
Fixpoints, Categories, and (Co)Algebraic Modeling

Peter Padawitz
TU Dortmund, Germany

October 29, 2024

(actual version: https://fldit-www.cs.tu-dortmund.de/∼peter/DialgSlides.pdf)

1

https://en.wikipedia.org/wiki/Taiji_(philosophy)
https://fldit-www.cs.tu-dortmund.de/~peter/DialgSlides.pdf

�
�

�
Contents

1 The tai chi of (co)algebraic modeling 10

2 Preliminaries 11

2.1 Products . 16
2.2 Product equations . 20
2.3 Product characterizations . 20
2.4 Sums . 23
2.5 Sum equations . 27
2.6 Sum characterizations . 28
2.7 Words and streams . 31
2.8 Power and weighted sets . 35
2.9 Labelled trees . 40

3 Relations, posets and fixpoints 43

3.1 Sample CPOs . 46
3.2 Fixpoints . 50

4 Categories 67

4.1 From posets to categories . 67

2

4.2 Basic definitions, examples and results 71

5 Functors and natural transformations 79

5.1 Sample functors . 81
5.2 The Yoneda lemma . 92

6 Limits and colimits 99

6.1 Limits . 100
6.2 Colimits . 109

7 Sorted sets and types 118

7.1 Type models . 122
7.2 Sorted relations . 126

8 Signatures 128

8.1 Σ-arrows . 129
8.2 Sample constructive signatures . 132
8.3 Sample destructive signatures . 137

9 Σ-algebras 147

9.1 Algebras and homomorphisms . 147
9.2 Algebras as functors and the Yoneda Lemma 157
9.3 Σ-terms and -coterms . 161

3

9.4 Sample terms and coterms . 164
9.5 Term and coterm algebras . 171
9.6 Sample algebras . 172
9.7 Product algebras . 195
9.8 Sum algebras . 198
9.9 Invariant algebras . 201
9.10 Quotient algebras . 202
9.11 Term folding . 207
9.12 Term grounding . 214
9.13 Sample initial algebras . 215
9.14 Context-free grammars and their models 219
9.15 Removing left recursion . 224
9.16 State unfolding . 235
9.17 Coterm grounding . 249
9.18 Sample final algebras . 251
9.19 Σ-flowcharts . 266
9.20 From flowcharts to terms . 273

10 Σ-formulas 282

10.1 Syntax . 284
10.2 Derived terms and formulas . 288

4

10.3 Semantics . 300
10.4 Realization in Expander2 . 321
10.5 Automata for satisfiability . 327
10.6 Institutions . 336

11 Predicate specifications 338

11.1 Syntax and semantics . 338
11.2 When Kleene closures are fixpoints . 361
11.3 Deduction in sequent logic . 370
11.4 Rule applicability . 373
11.5 Resolution and narrowing . 374

12 Induction rules 379

12.1 Fixpoint induction upon a predicate . 379
12.2 Invariants and algebraic induction . 383
12.3 CFGs as equations between regular expressions 389
12.4 Algebraic induction as fixpoint induction 395
12.5 Fixpoint induction upon a function . 398
12.6 Invariants are monotone . 399

13 Coinduction rules 403

13.1 Fixpoint coinduction upon a predicate 403

5

13.2 Congruences and algebraic coinduction 410
13.3 Algebraic coinduction as fixpoint coinduction 417
13.4 Coinduction modulo constructors . 422
13.5 Quotients are monotone . 427
13.6 Duality of (co)resolution and (co)induction 429

14 F -algebras and -coalgebras 431

14.1 Invariants and congruences . 442
14.2 Complete categories and continuous functors 445
14.3 Initial F -algebras and final F -coalgebras 448

15 Σ-functors 461

15.1 Functors for constructive signatures . 461
15.2 Functors for destructive signatures . 465
15.3 Final models of destructive non-polynomial signatures 471
15.4 From constructors to destructors . 477
15.5 From destructors to constructors . 481
15.6 Continuous algebras . 485

16 Recursive functions 499

16.1 Three criteria . 499
16.2 Bisimulation modulo constructors . 518

6

16.3 Sample inductive definitions . 521
16.4 Sample coinductive definitions . 544
16.5 Sample biinductive definitions . 570
16.6 Direct construction of a minimal acceptor of a regular language 582
16.7 Guarded CFGs . 588
16.8 Iterative equations I . 596

17 Iterative equations II 597

17.1 Algebraic theories . 597
17.2 Term equations . 598
17.3 The CPO approach for solving term equations 599
17.4 The coalgebraic approach for solving term equations 606
17.5 Flowchart equations . 621
17.6 Word acceptors . 628
17.7 Tree acceptors . 635

18 Categorical Σ-algebra 644

18.1 Bounded functors . 651

19 Adjunctions 660

19.1 Five equivalent definitions . 660
19.2 Identity functor . 670

7

19.3 Monoid functor . 670
19.4 Sequence functor . 673
19.5 Behavior functor . 675
19.6 Weighted-set functor . 677
19.7 Box and diamond functors . 679
19.8 Strongly connected components . 681
19.9 Reader and writer . 683
19.10 Cartesian closure and fixpoints . 684
19.11 Product and coproduct . 690
19.12 Term and flowchart functors . 694
19.13 Varieties . 699
19.14 Equational theories . 703
19.15 Coterm functors . 712
19.16 Covarieties . 714
19.17 Coequational theories . 718
19.18 Base algebra extensions . 734

20 Stream calculus 736

21 Conservative extensions 755

21.1 Constructor extensions . 755
21.2 Destructor extensions . 758

8

22 Abstraction and restriction 761

22.1 Abstraction with a least congruence . 764
22.2 Abstraction with a greatest congruence 767
22.3 Restriction with a greatest invariant . 773
22.4 Restriction with a least invariant . 778

23 λ-bialgebras 782

24 Monads and comonads 787

24.1 Sample monads . 789
24.2 Term monads . 795
24.3 Sample comonads . 802
24.4 Coterm comonads . 805

25 Recursive functions as adjunctions or distributive laws 812

26 More examples 821

26.1 Queues . 821
26.2 Arithmetic expressions . 823
26.3 CCS . 832

27 Bibliography 845

9

�
�

�
1 The tai chi of (co)algebraic modeling

constructors
& co/Horn clauses

destructors
& co/Horn clauses

F(Ini) Ini Fin G(Fin)

unfold

A

initial
algebra

Ini/~
~ Σ-congruence

inv
Σ-invariant

F(A) F'(Ini')
algebra

Ini'

G'(Fin')

Fin'
Ini Σ'-consistent

 ⇔ fold' mono

G(A)coalgebra

(Σ,AX)

≅

≅fold

fold'

Ini Σ'-reachable
 ⇔ fold' epi

≅
final

coalgebra

unfold'

nat inc

Fin Σ'-observabel
 ⇔ unfold' mono

Fin Σ'-complete
 ⇔ unfold' epi

≅

(Σ',AX')

inv = Ini
is the only Σ-invariant

inc = id

Fin/~ = Fin
~ is the only Σ-congruence

nat = id

∀ a,b ∈ Fin :
a=b iff ∃ Σ-congruence ~ : a~b

coinduction⇓
∀ B ⊆ Ini :

B=Ini iff ∃ Σ-invariant inv : inv ⊆ B

induction⇓

L(Ini)

A

F(R(B)) R(B)

B

op#

R(Fin)

B

op L(B) G(L(B))coalgebraalgebra

L:K

➛K

SetS➛

op*

op

L:SetS➛K

R:K SetS➛ R:SetS

object
abstraction

behavior
restriction

recursive corecursive

extends

10

�
�

�
2 Preliminaries

1 = {()}, 2 = {0, 1}, N,Z,R be the sets of natural, integer and real numbers, respectively,
N+ = N \ {0}, [0] = ∅ and for all n > 0, [n] = {1, . . . , n}.

Let A,B be sets.

Both A→ B and BA denote the set of total functions from A to B.

A⊸� B denotes the set of partial functions from A to B.

Ω denotes the nowhere-defined partial function from A to B, i.e., def (Ω) = ∅.

|A| denotes the cardinality of A. |A| < ω means that A is finite. If |A| = 1, then A is
called a singleton and often identified with its element.

idA : A→ A denotes the identity on A that maps every element of A to itself.

∆B
A = {(a)b∈B | a ∈ A} denotes the B-dimensional diagonal of A. In particular,

∆A = ∆
[2]
A .

Let f : A→ B, g : A⊸� B and C ⊆ A.

A is the domain of f . def (g) = {w ∈ A | g(w) is defined} is the domain of g. B is the
range of f and g. If A = B, then f is called an endofunction. img(f) = {f (a) | a ∈ A}
is called the image of f .

11

https://en.wikipedia.org/wiki/Cardinality

�� ��Preliminaries

For all b ∈ B, pre(b) = {a ∈ A | f (a) = b} is called the pre-image of b.

ker(f) = {(a, a′) ∈ A2 | f (a) = f (a′)} is called the kernel of f .

f is surjective if img(f) = B. f is injective if ker(f) = ∆A. f is bijective if there is
a unique function f−1 : B → A with f ◦ f−1 = idB and f−1 ◦ f = idA. f−1 is called the
inverse of f and A and B are isomorphic, written as A ∼= B.

f is bijective iff f is surjective and injective.

Let f, g : A → B, I be a set (of indices), a = (ai)i∈I ∈ AI and b = (bi)i∈I ∈ BI . The
function update f [b/a] : A → B of f at a by b, the restriction f |C : C → B of f to
C ⊆ A and the restricted equality =C ⊆ BA ×BA are defined as follows:

For all a′ ∈ A, i ∈ I and c ∈ C,

f [b/a](a′) =

 bi if a′ = ai,

f (a′) otherwise,

f |C(c) = f (c),

f =C g ⇔ f |A\C = g|A\C.

incC : C → A denotes the inclusion function that maps every element of C to itself.

12

�� ��Preliminaries

Given a set A, P(A) denotes the powerset of A, i.e., the set of all subsets of A.
P+(A) =def P(A) \ {∅}.

χ : P(A) → 2A maps C ⊆ A to the characteristic or indicator function of C that
maps all elements of C to 1 and all elements of A \ C to 0.

χ is bijective. The inverse of χ is called sat because, given f : A → 2, sat(f) is the set
of all a ∈ A with f (a) = 1, i.e., which “satisfy” f .

For all f : A→ A, f 0 =def idA and for all n > 0, fn+1 =def f
n ◦ f .

Let A,B,C be sets and h : A→ B.

hC : AC → BC

f 7→ h ◦ f
flip : (CB)A → (CA)B

f 7→ = λb.λa.f (a)(b)

For all i ∈ I , let Ai be a set. Xi∈IAi denotes the Cartesian product of all Ai:

Xi∈IAi =def {f : I →
⋃
i∈I

Ai | ∀ i ∈ I : f (i) ∈ Ai}.

13

�� ��Preliminaries

An element f ∈ Xi∈IAi is called an I-tuple and often written as (f (i))i∈I .

For all n > 0, A1 × · · · × An =def Xn
i=1Ai =def Xi∈[n]Ai.

If for all i, j ∈ I , i ̸= j implies Ai ∩ Aj = ∅ (“Ai and Aj are disjoint”), then⊎
i∈I

Ai =def

⋃
i∈I

Ai.

Otherwise
⊎
i∈I Ai denotes the disjoint union of all Ai:⊎

i∈I

Ai =def {(a, i) | a ∈ Ai, i ∈ I}.

(a, i) ∈
⊎
i∈I Ai is also written as ιi(a).

For all n > 0, A1 + · · · + An =def

⊎n
i=1Ai =def

⊎
i∈[n]Ai.

The universal properties of products and sums provide a good introduction into categor(y-
theoret)ical thinking, i.e., reasoning in terms of equations between morphisms, here:
functions.

Every data model is a product, a sum, a subset, intuitively: a restriction, of a product
or a quotient, intuitively: an abstraction, of a sum (see, e.g., chapter 6.1).

For all f : A→ B, graph(f) = {(a, b) ∈ A×B | f (a) = b} is called the graph of f .

14

�� ��Preliminaries

rel2fun : P(A × B) → P(B)A transforms binary relations into multivalued functions:
For all a ∈ A and R ⊆ A×B, rel2fun(R) maps a to {b ∈ B | (a, b) ∈ R}.

rel2fun is bijective.

Since A× 1 ∼= A and P(1) ∼= 2, rel2fun with B = 1 yields χ.

Let p : A→ 2, A and B be disjoint sets, h : A→ A +B and n ∈ N.

p? : A → A + A

a 7→ if p(a) = 1 then ι1(a) else ι2(a)

pair : A → (A×B)B

a 7→ λb.(a, b)

apply : BA × A → B

(f, a) 7→ f (a)

curry : CA×B → (CB)A

f 7→ λa.λb.f (a, b) = fB ◦ pair

15

2.1 Products 2 PRELIMINARIES

�� ��Preliminaries

(×) : BA ×DC → (B ×D)A×C

(f, g) 7→ λ(a, c).(f (a), g(c))

uncurry : (CB)A → CA×B

f 7→ λ(a, b).f (a)(b) = apply ◦ (f × idB)

hn : A → A +B

a 7→

a if n = 0

h(a′) if n > 0 ∧ a′ = hn−1(a) ∈ A

b if n > 0 ∧ b = hn−1(a) ∈ B

2.1 Products

Let A = (Ai)i∈I be a tuple of sets, P be a set and π = (πi : P → Ai)i∈I be a tuple of
functions. Since all functions have the same domain, such a tuple is called a cone.

The pair (P, π) is called a product of A and written as
∏

i∈I Ai if for all (fi : B → Ai)i∈I
there is a unique function f : B → P such that for all i ∈ I ,

πi ◦ f = fi. (1)

16

2.1 Products 2 PRELIMINARIES

�� ��Preliminaries

πi is called the i-th projection of P and f the product extension or range tupling
of (fi)i∈I to P . Since f is determined by (fi)i∈I , we write ⟨fi⟩i∈I for f .

Consequently, for all f, g : B → P ,

(∀ i ∈ I : πi ◦ f = πi ◦ g) ⇒ f = g. (2)

Proposition 2.1 All products of A are isomorphic to each other.

Proof. Let (P, π) and (P ′, π′) be products of A with tupling constructors ⟨ ⟩ and ⟨ ⟩′,
respectively. Then ⟨π′i⟩i∈I : P ′ → P is bijective with inverse ⟨πi⟩′i∈I :

For all i ∈ I , let fi = π′i ◦ ⟨πi⟩′i∈I : P → Ai and f ′i = πi ◦ ⟨π′i⟩i∈I : P ′ → Ai. Since for all
i ∈ I , f = ⟨π′i⟩i∈I ◦ ⟨πi⟩′i∈I : P → P and f = idP satisfy (1), both functions agree with
each other, i.e.,

⟨π′i⟩i∈I ◦ ⟨πi⟩′i∈I = idP . (3)

Since for all i ∈ I , f = ⟨πi⟩′i∈I ◦ ⟨π′i⟩i∈I : P ′ → P ′ and f = idP ′ satisfy π′i ◦ f = f ′i , both
functions agree with each other, i.e.,

⟨πi⟩′i∈I ◦ ⟨π′i⟩i∈I = idP ′. (4)

By (3) and (4), ⟨πi⟩′i∈I : P → P ′ is bijective with inverse ⟨π′i⟩i∈I : P ′ → P . ❏

17

2.1 Products 2 PRELIMINARIES

�� ��Preliminaries

Proposition 2.2 All sets that are isomorphic to a product of A are products of A.

Proof. Let (P, π) be a product of A, P ′ be a set, h : P ′ → P be a bijection and
π′ = (πi ◦ h)i∈I . Let f = (fi : B → Ai)i∈I and g = h−1 ◦ ⟨fi⟩i∈I : B → P ′. Then for all
i ∈ I ,

π′i ◦ g = πi ◦ h ◦ g = πi ◦ h ◦ h−1 ◦ ⟨fi⟩i∈I = πi ◦ ⟨fi⟩i∈I = fi.

g is unique: Let g′ : B → P ′ satisfy π′i ◦ g′ = fi for all i ∈ I . Then

πi ◦ h ◦ g = π′i ◦ g = fi = π′i ◦ g′ = πi ◦ h ◦ g′

and thus by (2), h ◦ g = h ◦ g′. Hence g = h−1 ◦ h ◦ g = h−1 ◦ h ◦ g′ = g′. ❏

The Cartesian product Xi∈IAi is a product of A:

Projections and product extensions for Xi∈IAi are defined as follows:

• For all i ∈ I and f ∈ Xi∈IAi, πi(f) =def f (i).
• For all (fi : B → Ai)i∈I , b ∈ B and i ∈ I , ⟨fi⟩i∈I(b)(i) =def fi(b).

18

2.1 Products 2 PRELIMINARIES

�� ��Preliminaries

For all f = (fi : Ai → Bi)i∈I ,∏
i∈I

fi =def ⟨fi ◦ πi⟩i∈I :
∏
i∈I

Ai →
∏
i∈I

Bi

is called the product of f .

For all f : A→ B, nonempty sets I , n > 0 and (fi : Ai → Bi)
n
i=1,

f I =def

∏
i∈I f,

f1 × · · · × fn =def

∏
i∈[n] fi.

Lifting to functions from A:

liftA : (
∏

i∈I Bi → B) → (
∏

i∈I B
A
i → BA)

f 7→ λg.(f ◦ ⟨πi(g)⟩i∈I).

B≺
f ∏

i∈I

Bi≺
πi

Bi

A

⟨πi(g)⟩i∈I
⋏

πi(g)

≻

liftA(f)(g)

≺

19

2.2 Product equations 2 PRELIMINARIES

�� ��Preliminaries

2.2 Product equations

For all f : A→ B, (fi : B → Bi)i∈I , (gi : Ai → Bi)i∈I , k ∈ I and (hi : Bi → Ai)i∈I ,

⟨πi⟩i∈I = id∏
i∈I Ai

, (5)
⟨fi⟩i∈I ◦ f = ⟨fi ◦ f⟩i∈I , (6)
πk ◦

∏
i∈I

gi = gk ◦ πk, (7)∏
i∈I

hi ◦ ⟨fi⟩i∈I = ⟨hi ◦ fi⟩i∈I , (8)

ker(⟨fi⟩i∈I) =
⋂
i∈I

ker(fi). (9)

2.3 Product characterizations

Let d = (di : P → Ai)i∈I .

Proposition 2.3 (P, d) is a product of A iff for all a, b ∈ P , a = b iff for all i ∈ I ,
di(a) = di(b).

Proof. “⇒”: Let (P, d) be a product of A, f = λx.a : 1 → P and g = λx.b : 1 → P .

20

2.3 Product characterizations 2 PRELIMINARIES

�� ��Preliminaries
Then

∀ i ∈ I : di(a) = di(b) ⇒ ∀ i ∈ I : di ◦ f = di ◦ g
(2)⇒ f = g ⇒ a = f (ϵ) = g(ϵ) = b.

“⇐”: Suppose that for all a, b ∈ P , a, b ∈ P are equal iff for all i ∈ I di(a) = di(b).

Let (fi : B → Ai)i∈I . Then g : B → P with di(g(b)) = fi(b) for all i ∈ I and b ∈ Bi

is a product extension of (fi)i∈I because every f : B → P that satisfies (1) agrees with g.❏

Proposition 2.4 (P, d) is a product of (Ai)i∈I iff ⟨di⟩i∈I : P →
∏

i∈I Ai is iso.

Proof. The “⇒”-direction is shown above.

“⇐”: Let ⟨di⟩i∈I be iso and (fi : B → Ai)i∈I . Then for all i ∈ I ,

di ◦ ⟨di⟩−1
i∈I ◦ ⟨fi⟩i∈I = πi ◦ ⟨di⟩i∈I ◦ ⟨di⟩−1

i∈I ◦ ⟨fi⟩i∈I = πi ◦ ⟨fi⟩i∈I = fi.

Hence f =def ⟨di⟩−1
i∈I ◦ ⟨fi⟩i∈I : B → P satisfies di ◦ f = fi.

Moreover, f is unique w.r.t. this property: Suppose that f, g : B → P satisfy di ◦ f =

fi = di ◦ g for all i ∈ I . Then

πi ◦ ⟨di⟩i∈I ◦ f = di ◦ f = di ◦ g = πi ◦ ⟨di⟩i∈I ◦ g

and thus ⟨di⟩i∈I ◦ f = ⟨di⟩i∈I ◦ g. Hence f = g because ⟨di⟩i∈I is iso. ❏

21

2.3 Product characterizations 2 PRELIMINARIES

�� ��Preliminaries

Proposition 2.5 (P, d) is a product of (Ai)i∈I iff for all (fi : B → Ai)i∈I there is a
function ⟨fi⟩i∈I : B → P such that for all i ∈ I and f : A→ P ,

di ◦ ⟨fi⟩i∈I = fi, (10)
⟨di ◦ f⟩i∈I = f. (11)

Proof. “⇐”: Let (fi : B → Ai)i∈I and suppose that some ⟨fi⟩i∈I : B → P satisfies (10)
and (11). Let f, g : A→ P satisfy di ◦ f = fi = di ◦ g for all i ∈ I . Then

f
(11)
= ⟨di ◦ f⟩i∈I = ⟨di ◦ g⟩i∈I

(11)
= g.

Hence ⟨fi⟩i∈I is unique w.r.t. (10), i.e., (P, d) is a product of (Ai)i∈I .

“⇒”: Let (P, d) be a product of (Ai)i∈I . Then (10) holds true. Moreover, for all f : A→
P ,

⟨di ◦ f⟩i∈I
(6)
= ⟨di⟩i∈I ◦ f

(5)
= idP ◦ f = f,

i.e., (11) holds true. ❏

Briefly, Proposition 2.3 tells us that equation (11) captures the uniqueness of product
extensions.

22

2.4 Sums 2 PRELIMINARIES

�� ��Preliminaries

Let t, t′ ∈
∏

i∈I Ai, i ∈ I and a ∈ Ai. The tuple update t[a/i] ∈
∏

i∈I Ai, the
restriction t|J ⊆

∏
i∈J Ai of t to J ⊆ I and the restricted equality =J ⊆

∏
i∈I Ai)

2

are defined analogously to its function counterparts (see above): For all k ∈ I and j ∈ J ,

πk(t[a/i]) =

 a if k = i,

πk(t) otherwise,

πj(t|J) = πj(t
′),

t =J t
′ ⇔ t|I\J = t′|I\J .

2.4 Sums

Let A = (Ai)i∈I be a tuple of sets, S be a set and ι = (ιi : Ai → S)i∈I be a tuple of
functions. Since all functions have the same range, such a tuple is called a cocone.

The pair (S, ι) is called a sum or coproduct of A and written as
∐

i∈I Ai if for all
(fi : Ai → B)i∈I there is a unique function f : S → B such that for all i ∈ I ,

f ◦ ιi = fi. (12)

ιi is called the i-th injection of S and f the sum extension or source tupling of
(fi)i∈I to S. Since f is determined by (fi)i∈I , we write [fi]i∈I for f .

23

2.4 Sums 2 PRELIMINARIES

�� ��Preliminaries

Consequently, for all f, g : S → B,

(∀ i ∈ I : f ◦ ιi = g ◦ ιi) ⇒ f = g. (13)

Proposition 2.6 All sums of A are isomorphic to each other.

Proof. Let (S, ι) and (S ′, ι′) be sums ofA with tupling constructors [] and []′, respectively.
Then [ι′i]i∈I : S → S ′ is bijective with inverse [ιi]

′
i∈I :

For all i ∈ I , let fi = [ιi]
′
i∈I ◦ ι′i : Ai → S and f ′i = [ι′i]i∈I ◦ ιi : Ai → S ′.

Since for all i ∈ I , f = [ιi]
′
i∈I ◦ [ι′i]i∈I : S → S and f = idS satisfy (12), both functions

agree with each other, i.e.,
[ιi]

′
i∈I ◦ [ι′i]i∈I = idS. (14)

Since for all i ∈ I , f = [ι′i]i∈I ◦ [ιi]
′
i∈I : S ′ → S ′ and f = idS′ satisfy f ◦ ι′i = f ′i , both

functions agree with each other, i.e.,

[ι′i]i∈I ◦ [ιi]′i∈I = idS′. (15)

By (14) and (15), [ι′i]i∈I : S → S ′ is bijective with inverse [ιi]
′
i∈I : S

′ → S. ❏

24

2.4 Sums 2 PRELIMINARIES

�� ��Preliminaries

Proposition 2.7 All sets that are isomorphic to a sum of A are sums of A.

Proof. Let (S, ι) be a sum of A, S ′ be a set, h : S → S ′ be a bijection and ι′ = (h ◦ ιi)i∈I .
Let f = (fi : Ai → B)i∈I and g = [fi]i∈I ◦ h−1 : S ′ → B. Then for all i ∈ I ,

g ◦ ι′i = g ◦ h ◦ ιi = [fi]i∈I ◦ h−1 ◦ h ◦ ιi = [fi]i∈I ◦ ιi = fi.

g is unique: Let g′ : S ′ → B satisfy g′ ◦ ιi = fi for all i ∈ I . Then

g ◦ h ◦ ιi = g ◦ ι′i = fi = g′ ◦ ι′i = g′ ◦ h ◦ ιi

and thus by (12), g ◦ h = g′ ◦ h. Hence g = g ◦ h ◦ h−1 = g′ ◦ h ◦ h−1 = g′. ❏

The disjoint union
⊎
i∈I Ai is a sum of A:

Injections and sum extensions for
⊎
i∈I Ai are defined as follows:

• For all i ∈ I and a ∈ Ai, ιi(a) =def (a, i).
• For all (fi : Ai → B)i∈I , i ∈ I and a ∈ Ai, [fi]i∈I(a, i) =def fi(a).

25

2.4 Sums 2 PRELIMINARIES

�� ��Preliminaries

For all f = (fi : Ai → Bi)i∈I ,∐
i∈I

fi =def [ιi ◦ fi]i∈I :
∐
i∈I

Ai →
∐
i∈I

Bi

is called the sum or coproduct of f .

For all nonempty sets I , f : A→ B, n > 0 and (fi : Ai → Bi)
n
i=1,

f × I =def

∐
i∈I f,

f1 + · · · + fn =def

∐
i∈[n] fi.

Lifting to functions to A:

liftA : (B →
∐

i∈I Bi) → (
∏

i∈I A
Bi → AB)

f 7→ λg.([πi(g)]i∈I ◦ f).

Bi
ιi ≻

∐
i∈I

Bi≺
f

B

A

[πi(g)]i∈I

⋎
liftA(f)(g)

≺
πi(g)

≻

26

2.5 Sum equations 2 PRELIMINARIES

�� ��Preliminaries

2.5 Sum equations

For all (fi : Ai → A)i∈I , f : A→ B, (gi : Ai → Bi)i∈I , k ∈ I and (hi : Bi → Ai)i∈I ,

[ιi]i∈I = id∐
i inI Ai

, (16)
f ◦ [fi]i∈I = [f ◦ fi]i∈I , (17)∐
i∈I

gi ◦ ιk = ιk ◦ gk, (18)

[fi]i∈I ◦
∐
i∈I

hi = [fi ◦ hi]i∈I , (19)

img([fi]i∈I) =
⋃
i∈I

img(fi). (20)

27

2.6 Sum characterizations 2 PRELIMINARIES

�� ��Preliminaries

2.6 Sum characterizations

Let (ci : Ai → S)i∈I .

Proposition 2.8 (S, c) is a sum of (Ai)i∈I iff for all a ∈ S there are unique i ∈ I and
b ∈ Ai with ci(b) = a.

Proof. “⇒”: Let (S, c) be a sum of (Ai)i∈I . Assume that there is a ∈ S \
⋃
i∈I ci(Ai). Let

f, g : S → 2 be defined as follows: f = λx.0 and g = (λx.if x ∈ S \ {a} then 0 else 1).
Then for all i ∈ I and b ∈ Ai,

(f ◦ ci)(b) = f (ci(b)) = 0 = g(ci(b)) = (g ◦ ci)(b),

and thus by (13), f = g. Hence S =
⋃
i∈I ci(Ai).

For all i ∈ I , define fi : Ai →
⊎
i∈I Ai as follows: For all a ∈ Ai, fi(a) = (a, i). Then for

all i, j ∈ I , a ∈ Ai and b ∈ Aj, ci(a) = cj(b) implies

(a, i) = fi(a) = [fi]i∈I(ιi(a)) = [fi]i∈I(ιj(b)) = fj(b) = (b, j).

“⇐”: Suppose that for all a ∈ S there are unique i ∈ I and b ∈ Ai with ιi(b) = a.

Let (fi : Ai → B)i∈I . Then g : S → B with g(ci(b)) = fi(b) for all i ∈ I and b ∈ Ai is a
sum extension of (fi)i∈I because every f : S → B that satisfies (12) agrees with g. ❏

28

2.6 Sum characterizations 2 PRELIMINARIES

�� ��Preliminaries

Proposition 2.9 (S, c) is a sum of (Ai)i∈I iff [ci]i∈I :
∐

i∈I Ai → S is iso.

Proof. The “⇒”-direction is shown above.

“⇐”: Let [ci]i∈I be iso and (fi : Ai → B)i∈I . Then for all i ∈ I ,

[fi]i∈I ◦ [ci]−1
i∈I ◦ ci = [fi]i∈I ◦ [ci]−1

i∈I ◦ [ci]i∈I ◦ ιi = [fi]i∈I ◦ ιi = fi.

Hence f =def [fi]i∈I ◦ [ci]−1
i∈I : S → B satisfies f ◦ ci = fi = g ◦ ci. Then

f ◦ [ci]i∈I ◦ ιi = f ◦ ci = g ◦ ci = g ◦ [ci]i∈I ◦ ιi
and thus f ◦ [ci]i∈I = g ◦ [ci]i∈I . Hence f = g because [ci]i∈I is iso. ❏

29

2.6 Sum characterizations 2 PRELIMINARIES

�� ��Preliminaries

Proposition 2.10 (S, c) is a sum of (Ai)i∈I iff for all (fi : Ai → B)i∈I there is [fi]i∈I :

S → B such that for all i ∈ I and f : S → A,

[fi]i∈I ◦ ci = fi, (21)
[f ◦ ci]i∈I = f. (22)

Proof. “⇐”: Let (fi : Ai → B)i∈I and suppose that some [fi]i∈I : S → B satisfies (21)
and (22). Let f, g : S → A satisfy f ◦ ci = fi = g ◦ ci for all i ∈ I . Then

f
(22)
= [f ◦ ci]i∈I = [g ◦ ci]i∈I

(22)
= g.

Hence [fi]i∈I is unique w.r.t. (21), i.e., (S, c) is a sum of (Ai)i∈I .

“⇒”: Let (S, c) be a sum of (Ai)i∈I . Then (21) holds true. Moreover, for all f : S → A,

[f ◦ ci]i∈I
(17)
= f ◦ [ci]i∈I

(16)
= f ◦ idS = f,

i.e., (22) holds true. ❏

Briefly, Proposition 2.10 tells us that equation (22) captures the uniqueness of sum ex-
tensions.

30

2.7 Words and streams 2 PRELIMINARIES

�� ��Preliminaries

2.7 Words and streams

The sets of nonempty or all words or finite lists over A are defined as follows:

A+ =def

⋃
n>0A

n,

A∗ =def A+ ∪ {ϵ}.

(a1, . . . , an) ∈ An is often written as a1 . . . an.

ϵ denotes the empty word and is supposed to different from other symbols that may occur
in the same context.

|ϵ| =def 0. For all n > 0 and w ∈ An, |w| =def n.

Elements of AN are called streams or infinite lists over A.

Elements of A∞ =def A
∗ ∪ AN are called colists over A.

31

2.7 Words and streams 2 PRELIMINARIES

�� ��Preliminaries
Functions and relations on words and streams

Let A be a set. For all v = (a1, . . . , am), w = (b1, . . . , bn) ∈ A+ and f ∈ AN,

head(ϵ) =def (),

head(v) =def a1,

head(f) =def f (0),

tail(ϵ) =def (),

tail(v) =def if m = 1 then ϵ else (a2, . . . , am),

tail(f) =def λn.f (n + 1),

ϵ · ϵ =def ϵ,

w · ϵ =def w,

ϵ · w =def w,

ϵ · f =def f,

v · w =def (a1, . . . , am, b1, . . . , bn),

v · f =def λi.if i < m then ai+1 else f (m− i),

ϵ−1 =def ϵ,

v−1 =def (am, . . . , a1).

32

2.7 Words and streams 2 PRELIMINARIES

�� ��Preliminaries

The concatenation operator · binds stronger than other binary word operator and is often
omitted.

For all B ⊆ A∗ and C ⊆ A∞,

B · C =def {a · b | a ∈ B, b ∈ C},

B−1 =def {a−1 | a ∈ B}.

v ∈ A∗ is a prefix of w ∈ A∗ if w = v · v′ for some v′ ∈ A∗.

L ⊆ A∗ is prefix closed if all prefixes of elements of L belong to L.

The binary prefix relation ≤ on A∗ is the set of all pairs (v, w) ∈ (A∗)2 such that v is
a prefix of w.

For all v, w ∈ A∗ and a ∈ A, #a(w) denotes the number of occurrences of a in w,

v =bag w ⇔def v is a permutation of w, i.e., for all a ∈ A, #a(v) = #a(w),

v =set w ⇔def for all a ∈ A, #a(v) > 0 ⇔ #a(w) > 0.

33

2.7 Words and streams 2 PRELIMINARIES

�� ��Preliminaries
Let A,B be sets and f : A→ B.

f+ : A+ → B+

(a1, . . . , an) 7→ (f (a1), . . . , f (an))

f ∗ : A∗ → B∗

ϵ 7→ ϵ

a · w 7→ f (a) · f ∗(w) a ∈ A, w ∈ A∗

f : AN → BN is causal if for all s, s′ ∈ AN and n ∈ N,

(s(0), . . . , s(n)) = (s′(0), . . . , s′(n)) implies f (s)(n) = f (s′)(n).

Proposition 2.11 The set C(A,B) of causal functions from AN to BN is isomorphic to
the set of functions from A+ to B.

Proof. Let g : BA+ → C(A,B) and h : C(A,B) → BA+ be defined as follows:

• For all f : A+ → B, s ∈ AN and n ∈ N, g(f)(s)(n) = f (s(0), . . . , s(n)).
• For all f ′ ∈ C(A,B), n ∈ N, (a1, . . . , an+1) ∈ A+ and s ∈ AN,

(s(0), . . . , s(n)) = (a1, . . . , an+1) implies h(f ′)(a1, . . . , an+1) = f ′(s)(n).

34

2.8 Power and weighted sets 2 PRELIMINARIES

�� ��Preliminaries

Since f is causal, h is well-defined. Moreover, for all f : A+ → B, s ∈ AN, f ′ ∈ C(A,B)

and n ∈ N,

h(g(f))(s(0), . . . , s(n)) = g(f)(s)(n) = f (s(0), . . . , s(n)),

g(h(f ′))(s)(n) = h(f ′)(s(0), . . . , s(n)) = f ′(s)(n).

Hence g is bijective. ❏

2.8 Power and weighted sets

Pω(A) =def {C ⊆ A | C is finite}.

Let h : A→ B.

P(h) : P(A) → P(B) and Pω(h) : Pω(A) → Pω(B) map every (finite) subset C of A to
{h(c) | c ∈ C}. P(h)(C) and Pω(h)(C) are sometimes abbreviated to h(C).

supp(h) = {a ∈ A | h(a) ̸∈ {0, ∅, ϵ}} is called the support of h.

If supp(h) is finite, then h is called a B-weighted set with weights from B.

join : P(P(A)) → P(A) maps C ⊆ P(A) to
⋃
C.

35

2.8 Power and weighted sets 2 PRELIMINARIES

�� ��Preliminaries

The bind operator for P ,

(>>=): P(A)× (A→ P(B)) → P(B),

maps (C, h) to join(P(h)(C)).

BA
ω denotes the set of B-weighted sets with domain A.

2Aω
∼= Pω(A).

NA is called the set of bags or multisets of elements of A.

NA
ω is called the set of finite bags or finite multisets of elements of A.

Let (M,+, 0) be a commutative monoid and C ⊆M .

Mh
ω :MA

ω →MB
ω is defined as follows: For all f ∈MA

ω and b ∈ B,

Mh
ω(f)(b) =

∑
{f (a) | a ∈ supp(f), h(a) = b}. (1)

36

2.8 Power and weighted sets 2 PRELIMINARIES

�� ��Preliminaries
Mh

ω is well-defined:

For all f ∈MA
ω and b ∈ B,

b ∈ supp(Mh
ω(f)) ⇒

∑
{f (a) | a ∈ supp(f), h(a) = b} (1)

= Mh
ω(f)(b) ̸= 0

⇒ ∃ a ∈ supp(f) : h(a) = b ⇒ b ∈ h(supp(f)).

Hence |supp(Mh
ω(f))| ≤ |h(supp(f))| ≤ |supp(f)| < ω, i.e., Mh

ω(f) has finite support
and thus belongs to MB

ω . ❏

Given a f ∈ MA
ω with supp(f) = {a1, . . . , an} and values mi = f (ai) for all 1 ≤ i ≤ m,

f is often denoted by the expression
n∑
i=1

mi · ai

where a1, . . . , an are regarded as variables.

This notation also allows us to define Mh
ω simply as follows: For all m1, . . . ,mn ∈M ,

Mh
ω(

n∑
i=1

mi · ai) =
n∑
i=1

mi · h(ai) (2)

(see [81], Def. 4.1.1).

37

2.8 Power and weighted sets 2 PRELIMINARIES

�� ��Preliminaries

MA
C =def {f ∈MA

ω |
∑

a∈A f (a) ∈ C} is called the set of C-constrained M-weighted
sets with domain A and constraint φ (see [167], section 7). Hence MA

M =MA
ω .

Mh
C :MA

C →MB
C denotes the restriction of Mh

ω to MA
C .

Mh
C is well-defined:

|supp(Mh
C(f))| < ω can be proved along the lines of the above proof that Mh

ω(f) has
finite support. Moreover,∑

b∈BM
h
C(f)(b)

(1)
=

∑
b∈B

∑
a∈A,h(a)=b f (a) =

∑
a∈A,h(a)∈B f (a) =

∑
a∈A f (a) ∈ C.

Hence Mh
C(f) ∈MB

C .

D(A) =def RA
≥0,{1} is called the set of (discrete) probability distributions of elements

of A.

Since (R≥0,+, 0) is zero-sum free, i.e., if for all r, s ∈ R≥0, r + s = 0 implies r = 0 and
s = 0, D(A) is a subset of [0, 1]Aω where [0, 1] denotes the closed interval of real numbers
between 0 and 1.

D(h) : D(A) → D(B) is defined as Rh
≥0,{1}.

38

2.8 Power and weighted sets 2 PRELIMINARIES

�� ��Preliminaries

MA
C is a quotient of (M × A)∗C = {x ∈ (M × A)∗ |

∑|x|
i=1map(π1 ◦ πi)(x) ∈ C}.

(M × h)∗C : (M × A)∗C → (M × B)∗C denotes the restriction of (M × h)∗ : (M × A)∗ →
(M × A)∗, which is composed of products and sums and thus defined as follows: For all
x = ((mi, ai))

n
i=1 ∈ (M × A)∗C , (M × h)∗(x) = ((mi, h(ai)))

n
i=1.

(M × h)∗C is well-defined: Let x = ((mi, ai))
n
i=1 ∈ (M ×A)∗C . Then

∑n
i=1mi ∈ C. Hence

(M × h)∗(x) = ((mi, h(ai)))
n
i=1 ∈ C.

39

2.9 Labelled trees 2 PRELIMINARIES

�� ��Preliminaries

2.9 Labelled trees

ltr(A,B) denotes the set of labelled trees over (A,B), i.e., partial functions t from A∗

to B such that def (t) is prefix closed.

In fact, t ∈ ltr(A,B) represents a tree with edge labels from A and node labels from B

such that two different edges each with the same source have different labels. The label
of the root of t is given by t(ϵ).

t ∈ ltr(A,B) is often written as the prefixed set of its maximal proper subtrees:

t = t(ϵ){a→ λw.t(aw) | a ∈ A, a ∈ def (t)}.

This notation is inspired by the syntax of Haskell records, i.e., data types with attributes
(field names), which come here as edge labels.

For functions p1, . . . , pn : A → 2, x{a ▷ p1(a) → t1, . . . , a ▷ pn(a) → tn | a ∈ A} satnds
for

x(

n⋃
i=1

{a→ ti | a ∈ A, pi(a) = 1}).

For all I ⊆ A, b ∈ B and tree tuples t = (ti)i∈I , the tree b{i→ ti | i ∈ I} is also written
as b(t). In particular, b() represents a leaf and is abbreviated to b.

40

2.9 Labelled trees 2 PRELIMINARIES

�� ��Preliminaries

Products, sums, words and streams yield (sets of) labelled trees:∏
i∈I Ai

∼= {(){i→ ai | i ∈ I} | ∀ i ∈ I : ai ∈ Ai},∐
i∈I Ai

∼= {i{() → ai} | i ∈ I, ai ∈ Ai},
A+ ∼= {n{i→ a | 1 ≤ i ≤ n} | n > 0, ∀ 1 ≤ i ≤ n : a ∈ A},
AN ∼= {(){n→ a | n ∈ N} | ∀ n ∈ N : a ∈ A}.

t is finite if def (t) is finite. t is infinite if def (t) is infinite.

t is finitely branching if for all w ∈ A∗, def (t) ∩ w · A is finite.

t is well-founded if for all f ∈ AN there is n ∈ N such that (f (i))ni=1 ̸∈ def (t), intuitively:
t has finite depth, i.e., all paths emanating from the root are finite.

t′ ∈ ltr(A,B) is a subtree of t ∈ ltr(A,B) if t′ = λw.t(vw) for some v ∈ X∗.

t ∈ ltr(A,B) is rational if t has only finitely many subtrees.

If t ∈ ltr(A,B) is rational and finitely branching, then def (t) is a regular subset of A∗.

t is rational iff t can be represented as a finite graph and thus as an iterative equation (see
chapter 17). For instance, t = b{a→ t} represents the tree t = λw.b with def (t) = {a}∗.

41

2.9 Labelled trees 2 PRELIMINARIES

�� ��Preliminaries

ftr (A,B), fbtr (A,B), itr(A,B), wtr(A,B) and rtr(A,B) denote the sets of finite,
finitely branching, infinite, well-founded and rational labelled trees over (A,B), respec-
tively.

A labelled tree t over (A × N, B) is ordered if ϵ ∈ def (t) and for all w ∈ (A × N)∗,
a ∈ A and n ∈ N,

w(a, n + 1) ∈ def (t) ⇒ w(a, n) ∈ def (t).

otr (A× N, B) denotes the set of all R-based labelled trees over (A× N, B).

Labelled trees are used in chapter 9 as representations of the elements of initial as well
as final models. This works mainly because

• functions on sets of well-founded labelled trees can usually be defined by structural
induction and

• the values of functions into sets of (even non-well-founded) labelled trees over (A,B)

can usually be defined by induction on A∗.

Inductive definitions of the second kind become coinductive if one reformulates them in
terms of non-functional representations of the labelled trees (see chapter 15).

42

2.9 Labelled trees 2 PRELIMINARIES

�
�

�
3 Relations, posets and fixpoints

Let A be a set and R be a binary relation on A, i.e., R is a subset of A2.

R−1 =def {(b, a) | (a, b) ∈ R}.

R is reflexive if R contains ∆A, the 2-dimensional diagonal of A (see chapter 2).

R is transitive if for all (a, b), (b, c) ∈ R, (a, c) ∈ R.

R is symmetric if for all (a, b) ∈ R, (b, a) ∈ R.

R is an equivalence relation on A if R is reflexive, transitive and symmetric.

Then A/R =def {[a]R | a ∈ R} is called the quotient (set) of A by R where for all
a ∈ A, [a]R =def {b ∈ As | (a, b) ∈ Rs} is called the equivalence class of A by R.

natR : A → A/R denotes the natural function that maps every element of A to the
equivalence class it belongs to.

The notion “quotient” comes from the equivalence relation Rn ⊆ Z2, n > 0, with

(a, b) ∈ Rn ⇔def a mod n = b mod n.

Obviously, Z/Rn is isomorphic to {0, . . . , n − 1}, i.e., to the possible remainders of
divisions of integers by n.

43

2.9 Labelled trees 2 PRELIMINARIES

�� ��Relations, posets and fixpoints

The equivalence closure of R, Req, is the least equivalence relation that contains R.

R is antisymmetric if for all a, b ∈ A, aRb and bRa implies a = b.

R is a partial order and (A,R) is a partially ordered set or poset if R is reflexive,
transitive and antisymmetric.

Let (A,R) be a poset.

R is a total order and (A,R) is a totally ordered set if for all a, b ∈ A, aRb or bRa.
If, in addition, for all a ∈ A, (a, a) /∈ R, then R is strictly total.

R is well-founded if every nonempty subset of A contains a minimal element w.r.t. R.
If, in addition, R is total, then R is a well-order and, consequently, each nonempty
subset of A has a least element w.r.t. R.

Let C ⊆ A. C is a chain of R if the restriction of R to C is a total order. a ∈ A is
a lower bound of C if (a, c) ∈ R for all c ∈ C. If there is a greatest upper bound of
C, it is called the infimum of C, denoted by

d
C. a ∈ A is an upper bound of C if

(c, a) for all c ∈ C. If there is a least upper bound of C, it is called the supremum of
C, denoted by

⊔
C.

44

2.9 Labelled trees 2 PRELIMINARIES

�� ��Relations, posets and fixpoints

Chains of R−1 are also called cochains of R.

C ⊆ A is directed if every finite subset of C has a supremum in A.

(A,R) is flat if there is ⊥A ∈ A such that {⊥A} and {⊥A, a} with a ∈ A are the only
chains of R.

Let (A,≤) be a poset and λ be an ordinal number, i.e., either 0 or

• a successor ordinal n + 1 = n ∪ {n} for some ordinal n or
• a limit ordinal, i.e., the set of all smaller ordinals.

For instance, ω = N is the first limit ordinal.

(Co)chains of ≤ of the form {ai | i < λ} are called λ-(co)chains.

(A,≤) is λ-complete or a λ-CPO if A contains a least element ⊥A w.r.t. ≤ and each
λ-chain of ≤ has a supremum in A.

(A,≤) is λ-cocomplete or a λ-co-CPO if A has a greatest element ⊤ w.r.t. ≤ and for
each λ-cochain of ≤ has an infimum in A.

A poset (A,≤) is λ-bicomplete or a λ-bi-CPO ifA is both λ-complete and λ-cocomplete.

45

https://en.wikipedia.org/wiki/Ordinal_number

3.1 Sample CPOs 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Note that ≥ =def≤−1 is a partial order iff ≤ is a partial order. However, λ-completeness
w.r.t. ≥ need not be the same as λ-cocompleteness w.r.t. ≤ !

3.1 Sample CPOs

For every set A, the powerset of A is a λ-CPO and a λ-co-CPO: The partial order is sub-
set inclusion, the least element is the empty set, the greatest element is A, the supremum
of a λ-chain is the union of the elements of the chain, and the infimum of a λ-cochain is
the intersection of the elements of the chain.

For all sets A,B, A⊸� B is a λ-CPO: The partial order is defined as follows:

For all f, g : A⊸� B,

f ≤ g ⇐⇒ ∀ a ∈ A : f (a) = g(a) or f (a) is undefined

The least element is the nowhere-defined function Ω and every λ-chain F ⊆ (A ⊸� B)

has a supremum:

46

3.1 Sample CPOs 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

For all a ∈ A,

(
⊔

F)(a) =

{
f (a) if ∃ f ∈ F : f (a) is undefined,
() otherwise.

A product of n λ-CPOs is a λ-CPO. Partial order, least element and suprema are defined
componentwise.

The set A → B of functions from a set A to a λ-CPO (B,≤B) is a λ-CPO. The partial
order is defined argumentwise:

For all f, g : A→ B,

f ≤ g ⇔def ∀ a ∈ A : f (a) ≤B g(a). (1)

The least element of A → B is λx.⊥B. Suprema are defined argumentwise: For all
λ-chains F ⊆ A→ B and a ∈ A,

(
⊔

F)(a) =def

⊔
f∈F

f (a). ❏ (2)

47

3.1 Sample CPOs 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Proposition 3.1 ([103], Cor. 1)

Let (A,≤) be λ-CPO. For all directed subsets B of A with |B| ≤ λ, A has a supremum
of B.

Proof. We show the conjecture only for λ = ω and refer to the proof of [103], Thm. 1,
for the generalization to arbitrary ordinal numbers.

Let B be a countable directed subset of A. If B is a chain, then
⊔
B exists because A

is ω-complete. Otherwise B is infinite: If B were finite, B would contain two different
maximal elements w.r.t. R, which contradicts the directedness of B.

Since B is infinite, there is a bijection f : N → B. We define subsets Bi, i ∈ N, of B
inductively as follows: B0 = {f (0)} and Bi+1 = Bi ∪ {f (i), bi} where i = min(f−1(B \
Bi)) and bi is an upper bound of f (i) and (all elements of) Bi. bi exists because B is
directed and Bi ∪ {f (i)} is a finite subset of B.

For all i ∈ N, Bi is finite and directed and thus a (countable) chain. Since A is ω-
complete, Bi contains the supremum

⊔
Bi of Bi. Since Bi ⊆ Bi+1, {

⊔
Bi | i ∈ N} is also

a countable chain and thus has a supremum c in A. c is the supremum of C = ∪i<ωBi:
For all i ∈ N and b ∈ Bi, b ≤

⊔
Bi ≤ c. Hence c is an upper bound of C. Let d be an

upper bound of C. Then for all i ∈ N,
⊔
Bi ≤ d and thus c ≤ d.

48

3.1 Sample CPOs 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Of course, ∪i<ωBi ⊆ B. Conversely, let b ∈ B. Since for all i ∈ N, |Bi| > i, there is
k ∈ N with b ∈ Bk. Hence B = C and thus c =

⊔
B. ❏

Let (A,≤) and (B,≤′) be posets and f : A→ B.

f is monotone if for all a, b ∈ A,

a ≤ b implies f (a) ≤′ f (b).

Let A and B have least element ⊥A and ⊥B, respectively.

f is strict if f (⊥A) = ⊥B.

Let A,B be λ-CPOs. f : A→ B is λ-continuous if for all λ-chains C of A,

f (
⊔

C) =
⊔

f (C).

Let A,B be λ-co-CPOs. f : A→ B is λ-cocontinuous if for all λ-cochains C of A,

f (
l

C) =
l

f (C).

Let A,B be λ-bi-CPOs. f : A → B is λ-bicontinuous if f is both λ-continuous and
λ-cocontinuous.

49

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Proposition 3.2 If f is λ-continuous or λ-cocontinuous, then f is monotone. ❏

Proposition 3.3 Let f be monotone.

(1) For all λ-chains C of A,
⊔
f (C) ≤ f (

⊔
C).

(2) f is λ-continuous iff for all λ-chains C of A, f (
⊔
C) ≤

⊔
f (C).

(3) f is λ-cocontinuous iff for all λ-cochains C of A,
d
f (C) ≤ f (

d
C).

(4) f is λ-continuous if A is chain-finite, i.e., all λ-chains of A are finite.

(5) f is λ-cocontinuous if A is cochain-finite, i.e., all λ-cochains of A are finite. ❏

Given λ-CPOs A and B, A→c B denotes the set of λ-continuous functions from A to B.
Since Ω and suprema of λ-chains of λ-continuous functions are λ-continuous, A→c B is
a λ-CPO.

3.2 Fixpoints

Let f : A → A. a ∈ A is f-closed or f-reductive if f (a) ≤ a. a is f-dense or
f-extensive if a ≤ f (a).

50

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

a is a fixpoint of f if f (a) = a.

Theorem 3.4 (Kleene’s fixpoint - or first recursion - theorem [88])

(1) Let A be an ω-CPO, f : A → A be monotone and the upper Kleene closure
f∞ =def

⊔
n<ω f

n(⊥) of f be f -closed. Then f∞ is the least fixpoint of f .

(2) Let A be an ω-co-CPO, f : A → A be monotone and the lower Kleene closure
f∞ =def

d
n<ω f

n(⊤) of f be f -dense. Then f∞ is the greatest fixpoint of f .

Proof. (1) Since f is monotone, {fn(⊥) | n < ω} is an ω-chain.

Let a be f -closed. Then fn(⊥) ≤ a for all n ∈ N. (3)

We show (3) by induction on n: f 0(⊥) = ⊥ ≤ a. If fn(⊥) ≤ a, then fn+1(⊥) ≤ f (a) ≤ a

because f is monotone and a is f -closed.

Since f∞ is f -closed, f (f∞) is f -closed. Hence by (3), f∞ =
⊔
n<ω f

n(⊥) ≤ f (f∞), i.e.,
f is also f -dense. We conclude that f∞ is a fixpoint of f .

Let a be a fixpoint of f . Then a is f -closed and thus by (3), fn(⊥) ≤ a for all n ∈ N.

51

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Hence f∞ ≤ a, i.e., f∞ is the least fixpoint of f .

(2) Analogously. ❏

Proposition 3.5 Let f : A→ A be monotone.

(1) If f∞ = fn(⊥) for some n ∈ N, then f∞ is f -closed.

(2) If f is ω-continuous, then f∞ is f -closed.

(3) If f∞ = fn(⊤) for some n ∈ N, then f∞ is f -dense.

(4) If f is ω-cocontinuous, then f∞ is f -dense.

Proof. (1) Suppose that f∞ = fn(⊥) holds true for some n ∈ N. Then

f (f∞) = f (fn(⊥)) = fn+1(⊥) ≤
⊔
i<ω f

i(⊥) = f∞.

(2) Suppose that f is ω-continuous. Then

f (f∞) = f (
⊔
i<ω f

i(⊥)) ≤
⊔
i<ω f (f

i(⊥)) ≤
⊔
i<ω f

i(⊥) = f∞.

(3) and (4): Analogously. ❏

52

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Proposition 3.6 Let f : A→ A be monotone. Then for all n ∈ N,

f∞ = fn(⊥) ⇔ ∀ i > n : f i(⊥) = fn(⊥), (1)
f∞ = fn(⊥) ⇔ ∀ i > n : f i(⊤) = fn(⊤). (2)

Proof. (1) “⇒”: Let f∞ = fn(⊥). Then for all i > n, f i(⊥) ≤
⊔
k<ω f

k(⊥) = f∞ =

fn(⊥) and thus f i(⊥) = fn(⊥) because fn(⊥) ≤ f i(⊥).

“⇐”: Suppose that for all i > n, f i(⊥) = fn(⊥). Then for all i ∈ N, f i(⊥) ≤ fn(⊥), and
thus f∞ =

⊔
i<ω f

i(⊥) ≤ fn(⊥). Hence f∞ = fn(⊥) because fn(⊥) ≤
⊔
i<ω f

i(⊥) =

f∞.

(2) Analogously. ❏

Theorem 3.7 (fixpoint theorem for finite posets)

Let A be a finite poset and f : A→ A be monotone.

(1) If A has a least element ⊥, then for some n < ω, f∞ = fn(⊥) is f -closed and thus
by Proposition 3.5 (1), the least fixpoint of f .

(2) If A has a greatest element ⊤, then for some n < ω, f∞ = fn(⊤) is f -closed and
thus by Proposition 3.5 (3), the greatest fixpoint of f .

53

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Proof. (1) Since f is monotone, induction on i implies f i(⊥) ≤ f i+1(⊥) for all i ∈
N. Hence there is n ∈ N such that fn(⊥) = fn+1(⊥) because A is finite. Therefore,
f (fn(⊥)) = fn+1(⊥) = fn(⊥) ≤ f (fn(⊥)) and thus f (fn(⊥)) = fn(⊥). Induction on i
implies f i(⊥) = fn(⊥) for all i > n. Hence by Proposition 3.6 (1), f∞ = fn(⊥), and
thus by Proposition 3.5 (1), f∞ is f -closed. We conclude by Theorem 3.4 (1) that f∞ is
the least fixpoint of f .

(2) Analogously. ❏

Hence, if A is finite, then the function

fixpt : P(A× A) → (A→ A) → A→ A

(≤) → λf.λa.if f (a) ≤ a then a else fixpt(≤)(f)(f (a))

computes least and greatest fixpoints:

f∞ =
⊔
i<ω f

i(⊥) = fixpt(≤)(f)(⊥), f∞ =
d
i<ω f

i(⊤) = fixpt(≥)(f)(⊤).

Theorem 3.7 can be generalized from the ordinal ω to any ordinal λ:

54

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Theorem 3.8 (Zermelo’s fixpoint theorem; [2], Prop. 1.3.1; [97], Extended Folk Theorem
6; [10], Thm. 4.1.1)

(1) Let A be a λ-CPO with |A| < λ, f : A→ A be monotone and B = {f i(⊥) | i < λ}
be the λ-chain of A that is defined as follows: f 0(⊥) = ⊥, for all successor ordinals
i + 1 < λ, f i+1(⊥) = f (f i(⊥)), and for all limit ordinals i < λ, f i(⊥) =

⊔
k∈i f

k(⊥).
f |A|(⊥) is the least fixpoint of f .

(2) Let A be a λ-co-CPO with |A| < λ, f : A→ A be monotone and B = {f i(⊤) | i < λ}
be the λ-cochain of A that is defined as follows: f 0(⊤) = ⊤, for all successor ordinals
i + 1 < λ, f i+1(⊤) = f (f i(⊤)), and for all limit ordinals i < λ, f i(⊤) =

d
k∈i f

k(⊤).

f |A|(⊤) is the greatest fixpoint of f .

Proof. (1) First we show by transfinite induction on i that for all i < λ,

f i(⊥) is defined and for all k ≤ i, f k(⊥) ≤ f i(⊥). (3)

Of course, f 0(⊥) = ⊥ is defined. Let i+1 < λ be a successor ordinal. Then by induction
hypothesis, f i(⊥) is defined and for all k ≤ i, f k(⊥) ≤ f i(⊥). Hence f i+1(⊥) = f (f i(⊥))

is defined. Since f is monotone, for all k ≤ i, f k+1(⊥) = f (f k(⊥)) ≤ f (f i(⊥)) =

f i+1(⊥), and thus for all k ≤ i + 1, f k+1(⊥) ≤ f i+1(⊥).

55

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Let i be a limit ordinal. Then by induction hypothesis, for all k ∈ i, f k(⊥) is defined
and for all j ≤ k, f j(⊥) ≤ f k(⊥). Hence C = {f k(⊥) | k ∈ i} is a λ-chain and thus
f i(⊥) =

⊔
C exists. Hence for all k ∈ i, f k(⊥) ≤ f i(⊥).

We conclude from (3) that B is a λ-chain.

Assume that f |A|(⊥) ̸= f (f |A|(⊥)). Then for all i ≤ |A|+1, f i(⊥) < f (f i(⊥)), and thus
we obtain the contradiction |{f i(⊥) | i ≤ |A| + 1}| > |A|.

Let b be a fixpoint of f . We show by transfinite induction on i that for all i < λ

f i(⊥) ≤ b. (4)

Of course, f 0(⊥) = ⊥ ≤ b. Let i + 1 > λ be a successor ordinal. Then by induction
hypothesis, f i(⊥) ≤ b and thus f i+1(⊥) = f (f i(⊥)) ≤ f (b) = b because f is monotone.

Let i be a limit ordinal. Then f i(⊥) =
⊔
{f k(⊥) | k ∈ i}. By induction hypothesis, for

all k ∈ i, f k(⊥) ≤ b. Hence f i(⊥) ≤ b.

We conclude from (4) that f |A|(⊥) is the least fixpoint of f .

(2) Analogously. ❏

56

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

A poset A is a complete lattice if each subset B of A has a supremum in A.

Consequently, ⊥ =def

⊔
∅ =

d
A is the least element of P(A), ⊤ =def

⊔
A =

d
∅ is the

greatest element of P(A) and for all B ⊆ A,
d
B =def

⊔
{a ∈ A | ∀ b ∈ B : a ≤ b} is

the infimum of B.

Given a set A, P(A) is a complete lattice with partial order ⊆, supremum
⋃

, infimum⋂
, least element ∅ and greatest element A.

Theorem 3.9 (fixpoint theorem of Knaster and Tarski [173])

Let A be a complete lattice and f : A→ A be monotone.

(1) lfp(f) =def

d
{a ∈ A | a is f -closed} is the least fixpoint of f .

(2) f∞ ≤ lfp(f).

(3) If f∞ is f -closed, then lfp(f) ≤ f∞.

(4) If f∞ is f -closed, then f∞ is the least fixpoint of f .

(5) gfp(f) =def

⊔
{a ∈ A | a is f -dense} is the greatest fixpoint of f .

(6) gfp(f) ≤ f∞.

57

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints
(7) If f∞ is f -dense, then f∞ ≤ gfp(f).

(8) If f∞ is f -dense, then f∞ is the greatest fixpoint of f .

Proof.

(1) Let a be f -closed. Then lfp(f) ≤ a and thus f (lfp(f)) ≤ f (a) ≤ a because f is
monotone, i.e., f (lfp(f)) is a lower bound of all f -closed elements of A.

Hence (9) f (lfp(f)) ≤
d
{a ∈ A | a is f -closed} = lfp(f), i.e., f (lfp(f)) is f -closed, and

thus (10) lfp(f) =
d
{a ∈ A | a is f -closed} ≤ f (lfp(f)). By (9) and (10), lfp(f) is a

fixpoint of f .

Let a be a fixpoint of f . Then a is f -closed and thus lfp(f) ≤ a, i.e., lfp(f) is the least
fixpoint of f .

(2) By induction on n, we obtain fn(⊥) ≤ lfp(f): f 0(⊥) = ⊥ ≤ lfp(f) and

fn+1(⊥) = f (fn(⊥))
ind. hyp.

≤ f (lfp(f))
(1)
= lfp(f)

because f is monotone. Hence f∞ =
⊔
n<ω f

n(⊥) ≤ lfp(f).

(3) Let f∞ be f -closed. Then lfp(f) =
d
{a ∈ A | a is f -closed} ≤ f∞.

(4) follows directly from (1)-(3).

(5)-(8) can be proved analogously. ❏

58

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Compared with Theorem 3.4, Theorem 3.9 only requires monotonicity of f , but provides
non-constructive fixpoints of f .

B ⊆ A is inductively defined if B is the least fixpoint of a monotone function
F : P(A) → P(A) and thus by Theorem 3.9 (1), the least F -closed subset of A.

N is inductively defined: Let F : P(N) → P(N) be the monotone function with

F (B) = {0} ∪ {n + 1 | n ∈ B}

for all B ⊆ N. Of course, N is F -closed. Moreover, let C ⊆ N be F -closed. Assume that
C ̸= N and n = min(N \ C). Then n ∈ N \ F (C) because C is F -closed. Hence n ̸= 0

and n ̸= m + 1 and thus n − 1 ̸= m for all m ∈ C. Therefore, n − 1 ∈ N \ C, which
contradicts n = min(N \ C). Consequently, N ⊆ C and thus N is the least F -closed
subset of N. ❏

The set has0 of streams of real numbers with at least one zero is inductively defined: Let
F : P(RN) → P(RN) be the monotone function with

F (B) = {s ∈ RN | s(0) = 0 ∨ tail(s) ∈ B}

59

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

for all B ⊆ RN. Since s(0) = 0∨tail(s) ∈ has0 implies s ∈ has0, has0 is F -closed. More-
over, let C ⊆ RN be F -closed. Assume that has0 ̸⊆ C. Then s ̸∈ C for some s ∈ has0.
Let n = min{k ∈ N | s(k) = 0}. Since C is F -closed and F is monotone, F n+1(C) ⊆ C.
Hence s ̸∈ F n+1(C) and thus s(n) ̸= 0, which contradicts n = min{k ∈ N | s(k) = 0}.
Therefore, has0 ⊆ C and we conclude that has0 is the least F -closed subset of RN. ❏

B ⊆ A is coinductively defined if B is the greatest fixpoint of a monotone function
F : P(A) → P(A) and thus by Theorem 3.9 (5), the greatest F -closed subset of A.

The set has∞0 of streams of real numbers with infinitely many zeros is coinductively
defined: Let F : P(RN) → P(RN) be the monotone function with

F (B) = {s ∈ has0 | tail(s) ∈ B}

for all B ⊆ N where has0 is the set of streams of real numbers with at least one zero. Of
course, RN is F -dense. Moreover, let D ⊆ RN be F -dense and s ∈ D. We show

λi.s(i + n) ∈ has0 and λi.s(i + n + 1) ∈ D. (1)

by induction on n. s ∈ D ⊆ F (D) implies s ∈ has0 and λi.s(i + 1) ∈ D. Hence (1)
holds true for n = 0.

60

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Suppose that (1) is valid. Then λi.s(i+n+1) ∈ D ⊆ F (D) and thus λi.s(i+n+1) ∈ has0

and
λi.s(i + n + 2) = λi.(λi.s(i + n + 1))(i + 1) ∈ D

Hence (1) holds true for n + 1 instead of n. But (1) implies s ∈ has∞0. Consequently,
D ⊆ has∞0 and thus has∞0 is the greatest F -dense subset of RN. ❏

Theorem 3.10 Let F : P(A) → P(A) be monotone and G : P(A) → P(A) be defined
as follows: For all B ⊆ A,

G(B) = A \ F (A \B).

(1) G is monotone.

(2) gfp(G) = A \ lfp(F).

(3) lfp(G) = A \ gfp(F).

(4) B ⊆ A is inductively defined iff A \B is coinductively defined.

Proof. (1) Let B ⊆ C ⊆ A. Hence A \ C ⊆ A \ B and thus F (A \ C) ⊆ F (A \ B)

because F is monotone. Therefore,

G(B) = A \ F (A \B) ⊆ A \ F (A \ C) = G(C).

61

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

(2) gfp(G)
Thm. 3.9 (5)

=
⋃
{B ⊆ A | B ⊆ G(B)} =

⋃
{B ⊆ A | B ⊆ A \ F (A \B)}

=
⋃
{B ⊆ A | F (A \B) ⊆ A \B}

=
⋃
{A \B | B ⊆ A, F (A \ A \B) ⊆ A \ A \B}

=
⋃
{A \B | B ⊆ A, F (B) ⊆ B} = A \

⋂
{B ⊆ A | F (B) ⊆ B}

Thm. 3.9 (1)
= A \ lfp(F).

(3) Analogously.

(4) “⇒” follows from (2). “⇐” follows from (3). ❏

Let A,B be complete lattices.

f : A→ B is continuous if for all C ⊆ A, f (
⊔
C) =

⊔
a∈C f (a).

f : A→ B is cocontinuous if for all C ⊆ A, f (
d
C) =

d
a∈C f (a).

Proposition 3.11 If f is continuous or cocontinuous, then f is monotone.

Proof. Let a ≤ b. Then a ⊓ b = a and a ⊔ b = b and thus f (a) ⊓ f (b) = f (a ⊓ b) = f (a)

or f (a) ⊔ f (b) = f (a ⊔ b) = f (b). Hence f (a) ≤ f (b). ❏

62

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Proposition 3.12 Let f be monotone.

f is continuous iff for all C ⊆ A, f (
⊔
C) ≤

⊔
a∈C f (a).

f is cocontinuous iff for all C ⊆ A,
d
a∈C f (a) ≤ f (

d
C). ❏

Theorem 3.13 (fixpoint induction)

Let f : A→ A be monotone, called a step function. Suppose that

(a) A is a complete lattice or a λ-CPO with |A| < λ, or

(b) A is an ω-CPO and f is ω-continuous.

(1) For all f -closed a ∈ A, lfp(f) ≤ a.

(2) For all n > 0 and fn-closed a ∈ A, lfp(f) ≤ a.

Proof.

(1) Let (a) hold true. If A is a complete lattice, then by Theorem 3.9 (1), lfp(f) =d
{a ∈ A | f (a) ≤ a} ≤ a. If A is a λ-CPO, then by transfinite induction on i, for

all i < λ, f i(⊥) ≤ a because f is monotone and a is f -closed. Hence by Theorem 3.8,
lfp(f) = f |A|(⊥) ≤ a.

63

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Let (b) hold true. By induction on n, for all i ∈ N, f i(⊥) ≤ a because f is monotone
and a is f -closed.

Hence by Theorem 3.4 (1), lfp(f) =
⊔
i<ω f

i(⊥) ≤ a.

(2) Let (a) hold true. If A is a complete lattice, then

b =def

l

i>0

f i(a) ≤ fn(a) ≤ a = f 0(a). (3)

Since for all i > 0, b ≤ f i−1(a) and f is monotone, f (b) ≤ f i(a). Hence f (b) is a lower
bound of {f i(a) | i > 0} and thus f (b) ≤ b, i.e., b is f -closed. By Theorem 3.9 (1),
lfp(f) =

d
{c ∈ A | f (c) ≤ c}. Hence (3) implies lfp(f) ≤ b ≤ a. If A is a λ-CPO, then

by transfinite induction on i, for all i < λ, fn∗i(⊥) ≤ a because f is monotone and a is
f -closed. Hence by Theorem 3.8, lfp(f) = f |A|(⊥) ≤ a.

Let (b) hold true. By induction on i, for all i ∈ N, fn∗i(⊥) ≤ a because f is monotone
and a is f -closed. Hence by Theorem 3.4 (1), lfp(f) =

⊔
i<ω f

i(⊥) =
⊔
i<ω f

n∗i(⊥) ≤ a. ❏

64

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints
Theorem 3.14 (fixpoint coinduction)

Let f : A→ A be monotone, called a step function. Suppose that

(a) A is a complete lattice or a λ-co-CPO with |A| < λ, or

(b) A is an ω-co-CPO and f is ω-cocontinuous.

(1) For all f -dense a ∈ A, a ≤ gfp(f).

(2) For all n > 0 and fn-dense a ∈ A, a ≤ gfp(f).

Proof. Analogously. ❏

Theorem 3.15 (computational induction and coinduction)

(1) Let A be an ω-CPO, f∞ be f -closed and B be an admissible subset of A, i.e., for
all ω-chains C of A, C ⊆ B implies

⊔
C ∈ B.

If ⊥ ∈ B and for all b ∈ B, f (b) ∈ B, then lfp(f) ∈ B.

(2) Let A be an ω-co-CPO, f : A → A be ω-cocontinuous and B be an co-admissible
subset of A, i.e., for all ω-cochains C of A, C ⊆ B implies

d
C ∈ B.

If ⊤ ∈ B and for all b ∈ B, f (b) ∈ B, then gfp(f) ∈ B.

65

3.2 Fixpoints 3 RELATIONS, POSETS AND FIXPOINTS

�� ��Relations, posets and fixpoints

Proof. (1) By assumption, for all n ∈ N, fn(⊥) ∈ B. Since f∞ is f -closed, Theorem 3.9
(4) implies lfp(f) = f∞ =

⊔
n<ω f

n(⊥) ∈ B.

(2) By assumption, for all n ∈ N, fn(⊤) ∈ B. Since f∞ is f -dense, Theorem 3.9 (8)
implies gfp(f) = f∞ =

d
n<ω f

n(⊤) ∈ B. ❏

Theorem 3.16 (Noetherian induction)

Let A be a class, R be a well-founded relation on A and B be a subset of A. Suppose
that

for all a ∈ A, (∀ b ∈ A : bRa⇒ b ∈ B) implies a ∈ B. (1)

Then B = A.

Proof. Suppose that (1) holds true, but there is a ∈ A \ B. (1) implies bRa and b ̸∈ B

for some b ∈ A, i.e., b ∈ A \ B. We may repeat this conclusion (with b instead of a)
infinitely often and thus obtain a subset of A that has no least element w.r.t. R. ❏

If R is a well-order, then Noetherian induction is also called transfinite induction.

