other rewrite sequences. More-
over, tailor-made interpreters display terms as two-dimensional structures rang-
ing from trees and rooted graphs to a variety of pictorial representations that
include tables, matrices, alignments, partitions, fractals and various tree-like or
rectangular graph layouts.

An Expander2 specification consists of a signature with functions, predicates,
axioms, theorems and conjectures (terms to be rewritten or formulas to be solved
or proved). It describes a set of algebraic (constructor-based) and/or coalge-
braic (destructor-based) types (formerly called swinging types). Syntactically,
it follows Haskell (for presenting functions) and usual mathematical notations
(for presenting relations and propositional, predicate-logic, modal or temporal
operators). Predicates are interpreted as the least or greatest solutions of their
Horn resp. co-Horn axioms.

The user interacts with the system at three levels of control over proofs and
computations. At the top level, rules like Noetherian induction and incremental
fixpoint co/induction are applied locally and step by step. At the medium level,
goals are co/resolved or narrowed, i.e, axioms are applied exhaustively and it-
eratively. At the bottom level, built-in rules (some of them executing Haskell
programs) simplify, i.e., (partially) evaluate terms and formulas, and thus hide
routine steps of a proof or computation. Simplifications may be executed auto-
matically after each step performed at the top or medium level.

As the co/Horn axioms co/resolved or narrowed upon are part of the user-
defined specification, so additional simplification rules (equations or equiva-
lences) may be entered into the specification. Recently, functional and logical
fixpoint operators have been integrated into the simplifier along with corre-
sponding (non-incremental) co/induction rules. Proofs and other rewrite se-
quences are automatically translated into proof terms that can be evaluated
and modified later. Of course, a textual record listing all elements of the se-
quence and the rules producing them is also generated.

Expander2 has been written in O’Haskell, an extension of Haskell with
object-oriented features for reactive programming and with an easy-to-use in-
terface to Tcl/Tk. O’Haskell did not only allow us to develop a comfortable
GUI for Expander2, but also to meet the other design goals of the system like
the integration of testing, proving and visualizing deductive methods, working
at several levels of interaction (see above) and keeping it open for extensions
and adaptations of individual components to changing demands.

1



The talk will start out from a small demonstration of the various ways terms
and formulas can be edited, represented and simplified with Expander2. Then
we give a short overview of the system components, the interfaces to each
other, their interaction with the user via GUI events and their implementa-
tion in terms of O’Haskell’s templates (monadic types involving methods that
access and modify global variables concurrently). The third part of the talk
introduces into one of the main uses of Expander2, namely the generation of
proofs or solutions of predicate-logic formulas with co/resolution, narrowing and
co/induction. Roughly said, these rules generalize classical model checking from
Kripke structures to arbitrary initial or final models. We will present examples
of both kinds and carry out sample proofs with Expander2.

References

[1] P. Padawitz, Computing in Horn Clause Theories, Springer 1988

[2] P. Padawitz, Deduction and Declarative Programming, Cambridge Univer-
sity Press 1992

[3] P. Padawitz, Inductive Theorem Proving for Design Specifications, J. Sym-
bolic Computation 21 (1996) 41-99

[4] P. Padawitz, Proof in Flat Specifications, in: E. Astesiano et al., eds., Alge-
braic Foundations of Systems Specification, IFIP State-of-the-Art Report,
Springer (1999) 321-384

[5] P. Padawitz, Swinging Types = Functions + Relations + Transition Sys-
tems, Theoretical Computer Science 243 (2000) 93-165

[6] P. Padawitz, Expander2: A Formal Methods Presenter and Animator, link

[7] P. Padawitz, Expander2: Towards a Workbench for Interactive Formal
Reasoning, in: H.-J. Kreowski et al., Formal Methods in Software and
Systems Modeling, Essays Dedicated to Hartmut Ehrig, Springer LNCS
3393 (2005) 236-258

[8] P. Padawitz, Expander2: Program verification between interaction and
automation, Proc. WFLP 2006, Elsevier ENTCS 177 (2007) 35-57

[9] P. Padawitz, Expander2 as a Prover and Rewriter, link

[10] P. Padawitz, Algebraic Model Checking and more, Electronic Communica-
tions of the EASST 26 (2010), link; slides with more examples: link

[11] P. Padawitz, From grammars and automata to algebras and coalgebras,
Proc. CAI 2011, Springer LNCS 6742 (2011) 21-43, revised version: link

[12] P. Padawitz, From fixpoint to predicate co/induction and its use in stan-
dard models, TU Dortmund 2011, link

[13] P. Padawitz, Dialgebraic Specification and Modeling, slides in preparation,
TU Dortmund 2011, link

2

http://fldit-www.cs.tu-dortmund.de/~peter/Expander2.html
http://fldit-www.cs.tu-dortmund.de/~peter/Expander2/Prover.pdf
http://fldit-www.cs.tu-dortmund.de/~peter/Haskellprogs/HJK.pdf
http://fldit-www.cs.tu-dortmund.de/~peter/Haskellprogs/CTL.pdf
http://fldit-www.cs.tu-dortmund.de/~peter/CAI.pdf
http://fldit-www.cs.tu-dortmund.de/~peter/CoInd.pdf
http://fldit-www.cs.tu-dortmund.de/~peter/DialgSlides.pdf