66

4.1 From posets to categories 4 CATEGORIES

�
�

�
4 Categories

4.1 From posets to categories

poset notion categorical notion

p(artially) o(rdered) set category
A K

element object
a ∈ A A

ordered pair morphism
a ≤ b f : A→ B

least element initial object
greatest element final object

subset diagram

67

4.1 From posets to categories 4 CATEGORIES

�� ��Categories

S ⊆ A A category I can be regarded as a directed
graph G = (N,E, source, target : E → N)

with N = I (nodes) and E = Mor (I) (edges)

A K-diagram D : I → K adds to G labelling
functions labN : N → K, labE : E → Mor (K))

with labN + labE = D

upper bound of S cocone of D
lower bound of S cone of D

supremum (least upper bound) of S colimit of D
infimum (greatest lower bound) of S limit of D

S ⊆ P(A) S(G) = class of all K-diagrams
with underlying graph G

A is S-complete: K is S(G)-cocomplete
each S ∈ S has supremum

⊔
S each D ∈ S(G) has colimit col(D)

68

4.1 From posets to categories 4 CATEGORIES

�� ��Categories
A is S-cocomplete: K is S(G)-complete
each S ∈ S has infimum

d
S each D ∈ S(G) has limit lim(D)

A is a complete lattice: K is a complete and cocomplete:
all subsets of S have suprema and infima all K-diagrams have limits and colimits
monotone function f : A→ B functor F : K → L
a ≤ b ⇒ f (a) ≤ f (b) A

f−→ B ⇒ F (A)
F (f)−→ F (B)

f -closed element a: f (a) ≤ a α F -algebra: F (A) α−→ A

f -dense element a: a ≤ f (a) α F -coalgebra: A α−→ F (A)

Knaster-Tarski Fixpoint Theorem Lambek’s Lemma

f : A→ B is monotone ⇒ α : F (A) → A is initial F -algebrad
{a ∈ A | f (a) ≤ a} is least fixpoint of f ⇒ A is fixpoint of F : K → K (1)

f : A→ B is monotone ⇒ α : A→ F (A) is final F -coalgebra⊔
{a ∈ A | a ≤ f (a)} is greatest fixpoint of f ⇒ A is fixpoint of F : K → K (2)

f : A→ B is S-continuous: F : K → L is S(G)-continuous:
∀ S ∈ S : f (

⊔
S) =

⊔
f (S) ∀ D ∈ S(G) : F (col(D)) = col(F (D))

69

4.1 From posets to categories 4 CATEGORIES

�� ��Categories

f : A→ B is S-cocontinuous: F : K → L is S(G)-cocontinuous:
∀ S ∈ S : f (

d
S) =

d
f (S) ∀ D ∈ S(G) : F (lim(D)) = lim(F (D))

S = {(an)n∈N | ∀ n ∈ N : an ≤ an+1} G = (N, {(n, n + 1) | n ∈ N}, π1, π2)

f : A→ B is S-continuous F : K → L is S(G)-continuous,
D = (F n(Ini) → F n+1(Ini))n∈N

⇒
⊔
i∈ω f

i(⊥) ⇒ F (col(D)) → col(D)

is least fixpoint of f is initial F -algebra
and thus, by (1), fixpoint of F

S = {(an)n∈N | ∀ n ∈ N : an ≥ an+1} G = (N, {(n + 1, n) | n ∈ N})

f : A→ B is S-cocontinuous F : K → L is S(G)-cocontinuous,
D = (F n+1(Fin) → F n(Fin))n∈N

⇒
d
i∈ω f

i(⊤) ⇒ lim(D) → F (lim(D))

is greatest fixpoint of f is final F -coalgebra
and thus, by (2), fixpoint of F

70

4.2 Basic definitions, examples and results 4 CATEGORIES

�� ��Categories

Galois connection adjunction

(f : A→ B, g : B → A) F : K → L ⊣ G : L → K

f (a) ≤ b ⇔ a ≤ g(b)
A→ G(B)

F (A) → B

4.2 Basic definitions, examples and results

A (locally small) category K consists of

• a class of K-objects, also denoted by K,

• for all A,B ∈ K a set K(A,B) of K-morphisms, also called arrows,

• for all A,B,C ∈ K a function

◦ : K(B,C)×K(A,B) → K(A,C),

called composition, such that for all A,B,C,D ∈ K, f ∈ K(A,B), g ∈ K(B,C)

and h ∈ K(C,D),
h ◦ (g ◦ f) = (h ◦ g) ◦ f.

71

4.2 Basic definitions, examples and results 4 CATEGORIES

�� ��Categories

• for all A ∈ K an identity idA ∈ K(A,A) such that for all B ∈ K and f ∈ K(A,B),

f ◦ idA = f = idB ◦ f.

Mor (K) denotes the class of all sets K(A,B) with A,B ∈ K.

f ∈ K(A,B) is often written as f : A → B ∈ K. A and B are called the source and
target of f , respectively.

K is small if the class of all objects of K is a set.

A category L is a subcategory of K if all objects of L are objects of K and all L-
morphisms are K-morphisms. L is full if all K-morphisms between objects of L are
L-morphisms.

Examples

Set and Set ̸=∅ denote the categories of (nonempty) sets as objects and functions as
morphisms. In terms of [171], section 2.1.1, a set X can be thought of as a collection of
things each of which is recognizable as being in X and such that for each two elements
of X we can tell whether they are equal or not.

72

4.2 Basic definitions, examples and results 4 CATEGORIES

�� ��Categories

Pfn denotes the category of sets as objects and partial functions as morphisms, i.e., for
all sets A,B,

Pfn(A,B) = (A⊸� B)

(see, e.g., [102], section 1.3). Composition and identities are defined as follows: For all
sets A,B,C,

◦Pfn : Pfn(B,C)× Pfn(A,B) → Pfn(A,C)

(g, f) 7→ λa.if f (a) is defined then g(f (a)) else undefined ,

idPfnA = λa.a.

In terms of chapter 24, ◦Pfn is Kleisli composition and idPfn is the unit of the monad _+1.

Rel denotes the category of sets as objects and binary relations as morphisms, i.e., for
all sets A,B,

Rel(A,B) = P(A×B).

Composition and identities are defined as follows: For all sets A,B,C,

◦Rel : Rel(B,C)× Rel(A,B) → Rel(A,C)

(r′, r) 7→ {(a, c) ∈ A× C | ∃ b ∈ B : (a, b) ∈ r ∧ (b, c) ∈ r′},

73

4.2 Basic definitions, examples and results 4 CATEGORIES

�� ��Categories

idRelA = ∆A.

Mfn denotes the category of sets as objects and multivalued or nondeterministic
functions as morphisms, i.e., for all sets A,B,

Mfn(A,B) = (A→ P(B))

(see, e.g., [102], section 1.4).

Composition and identities are defined as follows: For all sets A,B,C,

◦Mfn : Mfn(B,C)×Mfn(A,B) → Mfn(A,C)

(g, f) 7→ λa.{c ∈ C | ∃ b ∈ f (a) : c ∈ g(b)}.

idMfn
A = λa.{a}.

In terms of chapter 24, ◦Mfn is Kleisli composition and idMfn is the unit of the powerset
monad.

Exercise 1 Show that Pfn, Rel and Mfn are categories. ❏

f : A → B ∈ K is (an) epi(morphism) if for all g, h : B → C ∈ K, g ◦ f = h ◦ f
implies g = h.

74

4.2 Basic definitions, examples and results 4 CATEGORIES

�� ��Categories

f : A → B ∈ K is (a) mono(morphism) if for all g, h : C → A ∈ K, f ◦ g = f ◦ h
implies g = h.

f : A→ B ∈ K is a retraction or split epi if f ◦ g = idB for some g : B → A ∈ K.

f : A → B ∈ K is a coretraction, section or split mono if g ◦ f = idA for some
g : B → A ∈ K.

Exercise 2 Show that retractions are epi and coretractions are mono. ❏

Exercise 3 Show that a function is surjective (injective) iff it is epi (mono) in Set . ❏

f : A → B ∈ K is (an) iso(morphism) and A and B are isomorphic, written as
A ∼= B, if f is a retraction and a coretraction. Two isomorphic objects are often regarded
as a single one, in particular, if they have the same categorical (“universal”) properties.

f : A→ B ∈ K is an embedding and A is embedded in B if f is mono.

Exercise 4 Show that for every retraction (coretraction) f : A→ B ∈ K there is exactly
one g : B → A ∈ K with f ◦ g = idB (g ◦ f = idA). This justifies the notation f−1 for g
and the phrasing: “g is the inverse of f ” if f is iso. ❏

75

4.2 Basic definitions, examples and results 4 CATEGORIES

�� ��Categories

Lemma 4.1 Let f : A→ B ∈ K and g : B → C ∈ K.

(1) If g ◦ f is epi, then g is epi.

(2) If g ◦ f is mono, then f is mono. ❏

Lemma 4.2 Let f : A→ C ∈ K, g : A→ B ∈ K and h : B → C ∈ K.

(1) If g is iso, then
f = h ◦ g ⇐⇒ h = f ◦ g−1.

(2) If h is iso, then
f = h ◦ g ⇐⇒ g = h−1 ◦ f. ❏

The dual category Kop of K is constructed from K by keeping the objects, but reversing
the arrows, i.e., for all A,B ∈ K, Kop(A,B) = K(B,A).

The formulation of a property φ of K as a property ψ of Kop is called dualization. The
dual property ψ is obtained from φ by reversing all arrows mentioned in φ.

Let I be a set (of indices) and Ki, i ∈ I , be categories.

76

4.2 Basic definitions, examples and results 4 CATEGORIES

�� ��Categories

The product category
∏

i∈I Ki has tuples (Ai)i∈I with Ai ∈ Ki for all i ∈ I as objects
and tuples (fi)i∈I with fi ∈ Ki(Ai, Bi) for all i ∈ I as morphisms.

If there is a category K such that for all i ∈ I , Ki = K, then
∏

i∈I Ki is also written as
KI and called a power category.

A K-object A is initial in K if for all K-objects B there is a unique K-morphism
iniB :A→ B.

A K-object A is final or terminal in K if for all K-objects B there is a unique K-
morphism finB :B → A.

All initial K-objects are isomorphic.
Every K-object that is isomorphic to an initial one is initial.

All final K-objects are isomorphic.
Every K-object that is isomorphic to a final one is final.

Let K be a category with initial object Ini and a sum A +B for all A,B ∈ K.
Then for all A ∈ K, Ini + A ∼= A ∼= A + Ini .

Let K be a category with final object Fin and a product A×B for all A,B ∈ K.
Then for all A ∈ K, Fin × A ∼= A ∼= A× Fin.

77

4.2 Basic definitions, examples and results 4 CATEGORIES

�� ��Categories

Examples:

The empty set is initial in Set . There are no initial objects in Set ̸=∅. Every one-element
set is final in Set and Set ̸=∅.

Lemma 4.3

(1) Let A be initial in K. All K-monomorphisms f : B → A are isomorphisms.

(2) Let A be final in K. All K-epimorphisms g : A→ B are isomorphisms.

Proof.

(1) Since A is initial in K, f ◦ iniB = idA. Hence f ◦ iniB ◦ f = idA ◦ f = f = f ◦ idB
and thus iniB ◦ f = idB because f is mono. Hence f is iso.

(2) Since A is final in K, finB ◦ g = idA. Hence g ◦ finB ◦ g = g ◦ idA = g = idB ◦ g and
thus g ◦ finB = idB because g is epi. Hence g is iso. ❏

78

4.2 Basic definitions, examples and results 4 CATEGORIES

�
�

�
5 Functors and natural transformations

Let K and L be two categories. A (covariant) functor F :K → L maps each K-object
to an L-object and each K-morphism f :A→ B to an L-morphism F (f) :F (A) → F (B)

such that

• for all K-objects A, F (idA) = idF (A),

• for all K-morphisms f :A→ B and g :B → C, F (g ◦ f) = F (g) ◦ F (f).

If K = L, then F is called an endofunctor on K.

A contravariant functor F :K → L is a covariant functor F : Kop → L.

The (sequential) composition of two functors F : K → L and G : L → M yields the
functor GF : K → M: For all A ∈ K ∪MorK, GF (A) =def G(F (A)).

Exercise 5 Show that GF is a functor. ❏

Functors preserve isomorphisms: Let f : A → B be an iso in K and F :K → L be a
functor. Then

79

4.2 Basic definitions, examples and results 4 CATEGORIES

�� ��Functors

F (f) ◦ F (f−1) = F (f ◦ f−1) = F (idB) = idF (B),

F (f−1) ◦ F (f) = F (f−1 ◦ f) = F (idA) = idF (A).

F : K → L is faithful (full, fully faithful) if for all A,B ∈ K, the mapping

FA,B : K(A,B) → L(F (A), F (B))

f 7→ F (f)

is injective (surjective, bijective).

If F is fully faithful, then for all A,B ∈ K,

F (A) ∼= F (B) ⇒ A ∼= B.

Proof. Let F (A) ∼= F (B). Then there is an iso g : F (A) → F (B) in L. Since FA,B
and FB,A are surjective, there are unique f : A → B and f ′ : B → A in K such that
F (f) = g and F (f ′) = g−1. Then

FA,A(f
′ ◦ f) = F (f ′ ◦ f) = F (f ′) ◦ F (f) = g−1 ◦ g = idF (A) = F (idA) = FA,A(idA). (1)

Since FA,A is injective, (1) implies f ′ ◦ f = idA. Analogously, f ◦ f ′ = idB. Hence f is
an iso in K. ❏

80

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

5.1 Sample functors

Given an object B ∈ L, the constant functor constB : K → L maps each object of K
to B and each K-morphism to idB ∈ L(B,B). One often writes B instead of constB.

The identity functor IdK : K → K maps each K-object and each K-morphism to itself.

Given a subcategory L of K, the forgetful functor U : L → K maps each L-object and
each L-morphism to itself.

Let I be a set of indices. The diagonal functor ∆I
K : K → KI maps each K-object A

to the I-tuple (Ai)i∈I with Ai = A for all i ∈ I and each K-morphism f to the I-tuple
(fi)i∈I with fi = f for all i ∈ I .

The product functors × : Set2 → Set and
∏

i∈I : Set
I → Set map each pair (A,B)

(tuple (Ai)i∈I , respectively) of sets to its product A × B (
∏

i∈I Ai, respectively) and
each pair (f, g) (tuple (fi : Ai → Bi)i∈I , respectively) of functions to its product f × g

(
∏

i∈I fi, respectively; see section 2.1).

The coproduct functors + : Set2 → Set and
∐

i∈I : Set
I → Set map each pair (A,B)

(tuple (Ai)i∈I , respectively) of sets to its coproduct A + B (
∐

i∈I Ai, respectively) and
each pair (f, g) (tuple (fi : Ai → Bi)i∈I , respectively) of functions to its coproduct f + g
(
∐

i∈I fi, respectively; see section 2.4).

81

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

Given sets I and J of indices, a functor F : Set I → SetJ is permutative if for all
A ∈ Set I and j ∈ J there is i ∈ I such that F (A)j = Ai.

Let X be a set, M be a commutative monoid and φ ⊆ M . We have already defined
(covariant) endofunctors on Set in chapter 2, namely:

• the list functors _∗ and _+,
• the power or reader functor _X , called stream functor if X = N,
• the powerset functor P ,
• the finite-set functor Pω,
• the bag functor N−,
• the finite-bag functor N−

ω ,
• the weighted-set functor M−

ω ,
• the C-constrained weighted-set functors M−

C and (M × _)∗C ,
• the probability (distribution) functor D.

The exception functor _ + X : Set → Set maps a set A to the set A + X and a
function f : A→ B to the function

82

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

f +X : A +X → B +X

(a, 1) 7→ (f (a), 1)

(x, 2) 7→ (x, 2)

The copower or writer functor _×X : Set → Set combines the identity functor with
a product functor: It maps a set A to the set A ×X and a function f : A → B to the
function

f ×X : A×X → B ×X

(a, x) 7→ (f (a), x)

Let X represent a set of states.

The state functor (also called store or side-effects functor; see [111])

(_ ×X)X : Set → Set

sequentially combines a writer functor with a reader functor: It maps a set A to the set
(A×X)X and a function f : A→ B to the function

(f ×X)X : (A×X)X → (B ×X)X

g 7→ (f ×X) ◦ g

83

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors
The costate functor

(_X)×X : Set → Set

sequentially combines a reader functor with a writer functor: It maps a set A to the set
(AX)×X and a function f : A→ B to the function

fX ×X : AX ×X → BX ×X

(g, x) 7→ (f ◦ g, x)

If X = N, then AX ×X represents the set of pairs of a stream s and a position of s.

The labelled-tree functor LT (X) : Set → Set maps a set A to the set of labelled trees
over (X,A) and a function f : A→ B to the function

LT (X)(f) : ltr(X,A) → ltr(X,B)

t 7→ f ◦ t

The pointed-tree functor Ptree(X) : Set → Set combines LT (X) with a writer
functor. It maps a set A to ltr(X,A)×X∗ and a function f : A→ B to

Ptree(X)(f) : ltr(X,A)×X∗ → ltr(X,B)×X∗

(t, w) 7→ (f ◦ t, w)

84

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

The contravariant (!) coreader functor X− : Set → Set maps a set A to the set XA

and a function f : A→ B to the function

Xf : XB → XA

h 7→ h ◦ f

Let X ∈ K. Reader and coreader functors can be generalized to the partial hom-
functors K(X,_) : K → Set and K(_, X) : Kop → Set that are defined on morphisms
as follows: For all f : A→ B ∈ K,

K(X, f) =def λh : X → A.f ◦ h : K(X,A) → K(X,B),

K(f,X) =def λh : B → X.h ◦ f : K(B,X) → K(A,X).

A K(X,A) B K(B,X)

A

f

⋎

K(X,_)

7→

K(X,B)

K(X, f)

⋎
A

f

⋏
K(_,X)

7→

K(A,X)

K(f,X)

⋎

The functor K(_, X) is a presheaf because it maps to Set.

85

https://en.wikipedia.org/wiki/Presheaf_(category_theory)

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

For applying the K(X,_) and K(_, X) in parallel, their domain categories are combined
to the product category Kop ×K.

Hence the (total) hom-functor K(_,_) : Kop × K → Set is defined on morphisms as
follows:

For all (f : A→ B, g : C → D) : (Kop ×K)((A,C), (B,D)) = (K×K)((B,C), (A,D)),

K(f, g) =def λh : A→ C.g ◦ h ◦ f : K(A,C) → K(B,D).

(A,C) K(A,C)

(B,D)

f

⋏

g

⋎

K(_,_)

7→

K(B,D)

K(f, g)

⋎

Cat denotes the category with categories as objects and functors as morphisms.

86

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

Given two functors F,G : K → L, a natural transformation

τ = (τA : F (A) → G(A))A∈K : F → G

is a tuple L-morphisms such that for all K-morphisms f : A→ B diagram (1) commutes:

A F (A)
τA ≻G(A)

(1)

B

f

⋎
F (B)

F (f)

⋎ τB ≻G(B)

G(f)

⋎

If for all A ∈ K, τA is an isomorphism, then τ : F → G is a natural equivalence and
F and G are naturally equivalent or iso(morphic), written as F ∼= G.

87

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors
Examples

1. The Haskell function concat::[[a]]->[a] is a natural transformation from the
composition of the list functor with the list functor to the list functor, i.e., for all sets A,
F (A) = (A∗)∗ and G(A) = A∗.

concatA : F (A) → G(A) is inductively defined as follows: For all v ∈ A∗ and w ∈ (A∗)∗,

concatA(ϵ) = ϵ,

concatA(vw) = f (v) · concatA(w).

concat is also the multiplication of the list monad (see chapter 24).

Exercise 6 Show that τ = concat satisfies (1).

2. The Haskell function uncurry(++)::([a],[a])->[a] is a natural transformation
from the functor composition

Set
_∗
−→ Set

∆2
Set−→ Set2

×−→ Set

to the list functor, i.e., for all sets A, F (A) = (×)(∆2
Set(A

∗)) and G(A) = A∗.

88

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

uncurry(++)A : F (A) → G(A) is defined as follows: For all v, w ∈ A∗,

uncurry(++)A(v, w) = v · w.

Exercise 7 Show that τ = uncurry(++) satisfies (1).

3. Exercise 8 τ : LT (X) → P defined by τA(t) = {t(w) | w ∈ def (t)} for all sets A and
t ∈ ltr(X,A) satisfies (1).

4. Let T : Set → Set be a functor and A be a set. The strength

stT,A : T ◦ _A → _A ◦ T

of T and A is defined as follows (see [83], p. 380):

For all sets B, g ∈ T (BA) and a ∈ A,

stT,AB (g)(a) = T (h)(g) ∈ T (B)

where h = λf.f (a) : BA → B.

89

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

stT,A is a natural transformation, i.e., for all h : B → C, diagram (2) commutes:

BA T (BA)
stT,AB ≻T (B)A B

(2)

CA

hA

⋎
T (CA)

T (hA)

⋎ stT,AC ≻T (C)A

T (h)A

⋎
C

h

⋎

Proof. At first, we show:
(λf.f (a)) ◦ hA = λf.h(f (a)). (3)

For all a ∈ A and g ∈ BA,

(λf.f (a))(hA(g)) = (λf.f (a))(h ◦ g) = h(g(a)) = (λf.h(f (a)))(g).

Hence (2) commutes: For all g ∈ T (BA) and a ∈ A,

(T (h)A ◦ stT,AB (g))(a) = (T (h)A ◦ λa.T (λf.f (a))(g))(a) = T (h)A(T (λf.f (a))(g))

= (T (h) ◦ T (λf.f (a)))(g) = T (h ◦ λf.f (a))(g) = T (λf.h(f (a)))(g),

stT,AC (T (hA)(g))(a) = T (λf.f (a))(T (hA)(g)) = (T (λf.f (a)) ◦ T (hA))(g)

= T ((λf.f (a)) ◦ hA)(g) (3)
= T (λf.h(f (a)))(g) ❏

90

5.1 Sample functors 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

Given two categories K and L, Fun(K,L) denotes the category of functors from K to L
as objects and all natural transformations between such functors as objects.

By [172], Theorem 11.1, for every small category K, the set Fun(Kop, Set) of presheaves
(see section 5.1) is Cartesian closed (see section 19.10).

91

5.2 The Yoneda lemma 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

5.2 The Yoneda lemma

The functors

H∗ : Kop → Fun(K, Set)
X ∈ K 7→ K(X,_)

f ∈ K(B,A) 7→ (λg.g ◦ f : K(A,X) → K(B,X))X∈K

and
H∗ : K → Fun(Kop, Set)

X ∈ K 7→ K(_, X)

f ∈ K(A,B) 7→ (λg.f ◦ g : K(X,A) → K(X,B))X∈K

are called Yoneda embeddings.

Indeed, H∗ and H∗ are injective: Suppose that A,B are different objects of K. Then
K(A,A) and K(B,A) as well as K(A,A) and K(A,B) are disjoint because morphisms
have unique sources and targets. Hence both H∗(A) ̸= H∗(B) and H∗(A) ̸= H∗(B).

92

5.2 The Yoneda lemma 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

Lemma 5.1

Let K be a small category. For all functors F : K → Set , G : Kop → Set and A ∈ K,

Fun(K, Set)(K(A,_), F) ∼= F (A), (5)
Fun(Kop, Set)(K(_, A), G) ∼= G(A). (6)

Proof. (5) The functions

Φ : Fun(K, Set)(K(A,_), F) → F (A)

and
Ψ : F (A) → Fun(K, Set)(K(A,_), F)

are defined as follows:

For all natural transformations τ : K(A,_) → F , Φ(τ) = τA(idA) ∈ F (A) is well-defined
because τA maps from K(A,A) to F (A).

For all x ∈ F (A), we define Ψ(x) : K(A,_) → F as the natural transformation with

Ψ(x)B(h) = F (h)(x) ∈ F (B)

for all B ∈ K and h : A→ B ∈ K.

93

5.2 The Yoneda lemma 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors
Φ is iso with inverse Ψ: For all x ∈ F (A),

Φ(Ψ(x)) = Ψ(x)A(idA) = F (idA)(x) = idF (A)(x) = x,

and for all τ : K(A,_) → F , B ∈ K and h : A→ B ∈ K,

Ψ(Φ(τ))B(h) = F (h)(Φ(τ)) = F (h)(τA(idA))
(2)
= τB(K(A, h)(idA)) = τB(h ◦ idA) = τB(h).

(6) Analogously. ❏

Corollary 5.2 Let K be a small category. For all objects A,B ∈ K,

A ∼= B ⇔ K(A,_) ∼= K(B,_), (7)
A ∼= B ⇔ K(_, A) ∼= K(_, B). (8)

Proof. (7): “⇒”: Let A ∼= B and C ∈ K. Since K(_, C) is a functor, K(A,C) ∼=
K(B,C). Hence K(A,_) and K(B,_) are naturally equivalent.

“⇐” ([35], 5.2.8): At first, we show—following the proof given in https://de.wikipedia.org
/wiki/Lemma_von_Yoneda—that the Yoneda embedding H∗ is fully faithful, i.e., for all
A,B ∈ K,

94

5.2 The Yoneda lemma 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

H∗
A,B : K(B,A) = Kop(A,B) →

{
Fun(K, Set)(H∗(A), H∗(B))

= Fun(K, Set)(K(A,_),K(B,_))

f 7→ H∗(f)

is bijective. By the proof of Lemma 5.1,

Φ : Fun(K, Set)(K(A,_),K(B,_)) → K(B,A)

τ : K(A,_) → K(B,_) 7→ τA(idA) (9)

is iso. Since for all f : B → A ∈ K,

Φ(H∗
A,B(f)) = Φ(H∗(f))

(9)
= H∗(f)A(idA) = (λg.g ◦ f)(idA) = idA ◦ f = f (10)

and Φ is a retraction, H∗
A,B = Φ−1. Hence for all natural transformations τ : K(A,_) →

K(B,_),
H∗
A,B(Φ(τ)) = Φ−1(Φ(τ)) = τ. (11)

By (10) and (11), H∗
A,B is bijective and thus by (1),

H∗(A) = K(A,_) ∼= K(A,_) = H∗(B) implies A ∼= B.

(8) Analogously with H∗ instead of H∗. ❏

95

5.2 The Yoneda lemma 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

Mazur ([105], section 14 ff.) and Brandenburg ([35], 5.2.11.3) interpret (7) and (8) in a
very foundational, even sociological way: Each “individual” (object) A ∈ K is determined
(up to isomorphism) by its “contacts to the environment”, given by K(A,_) and K(_, A).

Functors F : K → Set play a dominant role in categorical modeling. For instance, K may
model a database schema and F define an instance of the schema in terms of relations
(see, e.g., [171], sections 4.5 and 7.2.1). In fact, “database schema” and “schema instance”
correspond to “signature” and “algebra”, respectively (see chapters 12, 13 and 14).

Corollary 5.2 allows to prove isomorphisms in all categories with certain constraints by
arguing in the category Set, which mostly provides more structure to be used the proof.
For instance, the tedious direct proof that all Cartesian closed categories with coproducts
satisfy the distributive law

A× (B + C) ∼= (A×B) + (A× C)

can be simplified considerably by showing the equivalent bijection

K(A× (B + C), X) ∼= K((A×B) + (A× C), X)

for all X ∈ K (see [19], Proposition 8.6, or [171], Exercise 7.2.1.22).

96

5.2 The Yoneda lemma 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

A ∈ K represents a covariant or contravariant functor F : K → Set if F is naturally
equivalent to K(A,_) or K(_, A), respectively.

Examples

1 represents IdSet (see [145], section 4.2.1).

The monoid (N, {0, (+)}) represents the forgetful functor U : Monoid → Set (see 19.3
and [145], section 4.2.2).

Further examples are given in sections 19.12 and 19.15: Term sets and coterm sets are
representable.

97

5.2 The Yoneda lemma 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�� ��Functors

Compositions of natural transformations with functors

• Let F,G : K → L, τ : F → G and H : L → M.
Then Hτ : HF → HG and for all A ∈ K, (Hτ)A = H(τA) : HF (A) → HG(A).

• Let F : K → L, G,H : L → M and τ : G→ H.
Then τF : GF → HF and for all A ∈ K, (τF)A = τF (A) : GF (A) → HF (A).

• Vertical Composition
Let F,G,H : K → L, τ : F → G and η : G→ H.
Then ητ : F → H and for all A ∈ K, (ητ)A = ηA ◦ τA : F (A) → H(A).

• Horizontal Composition
Let F,G : K → L, τ : F → G, F ′, G′ : L → M and τ ′ : F ′ → G′. Then

τ ′τ : F ′F → G′G = F ′F
F ′τ−→ F ′G

τ ′G−→ G′G = F ′F
τ ′F−→ G′F

G′τ−→ G′G.

98

5.2 The Yoneda lemma 5 FUNCTORS AND NATURAL TRANSFORMATIONS

�
�

�
6 Limits and colimits

Given two categories I and K, a K-diagram is a functor D : I → K, often given as the
tuples (D(i))i∈I and (D(f) : D(i) → D(j))f :i→j∈Mor(I).

The actual objects and morphisms in I are irrelevant, only the way in which they are
interrelated matters.

One may also view D as the node- or edge-labelling function of a labelled graph whose
nodes and edges are the objects or morphisms of I, respectively.

99

6.1 Limits 6 LIMITS AND COLIMITS

�� ��Limits

6.1 Limits

limit
object

ext

ν νν

μ μ μ

A diagram, its limit and a further cone
(Every cone arrow that would be equal to the composition

of printed morphisms is omitted.)

100

6.1 Limits 6 LIMITS AND COLIMITS

�� ��Limits

A tuple µ = (µn : C → D(n))n∈I of K-morphisms is a cone of D if for all e ∈ I(m,n),
D(e) ◦µm = µn. C is called the source of µ. A cone is usually abbreviated to its source.

A cone ν of D with source D is a limit of D if for all cones µ = (µn : C → D(n))n∈I of
D there is a unique K-morphism ext :C → D such that for all n ∈ I, νn ◦ ext = µn.

All limits of D are isomorphic.

Every object that is isomorphic to the source of a limit of D is the source of alimit of D.

An object is final in K if it is the source of a limit of the empty diagram ∅ → K.

K is complete if each K-diagram has a limit.

O denotes the category with ordinal numbers as objects and all pairs (i, j) ∈ O2 with
i ≤ j as morphisms.

Oλ denotes the full subcategory of O with all ordinal numbers less than λ as objects.

A chain of K is a diagram D : O → K.

101

6.1 Limits 6 LIMITS AND COLIMITS

�� ��Limits

Let λ be an ordinal number. A λ-chain of K is a diagram D : Oλ → K. A λ-cochain
of K is a diagram D : Oλ → Kop.

K is λ-complete if K has a final object and all λ-cochains of K have limits.

A functor F : K → L preserves limits if for all limits µ = (µn : C → D(n))n∈I in K,
F (µn) =def (F (µn) : F (C) → F (D(n)))n∈I is a limit in L.

product
source

pullback
source

f g

equalizer
source

f

g

ext ext

ext

AxB eq(f,g)

π1 π2
A B

inc

pb(f,g)

A B

C

A B

Three limits

102

6.1 Limits 6 LIMITS AND COLIMITS

�� ��Limits
pb(f, g) ∼= eq(f ◦ π1, g ◦ π2).

If C is final in K, then pb(f, g) = A×B.

The unique morphism inc from eq(f, g) is mono.

Let F be final in K. Then for all A ∈ K, A× F ∼= A.

Let K = Set .

The source of an equalizer of (f : B → A, g : B → A) is the set S = {b ∈ B | f (b) =
g(b)} together with the inclusion map that sends every element of B to itself.

The source of a pullback of (f : A → C, g : B → C) is the relation R = {(a, b) ∈
A× B | f (a) = g(b)} together with the projections that send every (a, b) ∈ R to a and
b, respectively.

If f and g are inclusion maps, then the pullback object is isomorphic to A ∩B. Indeed,
in this case we obtain:

R = {(a, b) ∈ A×B | f (a) = g(b)} = {(a, b) ∈ A×B | a = b}
= {(a, a) ∈ A×B | a ∈ A ∩B}

and thus R ∼= A ∩B.

Let I have no arrows. Then (the source of) a limit ν of D is called a product of D in
K, the components of ν are called projections and ext is called a product extension.

103

6.1 Limits 6 LIMITS AND COLIMITS

�� ��Limits

Section 2.1 deals with products in Set . All definitions and results presented there—except
for the representation of products by Cartesian ones—also apply to K instead of Set .

In particular, by Proposition 2.5, K has products iff for all nonempty sets I and tuples
(Ai)i∈I ∈ KI there are P ∈ K, (di : P → Ai)i∈I ∈ Mor (K)I and a function

⟨_⟩i∈I : Xi∈IK(B,Ai) → K(B,P)

such that for all (fi : B → Ai)i∈I ∈ Mor (K)I , i ∈ I and f : A→ P ∈ Mor (K),

di ◦ ⟨fi⟩i∈I = fi,

⟨di ◦ f⟩i∈I = f.

Proposition 6.1 (Russell’s paradox)

The product P of all non-empty sets in Set is not in Set :

If P were in Set , then P(P) were in Set . Hence there would be the surjective projection
π : P → P(P) and thus p ∈ P with π(p) = A =def {p ∈ P | p ̸∈ π(p)}. p ∈ A would
imply p ̸∈ π(p) = A, while p ̸∈ A would imply p ∈ π(p) = A. ❏

Similar results can be found in section 19.10.

104

6.1 Limits 6 LIMITS AND COLIMITS

�� ��Limits

Theorem 6.2 (Subset Theorem; construction of limits in Set)

Let D : I → Set be a diagram and
R = {a ∈

∏
n∈I

D(n) | ∀ m,n ∈ I, e ∈ I(m,n) : D(e)(πm(a)) = πn(a)}.

The cone
(R

incR−→
∏
n∈I

D(n)
πn−→ D(n))n∈I

is a limit of D. ❏

For instance, Theorem 6.2 provides the following representations of equalizers and pull-
backs, respectively:

Let R′ = {(b, a) ∈ B × A | f (b) = a, g(b) = a}. By the Subset Theorem, the cone

(R′ incR′−→ B × A
π1−→ B, R′ incR′−→ B × A

π2−→ A)

is a limit of (f : B → A, g : B → A) and thus R′ isomorphic to the equalizer
R = {b ∈ B | f (b) = g(b)}

of (f : B → A, g : B → A) that was constructed above.

105

6.1 Limits 6 LIMITS AND COLIMITS

�� ��Limits

Let R′ = {(a, b, c) ∈ A×B×C | f (a) = c, g(b) = c}. By the Subset Theorem, the cone

(R′ incR′−→ A×B × C
π1−→ C, R′ incR′−→ A×B × C

π2−→ A, R′ incR′−→ A×B × C
π3−→ B)

is a limit of (f : A→ C, g : B → C) and thus R′ is isomorphic to the pullback

R = {(a, b) ∈ A×B | f (a) = g(b)}

of (f : A→ C, g : B → C) that was constructed above.

106

6.1 Limits 6 LIMITS AND COLIMITS

�� ��Limits

Theorem 6.3 (Limit Theorem; generalizes Theorem 6.2 to complete categories)

Let K be a complete category, D : I → K be a diagram,

• (
∏

m∈I D(m)
πm−→ D(m))m∈I be a product of {D(m) | m ∈ I},

• (
∏

e∈I(m,n)D(n)
πe−→ D(n))e∈I(m,n) be a product of {D(e) | e ∈ I(m,n)},

•
∏

m∈I
ext1−→

∏
e∈I(m,n)D(n) be the product extension of

(
∏
m∈I

D(m)
πn−→ D(n))e∈I(m,n),

•
∏

m∈I
ext2−→

∏
e∈I(m,n)D(n) be the product extension of

(
∏
m∈I

D(m)
D(e)◦πm−→ D(n))e∈I(m,n).

The equalizer of {ext1, ext2} is a limit of D.

Proof. See the proof of [16], Theorem 2.4.17, or [143], Theorem 1.9.7. ❏

107

6.1 Limits 6 LIMITS AND COLIMITS

�� ��Limits

ext1
ext2

πe

πe

πm

πn

eq(ext1,ext2)

limit(D)

D(n) D(m)
D(e)

D(n)

D(n) ∏
e∈I(m,n) D(m) ∏

m∈I

μn

μm

ext3

ext

108

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Colimits6.2 Colimits

ext

colimit
object

μ
μ μ μ

ν ν
ν ν

A diagram, its colimit and a further cocone
(Every cocone arrow that would be equal to the composition

of printed morphisms is omitted.)

109

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Colimits
Let D : I → K be a K-diagram.

A tuple µ = (µn : D(n) → C)n∈I of K-morphisms is a cocone of D if for all e ∈ I(m,n),
µm = µn◦D(e). C is called the target of µ. A cocone is usually abbreviated to its target.

A cocone ν of D with targetD is a colimit of D if for all cocones µ = (µn : D(n) → C)n∈I
of D there is a unique K-morphism ext :D → C such that for all n ∈ I, ext ◦ νn = µn.

All colimits of D are isomorphic.

Every object that is isomorphic to the target of a colimit of D is the target of a colimit
of D.

An object is initial in K if it is the target of a colimit of the empty diagram ∅ → K.

K is cocomplete if each K-diagram has a colimit.

A cochain of K is a diagram D : O → Kop.

Let λ be an ordinal number. A λ-cochain of K is a diagram D : Oλ → Kop.

K is λ-cocomplete if K has an initial object and all λ-cochains of K have colimits.

110

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Colimits

A functor F : K → L preserves colimits if for all colimits µ = (µn : D(n) → C)n∈I in
K, F (µn) =def (F (µn) : F (D(n)) → F (C))n∈I is a colimit in L.

coproduct
target

pushout
target

f g
coequalizer

target
f

g

ext
ext

ext

A BA+B coeq(f,g)

po(f,g)

ι1 ι2 nat

A B

C

A B

Three colimits

po(f, g) ∼= coeq(ι1 ◦ f, ι2 ◦ g).

111

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Colimits
If C is initial in K, then po(f, g) ∼= A +B.

The unique morphism nat to coeq(f, g) is epi.

Let I be initial in K. Then for all A ∈ K, A + I ∼= A.

K is distributive if K has coproducts and finite products and for all sets I , A ∈ K and
(Bi)i∈I ∈ KI , the unique sum extension

[idA × ιi]i∈I :
∐
i∈I

(A×Bi) → A×
∐
i∈I

Bi (1)

is an isomorphism.

Let K = Set .

Since here sums are disjoint unions (see section 2.4), a binary product A×B is isomorphic
to the sum of A copies of B, i.e., A×B ∼=

∐
a∈AB. In particular,∐

i∈I

(A×Bi) ∼=
∐
i∈I

∐
a∈A

Bi
∼=

∐
a∈A

∐
i∈I

Bi
∼= A×

∐
i∈I

Bi.

The target of a coequalizer of (f : A → B, g : A → B) is the quotient of B by the
equivalence closure of R = {(f (a), g(a)) | a ∈ A} together with the natural map that
sends every element of B to its equivalence class w.r.t. Req.

112

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Colimits

The target of a pushout of (f : C → A, g : C → B) is the quotient of A + B by the
equivalence closure of R = {(ι1(f (c)), ι2(g(c))) | c ∈ C} together with the natural maps
that send every element of A or B to its equivalence class w.r.t. Req.

If f and g are inclusion maps, then the pushout object is isomorphic to A + B. Indeed,
in this case we obtain:

R = {(ι1(f (c)), ι2(g(c))) | c ∈ C} = {(ι1(c), ι2(c)) | c ∈ C}

and thus (A +B)/Req ∼= A +B.

Let I have no arrows. Then (the target of) a colimit ν of D is called a coproduct or
sum of D in K, the components of ν are called injections and ext is called a sum
extension.

Section 2.4 deals with sums in Set . All definitions and results presented there—except
for the representation of sums by disjoint unions—also apply to K instead of Set .

In particular, by Proposition 2.10, K has sums iff for all nonempty sets I and tuples
(Ai)i∈I ∈ KI there are S ∈ K, (ci : Ai → S)i∈I ∈ Mor (K)I and a function

[_]i∈I : Xi∈IK(Ai, B) → K(S,B)

113

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Colimits

such that for all (fi : Ai → B)i∈I ∈ Mor (K)I , i ∈ I and f : S → A ∈ Mor (K),

[fi]i∈I ◦ ci = fi,

[f ◦ ci]i∈I = f.

Theorem 6.4 (Quotient Theorem; construction of colimits in Set)

Let D : I → Set be a diagram and ∼ be the equivalence closure of

R = {(ιm(a), ιn(D(e)(a))) ∈ (
∐
n∈I

D(n))2 | a ∈ D(m), e ∈ I(m,n), m, n ∈ I}.

The cocone
(D(n)

ιn−→
∐
n∈I

D(n)
nat∼−→ (

∐
n∈I

D(n))/∼)n∈I

is a colimit of D. ❏

For instance, Theorem 6.4 provides the following representations of coequalizers and
pushouts, respectively:

114

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Colimits

Let R′ = {(ι1(a), ι2(f (a))) | a ∈ A} ∪ {(ι1(a), ι2(g(a))) | a ∈ A}, ∼= R′eq and S =

(A +B)/∼. By Theorem 6.4, the cocone

(A
ι1−→ A +B

nat∼−→ S, B
ι2−→ A +B

nat∼−→ S)

is a colimit of (f : A → B, g : A → B) and thus S is isomorphic to the coequalizer
B/Req of (f : A→ B, g : A→ B) with R = {(f (a), g(a)) | a ∈ A} that was constructed
above.

Let R′ = {(ι3(c), ι1(f (c))) | c ∈ C} ∪ {(ι3(c), ι2(g(c))) | c ∈ C}, ∼= R′eq and S = (A +

B + C)/∼. By Theorem 6.4, the cocone

(A
ι1−→ A +B + C

nat∼−→ S, B
ι2−→ A +B + C

nat∼−→ S, C
ι3−→ A +B + C

nat∼−→ S)

is a colimit of (f : C → A, g : C → B) and thus S is isomorphic to the pushout
(A + B)/Req of (f : C → A, g : C → B) with R = {(ι1(f (c)), ι2(g(c))) | c ∈ C} that
was constructed above.

115

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Colimits

Theorem 6.5 (Colimit Theorem; generalizes Theorem 6.4 to cocomplete categories)

Let K be a cocomplete category, D : I → K be a diagram,

• (D(n)
ιn−→

∐
n∈I D(n))n∈I be a coproduct of {D(n) | n ∈ I},

• (D(m)
ιe−→

∐
e∈I(m,n)D(m))e∈I(m,n) be a coproduct of {D(e) | e ∈ I(m,n)},

•
∐

e∈I(m,n)D(m)
ext1−→

∐
n∈I D(n) be the sum extension of

(D(m)
ιm−→

∐
n∈I

D(n))e∈I(m,n),

•
∐

e∈I(m,n)D(m)
ext2−→

∐
n∈I D(n) be the sum extension of

(D(m)
ιn◦D(e)−→

∐
n∈I

D(n))e∈I(m,n).

The coequalizer of {ext1, ext2} is a colimit of D.

Proof.

Since Kop is complete, the theorem follows from Theorem 6.3 by dualization. ❏

116

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Colimits

ext1
ext2

D(m)

ιe

ιe

D(m)

D(m)

D(e)

ιn

ιm

coeq(ext1,ext2)

colimit(D)

D(n)

∏

e∈I(m,n) D(n)
∏

n∈I

μm

μn

ext3

ext

117

6.2 Colimits 6 LIMITS AND COLIMITS

�
�

�
7 Sorted sets and types

Let S be a nonempty set.

The objects of the power category SetS are tuples A = (As)s∈S of sets (see section 4.2)
and called S-sorted or S-indexed sets. a ∈ As is often written as a : s ∈ A. Sometimes
A stands for the union of As over all s ∈ S.

A morphism f : A → B in SetS is a tuple (fs : As → Bs)s∈S of functions between sets.
f is also called an S-sorted function.

BA denotes the set of S-sorted functions from A to B.

An S-sorted function f is epi/mono/iso iff for all s ∈ S, fs is surjective/injective/bijective.

The objects of the power category MfnS are the objects of SetS. A morphism f : A→ B

in MfnS is a tuple (fs : As → Bs)s∈S of multivalued or nondeterministic functions
between sets. f is also called a multivalued S-sorted function.

The S-sorted set A with As = ∅ for all s ∈ S is initial in SetS and initial and final in
MfnS.

Every S-sorted set A with |As| = 1 for all s ∈ S is final in SetS.

For all ordinal numbers λ, SetS is λ-complete and λ-cocomplete.

118

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Sorted sets
Given S-sorted sets A1, . . . , An,

A = A1 × · · · × An =def (A1,s × . . .× An,s)s∈S

is called an S-sorted product.

Let I be a fixed set that includes the elements of 1, 2 and N (see chapter 2).

The subsets of I provide both constant types, also called parameter or primitive types
in the sense of, e.g., [189, 190, 27], and index sets of sum and product types.

The sets Ts(S), Tp(S), Tpo(S), Tfo(S) and T (S) of sum, product, polynomial, first-
order and all types over S, respectively, are inductively defined as follows:

• S ∪ P(I) ⊆ Ts(S) ∩ Tp(S) (sorts and constant types are sum and product types)
• for all I ⊆ I and (ei)i∈I ∈ Tpo(S)I , (composed sum and product types)∐

i∈I

ei ∈ Ts(S) and
∏
i∈I

ei ∈ Tp(S),

• Ts(S) ∪ Tp(S) ⊆ Tpo(S), (product and sum types are polynomial)
• for all e ∈ Tpo(S), commutative monoids (M,+, 0) and C ⊆M , (weighted types)

(e×M)∗C ∈ Tpo(S) and M e
C ∈ Tfo(S),

119

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Sorted sets

• Tpo(S) ⊆ Tfo(S), (polynomial types are first-order)
• Tfo(S) ⊆ T (S),
• for all e, e′ ∈ T (S), P(e), e→ e′ ∈ T (S). (powerset and arrow types)

A type is monomorphic if it does not contain sorts. Hence T (∅) is the set of monomor-
phic types. A monomorphic type is identified with the set it represents.

A function f : A→ B is monomorphic if A and B are monomorphic types.

For all i ∈ I , ei is called a summand of the sum type
∐

i∈I ei and a factor of the product
type

∏
i∈I ei.

For all e, e′ ∈ T (S), P(e) is called a relational type and e→ e′ is called a functional
type. Weighted types are also called quantitative types.

Given e ∈ Tpo(S) and (es)s∈S ∈ T (S)S,

e[es/s | s ∈ S]

denotes the type obtained from e by replacing all occurrences of s ∈ S with es.

Arrow types e1 → (e2 → . . . (en → e)) are often written without brackets:

e1 → e2 → . . . en → e.

120

6.2 Colimits 6 LIMITS AND COLIMITS

�� ��Sorted sets

On the one hand, types over S generalize classical regular expressions over I by admitting
sums and products with indices taken from constant types. On the other hand, types
over S may be regarded as dependent types that take the indices of sum and product
types from I. The notations, however, are different:

A sum type
∐

i∈e ei of T (S) corresponds to a dependent pair type and is written as∑
i : e.ei, while

∏
i∈I ei resembles a dependent function type and is written as

∏
i : e.ei

(see, e.g., [13]).

“Pair” and “function” probably refer to the usual representation of elements of sums and
products as disjoint unions and Cartesian products, respectively. Since type theorists
would not regard I as a set, the expression i : I does not necessarily denote set member-
ship as i ∈ I does. Hence the differences are not only notational.

Derived types

For all I ⊆ I, n > 0, e, e1, . . . , en ∈ T (S) and commutative monoids (M,+, 0),

eI =
∏

i∈I e, (power types)
e1 + · · · + en =

∐n
i=1 ei =

∐
i∈[n] ei, (finite sums)

121

7.1 Type models 7 SORTED SETS AND TYPES

�� ��Sorted sets

e1 × · · · × en =
∏n

i=1 e1 =
∏

i∈[n] ei, (finite products)
e0 = 1,

en = e[n],

e∗ =
∐

n∈N e
n, (finite lists)

e+ =
∐

n>0 e
n, (nonempty finite lists)

e∞ = e∗ + eN, (finite or infinite lists)
D(e) = Re

≥0,{1} (probabilistic types)

7.1 Type models

A T (S)-sorted set A = (Ae)e∈T (S) is a type model over S if

• for all I ⊆ I, AI = I ,
• for all I ⊆ I and (ei)i∈I ∈ T (S)I there are a tuple π of projections (see section 2.1)

and a tuple ι of injections (see section 2.4) such that (A∏
i∈e ei, π) is a product and

(A∐
i∈e ei, ι) is a sum of (Aei)i∈e,

122

7.1 Type models 7 SORTED SETS AND TYPES

�� ��Sorted sets

• for all e ∈ T (S), commutative monoids M and C ⊆M ,

AMe
C
=MAe

C = {f ∈MAe
ω |

∑
a∈Ae

f (a) ∈ C}

(see section 2.8) and

A(M×e)∗C = {x ∈ (M × Ae)
∗ |

|x|∑
i=1

map(π1 ◦ πi)(x) ∈ C},

• for all e, e′ ∈ T (S),

AP(e) = P(Ae) and Ae→e′ = (Ae → Ae′).

Even if a product P =
∏

i∈I Aei is not Cartesian, we sometimes use the tuple notation
for elements of P , but keep in mind that it is an abbreviation: For instance, (a1, . . . , an)
stands for ⟨λz.a1, . . . , λz.an⟩() where z is a variable of type 1.

Mod(S) denotes the class of type models of S.

Two types e, e′ ∈ T (S) are equivalent, written as e ≡ e′, if for all type models A of S,
Ae

∼= Ae′.

123

7.1 Type models 7 SORTED SETS AND TYPES

�� ��Sorted sets
Example 7.1 For all I ⊆ I, e, e′ ∈ T (S) and (ei)i∈I ∈ T (S)I ,

I → e ≡ eI , P(e) ≡ e→ 2, P(e→ e′) ≡ e→ P(e′),

e→ P(
∐

i∈I ei) ≡
∏

i∈I(e→ P(ei)). (2)

Proof of (2). The function h defined by

πi ◦ h : (A→ P(
∐

i∈I Ai)) → (A→ P(Ai)) i ∈ I

f 7→ λa.{b ∈ Ai | ιi(b) ∈ f (a)}

has the inverse

h−1 :
∏

i∈I(A→ P(Ai)) → (A→ P(
∐

i∈I Ai))

g 7→ λa.{ιi(b) ∈
∐

i∈I Ai | b ∈ πi(g)(a), i ∈ I}.

However, if P is replaced by the list functor (and lists are represented as usually), the
list counterpart h′ of h, defined by

πi ◦ h′ : (A→ (
∐

i∈I Ai)
∗) → (A→ A∗

i) i ∈ I

f 7→ λa.filter (λιj(b).i = j)(f (a)),

is surjective, but not injective and thus
∐

i∈I(e→ e∗i) is not equivalent to e→ (
∐

i∈I ei)
∗,

but to the quotient (e→ (
∐

i∈I ei)
∗)/ker(h′) (see chapters 2 and 3). ❏

124

7.1 Type models 7 SORTED SETS AND TYPES

�� ��Sorted sets

Mod(S) becomes a subcategory of the power category SetS (see section 4.2) if we add all
S-sorted functions h : A → B as morphisms, but extend these only to first-order types
inductively as follows:

• For all I ⊆ I, hI = idI .
• For all I ⊆ I and (ei)i∈I ∈ Tfo(S)e, h∐i∈I ei =

∐
i∈I hei and h∏

i∈I ei =
∏

i∈I hei.
• For all e, e′ ∈ Tfo(S), commutative monoids M and C ⊆ M , hMe

C
= Mhe

C and
h(e×M)∗M

= (idM × he)
∗ (see sections 2.8, 2.1 and 2.7).

For each e ∈ Tfo(S), the “projection” functor

Fe : Mod(S) → Set

maps every model A of Tfo(S) to Ae and every Mod(S)-morphism h to he.

The functor property implies that for all e ∈ Tfo(S), he is a function from Ae to Be.

A stronger notion of type equivalence than the above one would be the following one:

Two weighted types e, e′ over S are equivalent iff Fe and Fe′ are naturally equivalent (see
chapter 5).

125

7.2 Sorted relations 7 SORTED SETS AND TYPES

�� ��Sorted sets

7.2 Sorted relations

Let A1, . . . , An be models of Tfo(S) and A = A1×· · ·×An be their S-sorted product. An
S-sorted n-ary relation on A is an S-sorted set R = (Rs)s∈S such that for all s ∈ S,

Rs ⊆ A1,s × . . .× An,s.

If n = 1, then R is also called an S-sorted subset of A.

An S-sorted n-ary relation R on A is lifted to a Tfo(S)-sorted n-ary relation as follows:

• For all I ⊆ I, RI = ∆
[n]
I (see chapter 2).

• For all I ⊆ I and (ei)i∈I ∈ Tfo(S)I ,
R∐

i∈I ei = {(ιi(aj))nj=1 ∈ Xn
j=1Aj,e | (aj)nj=1 ∈ Rei, i ∈ I}, (3)

R∏
i∈I ei = {(ak)nj=1 ∈ Xn

j=1 Aj,e | ∀ i ∈ I : (πi(aj))
n
j=1 ∈ Rei}. (4)

• For all e, e′ ∈ Tfo(S), commutative monoids M and C ⊆M ,

RMe
C

= {(f1, . . . , fn) ∈ Xn
j=1M

Aj

C |
∃ f ∈MRe

C : ∀ j ∈ [n] : fj = λaj.
∑

{f (a) | a ∈ Re, πj(a) = aj},
(5)

R(M×e)∗C = {((mij, aij)
k
i=1)

n
j=1 ∈ Xn

j=1Aj,e |
∀ i ∈ [k] : (ai1, . . . , ain) ∈ Re, ∀ j ∈ [n] :

∑k
i=1mij ∈ C}

(see section 2.8).

126

7.2 Sorted relations 7 SORTED SETS AND TYPES

�� ��Sorted sets
Exercise 9

Show by induction on e that for all e ∈ Tfo(S), Re is a subset of Xn
i=1Ae,i, and thus R

is indeed a Tfo(S)-sorted n-ary relation on the extension ofA to a Tfo(S)-sorted product. ❏

The relations occurring in universal algebra mostly have arity 1—like the image of a
function—or 2—like the kernel of a function (see chapter 2).

The above-defined lifting of S-sorted to Tfo(S)-sorted relations transfers images, kernels
and other algebraic relations from SetS to Mod(S) (see sections 9.9 and 9.10, respec-
tively).

Lemma 7.2 (Fe preserves equalizers and coequalizers)

Let g, h : A → B be Mod(S)-morphisms, R be an S-sorted subset of A and R′ be an
S-sorted binary relation on B such that for all s ∈ S,

Rs = {a ∈ As | gs(a) = hs(a)} and R′
s = {(gs(a), hs(a)) | a ∈ As}.

Then for all e ∈ Tfo(S),

Re = {a ∈ Ae | ge(a) = he(a)}, (1)
R′
e = {(ge(a), he(a)) | a ∈ Ae}. (2)

Proof. Induction on the size of e. ❏

127

7.2 Sorted relations 7 SORTED SETS AND TYPES

�
�

�
8 Signatures

For all e, e′ ∈ T (S), a typed symbol of the form f : e → e′ is called an arrow with
source src(f) = e and target trg(f) = e′.

f : e→ e′ is first-order if e and e′ are first-order.

f : e→ e′ is polynomial if e and e′ are polynomial.

f : e→ e′ is finitary if e = s1 × · · · × sn for some n > 0 and s1, . . . , sn ∈ S.

If e′ ∈ S, then f : e→ e′ is an e′-constructor.

If e ∈ S, then f : e→ e′ is a e-destructor.

A signature Σ = (S, F) consists of a set S of sorts and a set F of arrows.

Σ is first-order if all arrows of F are first-order.

Σ is polynomial if all arrows of F are polynomial.

Σ is finitary if all arrows of F are finite.

Σ is constructive if all arrows of F are constructors or represent monomorphic functions.

Σ is destructive if all arrows of F are destructors.

128

8.1 Σ-arrows 8 SIGNATURES

�� ��Signatures
Let Σ = (S, F) and Σ′ = (S ′, F ′).

Σ is a subsignature of Σ′ and Σ′ is an extension of Σ if Σ′ includes Σ componentwise.

A signature morphism σ : Σ → Σ′ maps S to T (S ′) and F to F ′ such that for all
f : e → e′ ∈ F , σ(f) : σ∗(e) → σ∗(e′) ∈ F ′ where σ∗(e) denotes the type obtained from
e by replacing every s ∈ S with σ(s).

The image signature σ(Σ) is also written as Σ[σ(s)/s | s ∈ S, σ(s) ̸= s].

Σ ∪ Σ′ denotes (S ∪ S ′, F ∪ F ′).

8.1 Σ-arrows

Let Σ = (S, F) be a signature. The set ArrΣ of Σ-arrows is the least T (S)-sorted set
that contains F and satisfies the following conditions:

• For all e ∈ T (S), ide : e→ e ∈ ArrΣ. (identities)
• For all f : e→ e′, g : e′ → e′′ ∈ ArrΣ, g ◦ f : e→ e′′ ∈ ArrΣ. (composition)
• For all i ∈ I , ιi : ei →

∐
i∈I ei ∈ ArrΣ. (injections)

• For all (fi : ei → e)i∈I ∈ ArrIΣ, [fi]i∈I :
∐

i∈I ei → e ∈ ArrΣ. (sum extensions)
• For all i ∈ I , πi :

∏
i∈I ei → ei. (projections)

129

8.1 Σ-arrows 8 SIGNATURES

�� ��Signatures

• For all (fi : e→ ei)i∈I ∈ ArrIΣ, ⟨fi⟩i∈I : e→
∏

i∈I ei ∈ ArrΣ. (product extensions)
• For all I ⊆ I and e ∈ T (S), get : eI × I → e ∈ ArrΣ. (polynomial application)
• For all f : e→ e′ ∈ ArrΣ, commutative monoids M and C ⊆M ,
M f

C :M e
C →M e′

C , (M × f)C : (e×M)∗C → (e′ ×M)∗C ∈ ArrΣ.
(weighted extensions)

• For all e, e′ ∈ Tfo(S) and natural transformations τ : Fe → Fe′, τ : e→ e′ ∈ ArrΣ.
(type transformations)

For instance, given e ∈ Tfo(S), the type transformation

fork e : e× 2 → e + e

stems from the natural transformation fork e : Fe×2 → Fe+e that is defined as follows:
For all A ∈ Mod(S), a ∈ Ae × 2,

fork e,A(a) =

{
ι1(π1(a)) if π2(a) = 1,

ι2(π1(a)) otherwise.

g ∈ ArrΣ is a subarrow of a f ∈ ArrΣ if f = g or

• f ∈ {h ◦ f ′, f ′ ◦ h} for some h ∈ ArrΣ and g is a subarrow of f ′, or
• f ∈ {[fi]i∈I , ⟨fi⟩i∈I} for some (fi)i∈I ∈ ArrIΣ and g is a subarrow of fi for some i ∈ I .

130

8.1 Σ-arrows 8 SIGNATURES

�� ��Signatures

Derived Σ-arrows

• For all (fi : ei → e′i)i∈I ∈ ArrIΣ, (sums and products)∐
i∈I

fi = [ιi ◦ fi]i∈I :
∐
i∈I

ei →
∐
i∈I

e′i and
∏
i∈I

fi = ⟨fi ◦ πi⟩i∈I :
∏
i∈I

ei →
∏
i∈I

e′i.

• For all e, e′ ∈ Tfo(S), p : e→ 2, f, g : e→ e′ ∈ ArrΣ, (tests and conditionals)

p? = fork e ◦ ⟨ide, p⟩ : e→ e + e and ite(p, f, g) = [f, g] ◦ p? : e→ e′

(see [30], section 3.4).

In the following examples, ✑ points to the carrier of a “standard model”, usually given
by the carrier of an initial or final Σ-algebra (see chapter 9). For the definitions of sets
of labelled trees, see section 2.9.

Many of these examples and those presented in chapters 9, 15, 17 or 24 have been imple-
mented and tested in Haskell (see the modules Coalg.hs and Compiler.hs).

131

https://fldit-www.cs.tu-dortmund.de/~peter/Haskellprogs/Coalg.hs
https://fldit-www.cs.tu-dortmund.de/~peter/Haskellprogs/Compiler.hs

8.2 Sample constructive signatures 8 SIGNATURES

�� ��Signatures

8.2 Sample constructive signatures

Let X, Y,Act ⊆ I and (M,+, 0) be a commutative monoid.

• Mon (nonempty unlabelled binary trees; e.g., monoids)

S = {mon}, F = {one : 1 → mon, mul : mon×mon→ mon}.

• Nat ✑ N
S = {nat}, F = {zero : 1 → nat, succ : nat→ nat}.

• Con(X) ✑ X

S = {elem}, F = {putElem : X → elem}.

• Dyn(X, Y) ✑ X∗ × Y (dynamics; Y -pointed automata)

S = {state}, F = {cons : X × state→ state, α : Y → state}.
List(X) =def Dyn(X, 1) ✑ X∗

List(X) is equivalent to ({state}, {list : X∗ → state}) (see chapter 15).

List(1) is equivalent to Nat .

132

8.2 Sample constructive signatures 8 SIGNATURES

�� ��Signatures

Nelist(X) =def Dyn(X,X). ✑ X+

Nelist(X) is equivalent to ({state}, {list : X+ → state}).

• WDyn(X, Y,M) (pointed M -weighted automata)

S = {state}, F = {cons : X × state→M state
M , α : Y → state}.

• coStream(X) ✑ XN (semiautomata)

S = {state}, F = {cons : X × state→ state}.

• WcoStream(X,M) (M -weighted semiautomata)

S = {state}, F = {cons : X × state→M state
M }.

• coDAut(X,Y) ✑ Y X∗ (Moore automata with input from X and output from Y)

S = {state}, F = {new : stateX × Y → state}.

• coDAut(X, 2) ✑ P(X∗) (deterministic acceptors of words over X)

133

https://en.wikipedia.org/wiki/Semiautomaton

8.2 Sample constructive signatures 8 SIGNATURES

�� ��Signatures

• Bintree(X) ✑ ftr (2, X) (binary trees of finite depth with node labels from X)

S = {btree}, F = { bjoin : X × btree× btree→ btree,

empty : 1 → btree }.

• Nebintree(X) ✑ ftr (2, X) \ {Ω}
(nonempty binary trees of finite depth with node labels from X)

S = {btree}, F = { bjoin : X × btree× btree→ btree,

ljoin, rjoin : X × btree→ btree,

leaf : X → btree }.

• Nebintree2(X) ✑ {t ∈ ftr (2, X)\{Ω} | ∀ w ∈ 2∗ : w0, w1 ∈ def (t)∨w0, w1 ̸∈ def (t)}
(nonempty binary trees of finite depth with node labels from X and outdegree 0 or
2)

S = {btree}, F = { bjoin : X × btree× btree→ btree,

leaf : X → btree }.

134

8.2 Sample constructive signatures 8 SIGNATURES

�� ��Signatures

• Tree(X) ✑ otr (N, X) ∩ ftr (N, X) (finitely branching trees of finite depth with node
labels from X)

S = {tree, trees}, F = { join : X × trees→ tree, nil : 1 → trees,

cons : tree× trees→ trees}.

• Treeω(X) ✑ otr (N, X) ∩ wtr(N, X) (finitely or infinitely branching trees of finite
depth with node labels from X)

S = {tree}, F = {join : X × tree∞ → tree}.

• ETree(X, Y) ✑ ftr (Y,X) (finitely branching trees of finite depth with node labels
from X and edge labels from Y)

S = {tree}, F = {join : X × (Y × tree)∗ → tree}.

135

8.2 Sample constructive signatures 8 SIGNATURES

�� ��Signatures

• Reg(X) ✑ regular expressions over X

S = { state },
F = { par : state× state→ state, (parallel composition)

seq : state× state→ state, (sequential composition)

star : state→ state, (iteration)

: P+(X) → state, (base languages)

_̂ : 2 → state }. (“empty set” 0̂ and “empty word” 1̂)

• Proc(Act) ✑ process expressions (see section 26.3)

S = { proc },
F = { pre : Act× proc→ proc, (prefixing by an action)

cho : proc× proc→ proc, (choice)

par : proc× proc→ proc, (parallel composition)

res : proc× Act→ proc, (restriction)

rel : proc× ActAct → proc }. (relabelling)

136

https://en.wikipedia.org/wiki/Calculus_of_communicating_systems

8.3 Sample destructive signatures 8 SIGNATURES

�� ��Signatures

8.3 Sample destructive signatures

Let X, Y,Act ⊆ I and (M,+, 0) be a commutative monoid.

• coNat ✑ N ∪ {ω} ∼= ltr(1, 1) (see chapter 2)

S = {nat}, F = {pred : nat→ nat + 1}.

• Des(X) ✑ X

S = {elem}, F = {getElem : elem→ X}.

• Stream(X) ✑ XN

S = {state}, F = {head : state→ X, tail : state→ state}.

• WStream(X,M)

S = {state}, F = {head : state→ X, tail : state→M state
M }.

• WStream∗(X,M) ✑ otr (M × N, X)

S = {state}, F = {head : state→ X, tail : state→ (state×M)∗}.

137

8.3 Sample destructive signatures 8 SIGNATURES

�� ��Signatures

• coDyn(X, Y) ✑ X∗ × Y ∪XN (codynamics)

S = {state}, F = {split : state→ X × state + Y }.

coList(X) =def coDyn(X, 1) ✑ X∗ ∪XN

coList(1) is equivalent to coNat .

coNelist(X) =def coDyn(X,X) ✑ X+ ∪XN

• infBintree(X) ✑ X2∗ (binary trees of infinite depth with node labels from X)

S = {btree}, F = {left , right : btree→ btree, root : btree→ X}.

• coBintree(X) ✑ ltr(2, X)

(binary trees of finite or infinite depth with node labels from X)

S = {btree}, F = {split : btree→ X × btree× btree + 1}.

• coNebintree(X) ✑ ltr(2, X) \ {Ω}
(nonempty binary trees of finite or infinite depth with node labels from X)

S = {btree},
F = {split : btree→ X × btree× btree +X × btree +X × btree +X}.

138

8.3 Sample destructive signatures 8 SIGNATURES

�� ��Signatures

• coNebintree2(X)

✑ {t ∈ ltr(2, X) \ {Ω} | ∀ w ∈ 2∗ : w0, w1 ∈ def (t) ∨ w0, w1 ̸∈ def (t)}
(nonempty binary trees of finite or infinite depth with node labels from X and out-
degree 0 or 2)

S = {btree}, F = {split : btree→ X × btree× btree +X}.

• infTree(X) ✑ otr (N, X) ∩ fbtr (N, X) ∩ itr(N, X)

(finitely branching trees of infinite depth with node labels from X)

S = { tree },
F = { subtrees : tree→ tree+,

root : tree→ X }.

• coTreeω(X) ✑ otr (N, X) ∩ fbtr (N, X) (finitely branching trees of finite or infinite
depth with node labels from X)

S = { tree },
F = { subtrees : tree→ tree∗,

root : tree→ X }.

139

8.3 Sample destructive signatures 8 SIGNATURES

�� ��Signatures

• coTree(X) ✑ otr (N, X) (finitely or infinitely branching trees of finite or infinite
depth with node labels from X)

S = { tree, trees },
F = { subtrees : tree→ trees, root : tree→ X,

split : trees→ tree× trees + 1 }.

• coETree(X, Y) (finitely or infinitely branching trees of finite or infinite depth with
node labels from X and edge labels from Y)

S = { tree, trees },
F = { subtrees : tree→ trees, root : tree→ X,

split : trees→ Y × tree× trees + 1 }.

• Trans(Act) (transition trees whose edges are labelled with actions; see section 26.3)

S = {tree}, F = {denode : tree→ (Act× tree)∗}.

• Med(X) (deterministic Medvedev automata; semiautomata)

S = {state}, F = {δ : state→ stateX}.

140

https://en.wikipedia.org/wiki/Semiautomaton

8.3 Sample destructive signatures 8 SIGNATURES

�� ��Signatures
Med(1) is equivalent to coStream(1).

• NMed(X) (nondeterministic Medvedev automata)

S = {state}, F = {δ : state→ (2state2)X}.

• NMed∗(X) ✑ otr (X × N, 1)

S = {state}, F = {δ : state→ (state∗)X}.

• WMed(X,M) (M -weighted Medvedev automata)

S = {state}, F = {δ : state→ (M state
M)X}.

• WMed∗(X,M) ✑ otr (X ×M × N, 1)

S = {state}, F = {δ : state→ ((state×M)∗)X}.

• DAut(X, Y) ✑ Y X∗ (Moore automata with input from X and output from Y ;
Y -colored automata)

S = {state}, F = {δ : state→ stateX , β : state→ Y }.

DAut(1, Y) is equivalent to Stream(Y).

141

8.3 Sample destructive signatures 8 SIGNATURES

�� ��Signatures
DAut(2, Y) is equivalent to infBintree(Y).

Acc(X) =def DAut(X, 2) ✑ P(X∗) (deterministic acceptors of words over X)

• Mealy(X, Y) ✑ Y X+ (Mealy automata)

S = {state}, F = {δ : state→ stateX , β : state→ Y X}.

• PAut(X, Y) ✑ ltr(X, Y) (partial automata with input from X and output from Y)

S = {state}, F = {δ : state→ (1 + state)X , β : state→ Y }.

PAut(1, Y) is equivalent to coNelist(Y) because for all sets A,
(1 + A)1 × Y ∼= (1 + A)× Y ∼= 1× Y + A× Y ∼= Y + A× Y ∼= Y × A + Y.

PAut(2, Y) is equivalent to coNebintree(Y) because for all sets A,

(1 + A)2 × Y ∼= (1 + A + A + A2)× Y ∼= 1× Y + A× Y + A× Y + A2 × Y
∼= A× Y × A + A× Y + A× Y + Y.

• NAut(X, Y) (nondeterministic automata with input from X and output from Y)

S = {state},
F = {δ : state→ (2state2)X , β : state→ Y }.

142

8.3 Sample destructive signatures 8 SIGNATURES

�� ��Signatures

NAcc(X) =def NAut(X, 2) ✑ P(X∗) (non-deterministic acceptors of words over X)

NAut×(X, Y)

S = {state},
F = {δ : state→ (X × 2state2), β : state→ Y }.

NAut∗(X, Y) ✑ otr (X × N, Y)

S = {state},
F = {δ : state→ (state∗)X , β : state→ Y }.

NAut∗×(X, Y)

S = {state},
F = {δ : state→ (X × state)∗, β : state→ Y }.

By (3) and (4) in chapter 8 (for e = 1 and I = X), P(X × state) and P(state)X are
equivalent types and thus NAut×(X, Y) and NAut(X, Y) are equivalent signatures,
while NAut∗×(X, Y) is only a quotient of NAut∗(X, Y).

143

8.3 Sample destructive signatures 8 SIGNATURES

�� ��Signatures

• WAut(X,M, Y) (colored M -weighted automata)

S = {state}, F = {δ : state→ (M state
M)X , β : state→ Y }.

WAut(1,M, Y) is equivalent to WStream(Y,M).

• WAut∗(X,M, Y) ✑ otr (X ×M × N, Y)

S = {state}, F = {δ : state→ ((state×M)∗)X , β : state→ Y }.

• PrAut(X, Y) (probabilistic automata with input from X and output from Y)

S = {state}, F = {δ : state→ D(state)X , β : state→ Y }.

• Let Σ = (S,C) be a finitary signature (see above).

TAcc(Σ) ✑ P(TΣ) (deterministic top-down tree acceptors; see section 9.3)

F = {δc : s→ s′1 × · · · × s′n | c : s1 × · · · × sn → s ∈ C}
where for all s ∈ S, s′ =def if s ∈ S then s else P(s).

If S and I are singletons, say S = {state} and I = {Y }, and for all c : e → s ∈ C,
e ∈ {state, Y }, then TAcc(Σ) is equivalent to Mealy(C ′,P(Y)) where

C ′ = {c : e→ s ∈ C | e = state}.

144

8.3 Sample destructive signatures 8 SIGNATURES

�� ��Signatures
NTAcc(Σ) ✑ P(TΣ) (nondeterministic top-down tree acceptors)

F = {δc : s→ 2e2 | c : e→ s ∈ C}.

NTAcc∗(Σ) (polynomial nondeterministic top-down tree acceptors)

F = {δc : s→ e∗ | c : e→ s ∈ C}.

• KripkeSig (silent as well as labelled state transitions and atom valuations)

S = { state, label, atom },
F = { inits : 1 → P(state),

trans : state→ P(state),

transL : state→ label → P(state),

value : atom→ P(state),

valueL : atom→ label → P(state) }.

145

8.3 Sample destructive signatures 8 SIGNATURES

�� ��Signatures

• Let X1, . . . , Xn, Y1, . . . , Yn, E1, . . . , En be nonempty sets and

BS = {X1, . . . , Xn, Y1, . . . , Yn, E1, . . . , En}.

Class(BS) (object classes with n methods [94])

S = {state}, F = {mi : state→ ((Yi × state) + Ei)
Xi | 1 ≤ i ≤ n}.

• UML diagrams (object class diagrams with n classes and “associations”)

S = {s1, . . . , sn}, F = {associ : si → sk1 × . . .× ski | 1 ≤ i ≤ n, 1 ≤ kj ≤ n}.

• Graph(X, Y) (node- and edge-labelled graphs)

S = {node, edge},
F = {source, target : edge→ node, nlabel : node→ X, elabel : edge→ Y }.

146

9.1 Algebras and homomorphisms 9 Σ-ALGEBRAS

�
�

�
9 Σ-algebras

9.1 Algebras and homomorphisms

Let Σ = (S, F) be a signature.

A Σ-algebra A is a type model A over S, called the carrier of A, together with an
interpretation of each f : e→ e′ ∈ F as a function fA : Ae → Ae′. The interpretation
of F is extended to ArrΣ inductively as follows:

Let M be a commutative monoid and C ⊆M .

• For all e ∈ T (S), idAe = idAe.
• For all e ∈ T (S), a ∈ Ae and i ∈ I, iA(a) = i, ιAi = ιi and πAi = πi.
• For all f : e→ e′, g : e′ → e′′ ∈ ArrΣ, (g ◦ f)A = gA ◦ fA.
• For all (fi : ei → e)i∈I ∈ ArrIΣ, [fi]Ai∈I = [fAi]i∈I .
• For all (fi : e→ ei)i∈I ∈ ArrIΣ, ⟨fi⟩A = ⟨fAi ⟩i∈I .
• For all I ⊆ I, e ∈ T (S), a ∈ AI

e and i ∈ I , getA(a, i) = πi(a).

• For all f : e→ e′ ∈ ArrΣ, (M f
C)

A =M fA

C (see section 2.8).
• For all f : e→ e′ ∈ ArrΣ, (M × f)AC = (idM × fA)∗ (see sections 2.1 and 2.7).

147

9.1 Algebras and homomorphisms 9 Σ-ALGEBRAS

�� ��Σ-algebras

• For all e, e′ ∈ Tfo(S) and natural transformations τ : Fe → Fe′, τA = τA.

See chapter 2 for the functions and operators on the right-hand sides of the above equa-
tions.

We often write A(e) for Ae.

Exercise 10 Show that every algebra A interprets derived arrows as desired, e.g.,

• for all (fi : ei → e′i)i∈I ∈ ArrIΣ,

(
∐

i∈I fi)
A = [ιi ◦ fAi]i∈I and (

∏
i∈I fi)

A = ⟨fAi ◦ πi⟩i∈I ,

• for all f = (fs : es → e′s)s∈S ∈ ArrIΣ and (ei)i∈I ∈ T (S)I ,

(f∏
i∈I ei)

A =
∏

i∈I f
A
ei

and (f∐
i∈I ei)

A =
∐

i∈I f
A
ei
. ❏

Given f, g ∈ ArrΣ, A satisfies the Σ-arrow equation f = g, written as A |= f = g, if
fA = gA.

Exercise 11 The following example stems from [64], one of the first papers on algebraic
software specifications. Let Domain,Range ⊆ I, equal : Domain2 → 2 be the equality
on Domain and Σ = (S, F) with

148

9.1 Algebras and homomorphisms 9 Σ-ALGEBRAS

�� ��Σ-algebras

S = { Array},
F = { new : 1 → Array ,

assign : Array × Domain × Range → Array ,

access : Array × Domain → Range + 1 }.

Define a (simple) Σ-algebra A that satisfies the following arrow equations:

access ◦ ⟨new ◦ (), id⟩ = ι2 ◦ ()
: Range + 1,

access ◦ ⟨assign ◦ ⟨π1 , π2 , π3 ⟩, π4 ⟩ = ite(equal ◦ ⟨π2, π4⟩, ι1 ◦ π3, access ◦ ⟨π1, π4⟩)
: Range + 1,

assign ◦ ⟨assign ◦ ⟨π1, π2, π3⟩, π4, π5⟩ = ite(equal ◦ ⟨π2, π4⟩, assign ◦ ⟨π1, π4, π5⟩,
assign ◦ ⟨assign ◦ ⟨π1, π4, π5⟩, π2, π3⟩)

: Array.

Σ-arrow equations are not always the most comprehensible way for expressing desired
properties of Σ-algebras. Further formulas (including variables and λ-terms) are provided
in sections 9.11 and 9.16 and chapter 10. ❏

149

9.1 Algebras and homomorphisms 9 Σ-ALGEBRAS

�� ��Σ-algebras

Ologs [171] and sketches [24, 25] are approaches to specify models in terms of signature
graphs and to interpret their nodes and edges by sets and functions, respectively. The
graphs are regarded as database schemas and the sets and functions they are mapped to
represent relational databases (tables) and their attributes, respectively.

Olog example

[171], Example 4.5.2.1, defines a database schema as a quotient category that resembles
the free category over a signature. For instance, let Σ = (S, F) with

S = { Employee,Department , String},
F = { manager : Employee → Employee,

worksIn : Employee → Department ,

secretary : Department → Employee,

first , last : Employee → String ,

name : Department → String }.
Database constraints are then specified as arrow equations, e.g.,

worksIn ◦manager = worksIn : Department ,

worksIn ◦ secretary = idDepartment : Department . ❏

150

9.1 Algebras and homomorphisms 9 Σ-ALGEBRAS

�� ��Σ-algebras
Homomorphisms

Let Σ = (S, F) be a first-order signature and A,B be Σ-algebras.

A Mod(S)-morphism h : A → B is a Σ-homomorphism (or Σ-homomorphic) and
denoted by h : A → B if for all e, e′ ∈ Tfo(S) and f : e → e′ ∈ F the following diagram
commutes:

A(e)
he ≻B(e)

(1)

A(e′)

fA

⋎ he′ ≻B(e′)

fB

⋎

h is a Σ-isomorphism if h is iso in AlgΣ.

The category of Σ-algebras and Σ-homomorphisms is a subcategory of Mod(S) and de-
noted by AlgΣ.

For all Σ-homomorphisms h : A → B,

h is epi in AlgΣ iff h is epi in Mod(S) iff h is epi in SetS.

h is mono in AlgΣ iff h is mono in Mod(S) iff h is mono in SetS.

151

9.1 Algebras and homomorphisms 9 Σ-ALGEBRAS

�� ��Σ-algebras
h is iso in AlgΣ iff h is iso in Mod(S) iff h is iso in SetS.

Lemma 9.1

Let A,B, C be Σ-algebras with carriers A,B,C, respectively, and g : A → B and h :

B → C be S-sorted functions such that h ◦ g is Σ-homomorphic.

(2) If g is epi in AlgΣ, then h is Σ-homomorphic.

(3) If h is mono in AlgΣ, then g is Σ-homomorphic.

Proof. Diagram chasing. ❏

Lemma 9.2

Given a Σ-homomorphism h : A → B, (1) holds true for all f : e → e′ ∈ ArrΣ with
e, e′ ∈ Tfo(S). In other words, Σ-homomorphisms are also (S,ArrΣ)-homomorphic.

Proof. We show (1) by induction on the structure of f .

If f ∈ F , then (1) holds true because h is Σ-homomorphic.

152

9.1 Algebras and homomorphisms 9 Σ-ALGEBRAS

�� ��Σ-algebras
If f = ide : e→ e , then

he ◦ fA = he ◦ idA(e) = he ◦ idA(e) = he ◦ idB(e′ = he = idB(e) ◦ he = fB ◦ he.

If f = i : e→ I , then hI ◦ fA = idI ◦ fA = fA = λa.i = λb.i ◦ he = fB ◦ he.

If f is an injection, say f = ιi : ei →
∐

i∈I ei, then

he′ ◦ fA = h∐
i∈I ei ◦ ιi =

∐
i∈I

hei ◦ ιi
(18) in section 2

= ιi ◦ hei = fB ◦ he.

If f is a projection, say f = πi :
∏

i∈I ei → ei, then

he′ ◦ fA = hei ◦ πi
(7) in section 2

= πi ◦
∏
i∈I

hei = πi ◦ h∏i∈I ei = fB ◦ he.

Let f = f2 ◦ f1 for some f1 : e → e′′, f2 : e
′′ → e′ ∈ ArrΣ. Then (4) holds true for f1, f2

by induction hypothesis. Hence

he′ ◦ fA = he′ ◦ (f2 ◦ f1)A = he′ ◦ fA2 ◦ fA1
ind. hyp.

= fB2 ◦ he′′ ◦ fA1
ind. hyp.

= fB2 ◦ fB1 ◦ he
= (f2 ◦ f1)B ◦ he = fB ◦ he.

Let f = [fi]i∈I for some fi : ei → e′, i ∈ I . Then e =
∐

i∈I ei and (1) holds true for fi,
i ∈ I , by induction hypothesis. Hence for all i ∈ I ,

153

9.1 Algebras and homomorphisms 9 Σ-ALGEBRAS

�� ��Σ-algebras

he′ ◦ fA ◦ ιi = he′ ◦ [fi]Ai∈I ◦ ιi = he′ ◦ fAi
ind. hyp.

= fBi ◦ hei = [fBi]i∈I ◦ ιi ◦ hei
(18) in section 2.6

= [fBi]i∈I ◦
∐

i∈I hei ◦ ιi = [fi]
B
i∈I ◦ he ◦ ιi = fB ◦ he ◦ ιi

and thus (1) by (13) in section 2.4.

Let f = ⟨fi⟩i∈I for some fi : e → ei, i ∈ I . Then e′ =
∏

i∈I ei and (4) holds true for fi,
i ∈ I , by induction hypothesis. Hence for all i ∈ I ,

πi ◦ he′ ◦ fA = πi ◦ h∏i∈I ei ◦ ⟨fi⟩
A
i∈I = πi ◦

∏
i∈I hei ◦ ⟨fAi ⟩i∈I

(7) in section 2.3
= hei ◦ πi ◦ ⟨fAi ⟩i∈I = hei ◦ fAi

ind. hyp.
= fBi ◦ he = πi ◦ ⟨fBi ⟩i∈I ◦ he

= πi ◦ ⟨fi⟩Bi∈I ◦ he = πi ◦ fB ◦ he
and thus (1) by (2) in section 2.1.

If f = get : e× I → e for some e ∈ T (S) and I ⊆ I, then

he ◦ fA = he ◦ λ(a, i).πi(a) = λ(a, i).he(πi(a)) = λ(a, i).πi(h
I
e(a)) = λ(a, i).fB(hIe(a), i)

= fB ◦ λ(a, i).(hIe(a), i) = fB ◦ λ(a, i).(hIe(a), idI(i)) = fB ◦ λ(a, i).(hIe(a), hI(i))
= fB ◦ λ(a, i).heI×I(a, i) = fB ◦ heI×I .

If f =M g
C :M e

C →M e′
C for some g : e→ e′ ∈ ArrΣ, then for all f ′ ∈MAe

C ,

154

9.1 Algebras and homomorphisms 9 Σ-ALGEBRAS

�� ��Σ-algebras

h
Me′

C
◦ fA = h

Me′
C
◦M g,A

C = h
Me′

C
◦M gA

C =M
he′
C ◦M gA

C

M
_

C is a functor
= M

he′◦g
A

C

ind. hyp.
= M gB◦he

C

M
_

C is a functor
= M gB

C ◦Mhe
C =M g,B

C ◦ hMe
C
= fB ◦ hMe

C
.

If f = (idM × g)∗C : (M × e)∗C → (M × e′)∗C for some g : e → e′ ∈ ArrΣ, then for all
x = ((mi, ai))i=1n ∈ (M × Ae)

∗
C ,

h(M×e′)∗C ◦ fA = h(M×e′)∗C ◦ ((idM × g)∗C)
A = h(M×e′)∗C ◦ (idM × gA)∗C

= (idM × he′)
∗
C ◦ (idM × gA)∗C

(idM×_)∗C is a functor
= (idM × (he′ ◦ gA))∗C

ind. hyp.
= (idM × (gA ◦ he))∗C

(idM×_)∗C is a functor
= (idM × gB)∗C ◦ (idM × he)

∗
C

= ((M × g)∗C)
B ◦ h(M×e)∗C = fB ◦ h(M×e)∗C .

If f = τ for some natural transformation τ : Fe → Fe′, then

he′ ◦ fA = Fe′(h) ◦ τA = τB ◦ Fe(h) = fB ◦ he′. ❏

ArrΣ may be extended by further constants f : e → e′ such that (4) holds true. For
instance, every well-founded Σ-term over V (see section 9.3) provides an equivalent Σ-
arrow (see section 9.11).

155

9.1 Algebras and homomorphisms 9 Σ-ALGEBRAS

�� ��Σ-algebras

A Σ-homomorphism h : A → B induces the image algebra h(A):

• For all e ∈ Tfo(S), h(A)(e) = he(A(e)).
• For all f : e→ e′ ∈ F and a ∈ A(e), fh(A)(h(a)) = fB(h(a)).

Reducts

Let Σ = (S, F) and Σ′ = (S ′, F ′) be signatures, σ : Σ → Σ′ be a signature morphism and
A,B be Σ′-algebras.

The σ-reduct of A, A|σ, is the Σ-algebra that is defined as follows:

• For all e ∈ T (S), A|σ(e) = A(σ(e)).
• For all f ∈ F , fA|σ = σ(f)A.

Let h : A → B be a Σ′-homomorphism.

156

9.2 Algebras as functors and the Yoneda Lemma 9 Σ-ALGEBRAS

�� ��Σ-algebras

The σ-reduct of h, h|σ : A|σ → B|σ, is the Σ-homomorphism that is defined as follows:
For all s ∈ S, (h|σ)s = hσ(s).

σ-reducts are the images of the reduct functor _|σ : AlgΣ ′ → AlgΣ .

If σ is an inclusion of signatures, A|σ and h|σ are called Σ-reducts and written as A|Σ and
h|Σ, respectively. In this case, _|σ coincides with the forgetful functor UΣ : AlgΣ ′ → AlgΣ .

If Σ ⊆ Σ′, a Σ′-algebra A′ is an extension of a Σ-algebra A if A′|Σ = A.

9.2 Algebras as functors and the Yoneda Lemma

The types over S form the objects of the free or syntactic category over Σ, K(Σ). The
morphisms of K(Σ) are the elements of the quotient ArrΣ/∼Σ where the Σ-arrow con-
gruence ∼Σ is the least equivalence relation on ArrΣ such that the following conditions
hold true: Let I ⊆ I.

• For all f : e1 → e2, g : e2 → e3, h : e3 → e4 ∈ ArrΣ, h ◦ (g ◦ f) ∼Σ (h ◦ g) ◦ f . (1)

• For all f : e→ e′ ∈ ArrΣ, f ◦ ide ∼Σ f and ide′ ◦ f ∼Σ f . (2)

157

9.2 Algebras as functors and the Yoneda Lemma 9 Σ-ALGEBRAS

�� ��Σ-algebras

• For all (fi : ei → e)i∈I ∈ ArrIΣ and f :
∐

i∈I ei → e ∈ ArrΣ,

[fi]i∈I ◦ ιi ∼Σ fi and [f ◦ ιi]i∈I ∼Σ f . (3)

• For all (fi : e→ ei)i∈I ∈ ArrIΣ and f : e→
∏

i∈I ei ∈ ArrΣ,

πi ◦ ⟨fi⟩i∈I ∼Σ fi and ⟨πi ◦ f⟩i∈I ∼Σ f . (4)

• For all f1, g1 : e→ e′ ∈ ArrΣ and f2, g2 : e′ → e′′ ∈ ArrΣ,

f1 ∼Σ g1 and f2 ∼Σ g2 imply f2 ◦ f1 ∼Σ g2 ◦ g1.

• For all (fi : ei → e)i∈I , (gi : ei → e)i∈I ∈ ArrIΣ,

∀ i ∈ I : fi ∼Σ gi implies [fi]i∈I ∼Σ [gi]i∈I .

• For all (fi : e→ ei)i∈I , (gi : e→ ei)i∈I ∈ ArrIΣ,

∀ i ∈ I : fi ∼Σ gi implies ⟨fi⟩i∈I ∼Σ ⟨gi⟩i∈I .

Indeed, by (1) and (2), K(Σ) is a category. By (3), (4) and the characterization of sums
and products given by equations (10), (11), (21) and (22) in chapter 2, K(Σ) has sums
and products.

158

9.2 Algebras as functors and the Yoneda Lemma 9 Σ-ALGEBRAS

�� ��Σ-algebras
A Σ-algebra A with carrier A can be regarded as a functor

A : K(Σ) → Set,

which maps each type e ∈ T (S) to Ae and each equivalence class [f : e → e′]∼Σ
to

fA : Ae → Ae′. The definition of ∼Σ ensures that the mapping is well-defined, i.e.,
f ∼Σ g implies fA = gA.

If Σ-algebras are regarded as functors, Lemma 9.2 tells us that Σ-homomorphisms are
natural transformations.

The notion of a free or syntactic category and their interpretation by set functors for
interpreting signatures has several sources (see, e.g., [147]; [51], Def. 3.7).

Applied to A : K(Σ) → Set , Lemma 5.1 (see chapter 5) tells us that for R(e) =

K(Σ)(e,_), R′(e) = K(Σ)(_, e) and all e ∈ Tfo(S),
AlgΣ(R(e),A) ∼= A(e) ∼= AlgΣ(R′(e),A), (3)

i.e., A(e) is isomorphic to the set of Σ-homomorphisms from R(e) (or R′(e)) to A.

As Σ-algebras, R(e) and R′(e) are defined as follows:

• For all e′ ∈ Tfo(S), R(e)(e′) = K(Σ)(e, e′) and R′(e, e′) = K(Σ)(e′, e).
• For all f : e′ → e′′, g : e→ e′, h : e′′ → e ∈ ArrΣ,

fR(e)([g]∼Σ
) = [f ◦ g]∼Σ

and fR
′(e)([h]∼Σ

) = [h ◦ f]∼Σ
.

159

9.2 Algebras as functors and the Yoneda Lemma 9 Σ-ALGEBRAS

�� ��Σ-algebras

Hence for all f : e → e′ ∈ ArrΣ, a Σ-homomorphism h : R(e) → A maps [f]∼Σ
to an

element of A(e′).

By (5), h uniquely represents an element of A(e) and we have isos

Φ : AlgΣ(R(e),A) → A(e) and Ψ : A(e) → AlgΣ(R(e),A)

that are defined as follows (see Lemma 5.1):

For all Σ-homomorphisms h : R(e) → A, a ∈ A(e) and f : e→ e′ ∈ ArrΣ,

Φ(h) = he([ide]∼Σ
) and Ψ(a)e′([f]∼Σ

) = fA(a). (5)

Analogously, for all f : e′ → e ∈ ArrΣ, a Σ-homomorphism h : R′(e) → A maps [f]∼Σ

to an element of A(e′). Again, (5) implies that h uniquely represents an element of A(e).

Moreover, Corollary 5.2 implies that two types e, e′ are K(Σ)-isomorphic iff the sets of
∼Σ-equivalence classes of Σ-arrows with source (target) e or e′, respectively, are natu-
rally equivalent, roughly said: iff e and e′ admit the same functions to or from their
“environment”.

160

9.3 Σ-terms and -coterms 9 Σ-ALGEBRAS

�� ��Σ-algebras

9.3 Σ-terms and -coterms

Let Σ = (S, F) be a constructive and polynomial signature and V be an S-sorted set of
“variables”.

The set CTΣ(V) of (first-order) Σ-terms over V is the greatest Ts(S)-sorted set M
of labelled trees over (I, I ∪ F ∪ V) such that for all I ⊆ I, MI = I , and the following
conditions hold true:

• For all s ∈ S and t ∈ Ms, t ∈ Vs or there are c :
∏

i∈I ei → s ∈ F and u ∈ Xi∈IMei

such that t = c(u), (1)
• for all e =

∐
i∈I

∏
j∈J eij ∈ Ts(S) and t ∈Me there are i ∈ I and u ∈ Xj∈JMeij such

that t = i(u). (2)

The subset TΣ(V) of CTΣ(V) of well-founded Σ-terms over V is the least Ts(S)-sorted
set M of well-founded labelled trees over (I, I ∪F ∪V) such that for all I ⊆ I, MI = I ,
and the following conditions hold true:

• For all s ∈ S, Vs ⊆Ms, (3)
• for all c :

∏
i∈I ei → s ∈ F and t ∈ Xi∈IMei, c(t) ∈Ms, (4)

• for all e =
∐

i∈I
∏

j∈J eij ∈ Ts(S), i ∈ I and t ∈ Xj∈JMeij , i(t) ∈Me. (5)

161

9.3 Σ-terms and -coterms 9 Σ-ALGEBRAS

�� ��Σ-algebras

(1/3) (1/4) (2/5)

Intuitively, Σ-terms are trees whose inner nodes are labelled with constructors or (indices
of) injections, whose leaves are labelled with indices or variables and whose edges are
labelled with (indices of) projections.

Note that in cases (1) and (4), c is a monomorphic function and thus s is a monomorphic
type and c(t) ∈ s is a leaf.

For all s ∈ S, let Vs = ∅. Then the elements of CTΣ =def CTΣ(V) und TΣ =def TΣ(V)

are called ground Σ-terms.

If for all c : e → s ∈ F , e does not contain some index set, then for all s ∈ S, TΣ,s is
empty.

162

9.3 Σ-terms and -coterms 9 Σ-ALGEBRAS

�� ��Σ-algebras

Let Σ = (S, F) be a destructive and polynomial signature and C be an S-sorted set of
“colors”.

The set DTΣ(C) of Σ-coterms over C is the greatest Ts(S)-sorted set M of labelled
trees over (I ∪ F, I ∪ C) such that for all I ⊆ I, MI = I , (2) holds true and

• for all s ∈ S and t ∈Ms there are c ∈ Cs and u ∈ Xd:s→e∈FMe such that t = c(u). (6)

The subset coTΣ(C) of DTΣ(C) of well-founded Σ-coterms over C is the least Ts(S)-
sorted set M of well-founded labelled trees over (I ∪ F, I ∪ C) such that for all I ⊆ I,
MI = I , (5) holds true and

• for all s ∈ S, c ∈ Cs and u ∈ Xd:s→e∈FMe, c(u) ∈Ms. (7)

(6/7)

163

9.4 Sample terms and coterms 9 Σ-ALGEBRAS

�� ��Σ-algebras

Intuitively, Σ-coterms are trees whose inner nodes are labelled with colors or (indices of)
injections, whose leaves are labelled with indices or variables and whose edges are labelled
with destructors or (indices of) projections.

For all s ∈ S, let Cs = 1. Then the elements of DTΣ =def DTΣ(C) and coTΣ =def

coTΣ(C) are called ground Σ-coterms.

If for all d ∈ F , trg(d) does not contain some index set, then for all s ∈ S, DTΣ,s is a
singleton.

9.4 Sample terms and coterms

Let Σ = Nat .

CTΣ,nat is the greatest subset M of ltr(1, {zero : 1 → nat, succ : nat → nat}) with the
following property:

• For all t ∈M , t = zero or t = succ{() → u} for some u ∈M .

164

9.4 Sample terms and coterms 9 Σ-ALGEBRAS

�� ��Σ-algebras

TΣ is the least subset M of ltr(1, {zero : 1 → nat, succ : nat→ nat}) with the following
properties:

• zero ∈M .
• For all t ∈M , succ{() → t} ∈M .

Hence TΣ ∼= N and CTΣ ∼= N ∪ {ω}.

Let Σ = coNat .

DTΣ,nat is the greatest subset M of ltr({(), pred : nat → nat + 1}, {(), 1, 2}) with the
following property:

• For all t ∈M , t = (){pred→ 2} or t = (){pred→ 1{() → u}} for some u ∈M .

Hence DTΣ ∼= N ∪ {ω}.

Let Σ = List(X).

165

9.4 Sample terms and coterms 9 Σ-ALGEBRAS

�� ��Σ-algebras

CTΣ,state is the greatest subset M of

ltr({1, 2}, {α : 1 → state, cons : X × state→ state} ∪X)

with the following property:

• For all t ∈M , t = α or t = cons{1 → x, 2 → u} for some x ∈ X and u ∈M .

TΣ is the least subset M of

ltr({1, 2}, {α : 1 → state, cons : X × state→ state} ∪X)

with the following properties:

• α ∈M .
• For all x ∈ X and t ∈M , cons{1 → x, 2 → t} ∈M .

Hence TΣ ∼= X∗ and CTΣ ∼= X∞ = X∗ ∪XN.

Let Σ = coList(X).

DTΣ,state is the greatest subset M of ltr({split : state → X × state + 1, 1, 2}, 1 ∪ X)

with the following property:

166

9.4 Sample terms and coterms 9 Σ-ALGEBRAS

�� ��Σ-algebras

• For all t ∈ M , t = (){split → 2} or t = (){split → 1{1 → x, 2 → u}} for some
x ∈ X and u ∈M .

Hence DTΣ,state ∼= X∞ = X∗ ∪XN.

Let Σ = Reg(X).

TΣ,state is the least subset M of ltr({1, 2}, {par, seq, star, , _̂} ∪ P+(X)) with the fol-
lowing properties:

• For all t, u ∈M , B ∈ P+(X) and c ∈ 2,

par(t, u), seq(t, u), star(t), B, ĉ ∈M.

Let Σ = Stream(X).

DTΣ,state is the greatest subsetM of ltr({head, tail}, 1∪X) with the following property:

• For all t ∈M , t = (){head→ x, tail → u} ∈M for some x ∈ X and u ∈M .

Hence DTΣ,state ∼= XN.

167

9.4 Sample terms and coterms 9 Σ-ALGEBRAS

�� ��Σ-algebras

0
tailhead

1

tailhead

2
tailhead

()

()

()

()

Stream(N)-coterm that represents the stream of natural numbers.

Let Σ = DAut(X, Y).

DTΣ,state is the greatest subset M of ltr({δ, β}∪X, 1∪Y) with the following property:

• For all t ∈ M , t = (){δ → (){x → tx | x ∈ X}, β → y} for some (tx)x∈X ∈ MX and
y ∈ Y .

Hence DTΣ,state ∼= Y X∗.

168

9.4 Sample terms and coterms 9 Σ-ALGEBRAS

�� ��Σ-algebras

0β
δ

1

x

β x z

y z

yδ

x

y

z

δ x y

z

δ

1β

0 β

()

()()

()

()

()

()()

()()

()

() ()

() ()

() ()

DAut({x, y, z}, 2)-coterm representing an acceptor of all words over {x, y, z}
that contain x or z

169

9.4 Sample terms and coterms 9 Σ-ALGEBRAS

�� ��Σ-algebras

0β

δ

x

zy

x y zδ

1β

()

()

() ()

z

y

x

y

z

x

0

1

Folding of the above infinite, but rational coterm into a finite graph (left)
and the corresponding transition graph (right)

170

9.5 Term and coterm algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

9.5 Term and coterm algebras

Let Σ = (S,C) be a constructive polynomial signature and V ∈ SetS.

CTΣ(V) is a Σ-algebra:

• For all I ⊆ I, CT (V)I = I .
• For all e =

∐
i∈I ei ∈ Ts(S), CTΣ(V)e =def {i(t) | i ∈ I, t ∈ CTΣ(V)ei}.

• For all e =
∏

i∈I ei ∈ Tp(S), CTΣ(V)e =def Xi∈ICTΣ(V)ei.
• For all c : e→ s ∈ C and t ∈ CTΣ(V)e, cCTΣ(V)(t) =def c(t).

Hence the carrier of CTΣ(V) is a model of Tpo(S).

Moreover, TΣ(V) is a Σ-subalgebra of CTΣ(V).

Let Σ = (S,D) be a destructive polynomial signature and V ∈ SetS.

DTΣ(C) is a Σ-algebra:

• For all I ⊆ I, DT (C)I = I .
• For all d : s→ e ∈ D and t ∈ DTΣ(C)s, dDTΣ(C)(t) =def λw.t(dw).
• For all e =

∐
i∈I ei ∈ Ts(S), DTΣ(C)e =def {i(t) | i ∈ I, t ∈ DTΣ(C)ei},

171

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

• For all e =
∏

i∈I ei ∈ Tp(S), DTΣ(C)e =def Xi∈IDTΣ(C)ei.

Hence the carrier of DTΣ(C) is a model of Tpo(S).

Moreover, coTΣ(C) is a Σ-subalgebra of DTΣ(C).

By the interpretation of destructors in DTΣ(C), coterms become a kind of analytic func-
tions: Two coterms t, t′ ∈ DTΣ(C)s are equal if and only if the initial values t(ϵ) and
t′(ϵ) and for all d : s→ e the derivatives dDTΣ(C)(t) and dDTΣ(C)(t′) coincide (see sample
algebra 9.6.23 and section 14.1.)

9.6 Sample algebras

The following algebras are supposed to interpret sum types by disjoint unions and prod-
uct types by Cartesian products (see chapter 2).

1. N is the carrier of the synonymous Nat -algebra N whose operations

zeroN : 1 → N, succN : N → N

are defined as follows: For all n ∈ N,

172

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

zeroN() = 0,

succN(n) = n + 1.

N is also the carrier of the List(X)-algebra Length whose operations

αLength : 1 → N, consLength : X × N → N
are defined as follows: For all x ∈ X and n ∈ N,

αLength(x) = 0,

consLength(x, n) = n + 1.

2. N∞ =def N ∪ {ω} and 1∞ = 1∗ ∪ 1N are carriers of the synonymous coNat -algebras
whose operation

predN∞ : N∞ → N∞ + 1 resp. pred1
∞
: 1∞ → 1∞ + 1

are defined as follows: For all n > 0,
predN∞(0) = (), pred1

∞
(ϵ) = (),

predN∞(n) = n− 1, pred1
∞
(()n) = ()n−1,

predN∞(∞) = ∞, pred1
∞
(λn.()) = λn.().

3. The set X∗ × Y of guarded sequences is the carrier of the Dyn(X, Y)-algebra
Seq(X, Y) whose operations

consSeq(X,Y) : X × (X∗ × Y) → X∗ × Y, αSeq(X,Y) : Y → X∗ × Y

173

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras
are defined as follows: For all w ∈ X∗, x ∈ X and y ∈ Y ,

consSeq(X,Y)(x, (w, y)) = (xw, y),

αSeq(X,Y)(y) = (ϵ, y).

See [69] for the use of Seq(X, Y) for functional modelling in ecology and environmental
science.

X∗ is the carrier of the synonymous List(X)-algebra X∗ whose operations

consX
∗
: X ×X∗ → X∗, αX

∗
: 1 → X∗

are defined as follows: For all x ∈ X and w ∈ X∗,

consX
∗
(x,w) = xw,

αX
∗
() = ϵ.

X∗ is also the carrier of the Mon-algebra Word(X) whose operations

oneWord(X) : 1 → X∗, mulWord(X) : X∗ ×X∗ → X∗

are defined as follows: For all v, w ∈ X∗,

oneWord(X)() = ϵ,

mulWord(X)(v, w) = vw.

174

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

4. XX is the carrier of the Mon-algebra Endo(X) whose operations

oneEndo(X) : 1 → XX , mulEndo(X) : XX ×XX → XX

are defined follows: For all f, g : X → X ,

oneEndo(X) = idX ,

mulEndo(X)(f, g) = g ◦ f.

Given a Med(X)-algebra A with carrier A, AA is the carrier of the List(X)-algebra
Reach(A) whose operations

consReach(A) : X × AA → AA, αReach(A) : 1 → AA

are defined as follows: For all x ∈ X , f ∈ AA and a ∈ A,

consReach(A)(x, f) = f ◦ λa.δA(a)(x),
αReach(A)() = idA.

Exercise 12 The function
reachstate : X

∗ → Reach(A)

ϵ 7→ idA
xw 7→ reachstate(w) ◦ λa.δA(a)(x) x ∈ X, w ∈ X∗

is List(X)-homomorphic. ❏

175

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

Consequently, Theorem 9.7 implies reachstate = foldA because X∗ is initial in AlgList(X)

(see sample initial algebra 9.13.3).

5. XN is the carrier of the Stream(X)-algebra InfSeq(X) whose operations

headInfSeq(X) : XN → X, tailInfSeq(X) : XN → XN

are defined as follows: For all f : N → X ,

headInfSeq(X)(f) = f (0),

tailInfSeq(X)(f) = λn.f (n + 1).

XN is also the carrier of the coStream(X)-algebra coInfSeq(X) whose operation

δcoInfSeq(X) : X ×XN → XN

is defined as follows: For all x ∈ X , f : N → X and n > 0,

δcoInfSeq(X)(x, f)(0) = x,

δcoInfSeq(X)(x, f)(n) = f (n− 1).

176

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

6. The following Stream(Z)-algebra zo represents the periodic streams 0, 1, 0, 1, . . . and
1, 0, 1, 0, . . . :

zolist = {blink, blink′},
headzo(blink) = 0,

tailzo(blink) = blink′,

headzo(blink′) = 1,

tailzo(blink′) = blink.

7. The following DAut(Z, 2)-algebra eo is the minimal automaton that accepts a word
x1 . . . xn over Z in esum or osum iff

∑n
i=1 xi is even or odd, respectively (see example

9.17):
eostate = {esum, osum},

δeo(esum) = λx.if even(x) then esum else osum,

δeo(osum) = λx.if odd(x) then esum else osum,

βeo = λst.if st = esum then 1 else 0.

177

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

8. T = X∗ × Y ∪ XN is the carrier of the coDyn(X, Y)-algebra coSeq(X, Y) whose
operation

splitcoSeq(X,Y) : T → X × T + Y

is defined as follows: For all x ∈ X , w ∈ X∗, y ∈ Y and f ∈ XN,

splitcoSeq(X,Y)(ϵ, y) = ι2(y),

splitcoSeq(X,Y)(xw, y) = ι1(x, (w, y)),

splitcoSeq(X,Y)(f) = ι1(f (0), λn.f (n + 1)).

See [69] for the use of Seq(X, Y) for interactive modelling in ecology and environmental
science.

9. T = X+ ∪XN is the carrier of the coNelist(X)-algebra Neseq(X) whose operation

splitNeseq(X) : T → X × T + 1

is defined as follows: For all x ∈ X , w ∈ X+ and f ∈ XN,

splitNeseq(X)(x) = ι2(),

splitNeseq(X)(xw) = ι1(x,w),

splitNeseq(X)(f) = ι1(f (0), λn.f (n + 1)).

178

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

10. T = ftr (2, X) (see chapter 2) is the carrier of the Bintree(X)-algebra FBin(X)

whose operations

bjoinFBin(X) : X × T × T → T, emptyFBin(X) : 1 → T

are defined as follows: For all f, g ∈ ftr (2, X), x ∈ X and w ∈ 2∗,

bjoinFBin(X)(x, f, g)(ϵ) = x,

bjoinFBin(X)(x, f, g)(0w) = f (w),

bjoinFBin(X)(x, f, g)(1w) = g(w),

emptyFBin(X) = Ω.

11. T = X2∗ is the carrier of the infBintree(X)-algebra InfBin(X) whose operations

left , right : T → T, root InfBin(X) : T → X

are defined as follows: For all t ∈ T ,

left InfBin(X)(t) = λw.t(0w),

right InfBin(X)(t) = λw.t(1w),

root InfBin(X)(t) = t(ϵ).

179

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

12. T = ltr(2, X) (see chapter 2) is the carrier of the coBintree(X)-algebra Bin(X)

whose operation
splitBin(X) : T → T ×X × T + 1

is defined as follows: For all x ∈ X and t, u ∈ T ,

splitBin(X)(x{0 → t, 1 → u}) = ι1(x, t, u),

splitBin(X)(Ω) = ι2().

13. Let T = otr (N, X) ∩ ftr (N, X). (T, T ∗) is the carrier of the Tree(X)-algebra
FTree(X) whose operations

joinFTree(X) : X × T ∗ → T, consFTree(X) : T × T ∗ → T ∗, nilFTree(X) : 1 → T ∗

are defined as follows: For all x ∈ X , n > 0, t, t1, . . . , tn ∈ T ,

joinFTree(X)(x, ϵ) = x,

joinFTree(X)(x, (t1, . . . , tn)) = x(t1, . . . , tn),

nilFTree(X) = ϵ,

consFTree(X)(t, ϵ) = t,

consFTree(X)(t, (t1, . . . , tn)) = (t, t1, . . . , tn).

180

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

14. T = otr (N, X) ∩ wtr(N, X) is the carrier of the Treeω(X)-algebra WFTree(X)

whose operation
joinWFTree(X) : X × T∞ → T

is defined as follows:

For all x ∈ X , n > 0, t1, . . . , tn ∈ T and f ∈ TN,

joinWFTree(X)(x, ϵ) = x,

joinWFTree(X)(x, (t1, . . . , tn)) = x(t1, . . . , tn),

joinWFTree(X)(x, f) = x{n→ f (n) | n ∈ N}.

15. T = ftr (Y,X) is the carrier of the ETree(X)-algebra FETree(X) whose operation

joinFETree(X) : X × (Y × T)∗ → T

is defined as follows: For all x ∈ X , n > 0 and y1, . . . , yn ∈ Y and t1, . . . , tn ∈ T ,

joinFETree(X)(x, ϵ) = x,

joinFETree(X)(x, ((y1, t1), . . . , (yn, tn)) = x{y1 → t1, . . . , yn → tn}.

181

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

16. T = otr(N, <,X) ∩ fbtr (N, X) ∩ itr(N, X) is the carrier of the infTree(X)-algebra
FBInfTree(X) whose operations

subtreesFBInfTree(X) : T → T+,

rootFBInfTree(X) : T → X

are defined as follows: For all x ∈ X , n > 0 and t1, . . . , tn ∈ T ,

subtreesFBInfTree(X)(x(t1, . . . , tn)) = (t1, . . . , tn),

rootFBInfTree(X)(x(t1, . . . , tn)) = x.

17. T = otr (N, X) ∩ fbtr (N, X) is the carrier of the coTreeω(X)-algebra FBTree(X)

whose operations
subtreesFBTree(X) : T → T ∗,

rootFBTree(X) : T → X

are defined as follows: For all x ∈ X , n > 0 and t1, . . . , tn ∈ T ,

subtreesFBTree(X)(x) = ϵ,

subtreesFBTree(X)(x(t1, . . . , tn)) = (t1, . . . , tn),

rootFBTree(X)(x) = x,

rootFBTree(X)(x(t1, . . . , tn)) = x.

182

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

18. Let T = otr (N, X). The coTree(X)-algebra Tree∞(X) is defined as follows:

Tree∞(X)tree = T,

Tree∞(X)trees = T∞,

subtreesTree∞(X) : T → T∞,

rootTree∞(X) : T → X,

splitTree∞(X) : T∞ → T × T∞ + 1

are defined as follows:

For all x ∈ X , t = x{i→ ti | i ∈ def (t) ∩ N}, w ∈ T ∗ and f ∈ TN,

subtreesTree∞(X)(t) = (ti)i∈def (t)∩N,

rootTree∞(X)(t) = x,

splitTree∞(X)(t · w) = ι1(t, w),

splitTree∞(X)(f) = ι1(f (0), λn.f (n + 1)),

splitTree∞(X)(ϵ) = ι2().

183

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

19. Let Σ = Reg(X). The set P(X∗) of languages is the carrier of the Reg(X)-algebra
Lang(X) whose operations

parLang(X), seqLang(X) : P(X∗)× P(X∗) → P(X∗),

starLang(X) : P(X∗) → P(X∗),
Lang(X) : P+(X) → P(X∗),

_̂Lang(X) : 2 → P(X∗).

are defined as follows:

For all L,L′ ⊆ X∗ and B ∈ P+(X),

parLang(X)(L,L′) = L ∪ L′,

seqLang(X)(L,L′) = L · L′,

starLang(X)(L) = L∗,

B
Lang(X)

= B,

0̂Lang(X) = ∅,
1̂Lang(X) = {ϵ}.

184

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

The usual semantics of a regular expression, i.e., a ground Reg(X)-term, say t, is ob-
tained by folding t in Lang(X) (see sample initial algebra 9.13.6).

20. P(X∗) is also the carrier of the Acc(X)-algebra Pow (X) whose operations
δPow(X) : P(X∗) → P(X∗)X ,

βPow(X) : P(X∗) → 2

are defined as follows: For all L ⊆ X∗ and x ∈ X ,
δPow(X)(L)(x) = {w ∈ X∗ | x · w ∈ L},

βPow(X)(L) =

{
1 if ϵ ∈ L,

0 otherwise.

21. P(X∗) is also the carrier of the NAcc(X)-algebra NPow (X) whose operations
δNPow(X) : P(X∗) → Pω(P(X∗))X ,

βNPow(X) : P(X∗) → 2

are defined as follows: For all L ⊆ X∗ and x ∈ X ,
δNPow(X)(L)(x) = {{w ∈ X∗ | x · w ∈ L}},

βNPow(X)(L) =

{
1 if ϵ ∈ L,

0 otherwise.

185

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras
22. 2 is the carrier of the Reg(X)-algebra Bool whose operations

parBool , seqLang(X) : 2× 2 → 2,

starBool : 2 → 2,
Bool : P(X) → 2,

_̂Bool : 2 → 2

are defined as follows: For all x, y ∈ 2 and B ∈ P+(X),

parBool(x, y) = max{x, y},
seqBool(x, y) = x ∗ y,
starBool(x) = 1,

Bool(B) = 0,

x̂Bool = x.

23. From now on, we often write t1+ · · ·+ tn and t1 ∗ · · · ∗ tn for Reg(X)-terms (“regular
expressions”; see section 9.4) of the form

par(. . . (par(t1, t2), . . .), tn) and seq(. . . (seq(t1, t2), . . .), tn),

respectively (see section 8.2). Muliplication priorizes over addition.

186

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

TReg(X) is the carrier of both the Reg(X)-algebra of ground Reg(X)-
terms and the Brzozowski automaton Bro(X) for accepting regular languages [36, 91],
i.e., the Acc(X)-algebra whose operations

δ = δBro(X) : TReg(X) → TXReg(X) and β = βBro(X) : TReg(X) → 2

are inductively defined as follows: For all t, u ∈ TReg(X), B ∈ P+(X) and c ∈ 2,

δ(t + u) = λx.(δ(t)(x) + δ(u)(x)),

δ(t ∗ u) = λx.(δ(t)(x) ∗ u + β̂(t) ∗ δ(u)(x)),
δ(star(t)) = λx.(δ(t)(x) ∗ star(t)),

δ(B) = λx.x̂ ∈ B,

δ(ĉ) = λx.̂0,

β(t + u) = max(β(t), β(u)),

β(t ∗ u) = β(t) ∗ β(u),
β(star(t)) = 1,

β(B) = 0,

β(ĉ) = c.

For a proof that these equations define δ and β uniquely on TReg(X), see sample inductive
definition 16.3.20.

187

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

δ(t)(x) and β(t) are called the x-derivative and initial value of t, respectively (see [36, 91]).

24. The set Y X∗ of behavior functions is the carrier of the DAut(X, Y)-algebra
Beh(X, Y) whose operations

δBeh(X,Y) : Y X∗ → (Y X∗
)X ,

βBeh(X,Y) : Y X∗ → Y

are defined as follows: For all f : X∗ → Y and x ∈ X ,

δBeh(X,Y)(f)(x) = λw.f (x · w),
βBeh(X,Y)(f) = f (ϵ).

Exercise 13 Show that the characteristic function χ : P(X∗) → 2X
∗ (see chapter 2) is

an Acc(X)-isomorphism from Pow (X) to Beh(X, 2). ❏

χ is also a Reg(X)-isomorphism from Lang(X) to RegBeh(X) where RegBeh(X) has
the carrier 2X∗ and interprets the operations of Reg(X) as follows:

188

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

For all f, g : X∗ → 2, w ∈ X∗, v ∈ X+, B ∈ P+(X) and c ∈ 2,

parRegBeh(X)(f, g)(w) = max{f (w), g(w)},

seqRegBeh(X)(f, g)(w) = max(

{f (ϵ) ∗ g(w) | w ∈ X+} ∪
{f (w) ∗ g(ϵ) | w ∈ X+} ∪
{f (w1) ∗ g(w2) | w1, w2 ∈ X+, w1w2 = w}

),

starRegBeh(X)(f)(ϵ) = 1,

starRegBeh(X)(f)(v) = max{f (w1) ∗ · · · ∗ f (wn) | w1, . . . , wn ∈ X+, w1 . . . wn = v},
RegBeh(X)(B)(w) = if w ∈ B then 1 else 0,

ĉRegBeh(X)(w) = if c = 1 ∧ w = ϵ then 1 else 0.

RegBeh(X) is implemented in Compiler.hs under the name regBeh.

189

https://fldit-www.cs.tu-dortmund.de/~peter/Haskellprogs/Compiler.hs

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

25. A commutative monoid (M,+, 0) is a semiring if there are a constant 1 ∈ M and a
function ∗ :M 2 →M called multiplication such that ∗ are associative, ∗ distributes over
+, 1 is the identity w.r.t. * and for all m ∈M , 0 ∗m = 0 = m ∗ 0 (multiplication with 0

annihilates M). For instance, (2,max, 0), (N,+, 0) and (R,+, 0) are semirings.

Let (R,+, 0, ∗, 1) be a semiring. A commutative monoid (A,+, 0) is an R-semimodule if
there is a function · : R × A → A called scalar multiplication or R-action such that ·
distributes over + and for all r, s ∈ R and a ∈ A, (r ∗ s) · a = r · (s · a), 1 · a = a and
0 · a = 0 = r · 0 (multiplication with 0 annihilates A or R).

Every semiring R is an R-semimodule. (1)

Given a set X , RX and RX
ω are also R-semimodules where addition, zero and scalar

multiplication are defined as follows: For all f, g ∈ RX
R , x ∈ X and r ∈ R, (f + g)(x) =

f (x) + g(x), 0(x) = 0 and (r · f)(x) = r · f (x). (2)

Let (R,+, 0, ∗, 1) be a semiring.

A function h : A → B between two R-semimodules A and B is linear (w.r.t. R) if for
all x, y ∈ A and r ∈M ,

h(x + y) = h(x) + h(y) and h(r · x) = r · h(x).

190

https://en.wikipedia.org/wiki/Semiring
https://en.wikipedia.org/wiki/Semimodule

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

SModR denotes the category of R-semimodules and R-linear functions.

A DAut(X,R)-algebra A is a linear automaton if the carrier of A is an R-semimodule
and δ, β are linear.

Since RX is an R-semimodule, RX∗ and (RX∗
)X are also R-semimodules. The functions

of RX∗ are called formal power series (see [154]).

Moreover, δBeh(X,Y) and βBeh(X,Y) are linear and thus Beh(X, Y) is a linear automaton.

26. The set Y X+ is the carrier of the Mealy(X, Y)-algebra MBeh(X, Y) whose operations

δMBeh(X,Y) : Y X+ → (Y X+
)X ,

βMBeh(X,Y) : Y X+ → Y X

are defined as follows: For all f : X+ → Y , x ∈ X and w ∈ X+,

δMBeh(X,Y)(f)(x)(w) = f (x · w),
βMBeh(X,Y)(f)(x) = f (x).

The set C(X, Y) of causal functions from XN to Y N (see chapter 2) is the carrier of the
Mealy(X, Y)-algebra Causal(X, Y) whose operations

191

https://en.wikipedia.org/wiki/Formal_power_series

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

δCausal(X,Y) : C(X, Y) → C(X, Y)X ,

βCausal(X,Y) : C(X, Y) → Y X

are defined as follows: For all f ∈ C(X, Y) and x ∈ X ,

δCausal(X,Y)(f)(x) = tail ◦ λs.f (x · s),
βCausal(X,Y)(f)(x) = head ◦ λs.f (x · s).

MBeh(X, Y) and Causal(X, Y) are Mealy(X, Y)-homomorphic.

27. ltr(X, Y) is the carrier of the PAut(X, Y)-algebra PBeh(X, Y) whose operations

δPBeh(X,Y) : ltr(X, Y) → (1 + ltr(X, Y))X ,

βPBeh(X,Y) : ltr(X, Y) → Y

are defined as follows: For all Z ⊆ X , t = y{x→ tx | x ∈ Z} ∈ ltr(X, Y) and x ∈ X ,

δPBeh(X,Y)(t)(x) =

{
tx if x ∈ Z,

() otherwise,
βPBeh(X,Y)(t) = y.

192

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

28. T = otr (X × N, Y) is the carrier of the NAut∗(X, Y)-algebra NBeh(X, Y) whose
operations

δNBeh(X,Y) : T → (T ∗)X , βNBeh(X,Y) : T → Y

are defined as follows:

For all {nx | x ∈ X} ⊆ N, t = y{(x, i) → tx,i | x ∈ X, 1 ≤ i ≤ nx} ∈ T and x ∈ X ,

δNBeh(X,Y)(t)(x) = (tx,1, . . . , tx,nx),

βNBeh(X,Y)(t) = y.

Let Σ = (S,C) be a finitary signature. For all c : s1×· · ·×sn → s ∈ C, S-sorted subsets
L of TΣ,s (see section 9.3) and 1 ≤ i ≤ n,

sucs(c, L)i =def {ti ∈ TΣ,si | ∀ j ∈ [n] \ {i} ∃ tj ∈ TΣ,sj : c(t1, . . . , tn) ∈ L}.

29. P(TΣ) =def (P(TΣ,s))s∈S is the carrier of the TAcc(Σ)-algebra TPow (Σ) whose
operations

δTPow(Σ)
c : P(TΣ,s) → P(TΣ,s1)× . . .× P(TΣ,sn), c : s1 × · · · × sn → s ∈ C,

are defined as follows: For all L ⊆ TΣ,s, δ
TPow(Σ)
c (L) = (sucs(c, L)1, . . . , sucs(c, L)n).

193

9.6 Sample algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

30. P(TΣ) is also the carrier of the NTAcc(Σ)-algebra NTPow (Σ) whose operations

δNTPow(Σ)
c : P(TΣ,s) → Pω(P(TΣ,s1)× . . .× P(TΣ,sn)), c : s1 × · · · × sn → s ∈ C,

are defined as follows: For all L ⊆ TΣ,s, δ
NTPow(Σ)
c (L) = {(sucs(c, L)1, . . . , sucs(c, L)n)}.

31. P(TΣ) is also the carrier of the NTAcc∗(Σ)-algebra NTPow ∗(Σ) whose operations

δNTPow(Σ)
c : P(TΣ,s) → (P(TΣ,s1)× . . .× P(TΣ,sn))

∗, c : s1 × · · · × sn → s ∈ C,

are defined as follows: For all L ⊆ TΣ,s, δ
NTPow∗(Σ)
c (L) = [(sucs(c, L)1, . . . , sucs(c, L)n)].

32. T = otr (X × N, 1) is the carrier of the NMed∗(X)-algebra NPow ∗(X) whose oper-
ation

δNPow
∗(X) : T → (T ∗)X

is defined as follows:
For all {nx | x ∈ X} ⊆ N, t = (){(x, i) → tx,i | x ∈ X, 1 ≤ i ≤ nx} ∈ T and x ∈ X ,

δNPow
∗(X)(t)(x) = (tx,1, . . . , tx,nx).

194

9.7 Product algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

9.7 Product algebras

Let Σ = (S, F) be a signature and A = (Ai)i∈I be a tuple of Σ-algebras.

The product of A in AlgΣ is given by the Σ-algebra B =
∏

i∈I Ai that is defined as
follows:

• For all e ∈ T (S), B(e) = Xi∈IAi(e).
• For all f : e→ e′ ∈ F , fB =

∏
i∈I f

Ai : B(e) → B(e′).

For all i ∈ I , the projection πi =def (πi,e : B(e) → Ai(e))e∈T (S) is Σ-homomorphic: For
all f : e→ e′ ∈ F ,

πi,e′ ◦ fB = πi,e′ ◦
∏
i∈I

fAi
(7) in chapter 2

= fAi ◦ πi,e.

Let C be a Σ-algebra and (hi : C → Ai)i∈I be a tuple of Σ-homomorphisms. Then
⟨hi⟩i∈I =def (⟨hi,e⟩i∈I : C(e) → B(e))e∈Tfo(S) is also Σ-homomorphic:

195

9.7 Product algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras
For all i ∈ I and f : e→ e′ ∈ F ,

(⟨hi⟩i∈I)e′ ◦ fC = ⟨hi,e′⟩i∈I ◦ fC
(6) in chapter 2

= ⟨hi,e′ ◦ fC⟩i∈I
hi is Σ−hom.

= ⟨fAi ◦ hi,e⟩i∈I

= ⟨fAi ◦ πi,e ◦ ⟨hi,e⟩i∈I⟩i∈I
(6) in chapter 2

= ⟨fAi ◦ πi,e⟩i∈I ◦ ⟨hi,e⟩i∈I =
∏

i∈I f
Ai ◦ ⟨hi,e⟩i∈I

Def . f B
= fB ◦ ⟨hi,e⟩i∈I = fB ◦ (⟨hi⟩i∈I)e.

Uniqueness of ⟨hi⟩i∈I follows from uniqueness of ⟨hi⟩i∈I as a Tfo(S)-sorted function.

Example 9.3
∏

Dyn

Let A be a coStream(X)-algebra with carrier Q and Y be a set (see section 8.2).

The coStream(X)-algebra B = A(QY) and its extension to a Dyn(X, Y)-algebra are
defined as follows:

• B(state) = Q(QY).
• For all f : Y → Q, g : QY → Q and x ∈ X ,

consB(x, g)(f) = πf(cons
B(x, g)) = πf(⟨consA ◦ πf,X×state⟩f :Y→Q(x, g))

= consA(πf,X×state(x, g)) = consA(x, πf(g)) = consA(g(f), x).

• For all y ∈ Y and f : Y → Q, αB(y)(f) = f (y).

196

9.7 Product algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

[20], Def. 4, provides this product automaton for the case Y = 1.

Given a semiring R, [160], section 3 defines a weighted version of B for Y = 1:

Let A be a WcoStream(X,R)-algebra (see section 8.2) with carrier Q and

(δA)∗ : X ×RQ
ω → RQ

ω

be the SModR-extension of δA (see chapter 19). Then A∗ with A∗(state) = RQ
ω and

δA
∗
= (δA)∗ is a coStream(X)-algebra. Moreover, the product coStream(X)-algebra

B = (A∗)Q and its extension to a Dyn(X, 1)-algebra are defined as follows:

• B(state) = (RQ
ω)

Q.
• For all q ∈ Q, g : Q→ RQ

ω and x ∈ X ,

consB(x, g)(q) = πq(cons
B(x, g)) = πq(⟨consA

∗ ◦ πq,X×state⟩q∈Q(x, g))
= consA

∗
(πq,X×state(x, g)) = δA

∗
(πq(g), x) = δA

∗
(g(q), x).

• For all q ∈ Q, αB(ϵ)(q) = 1 · q (see chapter 2). ❏

197

9.8 Sum algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

9.8 Sum algebras

Let Σ = (S, F) be a signature and A = (Ai)i∈I be a tuple of Σ-algebras.

The sum of A in AlgΣ is given by the Σ-algebra B =
∐

i∈I Ai that is defined as follows
(see, e.g., [155], section 4.1; [138], section 2.2.1; or [81], Proposition 2.1.5):

• For all e ∈ T (S), B(e) =
⊎
i∈I Ai(e).

• For all f : e→ e′ ∈ F , fB =
∐

i∈I f
Ai : B(e) → B(e′).

For all i ∈ I , the injection ιi = (ιi,e : Ai(e) → B(e))e∈T (S) is Σ-homomorphic: For all
f : e→ e′ ∈ F ,

fB ◦ ιi,e =
∐
i∈I

fAi ◦ ιi,e
(18) in chapter 2

= ιi,e′ ◦ fAi.

Let C be a Σ-algebra and (hi : Ai → C)i∈I be a tuple of Σ-homomorphisms. Then
[hi]i∈I = ([hi,e]i∈I : C(e) → B(e))e∈Tfo(S) is also Σ-homomorphic:

For all i ∈ I and f : e→ e′ ∈ F ,

([hi]i∈I)e′ ◦ fB = [hi,e′]i∈I ◦ fB
Def . f B
= [hi,e′]i∈I ◦

∐
i∈I f

Ai = [hi,e′]i∈I ◦ [ιi,e′ ◦ fAi]i∈I
(17) in chapter 2

= [[hi,e′]i∈I ◦ ιi,e′ ◦ fAi]i∈I = [hi,e′ ◦ fAi]i∈I
hi is Σ−hom.

= [fC ◦ hi,e]i∈I
(17) in chapter 2

= fC ◦ [hi,e]i∈I = fC ◦ ([hi]i∈I)e.

198

9.8 Sum algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

Uniqueness of [hi]i∈I follows from uniqueness of [hi]i∈I as a Tfo(S)-sorted function.

Example 9.4
∐

DAut

Let A be a Med(X)-algebra (see section 8.3) with carrier Q and Y be a set.

The Med(X)-algebra B = A×Y Q and its extension to a DAut(X, Y)-algebra are defined
as follows:

• B(state) = Q× Y Q.
• For all q ∈ Q, f : Q→ Y and x ∈ X ,

δB(q, f)(x) = [ιf,stateX ◦ δA]f :Q→Y (q, f)(x) = [ιf,stateX ◦ δA]f :Q→Y (ιf(q))(x)

= ιf,stateX(δ
A(q))(x) = ιXf,state(δ

A(q))(x) = ιf(δ
A(q)(x)) = (δA(q)(x), f).

• For all q ∈ Q, and f : Q→ Y , βB(q, f) = f (q).

[20], Def. 5, provides this sum automaton for the case Y = 2.

Given a semiring R, [160], section 3 defines a weighted version of B:

Let A be a WMed(X,R)-algebra (see chapter 8) with carrier Q and

(δA)∗ : RQ
ω → (RQ

ω)
X

199

9.8 Sum algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

be the SModR-extension of δA (see chapter 19). Then A∗ with A∗(state) = RQ
ω and

δA
∗
= (δA)∗ is a Med(X)-algebra.

Moreover, the sum Med(X)-algebra B = A∗ × RQ and its extension to a DAut(X,R)-
algebra are defined as follows:

• B(state) = RQ
ω ×RQ.

• For all f : Q→ R, g ∈ RQ
R and x ∈ X ,

δB(g, f)(x) = [ιf,stateX ◦ δA∗
]f :Q→R(q, g)(x) = [ιf,stateX ◦ δA∗

]f :Q→R(ιf(g))(x)

= ιf,stateX(δ
A∗
(g))(x) = ιXf,state(δ

A∗
(g))(x) = ιf(δ

A∗
(g)(x)) = (δA

∗
(g)(x), f).

• For all f : Q→ R and g ∈ RQ
R, βB(g, f) = f ∗(g) where f ∗ : RQ

ω → R is the SModR-
extension of f (see chapter 19). ❏

Let Σ = (S, F) be a signature and A be a Σ-algebra with carrier A.

200

9.9 Invariant algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras
9.9 Invariant algebras

An S-sorted subset B of A is a Σ-invariant of A if for all f : e → e′ ∈ F and a ∈ Be,
fA(a) ∈ Be′.

If Σ is constructive, then λs.∅ is the least Σ-invariant of A and λs.As is the greatest
Σ-invariant of A.

Given a ∈ A, the least invariant of A that contains a is denoted by ⟨a⟩. Its elements are
also called Σ-derivatives of a.

For the construction of ⟨a⟩ if Σ is destructive, see Theorem 9.13 (4).

A Σ-invariant B of A induces the Σ-subalgebra A|B of A:

• For all e ∈ Tfo(S), (A|B)(e) =def Be.
• For all f : e→ e′ ∈ F and a ∈ Be, fA|B(a) =def f

A(a).

Hence the inclusion map incB : B → A that sends a ∈ B to itself is a Σ-homomorphism
from A|B to A.

Σ-invariants of A provide the tool for building restrictions of the model given by A:

If B consists of all elements of A satisfying a given constraint, then A|B equips the
constraint with a suitable algebraic structure.

201

9.10 Quotient algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

9.10 Quotient algebras

Let A,B be Σ-algebras with carriers A resp. B.

An S-sorted relation R ⊆ A × B is a Σ-bisimulation if for all f : e → e′ ∈ F and
(a, b) ∈ Re, (fA(a), fB(b)) ∈ Re′. If A = B, then R is called a Σ-bisimulation on A.

A Σ-bisimulation on A is called a Σ-congruence if it is an equivalence relation.

If Σ is constructive, then λs.∆2
As

is the least Σ-congruence on A and λs.A2
s is the greatest

Σ-congruence on A.

A Σ-congruence R on A induces the Σ-quotient (algebra) A/R of A by R:

• For all e ∈ Tfo(S), (A/R)(e) =def Ae/Re.
• For all f : e→ e′ ∈ F and a ∈ Ae, fA/R([a]R) =def [f

A(a)]R.

Hence the natural map natR : A → A/R that sends a ∈ A to the equivalence class [a]R
is a Σ-homomorphism from A to A/R.

Σ-congruences of A provide the tool for building abstractions of the model given by A:

If R consists of all pairs (a, b) ∈ A2 such that a and b are to be considered equivalent,
then A/R equips the equivalences with a suitable algebraic structure.

202

9.10 Quotient algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras
Lemma 9.5

Let R be a Σ-congruence. For all f : e→ e′ ∈ ArrΣ and (a, b) ∈ R, (fA(a), fA(b)) ∈ R.

Proof.
nat(fA(a))

Lemma 9 .2
= fA/R(nat(a)) = fA/R([a]R) = fA/R([b]R)

= fA/R(nat(b))
Lemma 9 .2

= nat(fA(b)),

i.e., (fA(a), fA(b)) ∈ R. ❏

Theorem 9.6

(1) Let ∼ be a Σ-bisimulation on A. Then the equivalence closure ∼eq of ∼ (see chapter
3) is a Σ-congruence.

(2) The greatest Σ-bisimulation on A, called Σ-bisimilarity, is an equivalence relation
and thus agrees with the greatest Σ-congruence on A.

(3) A Mod(S)-morphism h : A→ B is a Σ-homomorphism from A to B iff the S-sorted
relation

graph(h) =def ({(a, hs(a) | a ∈ As})s∈S
is a Σ-bisimulation.

203

9.10 Quotient algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

Proof. Given an S-sorted binary relation ∼ on A, ∼eq is the least fixpoint of

Φ(∼) : Xe∈Tfo(S)P(A2
e) → Xe∈Tfo(S)P(A2

e)

R 7→ (∼e ∪ ∆2
Ae

∪R−1
e ∪Re ·Re)e∈Tfo(S).

Moreover, let sucs(∼) be the Tfo(S)-sorted set defined by

sucs(∼)e = {(a, b) ∈ A2
e | ∀ f : e→ e′ ∈ F : fA(a) ∼e′ f

A(b)}

for all e ∈ Tfo(S).

(1) Since ∼eq is an equivalence relation, it remains to show that ∼eq is a Σ-bisimulation,
which holds true iff

∼eq⊆ sucs(∼eq). (3)

Since ∼eq= lfp(Φ(∼)), fixpoint induction (see chapter 3) implies (3) if sucs(∼) is Φ(∼)-
closed, i.e., if Φ(∼)(sucs(∼)) ⊆ sucs(∼).

So let (a, b) ∈ Φ(∼)(sucs(∼eq)). Hence (a, b) ∈ sucs(∼eq) or we have one of the following
three cases:

Case 1: a = b. Then for all f : e → e′ ∈ F , fA(a) = fA(b) and thus fA(a) ∼eq fA(b)

because ∼eq is reflexive.

204

9.10 Quotient algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

Case 2: b ∼eq a. Then for all f : e → e′ ∈ F , fA(b) ∼eq fA(a). Hence fA(a) ∼eq fA(b)

because ∼eq is symmetric.

Case 3: a ∼eq c and c ∼eq b for some c ∈ A. Then for all f : e→ e′ ∈ F ,

fA(a) ∼eq fA(c) and fA(c) ∼eq fA(b).

Hence fA(a) ∼eq fA(b) because ∼eq is transitive.

We conclude that in all three cases, (a, b) belongs to sucs(∼eq). Therefore, sucs(∼eq) is
Φ(∼)-closed.

(2) Let RΣ be the greatest Σ-bisimulation on A. Suppose that

Req
Σ is a Σ-bisimulation. (4)

Since RΣ is the greatest Σ-bisimulation, (4) implies Req
Σ ⊆ RΣ. Since RΣ is a subset of

Req
Σ , we conclude that both relations agree with each other. Hence RΣ is an equivalence

relation and thus a Σ-congruence. It remains to show (4), which holds true iff

Req
Σ ⊆ sucs(Req

Σ). (5)

Since Req
Σ = lfp(Φ(RΣ)), fixpoint induction (see chapter 3) implies (5) if sucs(Req

Σ) is
Φ(RΣ)-closed, i.e., if Φ(RΣ)(sucs(R

eq
Σ)) ⊆ sucs(Req

Σ).

205

9.10 Quotient algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

So let (a, b) ∈ Φ(RΣ)(sucs(R
eq
Σ)). Hence (a, b) ∈ sucs(Req

Σ) or we have one of the following
three cases:

Case 1: a = b. Then for all f : e→ e′ ∈ F , fA(a) = fA(b) and thus (fA(a), fA(b)) ∈ Req
Σ

because Req
Σ is reflexive.

Case 2: (b, a) ∈ Req
Σ . Then for all f : e → e′ ∈ F , (fA(b), fA(a)) ∈ Req

Σ . Hence
(fA(a), fA(b)) ∈ Req

Σ because Req
Σ is symmetric.

Case 3: (a, c), (c, b) ∈ Req
Σ for some c ∈ A. Then for all f : e→ e′ ∈ F ,

(fA(a), fA(c)), (fA(c), fA(b)) ∈ Req
Σ .

Hence (fA(a), fA(c)) ∈ Req
Σ because Req

Σ is transitive.

We conclude that in all three cases, (a, b) belongs to sucs(Req
Σ). Therefore, sucs(Req

Σ) is
Φ(RΣ)-closed.

(3) “⇒”: Let h be Σ-homomorphic, e ∈ Tfo(S), (a, b) ∈ graph(h)e and f : e → e′ ∈ F .
Then h(a) = b and thus h(fA(a)) = fB(h(a)) = fB(b), i.e., (fA(a), fB(b)) ∈ graph(h)e′.

“⇐”: Let graph(h) be a Σ-bisimulation, f : e→ e′ ∈ F and a ∈ Ae. Then

(a, h(a)), (fA(a), h(fA(a))) ∈ graph(h)

206

9.11 Term folding 9 Σ-ALGEBRAS

�� ��Σ-algebras

and thus (fA(a), fB(h(a))) ∈ graph(h). Hence h(fA(a)) = fB(h(a)). ❏

9.11 Term folding

Let Σ = (S,C) be a constructive polynomial signature, V ∈ SetS and A be a Σ-algebra
with carrier A.

A term valuation of V in A is an S-sorted function g : V → A.

From now on, AV denotes the set of term valuations of V in A.

Given g ∈ AV , the term extension g∗ : TΣ(V) → A of g to TΣ(V), also called term
folding, is the Tpo(S)-sorted function that is defined inductively as follows:

• For all I ⊆ I, g∗I = idI .
• For all s ∈ S and x ∈ Vs, g∗s(x) = gs(x).
• For all c : e→ s ∈ I ∪ C and t ∈ TΣ(V)e,

g∗s(c(t)) = cA(g∗e(t)). (1)
• For all e = (ei)i∈I ∈ Tpo(S)I , t = (ti)i∈I ∈ Xi∈ITΣ(V)ei and i ∈ I ,

πi(g
∗
e(t)) = g∗ei(ti). (2)

207

9.11 Term folding 9 Σ-ALGEBRAS

�� ��Σ-algebras
• For all e = (ei)i∈I ∈ Tpo(S)I , i ∈ I and t ∈ TΣ(V)ei,

g∗e(i(t)) = ιi(g
∗
ei
(t)). (3)

Intuitively, g∗ evaluates t ∈ TΣ(V) in A and thus computes a denotational semantics
of t [78].

In particular, id∗A : TΣ(A) → A interprets the constructors and injections of t ∈ TΣ(A)

bottom-up, starting at the leaves of t that are labelled with elements of A.

For all c : e→ s ∈ C and a ∈ Ae, id∗A(c(a)) = cA(a).

f1
A

f3
A

f7
Af6

A

f5
Af4

A

f8
A

f9
A

f0
A

a0 a1

a2

f2
A

b0

b1

a

f1

f3

f7f6

f5f4

f8

f9

f0

x0 x1

x2

f2

b0

b1

=
(λxi.ai)

*

Illustration of term folding

208

9.11 Term folding 9 Σ-ALGEBRAS

�� ��Σ-algebras

Given e ∈ Tpo(S) and t, t′ ∈ TΣ(V)e, g ∈ AV solves the (first-order) Σ-equation t = t′

in A, written as A |=g t = t′, if g∗(t) = g∗(t′).

A satisfies the (first-order) conditional Σ-equation
∧n
i=1 ti = t′i ⇒ t = t′ if every

g ∈ AV that solves t1 = t′1, . . . , tn = t′n also solves t = t′.

An empty conjunction is abbreviated to True and mostly omitted, i.e., a conditional
equation True ⇒ t = t′ is simply written as t = t′.

Consequently, A satisfies t = t′ if all g ∈ AV solve t = t′.

If A = TΣ(V
′) for some V ′ ∈ SetS, then g is called a substitution because

g∗ : TΣ(V) → TΣ(V
′)

replaces the variables of a term by terms: For all x ∈ V , x is replaced by g(x).

209

9.11 Term folding 9 Σ-ALGEBRAS

�� ��Σ-algebras
Theorem 9.7

Let V ∈ SetS. TΣ(V) is a free Σ-algebra over V , i.e., for all Σ-algebras A with carrier
A and g ∈ AV , g∗ is the only Σ-homomorphism from TΣ(V) to A that satisfies (4).

V
incV ≻TΣ(V)

(4)

A

g∗

≺

g

≻

In particular, if for all s ∈ S, Vs = ∅, then there is exactly one term valuation g ∈ AV ,
(4) reduces to the uniqueness of g∗ and thus TΣ = TΣ(V) is initial in AlgΣ. g∗ no longer
depends on g and is denoted by foldA. This notation is also used for the restriction of g∗

to TΣ if V is nonempty.

Proof. By (1), g∗ satisfies (4).

g∗ is Σ-homomorphic: For all c : e→ s ∈ C and t ∈ TΣ(V)e,

g∗(cTΣ(V)(t)) = g∗(c(t))
(1)
= cA(g∗(t)).

210

9.11 Term folding 9 Σ-ALGEBRAS

�� ��Σ-algebras

g∗ is unique: Let h : TΣ(V) → A be a Σ-homomorphism with h ◦ incV = g.

• For all x ∈ V , g∗(x) = g(x)
h◦incV=g= h(x).

• For all c : e→ s ∈ C and t ∈ TΣ(V)e,

g∗(c(t))
(1)
= cA(g∗(t))

ind. hyp.
= cA(h(t))

h hom.
= h(cTΣ(V)(t)) = h(c(t)).

• For all (ei)i∈I ∈ Tpo(S)I , t = (ti)i∈I ∈ Xi∈ITΣ(V)ei and i ∈ I ,

πi(g
∗(t)

(2)
= g∗(ti)

ind. hyp.
= h(ti) = h(πi(t)) = πi(h(t)).

• For all (ei)i∈I ∈ Tpo(S)I , i ∈ I and t ∈ TΣ(V)ei,

g∗(i(t))
(3)
= ιi(g

∗(t))
ind. hyp.

= ιi(h(t)) = h(ιi(t)) = h(i(t)).

Hence g∗ = h. ❏

Exercise 14 Show foldBool = βBro(X).

Exercise 15 Show by structural induction that for all t ∈ TReg(X),

ϵ ∈ foldLang(X)(t) ⇔ foldBool(t) = 1.

211

9.11 Term folding 9 Σ-ALGEBRAS

�� ��Σ-algebras
A Σ-algebra A is equationally consistent if foldA is mono.

A is reachable (or generated) if foldA is epi.

RAlgΣ denotes the full subcategory of AlgΣ whose objects are all reachable Σ-algebras.

By Lemma 13.1 (2), for all A ∈ RAlgΣ, A ∼= TΣ/ker(fold
A).

Lemma 9.8

Let K be a full subcategory of RAlgΣ and the Σ-algebra B = B(K) be defined as follows:

• For all s ∈ S, Rs = ker(⟨foldA⟩A∈K)s =
⋂

A∈K ker(fold
A)s (see equation 2.2.9) and

B(s) = TΣ,s/Rs.
• For all c : e→ s ∈ C and t ∈ TΣ, cB(natR,e(t)) = natR,s(c(t)).

For all A ∈ K, there is a unique Σ-homomorphism from B to A.
In particular, B is initial in RAlgΣ.

Proof. By Lemma 13.1 (2), there is a unique Σ-monomorphism h : B →
∏

K such that
h ◦ natR = ⟨foldA⟩A∈K. Hence for all A ∈ K, πA ◦ h : B → A is Σ-homomorphic.
Suppose that there are two Σ-homomorphisms h1, h2 : B → A.

212

9.11 Term folding 9 Σ-ALGEBRAS

�� ��Σ-algebras

Since TΣ is initial in AlgΣ, h1 ◦ natR = h2 ◦ natR. Hence h1 = h2 because natR is epi.

In particular, since B ∈ RAlgΣ, B is initial in RAlgΣ. ❏

Example

Let Σ = Dyn(X, 1), C be a coStream(X)-algebra and K be the category of reachable
Σ-algebras A with A|coStream(X) = C. Then B(K) agrees with the free (1-)pointed automa-
ton over C as defined in [160], section 5, and a quotient of the initial reachable Σ-algebra. ❏

Lemma 9.9 (Substitutionslemma)

For all Σ-algebras A with carrier A, g ∈ AV and Σ-homomorphisms h : A → B,

(h ◦ g)∗ = h ◦ g∗.

Proof. Since h ◦ g∗ ◦ incV = h ◦ g, the conjecture follows from the fact that (h ◦ g)∗ is
the only Σ-homomorphism h′ : TΣ(V) → B with h′ ◦ incV = h ◦ g. ❏

Since g∗ is the only Σ-homomorphism from TΣ(V) to A that satisfies (5), foldA is the
only Σ-homomorphism from TΣ to A, i.e., TΣ is initial in AlgΣ.

213

9.12 Term grounding 9 Σ-ALGEBRAS

�� ��Σ-algebras

9.12 Term grounding

Let V ∈ I.
Σ(V) = (S,C ∪ {vals : Vs → s | s ∈ S})

is called the grounding of Σ on V .

TΣ(V) is a Σ(V)-algebra: For all s ∈ S and x ∈ Vs, val
TΣ(V)
s (x) =def vals(x).

Let A be a Σ(V)-algebra with carrier A. Since

(valA)∗ ◦ valTΣ(V) = (valA)∗ ◦ incV = valA,

(valA)∗ is compatible with val and thus Σ(V)-homomorphic.

Vice versa, two Σ(V)-homomorphisms h, h′ : TΣ(V) → A are compatible with val. Hence

h ◦ incV = h ◦ valTΣ(V) = valA = h′ ◦ valTΣ(V) = h′ ◦ incV .

Since h and h′ are Σ-homomorphic, we conclude h = h′.

Therefore, TΣ(V) is initial in AlgΣ(V) and for all A ∈ AlgΣ(V),

foldA = (valA)∗.

214

9.13 Sample initial algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

By replacing the label x ∈ V of every leaf n of t ∈ TΣ(V) with val and adding an
edge to t with source n, label ϵ and a new target node labelled with x, we obtain a
Σ(V)-isomorphism from TΣ(V) to TΣ(V).

Moreover, HΣ(V) = HΣ + V (see chapter 15).

9.13 Sample initial algebras

Since initial algebras are unique up to isomorphism,

• TNat ∼= N is initial in AlgNat (see sample algebra 9.6.1), (1)
• TCon(X)

∼= X is initial in AlgCon(X) (Xstate =def X, putElem
X =def idX),

• TDyn(X,Y)
∼= Seq(X, Y) is initial in AlgDyn(X,Y) (see sample algebra 9.6.3), (2)

• TList(X)
∼= X∗ is initial in AlgList(X) (see sample algebra 9.6.3), (3)

• TcoStream(X)
∼= ∅ is initial in AlgcoStream(X),

• TBintree(X)
∼= FBin(X) is initial in AlgBintree(X) (see sample algebra 9.6.10), (4)

• TTree(X)
∼= FTree(X) is initial in AlgTree(X) (see sample algebra 9.6.13), (5)

• TReg(X) is initial in AlgReg(X). (6)

215

9.13 Sample initial algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

Given a constructive signature Σ and a Σ-algebra A with carrier A, foldA denotes the
unique Σ-homomorphism not only from TΣ to A, but also from isomorphic representations
of TΣ like those listed above.

In cases (1)-(5), the respective inductive (!) definition of h =def fold
A reads as follows:

1. Nat -algebra N
h : N → A

0 7→ zeroA

n + 1 7→ succA(h(n))

2. Dyn(X, Y)-algebra Seq(X, Y)

h : X∗ × Y → A

(ϵ, y) 7→ αA(y)

(xw, y) 7→ consA(x, h(w, y))

For all B ⊆ A, (A, B) realizes f ∈ Y X∗ if for all y ∈ Y ,

h(w, y) ∈ B ⇔ f (w) = y.

216

9.13 Sample initial algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

Let Y = 1. For all B ⊆ A, (A, B) accepts the language L ⊆ X∗ if

h(w, ()) ∈ B ⇔ w ∈ L.

3. List(X)-algebra X∗

h : X∗ → A

ϵ 7→ αA

x · w 7→ consA(x, h(w))

h is List(X)-homomorphic:

h(αX
∗
) = h(ϵ) = αA,

h(consX
∗
(x,w)) = h(x · w) = consA(x, h(w)).

h is the only List(X)-homomorphism from X∗ to A:
Let h′ : X∗ → A be List(X)-homomorphic. Then

h′(ϵ) = h(αX
∗
)
h′ hom.
= αA = h(ϵ),

h′(x · w) = h′(consX
∗
(x,w))

h′ hom.
= consA(x, h′(w))

ind. hyp.
= consA(x, h(w)) = h(x · w),

i.e., h′ = h.

217

9.13 Sample initial algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

Exercise 16 Show that
length : X∗ → N

ϵ 7→ 0

x · w 7→ 1 + length(w)

is List(X)-homomorphic and thus agrees with foldLength (see sample algebra 9.6.1).

4. Bintree(X)-algebra FBin(X)

h : ftr (2, X) → A

Ω 7→ emptyA

x{0 → t, 1 → u} 7→ bjoinA(x, h(t), h(u))

5. Tree(X)-algebra FTree(X)

htree : otr (N, X) ∩ ftr (N, X) → Atree

x 7→ joinA(x, nilA)

x(t1, . . . , tn) 7→ joinA(x, htrees(t1, . . . , tn))

htrees : (otr (N, X) ∩ ftr (N, X))∗ → Atrees

ϵ 7→ nilA

t · ts 7→ consA(htree(t), htrees(ts))

218

9.14 Context-free grammars and their models 9 Σ-ALGEBRAS

�� ��Σ-algebras

6. Reg(X)-algebra TReg(X)

For all t ∈ TReg(X), foldLang(X)(t) (see sample algebra 9.6.19) is usually called the lan-
guage of t that is accepted by, for instance, (Bro(X), t) (see sample final algebra 9.18.11).

Exercise 17 Let Bool be the Σ-algebra of example 20 above. Given t ∈ TΣ,state, show
that the language of t contains ϵ iff foldBool(t) = 1. ❏

9.14 Context-free grammars and their models

A context-free grammar (CFG) G = (S,X,R) consists of

• a finite set S of sorts, also called nonterminals,
• a set X ⊆ I of terminals,
• a finite S-sorted set R = (Rs ⊆ {s→ w | w ∈ (S ∪ P+(X))∗})s∈S of rules.

Every s ∈ S is supposed to be the left-hand side of at least one rule of R.

219

9.14 Context-free grammars and their models 9 Σ-ALGEBRAS

�� ��Σ-algebras

Let SX = S ∪ P+(X) and type : S∗
X → Tpo(S) be inductively defined as follows:

• type(ϵ) = 1.
• For all s ∈ SX and w ∈ S∗

X ,

type(sw) =

{
type(w) if s ∈ X,

s× type(w) otherwise.

The constructive signature

Σ(G) = (S, {fs→w : type(w) → s | s→ w ∈ R})

is called the abstract syntax of G.

Why are the terminals of w removed from a rule s → w when it is turned into a con-
structor of Σ(G)? Because they do not contribute to the semantics of the product types
created by type. E.g., for all e, e′ ∈ Tpo(S) and x ∈ X , e× x× e′ is equivalent to e× e′

(see chapter 7).

However, the terminals of w may be used for naming the constructor for s → w. For
instance, the rule s→ if 2 then s else s yields the constructor ite : 2× s× s→ s.

Finite ground Σ(G)-terms are called syntax trees of G.

220

9.14 Context-free grammars and their models 9 Σ-ALGEBRAS

�� ��Σ-algebras

The Σ(G)-algebra Word(G), called the word algebra of G, recovers the concrete syntax
from the abstract one. It is defined as follows:

• For all s ∈ S, Word(G)s = X∗.
• For all w0 . . . wn ∈ X∗, s1, . . . , sn ∈ SX \ X , r = (s → w0s1w1 . . . snwn) ∈ R and
(v1, . . . , vn) ∈ Word(G)s1×···×sn,

fWord(G)
r (v1, . . . , vn) = w0v1w1 . . . vnwn.

Example 9.10 The grammar SAB consists of the sorts A,B,C, the terminals a and b
and the rules

r1 = C → aB, r2 = C → bA, r3 = C → ϵ,

r4 = A→ aC, r5 = A→ bAA, r6 = B → bC, r7 = B → aBB.

Hence Σ(SAB) has the following constructors:

f1 : B → C, f2 : A→ C, f3 : 1 → C,

f4 : C → A, f5 : A× A→ A, f6 : C → B, f7 : B ×B → B.

The word algebra W = Word(SAB) reads as follows:

WA = WB = WC = {a, b}∗

221

9.14 Context-free grammars and their models 9 Σ-ALGEBRAS

�� ��Σ-algebras
and for all v, w ∈ {a, b}∗,

fW1 (w) = fW4 (w) = aw,

fW2 (w) = fW6 (w) = bw,

fW3 = ϵ,

fW5 (v, w) = bvw,

fW7 (v, w) = avw. ❏

The language L(G) of G is the S-sorted set of words over X that result from folding
syntax trees in Word(G), i.e.,

L(G) = img(foldWord(G)).

Given an S-sorted set E of error messages, a parser for G is an S-sorted function

parseG = (parseG,s : X
∗ → P(TΣ(G),s) + E)s∈S

such that for all w ∈ X∗,

parseG(w)

{
= (foldWord(G))−1(w) if w ∈ L(G),

∈ E otherwise.

222

9.14 Context-free grammars and their models 9 Σ-ALGEBRAS

�� ��Σ-algebras

Every Σ(G)-algebra A may serve as a target language of a compiler of G: The generic
compiler for G induced by parseG is defined as the (AlgΣ(G) × S)-sorted function

compileparseG = ((P(foldA
s) + idE) ◦ parseG : X∗ → P(A(s) + E))(A,s)∈AlgΣ(G)×S.

Whereas Σ(G) describes the syntax of a source language, the carrier of A may consist
of the programs of a target language. In this case, the correctness of a compiler to A
may involve the compatibility of A with a further Σ(G)-algebra Sem (the source model),
a further S-sorted set Mach (the target model or abstract machine) and two S-sorted
functions evaluate : A → Mach and encode : Sem → Mach such that the following
diagram commutes (see [112, 177]):

TΣ(G)
foldA

≻A

(1)

Sem

foldSem

⋎

encode
≻Mach

evaluate

⋎

evaluate provides the interpreter of target programs in Mach, while encode expresses
the source model in terms of the target model.

223

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

Due to the initiality of TΣ(G), (1) commutes if encode and evaluate are Σ(G)-homomor-
phic, which involves that Mach is Σ(G)-algebra. Since Mach is supposed to provide
the semantics of the target programs given by the carrier A of A, there may be a sig-
nature Σ′ such that TΣ′ concides with A such that each constructor of Σ(G) is “imple-
mented” by a Σ′-term and evaluate folds Σ′-terms in Mach. This implementation may
determine a suitable definition of encode such that both encode and evaluate become
Σ(G)-homomorphic. In this way, [177] shows the correctness of a compiler that translates
imperative programs to flowcharts.

9.15 Removing left recursion

The one-step derivation relation →G ⊆ (S∗
X)

2 for a CFG G = (S,X,R) is defined as
follows:

→G = {(vsv′, vwv′) | s→ w ∈ R, v, v′ ∈ S∗
X} ∪

{(vBv′, vxv′) | B ⊆ X, x ∈ B}.
+→G and ∗→G denote the transitive resp. reflexive-transitive closure of →G.

For all s ∈ S, L(G)s = {w ∈ X∗ | s +→G w}.

G is left-recursive if there are s ∈ S and w ∈ S∗
X with s +→G sw.

224

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

Top-down parsers for a CFG G = (S,X,R) proceed along →G and thus may not ter-
minate on some input words if G is left-recursive. Fortunately, the following procedure
transforms G into a non-left-recursive grammar G′ = (S ′, X,R′) such that S ⊆ S ′ and
for all s ∈ S, L(G)s = L(G′)s:

• Repeat the following step as often as possible: For all pairs (s → s′v, s′ → w) ∈ R2

with s ̸= s′ replace s→ s′v by the new rule s→ wv. (1)
• Remove all rules of the form s→ s. (2)

(1) turns every derivation s +→G sw into a rule. Let R0 be the set of rules after (1) and
(2) have been performed. The non-left-recursive grammar G′ is then defined as follows:
Let s ∈ S.

S ′ = S ∪ {s′ | s ∈ recs(S)},
R′ = R0 \ {s→ w ∈ R0 | s ∈ recs(S)}

∪ {s′ → ws′ | s→ sw ∈ R0}
∪ {s→ vs′ | v ∈ nonrecs(s), s ∈ S}
∪ {s′ → ϵ | s ∈ recs(S)}

where recs(S) = {s ∈ S | ∃ s→ sw ∈ R0} and

nonrecs(s) = {w | s ∈ recs(S), s→ w ∈ R0, w ̸∈ {s} × S∗
X}.

225

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

Example 9.11 The rules of a CFG for a subset of Java may read as follows:

Commands → Command Commands | Command

Command → {Commands} | Ident = Sum; |
if Disjunct Command else Command |
if Disjunct Command | while Disjunct Command

Sum → Sum + Prod | Sum − Prod | Prod (1)

Prod → Prod ∗ Factor | Prod/Factor | Factor (2)

Factor → Z | Ident | (Sum)

Disjunct → Conjunct || Disjunct | Conjunct

Conjunct → Literal && Conjunct | Literal

Literal → !Literal | Sum Rel Sum | 2 | (Disjunct)

Rules with the same left-hand side are combined to a single one by summing up their
right-hand sides with |. Ident and Rel denote given sets of identifiers ad binary relations,
respectively. The rules’ left-hand sides are the sorts of JavaLight, all other symbols except
| that occur on right-hand sides and the elements of Z, Ident and Rel form the set of
terminals of JavaLight.

226

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

The use of three sorts for both arithmetic and Boolean expressions reflects the usual pri-
orities of arithmetic resp. Boolean operators and thus allows the avoidance of superfluous
brackets.

The above procedure adds to Javalight the sorts Sum ′ and Prod ′ and replaces rules (1)
amd (2) by the following ones:

Sum → Prod Sum ′ (3)

Sum ′ → +Prod Sum ′ | − Prod Sum ′ | ϵ (4)

Prod → Factor Prod ′ (5)

Prod ′ → ∗Factor Prod ′ | /Factor Prod ′ | ϵ (6)

The abstract syntax of the original Javalight consists of the sorts

Commands ,Command , Sum,Prod ,Factor ,Disjunct ,Conjunct ,Literal ,Z, Ident , Rel

and the constructors
seq : Command × Commands → Commands ,

embed : Command → Commands ,

block : Commands → Command ,

assign : String × Sum → Command ,

227

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

cond : Disjunct × Command × Command → Command ,

cond1, loop : Disjunct × Command → Command ,

sum : Prod → Sum, (7)

plus,minus : Sum × Prod → Sum, (8)

prod : Factor → Prod , (9)

times, div : Prod × Factor → Prod , (10)

embedI : Z → Factor ,

var : String → Factor ,

encloseS : Sum → Factor ,

disjunct : Conjunct × Disjunct → Disjunct ,

embedC : Conjunct → Disjunct ,

conjunct : Literal × Conjunct → Conjunct ,

embedL : Literal → Conjunct ,

not : Literal → Literal ,

atom : Sum ×Rel × Sum → Literal ,

embedB : 2 → Literal ,

encloseD : Disjunct → Literal

228

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

According to the replacement of rules (1) and (2) by (3)-(6), constructors (7)-(10) are
exchanged with the following ones:

sum′ : Prod × Sum ′ → Sum, (11)

plus′,minus′ : Prod × Sum ′ → Sum ′, (12)

nilS : 1 → Sum ′, (13)

prod′ : Factor × Prod ′ → Prod , (13)

times′, div′ : Factor × Prod ′ → Prod ′, (14)

nilP : 1 → Prod ′. ❏

While the types of constructors (8)-(10) suggest that (8) and (10) will be interpreted
as binary operatos and terms composed of these arrows will be evaluated from left to
right, the intended meaning of (11)-(14) is less obvious. In fact, the new sorts Sum ′ and
Prod ′ represent sets of Haskell sections of the constructors (8) and (10). For instance,
the section (∗5) : Z → Z maps x ∈ Z to x ∗ 5, and the left-associative evaluation of the
term x/y ∗ z/z′ becomes the left-to right application of the sections (/y), (∗z) and (/y)

to x.

229

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

The step from a CFG G = (S,X,R) to its non-left-recursive equivalent G′ = (S ′, X,R′)

modifies the abstract syntax and thus the syntax trees of G. The following Σ(G)-algebra
derec(G) interprets the constructors of Σ(G) as functions on the syntax trees of G′:

• For all s ∈ S, derec(G)s = TΣ(G′),s. (1)

• For all s ∈ S \ recs(S) and r ∈ R0, f
derec(G)
s→v = fs→v. (2)

• For all s→ sw ∈ R0, v ∈ nonrecs(s), t ∈ TΣ(G′),type(v), t′ ∈ TΣ(G′),s′

and u ∈ TΣ(G′),type(w),

f derec(G)s→v (t) = fs→vs′(t, fs′→ϵ), (3)
f derec(G)s→sw (fs→vs′(t, t

′), u) = fs→vs′(t, fs′→ws′(u, t
′)). (4)

Folding a syntax tree of G in derec(G) yields its G′-counterpart:

230

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

= =

As any CFG G can be turned automatically into its left-non-recursive equivalent G′, so
every Σ(G)-algebra A can be transformed automatically into a Σ(G′)-algebra derec(A)

such that folding syntax trees ofG leads to to same results as folding theirG′-counterparts
in derec(A):

231

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

TΣ(G)
c =def fold

derec(G)

≻TΣ(G′)

(5)

A

h =def fold
derec(A)

≺
foldA

≻

Let A be the carrier of A. derec(A) is defined as follows:

• For all s ∈ S, derec(A)(s) = As.
• For all s ∈ S \ recs(S) and r ∈ R0, f

derec(A)
r = fAr . (6)

• For all s → sw ∈ R0, v ∈ nonrecs(s), a ∈ Atype(v), g : As → As, b ∈ Atype(w) and
x ∈ As,

derec(A)(s′) = As → As, (7)
f
derec(A)
s′→ϵ (ϵ) = idAs, (8)

f
derec(A)
s→vs′ (a, g) = g(fAs→v(a)), (9)

f
derec(A)
s′→ws′ (b, g)(x) = g(fAs→sw(x, b)). (10)

Proof of the commutativity of (5) by induction over the size of the sysntax trees of G.

Let s ∈ S \ recs(S) und t ∈ TΣ(G),s.

232

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

Then t = fr(u) for some r = (s→ v) ∈ R0 und u ∈ TΣ(G),type(v). Hence

h(c(t)) = h(c(fr(u)))
c hom.
= h(f

derec(G)
r (c(u)))

(2)
= h(fr(c(u)))

h hom.
= f

derec(A)
r (h(c(u)))

(6)
= fAr (h(c(u)))

ind. hyp.
= fAr (fold

A(u))
foldA hom.

= foldA(fr(u)) = foldA(t).

Let s ∈ recs(S) and t ∈ TΣ(G),s. Then there are v ∈ nonrecs(s), t0 ∈ TΣ(G),type(v), n ∈ N
and for all 1 ≤ i ≤ n, ri = (s→ swi) ∈ R0 and ti ∈ TΣ(G),type(wi), such that

t = frn(. . . (fr1(fs→v(t0), t1) . . .), tn). (11)

Hence

h(c(t))
(11)
= h(c(frn(. . . (fr1(fs→v(t0), t1) . . .), tn)))

c hom.
= h(f

derec(G)
rn (. . . (f

derec(G)
r1 (f

derec(G)
s→v (c(t0))), c(t1)) . . .), c(tn))

(3)
= h(f

derec(G)
rn (. . . (f

derec(G)
r1 (fs→vs′(c(t0), fs′→ϵ)), c(t1)) . . .), c(tn))

(4)
= . . .

(4)
= h(fs→vs′(c(t0), fr′1(c(t1), . . . , fr′n(c(tn), fs′→ϵ) . . .))

h hom.
= f

derec(A)
s→vs′ (h(c(t0)), f

derec(A)

r′1
(h(c(t1)), . . . , f

derec(A)
r′n

(h(c(tn)), f
derec(A)
s′→ϵ) . . .)

(8)
= f

derec(A)
s→vs′ (h(c(t0)), f

derec(A)

r′1
(h(c(t1)), . . . , f

derec(A)
r′n

(h(c(tn)), id) . . .))

233

9.15 Removing left recursion 9 Σ-ALGEBRAS

�� ��Σ-algebras

(9)
= f

derec(A)

r′1
(h(c(t1)), . . . , f

derec(A)
r′n

(h(c(tn)), id) . . .)(f
A
s→v(h(c(t0))))

(10)
= . . .

(10)
= id(fArn(. . . (f

A
r1
(fAs→v(h(c(t0))), h(c(t1)))) . . . , h(c(tn))))

= fArn(. . . (f
A
r1
(fAs→v(h(c(t0))), h(c(t1)))) . . . , h(c(tn)))

ind. hyp.
= fArn(. . . (f

A
r1
(fAs→v(fold

A(t0)), fold
A(t1))) . . . , fold

A(tn))

foldA hom.
= foldA(frn(. . . (fr1(fs→v(t0), t1) . . .), tn))

(12)
= foldA(t)

where for all 1 ≤ i ≤ n, r′i = (s′ → wis
′). ❏

Consequently, when designing a compiler induced by a parser for G′ (see above) one
may stay with Σ(G)-algebras as target languages and need not take into account Σ(G′)-
algebras:

compileparseG′ = compile′parseG′ =def ((P(foldderec(A)
s + idE) ◦ parseG√

: X∗ → P(A(s) + E))(A,s)∈AlgΣ(G)×S.

234

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras
9.16 State unfolding

Let Σ = (S,D) be a destructive polynomial signature, C ∈ SetS and A be a Σ-algebra
with carrier A.

A coloring of A by C is an S-sorted function g : A → C. From now on, CA denotes
the set of colorings of A by C.

Given g ∈ CA, the coextension g# : A → DTΣ(C) of g to DTΣ(C), also called
unfolding, is the Tpo(S)-sorted function whose values are the labelled trees that are
defined as follows:

• For all I ⊆ I, g#I = idI .
• For all s ∈ S and a ∈ As,

g#s (a) = gs(a){d→ g#e (d
A(a)) | d : s→ e ∈ D}. (1)

• For all e =
∏

i∈I ei ∈ Tpo(S), i ∈ I and a = (ai)i∈I ∈ Xi∈IAei,

πi(g
#
e (a)) = g#ei (ai). (2)

• For all e =
∐

i∈I ei ∈ Tpo(S), i ∈ I and a ∈ Aei,

g#e (ιi(a)) = i(g#ei (a)). (3)

235

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

This is a mutually inductive definition of the elements of the tuple

(g#(a) : (I ∪D)∗ → I ∪ C)a∈A
of functions.

In particular, (1) is just an abbreviation of two equations:

g#s (a)(ϵ) = gs(a),

∀ d : s→ e ∈ D, w ∈ (I ∪D)∗ : g#s (a)(dw) = g#e (d
A(a))(w).

Intuitively, g# unfolds a ∈ A into a Σ-coterm representing the behavior of a in A and
thus computes an operational semantics of t [78].

In particular, id#A : A → DTΣ(A) computes for each a ∈ A the (tree unfolding of the)
transition subgraph of A with root a.

For all d : s→ e ∈ D and a ∈ As, id#A(a)(d) = dA(a).

236

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

x2

x5

x4

x7

x3

x4

x6

x5

x0

x1

b1

b0

f1,i1

f0,i0

f2,i2

f5,i5

f6,i6

f3,i3

f4,i4

f7,i7
f8,i8

f9,i9

x0

b1

f10,i10

(λai.xi)
#

a2

a5

a7

a3

a4

a6

a0

a1 b1

b0

f1
A

f0
A

f2
A

f5
A

f3
A

f4
A

f7
A

f9
A

f6
A

f8
A

f10
A

() ()

Illustration of state unfolding. x f,i−→ y stands for x f−→ i
ϵ−→ y.

Given t ∈ DTΣ(C), g ∈ CA solves the Σ-coequation ex(t) in A, written as A |=g ex(t),
if g#(a) = t for some a ∈ A.

237

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

A satisfies a conditional Σ-coequation ex(t) ⇒
∨n
i=1 ex(ti) if every g ∈ CA that

solves ex(t) also solves ex(ti) for some 1 ≤ i ≤ n.

An empty disjunction is abbreviated to False.

Consequently, A satisfies ¬ex(t) if for all g ∈ CA and a ∈ A, g#(a) ̸= t.

Theorem 9.12

Let C ∈ SetS. DTΣ(C) is a cofree Σ-algebra over C, i.e., for all Σ-algebras A with
carrier A and g ∈ CA, g# is the only Σ-homomorphism from A to DTΣ(C) that satisfies
(4).

C≺
root

DTΣ(C)

(4)

A

g#

≻

g

≺

238

9.16 State unfolding 9 Σ-ALGEBRAS

In particular, if for all s ∈ S, Cs = 1, then there is exactly one coloring g ∈ CA, (11)
reduces to the uniqueness of g∗ and thus DTΣ = DTΣ(C) is final in AlgΣ. g# no longer
depends on g and is denoted by unfoldA.

Proof. By (1), g# satisfies (4).

g# is Σ-homomorphic: For all a ∈ As and d : s→ e ∈ D,

dDTΣ(C)(g#s (a))
(1)
= dDTΣ(C)(gs(a){d→ g#s (d

A(a)) | d : s→ e ∈ D}) = g#s (d
A(a)).

g# is unique: Let h : A → DTΣ(C) be a Σ-homomorphism with root ◦ h = g.

• For all s ∈ S and a ∈ As, g#s (a)(ϵ)
(1)
= gs(a)

root◦h=g
= hs(a)(ϵ).

• For all d : s→ e ∈ D, a ∈ As and w ∈ (I ∪D)∗,

g#s (a)(dw)
(1)
= g#e (d

A(a))(w)
ind. hyp.

= he(d
A(a))(w)

h hom.
= dDTΣ(C)(hs(a))(w)

= hs(a)(dw).

• For all e =
∏

i∈I ei ∈ Tpo(S) and a ∈
∏

i∈I Aei,

πi(g
#
e (a))

(2)
= g#ei (πi(a))

ind. hyp.
= hei(πi(a)) = πi(he(a)).

239

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

• For all e =
∐

i∈I ei ∈ Tpo(S), i ∈ I and a ∈ Aei,

g#e (ιi(a))
(3)
= i(g#ei (a))

ind. hyp.
= i(hei(a)) = ιi(hei(a)) = he(ιi(a)).

Hence for all e ∈ Tpo(S), g#e = he. ❏

Since g# is the only Σ-homomorphism from A to DTΣ(C) that satisfies (4), unfoldA is
the only Σ-homomorphism from A to DTΣ, i.e., DTΣ is final in AlgΣ.

Theorem 9.13

Let A be Σ-algebra with carrier A, a ∈ A, w ∈ (I ∪D)∗, b = id#A(a)(w) and d : s→ e ∈
D.

(1) Let b ∈ As. Then
id#A(a)(wd) = dA(b).

(2) Let b = ιi(c) for some i ∈ I, c ∈ Ae and e =
∏

j∈J eij ∈ Ts(S). Then for all j ∈ J ,

id#A(a)(wj) = πj(c).

(3) P (a) =def img(id
#
A(a)) is the least Σ-invariant ⟨a⟩ of A that contains a (see section

9.9).

240

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras
Let B be a Σ-algebra with carrier B and b ∈ B.

(4) For all Σ-homomorphisms h : B → A,
h(⟨b⟩) = ⟨h(b)⟩.

Let A be final in AlgΣ. (B, b) realizes a ∈ A if unfoldB(b) = a. If a is a set, then (B, b)
is also called an acceptor of a.

(5) For all a ∈ A, (⟨a⟩, a) is a minimal realization (acceptor) of a.

Proof of (1) by induction on |w|. If w = ϵ, then b = id#A(a)(w) = idA(a) = a and thus

id#A(a)(wd) = id#A(a)(d) = dA(a) = dA(b).

Otherwise w = xv for some x ∈ I ∪D and v ∈ (I ∪D)∗.

Case 1: a ∈ As for some s ∈ S. Then x ∈ D and thus

id#A(a)(wd) = id#A(x
A(a))(vd)

ind. hyp.
= dA(id#A(x

A(a))(v)) = dA(id#A(a)(w)) = dA(b).

Case 2: a = ιi(c) ∈ Ae for some i ∈ I, c ∈ Ae and e =
∏

j∈J eij ∈ Ts(S). Then x ∈ J

and thus

241

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

id#A(a)(wd) = i(id#A(c))(wd) = i(id#A(c))(xvd) = id#A(πx(c))(vd)

ind. hyp.
= dA(id#A(πx(c)))(v) = i(dA(id#A(c)))(xv) = i(dA(id#A(c)))(w)

= dA(i(id#A(c))(w)) = dA(id#A(ιi(c))(w)) = dA(id#A(a)(w)) = dA(b).

Proof of (2) by induction on |w|. If w = ϵ, then a = idA(a) = id#A(a)(w) = b = ιi(c) and
thus for all j ∈ J ,

id#A(a)(wj) = id#A(ιi(c))(j) = i(id#A(c))(j) = id#A(πj(c))(ϵ) = idA(πj(c)) = πj(c).

Otherwise w = xv for some x ∈ I ∪D and v ∈ (I ∪D)∗.

Case 1: a ∈ As for some s ∈ S. Then x ∈ D and thus

b = id#A(a)(w) = id#A(a)(xv) = id#A(x
A(a))(v).

Hence by induction hypothesis, for all j ∈ J , id#A(x
A(a))(vj) = πj(c). Therefore,

id#A(a)(wj) = id#A(a)(xvj) = id#A(x
A(a))(vj) = πj(c).

Case 2: a = ιk(c
′) for some k ∈ I, c′ ∈ Ae and e =

∏
j∈J ′ e

′
kj ∈ Ts(S). Then x ∈ J ′ and

thus
b = id#A(a)(w) = id#A(ιk(c

′))(w) = k(id#A(c
′))(xv) = id#A(πx(c

′))(v).

242

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

Hence by induction hypothesis, for all j ∈ J , id#A(πx(c
′))(vj) = πj(c). Therefore,

id#A(a)(wj) = id#A(ιk(c
′))(xvj) = k(id#A(c

′))(xvj) = id#A(πx(c
′))(vj) = πj(c).

Proof of (3).

Since id#A(a)(ϵ) = idA(a) = a, P (a) contains a.

By (1), for all s ∈ S, d : s → e ∈ D and b ∈ P (a)s, dA(b) ∈ P (a)e. Hence P (a) is a
Σ-invariant of A.

Let Q(a) be a Σ-invariant of A that contains a and b ∈ P (a). Then b = id#A(a)(w) for
some w ∈ (I ∪D)∗.

If w = ϵ, then b = id#A(a)(ϵ) = idA(a) = a ∈ Q(a).

Otherwise w = vx for some v ∈ (I ∪D)∗ and x ∈ I ∪D. Since id#A(a)(v) ∈ P (a), the
induction hypothesis implies b′ =def id

#
A(a)(v) ∈ Q(a).

Case 1: b′ ∈ As for some s ∈ S. Then x ∈ D and thus

b = id#A(a)(w) = id#A(a)(vx)
(1)
= xA(b′) ∈ Q(a)

because b′ ∈ Q(a) and Q(a) is a Σ-invariant.

243

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

Case 2: b′ = ιi(c) for some i ∈ I, c ∈ Ae and
∏

j∈J eij ∈ Ts(S). Then c ∈ Q(a), x ∈ J

and thus
b = id#A(a)(w) = id#A(a)(vx)

(2)
= πx(c) ∈ Q(a).

Hence b ∈ Q(a) in both cases, and we conclude that P (a) is the least invariant of A that
contains a.

Proof of (4). Since

h(⟨b⟩) = {h(id#B(b)(w)) | w ∈ (I ∪D)∗} and ⟨h(b)⟩ = {id#A(h(b))(w) | w ∈ (I ∪D)∗},
(4) follows from:

∀ w ∈ (I ∪D)∗ : h(id#B(b)(w)) = id#B(h(b))(w). (6)

Proof of (6) by induction on w. If w = ϵ, then

h(id#B(b)(w)) = h(idB(b)) = h(b) = idA(h(b)) = id#A(h(b))(w).

If w = vd for some v ∈ (I ∪D)∗ and d : s→ e ∈ D, then

h(id#B(b)(wd))
(1)
= h(dB(id#B(b)(w)))

h hom.
= dA(h(id#B(b)(w)))

ind. hyp.
= dA(id#A(h(b))(w))

(1)
= id#A(h(b))(wd).

244

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

If id#B(b)(w) = ιi(c) and w = vj for some i ∈ I, c ∈ Be,
∏

j∈J eij ∈ Ts(S) and j ∈ J ,
then

h(id#B(b)(w))
h hom.
= ιi(h(c)) (7)

and thus h(id#B(b)(wj))
(2)
= h(πj(c))

h hom.
= πj(h(c))

(2),(7)
= id#A(h(b))(wj).

This ends the proofs of (6) and thus of (4).

Proof of (5). Since A is final in AlgΣ, unfoldA = idA. Hence for all a ∈ A,

a = unfoldA(a) = unfoldA(inc⟨a⟩(a)) = unfold ⟨a⟩(a)

and thus (⟨a⟩, a) realizes t. Moreover, let (B, b) realize a. Then

|⟨a⟩| = |⟨unfoldA(b)⟩| (4)= |unfoldA(⟨b⟩)| ≤ |⟨b⟩|,

and thus (⟨a⟩, a) is minimal. ❏

245

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

If A = DTΣ(C), then g ∈ CA is called a recoloring because in this case g# : A →
DTΣ(C) modifies a coterm t by simply changing the node labels of t: For all subcoterms
u of t, g#(t) labels the root of u with g(u).

Corollary 9.14 For all t ∈ DTΣ(C), ⟨t⟩ is the set of subtrees of t, i.e., for all v ∈ (I∪D)∗,

λw.t(vw) = h(v) =def id
#
DTΣ(C)

(t)(v).

Proof by induction on |v|. If v = ϵ, then

λw.t(vw) = λw.t(w) = t = idDTΣ(C)(t) = id#DTΣ(C)(t)(ϵ) = h(ϵ) = h(v).

Otherwise v = v′x for some v′ ∈ (I ∪D)∗ and x ∈ I ∪D. Hence

λw.t(vw) = λw.t(v′xw) = λw.(λw′.t(v′w′))(xw)
ind. hyp.

= λw.h(v′)(xw). (6)

Case 1. h(v′) ∈ DTΣ(C)s for some s ∈ S. Then x ∈ D and thus

λw.t(vw)
(6)
= λw.h(v′)(xw) = λw.xDTΣ(C)(h(v′))(w) = xDTΣ(C)(h(v′))

(1)
= h(vx) = h(v).

246

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

Case 2. h(v′) ∈ DTΣ(C)e for some e =
∐

i∈I ei ∈ Tpo(S). Then x = () and thus by (2),
there are i ∈ I and u ∈ DTΣ(C)ei such that h(v′) = i(u) and h(v′()) = u. Hence

λw.t(vw)
(6)
= λw.h(v′)(xw) = λw.i(u)(()w) = λw.u(w) = u = h(v′()) = h(v′x) = h(v).

Case 3. h(v′) ∈ DTΣ(C)e for some e =
∏

i∈I ei ∈ Tpo(S). Then x = i for some i ∈ I and
thus

λw.t(vw)
(6)
= λw.h(v′)(xw) = λw.πi(h(v

′))(w) = πi(h(v
′))

(2)
= h(v′i) = h(v′x) = h(v). ❏

A Σ-algebra A is behaviorally complete if unfoldA is epi.

A is observable (or cogenerated) if unfoldA is mono.

OAlgΣ denotes the full subcategory of AlgΣ whose objects are all observable Σ-algebras.

Since for all t ∈ DTΣ and t′ ∈ ⟨t⟩,

t′ = unfoldDTΣ(t′) = unfoldDTΣ(inc⟨t⟩(t
′)) = unfold ⟨t⟩(t′),

⟨t⟩ is observable.

By Lemma 12.1 (2), for all A ∈ OAlgΣ, A ∼= DTΣ|img(unfoldA).

247

9.16 State unfolding 9 Σ-ALGEBRAS

�� ��Σ-algebras

Lemma 9.15

Let K be a full subcategory of OAlgΣ and the Σ-algebra B = B(K) be defined as follows:

• For all s ∈ S, Bs = img([unfoldA]A∈K)s =
⋃

A∈K img(unfold
A)s (see equation 2.5.20)

and B(s) = DTΣ,s|Bs.
• For all d : s→ e ∈ D and t ∈ DTΣ, dB(t) = dDTΣ(t).

For all A ∈ K, there is a unique Σ-homomorphism from A to B.
In particular, B is final in OAlgΣ.

Proof. By Lemma 12.1 (2), there is a unique Σ-epimorphism h :
∐

K → B such that
incB ◦ h = [unfoldA]A∈K. Hence for all A ∈ K, h ◦ ιA : A → B is Σ-homomorphic.
Suppose that there are two Σ-homomorphisms h1, h2 : A → B. Since DTΣ is final in
AlgΣ, incB ◦ h1 = incB ◦ h2. Hence h1 = h2 because incB is mono.

In particular, since B ∈ OAlgΣ, B is final in OAlgΣ. ❏

248

9.17 Coterm grounding 9 Σ-ALGEBRAS

�� ��Σ-algebras
Example

Let Σ = Acc(X), C be a Med(X)-algebra and K be the category of observable Σ-algebras
A with A|Med(X) = C. Then B(K) agrees with the cofree (2-)pointed automaton over C
as defined in [160], section 5, and embedded in the final observable Σ-algebra. ❏

Lemma 9.16

For all Σ-algebras A with carrier A, g ∈ CA and Σ-homomorphisms h : B → A,

(g ◦ h)# = g# ◦ h.

Proof. Since root ◦ g# ◦ h = g ◦ h, the conjecture follows from the fact that (g ◦ h)# is
the only Σ-homomorphism h′ : B → DTΣ(C) with root ◦ h′ = g ◦ h. ❏

9.17 Coterm grounding

Let C ∈ I.
Σ(C) = (S,D ∪ {cols : s→ Cs | s ∈ S})

is called the grounding of Σ on C.

DTΣ(C) is a Σ(C)-algebra: For all s ∈ S and t ∈ DTΣ(C), col
DTΣ(C)
s (t) =def t(ϵ).

249

9.17 Coterm grounding 9 Σ-ALGEBRAS

�� ��Σ-algebras

Let A be a Σ(C)-algebra with carrier A. Since

colDTΣ(C) ◦ (colA)# = root ◦ (colA)# = colA,

(colA)# is compatible with col and thus Σ(C)-homomorphic. Vice versa, two Σ(C)-
homomorphisms h, h′ : A → DTΣ(C) are compatible with col. Hence

root ◦ h = colDTΣ(C) ◦ h = colA = colDTΣ(C) ◦ h′ = root ◦ h′.
Since h and h′ are Σ-homomorphic, we conclude h = h′.

Therefore, DTΣ(C) is final in AlgΣ(C) and for all A ∈ AlgΣ(C),

unfoldA = (colA)#.

By replacing the label c ∈ C of every inner node n of t ∈ DTΣ(C) with ϵ and adding
an edge to t with source n, label col and a new target node labelled with x, we obtain a
Σ(C)-isomorphism from DTΣ(C) to DTΣ(C).

Intuitively, the Σ-isomorphism DTΣ(C)|Σ ∼= DTΣ(C) is obtained by replacing each edge
e of t labelled with col with its source node and labelling this node with the target of e.

Moreover, HΣ(C) = HΣ × C (see chapter 15).

Final models of weighted types M e
C (see chapter 7) are quotients of polynomial weighted

types, i.e., types of the form (M × e)∗C (see chapter 15).

250

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

9.18 Sample final algebras

Since final algebras are unique up to isomorphism,

• DTcoNat ∼= N∞ is final in AlgcoNat (see sample algebra 9.6.2), (1)
• DTDes(X)

∼= X is final in AlgDes(X) (Xelem =def X, getElem
X =def idX),

• DTStream(X)
∼= InfSeq(X) is final in AlgStream (see sample algebra 9.6.5), (2)

• DTcoDyn(X,Y)
∼= coSeq(X, Y) is final in AlgcoDyn(X,Y) (see sample algebra 9.6.8), (3)

• DTcoNelist(X)
∼= Neseq(X) is final in AlgcoNelist(X) (see sample algebra 9.6.9), (4)

• DTinfBintree(X)
∼= InfBin(X) is final in AlginfBintree(X) (see sample algebra 9.6.11), (5)

• DTcoBintree(X)
∼= Bin(X) is final in AlgcoBintree(X) (see sample algebra 9.6.12), (6)

• DTinfTree(X)
∼= FBInfTree(X) is final in AlginfTree(X) (see sample algebra 9.6.16), (7)

• DTcoTreeω(X)
∼= FBTree(X) is final in AlgcoTreeω(X) (see sample algebra 9.6.17), (8)

• DTcoTree(X)
∼= Tree∞(X) is final in AlgcoTree(X) (see sample algebra 9.6.18), (9)

• DTAcc(X)
∼= Pow (X) is final in AlgAcc(X) (see sample algebra 9.6.20), (10)

• DTNAcc(X)
∼= NPow (X) is final in AlgNAcc(X) (see sample algebra 9.6.21), (11)

• DTDAut(X,Y)
∼= Beh(X, Y) is final in AlgDAut(X,Y) (see sample algebra 9.6.24), (12)

• DTMealy(X,Y)
∼= MBeh(X, Y) ∼= Causal(X, Y) is final in AlgMealy(X,Y)

(see sample algebra 9.6.26), (13)

251

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

• DTPAut(X,Y)
∼= PBeh(X, Y) is final in AlgPAut(X,Y) (see sample algebra 9.6.27), (14)

• DTNAut∗(X,Y)
∼= NBeh(X, Y) is final in AlgNAut∗(X,Y) (see sample algebra 9.6.28),(15)

• DTTAcc(Σ) ∼= TPow (Σ) is final in AlgTAcc(Σ) (see sample algebra 9.6.29), (16)
• DTNTAcc(Σ) ∼= NTPow (Σ) is final in AlgNTAcc(Σ) (see sample algebra 9.6.30), (17)
• DTNTAcc∗(Σ) ∼= NTPow ∗(Σ) is final in AlgNTAcc∗(Σ) (see sample algebra 9.6.31), (18)
• DTMed(X)

∼= 1 is final in AlgMed(X),
• DTNMed∗(X)

∼= NPow ∗(X) is final in AlgNMed∗(X) (see sample algebra 9.6.32). (19)

Moreover, by (10) and sinceDTDAut(X,Y)|Med(X) andDTMed(X)(Y) are Med(X)-isomorphic,
Beh(X, Y)|Med(X) is cofree over Y in AlgMed(X) (see also section 19.5).

Given a destructive signature Σ and a Σ-algebra A with carrier A, unfoldA denotes the
unique Σ-homomorphism from A not only to DTΣ, but also to isomorphic representations
of DTΣ like those listed above.

In cases (1)-(18), the respective definition of h =def unfold
A reads as follows:

252

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

1. coNat -algebra N∞

h : A → N∞

a 7→ max{n ∈ N∞ | ∀ 0 ≤ i < n : (predA + id1)
i(predA(a)) ̸= ()}

where max denotes the maximum w.r.t. the usual (well-founded) ordering < on N∞ -
with n < ω for all n ∈ N (see, e.g., [6], Examples 3.8) .

h is coNat -homomorphic:

Case 1: predA(a) = (). Then h(a) = 0. Hence

predN∞(h(a)) = predN∞(0) = () = predA(a).

Case 2: h(predA(a)) ∈ N. Then h(a) = h(predA(a)) + 1. Hence

predN∞(h(a)) = predN∞(h(predA(a)) + 1) = h(predA(a)).

Case 3: h(predA(a)) = ω. Then h(a) = ω. Hence

predN∞(h(a)) = predN∞(ω) = ω = h(predA(a)).

253

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

h is the only coNat -homomorphism from A to N∞: Let h′ : A → N∞ be coNat -
homomorphic.

Case 1: h′(a) = 0. Then

ϵ = predN∞(h′(a))
h′ hom.
= predA(a)

and thus h(a) = 0 = h′(a).

Case 2: 0 < h′(a) ∈ N. Then predN∞(h′(a)) = h′(a)− 1 ̸= (). Hence

h(predA(a))
ind. hyp.

= h′(predA(a))
h′ hom.
= predN∞(h′(a)) = h′(a)− 1

and thus h′(a) = h(predA(a)) + 1 = h(a). The induction hypothesis is based on the
well-founded ordering >> on A with a >> b ⇔def h(a) > h(b). Note that for all a ∈ A,
predA(a) ̸= () implies a >> predA(a).

Case 3: h′(a) = ω. Then

∞ = predN∞(∞) = predN∞(h′(a)))
h′ hom.
= h′(predA(a))

ind. hyp.
= h(predA(a)).

Hence h(a) = ω = h′(a).

254

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

Exercise 18 Define a Σ-algebra A with carrier A = N2
∞ such that

+∞ : N2
∞ → N∞

(m,n) 7→ if m,n ∈ N then m + n else ∞

agrees with unfoldA. ❏

Analogously to the definition of unfolding into coterms (see section 9.16), the following
definitions of h : A → (X1 → · · · → (Xn → X) . . .) are mutually inductive definitions
of the elements of the tuple

(h(a)(x1) . . . (xn))a∈A,x1∈X1,...,xn∈Xn.

2. Stream(X)-algebra InfSeq(X)

h : A → XN

a 7→ λn.if n = 0 then headA(a) else h(tailA(a))(n− 1)

255

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

3. coDyn(X, Y)-algebra coSeq(X, Y)

h : A → X∗ × Y ∪XN

a 7→

(xw, y) if splitA(a) = ι1(x, b) ∧ h(b) = (w, y) ∈ X∗ × Y

(ϵ, y) if splitA(a) = ι2(y)

λn.if n = 0 then x

else h(b)(n− 1) if splitA(a) = ι1(x, b) ∧ h(b) ∈ XN

4. coNelist(X)-algebra Neseq(X)

h : A → X+ ∪XN

a 7→

xw if splitA(a) = ι1(x, b) ∧ h(b) = w ∈ X∗

ϵ if splitA(a) = ι2()

λn.if n = 0 then x

else h(b)(n− 1) if splitA(a) = ι1(x, b) ∧ h(b) ∈ XN

256

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras
5. infBintree(X)-algebra InfBin(X)

h : A → X2∗

a 7→ λw.if w = ϵ then rootA(a)

else if head(w) = 0 then h(leftA(a))(tail(w)) else h(rightA(a))(tail(w))

6. coBintree(X)-algebra Bin(X)

h : A → ltr(2, X)

a 7→

{
x{0 → h(b), 1 → h(c)} if splitA(a) = ι1(x, b, c)

Ω if splitA(a) = ι2()

7. infTree(X)-algebra FBInfTree(X)

h : A → otr (N, X) ∩ fbtr (N, X) ∩ itr(N, X)

a 7→ rootA(a)(h(a1), . . . , h(an)) where (a1, . . . , an) = subtreesA(a)

8. coTreeω(X)-algebra FBTree(X)

h : A → otr (N, X) ∩ fbtr (N, X)

a 7→

{
rootA(a)(h(a1), . . . , h(an)) if subtreesA(a) = (a1, . . . , an)

rootA(a) if subtreesA(a) = ϵ

257

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras
9. coTree(X)-algebra Tree∞(X)

htree : Atree → otr (N, X)

a 7→

rootA(a)(t1, . . . , tn) if htrees(subtreesA(a)) = (t1, . . . , tn)

rootA(a) if htrees(subtreesA(a)) = ϵ

rootA(a){n→ tn | n ∈ N} if htrees(subtreesA(a)) = (tn)n∈N

htrees : Atrees → otr (N, X)∞

as 7→

{
htree(a) · htrees(bs) if splitA(as) = ι1(a, bs)

ϵ if splitA(as) = ι2()

10. Acc(X)-algebra Pow (X)

h : A → P(X∗)

a 7→

{
{x · w | x ∈ X, w ∈ h(δA(a)(x))} if βA(a) = 0

{x · w | x ∈ X, w ∈ h(δA(a)(x))} ∪ 1 if βA(a) = 1

For all a ∈ A, (A, a) accepts the language h(a).

Given a language L ⊆ X∗, Theorem 9.13 (5) implies that (⟨L⟩, L) is a minimal acceptor
of L. The final states of (⟨L⟩, L) are the languages of ⟨L⟩ that contain ϵ.

258

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

11. NAcc(X)-algebra NPow (X)

h : A → P(X∗)

a 7→

{
{x · w | x ∈ X, ∃ b ∈ δA(a)(x) : w ∈ h(b)} if βA(a) = 0

{x · w | x ∈ X, ∃ b ∈ δA(a)(x) : w ∈ h(b)} ∪ 1 if βA(a) = 1

For all a ∈ A, (A, a) accepts the language h(a).

Given a language L ⊆ X∗, Theorem 9.13 (5) implies that (⟨L⟩, L) is a minimal acceptor
of L. The final states of (⟨L⟩, L) are the languages of ⟨L⟩ that contain ϵ.

12. DAut(X, Y)-algebra Beh(X, Y)

h : A → Y X∗

a 7→ λw.if w = ϵ then βA(a) else h(δA(a)(head(w)))(tail(w))

For all a ∈ A, (A, a) realizes the behavior function h(a).

Given a behavior function f : X∗ → Y , Theorem 9.13 (5) implies that (⟨f⟩, f) is a
minimal realization of f .

259

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

Let Y be a semiring. Then Beh(X, Y) is a linear automaton (see sample algebra 9.6.25).
Moreover, if A is a Y -semimodule, then h is linear (see [33], Theorem 2). Consequently,
Beh(X, Y) is final in the category AlgΣ ∩ SModR.

13. Mealy(X, Y)-algebra MBeh(X, Y)

h : A → Y X+

a 7→ λw.if |w| = 1 then βA(a)(head(w)) else h(δA(a)(head(w)))(tail(w))

Mealy(X, Y)-algebra Causal(X, Y) (see chapter 2):

h : A → C(X, Y)

a 7→ λfλn.if n = 0 then βA(a)(f (0))

else h(δA(a)(f (0)))(λk.f (k + 1))(n− 1)

14. PAut(X, Y)-algebra PBeh(X, Y)

h : A → ltr(X, Y)

a 7→ βA(a){x→ h(b) | x ∈ X, δA(a)(x) = b ∈ A}

260

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras
15. NAut∗(X, Y)-algebra NBeh(X, Y)

h : A → otr (X × N, Y)

a 7→ βA(a){(x, i) → h(ai) | x ∈ X, 1 ≤ i ≤ n, δA(a)(x) = (a1, . . . , an)}

Exercise 19 Show that h is Σ-homomorphic, i.e., for all a ∈ Astate,

δNBeh(X,Y)(h(a)) = map(h) ◦ δA(a),
βNBeh(X,Y)(h(a)) = βA(a).

Let Σ = (S,C) be a finitary signature.

16. TAcc(Σ)-algebra TPow (Σ)

h : A → P(TΣ)

a 7→ {c(t1, . . . , tn) | c ∈ C, δAc (a) = (a1, . . . , an),

∀ 1 ≤ i ≤ n : ti ∈ h(ai)}

17. NTAcc(Σ)-algebra NTPow (Σ)

h : A → P(TΣ)

a 7→ {c(t1, . . . , tn) | c ∈ C, δAc (a) = {(aij)nj=1 | 1 ≤ i ≤ k}
⇒ ∀ 1 ≤ j ≤ n ∃ 1 ≤ ij ≤ k : ti ∈ h(aij)}

261

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras
18. NTAcc∗(Σ)-algebra NTPow ∗(Σ)

h : A → P(TΣ)

a 7→ {c(t1, . . . , tn) | c ∈ C, δAc (a) = [(aij)
n
j=1 | 1 ≤ i ≤ k]

⇒ ∀ 1 ≤ j ≤ n ∃ 1 ≤ ij ≤ k : ti ∈ h(aij)}

Example 9.17 (see sample algebras 9.6.7 and 9.6.20)

Define h : eo→ Pow (Z) as follows:

h(esum) = {(x1, . . . , xn) ∈ Z∗ |
∑n

i=1 xi is even},
h(osum) = {(x1, . . . , xn) ∈ Z∗ |

∑n
i=1 xi is odd}.

Transitions and atoms of eo:
esum:[final]

elab olab

osum

elab olab

262

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

(eo, esum) accepts h(esum). (1)

(eo, osum) accepts h(osum). (2)

Proof of (1) and (2). By Lemma 13.3 (2) and (3), all DAut(Z, 2)-homomorphisms from
eo to Pow (Z) agree with unfold eo : eo→ Pow (Z).

Hence (1) and (2) hold true if h is DAut(Z, 2)-homomorphic, i.e., if h satisfies the following
equations for all st ∈ {esum, osum} and x ∈ Z,

h(δeo(st)(x)) = δPow(h(st))(x), (3)
βeo(st) = βPow(h(st)). (4)

Proof of (3). Let st = esum and x be even. Then

w ∈ h(δeo(esum)(x)) ⇔ w ∈ h(esum) ⇔ x · w ∈ h(esum) ⇔ w ∈ δPow(h(esum))(x).

Let st = esum and x be odd. Then

w ∈ h(δeo(osum)(x)) ⇔ w ∈ h(esum) ⇔ x · w ∈ h(osum) ⇔ w ∈ δPow(h(osum))(x).

Let st = osum and x be even. Then

w ∈ h(δeo(osum)(x)) ⇔ w ∈ h(osum) ⇔ x · w ∈ h(osum) ⇔ w ∈ δPow(osum)(x).

263

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras
Let st = osum and x be odd. Then

w ∈ h(δeo(osum)(x)) ⇔ w ∈ h(esum) ⇔ x · w ∈ h(osum) ⇔ w ∈ δPow(h(osum))(x).

Proof of (4). Since ϵ ∈ h(esum), βeo(esum) = 1 = βPow(h(esum)). Since ϵ ̸∈ h(osum),
βeo(osum) = 0 = βPow(h(osum)). ❏

Exercise 20 Let A be the following DAut({a, b}, 2)-algebra:

Astate = {q, qa, qb, qab},
βA = λst.if st = qb then 1 else 0,

δA(q)(a) = qa, δA(q)(b) = qb, δ
A(qa)(a) = q, δA(qa)(b) = qab,

δA(qb)(a) = qab, δ
A(qb)(b) = q, δA(qab)(a) = qb, δ

A(qab)(b) = qa.

q

a b

qa qb:final

a b a b

qab

a b

264

9.18 Sample final algebras 9 Σ-ALGEBRAS

�� ��Σ-algebras

Define h : A → Pow ({a, b}) as follows

h(q) = {w ∈ {a, b}∗ | ∃ i, j ∈ N : #a(w) = 2 ∗ i ∧#b(w) = 2 ∗ j + 1},
h(qa) = {w ∈ {a, b}∗ | ∃ i, j ∈ N : #a(w) = 2 ∗ i + 1 ∧#b(w) = 2 ∗ j + 1},
h(qb) = {w ∈ {a, b}∗ | ∃ i, j ∈ N : #a(w) = 2 ∗ i ∧#b(w) = 2 ∗ j},
h(qab) = {w ∈ {a, b}∗ | ∃ i, j ∈ N : #a(w) = 2 ∗ i + 1 ∧#b(w) = 2 ∗ j}.

Prove that (A, q) accepts h(q) by showing that h is DAut({a, b}, 2)-homomorphic—
analogously to Example 9.17. ❏

265

9.19 Σ-flowcharts 9 Σ-ALGEBRAS

�� ��Σ-algebras

By Theorem 16.5, for all t ∈ TReg(X),state, ⟨t⟩ is finite. **** Hence, if combined with
coinductive proofs of state equivalence, the stepwise construction of ⟨t⟩ can be turned
into a construction of a minimal acceptor of the language of t—thus avoiding the
traditional detour from a given automaton, its determinization (powerset construction)
and subsequent minimization (see [164], section 4).

This fact allows us to build generic top-down parsers for all regular languages over X
and to extend them to parsers for context-free languages by simply incorporating the
respective grammar rules (see sample biinductive definitions 16.5.6 and 16.5.7 or [135],
chapters 15 and 16).

9.19 Σ-flowcharts

While terms denote both objects and computations, coterms denote only objects insofar
as—intuitively—the behaviour a coterm represents comprises all possible results of ex-
periments (sequences of destructor applications) with a single element of a (final) model.

266

9.19 Σ-flowcharts 9 Σ-ALGEBRAS

�� ��Σ-algebras

So what is the counterpart of terms if these are regarded as computations, but its con-
structors are replaced by destructors?

Flowcharts often come as graphs with cycles repesenting iterative and thus possibly in-
finite computations. Their use for describing iterative control structures is a topic of
chapter 17.

Flowcharts with cycles can be unfolded to infinite trees. Hence we define them like terms,
but with product and sum types and their respective ingredients exchanged:

Let Σ = (S,D) be a destructive polynomial signature and V be an S-sorted set of
“variables”.

The set CTΣ(V) of Σ-flowcharts over V is the greatest Tp(S)-sorted set M of labelled
trees over (I, I ∪ F ∪ V) such that the following conditions hold true:

• For all s ∈ S and t ∈ Ms, t ∈ Vs or there are d : s →
∐

i∈I ei ∈ D and u ∈ Xi∈IMei

such that t = d(u), (1)
• for all e =

∐
i∈I

∏
j∈J eij ∈ Tpo(S) and t ∈Me there are i ∈ I and u ∈ Xj∈JMeij such

that t = i(u). (2)

267

9.19 Σ-flowcharts 9 Σ-ALGEBRAS

�� ��Σ-algebras

The subset TΣ(V) of CTΣ(V) of well-founded Σ-flowcharts over V is the least Tp(S)-
sorted set M of well-founded labelled trees over (I, I ∪ F ∪ V) such that the following
conditions hold true:

• For all s ∈ S, Vs ⊆Ms, (3)
• for all d : s→

∐
i∈I ei ∈ D and t ∈ Xi∈IMei, d(t) ∈Ms, (4)

• for all e =
∏

i∈I
∐

j∈J eij ∈ Tpo(S), i ∈ I and t ∈ Xj∈JMeij , i(t) ∈Me. (5)

(1/3) (1/4) (2/5)

268

9.19 Σ-flowcharts 9 Σ-ALGEBRAS

�� ��Σ-algebras

Intuitively, Σ-flowcharts are trees whose inner nodes are labelled with destructors or
(indices of) projections, whose leaves are labelled with variables and whose edges are
labelled with (indices of) injections. Hence they are dual to Σ-terms insofar as sums and
products are exchanged here.

Remember that every leaf of a Σ-term is labelled with an element of I or a variable
(regarded as an entrance to the term).

In contrast to that, all leaves of a Σ-flowchart are labelled with variables and regarded
as exits from the flowchart.

Let O be a set of “output variables”. Given a flowchart substitution, i.e., an S-sorted
function g : V → TΣ(O), the flowchart instantiation g∗ : TΣ(V) → TΣ(O) is the
Tpo(S)-sorted function that is defined inductively as follows:

• For all I ⊆ I, g∗I = idI .
• For all s ∈ S and x ∈ Vs, g∗s(x) = gs(x).
• For all d : s→ e ∈ D and t ∈ TΣ(V)e,

g∗e(d(t)) = d(g∗s(t)). (1)

269

9.19 Σ-flowcharts 9 Σ-ALGEBRAS

�� ��Σ-algebras

• For all e = (ei)i∈I ∈ Tpo(S)I and t = (ti)i∈I ∈ Xi∈ITΣ(V)ei,

g∗e(t) = (g∗ei(ti))i∈I . (2)

• For all e = (ei)i∈I ∈ Tpo(S)I , i ∈ I and t ∈ TΣ(V)ei,

g∗e(i(t)) = i(g∗ei(t)). (3)

Theorem 9.18

Let V ∈ SetS. Given an S-sorted function g : V → TΣ(O), g∗ is the only Tpo(S)-sorted
function from TΣ(V) to TΣ(O) that satisfies (1)-(4).

V
incV ≻TΣ(V)

(4)

TΣ(O)

g∗

≺
g

≻

Proof. Analogously to Theorem 9.7. ❏

270

9.19 Σ-flowcharts 9 Σ-ALGEBRAS

�� ��Σ-algebras

Let A be a Σ-algebra with carrier A, V × A =def (Vs × As)s∈S and AV be the Tpo(S)-
sorted set that is defined as follows:

• For all I ⊆ I, AI = I .
• For all s ∈ S, AV,s = As → V × A.
• For all e =

∐
i∈I ei ∈ Tpo(S), AV,e =

∐
i∈I Aei → V × A.

• For all e =
∏

i∈I ei ∈ Tpo(S), AV,e =
∏

i∈I Aei → V × A.

An S-sorted function from V to AO is called a flowchart valuation of V in AO.

From now on, AV
O denotes the set of flowchart valuations of V in AO.

Given g ∈ AV
O, the flowchart extension g◦ : TΣ(V) → AV

O, also called flowchart
traversal, is the Tpo(S)-sorted function that is defined inductively as follows:

• For all I ⊆ I, g◦I = idI .
• For all x : s ∈ V and a ∈ As, g◦(x) = g(x).
• For all d : s→

∐
i∈I ei ∈ D and t = (ti)i∈I ∈ Xi∈I ∈ TΣ(V)ei,

g◦(d(t)) = [g◦(ti)]i∈I ◦ dA.

271

9.19 Σ-flowcharts 9 Σ-ALGEBRAS

�� ��Σ-algebras

• For all e :
∏

i∈I
∐

j∈J eij ∈ Tpo(S), i ∈ I and t = (tj)j∈J ∈ Xj∈JTΣ(V)eij ,

g◦(i(t)) = [g◦(tj)]j∈J ◦ πi.

The flowchart valuation ηV : V → AV is defined as follows:

For all x : s ∈ V and a ∈ As, ηV (x)(a) = (x, a).

Given e ∈ Tpo(S) and t, t′ ∈ TΣ(V)e, A satisfies the (flowchart) equation t = t′ in
Σ-algebra A with carrier A, written as A |= t = t′, if η◦V (t) = η◦V (t

′).

Lemma 9.19 (Substitutionslemma)

Let Σ, V, O,A, A be as above. For all flowchart substitutions g : V → TΣ(O) and
flowchart valuations h : O → AO,

(h◦ ◦ g)◦ = h◦ ◦ g∗.

Proof. Let t ∈ TΣ(V). We show

(h◦ ◦ g)◦(t) = h◦(g∗(t)) (1)

by induction on t.

272

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�� ��Σ-algebras

Case 1. t ∈ V . Then (h◦ ◦ g)◦(t) = (h◦ ◦ g)(t) = h◦(g(t)) = h◦(g∗(t)).

Case 2. t = d(u) for some d : s→ e ∈ D and u ∈ TΣ(V). Then

(h◦ ◦ g)◦(t) = (h◦ ◦ g)◦(u) ◦ dA ind. hyp.
= h◦(g∗(u)) ◦ dA = h◦(d(g∗(u)))

= h◦(g∗(d(u))) = h◦(g∗(t)).

Case 3. t = i(u) for some i ∈ I , I ∈ I, and u = (tj)j∈J ∈ Xj∈JTΣ(V)eij . Then

(h◦ ◦ g)◦(t) = [(h◦ ◦ g)◦(tj)]j∈J ◦ πi
ind. hyp.

= [h◦(g∗(tj))]j∈J ◦ πi
= h◦(i((g∗(tj))j∈J)) = h◦(i(g∗(u))) = h◦(g∗(i(u))) = h◦(g∗(t)).

❏

9.20 From flowcharts to terms

Destructive polynomial signatures Σ = (S, F) generalize signatures for comodels and
effectful programming (see, e.g., [144, 139, 27]). They have constructive counterparts
that admit interpretations as state transitions.

273

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�� ��Σ-algebras
To be more precise, let

S = S ∪ {I | I ⊆ I} ∪ {e | e =
∏

i∈I
∐

j∈J eij ∈ Tpo(S)},
F = {d :

∏
i∈I ei → s | d : s→

∐
i∈I ei ∈ D} ∪

{i :
∏

j∈J eij → e | e =
∏

i∈I
∐

j∈J eij ∈ Tpo(S), i ∈ I}.

Hence Σ = (S, F) is constructive. A Σ-algebra A induces the Σ-algebra AV that is
defined as follows:

Let A be the carrier of A and AV be the Tpo(S)-sorted set defined in section 9.19.

• For all s ∈ S, AV (s) = AV,s.
• For all s ∈ S \ S, AV (s) = AV,s.
• For all d : s→

∐
i∈I ei ∈ D and f = (fi)i∈I ∈ Xi∈IAV,ei,

d
AV (f) = [fi]i∈I ◦ dA : AV,s.

• For all e =
∏

i∈I
∐

j∈J eij ∈ Tpo(S), i ∈ I and f = (fj)j∈J ∈ Xj∈JAV,eij ,

i
AV (f) = [fj]j∈J ◦ πi : AV,e.

Hence dAV = liftV×A(d
A) and iAV = liftV×A(πi) (see section 2.4).

274

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�� ��Σ-algebras

Given a Σ-flowchart t, the Σ-term t is obtained from t by replacing every node label
d ∈ D with d.

If t : s ∈ TΣ(V) for some s ∈ S, then for all subflowcharts u : e of t, e ∈ S.

Example

Here are a Σ-flowchart and its corresponding Σ-term, extended (in ovals) by the source
and target types of the involved destructors and constructors, respectively.

f

p

g

A

AA

CB

f

p

g

x y x y

A B+C

C B+CB B+C

A B+C A B+C

275

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�� ��Σ-algebras

Let φ : A → 2 and p : A → A + A be defined as follows: p(a) = ι1(a) ⇔ φ(a) = 1.
Moreover, let f : A→ B, g : A→ C and V = {x, y}.

Then for all h1, h2 : A→ B + C, h3 : B → B + C, h4 : C → B + C and a ∈ A,

p(h1, h2)(a) = ([h1, h2] ◦ p)(a) = [h1, h2](p(a)) =

{
h1(a) if p(a) = ι1(a)

h1(a) if p(a) = ι2(a)

}

=

{
h1(a) if φ(a) = 1

h1(a) if φ(a) = 0

}
,

f (h3)(a) = (h3 ◦ f)(a) = h3(f (a)), g(h4)(a) = (h4 ◦ g)(a) = h4(g(a)). ❏

More interesting examples involve cycles, expressed in terms of flowchart equations (see
section 17.5).

AV yields a monad

ηV : V → AV is an instance of the unit η : IdSetS → T of the SetS-sorted version

M = (T : SetS → SetS, η, µ)

of the state monad defined in section 24.1:

276

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�� ��Σ-algebras

Given an S-sorted set A, T maps a S-sorted set V to the S-sorted set AV (see above)
and an S-sorted function f : V → V ′ to

T (f) = λg.λ(x, a).(f (x), a) ◦ g : T (V) → T (V ′)

(see section 5.1).

For obtaining Lemma 9.20 below, we make use of the extension operator _∗ of the
Kleisli triple induced by M (see chapter 24).

More precisely, we need the instance _+ : (V → TV) → (TV → TV) that satisfies the
equation

f+ ◦ ηV = f (1)

for all f : V → TV and is defined as follows (analogously to the state functor; see section
24.1): For all e ∈ Tpo(S),

f+e : AV,e → AV,e

g 7→ λa.f (π1(ga))(π2(ga)).

Indeed, (1) holds true:

277

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�� ��Σ-algebras

For all x : s ∈ V and a ∈ As,

(f+ ◦ ηV)(x)(a) = f+(ηV (x))(a) = f (π1(ηV (x)(a)))(π2(ηV (x)(a))) = f (x)(a).

In section 9.19, S-sorted functions f : V → TV were called flowchart valuations.

By (1), their term extensions f ∗ : TΣ(V) → AV can be reduced to η∗V—provided that
f+ : AV → AV is Σ-homomorphic:

f ∗
(1)
= (f+ ◦ ηV)∗

Lemma 9.9
= f+ ◦ η∗V . (2)

Lemma 9.21

For all flowchart valuations f : V → AV , f+ : AV → AV is Σ-homomorphic, i.e., for all
d : s→

∐
i∈I ei ∈ D and g = (gi)i∈I ∈ Xi∈IAV,ei,

d
AV (f+ei (gi))i∈I = f+s (d

AV (g)), (3)

and for all e =
∏

i∈I
∐

j∈J eij ∈ Tpo(S), i ∈ I and g = (gj)j∈J ∈ Xj∈JAV,eij ,

i
AV (f+eij(gj))j∈J = f+e (i

AV (g)). (4)

278

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�� ��Σ-algebras

Proof. (3): Let a ∈ As, k ∈ I , b ∈ Aek and x ∈ V such that dA(a) = ιk(b). Then

d
AV (f+ei (gi))i∈I(a) = [f+ei (gi)]i∈I(d

A(a)) = [f+ei (gi)]i∈I(ιk(b)) = f+ek(gk)(b)

= f (π1(gk(b)))(π2(gk(b))) = f (π1([gi]i∈I(ιk(b))))(π2([gi]i∈I(ιk(b))))

= f (π1([gi]i∈I(d
A(a))))(π2([gi]i∈I(d

A(a)))) = f (π1(([gi]i∈I ◦ dA)(a)))(π2(([gi]i∈I ◦ dA)(a))) = f+s ([gi]i∈I ◦ dA)(a)
= f+s (d

AV (g))(a).

(4): Let a ∈ Ae, k ∈ J , b ∈ Aeik and x ∈ V such that πAi (a) = ιk(b). Then

i
AV (f+eij(gj))j∈J(a) = [f+eij(gj)]j∈J(πi(a)) = [f+eij(gij)]j∈J(ιk(b)) = f+eik(gk)(b)

= f (π1(gk(b)))(π2(gk(b))) = f (π1([gj]j∈J(ιk(b))))(π2([gj]j∈J(ιk(b))))

= f (π1([gj]j∈J(πi(a))))(π2([gj]j∈J(πi(a))))

= f (π1(([gj]j∈J ◦ πi)(a)))(π2(([gj]j∈J ◦ πi)(a))) = f+e ([gj]j∈J ◦ πi)(a)
= f+e (π

AV
i (g))(a). ❏

279

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�� ��Σ-algebras

Theorem 9.22 (Destructive signatures and their constructive counterparts satisfy the
same equations)

Let Σ = (S, F) be a destructive signature and Σ, A and AV be as above.

For all t ∈ TΣ(V), η∗V (t) = η◦V (t). (5)

For all s ∈ S and t, t′ ∈ TΣ(V)s, A |= t = t′ iff AV |= t = t′. (6)

Proof of (5) by induction on t.

For all x : s ∈ V , η∗V (x) = ηV (x) = η◦V (x).

For all d : s→
∐

i∈I ei ∈ D and t = (ti)i∈I ∈ Xi∈ITΣ(V)ei,

η∗V (d(t)) = η∗V (d(t)) = d
AV (η∗V (t)) = d

AV (η∗V (ti))i∈I = [η∗V (ti)]i∈I ◦ dA
ind. hyp.

= [η◦V (ti)]i∈I ◦ dA = η◦V (d(t)).

For all e :
∏

i∈I
∐

j∈J eij ∈ Tpo(S), i ∈ I and t = (tj)j∈J ∈ Xj∈JTΣ(V)eij ,

η∗V (i(t)) = η∗V (i(t)) = i
AV (η∗V (t)) = i

AV (η∗V (tj))j∈J = [η∗V (tj)]j∈J ◦ πi
ind. hyp.

= [η◦V (tj)]j∈J ◦ πi = η◦V (i(t)).

280

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�� ��Σ-algebras
Proof of (6).

Let s ∈ S, t, t′ ∈ TΣ(V)s and f : V → AV be an S-sorted function such that A satisfies
t = t′, i.e., η◦V (t) = η◦V (t

′). Then

f ∗(t)
(2)
= f+(η∗V (t))

(5)
= f+(η◦V (t)) = f+(η◦V (t

′))
(5)
= f+(η∗V (t

′))
(2)
= f ∗(t′).

Conversely, suppose that AV satisfies t = t′. Then for all S-sorted functions f : V → AV ,
f ∗(t) = f ∗(t′), in particular, η◦V (t) = η∗V (t) = η∗V (t

′) = η◦V (t
′). ❏

281

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�
�

�
10 Σ-formulas

Let Σ = (S, F) be a signature that includes KripkeSig (see section 8.3).

This condition allows us to specify almost any kind of Kripke-like structure and express
as Σ-formulas not only higher-order functions, λ-expressions, etc., but also logic oper-
ators known from λProlog, CTL (computation tree logic), the modal µ-calculus, query
languages like SQL, relational algebra, description logic or XPath (see, e.g., [109, 114, 58,
163, 104]) and dynamic logic, which admits the verification of imperative programs with
iteration and has been reformulated coalgebraically in [113], chapter 7.

The integration of these approaches reveals many semantical overlappings. For example,
many operators used in one approach are simply compositions of operators used in other
approaches. E.g., basic CTL operators are special cases of the quantifiers used in de-
scription logic, while the “advanced” CTL operators can be reduced to fixpoint operators
known from the modal µ-calculus.

While every formula of CTL or the modal µ-calculus denotes a set of states, descrip-
tion logic, XPath and other languages for querying tree-like documents provide formulas
representing binary relations between states.

282

https://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog
https://de.wikipedia.org/wiki/Computation_Tree_Logic
https://en.wikipedia.org/wiki/Modal_%CE%BC-calculus
https://de.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Relational_algebra
https://en.wikipedia.org/wiki/Description_logic
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/Dynamic_logic_(modal_logic)

9.20 From flowcharts to terms 9 Σ-ALGEBRAS

�� ��Σ-formulas

The tables of a relational database can also be regarded as states. Here each state
unfolds to a set of further states, which are names for the rows of the table. A row itself
is modelled as a partial function that maps labels representing attributes to other states
representing attribute values.

Σ-formulas are built upon λΣ-terms (see below), which admit the highly structured spec-
ification of, e.g., states, labels, atoms as well as transition and valuation functions (see
above) by subtle case distinctions based on pattern matching. Morever, further operators
on sets of or relations between states as well as on relational databases could be added.
Even temporal logics that deal with streams or infinite trees of states could be integrated,
perhaps by equipping Σ with suitable (polynomial or weighted) destructors.

In contrast to Σ-arrows (see chapter 8), Σ-formulas may contain variables of any type
over S. Whereas fixpoint operators occurring in Σ-formulas always bind a single variable
of a powerset type, λ-abstraction occurring in Σ-formulas may bind several variables of
any type of T (S). Of course, classical (many-sorted) first-order logic with single-variable
quantification is also included.

Σ-terms and Σ-flowcharts also contain variables. Σ-terms have polynomial types and
are composed of constructors and thus always denote (parametrized) objects of initial
algebras (see chapter 9).

283

10.1 Syntax 10 Σ-FORMULAS

�� ��Σ-formulas

Hence a Σ-term is both a particular Σ-formula φ and the result of interpreting φ in an
initial term algebra. Σ-flowcharts represent functions into sum types, which may also be
specified as Σ-arrows or (variable-free) Σ-formulas. Variables of flowcharts denote exits
for output, not place-holders for input as Σ-terms and Σ-formulas do.

Finally, Σ-coterms denote behaviours, which are—like Σ-terms—particular object repre-
sentations. But—in contrast to Σ-terms—they have no functional interpretation.

10.1 Syntax

Let V be a T (S)-sorted set of variables,

trace = (state + label × state)∗, row = (state + 1)label, table = P(row).

The T (S)-sorted set ΛΣ(V) of λΣ-terms over V is inductively defined as follows:

Let e, e′ ∈ T (S).

• ArrΣ ∪ TΣ(V) ⊆ ΛΣ(V). (Σ-arrows and well-founded Σ-terms)

284

10.1 Syntax 10 Σ-FORMULAS

�� ��Σ-formulas

• For all I ⊆ I and (fi : ei → e)i∈I ∈ ΛΣ(V)I , (sum extension)

[fi]i∈I :
∐
i∈I

ei → e ∈ ΛΣ(V).

• For all I ⊆ I and i ∈ I , ιi : ei →
∐

i∈I ∈ ΛΣ(V). (injection)
• true : P(e) ∈ ΛΣ(V).
• ¬ : P(e) → P(e) ∈ ΛΣ(V). (complement)
• ∧ : P(e)× P(e) → P(e) ∈ ΛΣ(V). (intersection)
• ¬ : 2 → 2 ∈ ΛΣ(V). (negation)
• ∧ : 2× 2 → 2 ∈ ΛΣ(V). (conjunction)
• ite : 2× e× e→ e ∈ ΛΣ(V). (conditional)
• (=) : P(e× e) ∈ ΛΣ(V). (equality)
• For all I ⊆ I and f :

∏
i∈I ei → e, t = (ti : ei)i∈I ∈ ΛΣ(V)I , f (t) : e ∈ ΛΣ(V).

(application)
• For all x : e ∈ V and t : e′ ∈ ΛΣ(V), (λ-abstraction)

λx.t : e→ e′ ∈ ΛΣ(V).

• single : e→ P(e) ∈ ΛΣ(V). (singleton)

285

10.1 Syntax 10 Σ-FORMULAS

�� ��Σ-formulas

• card : P(e) → N ∪ {ω} ∈ ΛΣ(V) (cardinality)
• map : (e→ e′) → P(e) → P(e′) ∈ ΛΣ(V).
• filter : (e→ 2) → P(e) → P(e) ∈ ΛΣ(V). (selection)
• join,meet : P(P(e)) → P(e) ∈ ΛΣ(V).
• foldl : (e→ e′ → e) → e→ e′∗ → e ∈ ΛΣ(V). (list folding)
• foldNDS : (e→ P(e)) → (e→ e′ → P(e)) → e→ e′∗ → P(e) ∈ ΛΣ(V).

(nondeterministic list folding including silent transitions)
• χ : P(e) → e→ 2 ∈ ΛΣ(V). (characteristic function)
• rel2fun : P(e× e′) → e→ P(e′) ∈ ΛΣ(V). (relation-to-function transformer)
• inv : P(e× e′) → P(e′ × e) ∈ ΛΣ(V). (inverse relation)
• π1 : P(e× e′) → P(e), π2 : P(e× e′) → P(e′) ∈ ΛΣ(V). (set projection)
• (∗) : P(e)× P(e′) → P(e× e′) ∈ ΛΣ(V). (Cartesian product)
• (/), ∀ : P(e× e′) → P(e′) → P(e) ∈ ΛΣ(V).

(relational division, universal projection)
• (;) : P(e× e′)× P(e′ × e′′) → P(e× e′′) ∈ ΛΣ(V). (relational composition)
• For all x : P(e) ∈ V and φ : P(e) ∈ ΛΣ(V), µx.φ : P(e) ∈ ΛΣ(V). (µ-abstraction)
• For all x : e ∈ V and φ : e, ψ : e′ ∈ ΛΣ(V), ψ[φ/x] ∈ ΛΣ(V). (substitution)

286

10.1 Syntax 10 Σ-FORMULAS

�� ��Σ-formulas

• ∼: P(state2) ∈ ΛΣ(V). (behavioral equivalence)
• labels : P(label) ∈ ΛΣ(V).
• preds : state→ P(state) ∈ ΛΣ(V),
predsL : state→ label → P(state) ∈ ΛΣ(V). (predecessors)

• out : state→ P(atom) ∈ ΛΣ(V),
outL : state× label → P(atom) ∈ ΛΣ(V), (output)

• child : P(label) → P(state2) ∈ ΛΣ(V).
• traces : state→ state→ P(trace) ∈ ΛΣ(V),
• transL2row : state→ row ∈ ΛΣ(V).
• + : row × row → row ∈ ΛΣ(V).
• projectrow : P(label) → row → row ∈ ΛΣ(V).
• selectrow : (label → state) → row → 2 ∈ ΛΣ(V).
• labs : table→ P(label) ∈ ΛΣ(V).
• ∧, ∗, / : table× table→ table ∈ ΛΣ(V).
• njoin : table→ table→ table ∈ ΛΣ(V).
• fundeps : table→ P(label × P(label)) ∈ ΛΣ(V). (functional dependencies)

287

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

A λΣ-term t over V is flat if there are f :
∏

i∈I ei →
∏

j∈J e
′
j ∈ F and x = (xi)i∈I ∈ V I

such that t = f (x) or t = πj(f (x)) for some j ∈ J .

The set FoΣ(V) of (first-order) Σ-formulas over V is inductively defined as follows:

• True ∈ FoΣ(V).
• For all p : P(e), t : e ∈ ΛΣ(V), p(t) ∈ FoΣ(V). (Σ-atoms)
• In particular, for all t, t′ : e ∈ ΛΣ(V), t = t′ ∈ FoΣ(V). (Σ-equations)
• For all φ ∈ FoΣ(V), ¬φ ∈ FoΣ(V). (negation)
• For all φ, ψ ∈ FoΣ(V), φ ∧ ψ ∈ FoΣ(V). (conjunction)
• For all x ∈ V and φ ∈ FoΣ(V), ∀xφ ∈ FoΣ(V). (universal quantification)

10.2 Derived terms and formulas

Type instances

For all F = {fs : es → e′s | s ∈ S} ⊆ ΛΣ(V) and e ∈ Tpo(S),

Fe : e[es/s | s ∈ S] → e[e′s/s | s ∈ S]

288

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas
is inductively defined as follows:

For all s ∈ S, I ⊆ I and (ei)i∈I ∈ Tpo(S)I , e ∈ Tpo(S), commutative monoids (M,+, 0)

and C ⊆M ,

Fs = fs, F1 = id1, F∏
i∈I ei =

∏
i∈I Fei, F∐

i∈I ei =
∐

i∈I Fei,

F(M×e)C = (idM ×Fe)C.

Further derived λΣ-terms

• For all e ∈ T (S), ide = λx.x : e→ e. (identities)
• For all n > 1, x = (x1 : e1, . . . , xn : en) ∈ V n and t : e ∈ ΛΣ(V), (uncurrying)

λ(x1, . . . , xn).t = λx1 . . . λxn.t : e1 × · · · × en → e.

• $ = λ(f, x).λx.f (x) : (e→ e′)× e→ e′. (application)
• false = ¬true : P(e).
• (̸=) = ¬ ◦ (=) : e× e→ 2. (inequality)
• sat = χ−1 : (e→ 2) → P(e). (satisfying elements)

289

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

• For all e′ ∈ {2,P(e)},

∨ = λ(x, y).¬(¬x ∧ ¬y) : e′ × e′ → e′,

⇒ = λ(x, y).¬x ∨ y : e′ × e′ → e′,

⊖ = λ(x, y).x ∧ ¬y : e′ × e′ → e′,

⇐ = λ(x, y).y ⇒ x : e′ × e′ → e′,

⇔ = λ(x, y).(x⇒ y) ∧ (x⇐ y) : e′ × e′ → e′,

⊕ = λ(x, y).(x⊖ y) ∨ (y ⊖ x) : e′ × e′ → e′.

• ◦ = λ(f, g).λx.g(f (x)) : (e→ e′)× (e′ → e′′) → e→ e′′. (composition)
• For all I ⊆ I, i ∈ I and (fi : e→ ei)i∈I ∈ ΛΣ(V)I , (product extension)

⟨fi⟩i∈I = λx.(ti(x))i∈I : e→
∏
i∈I

ei.

• For all I ⊆ I and i ∈ I , πi = λ(xi)i∈I .xi :
∏

i∈I → ei. (functional projection)
• For all I ⊆ I, i ∈ I and (fi : ei → e′i)i∈I ∈ ΛΣ(V)I , (product, sum)∏

i∈I fi = ⟨fi ◦ πi⟩i∈I :
∏

i∈I ei →
∏

i∈I e
′
i,∐

i∈I fi = [ιi ◦ fi]i∈I :
∐

i∈I ei →
∐

i∈I e
′
i.

290

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

• For all f : e→ P(e′), g : e′ → P(e′′), φ : P(e) ∈ ΛΣ(V), (monadic operators)

joinMap(f) = join ◦map(f) : P(e) → P(e′),

g <=< f = joinMap(g) ◦ f : e→ P(e′′),

φ >>= f = joinMap(f)(φ) : P(e′).

• For all f : e→ e′ → e′′ ∈ ΛΣ(V), (flip)

flip(f) = λy.λx.f (x)(y) : e′ → e→ e′′.

• For all n > 1 and f :
∏n

i=1 ei → e ∈ ΛΣ(V), (currying)

curry(f) = λx1 . . . λxn.f (x1, . . . , xn) : e1 → · · · → en → e.

• For all n ∈ N, t : e ∈ ΛΣ(V) and (ti : ei)
n
i=1 ∈ ΛΣ(V)n,

(t where x1 = t1; . . . ;xn = tn) = (λ(x1, . . . , xn).t)(t1, . . . , tn) : e.

• For all r : P(e× e′), ψ : P(e′) ∈ ΛΣ(V), ∃(r)(ψ) = ¬∀(r)(¬ψ) : P(e).
(existential projection)

291

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

• For all φ : P(state), st : state ∈ ΛΣ(V) and x : P(state), z : label ∈ V ,

trans∗(φ) = µx.(φ ∨ joinMap(trans)(x)) : P(state),

transL∗(φ) = µx.(φ ∨ joinMap(λz.joinMap(transL)(x))(labels))

: P(state),

transAll(φ) = trans∗(φ) ∨ transL∗(φ) : P(state),

unfoldNDS (st) = out <=< foldNDS (trans∗)(transL)(st)

: label∗ → P(atom),

unfoldND(st) = out <=< foldNDS (single)(transL)(st)

: label∗ → P(atom),

unfoldD(st) = out ◦ foldl(transL)(st) : label∗ → P(atom)

: label∗ → P(atom).

unfoldD(st) can be interpreted A ∈ AlgΣ only if for all a ∈ Astate and lab ∈ Alabel,
|transLA(a)(lab)| = 1.

• For all ts : P(label) ∈ ΛΣ(V), sibling(ts) = child(ts); parent(ts) : P(state2).
• For all φ : P(e), ψ : P(e′), r : P(e× e′) ∈ ΛΣ(V),

φ << r = φ ∧ π1r : P(e) and r >> ψ = π2r ∧ ψ : P(e′).

292

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

• parent = inv ◦ child : P(label) → P(state2).

• For all ts : P(label), t : label ∈ ΛΣ(V),

[ts] = ∀ child(ts) : P(state) → P(state),

⟨ts⟩ = ∃ child(ts) : P(state) → P(state),

[t] = [single(t)] : P(state) → P(state),

⟨t⟩ = ⟨single(t)⟩ : P(state) → P(state),

2 = [∅] : P(state) → P(state),

3 = ⟨∅⟩ : P(state) → P(state).

• For all r : P(e2) ∈ ΛΣ(V) and x : P(e2) ∈ V , (transitive closure)

tcl(r) = µx.(r ∨ (r;x)) : P(e2).

• For all ts : P(label) ∈ ΛΣ(V),

descendant(ts) = tcl(child(ts)) : P(state2),

ancestor (ts) = tcl(parent(ts)) : P(state2).

• For all ts : P(label) ∈ ΛΣ(V),

related(ts) = ancestor (ts); sibling(ts); descendant(ts) : P(state2).

293

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

• For all x : P(e) ∈ V and negation-free φ : P(e) ∈ ΛΣ(V), (ν-abstraction)

νx.φ = ¬µx.¬φ[¬x/x] : P(e).

• For all φ, ψ : P(state) ∈ ΛΣ(V) and some x : P(state) ∈ V ,

EF (φ) = µx.(φ ∨3x)

= ∃(descendant(∅))(φ) : P(state), (φ finally on some child-path)
AG(φ) = νx.(φ ∧2x)

= ∀(descendant(∅))(φ) : P(state), (φ generally on all child-paths)
EG(φ) = νx.(φ ∧ (3x ∨2false)) : P(state), (φ generally on some child-path)
AF (φ) = µx.(φ ∨ (2x ∧3True)) : P(state), (φ finally on all child-paths)
φEUψ = µx.(ψ ∨ (φ ∧3x)) : P(state), (φ until ψ on some child-path)
φAUψ = µx.(ψ ∨ (φ ∧2x)) : P(state). (φ until ψ on all child-paths)

• trans2tab = map(transL2row) ◦ trans : state→ table,

project = map ◦ projectrow : table→ table,

select = filter ◦ selectrow : table→ table.

294

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

• For all f : label → state ∈ ΛΣ(V) and ϑ, ϑ′ : table ∈ ΛΣ(V),

ϑ ∨ ϑ′ = ¬(¬ϑ ∧ ¬ϑ′),
ϑ− ϑ′ = ϑ ∧ ¬ϑ′,

tjoin(f)(ϑ) = select(f) ◦ njoin(ϑ) : table→ table.

Derived Σ-formulas

• False = ¬True.
• For all φ, ψ ∈ FoΣ(V),

φ ∨ ψ = ¬(¬φ ∧ ¬ψ),
φ⇒ ψ = ¬φ ∨ ψ,
φ⊖ ψ = φ ∧ ¬ψ,
φ⇔ ψ = (φ⇒ ψ) ∧ (φ⇒ ψ),

φ⊕ ψ = (φ⊖ ψ) ∨ (ψ ⊖ φ).

• For all I ∈ I, x = (xi : e : i)i∈I ∈ V I and φ ∈ FoΣ(V), ∃xφ = ¬∀x¬φ.
(existential quantification)

295

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

Every Σ-formula or λΣ-term t yields a labelled tree over (N, Op) (see section 2.9) where
Op is the set of the constants, function symbols and variables t is composed of. Higher-
order terms t(t1) . . . (tn) are turned into their first-order counterparts (. . . (t$t1)$. . .)$tn
(with binary application operator $), and λ(x1, . . . , xn), µx and νx are regarded as unary
operators.

w ∈ N∗ is called an occurrence of x ∈ Op in φ ∈ ΛΣ(V) ∪ FoΣ(V) if φ(w) = x.
occ(x, φ) denotes the set of occurrences of x in φ. x occurs in φ if occ(x, φ) is not
empty.

var(φ) denotes the set of x ∈ V such that x occurs in φ.

An occurrence w of x is bound in φ if φ(v){λx,∀x, ∃x} for some prefix v of w.
bound(x, φ) denotes the set of bound occurrences of x in φ.

x ∈ V is a free variable of φ if occ(x, φ) ̸= bound(x, φ). free(φ) denotes the set of free
variables of φ. φ is closed if free(φ) is empty. φ is monadic if free(φ) is a singleton.

A Σ-substitution is a T (S)-sorted function σ : V → ΛΣ(V).

σ is finite if the support of σ, supp(σ) = {x ∈ V | σ(x) ̸= x}, is finite.

If σ is finite, it is also written as {σ(x)/x | x ∈ supp(σ)}.

296

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

Given t : e ∈ TΣ(V) (see section 9.3) and a Σ-substitution σ : V → ΛΣ(V), then the
σ-instance of t, tσ : e ∈ ΛΣ(V), is defined inductively as follows:

• For all x ∈ V , xσ = σ(x),
• for all c :

∏
i∈I ei → s ∈ F and t ∈ Xi∈ITΣ(V)ei, c(t)σ = c(tσ),

• for all e =
∐

i∈I
∏

j∈J eij ∈ Ts(S), i ∈ I and t ∈ Xj∈JTΣ(V)eij , i(t)σ = ιi(tσ).

The negation normal form of a λΣ-term t : e, nf (t) : e, is obtained by applying to t
the following equations from left to right as often as possible:

¬true = false,

¬false = true,

¬(t = t′) = t ̸= t′,

¬(t ̸= t′) = t = t′,

297

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

¬¬φ = φ,

¬(t ∧ t′) = ¬t ∨ ¬t′,
¬(t ∨ t′) = ¬t ∧ ¬t′,
¬(t⇒ t′) = t ∧ ¬t′,
¬(t⊖ t′) = ¬t ∨ t′,
¬(t⇐ t′) = t ∨ ¬t′,
¬(t⇔ t′) = (t ∧ ¬t′) ∨ (¬t ∧ t′),
¬(t⊕ t′) = (t ∧ t′) ∨ (t ∧ t′),
¬∀(r)(t) = ∃(r)(¬t),
¬∃(r)(t) = ∀(r)(¬t),

¬νx.t = µx.¬t[¬x/x],
¬µx.t = νx.¬t[¬x/x].

t ∈ ΛΣ(V) is negation-free if nf (t) does not contain negation symbols.

The negation normal form of a Σ-formula φ, nf (φ), is obtained by applying to φ the
following equations from left to right as often as possible:

298

10.2 Derived terms and formulas 10 Σ-FORMULAS

�� ��Σ-formulas

¬True = False,

¬False = True,

¬¬φ = φ,

¬(φ ∧ ψ) = ¬φ ∨ ¬ψ,
¬(φ ∨ ψ) = ¬φ ∧ ¬ψ,
¬(φ⇒ ψ) = φ ∧ ¬ψ,
¬(φ⊖ ψ) = ¬φ ∨ ψ,
¬(φ⇐ ψ) = φ ∨ ¬ψ,
¬(φ⇔ ψ) = (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ),
¬(φ⊕ ψ) = (φ ∧ ψ) ∨ (φ ∧ ψ),

¬∀xφ = ∃x¬φ,
¬∃xφ = ∀x¬φ.

φ ∈ FoΣ(V) is negation-free up to F if for all subformulas ¬ψ of φ, ψ is an (S, F)-
formula.

Let φ ∈ ΛΣ(V)∪FoΣ(V). In terms of the above tree representation, w ∈ def (nf (φ)) has
positive (negative) polarity if the number of prefixes v of w with φ(v) = ¬ is even
(odd).

299

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

10.3 Semantics

Let Σ be as above, A be a Σ-algebra with carrier A, let

Q = Astate, L = Alabel and At = Aatom.

A is finitely branching if for all q ∈ Q and lab ∈ L, transA(q) and transA(q)(lab) are
finite.

Let V be a T (S)-sorted set of variables. A valuation of V in A is an T (S)-sorted
function from V to A, i.e., a function tuple g = (ge : Ve → Ae)e∈T (S) (see chapter 7).
The set of valuations of V in A is denoted by AV .

Valuations may be regarded as the states of (many-sorted) predicate logic. Besides S-
sorted variables, V includes variables for unary and binary state relations (P(state) and
P(state2)), respectively), mainly in order to represent relational fixpoints as Σ-formulas.

Suppose that A is finitely branching.

For all t : e ∈ ΛΣ(V), the interpretation of t in A, tA : AV → Ae, is inductively
defined: Let g ∈ AV . If t is closed, we often abbreviate tA(g) to tA.

• For all I ⊆ I and i ∈ I , iA(g) = i.

300

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

• For all x ∈ V , xA(g) = g(x).
• For all f ∈ ArrΣ, fA is defined as in section 9.1.
• For all t ∈ TΣ(V), tA(g) = g∗(t) (see section 9.11).
• For all I ⊆ I, (fi : ei → e)i∈I ∈ ΛΣ(V)I , i ∈ I and a ∈ Aei, [fi]

A
i∈I(a) = fAi (a).

• For all I ⊆ I, i ∈ I and a ∈ Aei, ι
A
i (a) = a.

• For all e ∈ T (S), (true : P(e))A = Ae.
• For all b, c ∈ 2, ¬A(b) = 1− b and b ∧Ac = b ∗ c.
• For all φ, ψ ⊆ Ae, ¬A(φ) = Ae \ φ and φ ∧A ψ = φ ∩ ψ.

• For all a ∈ 2 and b, c ∈ Ae, iteA(a, b, c) =

{
b if a = 1,

c if a = 0.

• For all e ∈ T (S), (=)A = {(a, a) | a ∈ Ae}.
• For all (ti : ei)i∈I ∈ ΛΣ(V)I , (ti)Ai∈I(g) = (tAi (g))i∈I .
• For all t : e, f : e→ e′ ∈ ΛΣ(V), f (t)A(g) = fA(g)(tA(g)).
• For all x : e ∈ V , t : e′ ∈ ΛΣ(V) and a ∈ Ae,

(λx.t)A(g)(a) = tA(g[a/x])

(see chapter 2).

301

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

• For all a ∈ Ae, singleA(a) = {a}.
• For all φ ⊆ Ae, cardA(φ) = |φ|.
• For all f : Ae → Ae′, mapA(f) = P(f) (see section 2.8).
• For all p : Ae → 2 and φ ⊆ Ae, filterA(p)(φ) = {a ∈ φ | p(a) = 1}.
• For all e ∈ T (S) and φ ⊆ Ae, joinA(φ) =

⋃
φ and meetA(B) =

⋂
B.

• For all f : Ae → Ae′ → Ae, a ∈ Ae, b ∈ Ae′ and w ∈ Ae′∗,

foldlA(f)(a)(ϵ) = a,

foldlA(f)(a)(b · w) = foldlA(f)(f (a)(b))(w).

• For all f : Ae → P(Ae), f ′ : Ae → Ae′ → P(Ae), a ∈ Ae, b ∈ Ae′ and w ∈ Ae′∗,

foldNDSA(f)(f ′)(a)(ϵ) = f (a),

foldNDSA(f)(f ′)(a)(b · w) = f (a) >>= λx.f ′(x)(b)

>>= λx.foldNDSA(f)(f ′)(x)(w).

• For all φ ⊆ Ae and a ∈ Ae, χA(φ)(a) = 1 ⇔def a ∈ φ.
• For all r ⊆ Ae × Ae′ and a ∈ Ae, rel2funA(r)(a) = {b ∈ Ae′ | (a, b) ∈ r}.

302

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

• For all φ ⊆ Ae, ψ ⊆ Ae′, r ⊆ Ae × Ae′ and r′ ⊆ A′
e′ × Ae′′,

invA(r) = {(b, a) | (a, b) ∈ r},
πA1 (r) = {a ∈ Ae | ∃ b ∈ Ae′ : (a, b) ∈ r},
πA2 (r) = {b ∈ Ae′ | ∃ a ∈ Ae : (a, b) ∈ r},
φ ∗Aψ = φ× ψ,

r/Aψ = {a ∈ Ae | ∀ b ∈ ψ : (a, b) ∈ r},
∀A(r)(ψ) = {a ∈ Ae | ∀ b ∈ Ae′ : (a, b) ∈ r ⇒ b ∈ ψ},

r;Ar′ = {(a, c) ∈ Ae × Ae′′ | ∃ b ∈ Ae′ : (a, b) ∈ r ∧ (b, c) ∈ r′)}.

• For all x : P(e) ∈ V and negation-free φ : P(e) ∈ ΛΣ(V),

(µx.φ)A(g) =
⋂

{B ⊆ Ae | φA(g[B/x]) ⊆ B}.

By Theorem 3.9 (1) and Proposition 10.5, (µx.φ)A(g) is the least fixpoint of the step
function

λB.φA(g[B/x]) : P(Ae) → P(Ae).

• For all x : e ∈ V and φ : e, ψ : e′ ∈ ΛΣ(V),

ψ[φ/x]A(g) = ψA(g[φA(g)/x]).

303

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

• ∼A= Φ∞ =
⋂
i∈NΦ

i(Q2) ⊆ P(Q2) where Φ : P(Q2) → P(Q2) maps Rstate ⊆ Q2 to

{(q, q′) ∈ Q2 | outA(q) = outA(q′), (transA(q), transA(q′)) ∈ RP(state)}

∩
⋂
lab∈L{(q, q′) ∈ Q2 |

{
outLA(q, lab) = outLA(q′, lab),

(transA(q, lab), transA(L′)(q′, lab)) ∈ RP(state)

}
}

and RP(state) ⊆ P(Q)× P(Q) is the lifting of Rstate according to section 7.2.

Since Φ is monotone and, by Theorem 10.7, ∼A is Φ-dense, Theorem 3.4 (2) implies
that ∼A is the greatest fixpoint of Φ.

• labelsA = L.
• For all q ∈ Q, predsA(q) = {q′ ∈ Q | q ∈ transA(q′)}.
• For all q ∈ Q and lab ∈ L, predsLA(q)(lab) = {q′ ∈ Q | q ∈ transLA(q′)(lab)}.
• For all q ∈ Q, outA(q) = {at ∈ At | q ∈ valueA(at)}.
• For all q ∈ Q and lab ∈ L, outLA(q, lab) = {at ∈ At | q ∈ valueLA(at)(lab)}.
• For all L′ ⊆ L,

childA(L′) =

{
{(q, q′) ∈ Q2 | q′ ∈ transA(q)} if L′ = ∅,
{(q, q′) ∈ Q2 | q′ ∈

⋃
lab∈L′ transL

A(q)(lab)} otherwise.

304

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

• For all q0, q ∈ Q,

tracesA(q)(qfin) = f{q}(q) where
f (visited)(q) = (transA(q)

>>= λq.if q = qfin then {next}
else if q ∈ visited then ∅
else f (visited ∪ {q})(q) >>= λtrace.{next · trace}
where next = ι1(q)) ∪

(L >>= λlab.transLA(q)(lab)

>>= λq.if q = qfin then {next}
else if q ∈ visited then ∅
else f (visited ∪ {q})(q) >>= λtrace.{next · trace}
where next = ι2(lab, q)).

305

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

• For all q ∈ Q and lab ∈ L,

transL2rowA(q)(lab) =

{
q′ if ∃ q′ ∈ Q : transL(q)(lab) = {q′},
() otherwise.

• For all val, val′ ∈ Arow and lab ∈ L,

(val +A val′)(lab) = if val(lab) ̸= () then val(lab) else val′(lab).

• For all L′ ⊆ L, val ∈ Arow and lab ∈ L′,

projectrowA(L′)(val)(lab) = if lab ∈ L′ then val(lab) else ().

• For all f : L→ Q and val ∈ Arow,

selectrowA(f)(val) =

{
1 if ∀ lab ∈ L : val(lab) ∈ {(), f (lab)},
0 otherwise.

306

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

• For all tab, tab′ ∈ Atable,

labsA(tab) = {lab ∈ L | ∃ val ∈ tab : val(lab) ̸= ()},
tab ∧A tab′ = tab ∩ tab′,
tab ∗A tab′ = if labs(tab) ∩ labs(tab′) = ∅ then tab× tab′ else ∅,
tab /A tab′ = if labs(tab′) ⊆ labs(tab) ∧ tab′ ̸= ∅

then {π(row) | row ∈ tab,

∀ row′ ∈ tab′ : π(row) + row′ ∈ tab}
else ∅
where π = projectrowA(labs(tab) \ labs(tab′)),

njoinA(tab)(tab′) = filter (equal)(tab× tab′)

where for all val ∈ tab and val′ ∈ tab′,

equal(val, val′) =

1 if ∀ lab ∈ L : val(lab) = val′(lab) ∨

() ∈ {val(lab), val′(lab)},
0 otherwise.

307

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

• For all tab ∈ Atable = P(Arow), lab ∈ L and P ⊆ P(L),

fundepsA(tab) =
⋃

P(mindeps)(labs(tab)) where
mindeps(lab) = {(lab, L′) ∈ deps | L′ ∈ minis(rel2fun(deps)(lab))} where

deps = {(lab, L′) ∈ L× P(L)

| lab /∈ L′ ̸= ∅, ∀ vals ∈ π1(rel) : |rel2fun(rel)(vals)| = 1}
where rel = map(λval.(map(val)(L′), val(lab)))(tab),

minis(P) = {L′ ∈ P | ∀ L′′ ∈ P \ {L′} : L′′ ̸⊆ L′}.

Consequently, for all (lab, L′) ∈ deps and val, val′ ∈ tab,

map(val)(L′) = map(val′)(L′) ⇒ val(lab) = val′(lab).

For all substitutions σ : V → ΛΣ(V), the interpretation of σ in A, σA : AV → AV , is
defined as folllows:

For all g ∈ AV and x ∈ V , σA(g)(x) = σ(x)A(g).

308

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

Proposition 10.1

For all A ∈ AlgΣ with carrier A, t ∈ TΣ(V) and Σ-substitutions σ : V → ΛΣ(V),

(tσ)A = tA ◦ σA

(see section 9.11).

Proof by induction on t. Let g ∈ AV

For all x ∈ V , (xσ)A(g) = (σ(x))A(g) = σA(g)(x) = xA(σA(g)).

For all c :
∏

i∈I ei → s ∈ F and t ∈ Xi∈ITΣ(V)ei,

(c(t)σ)A(g) = (c(tσ))A(g) = cA((tσ)A(g))
ind. hyp.

= cA(tA(σA(g))) = c(t)A(σA(g)).

For all e =
∐

i∈I
∏

j∈J eij ∈ Ts(S), i ∈ I and t ∈ Xj∈JTΣ(V)eij ,

(i(t)σ)A(g) = (ιi(tσ))
A(g) = ιi((tσ)

A(g))
ind. hyp.

= ιi(t
A(σA(g))) = ιi(t)

A(σA(g)).

❏

309

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

Lemma 10.2

Σ-terms can be turned into Σ-arrows such that Σ-homomorphisms remain ArrΣ-homo-
morphic (see Lemma 9.2).

Proof. Let e ∈ Tpo(S), t ∈ TΣ(V)e and var(t) = {x1 : s1, . . . , xn : sn}. Interpret the
Σ-arrow

λ(x1, . . . , xn).t :

n∏
i=1

si → e (1)

in a Σ-algebra A with carrier A as follows:

Let e′ =
∏n

i=1 si. For all a ∈ Ae,

(λ(x1, . . . , xn).t)
A(a) = g∗a(t)

where ga ∈ AV is defined by ga(xi) = πi(a) for all 1 ≤ i ≤ n.

Then for all Σ-homomorphisms h : A → B and x ∈ V ,

h(ga(x)) = h(πx(a)) = πx(h(a)) = gh(a)(x)

and thus
h((λ(x1, . . . , xn).t)

A(a)) = h(g∗a(t))
Lemma 9.9

= (h ◦ ga)∗(t) = g∗h(a)(t)

= (λ(x1, . . . , xn).t)
B(h(a)). ❏

310

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

For all φ ∈ FoΣ(V), the interpretation of φ in A, φA ⊆ AV , is inductively defined as
follows:

• TrueA = AV .
• For all p : P(e), t : e ∈ ΛΣ(V), p(t)A = {g ∈ AV | tA(g) ∈ pA(g)}.
• For all φ : FoΣ(V), (¬φ)A = AV \ φA.
• For all φ, ψ : FoΣ(V), (φ ∧ ψ)A = φA ∩ ψA.
• For all e ∈ T (S), x : e ∈ V and φ ∈ FoΣ(V),

(∀xφ)A =
⋂
a∈Ae

{g ∈ AV | g[a/x] ∈ φA}.

g ∈ AV solves φ ∈ FoΣ(V) in A if g ∈ φA.

Hence the elements of φA are the solutions of φ.

g ∈ AV solves φ ∈ FoΣ(V) uniquely in A if g ∈ φA and for all h ∈ φA,

h|free(φ) = g|free(φ)
(see chapter 2 and section 10.2).

311

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

A T (S)-sorted function f : V → ΛΣ(V) solves φ ∈ FoΣ(V) uniquely in A if f solves
φ in A and for all solutions f ′ of φ in A and g ∈ AV ,

λx.f (x)A(g)|free(φ) = λx.f ′(x)A(g)|free(φ).

These definitions are motivated by the following result:

Proposition 10.3

Let g, h ∈ AV , t ∈ ΛΣ(V) and φ ∈ FoΣ(V).
If g|free(t) = h|free(t), then tA(g) = tA(h).
If g|free(φ) = h|free(φ), then g solves φ in A iff h solves φ in A. ❏

Due to Proposition 10.3, we omit the valuation parameter of tA whenever free(t) is empty.

312

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

A T (S)-sorted function f : V → ΛΣ(V) solves φ ∈ FoΣ(V) in A if for all g ∈ AV ,

λx.f (x)A(g) ∈ φA.

A satisfies φ ∈ FoΣ(V), written as A |= φ, if φA = AV .

A satisfies φ⇒ ψ ∈ FoΣ(V) iff φA ⊆ ψA.

A satisfies AX ⊆ FoΣ(V), written as A |= AX , if A satisfies all elements of AX .

A class K of Σ-algebras satisfies AX if all A ∈ K satisfy AX .

Two λΣ-terms or Σ-formulas φ and ψ are A-equivalent if φA = ψA.

Proposition 10.4 λΣ-terms and Σ-formulas are A-equivalent to their respective nega-
tion normal forms (see section 10.2). ❏

Proposition 10.5 For all negation-free λΣ-terms φ : P(e), g ∈ AV and x : P(e) ∈ V ,
the function

λS.φA(g[S/x]) : P(Ae) → P(Ae)

is monotone w.r.t. the subset relation.

313

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

Proof. By Proposition 10.4, it is sufficient to show that for all φ, φ′, ψ, ψ′ : P(e), r :

P(e × e′) ∈ FoΣ(V), x : P(e) ∈ V and g ∈ AV , φA(g) ⊆ φ′A(g) ∧ ψA(g) ⊆ ψ′A(g)

implies

(φ ∧ ψ)A(g) ⊆ (φ′ ∧ ψ′)A(g), (φ ∨ ψ)A ⊆ (φ′ ∨ ψ′)A(g), (1)
∃(r)(φ)A ⊆ ∃(r)(φ′)A(g), ∀(r)(φ)A ⊆ ∀(r)(φ′)A(g), (2)
(µx.φ)A ⊆ (µx.φ′)A(g), (νx.φ)A ⊆ (νx.φ′)A(g). (3)

The proof of (1)-(3) is left to the reader. ❏

Proposition 10.6 For all r ⊆ Ae × Ae′, ψ ⊆ Ae′, g ∈ AV and tab, tab′ ∈ Atable,

(r/ψ)A = π1(r)⊖ π1((π1(r) ∗ ψ)⊖ r)A,

((r/ψ) ∗ ψ)A ⊆ rA,

tab /A tab′ = if labs(tab′) ⊆ labs(tab) ∧ tab′ ̸= ∅
then π(tab) \ π((π(tab)× tab′) \ tab) else ∅
where π = projectA(labs(tab) \ labs(tab′)). ❏

314

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

The above semantics of universal quantifiers and µ-abstraction and the derivation of exis-
tential quantifiers and ν-abstraction in section 10.2 reveals that ∃, ∃ and ν are interpreted
dually to ∀, ∀ and µ, respectively:

For all x : e ∈ V and φ ∈ FoΣ(V),

(∃xφ)A = (¬∀x¬φ)A = AV \
⋂
a∈Ae

{g ∈ AV | g[a/x] ∈ (¬φ)A}
=
⋃
a∈Ae

(AV \ {g ∈ AV | g[a/x] ∈ AV \ φA}) =
⋃
a∈Ae

{g ∈ AV | g[a/x] /∈ AV \ φA}
=
⋃
a∈Ae

{g ∈ AV | g[a/x] ∈ φA},

For all r : P(e× e′), ψ : P(e′) ∈ ΛΣ(V) and g ∈ AV ,

∃(r)(ψ)A(g) = (¬∀(r)(¬ψ))A(g) = Ae \ {a ∈ Ae | rel2fun(r)A(g)(a) ⊆ (¬ψ)A}
= {a ∈ Ae | rel2fun(r)A(g)(a) ̸⊆ Ae′ \ ψA} = {a ∈ Ae | rel2fun(r)A(g)(a) ∩ ψA ̸= ∅}.

315

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

For all x : P(e) ∈ V , negation-free φ : P(e) ∈ FoΣ(V) and g ∈ AV ,

(νx.φ)A(g) = (¬µx.¬φ[¬x/x])A(g) = Ae \ (µx.¬φ[¬x/x])A(g)
= Ae \

⋂
{B ⊆ Ae | (¬φ[¬x/x])A(g[B/x]) ⊆ B}

= Ae \
⋂
{B ⊆ Ae | Ae \ φ[¬x/x]A(g[B/x]) ⊆ B}

= Ae \
⋂
{B ⊆ Ae | Ae \ φA(g[B/x][(¬x)A(g[B/x])/x]) ⊆ B}

= Ae \
⋂
{B ⊆ Ae | Ae \ φA(g[(¬x)A(g[B/x])/x]) ⊆ B

= Ae \
⋂
{B ⊆ Ae | Ae \ φA(g[(Ae \ xA(g[B/x]))/x]) ⊆ B}

= Ae \
⋂
{B ⊆ Ae | Ae \ φA(g[(Ae \ g[B/x](x))/x]) ⊆ B}

= Ae \
⋂
{B ⊆ Ae | Ae \ φA(g[(Ae \B)/x]) ⊆ B}

=
⋃
{Ae \B | B ⊆ Ae, Ae \ φA(g[(Ae \B)/x]) ⊆ B}

=
⋃
{Ae \B | B ⊆ Ae, Ae \B ⊆ φA(g[(Ae \B)/x])}

=
⋃
{B ⊆ Ae | B ⊆ φA(g[B/x])}.

316

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

Hence by Theorem 3.9 (5) and Proposition 10.5, (νx.φ)A(g) is the greatest fixpoint of
the step function

λB.φA(g[B/x]) : P(Ae) → P(Ae).

Theorem 10.7 Suppose that A is finitely branching. Φ∞ ⊆ P(Q2) with Φ as defined
above is Φ-dense.

Proof. Let (q, q′) ∈ Φ∞. Then

for all i ∈ N, (q, q′) ∈ Φi(Q2). (1)

We must show (q, q′) ∈ Φ(Φ∞), i.e.,

outA(q) = outA(q′), (2)
∀ lab ∈ L : outLA(q, lab) = outLA(q′, lab), (3)
∀ lab ∈ L : (transA(q, lab), transA(q′, lab)) ∈ RP(state) (4)

where RP(state) is the lifting of Rstate = Φ∞ according to section 7.2.

317

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

(2) and (3) follow from (q, q′) ∈ Φ(Q2).

Let r ∈ transA(q). By (1), for all i ∈ N there is ri ∈ transA(q′) with (r, ri) ∈ Φi(Q2).
Since A be finitely branching, transA(q) is finite and thus there is r′ ∈ Q with r′ =

rn ∈ transA(q′) for infinitely many n ∈ N. Hence for all n ∈ N there is in ≥ n with
rin = r′. Consequently, (r, rin) ∈ Φin(Q2) implies (r, r′) ∈ Φin(Q2) ⊆ Φn(Q2). Therefore,
(r, r′) ∈

⋂
n∈NΦ

n(Q2) = Φ∞.

Analogously, for all r′ ∈ transA(q′) there is r ∈ transA(q) with (r, r′) ∈ Φ∞. Hence we
conclude (4).

(5) can be shown analogously. ❏

Theorem 10.8 (fixpoint induction and coinduction for set types)

Let φ : P(e) ∈ FoΣ(V) be negation-free, free(φ) = {x : P(e)}, g ∈ AV ,

F : P(Ae) → P(Ae)

B 7→ φA(g[B/x]),

B ⊆ Ae, R ⊆ Q2 and Φ be as in the above definition of ∼A. (Proposition 10.3 ensures
that F (B) is unique.)

318

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas
(1) If B is F -closed, then (µx.φ)A ⊆ B.

(2) If B is F -dense, then B ⊆ (νx.φ)A.

(3) If R is Φ-dense, then R ⊆∼A.

Proof. By Proposition 10.5, F is monotone. Hence Theorem 3.13 (1) implies (1) and
Theorem 3.14 (1) implies (2) and (3). ❏

Examples

Every natural number is even or odd: Let Σ = Nat (see section 8.2), e = nat, φ =

single(zero) ∨map(succ)(x) (see section 10.1), A be the Nat -algebra of 9.6.1 and

F = λB.{0} ∪ {n + 1 | n ∈ B} : P(N) → P(N).

In section 3.2, we have shown that N is the least fixpoint of F , i.e., N = (µx.φ)A. Hence
by Theorem 10.8 (1), it is sufficient to show that the set B of even or odd natural numbers
is F -closed. So let n ∈ F (B). Then n = 0 or n = m + 1 for some even or odd natural
number m.

If n = 0, then n is even. If n = m + 1 and m is even, then n is odd. If n = m + 1 and
m is odd, then n is even. Hence n ∈ B in all three cases. Therefore, B is F -closed. ❏

319

10.3 Semantics 10 Σ-FORMULAS

�� ��Σ-formulas

blink has infinitely many zeros: Let Σ = Stream(N) (see section 8.3), e = state,

φ = filter (λs.(head(s) = 0 ∨ (χ(x) ◦ tail)(s)))(true),
ψ = filter (χ(x) ◦ tail)(µx.φ)

(see section 10.1), A be the Stream(N)-algebra InfSeq(N) (see 9.6.5) and

F = λB.{s ∈ RN | head(s) = 0 ∨ tail(s) ∈ B} : P(RN) → P(RN),

G = λB.{s ∈ has0 | tail(s) ∈ B} : P(RN) → P(RN).

In section 3.2, we have shown that has0 is the least fixpoint of F , i.e., has0 = (µx.φ)A

and has∞0 is the greatest fixpoint of G, i.e., has0∞0 = (νx.ψ)A.

Hence by Theorem 10.8 (2), it is sufficient to show that

blink = λn.if n is even then 0 else 1

belongs to a G-dense subset B of RN. Let B = {blink, λn.blink(n + 1)}. Then

B ⊆ {s ∈ has0 | tail(s) ∈ B} = G(B),

i.e., B is G-dense. ❏

320

10.4 Realization in Expander2 10 Σ-FORMULAS

�� ��Σ-formulas

10.4 Realization in Expander2

The quintuple (initsA, transA, transLA, valueA, valueLA) is called the Kripke model
of A.

Expander2 generates the Kripke model of A from finite sets of names for states, labels
and atoms and transition axioms of the form

φ ==> st -> st’ φ ==> st -> branch$sts

φ ==> (st,lab) -> st’ φ ==> (st,lab) -> branch$sts

Here φ is an (optional) formula (see below) and st, st′, lab, sts are terms representing
states (or atoms), labels and lists of states, respectively. branch transforms the list
[t1, . . . , tn] of terms into the term t1<+> . . . <+>tn, which is regarded as the set {t1, . . . , tn}
(see [137]).

The transition axioms define functions, which interpret the Σ-arrows trans, transL,
value and valueL in A (see above). For accelerating the evaluation process, Expander2
works with encodings of trans, transL, value and valueL as number lists: The elements
of Q ∪ L ∪ At are represented by their respective positions in the lists of states, labels
and atoms, respectively.

321

https://fldit-www.cs.tu-dortmund.de/~peter/Expander2.html

10.4 Realization in Expander2 10 Σ-FORMULAS

�� ��Σ-formulas

Q is constructed stepwise: Starting out from the set initsA of initial states, Expander2
iteratively applies all applicable transition axioms as rewrite rules and thus builds up
Q along with the functions transA and transLA. Finally, valueA and valueLA are
constructed from the transition axioms with atoms on their left-hand sides.

After the Kripke model of A has been defined in terms of transitions axioms (see above),
Q agrees with the set transAll(inits)A (see below). A list representation of this set is
obtained by simplifying the constant states.

Expander2 evaluates Σ-formulas according to their above semantics by applying simplifi-
cation axioms (see below). For instance, equations of the Expander2 specification modal
define derived Σ-formulas (see above) and are used to reduce formulas with powerset
types to modal normal forms. A normal form t is then evaluated by algebraic folding
that takes place whenever f (t) is simplified where f is one of the following functions:

eval, evalG : FoΣ(V)P(state) → P(state),

evalR, evalRG, evalRM : FoΣ(V)P(state2) → P(state2),

evalT, evalM : FoΣ(V)table → table.

322

10.4 Realization in Expander2 10 Σ-FORMULAS

�� ��Σ-formulas

Applying these functions to modal normal forms is more efficient than reducing the
latter by ordinary simplification because eval et al. induce the folding in a Σ-algebra
whose carriers consist of the indices of the lists of states, labels and atoms, respectively,
(states, labels, atoms) that where created when the Kripke model is generated and
whose elements are often complex terms.

Consequently, trans and value are implemented as lists of natural numbers (tr, va)
and transL and valueL as lists of lists of natural numbers (trL, vaL) such that for all
i, j, k ∈ N,

i ∈ tr!!j ⇐⇒ states!!i ∈ trans(states!!j),

i ∈ trL!!j!!k ⇐⇒ states!!i ∈ transL(states!!j)(labels!!k),

i ∈ va!!j ⇐⇒ atoms!!i ∈ value(atoms!!j),

i ∈ vaL!!j!!k ⇐⇒ atoms!!i ∈ valueL(atoms!!j)(labels!!k).

For φ : P(state) ∈ FoΣ(V), eval(φ) and evalG(φ) compute the subset φA of Q and
display it as a list resp. graph on the canvas of Expander’s solver. The graph represents
transA and transLA with the states of φA colored green and the states of Q\φA colored
red.

323

10.4 Realization in Expander2 10 Σ-FORMULAS

�� ��Σ-formulas

For r : P(state2) ∈ FoΣ(V), evalR(r) and evalRG(r) compute the binary relation rA

between states (and atoms) and display it as a list of pairs resp. the graph representing
rA on the canvas of Expander’s solver.

evalRM(r) also computes the relation rA, but displays the matrix representing rA on the
canvas of Expander’s painter—after matrices has been selected in the interpreter menu
(below the paint button) and the paint button has been pressed.

For ϑ : P(row) ∈ FoΣ(V), evalT (ϑ) computes the table ϑA and display it as a list
of triples (row number, attribute, attribute value) on the canvas of Expander’s solver.
evalM(ϑ) computes ϑA and displays the matrix representing ϑA on the canvas of Ex-
pander’s painter—again after matrices has been selected in the interpreter menu and the
paint button has been pressed.

Given closed Σ-formulas p : state → 2 and at : atom, the axiom at → sat(p) defines
instances of sat(p) as instances of at. Hence replacing sat(p) with at in other formulas
reduces the evaluation of sat(p) in A to the direct access to value(at)A.

Expander2 evaluates a fixpoint formula in a finite domain D with the help of following
iterative function:

324

10.4 Realization in Expander2 10 Σ-FORMULAS

�� ��Σ-formulas

fixpt : P(D ×D)) → ((D → D) → (D → D))

(≤) 7→ λf : D → D.λd.if f (d) ≤ d then d else fixpt(≤)(f)(f (d)).

In particular,
(µx.φ : P(e)A = fixpt(⊆)(Φ)(∅),
(νx.φ : P(e))A = fixpt(⊇)(Φ)(Ae),

(µx.r : P(e× e′))A = fixpt(⊆)(Ψ)(∅),
(νx.r : P(e× e′))A = fixpt(⊇)(Ψ)(Ae × Ae′),

∼A = fixpt(⊇)(Ψ′)(Q2)

(see above).

Expander2 implements sets by lists and the rows of a table by association lists of type
(label × state)∗.

Expander2 distinguishes between formulas, which agree with the characteristic functions
of first-order Σ-formulas, and terms, which comprise all other Σ-formulas. Propositional
operators ∧,∨ and quantifiers ∀,∃ are denoted by &, |, All and Any, respectively.

325

10.4 Realization in Expander2 10 Σ-FORMULAS

�� ��Σ-formulas

Constants (like the transition relation ->; see above) listed in the preds (predicates)
section of an Expander2 specification are regarded as formulas, constants listed in the
constructs (constructors) or defuncts (defined functions) section are regarded as terms.
Further constants used in specification are supposed to be defined functions, even if they
lack axioms.

Besides transition axioms there are two further kinds of axioms to be used by Expander’s
simplifier:

φ ==> t == t’

φ ==> (φ1 <==> φ2)

Here t and t′ are terms and φ, φ1, φ2 are formulas. Again, φ is optional. The axiom is
applied to a formula ψ by matching t or φ1 with a subterm resp. subformula of ψ only if
the respective instance of the guard φ reduces to True.

Variables are listed in the fovars (first-order variables) or hovars (higher-order variables)
section of Expander2 specifications. The assignment of a variable x to the latter section
is needed only if the specification contains non-leaf occurrences of x.

326

10.5 Automata for satisfiability 10 Σ-FORMULAS

�� ��Σ-formulas

10.5 Automata for satisfiability

(see, e.g., [71, 174, 175])

Let A be a Σ-algebra with carrier A. Given e ∈ T (S), a ∈ Ae satisfies φ : P(e) ∈
FoΣ(V), written as a |= φ, if a ∈ φA.

Acceptors are used for proving that a given element a ∈ Ae satisfies φ. φ is turned into
an automaton Aut(φ), which “scans” a and achieves an accepting (or final) state if and
only if a ∈ φA, i.e.,

Aut(φ) accepts a ⇔ a ∈ φA. (1)

Vice versa, an acceptor Aut of elements of A reaches a final state when scanning a ∈ A

if and only if a belongs to the language Lan(Aut) ⊆ A accepted by Aut:

Lan(Aut) =def {a ∈ A | Aut accepts a}.

For instance, let Σ = Reg(X), A = Lang(X), φ ∈ TReg(X) and Aut(φ) be the initial
automaton (Bro(X), φ) (see sample algebra 9.6.19, 9.6.20 and 9.6.23 and sample final
algebra 9.18.6).

Then A = P(X∗) and φA = foldA(φ) ⊆ X∗.

327

10.5 Automata for satisfiability 10 Σ-FORMULAS

�� ��Σ-formulas

Since foldLang(X) = unfoldBro(X) (see sample biinductive definition 16.5.5), we obtain

Aut(φ) accepts w ∈ X∗ ⇔ w ∈ unfoldBro(X)(φ) = foldLang(X)(φ) = φA,

i.e. (1) holds true

Presumably, there are many other instances where (1) can be reduced to an equation
between a fold and an unfold. Also in the following case?

Second-order logics involve variables for relations, monadic second-order logic only for
unary relations, i.e., for sets or lists. In applications, these sublists of a given domain of
states, indices of a word, nodes of a tree or graph, coordinates of a plane, etc., all called
nodes in the sequel.

Since Σ-formulas as defined above are based on a signature that admits many sorts, we
may stay with first-order logic and distinguish between variables for single nodes on the
one hand and variables for sets of nodes on the other hand.

Hence MSO formulas—as defined in, e.g., [175], sections 1.1 and 3.3.2—, which express
properties of words over X or finite CΣ-terms (see chapter 9), coincide with Σ-formulas
as defined above where Σ is one of the following signatures:

328

10.5 Automata for satisfiability 10 Σ-FORMULAS

�� ��Σ-formulas

MSOword(X) = (S, ∅, P),
S = {node},
F = {label : node→ 1 +X, succ : node→ node},
P = {=, <: node× node, ∈: node× node∗},

MSOtree(X) = (S, ∅, P),
S = {node},
F = {label : node→ 1 +X, children : node→ node∗,

P = {=, <: node× node, ∈: node× node∗}.

329

10.5 Automata for satisfiability 10 Σ-FORMULAS

�� ��Σ-formulas

Word acceptors

Let w = (x1, . . . , xn) ∈ X∗. The MSOword(X)-structure w is defined as follows: For all
i ∈ N,

wnode = N,
labelw(i) = if 1 ≤ i ≤ |w| then xi else ϵ,
succw(i) = i + 1,

=w = ∆N,

<w = {(i, j) ∈ N2 | i < j},
∈w = {(i, v) ∈ N× N∗ | i ∈ v}.

Let V be an S-sorted set of variables. NV denotes the set of valuations of V , i.e., pairs
(f : Vnode → N, g : Vnodes → P(N)) of functions.

(f, g) ∈ NV induces a function varsf,g : N → P(V) that is defined as follows: For all
i ∈ N,

varsf,g(i) = {x ∈ Vnode | f (x) = i} ∪ {x ∈ Vnodes | i ∈ g(x)}.

Let XV = X × P(V), A be a nondeterministic acceptor of XV -words, i.e., an NAcc(XV)-
algebra, and s ∈ A(state).

330

10.5 Automata for satisfiability 10 Σ-FORMULAS

�� ��Σ-formulas

The language of words over XV accepted by the initial automaton (A, s) is given by
unfoldA(s) where

unfoldA : A(state) → P(X∗
V)

is the unique NAcc(XV)-homomorphism from A to the final NAcc(X)-algebra NPow (XV)

(see sample algebra 9.6.21). The acceptor of XV -words becomes an acceptor of X-words
by defining the word language accepted by (A, s) as follows:

Lan(A, s) = {w ∈ X∗ | ∃ val ∈ NV : h(w, val) ∈ unfoldA(s)}

where
h : X∗ × NV → X∗

V

((x1, . . . , xn), (f, g)) 7→ ((x1, varsf,g(1)), . . . , (x1, varsf,g(1))).

The actual goal is to use (A, s) as an automaton that accepts w ∈ X∗ iff the MSOword(X)-
structure w defined above satisfies a given MSOword(X)-formula.

331

10.5 Automata for satisfiability 10 Σ-FORMULAS

�� ��Σ-formulas

Indeed, by [175], Theorem 1.18, for every MSOword(X)-formula φ over V there is an
initial automaton (Aut(φ), s) such that for all w ∈ X∗,

h(w, val) ∈ unfoldAut(φ)(s) ⇔ val ∈ φw. (2)

For the definition of φw, the set of formulas satisfied by w, see chapter 10.

If φ is closed, then φw is empty or equal to NV . Consequently,

w ∈ Lan(Aut(φ), s) ⇔ ∃ val ∈ NV : h(w, val) ∈ unfoldAut(φ)(s)
(2)⇔ φw ̸= ∅

φ is closed⇔ φw = NV ⇔ w |= φ.

Some formulas expressions conditions on a transition system with an arbitrary finite num-
ber of processes are expressible as MSOword(X)-formulas where words over X represent
states.

For instance, in [71], section 5, X = {EAT ,THINK ,READ} and (x1, . . . , xn) ∈ X∗

represents the global state of a system with n processes (here: philosophers) where for
all 1 ≤ i ≤ n, the i-th process is in state xi.

Formulas φ to be proved by running Aut(φ) come as implications whose premise describes
the transition rules of the system, while the conclusion is a requirement to the system.
In the example, transitions triggering actions are eat, think, read and hungry.

332

10.5 Automata for satisfiability 10 Σ-FORMULAS

�� ��Σ-formulas
Tree acceptors

Let Σ = (S,C) be a finitary signature and t ∈ TΣ. The MSOtree(C)-structure t is defined
as follows: For all w ∈ N∗,

tnode = N∗,

labelt(w) = if w ∈ def (t) then t(w) else ϵ,

childrent(w) = [wi | i ∈ N, wi ∈ def (t)],

=t = ∆N∗,

<t = {(v, w) ∈ (N∗)2 | ∃ v′ ∈ N+ : vv′ = w},
∈t = {(v,W) ∈ N∗ × (N∗)∗ | v ∈ W}.

Let V be an S-sorted set of variables. (N∗)V denotes the set of valuations of V in N∗,
i.e., pairs (f : Vnode → N∗, g : Vnodes → P(N∗)) of functions.

(f, g) ∈ (N∗)V induces a function varsf,g : N∗ → P(V) that is defined as follows: For all
w ∈ N∗,

varsf,g(w) = {x ∈ Vnode | f (x) = w} ∪ {x ∈ Vnodes | w ∈ g(x)}.

Let ΣV = (S, {(c, V ′) : e → s | c : e → s, V ′ ⊆ V }) and A be a nondeterministic
top-down acceptor of ground Σ-terms, i.e., an NTAcc(ΣV)-algebra, and s ∈ A(state).

333

10.5 Automata for satisfiability 10 Σ-FORMULAS

�� ��Σ-formulas

The language of ΣV -terms accepted by the initial automaton (A, s) is given by unfoldA(s)

where
unfoldA : A(state) → P(TΣV

)

is the unique NTAcc(ΣV)-homomorphism from A to the final NTAcc(ΣV)-algebra
NTPow (ΣV) (see sample algebra 9.6.30). The acceptor of ΣV -terms becomes an acceptor
of Σ-terms by defining tree language accepted by (A, s) as follows:

Lan(A, s) = {t ∈ TΣ | ∃ val ∈ NV : h(t, val) ∈ unfoldA(s)}

where
h : TΣ × NV → TΣV

(t, (f, g)) 7→ λw.(t(w), varsf,g(w)).

The actual goal is to use (A, s) as an automaton that accepts a Σ-term t iff the MSOtree(C)-
structure t defined above satisfies some given MSOtree(C)-formula. Indeed, by [175],
Theorem 3.58, for every MSOtree(C)-formula φ over V there is an initial automaton
(Aut(φ), s) such that for all t ∈ TΣ,

h(t, val) ∈ unfoldA(s) ⇔ val ∈ φt. (3)

For the definition of φt, the set of formulas satisfied by t, see chapter 10.

334

10.5 Automata for satisfiability 10 Σ-FORMULAS

�� ��Σ-formulas

If φ is closed, then φt is empty or equal to (N∗)V . Consequently,

t ∈ Lan(Aut(φ), s) ⇔ ∃ val ∈ (N∗)V : h(t, val) ∈ unfoldAut(φ)(s)
(3)⇔ φt ̸= ∅

φ is closed⇔ φt = (N∗)V ⇔ t |= φ.

335

10.6 Institutions 10 Σ-FORMULAS

�� ��Σ-formulas

10.6 Institutions

An institution (see [54]) consists of

• a category Sign of signatures,
• a functor

Sen : Sign → Set

Σ 7→ set of Σ-sentences
σ : Σ → Σ′ 7→ Sen(σ) : Sen(Σ) → Sen(Σ′),

• a functor
Mod : Sign → Catop

Σ 7→ category of Σ-models
σ : Σ → Σ′ 7→ Mod(σ) : Mod(Σ′) → Mod(Σ),

• for each Σ ∈ Sign, a satisfaction relation

|=Σ⊆ Mod(Σ)× Sen(Σ)

such that for all Sign-morphisms σ : Σ → Σ′, A ∈ Mod(Σ′) and φ ∈ Sen(Σ).

Mod(σ)(A) |=Σ φ ⇔ A |=Σ′ Sen(σ)(φ). (1)

336

10.6 Institutions 10 Σ-FORMULAS

�� ��Σ-formulas
Suppose that

• Sign is the category of signatures and signature morphisms as defined in chapter 9,
• for all signatures Σ, Sen(Σ) is the set of Σ-formulas over a fixed set of variables,
• for all signature morphisms σ : Σ → Σ′ and Σ-formulas φ, Sen(σ) maps φ to σ(φ)

where σ(φ) is obtained from φ by replacing all arrows of Σ by their σ-images,
• for all signatures Σ, Mod(Σ) = AlgΣ,
• for all signature morphisms σ : Σ → Σ′ and Σ′-algebras A, Mod(σ) maps A to A|σ

(see chapter 9),
• |= is the satisfaction relation defined in section 10.3.

(Sign, Sen,Mod , |=) is an institution.

Proof. (1) amounts to:
A|σ |=Σ φ ⇔ A |=Σ′ σ(φ). (2)

The proof of (2) is straightforward (induction on the size of φ). ❏

337

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�
�

�
11 Predicate specifications

11.1 Syntax and semantics

Let (S, F) be a signature, C be an (S, F)-algebra with carrier A, P be a set of predicates,
i.e., arrows p : e′ → P(e) for some e, e′ ∈ T (S), and Σ = (S, F ∪ P).

StructΣ ,C denotes the category of Σ-algebras A and Σ-homomorphisms with A|(S,F) = C.

StructΣ ,C is a complete Boolean algebra with the following partial order ≤, least element
⊥, greatest element ⊤, complements A, suprema

⊔
K and infima

d
K:

For all A,B ∈ StructΣ ,C, K ⊆ StructΣ ,C, p : e′ → P(e) ∈ P and b ∈ Ae′,

A ≤ B ⇔ ∀ p : e′ → P(e) ∈ P, b ∈ Ae′ : p
A(b) ⊆ pB(b),

p⊥(b) = ∅, p⊤(b) = Ae, pA(b) = Ae \ pA(b),
p
⊔

K(b) =
⋃

A∈K p
A(b), p

⊔
K(b) =

⋂
A∈K p

A(b).

Let φ be a Σ-formula that is negation-free up to F (see section 10.2). Then the semantics
of φ is monotone w.r.t. the above partial order on StructΣ ,C, i.e., for all A,B ∈ StructΣ ,C,

A ≤ B implies φA ⊆ φB. (1)

(1) can be shown by induction on the size of φ.

338

https://en.wikipedia.org/wiki/Complete_Boolean_algebra

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

A Σ-formula φ is flat for P if φ is negation-free up to F and every atom at does not
contain symbols of P or at = p(u)(t) for some p ∈ P and t, u ∈ Λ(S,F)(V).

A Σ-formula φ⇐ ψ or φ⇒ ψ is called a Σ-sequent for P if φ and ψ are flat for P .

Given p : e′ → P(e) ∈ P and t : e, u : e′ ∈ ΛΣ(V), a Σ-sequent p(u)(t) ⇐ φ is called a
Horn clause for p, while p(u)(t) ⇒ φ is called a co-Horn clause for p.

Given f : e → e′ ∈ F with e′ ̸= 2 and t : e, t′ : e′ ∈ ΛΣ(V), a Σ-sequent f (t) = t′ ⇐ φ

is called a Horn clause for f .

Given a “transition relation” →: e × e → 2 ∈ F and t : e, t′ : e ∈ ΛΣ(V), a Σ-sequent
t→ t′ ⇐ φ is called a Horn clause for →.

The premise of a Horn or co-Horn clause is sometimes splitted into a guard (to be proved
before the rule is applied) and the rest an instance of which is part of the rule reduct (see
section 11.5).

Let Σ and C be as above, AX be a set of Σ-sequents and SP = (Σ, AX, C).

SP is a Horn specification of P and the elements of P are called least predicates if
AX consists of Horn clauses for P .

339

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

SP is a co-Horn specification of P and the predicates of P are called greatest
predicates if AX consists of co-Horn clauses for P .

StructSP denotes the full subcategory of StructΣ ,C whose objects satisfy AX .

The step function ΦSP : StructΣ ,C → StructΣ ,C is defined as follows:

For all A ∈ StructΣ ,C, p : e′ → P(e) ∈ P and b ∈ Ae′,

pΦSP (A)(b) = {a ∈ Ae |

∃ p(u)(t) ⇐ φ ∈ AX, g ∈ φA : ⟨t, u⟩C(g) = (a, b)

if SP is a Horn specification,
∀ p(u)(t) ⇒ φ ∈ AX, g ∈ AV \ φA : ⟨t, u⟩C(g) ̸= (a, b)

if SP is a co-Horn specification.

}

(2)
By (1), ΦSP is monotone and thus by Theorem 3.9 (1) and (5), ΦSP has the least fixpoint

lfp(ΦSP) =
l

{A ∈ StructΣ ,C | ΦSP (A) ≤ A} (3)

if SP is a Horn specification, while ΦSP has the greatest fixpoint

gfp(ΦSP) =
⊔

{A ∈ StructΣ ,C | A ≤ ΦSP (A)} (4)

if SP is a co-Horn specification.

340

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

Let SP be a Horn specification of P , p : e′ → P(e) ∈ P , AXp be the set of Horn clauses
of AX for p, x ∈ Ve \ var(AXp) and z ∈ Ve′ \ var(AXp). The Σ-formula

[AXp] =def p(z)(x) ⇔
∨

(p(u)(t)⇐φ)∈AX

∃ free(φ) : ((t, u) = (x, z) ∧ φ)

is called the Horn completion of AXp.

As [AXp] combines all Horn clauses of AX for p to a single Σ′-formula, the sum extension

[c]c:e→s∈C :
∐

c:e→s∈C

→ s

induced by a constructive signature Σ = (S,C) combines all arrows of C with target s
to a single one (see section 15.1). This analogy strongly resembles the Curry-Howard
correspondence between formulas and types.

Let SP be a co-Horn specification of P , p : e′ → P(e) ∈ P , AXp be the set of co-Horn
clauses of AX for p, x ∈ Ve \ var(AXp) and z ∈ Ve′ \ var(AXp). The Σ-formula

⟨AXp⟩ =def p(z)(x) ⇔
∧

(p(u)(t)⇒φ)∈AX

∀ free(φ) : ((t, u) ̸= (x, z) ∨ φ)

is called the co-Horn completion of AXp.

341

https://en.wikipedia.org/wiki/Curry-Howard_correspondence
https://en.wikipedia.org/wiki/Curry-Howard_correspondence

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

As ⟨AXp⟩ combines all co-Horn clauses of AX for p to a single Σ′-formula, the product
extension

⟨d⟩d:s→e∈D : s→
∏

d:s→e∈D

induced by a destructive signature Σ = (S,D) combines all arrows of D with source s
to a single one (see section 15.2). Again, the analogy resembles the Curry-Howard corre-
spondence between formulas and types.

Lemma 11.1 Suppose that SP is a Horn specification of P and Φ = ΦSP .

StructSP = {A ∈ StructΣ ,C | Φ(A) ≤ A}. (5)

Moreover, for all A ∈ StructSP ,
lfp(Φ) ≤ A, (6)

Φ(A) = A iff ∀ p ∈ P : A |= [AXp]. (7)

Proof. (5) Let p : e′ → P(e) ∈ P , A ∈ StructSP with carrier A, b ∈ Ae′ and a ∈ pΦ(A)(b).
Then by (2), (a, b) = ⟨t, u⟩C(g) for some p(u)(t) ⇐ φ ∈ AX and g ∈ φA. Since A
satisfies p(u)(t) ⇐ φ, g ∈ p(u)(t)A and thus a = tC(g) ∈ p(u)A(g) = pA(uC(g)) = pA(b).
Hence pΦ(A)(b) ⊆ pA(b) and thus Φ(A) ≤ A.

342

https://en.wikipedia.org/wiki/Curry-Howard_correspondence
https://en.wikipedia.org/wiki/Curry-Howard_correspondence

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

Conversely, let Φ(A) ≤ A, p(u)(t) ⇐ φ ∈ AX and g ∈ φA. Then by (2), tC(g) ∈
pΦ(A)(uC(g)). Since Φ(A) ≤ A, tC(g) ∈ pA(uC(g)) and thus g ∈ p(u)(t)A. Therefore, A
satisfies p(u)(t) ⇐ φ.

(6) For all A ∈ StructSP , p : e′ → P(e) ∈ P , a ∈ Ae and b ∈ Ae′,

a ∈ plfp(Φ)(b)
(3)⇒

∀B ∈ StructΣ ,C : (Φ(B) ≤ B ⇒ a ∈ pB(b))
(5)⇒ ∀B ∈ StructSP : a ∈ pA(b),

i.e., lfp(Φ) ≤ A.

(7) Let A ∈ StructSP . Since Φ(A) = A iff for all p ∈ P , pΦ(A) = pA, it remains to show
that for all p : e′ → P(e) ∈ P ,

pΦ(A) = pA ⇔ A |= [AXp]. (8)

Let x ∈ Ve \ var(AXp) and z ∈ Ve′ \ var(AXp). Then

pΦ(A) = pA

(2)⇔ ∀ a ∈ Ae, b ∈ Ae′ :

a ∈ pA(b) ⇔ ∃ p(u)(t) ⇐ φ ∈ AX, g ∈ φA : ⟨t, u⟩C(g) = (a, b)

⇔ p(z)(x)A =
⋃
p(u)(t)⇐φ∈AX{g ∈ φA | ⟨t, u⟩C(g) = (g(x), g(z))}

343

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

⇔ p(z)(x)A =
⋃
p(u)(t)⇐φ∈AX(∃ free(φ) : ((t, u) = (x, z) ∧ φ))A

⇔ p(z)(x)A = (
∨
p(u)(t)⇐φ∈AX ∃ free(φ) : ((t, u) = (x, z) ∧ φ))A

⇔ (p(z)(x) ⇔ (
∨
p(u)(t)⇐φ∈AX ∃ free(φ) : ((t, u) = (x, z) ∧ φ)))A = AV

⇔ [AXp]
A = AV

⇔ A |= [AXp],

i.e., (8) holds true. ❏

Lemma 11.1 (5) implies lfp(ΦSP) ∈ StructSP . Hence Lemma 11.1 (6) justifies it to call
lfp(ΦSP) the least solution of AX in StructΣ ,C.

Lemma 11.2 Suppose that SP is a co-Horn specification of P and Φ = ΦSP .

StructSP = {A ∈ StructΣ ,C | A ≤ Φ(A)}. (9)

Moreover, for all A ∈ StructSP ,
A ≤ gfp(Φ), (10)

Φ(A) = A iff ∀ p ∈ P : A |= ⟨AXp⟩. (11)

344

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

Proof. (9) Let p : e′ → P(e) ∈ P , A ∈ StructSP with carrier A, b ∈ Ae′ and a ∈ Ae \
pΦ(A)(b). Then by (2), (a, b) = ⟨t, u⟩C(g) for some p(u)(t) ⇒ φ ∈ AX and g ∈ AV \ φA.

Since A satisfies p(u)(t) ⇒ φ, g ∈ AV \ p(u)(t)A and thus

a = tC(g) ∈ Ae \ p(u)A(g) = Ae \ pA(uC(g)) = Ae \ pA(b).
Hence pA(b) ⊆ pΦ(A)(b) and thus A ≤ Φ(A).

Conversely, let A ≤ Φ(A), p(u)(t) ⇒ φ ∈ AX and g ∈ AV \ φA. Then by (2), tC(g) ⊆
Ae \ pΦ(A)(uC(g)). Since A ≤ Φ(A), tC(g) ∈ Ae \ pA(uC(g)) and thus g ∈ AV \ p(u)(t)A.
Therefore, A satisfies p(u)(t) ⇒ φ.

(10) For all A ∈ StructSP , p : e′ → P(e) ∈ P , a ∈ Ae and b ∈ Ae′,

a ∈ pA(b) ⇒ ∃B ∈ StructSP : a ∈ pB(b)
(9)⇒ ∃B ∈ StructΣ ,C : (B ≤ Φ(B) ∧ a ∈ pB(b))

(4)⇒ a ∈ pgfp(Φ)(b),

i.e., A ≤ gfp(Φ).

(11) Let A ∈ StructSP . Since Φ(A) = A iff for all p : e′ → P(e) ∈ P , pΦ(A) = pA, it
remains to show that for all p ∈ P ,

pΦ(A) = pA ⇔ A |= ⟨AXp⟩. (12)

345

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications
Let x ∈ Ve \ var(AXp) and z ∈ Ve′ \ var(AXp). Then

pΦ(A) = pA

(2)⇔ ∀ a ∈ Ae, b ∈ Ae′ :

a ∈ pA(b) ⇔ ∀ p(u)(t) ⇒ φ ∈ AX, g ∈ AV \ φA : ⟨t, u⟩C(g) ̸= (a, b)

⇔ p(z)(x)A =
⋂
p(u)(t)⇒φ∈AX{g ∈ AV | ⟨t, u⟩C(g) ̸= (g(x), g(z)) ∨ g ∈ φA}

⇔ p(z)(x)A =
⋂
p(u)(t)⇒φ∈AX(∀ free(φ) : ((t, u) ̸= (x, z) ∨ φ))A

⇔ p(z)(x)A = (
∧
p(u)(t)⇒φ∈AX ∀ free(φ) : ((t, u) ̸= (x, z) ∨ φ))A

⇔ (p(z)(x) ⇔ (
∧
p(u)(t)⇒φ∈AX ∀ free(φ) : ((t, u) ̸= (x, z) ∨ φ)))A = AV

⇔ ⟨AXp⟩A = AV

⇔ A |= ⟨AXp⟩,

i.e., (12) holds true. ❏

Lemma 11.2 (9) implies gfp(ΦSP) ∈ StructSP . Hence Lemma 11.2 (10) justifies it to call
gfp(ΦSP) the greatest solution of AX in StructΣ ,C.

346

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications
Theorem 11.3 (How to specify complement predicates)

Let SP = (Σ, AX, C), Φ = ΦSP ,

AX ′ =

{
{p(u)(t) ⇒ φ | p(u)(t) ⇐ φ ∈ AX} if SP is a Horn specification,
{p(u)(t) ⇐ φ | p(u)(t) ⇒ φ ∈ AX} if SP is a co-Horn specification,

SP ′ = (Σ′, AX ′, C) and Φ′ = ΦSP ′ where φ is defined inductively as follows:

True = False, False = True, for all atoms at ∈ Λ(S,F)(V), at = ¬at, for all p : e′ →
P(e) ∈ P and t : e, u : e′ ∈ Λ(S,F)(V), p(u)(t) = p(u)(t), and for all φ, ψ ∈ FoΣ′(V) and
x ∈ V , φ ∧ ψ = φ ∨ ψ, φ ∨ ψ = φ ∧ ψ, ∀xφ = ∃xφ and ∃xφ = ∀xφ.

(i) Let SP be a Horn specification of P . gfp(Φ′) = lfp(Φ), i.e., for all p : e′ → P(e) ∈ P

and b ∈ Ae′,
pgfp(Φ

′)(b) = Ae \ plfp(Φ)(b).

(ii) Let SP be a co-Horn specification of P . lfp(Φ′) = gfp(Φ), i.e., for all p : e′ → P(e) ∈
P and b ∈ Ae′,

plfp(Φ
′)(b) = Ae \ pgfp(Φ)(b).

Proof. (i) Following the proof of Theorem 3.10, suppose that for all A ∈ StructΣ ,C,

Φ′(A) = Φ(A). (13)

347

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications
Then

gfp(Φ′)
(4)
=

⊔
{A ∈ StructΣ ,C | A ≤ Φ′(A)} (13)

=
⊔
{A ∈ StructΣ ,C | A ≤ Φ(A)}

=
⊔
{A ∈ StructΣ ,C | Φ(A) ≤ A} =

⊔
{A | A ∈ StructΣ ,C, Φ(A) ≤ A}

=
⊔
{A | A ∈ StructΣ ,C, Φ(A) ≤ A} =

d
{A ∈ StructΣ ,C | Φ(A) ≤ A} = lfp(Φ).

It remains to show (13). Suppose that for all A ∈ StructΣ ,C and Σ-formulas φ that are
flat for P ,

φA = AV \ φA. (14)

Then for all p : e′ → P(e) ∈ P , A ∈ StructΣ ,C, a ∈ Ae and b ∈ Ae′,

a ∈ pΦ(A)(b) ⇔ a ̸∈ pΦ(A)(b)
(2)⇔ ¬(∃ p(u)(t) ⇐ φ ∈ AX, g ∈ φA : ⟨t, u⟩C(g) = (a, b))

⇔ ∀ p(u)(t) ⇐ φ ∈ AX, g ∈ φA : ⟨t, u⟩C(g) ̸= (a, b)

⇔ ∀ p(u)(t) ⇐ φ ∈ AX, g ∈ AV \ AV \ φA : ⟨t, u⟩C(g) ̸= (a, b)
(14)⇔ ∀ p(u)(t) ⇒ φ ∈ AX ′, g ∈ AV \ φA : ⟨t, u⟩C(g) ̸= (a, b)
(2)⇔ a ∈ pΦ

′(A).

It remains to show (14). We show (14) by induction on the size of φ:

348

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

True
A
= FalseA = ∅ = AV \ AV = AV \ TrueA,

False
A
= TrueA = AV = AV \ ∅ = AV \ FalseA.

For all atoms at ∈ Λ(S,F)(V) and g ∈ AV ,

g ∈ at
A ⇔ g ∈ (¬at)A ⇔ g ∈ (¬at)C ⇔ g ̸∈ atC ⇔ g ̸∈ atA ⇔ g ∈ AV \ atA.

For all p : e′ → P(e) ∈ P , t : e, u : e′ ∈ Λ(S,F)(V) and g ∈ AV ,

g ∈ p(u)(t)
A ⇔ g ∈ p(u)(t)A ⇔ tC(g) ∈ p(u)A ⇔ tC(g) ̸∈ p(u)A

⇔ g ̸∈ p(u)(t)A ⇔ g ∈ AV \ p(u)(t)A.
For all φ, ψ ∈ FoΣ′(V) and x ∈ V ,

φ ∧ ψA
= (φ ∨ ψ)A = φA ∪ ψA ind. hyp.

= AV \ φA ∪ AV \ ψA = AV \ (φA ∩ ψA)

= AV \ (φ ∧ ψ)A,
φ ∨ ψA

= (φ ∧ ψ)A = φA ∩ ψA ind. hyp.
= AV \ φA ∩ AV \ ψA = AV \ (φA ∪ ψA)

= AV \ (φ ∨ ψ)A,
∀xφA

= (∃xφ)A =
⋃
a∈Ae

{g ∈ AV | g[a/x] ∈ φA}
ind. hyp.

=
⋃
a∈Ae

{g ∈ AV | g[a/x] ∈ AV \ φA} = AV \
⋂
a∈Ae

{g ∈ AV | g[a/x] ∈ φA}
= AV \ (∀xφ)A,

349

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

∃xφA
= (∀xφ)A =

⋂
a∈Ae

{g ∈ AV | g[a/x] ∈ φA}
ind. hyp.

=
⋂
a∈Ae

{g ∈ AV | g[a/x] ∈ AV \ φA} = AV \
⋃
a∈Ae

{g ∈ AV | g[a/x] ∈ φA}
= AV \ (∃xφ)A

(ii) can be shown analogously. ❏

In the following examples, atoms of the form p()(t) are abbreviated to p(t).

Example 1 (even and odd) Let S = {nat},

F = {0 : 1 → nat, succ : nat→ nat},
C = N, (see sample algebra 9.6.1)
P = {even, odd : 1 → P(nat)}, Σ = (S, F ∪ P), V = {n : nat}

and AX consist of the following Horn clauses:

even(0) ⇐ True

even(succ(n)) ⇐ odd(n)

odd(succ(n)) ⇐ even(n)

350

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

The least solution of AX in StructΣ ,C interprets even and odd as the sets of even and
odd natural numbers, respectively.

Example 2 (partition and flatten lists) Let X be a set, S = {state, state′},

F = {α : 1 → state, α′ : 1 → state′, cons : X × state→ state,

cons′ : state× state′ → state′, ++ : state× state→ state},
C = X∗, (see sample algebra 9.6.3)
P = {part : 1 → P(state× state′), flatten : 1 → P(state′ × state)},

Σ = (S, F ∪ P), V = {x, y : X, s, s′ : state, p : state′} and AX consist of the following
Horn clauses:

part(cons(x, α), cons′(cons(α), α′)) ⇐ True

part(cons(x, cons(y, s)), cons′(cons(x, α), p)) ⇐ part(cons(y, s), p)

part(cons(x, cons(y, s)), cons′(cons(x, s′), p)) ⇐ part(cons(y, s), cons′(s′, p))

flatten(α′, α) ⇐ True

flatten(cons′(s, p), s ++s′) ⇐ flatten(p, s′)

351

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

The least solution of AX in StructΣ ,C interprets part and flatten as the I/O relations of
partitioning and flattening lists, respectively.

Example 3 (sorted and unsorted) Let X be a set, S = {state},

F = {α : 1 → state, cons : X × state→ state, ≤: 1 → P(X ×X)},
C = X∗, (see sample algebra 9.6.3)
P = {sorted, unsorted : 1 → P(state)},

Σ = (S, F ∪P), V = {x, y : X, s : state} and AX consist of the following Horn clauses:

sorted(α) ⇐ True

sorted(cons(x, α)) ⇐ True

sorted(cons(x, cons(y, s))) ⇐ x ≤ y ∧ sorted(cons(y, s))
unsorted(cons(x, cons(y, s))) ⇐ ¬(x ≤ y)

unsorted(cons(x, cons(y, s))) ⇐ unsorted(cons(y, s)))

The least solution of AX in StructΣ ,C interprets sorted and unsorted as the sets of sorted
and unsorted lists over X , respectively.

352

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

The transformation of AX according to Theorem 11.3 (and exchanging predicate names)
leads to the following co-Horn clauses whose greatest solution in StructΣ ,C interprets
sorted and unsorted also as the sets of sorted and unsorted lists, respectively:

unsorted(α) ⇒ False

unsorted(cons(x, α)) ⇒ False

unsorted(cons(x, cons(y, s))) ⇒ ¬(x ≤ y) ∨ unsorted(cons(y, s)))
sorted(cons(x, cons(y, s))) ⇒ x ≤ y

sorted(cons(x, cons(y, s))) ⇒ sorted(cons(y, s))

Example 4 (sequents for predicates on streams) Let X , 0 ∈ X , S = {state},

F = {head : state→ X, tail : state→ state, ≤: 1 → P(X ×X)},
C = XN, (see sample algebra 9.6.5)
P = {unsorted, has0 : 1 → P(state)},

Σ = (S, F ∪ P), V = {s : state} and AX consist of the following Horn clauses:

unsorted(s) ⇐ ¬(head(s) ≤ head(tail(s))) ∨ unsorted(tail(s))
has0(s) ⇐ head(s) = 0 ∨ has0(tail(s))

353

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

The least solution of AX in StructΣ ,C interprets unsorted as the set of unsorted streams
over X and has0 as the set of streams over X with at least one zero. Let

SP = (Σ, AX, C),
F ′ = F ∪ {has0 : 1 → P(state)},
C ′ = XN, ∀ f ∈ F : fC

′
= fC, has0C

′
= has0lfp(ΦSP)

P ′ = {sorted, not_has0, has∞0, blink, blink′ : 1 → P(state)},

Σ′ = (S, F ∪ P ∪ P ′), V = {s : state} and AX ′ consist of the following co-Horn clauses:

sorted(s) ⇒ head(s) ≤ head(tail(s)) ∧ sorted(tail(s))
not_has0(s) ⇒ head(s) ̸= 0 ∨ not_has0(tail(s))
has∞0(s) ⇒ has0(s) ∧ has∞0(tail(s))

blink(s) ⇒ head(s) = 0 ∧ blink′(s)
blink′(s) ⇒ head(s) = 1 ∧ blink(s)

The greatest solution of AX ′ in StructΣ ′,C′ interprets sorted as the set of sorted streams
over X , not_has0 as the set of streams over X without zeros, has∞0 as the set of
streams over X with infinitely many zeros and blink and blink′ as two sets of streams
over X whose elements alternate between zero and nonzero components.

354

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications
Let SP ′ = (Σ′, AX ′, C ′),

F ′′ = F ′ ∪ {not_has0 : 1 → P(state)},
C ′′ = XN, ∀ f ∈ F ′ : fC

′′
= fC

′
, not_has0C′′ = not_has0gfp(ΦSP ′)

P ′′ = {not_has∞0 : 1 → P(state)},
Σ′′ = (S, F ∪ P ∪ P ′ ∪ P ′′), V = {s : state} and AX ′′ consist of the following Horn
clause:

not_has∞0(s) ⇐ not_has0(s) ∧ not_has∞0(tail(s))

The least solution of AX ′′ in StructΣ ′′,C′′ interprets not_has∞0 as the set of streams over
X with at most finitely many zeros. Again, the (co-)Horn axioms for the complement of a
predicate p result from transforming the axioms for p (and exchanging predicate names)
according to Theorem 11.3.

Example 5 The least solution of the Horn clause

sorted(s) ⇐ head(s) ≤ head(tail(s)) ∧ sorted(tail(s))

is empty and thus not the set of sorted streams over X - as it might appear at first sight.
Similarly, the greatest solution of the following co-Horn clause

unsorted(s) ⇒ ¬(head(s) ≤ head(tail(s)) ∨ unsorted(tail(s))

is the set of all streams over X and thus not the proper subset of unsorted streams.

355

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

Example 6 (Cartesian product and existential projection) Let S = {s, s′},
P = {(∗) : P(s)× P(s′) → P(s× s′), ∃̂ : P(s× s′)× P(s′) → P(s)},
Σ = (S, F ∪ P), V = {x, y : s, φ : P(s), ψ : P(s′), r : P(s× s′)}

and AX consist of the following Horn clauses:

(φ ∗ ψ)(x, y) ⇐ φ(x) ∧ ψ(y)
∃̂(r, ψ)(x) ⇐ r(x, y) ∧ ψ(y)

For all φ : P(s), ψ : P(s′), r : P(s × s′) ∈ Λ(S,F)(V), the interpretations of φ ∗ ψ and
∃̂(r, ψ) in lfp(Φ(Σ,AX,C)) coincides with (φ ∗ ψ)C and ∃(r)(ψ)C, respectively (see sections
10.2 and 10.3).

Example 7 (Relational division and universal projection) Let S = {s, s′},
P = {(/), ∀̂ : P(s× s′)× P(s′) → P(s)},
Σ = (S, F ∪ P), {x, y : s, ψ : P(s′), r : P(s× s′)}

and AX consist of the following co-Horn clauses:

(r/ψ)(x) ⇒ (ψ(y) ⇒ r(x, y))

∀̂(r, ψ)(x) ⇒ (r(x, y) ⇒ ψ(y))

356

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

For all ψ : P(s′), r : P(s × s′) ∈ Λ(S,F)(V), the interpretations of r/ψ and ∀̂(r, ψ) in
gfp(Φ(Σ,AX,C)) coincides with (r/ψ)C and ∀(r)(ψ)C, respectively (see sections 10.2 and
10.3).

Example 8 (EF and AG) Let S = {state}, (S, F) = KripkeSig ,

P = {EF : P(state) → P(state)},
P ′ = {AG : P(state) → P(state)},
Σ = (S, F ∪ P), Σ′ = (S, F ∪ P ′), V = {s, s′ : state, φ : P(state)},

and AX and AX ′ consist of the following Horn and co-Horn clauses, respectively:

EF (φ)(s) ⇐ φ(s)

EF (φ)(s) ⇐ child(∅)(s, s′) ∧ EF (φ)(s′)

AG(φ)(s) ⇒ φ(s)

AG(φ)(s) ⇒ (child(∅)(s, s′) ⇒ AG(φ)(s′))

For all φ : P(state) ∈ Λ(S,F)(V), the interpretation of EF (φ) in lfp(Φ(Σ,AX,C)) coincides
with EF (φ)C and the interpretation of AG(φ) in gfp(Φ(Σ′,AX ′,C)) coincides with AG(φ)C

(see sections 10.2 and 10.3).

357

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

The examples show that Horn and co-Horn clauses yield the formula counterpart of the
fixpoint operators, which were introduced as λ-terms in section 10.3. Hence induction
and coinduction provide proof rules for sequents as they do for the corresponding µ- and
ν-terms, respectively (see Theorem 10.8):

Theorem 11.4 (fixpoint induction and coinduction for sequents)

For all p : e′ → P(e) ∈ P , let φp : e′ → P(e) be a closed (S, F)-λ-term.

(i) Let SP = (Σ, AX, C) be a Horn specification of P such that for all cl ∈ AX ,
A = lfp(ΦSP) satisfies cl[φp/p | p ∈ P]. Then for all p : e′ → P(e) ∈ P , x ∈ Ve and
z ∈ Ve′, A satisfies the co-Horn clause

p(z)(x) ⇒ φp(z)(x),

i.e., p(z)(x)A ⊆ φ(z)(x)A.

(ii) Let SP = (Σ, AX, C) be a co-Horn specification of P such that for all cl ∈ AX ,
A = lfp(ΦSP) satisfies cl[φp/p | p ∈ P]. Then for all p : e′ → P(e) ∈ P , x ∈ Ve and
z ∈ Ve′, A satisfies the Horn clause

p(z)(x) ⇐ φp(z)(x),

358

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications
i.e., φ(z)(x)A ⊆ p(z)(x)A.

Proof. Let B ∈ StructΣ ,C be defined by pB = φA
p for all p : e′ → P(e) ∈ P .

(i) By assumption, for all cl ∈ AX , B satisfies AX . Hence by Lemma 11.1 (5), B is
ΦSP -closed. Since lfp(ΦSP) is the least ΦSP -closed Σ-algebra with (S, F)-reduct C, for
all p : e′ → P(e) ∈ P and b ∈ Ae′,

pA(b) ⊆ pB(b) = φA
p (b) = φC

p(b). (1)

(i) is obtained by a sequence of equivalences: Let x ∈ Ve and z ∈ Ve′.

(1) ⇔ ∀a ∈ Ae, b ∈ Ae′ : (a ∈ pA(b) ⇒ a ∈ φC
p(b)

⇔ ∀g ∈ AV : (g(x) ∈ pA(g(z)) ⇒ g(x) ∈ φC
p(g(z))

⇔ ∀g ∈ AV : (g ∈ p(z)(x)A ⇒ g ∈ φp(z)(x)
C)

⇔ p(z)(x)A ⊆ φp(z)(x)
C

⇔ AV \ p(z)(x)A ∪ φp(z)(x)C = AV

⇔ A |= ¬p(z)(x) ∨ φp(z)(x)
⇔ A |= p(z)(x) ⇒ φp(z)(x)

(ii) By assumption, for all cl ∈ AX , B satisfies AX . Hence by Lemma 11.2 (9), B is
ΦSP -dense.

359

11.1 Syntax and semantics 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

Since gfp(ΦSP) is the greatest ΦSP -dense Σ-algebra with (S, F)-reduct C, for all p : e′ →
P(e) ∈ P and b ∈ Ae′,

φC
p(b) = φA

p (b) = pB(b) ⊆ pA(b). (2)

(ii) is obtained by a sequence of equivalences: Let x ∈ Ve and z ∈ Ve′.

(2) ⇔ ∀a ∈ Ae, b ∈ Ae′ : (a ∈ φC
p(b) ⇒ a ∈ pA(b)

⇔ ∀g ∈ AV : (g(x) ∈ φC
p(g(z)) ⇒ g(x) ∈ pA(g(z))

⇔ ∀g ∈ AV : (g ∈ φp(z)(x)
C ⇒ g ∈ p(z)(x)A)

⇔ φp(z)(x)
C ⊆ p(z)(x)A

⇔ AV \ φp(z)(x)C ∪ p(z)(x)A = AV

⇔ A |= ¬φp(z)(x) ∨ p(z)(x)
⇔ A |= φp(z)(x) ⇒ p(z)(x) ❏

Rule-based versions of fixpoint induction and coinduction for sequents, which can even
derive generalizations of the original conjectures, are presented in sections 12.1 and 13.1,
respectively, and implemented in Expander2.

360

https://fldit-www.cs.tu-dortmund.de/~peter/Expander2.html

11.2 When Kleene closures are fixpoints 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

11.2 When Kleene closures are fixpoints

In chapters 12 and 13, proof rules for predicate specifications are presented that are based
on the fixpoints of ΦSP as derived from Theorem 3.9 (1) and (5) (see (3) and (4) above).
If the Kleene closures of ΦSP are ΦSP -closed resp. -dense, the fixpoints are given by these
closures (see Theorem 3.9 (4) and (8)).

The present section shows that Φ∞
SP is ΦSP -closed and ΦSP,∞ is ΦSP -dense if for all

quantified subformulas Qxφ of an axiom of SP , φ has only finitely many solutions in x:

An (S, F)-formula φ is finitely C-solvable if for all g ∈ AV ,

Sol(φ, x, g) = {a ∈ Ae | g[a/x] ∈ φC}

is finite.

361

11.2 When Kleene closures are fixpoints 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

SP = (Σ, AX, C) is finitely solvable if

(i) AX consists of Horn clauses and for all subformulas ∀xφ of the premise of a clause
of AX , φ ∈ Fo(S,F)(V) or φ = (ψ ⇒ ϑ) for some finitely C-solvable (S, F)-formula ψ
and ϑ ∈ FoΣ(V), or

(ii) AX consists of co-Horn clauses and for all subformulas ∃xφ of the conclusion of
a clause of AX , φ = (ψ ∧ ϑ) for some finitely C-solvable (S, F)-formula ψ and
ϑ ∈ FoΣ(V).

Lemma 11.5

(i) Let SP = (Σ, AX, C) be a finitely solvable Horn specification of P and Φ = ΦSP .
Then for all subformulas φ of the premise of a clause of AX ,

φΦ∞ ⊆
⋃
n<ω

φΦn(⊥).

(ii) Let SP = (Σ, AX, C) be a finitely solvable co-Horn specification of P and Φ = ΦSP .
Then for all subformulas φ of the conclusion of a clause of AX ,⋂

n<ω

φΦn(⊤) ⊆ φΦ∞.

362

11.2 When Kleene closures are fixpoints 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications
Proof of (i) by induction on the size of φ.

For all atoms p(t) ∈ ΛΣ(V) that are flat for P ,

p(t)Φ
∞

= {g ∈ AV | tC(g) ∈ pΦ
∞
(g)} = {g ∈ AV | tC(g) ∈ p

⊔
n<ω Φn(⊥)(g)}

= {g ∈ AV | ∃n ∈ N : tC(g) ∈ pΦ
n(⊥)(g)}

=
⋃
n<ω{g ∈ AV | tC(g) ∈ pΦ

n(⊥)(g)} =
⋃
n<ω p(t)

Φn(⊥).

For all φ, ψ ∈ FoΣ(V) and x : e ∈ V ,

(φ ∨ ψ)Φ∞
= φΦ∞ ∪ ψΦ∞ ind. hyp.

⊆ (
⋃
n<ω φ

Φn(⊥)) ∪ (
⋃
n<ω ψ

Φn(⊥))

=
⋃
n<ω(φ

Φn(⊥) ∪ ψΦn(⊥)) =
⋃
n<ω(φ ∨ ψ)Φn(⊥),

(φ ∧ ψ)Φ∞
= φΦ∞ ∩ ψΦ∞ ind. hyp.

⊆ (
⋃
n<ω φ

Φn(⊥)) ∩ (
⋃
n<ω ψ

Φn(⊥))

=
⋃
m,n<ω(φ

Φm(⊥) ∩ ψΦn(⊥)) ⊆
⋃
m,n<ω(φ

Φmax(m,n)(⊥) ∩ ψΦmax(m,n)(⊥))

⊆
⋃
n<ω(φ

Φn(⊥) ∩ ψΦn(⊥)) =
⋃
n<ω(φ ∧ ψ)Φn(⊥),

(∃xφ)Φ∞
=

⋃
a∈Ae

{g ∈ AV | g[a/x] ∈ φΦ∞}
ind. hyp.

⊆
⋃
a∈Ae

{g ∈ AV | g[a/x] ∈
⋃
n<ω φ

Φn(⊥)}
=

⋃
n<ω

⋃
a∈Ae

{g ∈ AV | g[a/x] ∈ φΦn(⊥)} =
⋃
n<ω(∃xφ)Φ

n(⊥).

363

11.2 When Kleene closures are fixpoints 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

Let g ∈ AV . Suppose that there is n ∈ N such that

∀ a ∈ Ae : g[a/x] ∈ φΦ∞ ⇒ ∀ a ∈ Ae : g[a/x] ∈ φΦn(⊥). (15)

Then

(∀xφ)Φ∞
=

⋂
a∈Ae

{g ∈ AV | g[a/x] ∈ φΦ∞}
(15)

⊆
⋂
a∈Ae

{g ∈ AV | g[a/x] ∈ φΦn(⊥)}
= (∀xφ)Φn(⊥) ⊆

⋃
n<ω(∀xφ)Φ

n(⊥).

It remains to show (15): For all a ∈ Ae, let g[a/x] ∈ φΦ∞. By induction hypothesis,

∀ a ∈ Ae : ∃ na ∈ N : g[a/x] ∈ φΦna(⊥). (16)

Since SP is finitely solvable, φ ∈ Fo(S,F)(V) or there are ψ ∈ Fo(S,F)(V) and ϑ ∈ FoΣ(V)

such that φ = (ψ ⇒ ϑ) and ψ is finitely C-solvable. In the first case, for all n ∈ N,
φΦ∞

= φC = φΦn(⊥), and thus (15) holds true trivially. In the second case, (16) implies

∀ a ∈ Ae : ∃ na ∈ N : (g[a/x] ∈ ψC ⇒ g[a/x] ∈ ϑΦ
na(⊥)). (17)

Since Sol(ψ, x, g) is finite, n = max{na | g[a/x] ∈ ψC} < ω. Since ϑΦna(⊥) ⊆ ϑΦ
n(⊥),

(17) implies
∀ a ∈ Ae : (g[a/x] ∈ ψC ⇒ g[a/x] ∈ ϑΦ

n(⊥))

and thus (15).

364

11.2 When Kleene closures are fixpoints 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications
Proof of (ii) by induction on the size of φ.

For all atoms p(t) ∈ ΛΣ(V) that are flat for P ,

p(t)Φ∞ = {g ∈ AV | tC(g) ∈ pΦ∞(g)} = {g ∈ AV | tC(g) ∈ p
d

n<ω(Φ
n(⊤)(g)}

= {g ∈ AV | ∀ n ∈ N : tC(g) ∈ pΦ
n(⊤)(g)}

=
⋂
n<ω{g ∈ AV | tC(g) ∈ pΦ

n(⊤)(g)} =
⋂
n<ω p(t)

Φn(⊤).

For all φ, ψ ∈ FoΣ′(V) and x : e ∈ V ,

(φ ∧ ψ)Φ∞ = φΦ∞ ∩ ψΦ∞
ind. hyp.

⊇ (
⋂
n<ω φ

Φn(⊤)) ∩ (
⋂
n<ω ψ

Φn(⊤))

=
⋂
n<ω(φ

Φn(⊤) ∩ ψΦn(⊤)) =
⋂
n<ω(φ ∧ ψ)Φn(⊤),

(φ ∨ ψ)Φ∞ = φΦ∞ ∪ ψΦ∞
ind. hyp.

⊇ (
⋂
n<ω φ

Φn(⊤)) ∪ (
⋂
n<ω ψ

Φn(⊤))

=
⋂
m,n<ω(φ

Φm(⊤) ∪ φΦn(⊤)) ⊇
⋂
m,n<ω(φ

Φmin(m,n)(⊤) ∪ φΦmin(m,n)(⊤))

⊇
⋂
n<ω(φ

Φn(⊤) ∪ ψΦn(⊤)) =
⋂
n<ω(φ ∨ ψ)Φn(⊤),

(∀xφ)Φ∞ =
⋂
a∈Ae

{g ∈ AV | g[a/x] ∈ φΦ∞}
ind. hyp.

⊇
⋂
a∈Ae

{g ∈ AV | g[a/x] ∈
⋂
n<ω φ

Φn(⊤)}
=

⋂
n<ω

⋂
a∈Ae

{g ∈ AV | g[a/x] ∈ φΦn(⊤)} =
⋂
n<ω(∀xφ)Φ

n(⊤).

365

11.2 When Kleene closures are fixpoints 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

Let g ∈
⋂
n<ω(∃xφ)Φ

n(⊤). Then for all n ∈ N there is an ∈ Ae such that g[an/x] ∈ φΦn(⊤).
Since SP is finitely solvable, there are ψ ∈ Fo(S,F)(V) and ϑ ∈ FoΣ(V) such that
φ = (ψ ∧ ϑ) and ψ is finitely C-solvable. Hence for all n ∈ N there is an ∈ Ae such that
g[an/x] ∈ ψC and g[an/x] ∈ ϑΦ

n(⊤).

Since Sol(ψ, x, g) is finite, there is a ∈ Ae such that a = an for infinitely many n ∈ N.
Hence for all n ∈ N there is kn ≥ n such that a = akn and thus

g[a/x] = g[akn/x] ∈ ψC ∩ ϑΦkn(⊤) = φΦkn(⊤) ⊆ φΦn(⊤).

Therefore, g[a/x] ∈
⋂
n<ω φ

Φn(⊤). By induction hypothesis, g[a/x] ∈ φΦ∞ and thus
g ∈ (∃xφ)Φ∞. ❏

Theorem 11.6

(i) Let SP = (Σ, AX, C) be a finitely solvable Horn specification of P . Then Φ∞
SP is the

least fixpoint of ΦSP .

(ii) Let SP = (Σ, AX, C) be a finitely solvable co-Horn specification of P . Then ΦSP,∞
is the greatest fixpoint of ΦSP .

366

11.2 When Kleene closures are fixpoints 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

Proof. Let Φ = ΦSP .

(i) By Theorem 3.9 (4), it is sufficient to show that Φ∞ is Φ-closed, i.e.,

Φ(Φ∞) ≤ Φ∞. (18)

Let p : e′ → P(e) ∈ P . Then for all a ∈ Ae and b ∈ Ae′,

a ∈ pΦ(Φ
∞)(b)

(2)⇔ ∃ p(u)(t) ⇐ φ ∈ AX, g ∈ φΦ∞
: ⟨t, u⟩C(g) = (a, b)

Lemma 11.5 (i)⇒ ∃ p(u)(t) ⇐ φ ∈ AX, g ∈
⋃
n<ω φ

Φn(⊥) : ⟨t, u⟩C(g) = (a, b)

⇔ ∃ n < ω, p(u)(t) ⇐ φ ∈ AX, g ∈ φΦn(⊥) : ⟨t, u⟩C(g) = (a, b)
(2)⇔ ∃ n < ω : a ∈ pΦ

n(⊥)(b)

⇔ a ∈ pΦ
∞
(b).

Hence (18) holds true.

(ii) By Theorem 3.9 (8), it is sufficient to show that Φ∞ is Φ-dense, i.e.,

Φ∞ ≤ Φ(Φ∞). (19)

Let p : e′ → P(e) ∈ P . Then for all a ∈ Ae and b ∈ Ae′,

367

11.2 When Kleene closures are fixpoints 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

a ∈ pΦ∞(b)

⇔ ∀ n < ω : a ∈ pΦ
n(⊤)(b)

(2)⇔ ∀ n < ω, p(u)(t) ⇒ φ ∈ AX, g ∈ AV \ φΦn(⊤) : ⟨t, u⟩C(g) ̸= (a, b)

⇔ ∀ n < ω, p(u)(t) ⇒ φ ∈ AX, g ∈ AV : g ∈ φΦn(⊤) ∨ ⟨t, u⟩C(g) ̸= (a, b)

⇔ ∀ p(t) ⇒ φ ∈ AX, g ∈ AV : ∀ n < ω : g ∈ φΦn(⊤) ∨ ⟨t, u⟩C(g) ̸= (a, b)

⇔ ∀ p(t) ⇒ φ ∈ AX, g ∈ AV : g ∈
⋂
n<ω φ

Φn(⊤) ∨ ⟨t, u⟩C(g) ̸= (a, b)
Lemma 11.5 (ii)⇒ ∀ p(t) ⇒ φ ∈ AX, g ∈ AV : g ∈ φΦ∞ ∨ ⟨t, u⟩C(g) ̸= (a, b)

⇔ ∀ p(t) ⇒ φ ∈ AX, g ∈ AV \ φΦ∞ : ⟨t, u⟩C(g) ̸= (a, b)
(2)⇔ a ∈ pΦ∞(b).

Hence (19) holds true. ❏

Example 9 (EF and AG with quantifiers) Let Σ, Σ′ and V be as in Example 8 and
SP = (Σ, AX, C) where AX consists of the following co-Horn clause:

EF (φ)(s) ⇒ φ(s) ∨ ∃s′ : (child(∅)(s, s′) ∧ EF (φ)(s′))

For all φ : P(state) ∈ Λ(S,F)(V), the interpretation of EF (φ) in gfp(ΦSP) coincides with
EF (φ)C (see sections 10.2 and 10.3).

368

11.2 When Kleene closures are fixpoints 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

Moreover, if C is finitely branching (see section 10.3), then SP is finitely solvable and
thus by Theorem 11.6 (ii), gfp(ΦSP) = ΦSP,∞.

Let SP ′ = (Σ, AX ′, C) where AX ′ consists of the following Horn clause:

AG(φ)(s) ⇐ φ(s) ∧ ∀s′ : (child(∅)(s, s′) ⇒ AG(φ)(s′))

For all φ : P(state) ∈ Λ(S,F)(V), the interpretation of AG(φ) in lfp(ΦSP ′) coincides with
AG(φ)C (see sections 10.2 and 10.3). Moreover, if C is finitely branching, then SP ′ is
finitely solvable and thus by Theorem 11.6 (i), lfp(ΦSP ′) = Φ∞

SP ′.

369

11.3 Deduction in sequent logic 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

11.3 Deduction in sequent logic

• Top-down derivations transform Σ-formulas into True or other formulas that rep-
resent solutions:

prove φ: φ ⊢ True

solve φ: φ ⊢ solved formula (see below)
refute φ: ¬φ ⊢ True

verify p: p(x) ⇒ φ ⊢ True

evaluate p: p(x) ⇐ φ ⊢ True

evaluate t: t = x ⊢ x = u

reduce t: t→ x ⊢
∨n
i=1 x = ui

A derivation
φ1 ⊢ φ2 ⊢ . . . ⊢ φn

is sound with respect to the fixpoint semantics defined above, i.e., yields a sequence of
reverse implications:

φ1 ⇐ φ2 ⇐ . . . ⇐ φn

370

11.3 Deduction in sequent logic 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications
The above goals are achieved if φ1 and φn, respectively, look as follows:

prove φ1: φn = True

refute φ1: φn = False

solve φ1: φn is a solved formula, i.e.,
φn =

∧k
i=1 ∃ Zi : xi = ui ∧

∧r
i=k+1 ∀ Zi : xi ̸= ui

where x1, . . . , xr are different variables,
u1, . . . , ur are irreducible “normal forms”,
and the relation {(i, j) | ui contains xj}+ is acyclic.

evaluate t: φ1 = (t = x), φn = (x = u)

reduce t: φ1 = (t→ x), φn = (x = u1) ∨ · · · ∨ (x = uk)

Other derivations performed by Expander2 are sequences of (sets of) Σ-formulas of an
arbitrary type:

t1 ⊢ t21<+> . . . <+>t2k2 ⊢ . . . ⊢ tn1<+> . . . <+>tnkn

371

11.3 Deduction in sequent logic 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

<+> is a built-in associative, commutative and idempotent operator that combines sev-
eral reducts of the same redex. Its zero element () denotes undefined.

Rules at three levels of automation/interaction

• bottom: Simplifications are equivalence transformations that partially evaluate terms
and formulas.

• medium: (Co)Resolution, narrowing and rewriting, i.e., narrowing without proper
redex instantiation, apply axioms to goals (formulas or terms), interactively or au-
tomatically, stepwise or iteratively.

• top: Induction and coinduction and other proper expansion rules are mostly used
interactively and stepwise (see chapters 12 and 13). They apply goals (hypotheses)
to axioms and thus prove the former by solving the latter.

372

11.4 Rule applicability 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

11.4 Rule applicability

Let A be a Σ′-algebra and φ,C(φ), ψ be Σ′-formulas such that φ is a subformula of C(φ).

• φ
ψ

⇕ denotes a simplification rule for A, i.e., A satisfies ψ ⇔ φ.

Applied in any context C[φ], it leads to a further simplification rule:
C[φ]

C[ψ]
⇕

• φ
ψ

⇑ denotes an expansion rule for A, i.e., A satisfies ψ ⇒ φ.

Applied in a context C[φ] where φ has positive polarity, it leads to a further expansion
rule:

polarity(position(φ), C[φ]) = + =⇒ C[φ]

C[ψ]
⇑

• φ
ψ

⇓ denotes a contraction rule for A, i.e., A satisfies φ⇒ ψ.

Applied in a contecxt C[φ] where φ has negative polarity, it leads to an expansion
rule:

polarity(position(φ), C[φ]) = − =⇒ C[φ]

C[ψ]
⇑

373

11.5 Resolution and narrowing 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

11.5 Resolution and narrowing

(see also [128, 137, 130])

The (co-)Horn clauses used by the following rules may have guards γ ∈ FoΣ(V), which
are those parts of the respective premises that must be solvable by the unifiers that trigger
the rule appications.

In Expander2, (co)resolution steps are performed by pushing the narrow button. Unifi-
cation of axioms with the actual goal is restricted to matching if the match/unify button
left of the narrow button is set to match. The intervening all/random button admits to
switch between the application of all applicable axioms in parallel (see the respective rule
succedents) and the random selection of a single applicable rule.

❀ Simplification rules [130, 137] execute equivalence transformations of formulas and
terms. Moreover, the simplifier of Expander2 partially evaluates terms w.r.t. built-in
data types.

❀ Narrowing rules (including resolution and coresolution) apply axioms to formulas.
❀ Rewriting rules, i.e., narrowing rules without proper redex instantiation, apply

axioms to terms.
❀ Induction, coinduction and other expansion or contraction rules (see above) are

applied to formulas, always locally and stepwise.

374

https://fldit-www.cs.tu-dortmund.de/~peter/Expander2.html
https://fldit-www.cs.tu-dortmund.de/~peter/Expander2.html

11.5 Resolution and narrowing 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

• Resolution upon a predicate

Let γ1 ⇒ (p(t1) ⇐= φ1), . . . , γn ⇒ (p(tn) ⇐= φn) be all Horn clauses for p in AX ,

(∗) x⃗ be a list of the variables of t,
for all 1 ≤ i ≤ k, tσi = tiσi, C |= γiσi and Zi = var(ti, φi),
for all k < i ≤ n, t be not unifiable with ti.

p(t)∨k
i=1 ∃Zi : (φiσi ∧ x⃗ = x⃗σi)

⇕

If only a single axiom for p is applied, then the corresponding rule is only an expansion
rule.

• Narrowing upon a function

Let γ1 ⇒ (f (t1) = u1 ⇐= φ1), . . . , γn ⇒ (f (tn) = un ⇐= φn) be all Horn clauses for
f in AX , at(x) be a Σ′-atom,

(∗∗) x⃗ be a list of the variables of t,
for all 1 ≤ i ≤ k, tiσi = tσi, C |= γiσi and Zi = var(ti, ui, φi),
for all k < i ≤ l, σi be a partial unifier of t and ti,

i.e., t′i ≤ ti and t′iσi = tσi for some t′i ∈ TΣ(V) \ V ,

375

11.5 Resolution and narrowing 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

for all l < i ≤ n, t be not partially unifiable with ti.

at(f (t))∨k
i=1 ∃Zi : (at(ui)σi ∧ φiσi ∧ x⃗ = x⃗σi) ∨∨l

i=k+1(at(f (t))σi ∧ x⃗ = x⃗σi)

⇕

Again, if only a single axiom for f is applied, then the corresponding rule is only an
expansion rule.

• Narrowing upon a transition relation

Let γ1 ⇒ (t1 → u1 ⇐= φ1), . . . , γn ⇒ (tn → un ⇐= φn) be all Horn clauses for → in
AX , σi be a unifier modulo associativity and commutativity of ∧ and (∗∗) hold true.

t ∧v → t′∨k
i=1 ∃Zi : ((ui∧v)σi = t′σi ∧ φiσi ∧ x⃗ = x⃗σi) ∨∨l

i=k+1((t
∧v)σi → t′σi ∧ x⃗ = x⃗σi)

⇕

Again, if only a single axiom for → is applied, then the corresponding rule is only an
expansion rule.

376

11.5 Resolution and narrowing 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

As pointed out in [14, 119, 120], partial unification is needed for ensuring the complete-
ness of narrowing if the redex f (t) is selected according to outermost (“lazy”) strategies,
which—as in the case of rewriting—are the only ones that guarantee termination and
optimality.

• Rewriting upon a function

Let f (t1) = u1 ⇐= φ1, . . . , f (tn) = un ⇐= φn be all Horn clauses for f in AX

(∗ ∗ ∗) for all 1 ≤ i ≤ k, t = tiσi and C |= γiφi,
for all k < i ≤ n, t does not match ti.

f (t)

u1σ1 <+> · · · <+> ukσk
• Rewriting upon a transition relation

Let t1 → u1 ⇐= φ1, . . . , tn → un ⇐= φn be all Horn clauses for → in AX and (∗∗∗)
hold true.

t

u1σ1 <+> · · · <+> · · · <+> · · · <+> ukσk

377

11.5 Resolution and narrowing 11 PREDICATE SPECIFICATIONS

�� ��Predicate specifications

• Coresolution upon a predicate p

Let AXp = {γ1 ⇒ (p(t1) =⇒ φ1), . . . , γn ⇒ (p(tn) =⇒ φn)} be all co-Horn clauses
for p in AX and (∗) hold true.

p(t)∧k
i=1 ∀Zi : (φiσi ∨ x⃗ ̸= x⃗σi)

⇕

If only a single axiom for p is applied, then the corresponding rule is only a contrac-
tion rule.

• Elimination of irreducible atoms and terms

Let p be a least and q be a greatest predicate of P , f ∈ F and → be a binary predicate
of F , at be a Σ′-atom, p(t), q(t), f (t) and t → t′ be irreducible atoms resp. terms,
i.e., none of the above rules is applicable.

p(t)

False

q(t)

True

at(f (t))

at()

t→ t′

() → t′
⇕

The elimination rules are correct only if p, q, f and → are axiomatized completely.

378

12.1 Fixpoint induction upon a predicate 12 INDUCTION RULES

�
�

�
12 Induction rules

Let Σ = (S, F ∪ {p : e′ → P(e)}) be a signature, C be an (S, F)-algebra and SP =

(Σ, AX, C) be a Horn specification of P . For simplicity, we restrict ourselves to a single
predicate p. The generalization to several predicates is straightforward (see Theorem 11.4
(1)).

12.1 Fixpoint induction upon a predicate

Let p : e′ → P(e) ∈ P , φ be a closed (S, F)-λ-term, x ∈ Ve and z ∈ Ve′.

A proof by fixpoint induction that A = lfp(ΦSP) satisfies p(x) ⇒ φ is a sequence
(ψ1, . . . , ψn) of Σ-formulas such that the following conditions hold true:

• ψ2 is the result of applying the following rule to ψ1:

(1)
p(z)(x) ⇒ φ∧

p(u)(t)⇐δ∈AX(δ[q/p] ⇒ φ[t/x, u/z])
⇑

After applying (1), the predicate q : e′ → P(e) and the co-Horn clause q(z)(x) ⇒ φ

are added to SP .

379

12.1 Fixpoint induction upon a predicate 12 INDUCTION RULES

�� ��Induction rules

• For all 1 < i < n, ψi+1 is the result of applying to ψi an expansion rule for C (see
section 11.4) or the following rule:

(2)
q(z)(x) ⇒ φ′∧

p(u)(t)⇐δ∈AX(δ[q/p] ⇒ φ′[t/x, u/z])

After applying (2), the co-Horn clause q(z)(x) ⇒ φ′ is added to SP .
• ψn = True.

(1) is an expansion rule for A = lfp(ΦSP): If the succedent of (1) holds true in A, then
A satisfies the axioms for p if p were replaced by φ. Since A interprets p as the least
relation satisfying the axioms for p, we conclude that the antecedent of (1) holds true in A.

Proof sketch of the correctness of (ψ1, . . . , ψn)

Suppose that the derivation (ψ1, . . . , ψn) contains k applications of (2). Then it reads
schematically as follows:

380

12.1 Fixpoint induction upon a predicate 12 INDUCTION RULES

�� ��Induction rules

p(z)(x) ⇒ φ
(1)

⊢
∧
p(u)(t)⇐δ∈AX(δ[q/p] ⇒ φ[t/x, u/z]) (∗)

expansion rules

⊢ . . . q(z)(x) ⇒ φ1 . . .
(2)

⊢ . . .
∧
p(u)(t)⇐δ∈AX(δ[q/p] ⇒ φ1[t/x, u/z]) . . .

⊢ . . .
expansion rules

⊢ . . . q(z)(x) ⇒ φk . . .
(2)

⊢ . . .
∧
p(u)(t)⇐δ∈AX(δ[q/p] ⇒ φk[t/x, u/z]) . . .

expansion rules

⊢ True

Since q ̸∈ φ ∧ φ1 ∧ · · · ∧ φk, q(z)(x) is equivalent to φ before the first application of
(2), while—due to the stepwise addition of axioms for q (see above)—for all 1 ≤ i ≤ k,
q(z)(x) is equivalent to φ ∧ φ1 ∧ · · · ∧ φi after the i-th application of (2).

Since q occurs only in the premise of derived implications, the subderivation starting
with (∗) remains correct if, from the beginning, q(z)(x) is considered to be equivalent to
φ ∧ φ1 ∧ · · · ∧ φk.

381

12.1 Fixpoint induction upon a predicate 12 INDUCTION RULES

�� ��Induction rules

Then for all 1 ≤ i ≤ k, q(z)(x) ⇒ φi holds true, and thus the subderivation starting
with (∗) yields the validity of ∧

p(t)⇐δ∈AX

(δ[q/p] ⇒ φ[t/x, u/z]) (3)

and ∧
p(u)(t)⇐δ∈AX

k∧
i=1

(δ[q/p] ⇒ φi[t/x, u/z]). (4)

(3)∧(4) is equivalent to∧
p(u)(t)⇐δ∈AX

(δ[q/p] ⇒ (φ ∧ φ1 ∧ · · · ∧ φk)[t/x, u/z])

and thus to
∧
p(u)(t)⇐δ∈AX(δ[q/p] ⇒ q[t/x, u/z]). Hence q (instead of p) satisfies AX in

A and thus by the correctness of (1),
p(z)(x) ⇒ q(x) (5)

and, in particular, the original goal p(z)(x) ⇒ φ hold true in A.

q(z)(x) can be regarded as a generalization of φ. By (5), q(z)(x) lies somewhere between
p(z)(x) and φ, the least (!) relation satisfying AX :

p(z)(x) ⇒ q(z)(x) ⇒ φ.

382

12.2 Invariants and algebraic induction 12 INDUCTION RULES

�� ��Induction rules

Therefore, the validity of an inductive conjecture like p(z)(x) ⇒ φ is not semi-decidable,
let alone decidable.

If p were a greatest predicate, then proving conjectures of the form p(z)(x) ⇒ φ amounts
to coresolving them upon p (see sections 11.5 and 13.6).

12.2 Invariants and algebraic induction

Let Σ = (S, F) be a signature, A be a Σ-algebra with carrier A and B be a Σ-invariant
of A.

incB : A|B → A denotes the Σ-homomorphic inclusion map (see section 9.1).

Let h : A→ B be an S-sorted function.

The S-sorted subset img(h) =def {h(a) | a ∈ A} of B is called the image of h.

h is surjective iff img(h) = B.

383

12.2 Invariants and algebraic induction 12 INDUCTION RULES

�� ��Induction rules

Lemma 12.1 (Homomorphisms and invariants)

(1) Let h : A→ B be an S-sorted function and B be a Σ-algebra with carrier B. A can
be extended to a Σ-algebra A and h to a Σ-homomorphism from A to B iff img(h) is a
Σ-invariant.

(2) h : A → B is Σ-homomorphic iff there is a unique Σ-epimorphism h′ : A → B|img(h)
with incimg(h) ◦ h′ = h. Hence, if h is mono, then by Lemma 4.1 (2), h′ is mono and thus
A and B|img(h) are Σ-isomorphic.

Proof. (1) If h is Σ-homomorphic, then img(h) is a Σ-invariant. Let img(h) be a Σ-
invariant. For all f : e → e′ ∈ F , define fA : Ae → Ae′ such that for all a ∈ Ae,
fA(a) ∈ h−1(fB(h(a)), and for all p ∈ P , define pA = {a ∈ A | h(a) ∈ pB}. Then A is a
Σ-algebra and h is Σ-homomorphic.

(2) h′ with h′(a) = h(a) for all a ∈ A has all desired properties. The uniqueness and the
homomorphism property of h′ follow from Lemma 9.1 (2). ❏

384

12.2 Invariants and algebraic induction 12 INDUCTION RULES

�� ��Induction rules

Moreover, by Theorem 3.4 (1), for every S-sorted subset B of A, the least Σ-invariant
⟨B⟩ containing B is the union of all Bn, n ∈ N, with B0 = B and for all s ∈ S,

Bn+1,s = {cA(a) | c : e→ s ∈ C, a ∈ Bn,e}.

Proofs by algebraic induction

Let C ⊆ F be a set of constructors and CΣ = (S,C).

❀ A Σ-algebra A with carrier A satisfies the (algebraic) induction principle for
C if for all S-sorted subsets B of A, A = B iff B contains a CΣ-invariant of A.

Let A be a Σ-algebra with carrier A that satisfies the induction principle for C and for
all s ∈ S, φs be a Σ-formula such that free(φs) ⊆ {x} ⊆ Vs.

Then the (in)validity of φs, s ∈ S, in A may be proved by the following iterative algo-
rithm:

• Step 1: For all s ∈ S, set Bs := B0,s =def {g(x) | g ∈ φA
s }.

• Step 2: For all s ∈ S, let B′
s = {cA(a) | c : e→ s ∈ C, a ∈ Be}.

385

12.2 Invariants and algebraic induction 12 INDUCTION RULES

�� ��Induction rules

• Step 3: If B′ ⊆ B, then stop: B is a CΣ-invariant of A contained in B0, and thus
by the induction principle for C, for all s ∈ S,

As = B0,s = {g(x) | g ∈ φA
s }.

Hence for all s ∈ S, AV = φA
s , i.e., A satisfies φ.

If B′ ̸⊆ B, then for all s ∈ S, set Bs := Bs ∩B′
s and go to Step 2.

Lemma 12.2

Let h : A → B be Σ-homomorphic, A be the carrier of A and inv be a Σ-invariant of B.

h−1(inv) = {a ∈ A | h(a) ∈ inv}

is a Σ-invariant of A.

Proof. Let f : e → e′ ∈ F , a ∈ Ae and a ∈ h−1(inv). Then h(a) ∈ inv and thus
h(fA(a)) = fB(h(a)) ∈ inv because h is Σ-homomorphic and inv is a Σ-invariant.
Hence fA(a) ∈ h−1(inv). ❏

386

12.2 Invariants and algebraic induction 12 INDUCTION RULES

�� ��Induction rules

Lemma 12.3 (Induction and initiality)

Let Σ = (S, F) be a constructive signature and A,B be Σ-algebras with carriers A,B
and K be a full subcategory of AlgΣ that is closed under subalgebras.

(1) A satisfies the induction principle iff A is the only Σ-invariant of A.

(2) If A is the only Σ-invariant of A, then all Σ-homomorphisms from A to B coincide.

(3) A is initial in K iff A is the only Σ-invariant of A and for all B ∈ K there is a
Σ-homomorphism from A to B.

(4) If A is initial in K, then the image of the unique Σ-homomorphism foldB : A → B is
the least Σ-invariant of B.

Proof.

(1) “⇒”: Every Σ-invariant B of A is contained in B. Hence B agrees with A if A
satisfies the induction principle.

“⇐”: Suppose that B ⊆ A contains a Σ-invariant and A is the only Σ-invariant of A.
Then A ⊆ B.

387

12.2 Invariants and algebraic induction 12 INDUCTION RULES

�� ��Induction rules

(2) Let g, h : A → B be Σ-homomorphisms. Then B = {a ∈ A | g(a) = h(a)} is a
Σ-invariant of A: Let f : e→ e′ ∈ F and a ∈ Ae.

Since g and h are Σ-homomorphic, ge′(fA(a)) = fB(ge(a)) = fB(he(a)) = he′(f
A(a)).

Since g and h are S-sorted, Lemma 7.2 (3) implies fA(a) ∈ Be′. Since A is the only
Σ-invariant of A, B agrees with A and thus for all a ∈ A, g(a) = h(a). Hence g = h.

(3) “⇒”: Let A be initial in K andB be a Σ-invariant ofA. B induces a Σ-monomorphism
incB : A|B → A. Hence Lemma 4.3 (1) implies that incB is iso in K and thus B = A.
Since A is initial in K, there is a Σ-homomorphism from A to B.

“⇐”: Suppose that A is the only Σ-invariant of A and for all B ∈ K there is a Σ-
homomorphism h : A → B. By (2), h is unique. Hence A is initial in K.

(4) Let inv be a Σ-invariant of B. Since A is initial in K, the following diagram commutes:

A
foldB

≻B

B|inv

incinv

≻

foldB|inv
≻

388

12.3 CFGs as equations between regular expressions 12 INDUCTION RULES

�� ��Induction rules
Hence for all a ∈ A,

fold invB(a) = incinv(fold
B|inv(a)) = foldB|inv(a) ∈ inv.

We conclude that inv contains img(foldB).

Alternative proof of (4): By Lemma 12.2,

(foldB)−1(inv) = {a ∈ A | foldB(a) ∈ inv}

is a Σ-invariant of A. By (3), A is the only Σ-invariant of A. Hence (foldB)−1(inv) = A

and thus for all b ∈ inv there is a ∈ A with foldB(a) = b, i.e., b ∈ img(foldB). ❏

12.3 CFGs as equations between regular expressions

Let G = (S,X,R) be a context-free grammar (see section 9.14).

R induces the set EG of Reg(X)-equations over S (see section 9.11):

EG = {s = w1 + · · · + wn | s ∈ S, {w1, . . . , wn} = {w ∈ S∗
X | s→ w ∈ R}}

where ϵ = 1̂, for all s1, . . . , sn ∈ SX , s1 . . . sn = s1 ∗ · · · ∗ sn, and for all s ∈ SX ,

s =

 s if s ∈ S,

s otherwise.

389

12.3 CFGs as equations between regular expressions 12 INDUCTION RULES

�� ��Induction rules

Example 12.4 The rules of (S,X,R) = SAB (see Example 9.10) yield the following set
EG of Reg(X)-equations over S:

C = a ∗B + b ∗ A,
A = a ∗ C + b ∗ A ∗ A,
B = b ∗ C + a ∗B ∗B.

Theorem 12.5 (The language of a CFG solves its equations)

(i) The valuation g = λs.L(G)s ∈ L(G)S solves EG in Lang(X) (see sample algebra
9.6.19).

Let g ∈ L(G)S solve EG in Lang(X).

(ii) The S-sorted set A with As = g(s) for all s ∈ S is the carrier of a Σ(G)-subalgebra
of Word(G).

(iii) λs.L(G)s is the least solution (w.r.t. the inclusion of its carriers) EG in Lang(X).

390

12.3 CFGs as equations between regular expressions 12 INDUCTION RULES

�� ��Induction rules
Proof. Let s = w1 + · · · + wn ∈ EG and 1 ≤ i ≤ n.

Then s→ wi ∈ R and wi = v0si,1v1 . . . si,nivni for some v0 . . . vni ∈ X∗ and si,1, . . . , si,ni ∈
SX .

Hence src(fs→wi
) = si,1 × . . .× si,ni and

g∗(wi) = g∗(v0si,1v1 . . . si,nivni) = g∗(v0 ∗ si,1 ∗ v1 ∗ · · · ∗ si,ni ∗ vni)
= g∗(v0) · g∗(si,1) · g∗(v1) · · · · · g∗(si,ni) · g∗(vni) = v0 · L(G)si,1 · v1 · · · · · L(G)si,ni · vni
= f

Word(G)
s→wi (L(G)si,1, . . . , L(G)si,ni). (1)

Proof of (i).

g(s) = L(G)s = foldWord(G)
s (TΣ(G),s)

=
⋃n
i=1{fold

Word(G)
s (fs→wi

(t)) | t ∈ TΣ(G),si,1×...×si,ni
}

=
⋃n
i=1{f

Word(G)
s→wi (fold

Word(G)
si,1×...×si,ni

(t)) | t ∈ TΣ(G),si,1×...×si,ni
}

= {fWord(G)
s→wi (v) | v ∈ L(G)si,1×...×si,ni , 1 ≤ i ≤ ni}

=
⋃n
i=1 f

Word(G)
s→wi (L(G)si,1, . . . , L(G)si,ni)

(1)
= g∗(w1) ∪ · · · ∪ g∗(wn)

= g∗(w1 + · · · + wn),

i.e., g solves s = w1 + · · · + wn in Lang(X).

391

12.3 CFGs as equations between regular expressions 12 INDUCTION RULES

�� ��Induction rules
Proof of (ii).

Suppose that for all 1 ≤ i ≤ n,

fWord(G)
s→wi

(Asi,1, . . . , Asi,ni
) ⊆ As. (2)

Then (ii) holds true. It remains to show (2). Since g solves EG in Lang(X),

g(s) = g∗(w1 + · · · + wn) = g∗(w1) ∪ · · · ∪ g∗(wn) ⊇ g∗(wi). (3)

Hence for all 1 ≤ i ≤ n,

f
Word(G)
s→wi (Asi,1, . . . , Asi,ni

) = v0 · Asi,1 · v1 · · · · · Asi,ni
· vni

= g∗(v0) · g(si,1) · g∗(v1) · · · · · g(si,ni) · g∗(vni) = g∗(v0 ∗ si,1 ∗ v1 ∗ · · · ∗ si,ni ∗ vni)

= g∗(v0si,1v1 . . . si,nivni) = g∗(wi)
(3)

⊆ g(s) = As,

i.e., (2) holds true.

Proof of (iii).

By (i), λs.L(G)s solves EG. By Lemma 12.3 (4), foldWord(G)(TΣ(G)) is the least Σ(G)-
subalgebra of Word(G). Hence for all s ∈ S,

L(G)s = foldWord(G)
s (TΣ(G),s)

(ii)

⊆ As = g(s). ❏

392

12.3 CFGs as equations between regular expressions 12 INDUCTION RULES

�� ��Induction rules
Theorem 12.6 (see [86], pp. 53 f.)

Let G = (S,X,R), A = Lang(X), s ∈ S, t1, . . . , tn, t ∈ TReg(X) such that for some
s ∈ S,

s = t1 ∗ s + · · · + tn ∗ s + t (1)
is the only equation of EG with left-hand side s and for all 1 ≤ i ≤ n, ϵ ̸∈ tAi .

g ∈ L(G)S with g(s) = (star(t1 + · · · + tn) ∗ t)A is the unique solution of (1) in A.

Proof. Since h ∈ L(G)S solves (1) in A iff h solves s = (t1 + · · · + tn) ∗ s + t in A, it
suffices to show that for all t, u ∈ TReg(X), g ∈ L(G)S with g(s) = (star(t) ∗ u)A and
ϵ ̸∈ tA is the unique solution of

s = t ∗ s + u (2)
in A.

g solves (2) in A:

g(s) = (star(t) ∗ u)A = (tA)∗ · uA = tA · (tA)∗ · u ∪ uA = tA · (tA)∗ · u ∪ uA

= tA · (star(t) ∗ u)A ∪ uA = tA · g(s) ∪ uA = g∗(t ∗ s + u).

g is the least solution of (2) in A:

Since g(s) = (tA)∗ · uA =
⋃
i∈N(t

A)i · uA, g is the least solution of (2) in A if for all
solutions h ∈ L(G)S of (2) in A and i ∈ N,

393

12.3 CFGs as equations between regular expressions 12 INDUCTION RULES

�� ��Induction rules
i⋃

j=0

(tA)j · uA ⊆ h(s). (3)

Proof of (3) by induction on i. Since h solves (2) in A,

tA · h(s) ∪ uA = h∗(t ∗ s + u) = h(s). (4)

Hence we obtain (3) for i = 0:

(tA)0 · uA = {ϵ} · uA = uA = tA · ∅ ∪ uA ⊆ tA · h(s) ∪ uA (4)
= h(s).

By induction hypothesis,
i−1⋃
j=0

(tA)j · uA ⊆ h(s). (5)

Hence we obtain (3) for i > 0:⋃i
j=0(t

A)j · uA =
⋃i−1
j=0(t

A)j+1 · uA ∪ uA = tA ·
⋃i−1
j=0(t

A)j · uA ∪ uA
(5)

⊆ tA · h(s) ∪ uA (4)
= h(s).

g is the only solution of (2) in A: Let h ∈ L(G)S be a solution of (2) in A. Since
(tA)∗ ·uA = g(s) ⊆ h(s), there is L ⊆ X∗ with h(s) = (tA)∗ ·uA∪L and L∩(tA)∗ ·uA = ∅.

394

12.4 Algebraic induction as fixpoint induction 12 INDUCTION RULES

�� ��Induction rules
Since h solves (2),

(tA)∗ · uA ∪ L = h(s) = tA · h(s) ∪ uA = tA · ((tA)∗ · uA ∪ L) ∪ uA

= tA · (tA)∗ · uA ∪ tA · L ∪ uA = (tA)∗ · uA ∪ tA · L
(6)

Let w ∈ L be of minimal length and |w| = k. Since w ̸∈ (tA)∗ ·uA, (6) implies w ∈ tA ·L.
Since ϵ ̸∈ tA, for all v ∈ tA · L, |v| > k. Hence w ̸∈ tA · L. ❏

When turning the transition graph represented by an Acc(X)-algebra into Reg(X)-
equations, one often encounters equations of the form (1). Since A solves them uniquely,
they can then be replaced by their respective solutions (see [137], chapter 8). ❏

12.4 Algebraic induction as fixpoint induction

Let C ⊆ F be a set of constructors, CΣ = (S,C), C be an initial CΣ-algebra and for all
s ∈ S, φs ∈ FoΣ(V) such that free(φs) = {x} ⊆ Vs.

Moreover, let P = {inve : P(e) | e ∈ Tpo(S)}, Σ = (S, F ∪ P) and AX be the set of the
following Horn clauses for P :

395

12.4 Algebraic induction as fixpoint induction 12 INDUCTION RULES

�� ��Induction rules

invs(c(x)) ⇐ inve(x), c : e→ s ∈ C,

inve(ιi(x)) ⇐ invei(x), e =
∐

i∈I ei ∈ Tpo(S), i ∈ I,

inve(x) ⇐
∧
i∈I invei(πi(x)), e =

∏
i∈I ei ∈ Tpo(S),

invB(x), B ∈ I.
Let SP = (Σ, AX, C) and A ∈ StructSP be the algebra with carrier A such that for all
s ∈ S,

invAs = {g(x) | g ∈ φC
s}.

Suppose that invs(x) ⇒ φs has been proved by fixpoint induction. Then

invs(x)
lfp(ΦSP) ⊆ φlfp(ΦSP)

s . (1)

Hence

g(x) ∈ invlfp(ΦSP)
s ⇔ g ∈ invs(x)

lfp(ΦSP)
(1)⇒ g ∈ φlfp(ΦSP)

s = φC
s ⇔ g(x) ∈ invAs (2)

and thus

A
Lemma 12.3 (3)

= invlfp(ΦSP)
s

(2)

⊆ invAs ⊆ A. (3)

Therefore,

φC
s = {g ∈ AV | g(x) ∈ invAs }

(3)
= {g ∈ AV | g(x) ∈ A} = AV ,

396

12.4 Algebraic induction as fixpoint induction 12 INDUCTION RULES

i.e., C satisfies φs.

The number of generalizations of φs, i.e., applications of rule (2) in section 12.1 and
consecutive extensions of axioms for the predicate q, in the proof of invs(x) ⇒ φs by
fixpoint induction agrees with the number of iterations of step 2 in the corresponding
proof by algebraic induction (see section 12.2). Hence q is interpreted by the set B
constructed in that proof.

397

12.5 Fixpoint induction upon a function 12 INDUCTION RULES

�� ��Induction rules

12.5 Fixpoint induction upon a function

For verifiying a recursive function f , i.e., showing properties of their input-output relation,
we transform the Horn clauses for f : e → e′ into Horn clauses for pf : e × e′ → 2—
representing graph(f) (see chapter 2)—by repeatedly applying the following transforma-
tion rules:

f (t) = u ⇐ φ

pf(t, u) ⇐ φ
⇕

ψ[f (v)/x] ⇐ φ

ψ ⇐ pf(v, x) ∧ φ
⇕ ψ ⇐ φ[f (v)/x]

ψ ⇐ φ ∧ pf(v, x)
⇕

Let rel(AX) be a set of Horn clauses for pf each of which is obtained from applying the
above rules to AX and does not contain f . Hence (1) and (2) entail the following rules:

(1)
f (x) = y ⇒ φ∧

pf (t,u)⇐δ∈rel(AX)(δ[q/pf] ⇒ φ[t/x, u/y])
⇑ f, pf ̸∈ φ

After applying (1), the predicate q and the co-Horn clause q(x, y) ⇒ φ are added to SP .

(2)
q(x, y) ⇒ φ′∧

pf (t,u)⇐δ∈rel(AX)(δ[q/p] ⇒ φ′[t/x, u/y])
f, pf , q ̸∈ φ′

After applying (2), the co-Horn clause q(x, y) ⇒ φ′ is added to SP .

398

12.6 Invariants are monotone 12 INDUCTION RULES

�� ��Induction rules

Expander2 applies (1) even to formulas that do not match the premise of (1), but can be
turned into matching ones via the following stretch rules:

p(u)(t) ⇒ φ

p(z)(x) ⇒ (x = t ∧ z = u⇒ φ)
⇕

f (t) = u ⇒ φ

f (x) = y ⇒ (x = t ∧ y = u⇒ φ)
⇕ f (t) = u ∧ φ

f (x) = y ⇒ (x = t⇒ y = u ∧ φ)
⇕

We leave it to the reader to adapt (1) and (2) to the case where several co-Horn clauses
pi(x) ⇒ φi or fi(x) = y ⇒ φi, 1 ≤ i ≤ n, with least predicates pi resp. functions
fi must be proved simultaneously because the Horn clauses for pi resp. fi provide a
mutually-recursive definition.

Sample proofs by fixpoint induction can be found in, e.g., [130, 137, 123].

12.6 Invariants are monotone

Suppose that for all s ∈ S, F contains a constraint predicate ⊂s: P(s). φ is constraint
compatible if for all subformulas ∃(x : e)ψ and ∀(x : e)ψ of φ there is ρ ∈ FoΣ(V) such
that ψ = (⊂e(x) ∧ ρ) and ψ = (⊂e(x) ⇒ ρ), respectively.

399

https://fldit-www.cs.tu-dortmund.de/~peter/Expander2.html

12.6 Invariants are monotone 12 INDUCTION RULES

�� ��Induction rules

Lemma 12.7

Let A be a Σ-algebra with carrier A, inv be a Σ-invariant of A, B = A|inv (see section
9.9) and φ ∈ FoΣ(V) be constraint compatible such that for all s ∈ S, ⊂s

A = invs.

(1) φB = {g ∈ φA | g(V) ⊆ inv}.

(2) A |= φ implies B |= φ.

Proof of (1) by induction on the size of φ.

Let p : P(e) ∈ P and t : e ∈ ΛΣ(V).

p(t)B = {g ∈ invV | tB(g) ∈ pB(g)} = {g ∈ AV | g(V) ⊆ inv, tA(g) ∈ pA(g)}
= {g ∈ p(t)A | g(V) ⊆ inv}.

Let φ, ψ ∈ FoΣ(V), s ∈ S and x ∈ Vs.

(¬φ)B = invV \ φB ind. hyp.
= invV \ {g ∈ φA | g(V) ⊆ inv} = invV \ φA

= {g ∈ AV \ φA | g(V) ⊆ inv} = {g ∈ (¬φ)A | g(V) ⊆ inv},

(φ ∧ ψ)B = φB ∩ ψB ind. hyp.
= {g ∈ φA | g(V) ⊆ inv} ∩ {g ∈ ψA | g(V) ⊆ inv}

= {g ∈ φA ∩ ψA | g(V) ⊆ inv} = {g ∈ (φ ∧ ψ)A | g(V) ⊆ inv},

400

12.6 Invariants are monotone 12 INDUCTION RULES

�� ��Induction rules

(∀(x : e)(⊂e(x) ⇒ φ))B

=
⋂
a∈inve{g ∈ invV | g[a/x] ∈ (⊂e(x) ⇒ φ)B}

ind. hyp.
=

⋂
a∈inve{g ∈ invV | g[a/x](V) ⊆ inv, g[a/x] ∈ (⊂e(x) ⇒ φ)A}

=
⋂
a∈inve{g ∈ invV | g[a/x](V) ⊆ inv, g[a/x] ̸∈⊂e(x)

A ∨ g[a/x] ∈ φA}
=

⋂
a∈inve{g ∈ invV | g[a/x](V) ⊆ inv, g[a/x](x) ̸∈⊂e

A ∨ g[a/x] ∈ φA}
=

⋂
a∈inve{g ∈ invV | g[a/x](V) ⊆ inv, a ̸∈ inv ∨ g[a/x] ∈ φA}

=
⋂
a∈inve{g ∈ invV | g[a/x](V) ⊆ inv, g[a/x] ∈ φA}

=
⋂
a∈inve{g ∈ invV | g[a/x] ∈ φA}

= {g ∈ invV | ∀ a ∈ inve : g[a/x] ∈ φA}
= {g ∈ invV | ∀ a ∈ Ae : (a ̸∈ inv ∨ g[a/x] ∈ φA)}
= {g ∈ AV | g(V) ⊆ inv, ∀ a ∈ Ae : (a ̸∈ inv ∨ g[a/x] ∈ φA)}
=

⋂
a∈Ae

{g ∈ AV | g(V) ⊆ inv, a ̸∈ inv ∨ g[a/x] ∈ φA}
=

⋂
a∈Ae

{g ∈ AV | g(V) ⊆ inv, g[a/x](x) ̸∈⊂e
A ∨ g[a/x] ∈ φA}

=
⋂
a∈Ae

{g ∈ AV | g(V) ⊆ inv, g[a/x] ̸∈⊂e(x)
A ∨ g[a/x] ∈ φA}

401

12.6 Invariants are monotone 12 INDUCTION RULES

�� ��Induction rules

=
⋂
a∈Ae

{g ∈ AV | g(V) ⊆ inv, g[a/x] ∈ (⊂e(x) ⇒ φ)A}
= {g ∈ (∀(x : e)(⊂e(x) ⇒ φ))A | g(V) ⊆ inv}.

Proof of (2).

Suppose that A satisfies φ. Then φA = AV and thus by (1),

φB = {g ∈ φA | g(V) ⊆ inv} = {g ∈ invV | g ∈ φA} = {g ∈ invV | g ∈ AV } = invV ,

i.e., B satisfies φ. ❏

402

13.1 Fixpoint coinduction upon a predicate 13 COINDUCTION RULES

�
�

�
13 Coinduction rules

Let Σ = (S, F ∪ {p : e′ → P(e)}) be a signature, C be an (S, F)-algebra and SP =

(Σ, AX, C) be a co-Horn specification of P . For simplicity, we restrict ourselves to a single
predicate p. The generalization to several predicates is straightforward (see Theorem 11.4
(2)).

13.1 Fixpoint coinduction upon a predicate

Let p : e′ → P(e) ∈ P , φ be a closed (S, F)-λ-term, x ∈ Ve and z ∈ Ve′.

A proof by fixpoint coinduction that A = gfp(ΦSP) satisfies φ ⇒ p(x) is a sequence
(ψ1, . . . , ψn) of Σ-formulas such that the following conditions hold true:

• ψ2 is the result of applying to ψ1 the following rule:

(1)
φ⇒ p(z)(x)∧

p(u)(t)⇒δ∈AX(φ[t/x, u/z] ⇒ δ[q/p])
⇑

After applying (1), the predicate q : e′ → P(e) and the Horn clause q(z)(x) ⇐ φ are
added to SP .

403

13.1 Fixpoint coinduction upon a predicate 13 COINDUCTION RULES

�� ��Coinduction rules

• For all 1 < i < n, ψi+1 is the result of applying to ψi an expansion rule for B (see
chapter 10) or the following rule:

(2)
φ′ ⇒ q(x)∧

p(t)⇒δ∈AX(φ
′[t/x] ⇒ δ[q/p])

After applying (2), the Horn clause q(z)(x) ⇐ φ′ is added to SP .
• ψn = True.

(1) is an expansion rule for A = gfp(ΦSP): If the succedent of (1) holds true in A, then
A satisfies the axioms for p if p were replaced by φ. Since A interprets p as the greatest
relation satisfying the axioms for p, we conclude that the antecedent of (1) holds true in A.

Proof sketch of the correctness of (ψ1, . . . , ψn)

Suppose that he derivation (ψ1, . . . , ψn) contains k applications of (2). Then it reads
schematically reads as follows:

404

13.1 Fixpoint coinduction upon a predicate 13 COINDUCTION RULES

�� ��Coinduction rules

φ⇒ p(z)(x)
(1)

⊢
∧
p(u)(t)⇒δ∈AX(φ[t/x] ⇒ δ[q/p]) (∗)

expansion rules

⊢ . . . φ1 ⇒ q(z)(x) . . .
(2)

⊢ . . .
∧
p(u)(t)⇒δ∈AX(φ1[t/x] ⇒ δ[q/p]) . . .

⊢ . . .
expansion rules

⊢ . . . φk ⇒ q(z)(x) . . .
(2)

⊢ . . .
∧
p(u)(t)⇒δ∈AX(φk[t/x] ⇒ δ[q/p]) . . .

expansion rules

⊢ True

Since q ̸∈ φ ∧ φ1 ∧ · · · ∧ φk, q(z)(x) is equivalent to φ before the first application of (2),
while—due to the stepwise addition of axioms for q (see above)—for all 1 ≤ i ≤ k, q(x)
is equivalent to φ ∨ φ1 ∨ · · · ∨ φi after the i-th application of (2).

Since q occurs only in the conclusion of derived implications, the subderivation starting
with (∗) remains correct if, from the beginning, q(z)(x) is considered to be equivalent
to φ ∨ φ1 ∨ · · · ∨ φk. Then for all 1 ≤ i ≤ k, φi ⇒ q(z)(x) holds true, and thus the
subderivation starting with (∗) yields the validity of

405

13.1 Fixpoint coinduction upon a predicate 13 COINDUCTION RULES

�� ��Coinduction rules∧
p(u)(t)⇒δ∈AX

(φ[t/x, u/z] ⇒ δ[q/p]) (3)

and ∧
p((u)t)⇒δ∈AX

k∧
i=1

(φi[t/x, u/z] ⇒ δ[q/p]). (4)

(3)∧(4) is equivalent to∧
p(u)(t)⇒δ∈AX

((φ ∨ φ1 ∨ · · · ∨ φk)[t/x, u/z] ⇒ δ[q/p])

and thus to
∧
p(u)(t)⇒δ∈AX(q[t/x, u/z] ⇒ δ[q/p]). Hence by q (instead of p) satisfies AX

in A and thus by the correctness of (1),

q(z)(x) ⇒ p(z)(x) (5)

and, in particular, the original goal φ⇒ p(z)(x) hold true in A.

q(x) can be regarded as a generalization of φ. By (5), q(x) lies somewhere between φ
and p(x), the greatest (!) relation satisfying AX :

φ ⇒ q(x) ⇒ p(x).

Therefore, the validity of a coinductive conjecture like φ⇒ p(z)(x) is not semi-decidable,
let alone decidable.

406

13.1 Fixpoint coinduction upon a predicate 13 COINDUCTION RULES

�� ��Coinduction rules

If p were a least predicate, then proving conjectures of the form φ ⇒ p(x) amounts to
resolving them upon p (see sections 11.5 and 13.6).

Let p be a binary predicate and DΣ = (S,D) be a subsignature of Σ such that the set
AXp of co-Horn clauses for p consists of DΣ-bisimulation axioms, i.e., A satisfies AXp

iff pB is a DΣ-bisimulation on C. Then the antecedent of (1) reads as

φ⇒ p(z)(x, y), (6)

pA is the greatest DΣ-bisimulation on C, while the above-sketched derivation proves that
B ∈ StructΣ ,C with pB =def (φ ∨ φ1 ∨ · · · ∨ φk)

B also satisfies AXp, i.e., pB is also a
DΣ-bisimulation on C. Hence pB ⊆ pA. If, in addition to the axioms for q that were
added to AX after applications of (1) or (2), the Horn clauses

q(z)(x, x), q(z)(x, y) ⇐ q(z)(y, x), q(z)(x, y) ⇐ q(z)(x, x′) ∧ q(z)(x′, y) (7)

were used in the proof of (6), q would actually denote the equivalence closure of pB, i.e.,

(pB)eq ⊆ pA (8)

would actually be proved and not only pB ⊆ pA, which is also sufficient for (8):

407

13.1 Fixpoint coinduction upon a predicate 13 COINDUCTION RULES

�� ��Coinduction rules

Since pB ⊆ pA implies (pB)eq ⊆ (pA)eq and, by Theorem 9.6 (2), pA is an equivalence
relation and thus equal to (pA)eq, (8) indeed follows from pB ⊆ pA.

Let DΣ = (S,D) be a destructive first-order signature, C|DΣ be final in AlgDΣ and
CΣ = (S,C) be a constructive first-order signature such that the assumptions of Theorem
16.3 hold true. Then ∧

c:ec→s∈C, d:s→e∈D

∀xc,1 . . . ∀xc,nc d(c(xc)) = tc,d : e

is a biinductive definition of C an DΣ. If, in addition to the axioms for q that were added
to AX after applications of (1) or (2), (7) and

q(c(x), c(y)) ⇐ q(x, y), c ∈ C, (9)

were used in the proof of (6), then q would actually denote the CΣ-congruence closure
of pB, i.e.,

pBC ⊆ pA (10)

would actually be proved and not only pB ⊆ pA, which is also sufficient for (10):

408

13.1 Fixpoint coinduction upon a predicate 13 COINDUCTION RULES

�� ��Coinduction rules

Since pB is a DΣ-bisimulation on C and thus a DΣ-bisimulation modulo C, Lemma 16.4
implies that pBC is a DΣ-congruence and thus a DΣ-bisimulation. Since pA is the greatest
one, pBC ⊆ pA. Hence (10) indeed follows from pB ⊆ pA.

If (9) is used in a proof of φ⇒ p(z)(x) by fixpoint coinduction, the proof is called a proof
by (fixpoint) coinduction modulo C. For instance, the fact that the concatenation
of regular languages distributes over summation, can be proved by coinduction modulo
regular operators (see Example 13.5).

Expander2 applies (1) even to formulas that do not match the premise of (1), but can be
turned into matching ones via the following stretch rule:

φ ⇒ p(u)(t)

φ ∧ x = t ∧ z = u ⇒ p(z)(x)
⇕

We leave it to the reader to adapt (1) and (2) to the case where several Horn clauses
φi ⇒ pi, 1 ≤ i ≤ n, with greatest predicates pi must be proved simultaneously because
the co-Horn clauses for pi provide a mutually-recursive definition.

Sample proofs by fixpoint coinduction can be found in, e.g., [130, 137].

409

https://fldit-www.cs.tu-dortmund.de/~peter/Expander2.html

13.2 Congruences and algebraic coinduction 13 COINDUCTION RULES

�� ��Coinduction rules

Coinductive logic programming or co-logic programming [63, 165] has not much to do
with coinduction. It is rather (co)resolution upon least or greatest predicates on models
consisting of finite or infinite terms, respectively.

In contrast to the above (co)resolution rules, co-logic programming does not only resolve
axioms upon (atoms of) the current goal φ, but also compares φ with all predecessors of φ
in order to detect circularities in the derivation. We claim that most results obtained due
to this—rather inefficient—inspection of the entire derivation would also be accomplished
if the above (co)induction rules were used instead.

13.2 Congruences and algebraic coinduction

Let Σ = (S, F) be a signature, A be a Σ-algebra with carrier A and R be a Σ-congruence
on A.

natR : A → A/R denotes the Σ-homomorphic natural map (see section 9.1).

410

13.2 Congruences and algebraic coinduction 13 COINDUCTION RULES

�� ��Coinduction rules

Lemma 13.1 (Homomorphisms and congruences)

(1) Let h : A→ B be an S-sorted function and A be a Σ-algebra with carrier A. B can
be extended to a Σ-algebra B and h to a Σ-homomorphism from A to B iff ker(h) is a
Σ-congruence.

(2) h : A → B is Σ-homomorphic iff there is a unique Σ-monomorphism h′ : A/ker(h)→
B with h′ ◦ natker(h) = h.

Hence, if h is epi, then by Lemma 4.1 (1), h′ is epi and thus A/ker(h) and B are Σ-
isomorphic.

Proof.

(1) If h is Σ-homomorphic, then ker(h) is a Σ-congruence. Let ker(h) be a Σ-congruence.
For all f : e → e′ ∈ F , define fB : Be → Be′ such that for all a ∈ Ae, fB(h(a)) =

h(fA(a)) and for all p : e ∈ P , define pB = h(pA). Then B is a Σ-algebra and h is
Σ-homomorphic.

(2) h′ with h′([a]ker(h)) = h(a) for all a ∈ A has all desired properties. The uniqueness
and the homomorphism property of h′ follow from Lemma 9.1 (1). ❏

411

13.2 Congruences and algebraic coinduction 13 COINDUCTION RULES

�� ��Coinduction rules

Moreover, by Theorem 3.4 (2), for every S-sorted binary relation R on A, the greatest
Σ-congruence contained in R is the intersection of all Rn, n ∈ N, with R0 = R and for
all s ∈ S,

Rn+1,s = {(a, b) ∈ A2 | ∀ d : s→ e ∈ D : (dA(a), dA(b)) ∈ Req
n,e}.

Proofs by algebraic coinduction

Let D ⊆ F be a set of destructors and DΣ = (S,D).

❀ A Σ-algebra A with carrier A satisfies the (algebraic) coinduction principle for
DΣ if for all S-sorted binary relations R on A, R ⊆ ∆A iff there is a DΣ-congruence
on A that contains R.

Let A be a Σ-algebra A with carrier A that satisfies the coinduction principle for DΣ

and for all s ∈ S, Es ⊆ ΛΣ(V)2s.

Then the (in)validity of Es, s ∈ S, in A may be proved by the following iterative
algorithm:

• Step 1: For all s ∈ S, set Rs := R0,s =def {(tA(g), uA(g)) | (t, u) ∈ Es, g ∈ AV }.

412

13.2 Congruences and algebraic coinduction 13 COINDUCTION RULES

�� ��Coinduction rules

• Step 2: For all s ∈ S, let

R′
s = {(a, b) ∈ A2

s | ∀ d : s→ e ∈ D : (dA(a), dA(b)) ∈ Req
e }.

• Step 3: If R ⊆ R′, then stop: Since R′ is an equivalence relation, R ⊆ R′ implies
Req ⊆ R′. Consequently, Req is a DΣ-congruence that contains R0, and thus by the
coinduction principle for DΣ, R0 ⊆ Req ⊆ ∆A. Hence for all s ∈ S,

{(tA(g), uA(g)) | (t, u) ∈ Es, g ∈ AV } = R0,s ⊆ ∆As,

i.e., A satisfies E.
If R ̸⊆ R′, then for all e ∈ Tpo(S), set

Re := Re ∪ {(dA(a), dA(b)) | (a, b) ∈ Rs, d : s→ e ∈ D}

and go to Step 2.

Lemma 13.2

Let h : A → B be Σ-homomorphic and R be a Σ-congruence on A.

h(R) = {(h(a), h(b)) | (a, b) ∈ R}

is a Σ-congruence on B.

413

13.2 Congruences and algebraic coinduction 13 COINDUCTION RULES

�� ��Coinduction rules

Proof. Let f : e → e′ ∈ F and (c, d) ∈ h(R)e. Then c = h(a) and d = h(b) for some
(a, b) ∈ Re. Hence (fA(a), fA(b)) ∈ Re′.

Since h is Σ-homomorphic, fB(c) = fB(h(a)) = h(fA(a)) and fB(d) = fB(h(b)) =

h(fA(b)). Hence (fB(c), fB(d)) ∈ h(R)e′. ❏

Lemma 13.3 (Coinduction and finality)

Let Σ = (S, F) be a destructive signature and A,B be Σ-algebras with carriers A,B and
K be a full subcategory K of AlgΣ that is closed under quotients.

(1) A satisfies the coinduction principle iff ∆A is the only Σ-congruence on A.

(2) If ∆A is the only Σ-congruence on A, then all Σ-homomorphisms from B to A coincide.

(3) A is final in K iff ∆A is the only Σ-congruence on A and for all B ∈ K there is a
Σ-homomorphism from B to A.

(4) If A is final in K, then for all B ∈ K, the kernel of the unique Σ-homomorphism
unfoldB : B → A is the greatest Σ-congruence on B ([156], Prop. 2.7).

414

13.2 Congruences and algebraic coinduction 13 COINDUCTION RULES

�� ��Coinduction rules
Proof.

(1) “⇒”: Suppose that A satisfies the coinduction principle and R is a Σ-congruence on
A. Hence R ⊆ ∆A. Since R is reflexive and thus ∆A ⊆ R, R agrees with ∆A .

“⇐”: Suppose that R is a Σ-congruence that contains a binary relation R′ on A and ∆A

is the only Σ-congruence on A. Then R′ ⊆ R = ∆A.

(2) Let g, h : B → A be Σ-homomorphisms. Then R = {(g(b), h(b)) | b ∈ B} is a
Σ-congruence on A: Let f : e → e′ ∈ F , b ∈ Be and (ge(b), he(b)) ∈ Re. Since g and h
are Σ-homomorphic, fA(ge(b)) = ge′(f

B(b)) and fA(he(b)) = he′(f
B(b)).

Since g and h are S-sorted, Lemma 7.2 (4) implies

(fA(ge(b)), f
A(he(b))) = (ge′(f

B(b)), he′(f
B(b))) ∈ Re′.

Since ∆A is the only Σ-congruence on A, R agrees with ∆A and thus for all b ∈ B,
g(b) = h(b).

(3) “⇒”: Let A be final in K and R be a Σ-congruence on A. R induces the Σ-
epimorphism natR : A → A/R. Hence Lemma 4.3 (2) implies that natR is iso in K
and thus R = ∆A. Since A is final in K, there is a Σ-homomorphism from B to A.

“⇐”: Suppose that ∆A is the only Σ-congruence on A and for all B ∈ K there is a
Σ-homomorphism h : B → A. By (2), h is unique. Hence A is final in K.

415

13.2 Congruences and algebraic coinduction 13 COINDUCTION RULES

�� ��Coinduction rules

(4) Let R be a Σ-congruence on B. Since A is final in K, the following diagram commutes:

B
unfoldB

≻A

B/R

unfoldB/R

≻

natR
≻

Hence for all b, c ∈ B,

(b, c) ∈ R ⇒ [b]R = [c]R ⇒ unfoldB(b) = unfoldB/R([b]R) = unfoldB/R([c]R)

= unfoldB(c).

We conclude that ker(unfoldB) contains R.

Alternative proof of (4): By Lemma 13.2,

unfoldB(R) = {(unfoldB(b), unfoldB(c)) | (b, c) ∈ R}

is a Σ-congruence on A. By (3), ∆A is the only Σ-congruence on A. Hence unfoldB(R) =

∆A and thus for all (b, c) ∈ R, unfoldB(b) = unfoldB(c), i.e., (b, c) ∈ ker(unfoldB). ❏

416

13.3 Algebraic coinduction as fixpoint coinduction 13 COINDUCTION RULES

�� ��Coinduction rules

13.3 Algebraic coinduction as fixpoint coinduction

Let D ⊆ F be a set of destructors, DΣ = (S,D), C be a final DΣ-algebra and for all
s ∈ S, Es ⊆ ΛΣ(V)2s.

Moreover, let P = {∼e: e × e | e ∈ Tpo(S)}, Σ′ = (S, F ∪ P) and AX be the following
set of co-Horn clauses for P :

x ∼s y ⇒ d(x) ∼e d(y), d : s→ e ∈ D,

ιi(x) ∼e ιi(y) ⇒ x ∼ei y, e =
∐

i∈I ei ∈ Tpo(S), i ∈ I,

¬(ιi(x) ∼e ιj(y)), e =
∐

i∈I ei ∈ Tpo(S), i, j ∈ I, i ̸= j,

x ∼e y ⇒ πi(x) ∼ei πi(y), e =
∏

i∈I ei ∈ Tpo(S), i ∈ I,

x ∼B y ⇒ x = y, B ∈ I.

Let SP = (Σ, AX, C) and A ∈ StructSP be the algebra with carrier A such that for all
s ∈ S,

∼A
s = {(tC(g), uC(g)) | t = u ∈ Es, g ∈ AV }

Let x, y ∈ Vs \ free(Es) and

φs =
∨

t=u∈Es

∃ free(Es) : (x = t ∧ y = u).

417

13.3 Algebraic coinduction as fixpoint coinduction 13 COINDUCTION RULES

�� ��Coinduction rules

Suppose that φs ⇒ x ∼s y has been proved by fixpoint coinduction. Then

φgfp(ΦSP)
s ⊆ (x ∼s y)

gfp(ΦSP). (1)

Hence

g(x) ∼A
s g(y) ⇔

∨
t=u∈Es

(g(x) = tC(g) ∧ g(y) = uC(g)) ⇔ g ∈ φ
gfp(ΦSP)
s

(1)⇒ g ∈ (x ∼s y)
gfp(ΦSP) ⇔ g(x) ∼gfp(ΦSP)

s g(y)
(2)

and thus

∼A
s

(2)

⊆ ∼gfp(ΦSP)
s

Lemma 13.3 (3)
= ∆A. (3)

Let t = u ∈ Es. Then for all g ∈ AV , tC(g) ∼A
s uC(g) and thus by (3), tC(g) = uC(g).

Therefore,
(t = u)C = {g ∈ AV | tC(g) = uC(g)} = AV ,

i.e., C satisfies Es.

The number of generalizations of φs, i.e., applications of rule (2) in section 13.1and
consecutive extensions of axioms for the predicate q, in the proof of φs ⇒ x ∼s y by
fixpoint coinduction agrees with the number of iterations of step 2 in the corresponding
proof by algebraic coinduction (see section 13.2). Hence q is interpreted by the relation
R constructed in that proof.

418

13.3 Algebraic coinduction as fixpoint coinduction 13 COINDUCTION RULES

�� ��Coinduction rules
Example 13.4 Let Σ = Stream(Z) ∪ F (see section 8.3) where

F = {zeros, ones, blink : 1 → list} ∪
{cons : N× list→ list, zip : list× list→ list, evens : list→ list}.

Let A be a Σ-algebra with carrier A such that A|Stream(Z) is final in AlgStream(Z) and
satisfies the following equations:

head(zeros) = 0, tail(zeros) = zeros,

head(ones) = 1, tail(ones) = ones,

head(blink) = 0, tail(blink) = cons(1, blink),

head(cons(x, s)) = x, tail(cons(x, s)) = s,

head(zip(s, s′)) = head(s′), tail(zip(s, s′)) = zip(s′, s),

head(evens(s)) = head(s), tail(evens(s)) = tail(tail(s)).

We show by algebraic coinduction that A satisfies the equations

zip(zeros, ones) = blink, (1)
evens(zip(s, s′)) = s. (2)

Proof of (1). Let

419

13.3 Algebraic coinduction as fixpoint coinduction 13 COINDUCTION RULES

�� ��Coinduction rules

a = zip(zeros, ones)A, b = blinkA,

R = {(a, b)},
R′ = {(a, b) ∈ A2 | headA(a) = headA(b), (tailA(a), tailA(b)) ∈ Req}.

We have

headA(a) = headA(zipA(zerosA, onesA)) = headA(blinkA) = headA(b), (3)

tailA(a) = tailA(zipA(zerosA, onesA)) = zipA(onesA, zerosA), (4)

tailA(b) = tailA(blinkA) = consA(1, blinkA). (5)

By (4) and (5), (tailA(a), tailA(b)) ̸∈ Req and thus (a, b) ̸∈ R′. Hence we extend R in
accordance with Step 3 of the coinductive-proof procedure:

a′ = zipA(onesA, zerosA), b′ = consA(1, blinkA),

R = {(a, b), (a′, b′)},
R′ = {(a, b) ∈ A2 | headA(a) = headA(b), (tailA(a), tailA(b)) ∈ Req}.

By (3), (4) and (5), (a, b) ∈ R′. Moreover,

headA(a′) = headA(zipA(onesA, zerosA))) = 1 = headA(consA(1, blinkA))

= headA(b′),

420

13.3 Algebraic coinduction as fixpoint coinduction 13 COINDUCTION RULES

�� ��Coinduction rules

tailA(a′) = tailA(zipA(onesA, zerosA)) = zipA(zerosA, tailA(onesA))

= zipA(zerosA, onesA),

tailA(b′) = tailA(consA(1, blinkA)) = blinkA.

Hence (tailA(a′), tailA(b′)) ∈ R and thus (a′, b′) ∈ R′. Consequently, R ⊆ R′ and thus
by the coinduction principle for Stream(Z), R ⊆ ∆A, i.e., A satisfies (1).

Proof of (2). Let

f = evens(zip(s, s′))A,

R = {(f (g), g(s)) | g ∈ AV },
R′ = {(a, b) ∈ A2 | headA(a) = headA(b), (tailA(a), tailA(b)) ∈ Req}.

We have
headA(f (g)) = headA(evensA(zipA(g(s), g(s′)))) = headA(zipA(g(s), g(s′)))

= headA(g(s)), (6)

tailA(f (g)) = tailA(evensA(zipA(g(s), g(s′))))

= evensA(tailA(tailA(zipA(g(s), g(s′))))) = evensA(tailA(zipA(g(s′), tail(g(s)))))

= evensA(zipA(tailA(g(s)), tailA(g(s′)))) = f (tailA ◦ g). (7)

421

13.4 Coinduction modulo constructors 13 COINDUCTION RULES

�� ��Coinduction rules

Hence by (7), (tailA(f (g)), tailA(g(s))) ∈ R and thus by (6), (f (g), g(s)) ∈ R′. Conse-
quently, R ⊆ R′ and thus by the coinduction principle for Stream(Z), R ⊆ ∆A, i.e., A
satisfies (2).

Proofs of (1) and (2) by fixpoint coinduction, performed by Expander2 with respect to
the specification stream, can be found here. ❏

13.4 Coinduction modulo constructors

Let D ⊆ F be a set of destructors, DΣ = (S,D) and C ⊆ F be a set of constructors.
Under the assumptions of Lemma 16.4, the coinduction principle for DΣ (see above) can
be weakened as follows:

❀ A Σ-algebra A with carrier A satisfies the coinduction principle for DΣ modulo
C if for all S-sorted binary relations R on A, R ⊆ ∆A iff there is a DΣ-congruence
on A modulo C that contains R.

Accordingly, the coinductive-proof procedure of section 13.2 becomes a method for prov-
ing equations by coinduction modulo C if Step 2 is adapted as follows:

422

https://fldit-www.cs.tu-dortmund.de/~peter/Expander2.html
https://fldit-www.cs.tu-dortmund.de/~peter/zipProofs
https://fldit-www.cs.tu-dortmund.de/~peter/zipProofs

13.4 Coinduction modulo constructors 13 COINDUCTION RULES

�� ��Coinduction rules

• Step 2: For all s ∈ S, let

R′
s = {(a, b) ∈ A2

s | ∀ d : s→ e ∈ D : (dA(a), dA(b)) ∈ RC,e}.

If R ⊆ R′, then R is a DΣ-bisimulation modulo C. Hence by Lemma 16.4, the CΣ-
congruence closure RC of R is a DΣ-congruence. Since RC contains R0, the coinduction
principle for D implies R0 ⊆ RC ⊆ ∆A. Hence for all s ∈ S,

{(tA(g), uA(g)) | (t, u) ∈ Es, g ∈ AV } = R0,s ⊆ ∆As,

i.e., A satisfies E.

Example 13.5

Let Σ = Acc(X) ∪Reg(X) and A be the Σ-algebra with carrier A, A|Reg(X) = Pow (X)

(sample algebra 9.6.20) and A|Acc(X) = Lang(X) (sample algebra 9.6.19).

The biinductive definition of the Brzozowski automaton (see sample biinductive definition
16.5.6) provide the assumptions of Lemma 16.4. We show that A satisfies the distributive
law

x ∗ (y + z) = (x ∗ y) + (x ∗ z). (1)

The following proof by algebraic coinduction modulo C = {par} uses the equations that
define the Brzozowski automaton (see sample algebra 9.6.23) and the equations

423

13.4 Coinduction modulo constructors 13 COINDUCTION RULES

�� ��Coinduction rules

0̂ ∗ x = 0̂, (2)
x ∗ 1̂ = x, (3)
1̂ ∗ x = x, (4)

(x1 + y1) + (x2 + y2) = (x1 + x2) + (y1 + y2). (5)

Let x′ ∈ X ,

f = (x ∗ (y + z))A, f ′ = ((x ∗ y) + (x ∗ z))A,
a = δA(g(x))(x′) ∗A (g(y) +A g(z)),

b = δA(g(x))(x′) ∗A g(y), c = δA(g(x))(x′) ∗A g(z),
d = δA(g(y))(x′) +A δA(g(z))(x′),

R = {(f (g), f ′(g)) | g ∈ AV },
R′ = {(a, b) ∈ A2 | βA(a) = βA(b), (δA(a), δA(b)) ∈ RC}.

Then
(a, b +A c) = (f (g[δA(g(x))(x′)/x]), f ′(g[δA(g(x))(x′)/x])) ∈ R. (6)

424

13.4 Coinduction modulo constructors 13 COINDUCTION RULES

�� ��Coinduction rules
Moreover,

βA(f (g)) = βA(g(x) ∗A (g(y) +A g(z))) = βA(g(x)) ∗ βA(g(y) +A βA(g(z)))

= βA(g(x)) ∗max(βA(g(y)), βA(g(z)))

= max(βA(g(x)) ∗ βA(g(y)), βA(g(x)) ∗ βA(g(z)))

= max(βA(g(x) ∗A g(y)), βA(g(x)Ag(z)))

= βA((g(x) ∗A g(y)) +A (g(x) ∗A g(z))) = βA(f ′(g)). (7)

δA(f (g))(x′) = δA(g(x) ∗A (g(y) +A g(z)))(x′)

= a +A (̂βA(g(x))
A
∗A (δA(g(y))(x′) +A δA(g(z))(x′)))

(2/3/4)
=

 a if βA(g(x)) = 0

a +A d otherwise
(8)

425

13.4 Coinduction modulo constructors 13 COINDUCTION RULES

�� ��Coinduction rules

δA(f ′(g))(x′) = δA((g(x) ∗A g(y)) +A (g(x) ∗A g(z)))(x′)
= δA(g(x) ∗A g(y))(x′) +A δA(g(x) ∗A g(z))(x′)

= (b +A (̂βA(g(x))
A
∗A δA(g(y))(x′))) +A (c +A (̂βA(g(x))

A
∗A δA(g(z))(x′)))

(2/3/4)
=

 b +A c if βA(g(x)) = 0

(b +A δA(g(y))(x′)) +A (c +A δA(g(z))(x′)) otherwise

(5)
=

 b +A c if βA(g(x)) = 0

(b +A c) +A d otherwise
(9)

By (8) and (9),

(δA(f (g))(x′), δA(f ′(g))(x′)) =

 (a, b +A c) if βA(g(x)) = 0

(a +A d, (b +A c) +A d otherwise.

Hence (δA(f (g))(x′), δA(f ′(g))(x′)) ∈ RC and thus by (7), (f (g), f ′(g)) ∈ R′. Conse-
quently, R ⊆ R′ and thus by the coinduction principle for Acc(X) modulo C, R ⊆ ∆A,
i.e., A satisfies (1).

A proof of (1) by fixpoint coinduction modulo C, performed by Expander2 with respect
to the specification brozowski, can be found here. ❏

426

https://fldit-www.cs.tu-dortmund.de/~peter/Expander2.html
https://fldit-www.cs.tu-dortmund.de/~peter/brozowski
https://fldit-www.cs.tu-dortmund.de/~peter/seqparP

13.5 Quotients are monotone 13 COINDUCTION RULES

�� ��Coinduction rules

13.5 Quotients are monotone

Lemma 13.6

Let A be a Σ-algebra with carrier A, R be a symmetric Σ-congruence on A, B = A/R
(see section 9.10), φ ∈ FoΣ(V) and f, g ∈ AV such that for all x ∈ V , (f (x), g(x)) ∈ R.

(1) f ∈ φA ⇔ g ∈ φA.

(2) φB = {natR ◦ g | g ∈ φA}.

(3) A |= φ implies B |= φ.

Proof of (1) by induction on the size of φ.

Let e ∈ Tfo(S), p : P(e) ∈ P , t : e ∈ ΛΣ(V) and f ∈ p(t)A. Then tA(f) ∈ pA. By
assumption and straightforward induction on the size of t, (tA(f), tA(g)) ∈ Re. Hence
tA(g) ∈ pA and thus g ∈ p(t)A.

Let φ, ψ ∈ FoΣ(V), e ∈ Tfo(S) and x ∈ Ve.

f ∈ (¬φ)A ⇔ f ∈ AV \ φA ind. hyp.⇔ g ∈ Ae \ φA ⇔ g ∈ (¬φ)A,
f ∈ (φ ∧ ψ)A ⇔ f ∈ φA ∧ f ∈ ψA ind. hyp.⇔ g ∈ φA ∧ g ∈ ψA ⇔ g ∈ (φ ∧ ψ)A,
f ∈ (∀xφ)A ⇔ ∀ a ∈ Ae : f [a/x] ∈ φA ind. hyp.⇔ ∀ a ∈ Ae : g[c/x] ∈ φA ⇔ g ∈ (∀xφ)A.

427

13.5 Quotients are monotone 13 COINDUCTION RULES

�� ��Coinduction rules
Proof of (2) by induction on the size of φ.

Let e ∈ Tfo(S), p : P(e) ∈ P , t : e ∈ ΛΣ(V).

p(t)B = {f ∈ (A/R)V | tA(f) ∈ pB} = {natR ◦ g | g ∈ AV , tB(natR ◦ g) ∈ pB}
= {natR ◦ g | g ∈ AV , natR(t

A(g)) ∈ pB} = {natR ◦ g | g ∈ AV , [tA(g)]R ∈ pB}
= {natR ◦ g | g ∈ AV , tA(g) ∈ pA} = {natR ◦ g | g ∈ p(t)A}.

Let φ, ψ ∈ FoΣ(V), e ∈ Tfo(S) and x ∈ Ve.

(¬φ)B = (A/R)V \ φB ind. hyp.
= (A/R)V \ {natR ◦ g | g ∈ φA}

= {natR ◦ g | g ∈ AV \ φA} = {natR ◦ g | g ∈ (¬φ)A},
(φ ∧ ψ)B = φB ∩ ψB ind. hyp.

= {natR ◦ g | g ∈ φA} ∩ {natR ◦ g | g ∈ ψA}
= {natR ◦ g | g ∈ φA ∩ ψA} = {natR ◦ g | g ∈ (φ ∧ ψ)A},

(∀xφ)B = {f ∈ (A/R)V | ∀ [a]R ∈ (A/R)e : f [[a]R/x] ∈ φB}
= {natR ◦ g | g ∈ AV , ∀ [a]R ∈ (A/R)e : (natR ◦ g)[[a]R/x] ∈ φB}
= {natR ◦ g | g ∈ AV , ∀ a ∈ Ae : natR ◦ g[a/x] ∈ φB}
ind. hyp.

= {natR ◦ g | g ∈ AV , ∀ a ∈ Ae : g[a/x] ∈ φA}
= {natR ◦ g | g ∈ (∀xφ)A}.

428

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��Coinduction rules

Proof of (3). Suppose that A satisfies φ. Then φA = AV and thus by (2),

φB = {natR ◦ g | g ∈ φA} = {natR ◦ g | g ∈ AV } = (A/R)V ,

i.e., B satisfies φ. ❏

13.6 Duality of (co)resolution and (co)induction

(Co)Resolution and narrowing upon functions apply axioms to conjectures.
The proof proceeds by transforming the modified conjectures.

(Co)Induction applies conjectures to axioms.
The proof proceeds by transforming the modified axioms.

Resolution upon a predicate p is a rule for evaluating p.

Induction upon a predicate p is a rule for verifying p.

Coresolution upon a predicate q is a rule for verifying q.

Coinduction upon a predicate q is a rule for evaluating q.

429

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��Σ-formulas

φ(x) ==> p(x)

φ(x) ==> q(x)

p(x) ==> φ(x)

q(x) ==> φ(x)

True / False /
solved formula

axioms(p)[φ/p]

axioms(q)[φ/q]

fixpoint induction

coinduction

narrowing

predicate predicate

copredicatecopredicate

proof

proof

evaluation

evaluation

narrowing

narrowing

narrowing

430

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�
�

�
14 F -algebras and -coalgebras

Let K be a category and F be an endofunctor on K.

An F -algebra or F -dynamics [17] is a K-morphism α : F (A) → A.

AlgF denotes the category of F -algebras and the following K-morphisms:

An AlgF -morphism h from an F -algebra α :F (A) → A to an F -algebra β :F (B) → B

is a K-morphism h : A → B such that h ◦ α = β ◦ F (h), i.e., the following diagram
commutes:

F (A)
α

≻A

=

F (B)

F (h)

⋎

β
≻B

h

⋎

431

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��F -algebras and F -coalgebras

An F -coalgebra or F -codynamics [17] is a K-morphism α : A→ F (A).

coAlgF denotes the category of F -coalgebras and the following K-morphisms:

A coAlgF -morphism h from an F -coalgebra α :A → F (A) to an F -coalgebra β :B →
F (B) is a K-morphism h :A→ B such that F (h) ◦α = β ◦ h, i.e., the following diagram
commutes:

A
α

≻F (A)

=

B

h

⋎

β
≻F (B)

F (h)

⋎

A K-object A is a fixpoint of F if F (A) ∼= A.

432

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��F -algebras and F -coalgebras

Lemma 14.1 (Lambek’s Lemma; [96], Lemma 2.2; [23], Prop. 5.12; [15], section 2; [155],
Thm. 9.1)

(1) Suppose that AlgF has an initial object α : F (A) → A.

α is iso and thus A is a fixpoint of F .

(2) Suppose that coAlgF has a final object β : A→ F (A).

β is iso and thus A is a fixpoint of F .

Proof. (1) Since α is initial, there is an AlgF -morphism h : A → F (A) from α to F (α).
Hence α ◦ h is an AlgF -morphism from α to α:

α ◦ h ◦ α = α ◦ F (α) ◦ F (h) = α ◦ F (α ◦ h).
idA is also an AlgF -morphism from α to α:

idA ◦ α = α = α ◦ idF (A) = α ◦ F (idA).
Hence (3) α ◦ h = idA because α is initial in AlgF . Since h is an AlgF -morphism,

h ◦ α = F (α) ◦ F (h) = F (α ◦ h) = F (idA) = idF (A). (4)

By (3) and (4), α is an isomorphism.

(2) Analogously. ❏

433

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��F -algebras and F -coalgebras

Let α : F (A) → A be an F -algebra and iniF : F (µF) → µF be initial in AlgF .

The unique AlgF -morphism from iniF to α is called a catamorphism [106, 179], reach-
ability map [17] or a function defined by recursion and denoted by foldα or (|α|) :
µF → A.

Catamorphisms are also called functions defined by recursion because the equation
that expresses that foldα is an AlgF -morphism provides a recursive definition schema
(see Theorem 16.1 and section 16.3).

Lemma 14.2 Let β : F (A×µF) → A be a K-morphism and γ be the F -algebra
⟨β, iniF ◦ F (π2)⟩ : F (A× µF) → A× µF.

There is a unique K-morphism h : µF → A such that (1) commutes:

F (µF)
iniF ≻µF

⟨h, id⟩
≻A×µF

(1)

F (A×µF)

F (⟨h, id⟩)

⋎

β
≻A

h

⋎
π1

≺

434

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��F -algebras and F -coalgebras

Proof. Suppose that (1) holds true. Then

⟨h, id⟩ ◦ iniF
(6) on p. 16

= ⟨h ◦ iniF , id ◦ iniF ⟩
id is AlgF−morph.= ⟨h ◦ iniF , iniF ◦ F (id)⟩ = ⟨h ◦ iniF , iniF ◦ F (π2 ◦ ⟨h, id⟩)⟩
= ⟨h ◦ iniF , iniF ◦ F (π2) ◦ F (⟨h, id⟩)⟩
(1)
= ⟨β ◦ F (⟨h, id⟩), iniF ◦ F (π2) ◦ F (⟨h, id⟩))⟩
(6) on p. 16

= ⟨β, iniF ◦ F (π2)⟩ ◦ F (⟨h, id⟩) = γ ◦ F (⟨h, id⟩).

Hence ⟨h, id⟩ : µF → A× µF is an AlgF -morphism from iniF to γ. Given a further K-
morphism h : µF → A such that (1) holds true with h′ instead of h, the fact that ⟨h, id⟩
is an AlgF -morphism, can be shown analogously. Since there is only one AlgF -morphism
from iniF to γ, h = π1 ◦ ⟨h, id⟩ = ⟨h′, id⟩ = h′. ❏

h is called a paramorphism and denoted by ⟨|β|⟩.

Paramorphisms are the functions defined by primitive recursion. They match a par-
ticular recursion schema that can be reduced to (1). Such schema transformations often
employ the step from given functions to their coextensions with respect to an adjunction
(see chapter 19).

435

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��F -algebras and F -coalgebras

As to primitive recursion, the right-adjointness of products to diagonals provides the
reduction: In terms of Theorem 25.1, h : µF → A is a paramorphism iff

(h, id) : (µF, µF) → (A, µF)

is (∆,_ × µF)-recursive, i.e., iff (h, id)# = ⟨h, id⟩ is an AlgF -morphism.

In section 16.3, many recursion schemas and their reduction to (1) are exemplified. For
instance, the equations given there for the factorial function yield a paramorphism.

Let α : A→ F (A) be an F -coalgebra and finF : νF → F (νF) be final in coAlgF .

The unique coAlgF -morphism from α to β is called an anamorphism [106, 179] or
observability map [17] and denoted by unfoldα or |(α)| : A→ νF .

Anamorphisms are also called functions defined by corecursion because the equa-
tion that expresses that unfoldα is a coAlgF -morphism provides a corecursive definition
schema (see Theorem 16.2 and section 16.4).

436

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��F -algebras and F -coalgebras

Lemma 14.3 Let β : A→ F (A+νF) be a K-morphism and γ be the F -coalgebra

[β, F (ι2) ◦ finF] : A + νF → F (A + νF).

There is a unique K-morphism h : A→ νF such that (2) commutes:

A
β

≻F (A+νF)

(2)

A+νF
[h, id]

≻

ι1

≺
νF

h

⋎

finF
≻F (νF)

F ([h, id])

⋎

Proof. Analogously to the proof of Theorem 14.2. ❏

h is called an apomorphism and denoted by |⟨β⟩|.

Apomorphisms are the functions defined by primitive corecursion. They match a par-
ticular corecursion schema that can be reduced to (2). Such schema transformations often
employ the step from given functions to their extensions with respect to an adjunction
(see chapter 19).

437

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��F -algebras and F -coalgebras

As to primitive corecursion, the left-adjointness of coproducts (sums) to diagonals pro-
vides the reduction: In terms of Theorem 25.2, h is an apomorphism iff

(h, id) : (A, νF) → (νF, νF)

is (_ + µF,∆)-corecursive, i.e., iff (h, id)∗ = [h, id] is an AlgF -morphism.

In sections 16.4 and 16.5, several corecursion schemas and their reduction to (2) are ex-
emplified. For instance, the equations given there for a function that inserts elements
into ordered streams yield an apomorphism.

Let iniF : F (µF) → µF be initial in AlgF and finF : νF → F (νF) be final in coAlgF
such that µF embedded in νF . Moreover, let FinF be the subcategory of coAlgF that
consists of all F -coalgebras α : A → F (A) such that unfoldα : A → νF factors through
µF .

Let α : F (A) → A be an F -algebra and β : B → F (B) be an F -coalgebra. A K-
morphism h : B → A is a hylo(morphism) w.r.t. (α, β) if

h = α ◦ F (h) ◦ β (3)

(see [76], section 3). If h is unique with (3), we write [|α, β|] for h (see [106, 45]).

438

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��F -algebras and F -coalgebras

β is recursive [9, 38] if for every F -algebra α : F (A) → A there is a unique hylo w.r.t.
(α, β).

α is corecursive [8, 39] if for every F -coalgebra β : B → F (B) there is a unique hylo
w.r.t. (α, β).

Hence

• by Lemma 14.1 (1) and Lemma 4.2 (1), the inverse of an initial F -algebra iniF :

F (µF) → µF is a recursive F -coalgebra with hylo

[|α, ini−1
F |] = (|α|) : µF → A; (4)

• by Lemma 14.1 (2) and Lemma 4.2 (2), the inverse of a final F -coalgebra finF : νF →
F (νF) is a corecursive F -algebra with hylo

[|fin−1
F , β|] = |(β)| : B → νF. (5)

439

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��F -algebras and F -coalgebras

Lemma 14.4 (Hylo-Compose [52, 45])

Let α : F (A) → A and β′ : F (B) → B be F -algebras and β : B → F (B), γ : C → F (C)

be F -coalgebras such that β ◦ β′ = idF (B) and there are a hylo g : B → A w.r.t. (α, β)
and a hylo h : C → B w.r.t. (β′, γ).

(6) g ◦ h : C → A is a hylo w.r.t. (α, γ).

(7) Let inF : F (B) → B be initial in AlgF , finF : B → F (B) be final in coAlgF and
ini−1

F = finF (or fin−1
F = iniF).

Then (|α|) ◦ |(γ)| is a hylo w.r.t. (α, γ).

Proof. (6):

g ◦ h g hylo
= α ◦ F (g) ◦ β ◦ h h hylo

= α ◦ F (g) ◦ β ◦ β′ ◦ F (h) ◦ γ
β◦β′=id
= α ◦ F (g) ◦ F (h) ◦ γ = α ◦ F (g ◦ h) ◦ γ.

(7): By (4), (|α|) = [|α, ini−1
F |]

ini−1
F =finF
= [|α, finF |]. By (5), |(γ)| = [|fin−1

F , γ|]. Hence
g = (|α|) and h = |(γ)| satisfy the assumptions of the lemma.

Therefore, (6) implies that (|α|) ◦ |(γ)| is a hylo w.r.t. (α, γ). ❏

440

13.6 Duality of (co)resolution and (co)induction 13 COINDUCTION RULES

�� ��F -algebras and F -coalgebras

Let α′ : F (A) × B → A be a K-morphism and β : B → F (B) be an F -coalgebra. A
K-morphism h : B → A is a para-hylo(morphism) w.r.t. (α′, β) if

h = α′ ◦ ⟨F (h) ◦ β, idB⟩ (8)

(see [76], section 5).

β is parametrically recursive [9] if for every K-morphism α′ : F (A) × B → A there
is a unique para-hylo w.r.t. (α′, β).

Since ⟨F (h) ◦ β, idB⟩ = (F (h)× idB) ◦ ⟨β, idB⟩, α : F (A) → A satisfies (5) iff

α′ = α ◦ π1 : F (A)×B → A

solves (10), i.e., every parametrically recursive F -coalgebra is recursive.

Given a destructive signature Σ, the converse holds true as well: all recursive HΣ-
coalgebras (see chapter 15) are parametrically recursive ([9], Theorem 3.8).

Let α : F (A) → A be an F -algebra and β′ : B → F (B) + A be a K-morphism. A
K-morphism h : B → A is an apo-hylo(morphism) w.r.t. (α, β′) if

h = [α ◦ F (h), idA] ◦ β′ (9)

(see [76], section 5).

441

14.1 Invariants and congruences 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

α is parametrically corecursive or completely iterative [8, 39] if for every K-
morphism β′ : B → F (B) + A there is a unique apo-hylo w.r.t. (α, β′).

Since [α ◦ F (h), idA] = [α, idA] ◦ (F (h) + idA), β : B → F (B) satisfies (5) iff

β′ = β ◦ ι1 : B → F (B) + A

solves (9), i.e., every parametrically corecursive F -algebra is corecursive.

According to [8], section 9, the converse does not hold true.

14.1 Invariants and congruences

(see [81], Defs. 3.1.1, 3.1.2, 6.1.1, 6.2.1; [93], Def. 2.5)

Let F : Set→ Set be a functor, A be a set, B ⊆ A and R ⊆ A2.

Pred(F)(B) =def {F (incB)(c) | c ∈ F (B)} ⊆ F (A), (predicate lifting)
Rel(F)(R) =def {(F (π1)(c), F (π2)(c)) | c ∈ F (R)} ⊆ F (A)2. (relation lifting)

442

14.1 Invariants and congruences 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

Let α : F (A) → A be an F -algebra,

Φα : P(A) → P(A)

B 7→ {α(c) | c ∈ Pred(F)(B)},
Ψα : P(A2) → P(A2)

R 7→ {(α(c), α(d)) | (c, d) ∈ Rel(F)(R)}.

B is an invariant of α if for all c ∈ Pred(F)(B), α(c) ∈ B, or, equivalently, if B is
Φα-closed.

R is a bisimulation on α if for all (c, d) ∈ Rel(F)(R)(B), (α(c), α(d)) ∈ R, or, equiva-
lently, if R is Ψα-closed.

By Theorem 3.9 (1),

lfp(Φα) =
⋂
{B ⊆ A | B is Φα-closed},

lfp(Ψα) =
⋂
{R ⊆ A2 | R is Ψα-closed}.

Hence lfp(Φα) is the least invariant of α and lfp(Ψα) is the least bisimulation on α.

443

14.1 Invariants and congruences 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

Let β : A→ F (A) be an F -coalgebra,

Φβ : P(A) → P(A)

B 7→ {a ∈ A | β(a) ∈ Pred(F)(B)},
Ψβ : P(A2) → P(A2)

R 7→ {(a, b) | (β(a), β(b)) ∈ Rel(F)(R)}.

B is an invariant of β if for all a ∈ B, β(a) ∈ Pred(F)(B), or, equivalently, if B is
Φβ-dense.

R is a bisimulation on β if for all (a, b) ∈ R, (β(a), β(b)) ∈ Rel(F)(R), or, equivalently,
if R is Ψβ-dense.

By Theorem 3.9 (5),

gfp(Φβ) =
⋃
{B ⊆ A | B is Φβ-dense},

gfp(Ψβ) =
⋃
{R ⊆ A2 | R is Ψβ-dense}.

Hence gfp(Φβ) is the greatest invariant of β and gfp(Ψβ) is the greatest bisimulation on
β. Moreover, by Theorem 9.6 (2), greatest bisimulations are equivalence relations.

444

14.2 Complete categories and continuous functors 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

Therefore, gfp(Ψβ) is also the greatest congruence on β.

14.2 Complete categories and continuous functors

Let K and L be λ-complete (see section 6.1). A functor F : K → L is λ-continuous
if for all λ-cochains D of K, F preserves the limit {νi : C → D(i) | i < λ} of D, i.e.,
{F (νi) | i < λ} is the limit of F ◦ D.

Let K and L be λ-cocomplete (see section 6.2). A functor F : K → L is λ-cocontinuous
if for all λ-chains D of K, F preserves the colimit {µi : D(i) → C | i < λ} of D, i.e.,
{F (µi) | i < λ} is the colimit of F ◦ D.

CPOE denotes the category of ω-CPOs as objects and pairs

(f : A→ B, g : B → A)

of ω-continuous functions with g ◦ f = idA and f ◦ g ≤ idB as morphisms.

445

14.2 Complete categories and continuous functors 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

Theorem 14.5 (see, e.g., [124], section 11.3)

All endofunctors on CPOE built up from identity and constant functors, coproducts,
finite products and hom-functors are cocontinuous. ❏

e ∈ Tpo(S) is strongly polynomial if e contains only product types with a finite set of
indices.

Let κ be a cardinal number. e ∈ Tpo(S) is κ-polynomial if e does not contain a product
type whose set of indices has a cardinality greater than κ.

Theorem 14.6

(1) For all strongly polynomial types e over S, Fe is ω-continuous.

Let κ be a cardinal number and λ be the first regular cardinal number > κ. (For instance,
ℵ1 = | ∩ {λ | λ > ω}| is the first regular cardinal number > ω.)

(2) For all κ-polynomial types e over S, Fe is λ-cocontinuous.

(3) For all κ-polynomial types e over S, Fe is λ-continuous.

446

https://en.wikipedia.org/wiki/Regular_cardinal

14.2 Complete categories and continuous functors 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

Proof. By [17], Thms. 1 and 4, or [21], Prop. 2.2 (1) and (2), permutative and constant
functors are ω-continuous and ω-cocontinuous, ω-continuous or λ-cocontinuous functors
are closed under coproducts, ω-continuous functors are closed under products (and thus
under exponentiation; see [155], Thm. 10.1) and λ-cocontinuous functors are closed under
finite products.

By [21], Prop. 2.2 (3), ω-continuous or λ-cocontinuous functors are closed under finite
quotients, i.e., quotients consisting of finite equivalence classes. Since for all sets A,
A∗ =

∐
n<ω A

n and NA
ω
∼= A∗/=bag, the functors _∗ and N_

ω are ω-continuous and ω-
cocontinuous (see [10], Exs. 2.3.14/15).

By [10], Ex. 2.2.13, Pω is ω-cocontinuous. For a proof of the fact that Pω is not ω-
continuous, see [10], Ex. 2.3.11. Pω(A) is a quotient of A∗, but not a finite one: Pω(A) ∼=
A∗/=set (see chapter 2).

By [10], Thm. 4.1.12, λ-cocontinuous functors are closed under products whose index
sets have cardinalities less than λ and thus under exponentiation by exponents with a
cardinality less than λ. Moreover, ω-continuous or λ-cocontinuous functors are closed
under sequential composition. ❏

447

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

14.3 Initial F -algebras and final F -coalgebras

Theorem 14.7 (For λ = ω, see [15], section 2; [99], Thm. 2.1; for any λ, see [4], [6],
Thm. 3.19, or [10], Cor. 4.1.5.)

Let λ be an infinite cardinal, Ini be initial in K and K be κ-cocomplete for all κ ≤ λ.

Given an endofunctor F on K, define a λ-chain D of K as follows:

D(0) = Ini ,

D(0, 1) = ext0 : D(0) → D(1),

D(k + 1) = F (D(k)) for all k < λ,

D(i + 1, k + 1) = F (D(i, k)) for all i < k < λ,

D(i, k) = µi,k : D(i) → D(k) for all limit ordinals k < λ and all i < k,

D(k, k + 1) = extk : D(k) → D(k + 1) for all limit ordinals k < λ

where ext0 is the unique K-morphism from Ini to F (Ini) and for all limit ordinals k < λ,
γk = {µi,k | i < k} is the colimit of the greatest subdiagram Dk : Ok → K of D and extk
is the unique K-morphism from D(k) to F (D(k)) such that for all i < k,

extk ◦ µi+1,k = F (µi,k) : D(i + 1) → D(k + 1).

extk exists because {F (µi,k) | i < k} is a cocone of F ◦ Dk and γk \ {µ0,k} is the colimit
of F ◦ Dk.

448

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

ext0 F(ext0) F2(ext0) F3(ext0)

colimit(Dω)

D(0)

extω

D(1) D(2) D(3)

D(ω) D(ω+1)

D(4)
Dω

F(colimit(Dω))

D0∅

The ω + 2-chain of K induced by the initial object D(0) of K

449

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

ext0 F(ext0) F2(ext0) F3(ext0)

colimit(Dω)

D(0)

extω F(extω) F2(extω)

extω2 F(extω2)

D(1) D(2) D(3)

D(ω) D(ω+1)

D(4)
Dω

D(ω+2) D(ω+3)

Dω2

D(ω2)

F(colimit(Dω))

D(ω2+1)

D(ω2+2)colimit(Dω2)

Dω3

F(colimit(Dω2))

D0∅

The ω3-chain of K induced by the initial object D(0) of K

450

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

ext0 F(ext0) F2(ext0) F3(ext0)

colimit(Dω)

D(0)

extω F(extω) F2(extω)

extω2 F(extω2)

D(1) D(2) D(3)

D(ω) D(ω+1)

D(4)
Dω

D(ω+2) D(ω+3)

Dω2

D(ω2)

F(colimit(Dω))

D(ω2+1)

D(ω2+2)colimit(Dω2)

Dω3

D(ω3)

F(colimit(Dω2))

Dω4

D(ω3+1)

F(colimit(Dω3))

D0∅

The ω4-chain of K induced by the initial object D(0) of K

451

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

ext0 F(ext0) F2(ext0) F3(ext0)

colimit(Dω)

D(0)

extω F(extω) F2(extω)

extω2 F(extω2)

D(1) D(2) D(3)

D(ω) D(ω+1)

D(4)
Dω

D(ω+2) D(ω+3)

Dω2

D(ω2)

F(colimit(Dω))

D(ω2+1)

D(ω2+2)colimit(Dω2)

Dω3

Dω2

colimit(Dω3)

D(ω3)

F(colimit(Dω2))

Dω4

D(ω3+1)

F(colimit(Dω3))

D0∅

The ω2-chain of K induced by the initial object D(0) of K

452

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

ext0 F(ext0) F2(ext0) F3(ext0)

colimit(Dω)

D(0)

extω F(extω) F2(extω)

extω2 F(extω2)

colimit(D(ω2))

D(1) D(2) D(3)

D(ω) D(ω+1)

D(4)
Dω

D(ω+2) D(ω+3)

Dω2

D(ω2)

F(colimit(Dω))

D(ω2+1)

D(ω2+2)colimit(Dω2)

Dω3

Dω2

colimit(Dω3)

D(ω3)D(ω2)

extω2

D(ω2+1)

F(colimit(Dω2))

Dω4

D(ω3+1)

F(colimit(Dω3))

D0∅

F(colimit(D(ω2)))

The (ω2 + 2)-chain of K induced by the initial object D(0) of K

453

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

Let F be λ-cocontinuous,

µ = {µi : D(i) → D(λ) | i < λ}
be the colimit of D. Then

F (µ) = {F (µi) : F (D(i)) → F (D(λ)) | i < λ}
is the colimit of F ◦D. Since µ\{µ0} is a cocone of F ◦D, there is a unique K-morphism
ext : F (D(λ)) → D(λ)—and thus an F -algebra—such that for all i < λ,

ext ◦ F (µi) = µi+1 : D(i + 1) → D(λ).

ext is initial in AlgF and thus, by Lemma 14.1 (1), F (D(λ)) ∼= D(λ).

Proof. Let α :F (A) → A be an F -algebra. Since D(0) = Ini is initial in K, there is a
unique K-morphism iniA from Ini to A. Hence D has the cocone

ν = {νi : D(i) → A | i < λ}
with ν0 = iniA and νi+1 = α ◦ F (νi) for all i < λ. We obtain a unique K-morphism
foldA : D(λ) → A with foldA ◦ µi = νi for all i < λ. Therefore,

foldA ◦ ext ◦ F (µi) = foldA ◦ µi+1 = νi+1 = α ◦ F (νi) = α ◦ F (foldA ◦ µi)
= α ◦ F (foldA) ◦ F (µi). (1)

454

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

ext0 F(ext0) F2(ext0) F3(ext0)

colimit(Dω)

D(0)

ext

D(1) D(2) D(3)

D(ω) F(D(ω)) = D(ω+1)

D(4)

F(colimit(Dω))

A F(A)α

foldA F(foldA)(2)

The initial F -algebra ext in the case λ = ω

Since ν \ {ν0} is a cocone of F ◦ D—with target A—and µ \ {µ0} is the colimit of
F ◦ D—with target F (D(λ)) —, there is only one K-morphism h : F (D(λ)) → A with
h ◦ F (µi) = νi+1 for all i < λ. Hence (1) implies

foldA ◦ ext = α ◦ F (foldA), (2)

455

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

i.e., foldA is an AlgF -morphism from ext to α.

It remains to show that foldA is the only AlgF -morphism from ext to α.

Let θ : D(λ) → A be an AlgF -morphism from ext to α, i.e.,

θ ◦ ext = α ◦ F (θ). (3)

Suppose that for all i < λ,
θ ◦ µi = νi : D(i) → A. (4)

Since foldA ◦ µi = νi and there is only one K-morphism h : D(λ) → A with h ◦ µi = νi,
we conclude θ = foldA.

It remains to show (4) by transfinite induction on i.

Since D(0) = Ini is initial in K, θ ◦ µ0 = ν0. Let 0 < k < λ.

If k is a successor ordinal, then k = i + 1 for some ordinal i and thus

θ ◦ µk = θ ◦ µi+1 = θ ◦ ext ◦ F (µi)
(3)
= α ◦ F (θ) ◦ F (µi) = α ◦ F (θ ◦ µi)

ind. hyp.
= α ◦ F (νi) = νi+1 = νk.

456

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

Let k be a limit ordinal. Since µ and ν are cocones of D, µk ◦µi,k = µi and νk ◦µi,k = νi
for all i ∈ k. Again by induction hypothesis,

θ ◦ µk ◦ µi,k = θ ◦ µi = νi = νk ◦ µi,k. (5)

Since {νi | i < k} is a cocone of Dk—with target A—and {µi,k | i < k} is the colimit of
Dk—with target D(k) —, there is only one K-morphism h : D(k) → A with h ◦µi,k = νi
for all i < k. Hence (5) implies θ ◦ µk = νk, and the proof of (4) is complete. ❏

457

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

Theorem 14.8

Let λ be an infinite cardinal, Fin be final in K and K be κ-complete for all κ ≤ λ.

Given an endofunctor F on K, define a λ-cochain D of K as follows:

D(0) = Fin,

D(1, 0) = ext0 : D(1) → D(0),

D(k + 1) = F (D(k)) for all k < λ,

D(k + 1, i + 1) = F (D(k, i)) for all i < k < λ,

D(k, i) = µk,i : D(k) → D(i) for all limit ordinals k < λ and all i < k,

D(k + 1, k) = extk : D(k + 1) → D(k) for all limit ordinals k < λ

where ext0 is the unique K-morphism from F (Fin) to Fin and for all limit ordinals
k < λ, γk = {µk,i | i < k} is the limit of the greatest subdiagram Dk : Ok → K of D
and extk is the unique K-morphism from F (D(k)) to D(k) such that for all i < k,

µk,i+1 ◦ extk = F (µk,i) : D(k + 1) → D(i + 1).

extk exists because {F (µk,i) | i < k} is a cone of F ◦ Dk and γk \ {µk,0} is the limit of
F ◦ Dk.

458

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

Let F be λ-continuous,
µ = {µi : D(λ) → D(i) | i < λ}

be the limit of D. Then

F (µ) = {F (µi) : F (D(λ)) → F (D(i)) | i < λ}

is the limit of F ◦ D. Since µ \ {µ0} is a cone of F ◦ D, there is a unique K-morphism
ext : D(λ) → F (D(λ))—and thus an F -coalgebra—such that for all i < λ,

F (µi) ◦ ext = µi+1 : D(λ) → D(i + 1).

ext is final in coAlgF and thus, by Lemma 14.1 (2), D(λ) ∼= F (D(λ)).

Proof. Let α :A → F (A) be an F -coalgebra. Since D(0) = Fin is final in K, there is a
unique K-morphism finA from A to D(0). Hence D has the cone

ν = {νi : A→ D(i) | i < λ}

with ν0 = finA and νi+1 = F (νi) ◦ α for all i < λ. We obtain a unique K-morphism
unfoldA : A→ D(λ) with µi ◦ unfoldA = νi for all i < λ.

Proceed analogously to the proof of Theorem 14.7. ❏

459

14.3 Initial F -algebras and final F -coalgebras 14 F -ALGEBRAS AND -COALGEBRAS

�� ��F -algebras and F -coalgebras

Corollary 14.9

Suppose that all (co)chains of K have (co)limits. Then the definition of the λ-(co)chain
D in Theorem 14.7 or 14.8 can be extended to the definition of a (co)chain.

If F : K → K is λ-(co)continuous, then D converges in λ steps, i.e., D(λ) ∼= D(λ+1).

Proof. The conjecture follows immediately from Lemma 14.1 and Theorem 14.7 or 14.8.
❏

460

15.1 Functors for constructive signatures 15 Σ-FUNCTORS

�
�

�
15 Σ-functors

15.1 Functors for constructive signatures

Let Σ = (S,C) be a constructive signature.

Σ induces the functor HΣ : Mod(S) → Mod(S):

For all A,B ∈ Mod(S), Mod(S)-morphisms h : A→ B and s ∈ S,

HΣ(A)s =def

∐
c:e→s∈C Ae,

HΣ(h)s =def

∐
c:e→s∈C he.

An HΣ-algebra α : HΣ(A) → A (see chapter 14) uniquely corresponds to a Σ-algebra A
with carrier A and vice versa:

For all s ∈ S and c : e→ s ∈ C,

HΣ(A)s
αs = [cA]c:e→s∈C ≻As

Ae

ιc (1)

⋏

cA = αs ◦ ιc

≻

461

15.1 Functors for constructive signatures 15 Σ-FUNCTORS

�� ��Σ-functors

Hence αs is the sum extension of the interpretations of all constructors of Σ in A.

Moreover, given Σ-algebras A,B and corresponding HΣ-algebras α, β, an S-sorted func-
tion h : A→ B is Σ-homomorphic iff h is an AlgHΣ

-morphism from α to β.

A Σ-algebra A with carrier A is initial in AlgΣ iff the corresponding HΣ-algebra α :

HΣ(A) → A is initial in AlgHΣ
.

Hence by Lemma 14.1 (1), if A is initial in AlgΣ, then [cA]c:e→s∈C is iso and thus

• As is a sum of (Ae)c:e→s∈C with injections cA : Ae → As,
• for all closed λΣ-term tuples (tc : e→ es)c:e→s∈C , the case distinction

case{c.tc}c:e→s∈C : s→ es

has a well-defined interpretation in A:

(case{c.tc}c:e→s∈C)
A = [tAc]c:e→s∈C ◦ [cA]−1

c:e→s∈C

(see chapter 10).

Case distinctions are functional versions of case-statements and variant types in the sense
of [65] and [1], respectively.

462

15.1 Functors for constructive signatures 15 Σ-FUNCTORS

�� ��Σ-functors

Lemma 15.1 (case distinctions are unique solutions)

ds = case{c.tc}Ac:e→s∈C solves

{ds ◦ cA = tAc | s ∈ S} (1)

uniquely in A.

Proof. By Lemma 4.2 (2), for all c : e→ s ∈ C, ιc = [cA]−1
c:e→s∈C ◦ cA and thus

case{c.tc}Ac:e→s∈C ◦ cA = [tAc (g)]c:e→s∈C ◦ [cA]−1
c:e→s∈C ◦ cA = [tAc]c:e→s∈C ◦ ιc = tAc .

Hence ds solves (1) in A.

Conversely, let d = (ds : As → Aes)s∈S be an S-sorted function such that for all c : e →
s ∈ C, ds ◦ cA = tAc for some closed λΣ-term tc. Then by (1),

ds ◦ [cA]c:e→s∈C ◦ ιc = ds ◦ cA = tAc = [tAc]c:e→s∈C ◦ ιc
and thus ds ◦ [cA]c:e→s∈C = [tAc]c:e→s∈C . Hence

ds = ds ◦ [cA]c:e→s∈C ◦ [cA]−1
c:e→s∈C = [tAc]c:e→s∈C ◦ [cA]−1

c:e→s∈C = case{c.tc}Ac:e→s∈C,

i.e., case{c.tc}Ac:e→s∈C is the only solution of (1) in A. ❏

463

15.1 Functors for constructive signatures 15 Σ-FUNCTORS

�� ��Σ-functors

Given a signature Σ′ that includes Σ, we may regard case distinctions as Σ′-formulas (see
section 10.1) whose semantics (see section 10.3) is restricted to Σ′-algebras A such that
A|Σ′ is initial in AlgΣ.

Examples

Let A be an S-sorted set and I,X, Y,Act ⊆ I be as in chapter 8. We omit sort indices
if S is a singleton.

HMon(A) = 1 + A× A,

HNat(A) = 1 + A,

HDyn(X,Y)(A) = X × A + Y,

HcoStream(X)(A) = X × A,

HBintree(X)(A) = X × A× A + 1,

HTree(X)(A) = X × A∗,

HReg(X)(A) = A2 + A2 + A + P+(X) + 2,

HCCS(Act)(A) = Act + A2 + A2 + A× Act + A× ActAct. ❏

464

15.2 Functors for destructive signatures 15 Σ-FUNCTORS

�� ��Σ-functors

15.2 Functors for destructive signatures

Let Σ = (S,D) be a destructive signature.

Σ induces the functor HΣ : Mod(S) → Mod(S):

For all A,B ∈ Mod(S), Mod(S)-morphisms h : A→ B and s ∈ S,

HΣ(A)s =def

∏
d:s→e∈DAe,

HΣ(h)s =def

∏
d:s→e∈D he.

An HΣ-coalgebra α : A → HΣ(A) (see chapter 14) uniquely corresponds to a Σ-algebra
A with carrier A and vice versa:

For all s ∈ S and d : s→ e ∈ D,

As
αs = ⟨dA⟩d:s→e∈D≻HΣ(A)s

Ae

(2) πd

⋎
dA = πd ◦ αs

≻

Hence αs is the product extension of the interpretations of all destructors of Σ in A.

465

15.2 Functors for destructive signatures 15 Σ-FUNCTORS

�� ��Σ-functors

Moreover, given Σ-algebras A,B and corresponding HΣ-coalgebras α, β, an S-sorted
function h : A→ B is Σ-homomorphic iff h is a coAlgHΣ

-morphism from α to β.

A Σ-algebra A with carrier A is final in AlgΣ iff the corresponding HΣ-coalgebra α : A→
HΣ(A) is final in coAlgHΣ

.

Hence by Lemma 14.1 (2), if A is final in AlgΣ, then ⟨dA⟩d:s→e∈D is iso and thus

• As is a product of (Ae)d:s→e∈D with projections dA : As → Ae,
• for all closed λΣ-term tuples (td : es → e)d:s→e, the object definition

obj{d.td}d:s→e∈D : es → s

has a well-defined interpretation in A:

obj{d.td}Ad:s→e∈D = ⟨dA⟩−1
d:s→e∈D ◦ ⟨tAd ⟩d:s→e∈D

(see chapter 10).

Object definitions are functional versions of merge-statements and record types in the
sense of [65] and [1], respectively.

466

15.2 Functors for destructive signatures 15 Σ-FUNCTORS

�� ��Σ-functors

Lemma 15.2 (object definitions are unique solutions)

cs = obj{d.td}Ad:s→e∈D solves
{dA ◦ cs = tAd | s ∈ S} (2)

uniquely in A.

Proof. By Lemma 4.2 (1), for all d : s→ e ∈ D, πd = dA ◦ ⟨dA⟩−1
d:s→e∈D and thus

dA ◦ obj{d.td}Ad:s→e∈D = dA ◦ ⟨dA⟩−1
d:s→e∈D ◦ ⟨tAd ⟩d:s→e∈D◦ = πd ◦ ⟨tAd ⟩d:s→e∈D = tAd .

Hence c solves (2) in A.

Conversely, let c = (cs : Aes → As)s∈S be an S-sorted function such that for all d : s →
e ∈ D, dA ◦ cs = tAd for some closed λΣ-term td. Then by (2),

πd ◦ ⟨dA⟩d:s→e∈D ◦ cs = dA ◦ cs = tAd = πd ◦ ⟨tAd ⟩d:s→e∈D

and thus ⟨dA⟩d:s→e∈D ◦ cs = ⟨tAd ⟩d:s→e∈D. Hence

c = ⟨dA⟩−1
d:s→e∈D ◦ αs ◦ cs = ⟨dA⟩−1

d:s→e∈D ◦ ⟨tAd ⟩d:s→e∈D = (obj{d.td}d:s→e∈D)
A,

i.e., obj{d.td}Ad:s→e∈D is the only solution of (2) in A. ❏

467

15.2 Functors for destructive signatures 15 Σ-FUNCTORS

�� ��Σ-functors

Given a signature Σ′ that includes Σ, we may regard object definitions as Σ′-formulas
(see section 10.1) whose semantics (see section 10.3) is restricted to Σ′-algebras A such
that A|Σ′ is final in AlgΣ.

Examples

Let A be an S-sorted set and X, Y,Act ⊆ I and (M,+, 0) be a commutative monoid.
We omit sort indices if S is a singleton.

HcoNat(A) = A + 1,

HStream(X)(A) = X × A,

HcoDyn(X,Y)(A) = X × A + Y,

HinfBintree(X)(A) = A×X × A,

HcoBintree(X)(A) = X × A× A + 1,

HinfTree(X)(A) = X × A+,

HcoTreeω(X)(A) = X × A∗,

HcoTree(X)(A)tree = X × Atrees,

HcoTree(X)(A)trees = Atree × Atrees + 1,

468

15.2 Functors for destructive signatures 15 Σ-FUNCTORS

�� ��Σ-functors

HTrans(Act)(A) = (Act× A)∗,

HWStream(X,M)(A) = X ×MA
ω ,

HWStream∗(X,M)(A) = X × (A×M)∗,

HMed(X)(A) = AX ,

HNMed(X)(A) = Pω(A)X ,
HNMed∗(X)(A) = (A∗)X ,

HWMed(X,M)(A) = (MA
ω)

X ,

HWMed∗(X,M)(A) = ((M × A)∗)X ,

HDAut(X,Y)(A) = AX × Y,

HMealy(X,Y)(A) = AX × Y X ,

HPAut(X,Y)(A) = (1 + A)X × Y,

HNAut(X,Y)(A) = Pω(A)X × Y,

HNAut∗(X,Y)(A) = (A∗)X × Y,

HWAut(X,M,Y)(A) = (MA
ω)

X × Y,

HWAut∗(X,M,Y)(A) = ((A×M)∗)X × Y,

469

15.2 Functors for destructive signatures 15 Σ-FUNCTORS

�� ��Σ-functors

HPrAut(X,Y)(A) = D(A)X × Y,

HTAcc(Σ)(A)s =
∏

c:e→s∈C Ae, s ∈ S,

HNTAcc(Σ)(A)s =
∏

c:e→s∈C Pω(Ae), s ∈ S,

HNTAcc∗(Σ)(A)s =
∏

c:e→s∈C A
∗
e, s ∈ S,

HClass(BS)(A) =
∏n

i=1((Yi × A) + Ei)
Xi,

HGraph(X,Y)(A)node = X,

HGraph(X,Y)(A)edge = Anode × Anode × Y. ❏

Let Σ and Σ′ be both constructive or both destructive signatures with bijective sets of
sorts.

Σ and Σ′ are equivalent if HΣ and HΣ′ are naturally equivalent (modulo renamings of
sorts).

Σ′ is a quotient of Σ if there is a surjective natural transformation from HΣ to HΣ′.

470

15.3 Final models of destructive non-polynomial signatures 15 Σ-FUNCTORS

�� ��Σ-functors

15.3 Final models of destructive non-polynomial signatures

Lemma 15.3 (see [10], 2.4.6/16; [62], 4.3.2/3)

Let Σ = (S,D) and Σ′ = (S,D′) be destructive signatures, τ : HΣ → HΣ′ be a surjective
natural transformation, A be final in AlgΣ and α : A → HΣ(A) be the corresponding
HΣ-coalgebra where A is the carrier of A (see (2)).

Then τA ◦α : A→ HΣ′(A) is a weakly final HΣ′-coalgebra, i.e., for every HΣ′-coalgebra
β there is a coAlgHΣ′

-morphism from β to τA ◦ α.

Moreover, A/∼ is final in AlgΣ′ where ∼ is the greatest Σ′-bisimulation on A (which, by
Theorem 9.6 (2), is a Σ′-congruence) and for all d ∈ D′, dA/∼ = πd ◦ τA ◦ α/∼.

Proof.

Let β : B → HΣ′(B) be a HΣ′-coalgebra (see (1)). Since τB : HΣ(B) → HΣ′(B) is
surjective, there is an S-sorted function h : HΣ′(B) → HΣ(B) with τB ◦ h = idHΣ′(B).

Hence h◦β : B → HΣ(B) is a HΣ-coalgebra and thus there is a unique Σ-homomorphism
unfoldB : B → A from h ◦ β to α.

471

15.3 Final models of destructive non-polynomial signatures 15 Σ-FUNCTORS

�� ��Σ-functors

unfoldB is also a Σ′-homomorphism from β to τA ◦ α : A→ HΣ′(A):

HΣ′(unfoldB) ◦ β = HΣ′(unfoldB) ◦ τB ◦ h ◦ β τ natural transf .
= τA ◦HΣ(unfold

B) ◦ h ◦ β
unfoldB Σ−hom.

= τA ◦ α ◦ unfoldB.

Hence nat∼ ◦ unfoldB : B → A/∼ is a Σ′-homomorphism from β to τA ◦ α/∼.

It is unique: Let f, g : B → A/∼ be Σ′-homomorphisms from β to τA ◦α/∼. Then there
is an S-sorted function h : A/∼→ A with nat∼ ◦ h = idA/∼.

Let ≈ be the least Σ′-congruence on A that contains all pairs (h(f (b)), h(f (b))) with
b ∈ B. Since ∼ is the greatest Σ-congruence on A, ≈⊆∼.

Hence for all b ∈ B, h(f (b)) ≈ h(g(b)) implies h(f (b)) ∼ h(g(b)) and thus

f (b) = nat∼(h(f (b))) = nat∼(h(g(b))) = g(b).

Therefore, g = h. We conclude that τA ◦ α/∼ is final in coAlgHΣ′
and thus A/∼ is final

in AlgΣ′. ❏

472

15.3 Final models of destructive non-polynomial signatures 15 Σ-FUNCTORS

�� ��Σ-functors

Examples Given sets X, Y and a commutative monoid M , let the mappings

τ1 : HWStream∗(X,M) → HWStream(X,M),

τ2 : HNMed∗(X) → HNMed(X),

τ3 : HWMed∗(X,M) → HWMed(X,M),

τ4 : HNAut∗(X,Y) → HNAut(X,Y),

τ5 : HWAut∗(X,M,Y) → HWAut(X,M,Y),

τ6 : HWAut∗(X,R≥0,Y) → HPrAut(X,Y),

τ7 : HNTAcc∗(Σ) → HNTAcc(Σ)

be defined as follows: Let A be a set.

• For all (x, ps) ∈ X × (A×M)∗ = HWStream∗(X,M)(A),

τ1,A(x, ps) = (x, λa.
∑

(a,m)∈ps

m) ∈ X ×MA
ω = HWStream(X,M)(A).

• For all f ∈ (A∗)X = HNMed∗(X)(A),

τ2,A(f) = λx.{πi(f (x)) | 1 ≤ i ≤ |f (x)|} ∈ Pω(A)X = HNMed(X)(A).

473

15.3 Final models of destructive non-polynomial signatures 15 Σ-FUNCTORS

�� ��Σ-functors

• For all f ∈ ((M × A)∗)X = HWMed∗(X)(A),

τ3,A(f) = λx.λa.
∑

(a,m)∈f(x)

r ∈ (MA
ω)

X = HWMed(X,M)(A).

• For all (f, y) ∈ (A∗)X × Y = HNAut∗(X,Y)(A),

τ4,A(f, y) = (τ2,A(f), y) ∈ Pω(A)X × Y = HNAut(X,Y)(A).

• For all f ∈ ((M × A)∗)X = HWAut∗(X,M,Y)(A) and y ∈ Y ,

τ5,A(f, y) = (τ3,A(f), y) ∈ (MA
ω)

X × Y = HWAut(X,M,Y)(A).

• For all f ∈ ((R≥0 × A)∗)X = HWAut∗(X,R≥0,Y)(A) and y ∈ Y ,

τ6,A(f, y) = (λx.λa.(
∑

(a,r)∈f(x)

r)/
∑

(b,r)∈f(x)

r, y) ∈ (MA
{1})

X × Y = HPrAut(X,Y)(A).

• For all (asc)c:e→s∈C ∈
∏

c:e→s∈C A
∗
e = HNTAcc∗(Σ)(A),

τ7,A((asc)c:e→s∈C) = ({πi(asc) | 1 ≤ i ≤ |asc|})c:e→s∈C

∈
∏

c:e→s∈C Pω(Ae) = HNTAcc(Σ)(A).

τ1, . . . , τ7 are surjective natural transformations.

474

15.3 Final models of destructive non-polynomial signatures 15 Σ-FUNCTORS

�� ��Σ-functors

Hence by Lemma 15.3, for all

Σ′ ∈

{
WStream(X,M),NMed(X,M),WMed(X,M),NAut(X, Y),

WAut(X,M, Y),PrAut(X, Y),NTAcc(Σ)

}
there is destructive polynomial signature Σ such that a final Σ′-algebra is given by a
quotient of the final Σ-algebra.

Let us take a closer look at τ2 (see above),

Σ = NMed∗(X) = ({state}, {δ′ : state→ (state∗)X})

and
Σ′ = NMed(X)[δ′/δ] = ({state}, {δ′ : state→ Pω(state)X})

(see section 8.3). A = NPow ∗(X) with carrier T = otr (X×N, 1) is final inAlgΣ (see sam-
ple final algebra 9.18.19). Hence by Lemma 15.3, A is weakly final in AlgΣ′ for δ′A =def

πδ′◦τ2,T ◦δA, i.e., for all {nx | x ∈ X} ⊆ N, t = (){(x, i) → tx,i | x ∈ X, 1 ≤ i ≤ nx} ∈ T

and x ∈ X ,

δ′A(t)(x) = {tx,1, . . . , tx,nx} if δA(t)(x) = (tx,1, . . . , tx,nx)

(see sample algebra 9.6.32).

475

15.3 Final models of destructive non-polynomial signatures 15 Σ-FUNCTORS

�� ��Σ-functors

Lemma 15.3 also implies that the quotient A/∼ with carrier T/∼ is final in AlgΣ′ where
∼ is the greatest binary relation on T such that for all t, u ∈ T and x ∈ X ,

t ∼ u implies δ′A(t)(x) ∼Pω(X) δ
′A(u)(x),

i.e., for all {(mx, nx) | x ∈ X} ⊆ N2, t = (){(x, i) → tx,i | x ∈ X, 1 ≤ i ≤ mx},
u = (){(x, i) → ux,i | x ∈ X, 1 ≤ i ≤ nx} ∈ T and x ∈ X ,

t ∼ u implies {tx,1, . . . , tx,mx} ∼Pω(X) {ux,1, . . . , ux,nx}

and thus

t ∼ u implies

{
∀ i ∈ [mx] ∃ j ∈ [nx] : tx,i ∼ ux,j,

∀ i ∈ [nx] ∃ j ∈ [mx] : ux,i ∼ tx,j.

476

15.4 From constructors to destructors 15 Σ-FUNCTORS

�� ��Σ-functors

15.4 From constructors to destructors

Let Σ = (S,C) be a constructive polynomial signature, Cs = {c ∈ C | trg(c) = s},

D = {ds : s→
∐

c:e→s∈Cs
e | s ∈ S},

coΣ = (S,D),

A be an initial Σ-algebra with carrier A and B =
⋃
I.

By Lemma 14.1 (1), the initial HΣ-algebra

α = {αs : HΣ(A)s
[cA]c:e→s∈C−→ As | s ∈ S}

is iso (see chapter 15). Consequently,

{α−1
s : As → HΣ(A)s | s ∈ S}

is an HΣ-coalgebra, which corresponds to the coΣ-algebra B that is defined as follows:

For all s ∈ S, B(s) = As and dBs = α−1
s . Hence for all c : e→ s ∈ C,

dBs ◦ cA = α−1
s ◦ cA (1)

= α−1
s ◦ [cA]c:e→s∈C ◦ ιc = α−1

s ◦ αs ◦ ιc = ιc.

Since coΣ is destructive, Theorem 9.12 implies that DTcoΣ is final in AlgcoΣ.

477

15.4 From constructors to destructors 15 Σ-FUNCTORS

�� ��Σ-functors
CTΣ and, analogously, TΣ are coΣ-algebras:

For all c : e→ s ∈ C and t ∈ CTΣ,e,

d
CTΣ
s (c(t)) =def c(t) ∈

∐
c:e→s∈C CTΣ,e.

DTcoΣ and, analogously, coTcoΣ are Σ-algebras:

For all c : e→ s ∈ C and t ∈ DTcoΣ,e,

cDTcoΣ(t) =def (){ds → c(t)} ∈ DTcoΣ,s.

Note that, on the right-hand side of these equations, c is not a constructor, but a sum
index.

()

478

15.4 From constructors to destructors 15 Σ-FUNCTORS

�� ��Σ-functors

The values of S-sorted functions g : CTΣ → DTcoΣ and h : DTcoΣ → CTΣ are defined
inductively on (D ∪B)∗ as follows:

For all c : e→ s ∈ C, t ∈ CTΣ,e and t′ ∈ DTcoΣ,e,

gs(c(t)) = (){ds → c(ge(t))},
hs((){ds → c(t′)}) = c(he(t

′)).

Bijective S-sorted functions g : TΣ → coTcoΣ and h : coTcoΣ → TΣ are defined analo-
gously.

A simple proof by induction on (D ∪B)∗ shows that g and h are inverse to each other.

Moreover, g is coΣ-homomorphic and h is Σ-homomorphic:

For all c : e→ s ∈ C, t ∈ CTΣ,e and t′ ∈ DTcoΣ,e,

g∐
c:e→s∈C e(d

CTΣ
s (c(t))) = g∐

c:e→s∈C e(c(t)) = g∐
c:e→s∈C e(ιc(t)) = ιc(ge(t)) = c(ge(t))

= d
DTcoΣ
s ((){ds → c(ge(t))}) = d

DTcoΣ
s (gs(c(t))),

hs(c
DTcoΣ(t′)) = hs((){ds → c(t′)}) = c(he(t

′)) = cCTΣ(he(t
′)).

479

15.4 From constructors to destructors 15 Σ-FUNCTORS

�� ��Σ-functors

Since g is coΣ-homomorphic and g ◦ h = id, g ◦ h and thus g are epi in AlgcoΣ. Hence
by Lemma 9.1 (1), h is coΣ-homomorphic.

Since h is Σ-homomorphic and g ◦ h = id, g ◦ h and thus h are mono in AlgΣ. Hence by
Lemma 9.1 (2), g is Σ-homomorphic. ❏

Therefore, CTΣ and DTcoΣ and, analogously, TΣ and coTcoΣ are both Σ- and coΣ-
isomorphic. Consequently, CTΣ is final in AlgcoΣ and coTcoΣ is initial in AlgΣ.

Given a coΣ-algebra A with carrier A, the above definition of the bijection h : DTcoΣ →
CTΣ implies that the S-components of unfold ′A =def h◦unfoldA : A→ CTΣ (see section
9.16) are defined as follows: For all c : e→ s ∈ C, a ∈ As and b ∈ Ae,

dAs (a) = ιc(b) implies unfold ′A
s (a) = c(unfold ′A

e (b)).

Proof. Let dAs (a) = ιc(b). Then

unfoldA(a) = (){ds → unfoldA(ιc(b))} = (){ds → c(unfoldA(b))}. (2)

Hence

unfold ′A(a) = h(unfoldA(a))
(1)
= h((){ds → c(unfoldA(b))}) = c(h(unfoldA(b)))

= c(unfold ′A(b)). ❏

480

15.5 From destructors to constructors 15 Σ-FUNCTORS

�� ��Σ-functors

15.5 From destructors to constructors

Let Σ = (S,D) be a destructive polynomial signature, Ds = {d ∈ D | src(d) = s},

C = {cs :
∏

d:s→e∈Ds
e→ s | d ∈ Cs, s ∈ S},

coΣ = (S,C),

A be a final Σ-algebra with carrier A and B =
⋃

I.

By Lemma 14.1 (2), the final HΣ-coalgebra

α = {αs : As
⟨dA⟩d:s→e∈D−→ HΣ(A)s | s ∈ S}

is iso (see chapter 15). Consequently,

{α−1
s : HΣ(A)s → As | s ∈ S}

is an HΣ-algebra, which corresponds to the coΣ-algebra B that is defined as follows:

For all s ∈ S, B(s) = As and cBs = α−1
s . Hence for all d : s→ e ∈ D,

dA ◦ cBs = dA ◦ α−1
s

(2)
= πd ◦ ⟨dA⟩d:s→e∈D ◦ α−1

s = πd ◦ αs ◦ α−1
s = πd.

Since coΣ is constructive, Theorem 9.7 implies that TcoΣ is initial in AlgcoΣ.

481

15.5 From destructors to constructors 15 Σ-FUNCTORS

�� ��Σ-functors

DTΣ and, analogously, coTΣ are coΣ-algebras:

For all s ∈ S and t = (td)d:s→e∈D ∈
∏

d:s→e∈DDTΣ,e,

c
DTΣ
s (t) =def (){d→ td | d : s→ e ∈ D} ∈ DTΣ,s.

CTcoΣ and, analogously, TcoΣ are Σ-algebras:

For all d : s→ e ∈ D and (td)d:s→e∈D ∈
∏

d:s→e∈D CTcoΣ,e,

dCTcoΣ((){d→ td | d : s→ e ∈ D}) =def td ∈ CTcoΣ,e.

()

482

15.5 From destructors to constructors 15 Σ-FUNCTORS

�� ��Σ-functors

The values of S-sorted functions g : DTΣ → CTcoΣ and h : CTcoΣ → DTΣ are defined
inductively on (D ∪B)∗ as follows:

For all s ∈ S, t = (){d → td | d : s → e ∈ D} ∈ DTΣ,s and t′ = cs{d → td} | d : s →
e ∈ D} ∈ CTcoΣ,s,

gs(t) = cs{d→ ge(td) | d : s→ e ∈ D},
hs(t

′) = (){d→ he(td) | d : s→ e ∈ D}.

Bijective S-sorted functions g : coTΣ → TcoΣ and h : TcoΣ → coTΣ are defined analo-
gously.

A simple proof by induction on (D ∪B)∗ shows that g and h are inverse to each other.

Moreover, g is coΣ-homomorphic and h is Σ-homomorphic:

For all s ∈ S, t = (){d → td | d : s → e ∈ D} ∈ DTΣ,s and t′ = cs{d → td} | d : s →
e ∈ D} ∈ CTcoΣ,s,

gs(c
DTΣ
s (t)) = gs((){d→ td | d : s→ e ∈ D})

= cs{d→ ge(td) | d : s→ e ∈ D} = c
CTcoΣ
s {d→ ge(td) | d : s→ e ∈ D}

483

15.5 From destructors to constructors 15 Σ-FUNCTORS

�� ��Σ-functors

= c
CTcoΣ
s (g∏

d:s→e∈D((){d→ td | d : s→ e ∈ D})) = c
CTcoΣ
s (g∏

d:s→e∈D(t)),

he(d
CTcoΣ(t′)) = he(td) = dDTΣ((){d→ he(td) | d : s→ e ∈ D}) = dDTΣ(hs(t

′)).

Since g is coΣ-homomorphic and g ◦ h = id, g ◦ h and thus g are epi in AlgcoΣ. Hence
by Lemma 9.1 (1), h is coΣ-homomorphic.

Since h is Σ-homomorphic and g ◦ h = id, g ◦ h and thus h are mono in AlgΣ. Hence by
Lemma 9.1 (2), g is Σ-homomorphic. ❏

Therefore, DTΣ and CTcoΣ and, analogously, coTΣ and TcoΣ are both Σ- and coΣ-
isomorphic. Consequently, CTcoΣ is final in AlgΣ and coTΣ is initial in AlgcoΣ.

Given a Σ-algebra A with carrier A, the above definition of the bijection g : coTΣ → TcoΣ
implies that the S-components of unfold ′A = g ◦ unfoldA : A→ CTcoΣ (see section 9.16)
are defined as follows: For all s ∈ S and a ∈ As,

unfold ′A
s (a) = cs{d→ unfold ′A

e (dA(a)) | d : s→ e ∈ D}.

Proof . unfold ′A(a) = g(unfoldA(a)) = g((){d→ unfoldA(dA(a)) | d : s→ e ∈ D})
= cs{d→ g(unfoldA(dA(a))) | d : s→ e ∈ D}
= cs{d→ unfold ′A(dA(a)) | d : s→ e ∈ D}. ❏

484

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors

15.6 Continuous algebras

Poset denotes the category of partially ordered sets with a least element as objects and
strict and monotone functions as morphisms.

CPO denotes the category of ω-CPOs as objects and strict and ω-continuous functions
as morphisms (see section 3).

PosetS denotes the subcategory of SetS that consists of all S-tuples of objects or mor-
phisms of Poset . For all A ∈ PosetS and s ∈ S, ⊥A

s denotes the least element of
As.

CPOS denotes the subcategory of SetS that consists of all S-tuples of objects or mor-
phisms of CPO .

Every A ∈ SetTpo(S) is lifted to an object of PosetTpo(S) and CPOTpo(S) as follows:

• A1 = 1.
• For all I ∈ I and (ei)i∈I ∈ Tpo(S)I ,

A∏
i∈I ei =

∏
i∈I

Aei and A∐
i∈I ei =

∐
i∈I

Aei ∪ {⊥∐
i∈I ei}.

485

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors

The partial orders, least elements and suprema of ω-chains are defined as follows:

• For all I ∈ I, (ei)i∈I ∈ Tpo(S)I , a, b ∈ A∏
i∈I ei and ω-chains C of A∏

i∈I ei and i ∈ I ,

a ≤A∏
i∈I ei

b ⇔ ∀ i ∈ N : πi(a) ≤ei πi(b),

πi(⊥A∏
i∈I ei

) = ⊥A
ei
,

πi(
⊔
C) =

⊔
{πi(a) | a ∈ C}.

• For all I ∈ I, (ei)i∈I ∈ Tpo(S)I , a, b ∈ A∐
i∈I ei and ω-chains C of A∐

i∈I ei,

a ≤A∐
i∈I ei

b ⇔ a = ⊥∐
i∈I ei ∨

∃ i ∈ I, a′, b′ ∈ Aei : a
′ ≤A

ei
b′ ∧ ιi(a′) = a ∧ ιi(b′) = b.⊔

C =

 ⊥∐
i∈I ei if ∀ C = {⊥∐

i∈I ei},⊔
{a ∈ Aei | ιi(a) ∈ C, i ∈ I} otherwise.

486

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors
Let Σ = (S, F) be a signature.

PAlgΣ denotes the category of all Σ-algebras with carrier A ∈ PosetS, monotonic opera-
tions (w.r.t. the above lifting of A to an object of PosetTpo(S)) and all Σ-homomorphisms
in Mor (PosetS). The objects of PAlgΣ are called monotone Σ-algebras.

CAlgΣ denotes the category of all Σ-algebras with carrier A ∈ CPOS and ω-continuous
operations (w.r.t. the above lifting of A to an object of CPOTpo(S)) and all Σ-homomor-
phisms in Mor (CPOS). The objects of CAlgΣ are called ω-continuous Σ-algebras.

Proposition 15.4

Let A be a monotone Σ-algebra with carrier A such that for all s ∈ S, As is chain-finite
(see chapter 3). Then A is ω-continuous.

Proof. Since for all e ∈ Tpo(S), Ae is chain-finite, Proposition 3.3 (4) implies that all
operations of A are ω-continuous. ❏

487

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors
Both terms and flowcharts form a CPO

Let Σ = (S,C) be a constructive polynomial signature and V,C be as in section 9.3.

The sets CT⊥
Σ (V) and T⊥

Σ (V) of (well-founded) ordered Σ-terms over V are defined
the same as CTΣ(V) and TΣ(V), respectively, except that (1), (2), (3) and (5) in section
9.3 are replaced as follows:

• For all s ∈ S and t ∈ Ms, t ∈ Vs ∪ {Ω} (see chapter 2) or there are c : e → s ∈ C

and u ∈Me such that t = c(u). (1’)
• For all e =

∐
i∈I

∏
j∈J eij ∈ Ts(S) and t ∈ Me, t = Ω or there are i ∈ I and

u ∈ Xj∈JMeij such that t = i(u). (2’)
• For all s ∈ S, Vs ∪ {Ω} ⊆Ms. (3’)
• For all e =

∐
i∈I

∏
j∈J eij ∈ Ts(S), i ∈ I and t ∈ Xj∈JMeij , Ω, i(t) ∈Me. (5’)

Let V ∈ SetSb (see chapter 7) and for all s ∈ S, let Vs = ∅. Then the elements of
CT⊥

Σ =def CT
⊥
Σ (V) und T⊥

Σ =def T
⊥
Σ (V) are called ground ordered Σ-terms.

Let Σ = (S,D) be a destructive polynomial signature and V be an S-sorted set of
“variables”.

488

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors

The sets CT⊥
Σ (V) and T⊥

Σ (V) of (well-founded) ordered Σ-flowcharts over V are
defined the same as CTΣ(V) and TΣ(V), respectively, except that (1), (2), (3) and (5) in
section 9.19 are replaced as follows:

• For all s ∈ S and t ∈ Ms, t ∈ Vs ∪ {Ω} (see chapter 2) or there are d : s → e ∈ F

and u ∈Me such that t = d(u). (1’)
• For all e =

∏
i∈I

∐
j∈J eij ∈ Tp(S) and t ∈ Me, t = Ω or there are i ∈ I and

u ∈ Xj∈JMeij such that t = i(u). (2’)
• For all s ∈ S, Vs ∪ {Ω} ⊆Ms. (3’)
• For all e =

∏
i∈I

∐
j∈J eij ∈ Ts(S), i ∈ I and t ∈ Xj∈JMeij , Ω, i(t) ∈Me. (5’)

T⊥
Σ (V), T⊥

Σ (V) ∈ PosetS and CT⊥
Σ (V), CT⊥

Σ (V) ∈ CPOS.

Proof.

For all s ∈ S, Ω is the least element of T ∈ {T⊥
Σ (V)s, T⊥

Σ (V)s, CT
⊥
Σ (V)s, CT⊥

Σ (V)s} and
for all t, t′ ∈ T ,

t ≤s t
′ ⇔def ∀ w ∈ def (t) : t(w) = t′(w).

489

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors

Every ω-chain T ⊆ CT⊥
Σ (V)s or T ⊆ CT⊥

Σ (V)s has a supremum: For all w ∈ B∗,

(
⊔

T)(w) =

 t(w) if ∃ t ∈ T : w ∈ def (t),

⊥ otherwise. ❏

T⊥
Σ (V) ∈ PAlgΣ and CT⊥

Σ (V) ∈ CAlgΣ.

Proof. The arrows of Σ are interpreted in CTΣ(V)⊥ as in CTΣ(V). The interpretations
are ω-continuous.

T⊥
Σ (V) is a monotone Σ-subalgebra of CT⊥

Σ (V). ❏

Theorem 15.5 (generalization of [55], Prop. 4.7)

T⊥
Σ (V) is free over V in PAlgΣ. In particular, T⊥

Σ is initial in PAlgΣ.

490

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors

Proof. Let A be a monotone Σ-algebra with carrier A and g ∈ AV .

V
incV ≻T⊥

Σ (V)

(3)

A

g∗

≺

g

≻

The monotone term extension g∗ : T⊥
Σ (V) → A of g is the S-sorted function that is

defined on TΣ(V) the same as g∗ : TΣ(V) → A (see section 9.11). In addition,

• for all s ∈ S, g∗s(Ω) = ⊥A
s .

g∗ is strict, monotone and Σ-homomorphic.

The uniqueness of g∗ w.r.t. (3) can be shown analogously to the proof of Theorem 9.7.
Hence we conclude that T⊥

Σ (V) is free over V in PAlgΣ. ❏

491

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors

Let Σ = (S,C) be a constructive polynomial signature. For all n ∈ N, the Ts(S)-sorted
function _|n : CT⊥

Σ (V) → T⊥
Σ (V) is defined inductively as follows:

For all t ∈ CT⊥
Σ (V), x ∈ V ∪ {Ω}, c :

∏
i∈I ei → s ∈ C, u = (ui)i∈I ∈ Xi∈IT

⊥
Σ (V)ei,

I ∈ I, i ∈ I and ti ∈ T⊥
Σ (V)ei,

t|0 = Ω,

x|n+1 = x,

c(u)|n+1 = c(ui|n)i∈I ,
i(ti)|n+1 = i(ti|n).

Hence t =
⊔
n<ω t|n.

Given a Σ-algebra A with carrier A, we extend the functional interpretation of well-
founded Σ-terms to arbitrary ones: For all t ∈ CT⊥

Σ (V),

tA =def

⊔
n<ω

(t|n)A.

492

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors

Let Σ = (S,D) be a destructive polynomial signature. For all n ∈ N, the Tp(S)-sorted
function _|n : CT⊥

Σ (V) → TΣ
⊥
(V) is defined inductively as follows:

For all t ∈ CT⊥
Σ (V), x ∈ V ∪ {Ω}, d : s →

∐
i∈I ei ∈ D, u = (ui)i∈I ∈ Xi∈IT

⊥
Σ (V)ei,

I ∈ I, i ∈ I and ti ∈ TΣ
⊥
(V)ei,

t|0 = Ω,

x|n+1 = x,

d(u)|n+1 = d(ui|n)i∈I ,
i(ti)|n+1 = i(ti|n).

Hence t =
⊔
n<ω t|n.

Given a Σ-algebra A with carrier A, we extend the interpretation of well-founded Σ-
flowcharts to arbitrary ones: For all t ∈ CT⊥

Σ (V),

tA =def

⊔
n<ω

(t|n)A.

493

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors

Theorem 15.6 (ω-Completion Theorem)

Let A ∈ CPOS, Σ be a constructive polynomial signature and f : T⊥
Σ (V) → A be strict

and monotone. Then

fω : CT⊥
Σ (V) → A

t 7→
⊔
{f (t|n) | n ∈ N}

is strict and ω-continuous.

Moreover, if A is the carrier of an ω-continuous Σ-algebra and f is Σ-homomorphic, then
fω is Σ-homomorphic.

Let A ∈ CPOS, Σ be a destructive polynomial signature and f : TΣ
⊥
(V) → A be strict

and monotone. Then

fω : CT⊥
Σ (V) → A

t 7→
⊔
{f (t|n) | n ∈ N}

is strict and ω-continuous.

Proof. See the proof of [55], Thm. 4.8. ❏

494

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors
Theorem 15.7 (generalization of [55], Cor. 4.9)

Let Σ = (S,C) be a constructive polynomial signature. CT⊥
Σ (V) is free over V in CAlgΣ.

In particular, CT⊥
Σ is initial in CAlgΣ.

Proof.

For all c : e→ s ∈ C, cCT⊥
Σ (V) is ω-continuous:

Let T be an ω-chain of CT⊥
Σ (V)e =

∏
i∈I CT

⊥
Σ (V)si. Then

cCT
⊥
Σ (V)(

⊔
T) = c(

⊔
T) = c(

⊔
{t | t ∈ T}) =

⊔
{c(t) | t ∈ T} =

⊔
{cCT⊥

Σ (V)(t) | t ∈ T}.

Let A be an ω-continuous Σ-algebra with carrier A and g ∈ AV . Then A is monotone
and thus, by the initiality of T⊥

Σ (V) in PAlgΣ there is a unique strict and monotone
Σ-homomorphism g∗ : T⊥

Σ (V) → A.

By Theorem 15.6, g∗ω : CT⊥
Σ (V) → A is strict, ω-continuous and Σ-homomorphic.

V
incV ≻CT⊥

Σ (V)

(4)

A

g∗ω

≺

g

≻

495

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors

For the proof that there is at most one strict and ω-continuous Σ-homomorphism from
CT⊥

Σ (V) to A satisfying (4), consult [55], Thm. 4.8, [21], Thm. 3.2, or [5], Prop. IV.2.

If for all s ∈ S, Vs = ∅, then g∗ω no longer depends on g and thus agrees with the ω-
completion foldA

ω : CT⊥
Σ → A of the unique monotonic Σ-homomorphism foldA : T⊥

Σ →
A (see Theorem 15.5). ❏

We conclude that non-well-founded elements of CTΣ can be regarded as suprema of ω-
chains of well-founded ones. Together with the initiality of TΣ in AlgΣ and the finality
of CTΣ in AlgcoΣ, Theorem 15.7 entails the following corollary:

The final coΣ-algebra is a completion of the initial Σ-algebra (see [21], Thm. 3.2; [5],
Prop. IV.2).

Lemma 15.8 (Substitutionslemma)

Let Σ = (S,C) be a constructive polynomial signature and V, V ′ be S-sorted sets of
variables. For all Σ-algebras A with carrier A, substitutions g : V → CT⊥

Σ (V
′) and term

valuations h : V ′ → A,

(h∗ω ◦ g)∗ = h∗ω ◦ g∗ : TΣ(V) → CT⊥
Σ (V

′). (1)

496

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors
Proof. By Theorem 15.6, h∗ω is Σ-homomorphic.

Hence by Lemma 9.9, (1) holds true. ❏

Lemma 15.9 (Substitutionslemma) ****

Let Σ = (S,D) be a destructive polynomial signature and V, V ′ be S-sorted sets of
variables. For all Σ-algebras A with carrier A, flowchart substitutions g : V → CT⊥

Σ (V
′)

and flowchart valuations h : V ′ → BA,

(h+ω ◦ g)+ = h+ω ◦ g∗ : (TΣ(V)e → BAe)e∈Tpo(S).

Proof. Let t ∈ TΣ(V). We show

(h+ω ◦ g)+(t) = h+ω (g
∗(t)) (2)

by induction on t.

Case 1. t ∈ V . Then (h+ω ◦ g)+(t) = h+ω (g(t)) = h+ω (g
∗(t)).

Case 2. t = d(u) for some d : s→ e ∈ D and u ∈ TΣ(V). Then

(h+ω ◦ g)+(t) = (h+ω ◦ g)+(u) ◦ dA ind. hyp.
= h+ω (g

∗(u)) ◦ dA = (
⊔
n<ω h

+(g∗(u)|n)) ◦ dA

=
⊔
n<ω(h

+(g∗(u)|n) ◦ dA) =
⊔
n<ω h

+(d(g∗(u)|n)) =
⊔
n<ω h

+(d(g∗(u))|n+1)

497

15.6 Continuous algebras 15 Σ-FUNCTORS

�� ��Σ-functors

=
⊔
n<ω h

+(d(g∗(u))|n) = h+ω (d(g
∗(u))) = h+ω (g

∗(d(u))) = h+ω (g
∗(t)).

Case 3. t = i(u) for some i ∈ I , I ∈ I, u ∈ TΣ(V)e and e =
∏

i∈I ei ∈ Tpo(S). Then (2)
follows analogously to Case 2 with i instead of d and πi instead of dA.

Case 4. t = (){i → ti | i ∈ I} for some I ∈ I, (ti)i∈I ∈ Xi∈ITΣ(V)ei and e =
∐

i∈I ei ∈
Tpo(S). Then

(h+ω ◦ g)+(t) = (h+ω ◦ g)+((){i→ ti | i ∈ I}) = [(h+ω ◦ g)+(ti)]i∈I
ind. hyp.

= [h+ω (g
∗(ti))]i∈I

= [
⊔
n<ω h

+(g∗(ti)|n)]i∈I =
⊔
n<ω[h

+(g∗(ti)|n)]i∈I =
⊔
n<ω h

+((){i→ g∗(ti)|n | i ∈ I})
=
⊔
n<ω h

+((){i→ g∗(ti) | i ∈ I}|n+1) =
⊔
n<ω h

+(g∗(t)|n+1) =
⊔
n<ω h

+(g∗(t)|n)
= h+ω (g

∗(t)). ❏

498

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�
�

�
16 Recursive functions

16.1 Three criteria

Let Σ = (S, F) be a signature, V be a T (S)-sorted set of variables and A be a Σ-algebra
with carrier A.

Theorem 16.1

Let CΣ = (S,C) be a constructive first-order subsignature of Σ, A|CΣ be initial in AlgCΣ
and D = {ds : s→ es | s ∈ S} ⊆ V be a set of first-order destructors.

For all c : e→ s ∈ C, let c : e[es/s | s ∈ S] → es be a closed λΣ-term.

There is a unique solution g ∈ AC in A of the Σ-formulas∧
c:e→s∈C

ds ◦ c = c ◦De (1)

and, equivalently, ∧
s∈S

ds = case{c.c ◦De}c:e→s∈C (2)

(see section 10.3 and section 15.1).

For the definition of the type instance De : e→ e[es/s | s ∈ S], see section 10.2.

499

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

If e ∈ I, then De = ide and thus can be omitted in (1) and (2).

(1) is called an inductive definition of D on CΣ.

Proof. Let B be the CΣ-algebra that is defined as follows:

For all s ∈ S, B(s) = A(es) and for all c : e→ s, cB = cA.

Since A is initial in AlgΣ, foldB : A → B is the unique AlgHΣ
-morphism from α =

([cA]c:e→s∈C)s∈S to β = ([cB]c:e→s∈C)s∈S, i.e., foldB is the unique S-sorted function such
that the following diagram commutes for all s ∈ S:

HΣ(A)s
αs ≻As

(3)

HΣ(B)s

HΣ(fold
B)s

⋎

βs
≻Bs

foldB
s

⋎

By Lemma 4.2 (1), (3) commutes iff (4) commutes:

500

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

HΣ(A)s≺
α−1
s As

(4)

HΣ(B)s

HΣ(fold
B)s

⋎

βs
≻Bs

foldB
s

⋎

Define g ∈ AC by g(ds) = foldB
s for all s ∈ S.

(4) commutes iff g satisfies (2):

If (4) commutes, then for all s ∈ S,

g(ds) = foldB
s

(4)
= βs ◦HΣ(fold

B)s ◦ α−1 = [cB]c:e→s∈C ◦ (
∐

c:e→s∈C fold
B
e) ◦ [cA]−1

c:e→s∈C
(19) in chapter 2

= [cB ◦ foldB
e]c:e→s∈C ◦ [cA]−1

c:e→s∈C = [cA ◦ foldB
e]c:e→s∈C ◦ [cA]−1

c:e→s∈C

= [cA ◦DA
e]c:e→s∈C ◦ [cA]−1

c:e→s∈C = [(c ◦De)
A]c:e→s∈C ◦ [cA]−1

c:e→s∈C

= (case{c.c ◦De}c:e→s∈C)
A,

i.e., g satisfies (2).

501

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Conversely, if g satisfies (2), then for all s ∈ S,

foldB
s = g(ds)

(2)
= (case{c.c ◦De}c:e→s∈C)

A = . . . (see above) · · · = βs ◦HΣ(fold
B)s ◦ α−1,

i.e., (4) commutes. ❏

Roughly said, an inductive definition specifies destructors in terms of constructors—
exactly one destructor for each sort. As we have seen above, this is not a restriction:
several destructors for the same sort can always be combined into a single one by building
the product of their targets.

If the product has several factors, this means that the inductive definition defines several
functions (with the same domain) simultaneously, possibly in a mutually recursive way.

Some of them may serve only as auxiliary functions like the identity function that is
needed if certain arguments of the function f to be defined occur outside recursive calls.
Then f is called a paramorphism and the defining equations follow the pattern of
primitive recursion (see chapter 14). In turn, paramorphisms are adjoint folds for an
adjunction of the form (∆I : Set→ SetI ,

∏
i∈I : Set

I → Set) (see chapter 25).

502

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

The proof of Theorem 16.1 also reveals that (1) is equivalent to the compatibility of d
with the CΣ-homomorphism foldB : A → B. Hence, basically, the unique solvability of
(1) in A follows from the uniqueness of a CΣ-homomorphism from A to B, which in turn
follows from the initiality of A in AlgCΣ.

Theorem 16.2

Let DΣ = (S,D) be a destructive first-order subsignature of Σ, A|DΣ be final in AlgDΣ

and C = {cs : es → s | s ∈ S} ⊆ V be a set of first-order constructors.

For all d : s→ e ∈ D, let d : es → e[es/s | s ∈ S] be a closed λΣ-term.

There is a unique solution g ∈ AC in A of the Σ-formulas∧
d:s→e∈D

d ◦ cs = Ce ◦ d (1)

and, equivalently, ∧
s∈S

cs = obj{d.Ce ◦ d}d:s→e′∈D (2)

(see section 10.3 and section 15.2).

For the definition of the type instance Ce : e[es/s | s ∈ S] → e, see section 10.2.

503

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

If e ∈ I, then Ce = ide and thus can be omitted in (1) and (2).

(1) is called a coinductive definition of C on DΣ.

Proof. Let B be the DΣ-algebra that is defined as follows:

For all s ∈ S, B(s) = A(es) and for all d : s→ e, dB = d
A.

Since A is final in AlgΣ, unfoldB : B → A is the unique AlgHΣ
-morphism from β =

(⟨dB⟩d:s→e∈D)s∈S to α = (⟨dA⟩d:s→e∈D)s∈S, i.e., unfoldB is the unique S-sorted function
such that the following diagram commutes for all s ∈ S:

HΣ(A)s≺
α

As

(3)

HΣ(B)s

HΣ(unfold
B)s

⋏

≺
β

Bs

unfoldB
s

⋏

By Lemma 4.2 (2), (3) commutes iff (4) commutes:

504

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

HΣ(A)s
α−1

≻As

(4)

HΣ(B)s

HΣ(unfold
B)s

⋏

≺
β

Bs

unfoldB
s

⋏

Define g ∈ AC by g(cs) = unfoldB
s for all s ∈ S.

(4) commutes iff g satisfies (2):

If (4) commutes, then for all s ∈ S,

g(cs) = unfoldB
s

(4)
= α−1 ◦HΣ(unfold

B)s ◦ βs
= ⟨dA⟩−1

d:s→e∈D ◦ (
∏

d:s→e∈D unfoldB
e) ◦ ⟨dB⟩d:s→e∈D

(8) in chapter 2
= ⟨dA⟩−1

d:s→e∈D ◦ ⟨unfoldB
e ◦ dB⟩d:s→e∈D

= ⟨dA⟩−1
d:s→e∈D ◦ ⟨unfoldB

e ◦ d
A⟩d:s→e∈D = ⟨dA⟩−1

d:s→e∈D ◦ ⟨CA
e ◦ dA⟩d:s→e∈D

= ⟨dA⟩−1
d:s→e∈D ◦ ⟨(Ce ◦ d)A⟩d:s→e∈D = (obj{d.Ce ◦ d}d:s→e∈D)

A,

i.e., g satisfies (2).

505

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
Conversely, if g satisfies (2), then for all s ∈ S,

unfoldB
s = g(cs)

(2)
= (obj{d.Ce ◦ d}d:s→e′∈D)

A = . . . (see above) . . .

= α−1 ◦HΣ(unfold
B)s ◦ β,

i.e., (4) commutes. ❏

Roughly said, a coinductive definition specifies constructors in terms of destructors—
exactly one destructor for each sort. As we have seen above, this is not a restriction:
several constructors for the same sort can always be combined into a single one by building
the sum of their domains.

If the sum has several summands, this means that the coinductive definition defines
several functions (with the same range) simultaneously, possibly in a mutually recursive
way. Some of them may serve only as auxiliary functions like the identity function that is
needed if certain arguments of the function f to be defined occur outside recursive calls
of f . Then f is called an apomorphism and the defining equations follow the pattern
of primitive corecursion (see chapter 14). In turn, apomorphisms are adjoint unfolds for
an adjunction of the form (

∐
i∈I : Set

I → Set,∆I : Set→ SetI) (see chapter 25).

506

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

The proof of Theorem 16.2 also reveals that (1) is equivalent to the compatibility of c
with the DΣ-homomorphism unfoldB : B → A. Hence, basically, the unique solvability
of (1) in A follows from the uniqueness of a DΣ-homomorphism from B to A, which in
turn follows from the finality of A in AlgDΣ.

Theorem 16.2 may require that several functions are defined simultaneously (see sample
coinductive definitions 16.4.8, 16.4.11, 16.4.12, 16.4.18, 16.4.23 and 16.4.29).

Coinductive definitions restrict the “recursive calls” of the functions to be defined to
outermost term positions. The following theorem will provide a definitional schema that
admits the proper embedding of recursive calls and does not require that several functions
to be defined simultaneously are turned into their sum extension.

However, the new schema restricts the structure of terms on the right-hand sides of
defining equations insofar as destructors may occur only at innermost (non-variable)
term positions.

507

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
Theorem 16.3

LetDΣ = (S,D) be a destructive first-order signature, A|DΣ be final in AlgDΣ, C ⊆ V be
a set of constructors and F be a set of monomorphic functions such that CΣ = (S,C∪F)
is a constructive first-order signature and Σ = CΣ ∪DΣ.

• For all c : ec → s ∈ C and d : s → e ∈ D, let
∏nc

i=1 sc,i = ec, tc,d : e be a λΣ-term
over Vc =def {xc,i | 1 ≤ i ≤ nc} ⊆ V , xc = (xc,1, . . . , xc,nc), u ∈ TCΣ(V) and σ be a
DΣ-substitution such that tc,d = uσ and for all x ∈ Vu,σ = var(u) ∩ supp(σ), σ(x) is
flat.

There is a unique solution g ∈ AC of the Σ-formulas∧
c:ec→s∈C, d:s→e∈D

∀xc,1 . . . ∀xc,nc d(c(xc)) = tc,d : e (1)

and, equivalently, ∧
c:ec→s∈C, d:s→e∈D

d ◦ c = λxc.tc,d : ec → e (2)

and, equivalently, ∧
c:ec→s∈C

c = obj{d.λxc.tc,d : ec → e}d:s→e∈D

in A (see section 10.1 and section 15.2).

(1) is called a biinductive definition of C on DΣ.

508

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Proof. Let CΣ(A) be the term grounding of CΣ on A (see section 9.12) and B be the
initial CΣ(A)-algebra with carrier TCΣ(A) and the following interpretation of D:

For all c : ec → s ∈ C, d : s→ e ∈ D and valuations g′ of Vc in TCΣ(A) and a ∈ As,

dB(c(g′(xc,1), . . . , g
′(xc,nc))) =def tBc,d(g

′), (3)
dB(vals(a)) =def valBe (d

A(a)) (4)

where valBe : Ae → TCΣ(A),e denotes the Tfo(S)-extension of the S-sorted function

valB : A→ TCΣ(A)

that maps a ∈ A to the term vals(a).

By assumption, there are u ∈ TCΣ(V) and DΣ-substitution σ such that tc,d = uσ and
for all x ∈ Vu,σ, σ(x) is flat. Hence there are 1 ≤ ix ≤ nc and dx : sc,ix → e ∈ ArrΣ such
that σ(x) = dx(xc,ix) and dx ∈ D or dx = πj ◦ d for some j ∈ I and d ∈ D. Therefore,

509

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

tBc,d(g
′) = (uσ)B(g′)

Prop. 10.1
= uB(σB(g′)) = u{σB(g′)(x)/x | x ∈ Vu,σ}

= u{σ(x)B(g′)/x | x ∈ Vu,σ} = u{dx(g′(xc,ix))B/x | x ∈ Vu,σ}
= u{dBx (g′(xc,ix))/x | x ∈ Vu,σ}.

Since u consists of constructors and variables, we conclude that for all destructors or
projections d and subterms d(v) of tc,d, d(v)Bx (g′) = dB(g′(xc,ix)) for some x ∈ Vu,σ.

Therefore, (3) and (4) define dB inductively on TCΣ(A).

Since A|DΣ is final in AlgDΣ, there is a unique DΣ-homomorphism unfoldB : B → A.

By (4), valB and thus unfoldB ◦ valB : A→ A are DΣ-homomorphic. Hence

unfoldB ◦ valB = idA, (5)

again because A|DΣ is final in AlgDΣ.

A is a CΣ(A)-algebra: For all c : e1 × · · · × en → s ∈ C and s ∈ S,

cA =def unfoldB
s ◦ cB ◦ valBe , (6)

valAs =def idAs. (7)

510

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

(8) The greatest DΣ-congruence ∼ on B is a CΣ-congruence: By (3), B satisfies (2).
Hence by Lemma 16.4, the CΣ-congruence closure ∼C of ∼ is a DΣ-congruence. Since
∼ is both the greatest DΣ-congruence and a subrelation of ∼C , ∼ is equal to ∼C and
thus a CΣ-congruence.

By Lemma 13.3 (4), ker(unfoldB) is the greatest DΣ-congruence on B. Hence by (8),
ker(unfoldB) is a CΣ-congruence, i.e., for all c : e → s ∈ C and t, t′ ∈ TCΣ(A),e,
unfoldB(t) = unfoldB(t′) implies unfoldB(cB(t)) = unfoldB(cB(t′)). Consequently and
since by (5), unfoldB : TCΣ(A) → A is surjective, a CΣ-algebra A′ with carrier A is
defined as follows:

For all c : e→ s ∈ C and t, t′ ∈ TCΣ(A),e,

cA
′
(unfoldB(t)) =def unfold

B(cB(t)). (9)

(10) A and A′ interpret C in the same way: For all c : e→ s ∈ C and a ∈ Ae,

cA
′
(a)

(5)
= cA

′
(unfoldB(valB(a)))

(9)
= unfoldB(cB(valB(a)))

(6)
= cA(a).

511

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

(11) unfoldB is CΣ(A)-homomorphic: For all c : e→ s ∈ C and t ∈ TCΣ(A),e,

unfoldB(cB(t))
(9)
= cA

′
(unfoldB(t))

(10)
= cA(unfoldB(t)).

For all s ∈ S and a ∈ As,

unfoldB(valBs (a)))
(5)
= a

(7)
= valAs (a)

unfoldB DΣ−hom.
= valAs (unfold

B
As
(a)).

Define g ∈ AV by g(c) = cA for all c : ec → s ∈ C.

g ∈ AV satisfies (1):

For all d : s → e ∈ D, c :
∏nc

i=1 si → s ∈ C, a = (a1, . . . , anc) ∈
∏nc

i=1Asi and the
valuations g′, h′ : Vc → TCΣ(A) with

g′(xc,i) = valBsi(ai) and h′(xc,i) = ai

for all 1 ≤ i ≤ nc,

dA(g(c)(a)) = dA(cA(a))
(6)
= dA(unfoldB

s (c
B(valB(a)))) = dA(unfoldB

s (c(val
B(a))))

unfoldB DΣ−hom.
= unfoldB

e (d
B(c(valB(a))))

(3)
= unfoldB

e (t
B
c,d(g

′))

(11), unfoldB DΣ−hom.
= tAc,d(unfold

B ◦ g′) = tAc,d(unfold
B ◦ valB ◦ h′) (5)

= tAc,d(h
′).

512

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

(12) unfoldB agrees with the unique CΣ(A)-homomorphism fold ′A : B → A: Since A is
CΣ(A)-algebra and B is initial in AlgCΣ(A), (12) follows from (11).

(13) unfoldTCΣ agrees with the unique CΣ-homomorphism foldA : TCΣ → A: Since
incTCΣ

and fold ′A are CΣ-homomorphisms and TCΣ is initial in AlgCΣ,

foldA = fold ′A ◦ incTCΣ
. (14)

By (3) and the condition on tc,d, for all c : ec → s ∈ C, d : s → e ∈ D, t ∈ TCΣ,ec and
a ∈ As, dB(c(t)) = (λxc.tc,d)

B(t) ∈ TCΣ,e. Hence TCΣ is a DΣ-invariant of B and thus
incTCΣ

: TCΣ → B is DΣ-homomorphic. Therefore,

unfoldTCΣ = unfoldB ◦ incTCΣ
. (15)

(12), (14) and (15) imply (13).

TCΣ
foldA

≻A

TCΣ
incTCΣ ≻

id ≻

B
fold ′A

≻

TCΣ
unfoldTCΣ

≻
id ≻ A

id

⋎

unfoldB

≻

513

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

It remains to show that every solution h of (1) in A agrees with g.

Let ∼ be the least S-sorted equivalence relation on A such that ∼ contains ∆A and for
all c : e→ s ∈ C and a, b ∈ Ae, a ∼ b implies g(c)(a) ∼ h(c)(b).

Suppose that ∼ is a DΣ-congruence on A.

For all c : e → s ∈ C and a ∈ Ae, a ∼ a implies g(c)(a) ∼ h(c)(a) and thus g(c)(a) =
h(c)(a) because by Lemma 13.3 (3), ∆A is the only DΣ-congruence on A. Hence g = h.

It remains to show (by induction on the definition of ∼) that ∼ is a DΣ-congruence.

Let s ∈ S, a ∼s b and d : s→ e ∈ D.

Case 1: a = b. Hence dA(a) = dA(b) and thus dA(a) ∼ dA(b) because ∼ is reflexive.

Case 2: b ∼ a. By induction hypothesis, dA(b) ∼ dA(a) and thus dA(a) ∼ dA(b) because
∼ is symmetric.

Case 3: a ∼ a′ and a′ ∼ b for some a′ ∈ As. By induction hypothesis, dA(a) ∼ dA(a′)

and dA(a′) ∼ dA(b). Hence dA(a) ∼ dA(b) because ∼ is transitive.

Case 4: There are c :
∏n

i=1 sc,i → s ∈ C, a′ = (a1, . . . , an), b
′ = (b1, . . . , bn) ∈

∏n
i=1Asi

such that a = cA(a′), b = cA(b′) and a′ ∼ b′. Then for all 1 ≤ i ≤ n, ai ∼ bi.

514

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Let g′, h′ : {x1, . . . , xn} → A be the valuations such that for all 1 ≤ i ≤ n, g′(xi) = ai
and h′(xi) = bi. By assumption, there are u ∈ TCΣ(V) and DΣ-substitution σ such
that tc,d = uσ and for all x ∈ Vu,σ, σ(x) is flat. Hence there are 1 ≤ ix ≤ n and
dx : six → e ∈ ArrΣ such that σ(x) = dx(xix) and dx ∈ D or dx = πj ◦ d for some j ∈ I
and d ∈ D. Therefore, σA(g′)(x) = σ(x)A(g′) = dAx (g

′(xix)) = dAx (aix) and analogously,
σA(h′)(x) = dAx (bix). Hence by induction hypothesis, for all x ∈ Vu,σ,

σA(g′)(x) = dAx (ai) ∼ dAx (bi) = σA(h′)(x),

and thus by the definition of ∼,

uA(σA(g′)) ∼ uA
′
(σA(h′)) (16)

where A′ denotes the Σ-algebra such that A′|DΣ = A|DΣ and for all c ∈ C, cA′
= h(c).

Since g and h satisfy (1) and for all c ∈ C, cA = g(c), we finally obtain

dA(a) = tAc,d(g
′) = (uσ)A(g′)

Prop. 10.1
= uA(σA(g′))

(16)∼ uA
′
(σA(h′)) = uA

′
(σA

′
(h′))

Prop. 10.1
= (uσ)A

′
(h′) = tA

′
c,d(h

′) = dA(b). ❏

515

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Crucial arguments in the proof of Theorem 16.3 originate from the proof of [156], The-
orem 3.1, and [166], Theorem 2, which show that certain stream (resp. infinite-bintree)
equations have unique solutions in final stream (resp. infinite-bintree) algebras and thus
justifies their designation as definitions of stream constructors (see also [74], Appendices
A.5 and A.6; [92], section 4; [66], section 8.2).

In a rather informal way, [158], Thm. A.1, provides a schema for biinductive definitions
of stream constructors, called differential equations. The proof sketch of this theorem
has been carried out in more detail in [48].

Similar schemas for biinductively defined functions dealing with infinite binary trees over
a semiring, nondeterministic transition systems, Mealy automata, concurrent processes
and formal power series are given in [166], section 3, [34], [67], [78, 152, 81] and [156],
section 9; respectively.

Theorem 16.3 provides the coincidence of a fold and an unfold (see (12) in the proof),
which is often regarded as a correspondence between denotational semantics and opera-
tional semantics (e.g., in [78]).

516

https://en.wikipedia.org/wiki/Denotational_semantics
https://en.wikipedia.org/wiki/Operational_semantics
https://en.wikipedia.org/wiki/Operational_semantics

16.1 Three criteria 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Consequently, biinductive definitions are closely related to structural-operational (SOS)
rules, which, e.g., determine the syntax (constructors) and operational semantics of pro-
gramming languages and process calculi. Here the destructors often come as multivalued
transition functions. Hence SOS rules are biinductive definitions in relational form.

For instance, the following SOS rules reproduce the biinductive definition of regular
operators (in applicative form; see sample algebra 9.6.23 and sample biinductive definition
16.5.5): Let B ∈ P+(X), x ∈ X and c ∈ 2.

t
δ,x−→ t′, u

δ,x−→ u′

t + u
δ,x−→ t′ + u′

t
δ,x−→ t′, u

δ,x−→ u′

t ∗ u δ,x−→ t′ ∗ u + β̂(t) ∗ u′

t
δ,x−→ t′

star(t)
δ,x−→ t′ ∗ star(t) ĉ

δ,x−→ 0̂ B
δ,x−→ x̂ ∈ B

t
β−→ m, u

β−→ n

t + u
β−→ max(m,n)

t
β−→ m, u

β−→ n

t ∗ u β−→ m ∗ n

517

https://en.wikipedia.org/wiki/Operational_semantics
https://en.wikipedia.org/wiki/Operational_semantics

16.2 Bisimulation modulo constructors 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

star(t)
β−→ 0 B

β−→ 0 ĉ
β−→ c

[26, 37, 81, 90, 176] present biinductive definitions in a more category-theoretical form,
which, instead of employing the term algebra B of Theorem 16.3, involves distributive
laws (see chapter 23). Unfortunately, adapting non-trivial sets of defining equations to
this framework may be a quite difficult task—as the simple example given in chapter 24
suggests. In this context, some notions differ from ours. For instance, [26] would call
coinductive definitions coiterative and biinductive ones λ-coiterative.

16.2 Bisimulation modulo constructors

Let DΣ = (S,D) be a destructive signature, C ⊆ V be a set of constructors and F be a
set of monomorphic functions CΣ = (S,C ∪ F), Σ = CΣ ∪DΣ, A be a Σ-algebra with
carrier A and ∼ be an S-sorted binary relation on A.

The least CΣ-congruence on A that contains ∼ is called the CΣ-congruence closure
of ∼ and denoted by ∼C .

518

16.2 Bisimulation modulo constructors 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

∼ is a DΣ-bisimulation modulo C on A if for all d : s→ e ∈ D and a, b ∈ As,

a ∼s b ⇒ dA(a) ∼C,e d
A(b).

Lemma 16.4

Suppose that the assumptions of Theorem 16.3 hold true and ∼ is a DΣ-bisimulation
modulo C on A.

Then ∼C is a DΣ-congruence.

Proof by induction on the definition of ∼C.

Let s ∈ S, a ∼C,s b and d : s→ e ∈ D.

Case 1: a ∼ b. Since ∼ is a DΣ-bisimulation modulo C, dA(a) ∼C d
A(b).

Case 2: a = b. Hence dA(a) = dA(b) and thus dA(a) ∼C d
A(b) because ∼C is reflexive.

Case 3: b ∼C a. By induction hypothesis, dA(b) ∼C dA(a) and thus dA(a) ∼C dA(b)

because ∼C is symmetric.

Case 4: a ∼C a
′ and a′ ∼C b for some a′ ∈ As. By induction hypothesis, dA(a) ∼C d

A(a′)

and dA(a′) ∼C d
A(b). Hence dA(a) ∼C d

A(b) because ∼C is transitive.

519

16.2 Bisimulation modulo constructors 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Case 5: There are c :
∏n

i=1 sc,i → s ∈ C, a′ = (a1, . . . , an), b
′ = (b1, . . . , bn) ∈

∏n
i=1Asi

such that a = cA(a′), b = cA(b′) and a′ ∼C b
′. Then for all 1 ≤ i ≤ n, ai ∼C bi.

Let g′, h′ : {x1, . . . , xn} → A be the valuations such that for all 1 ≤ i ≤ n, g′(xi) = ai
and h′(xi) = bi. By assumption, tc,d = uσ for some u ∈ TCΣ(V) and a DΣ-substitution
σ and for all x ∈ var(u) ∩ supp(σ), σ(x) is flat, there are dx ∈ D and 1 ≤ ix ≤ n

such that σ(x) = dx(xc,ix) and thus σA(g′)(x) = σ(x)A(g′) = dAx (g
′(xix)) = dAx (aix) and

analogously, σA(h′)(x) = dAx (bix).

Hence by induction hypothesis, for all x ∈ var(u) ∩ supp(σ),

σA(g′)(x) = dAix(ai) ∼C d
A
ix
(bi) = σA(h′)(x),

and thus by the definition of ∼C ,

uA(σA(g′)) ∼C u
A(σA(h′)). (1)

Since the valuation λc.cA : C → A satisfies Theorem 16.3(1),

dA(a) = tAc,d(g
′) = (uσ)A(g′)

Prop. 10.1
= uA(σA(g′))

(1)∼C u
A(σA(h′))

Prop. 10.1
= (uσ)A(h′)

= tAc,d(h
′) = dA(b). ❏

520

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

16.3 Sample inductive definitions

Let the assumption of Theorem 16.1 hold true. It tells us that an inductive definition∧
c:e→s∈C

ds ◦ c = c ◦De (1)

of D = {ds : s→ es | s ∈ S} of polynomial destructors has a unique solution g in A.

Often the functions that satisfy (1) are product extensions of the functions of E and a
further function f . If f is an identity, then E specifies a primitive recursive function or
paramorphism (see chapter 14).

If the equations for D are given in some applicative form, “recursive calls” of D may
scatter around on the equations’ right-hand sides. In order to obtain the right-hand side
of (1), they must be bundled into a single term De : e → e[es/s | s ∈ S]. In turn, this
requires a general definition of c, not only for the D-images where c is applied to in the
equations.

In [79], the formation of a definition of c is called a generalization step and carried out
explicitly in derivations of inductive definitions. In the examples given below, generaliza-
tions arise implicitly as soon as c is presented as a λΣ-term.

521

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Inductively defined functions on natural numbers

Let CΣ = Nat (see section 8.2). For D = {d : nat→ e}, (1) reads as follows:

d ◦ zero = zero : 1 → e, (2)
d ◦ succ = succ ◦ d : nat→ e. (3)

Let z : 1, b : 2, k,m, n : nat, f : nat → nat ∈ V , one = succ ◦ zero and (≤) :

nat× nat→ 2 be interpreted in A|Nat as usually.

1. Let d : nat→ 2 denote the test on zero with the equations
d(zero(z)) = 1,

d(succ(n)) = 0.

An A-equivalent inductive definition of d reads as follows:
d ◦ zero = 1,

d ◦ succ = (λb.0) ◦ d.

2. Let pred : nat→ nat denote the predecessor function with the equations
pred(zero(z)) = zero(z),

pred(succ(n)) = n.

522

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Let d : nat→ nat× nat denote the product extension ⟨pred, id⟩ with the equations

d(zero(z)) = (zero(z), zero(z)),

d(succ(k)) = (λ(m,n).(n, succ(n)))(d(k))

An A-equivalent inductive definition of d reads as follows:
d ◦ zero = ⟨zero(z), zero(z)⟩,
d ◦ succ = (λ(m,n).(n, succ(n))) ◦ d.

Hence
g[(π1 ◦ g(d))/pred] (4)

uniquely solves the above pred-equations and π1 ◦ g(d) is a paramorphism (see chapter
14).

3. Let add : nat× nat→ nat denote the addition of natural numbers with the equations
add(zero(z), n) = n,

add(succ(m), n) = succ(add(m,n)).

Let d : nat→ (nat→ nat) ∈ V denote curry(add) with the equations

d(zero(z)) = idnat,

d(succ(m)) = λn.succ(d(m)(n)) = (λf.λn.succ(f (n)))(d(m)).

523

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
An A-equivalent inductive definition of d reads as follows:

d ◦ zero = λz.idnat,

d ◦ succ = (λm.λf.λn.succ(f (n))) ◦ d.

Hence g[uncurry(g(d))/add] uniquely solves the above add-equations.

4. ([179], Example 12 - a histomorphism; [72], Example 21) Let fib : nat→ nat denote
the Fibonacci function with the equations

fib(zero(z)) = zero(z),

fib(succ(zero(z))) = one(z),

fib(succ(succ(n))) = add(fib(n), fib(succ(n))).

Let d : nat→ nat×nat denote the product extension ⟨fib, fib ◦ succ⟩ with the equations

d(zero(z)) = (zero(z), one(z)),

d(succ(k)) = (λ(m,n).(n, add(m,n)))(d(k)).

An A-equivalent inductive definition of d reads as follows:

d ◦ zero = ⟨zero, one⟩,
d ◦ succ = (λ(m,n).(n, add(m,n))) ◦ d.

Hence g[(π1 ◦ g(d))/fib] uniquely solves the above fib-equations.

524

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

5. Let mul : nat × nat → nat denote the multiplication of natural numbers with the
equations

mul(zero(z), n) = zero(z),

mul(succ(m), n) = add(mul(m,n), n).

Let d : nat→ (nat→ nat) ∈ V denote curry(mul) with the equations

d(zero(z)) = λn.zero(z),

d(succ(m)) = λn.add(d(m)(n), n) = (λf.λn.add(f (n), n))(d(m)).

An A-equivalent inductive definition of d reads as follows:

d ◦ zero = λz.λn.zero(z),

d ◦ succ = (λf.λn.add(f (n), n)) ◦ d.

Hence g[uncurry(g(d))/mul] uniquely solves the above mul-equations.

6. ([72], Example 20) Let fact : nat → nat denote the factorial function with the
equations

fact(zero(z)) = one(z),

fact(succ(n)) = mul(fact(n), succ(n)).

525

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Let d : nat→ nat× nat denote the product extension ⟨fact , id⟩ with the equations

d(zero(z)) = (one(z), zero(z)),

d(succ(k)) = (λ(m,n).(mul(m, succ(n)), succ(n)))(d(k)).

An A-equivalent inductive definition of d reads as follows:

d ◦ zero = ⟨one, zero⟩,
d ◦ succ = (λ(m,n).(mul(m, succ(n)), succ(n))) ◦ d.

Hence g[(π1 ◦ g(d))/fact] uniquely solves the above fact -equations and π1 ◦ g(d) is a
paramorphism (see chapter 14).

7. Let sub : nat × nat → nat denote the subtraction on natural numbers with the
equations

sub(zero(z), n) = zero(z),

sub(succ(m), zero(z)) = succ(m),

sub(succ(m), succ(n)) = sub(m,n).

526

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Let d : nat→ (nat→ nat)× nat denote the product extension ⟨curry(sub), idnat⟩ with
the equations

d(zero(z)) = (λn.zero(z), zero(z)),

d(succ(k)) = (λ(f,m).(case{zero.λz.succ(m), succ.f}, succ(m))})(d(k)).
An A-equivalent inductive definition of d reads as follows:

d ◦ zero = ⟨λz.λn.zero(z), zero(z)⟩,
d ◦ succ = (λ(f,m).(case{zero.λz.succ(m), succ.f}, succ(m))) ◦ d.

Hence g[uncurry(π1 ◦ g(d))/sub] uniquely solves the above sub-equations.

8. Let ack : nat× nat→ nat denote the Ackermann function with the equations

ack(zero(z), n) = succ(n)

ack(succ(m), zero(z)) = ack(m, one(z))

ack(succ(m), succ(n)) = ack(m, ack(succ(m), n)).

Let d : nat→ (nat→ nat) ∈ V denote curry(ack) with the equations

d(zero(z)) = succ (5)
d(succ(m))(zero(z)) = d(m)(one(z)) (6)
d(succ(m))(succ(n)) = d(m)(d(succ(m))(n)). (7)

527

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Similarly to [79], section 5.2, (6) and (7) can be generalized as follows: For all f : N → N,

df ◦ zero = f ◦ one, (8)
df ◦ succ = f ◦ df (9)

is an inductive definition of df : nat→ nat ∈ V and thus has a unique solution gf : N →
N. Let

succ : (N → N) → (N → N)
f 7→ gf .

Hence the equations

d ◦ zero = λz.succ (10)
d ◦ succ = succ ◦ d (11)

form an inductive definition of d. Its unique solution h : N → (N → N) solves (5)-(7):

h(zero(z))
(10)
= succ,

h(succ(m))(zero(z))
(11)
= succ(h(m))(zero(z)) = gh(m)(zero(z))

(8)
= h(m)(one(z)),

h(succ(m))(succ(n))
(11)
= succ(h(m))(succ(n)) = gh(m)(succ(n))

(9)
= h(m)(gh(m)(n))

= h(m)(succ(h(m))(n))
(11)
= h(m)(h(succ(m))(n)).

Therefore, g[uncurry(g(d))/ack] uniquely solves the above ack-equations.

528

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

9. Let x : X, f : X → X∗, g : X∗ → X∗, h : X∗ → X∗ ∈ V and

replicate : nat→ (X → X∗),

take : nat→ (X∗ → 1 +X∗),

takeStream : nat→ (XN → X∗)

be variables denoting the synonymous Haskell functions.

Inductive definitions of these functions read as follows:

replicate ◦ zero = λz.λx.ϵ,

replicate ◦ succ = (λf.λx.(x · f (x))) ◦ replicate,
take ◦ zero = λz.λx.ι2(ϵ),

take ◦ succ = (λg.λs.(case{α.ι1, cons.λ(x, s′).(x · g(s′))})X
∗
) ◦ take,

takeStream ◦ zero = λz.λx.ϵ,

takeStream ◦ succ = (λh.λs.(headInfSeq(s) · h(tailInfSeq(s)))) ◦ takeStream

(see sample algebra 9.6.3 and 9.6.5).

The interpretation of the case distinction in X∗ is well-defined because X∗ is initial in
AlgList(X) (see above).

529

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
Inductively defined functions on lists

Let X, Y, Z be sets and CΣ = List(X). Suppose that Σ includes

List ′(Y) = List(Y)[state′/state, α′/α, cons′/cons],

List ′′(Z) = List(Z)[state′′/state, α′′/α, cons′′/cons]

(see section 8.2) and A|List ′(Y) and A|List ′′(Z) are initial in AlgList ′(Y) and AlgList ′′(Z),
respectively

For D = {d : state→ e}, (1) reads as follows:

d ◦ α = α : 1 → e, (12)
d ◦ cons = cons ◦ (idX × d) : X × state→ e. (13)

Let z : 1, b : 2, p : 2N, x : X, y : Y, m, n : N, s, s′ : state ∈ V and (≤) : N2 → 2 be
defined as usually.

10. Let d = length : state→ N denote the synonymous Haskell function on Astate with
the equations

d(α(z)) = zero(z),

d(cons(x, s)) = succ(d(s)).

530

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
An A-equivalent inductive definition of d reads as follows:

d ◦ α = zero,

d ◦ cons = succ ◦ π2 ◦ (idX × d).

11. Let d = sum : state → N denote the synonymous Haskell function on Astate with
the equations

d(α(z)) = zero(z),

d(cons(n, s)) = add(n, d(s)).

An A-equivalent inductive definition of d reads as follows:

d ◦ α = zero,

d ◦ cons = add ◦ (idN × d).

12. Let conc : state×state→ state denote the concatenation of lists with the equations

conc(α(z), s) = s

conc(cons(x, s), s′) = cons(x, conc(s, s′)).

Let d : state→ (state→ state) ∈ V denote curry(cons) with the equations

d(α(z))(s) = s,

d(cons(x, s))(s′) = cons(x, d(s)(s′)).

531

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
An A-equivalent inductive definition of d reads as follows:

d ◦ α = λz.idstate,

d ◦ cons = (λ(x, f).λs′.cons(x, f (s′))) ◦ (idX × d)

where f : state → state ∈ V . Hence g[uncurry(g(d))/conc] uniquely solves the above
conc-equations.

13. Let s′ : state′, f : Y X , g : Y X , h : Y X → state′, h′ : ZX×Y → (state′ → state′′) ∈
V and

map : Y X → (state→ state′),

zipWith : ZX×Y → (state→ (state′ → state′′))

be variables for the synonymous Haskell functions with the equations

map(f)(α(z)) = α′,

map(f)(cons(x, s)) = cons′(f (x),map(f)(s)),

zipWith(g)(α(z))(s′) = α′′,

zipWith(g)(s)(α′(z)) = α′′,

zipWith(g)(cons(x, s))(cons(y, s′)) = cons′′(g(x, y), zipWith(g)(s)(s′)).

Let
d : state→ (Y X → state′),

d′ : state→ (ZX×Y → (state′ → state′′))

532

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

be variables denoting flip(map) and flip(zipWith), respectively, with the equations

d(α(z))(f) = α′,

d(cons(x, s))(f) = cons′(f (x), d(s)(f)),

d′(α(z))(g)(s′) = α′′,

d′(cons(x, s))(g)(α′(z)) = α′′,

d′(cons(x, s))(g)(cons′(y, s′)) = cons′′(g(x, y), d′(s)(g)(s′)).

A-equivalent inductive definitions for d and d′ read as follows:

d ◦ α = λz.λf.α′,

d ◦ cons = (λ(x, h).λf.cons′(f (x), h(f))) ◦ (idX × d),

d′ ◦ α = λz.λg.λs′.α′′,

d′ ◦ cons = (λ(x, h′).λg.case{α′.α′′, cons′.λ(y.s′).cons′′(g(x, y), h′(g)(s′))})
◦ (idX × d′).

Hence g[flip(g(d))/map][flip(g(d′))/zipWith] uniquely solves the above equations formap
and zipWith.

533

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

14. Let p : 2X ∈ V and filter : 2X → (state → state) denote the synonymous Haskell
function with the equations

filter (p)(α(z)) = α

filter (p)(cons(x, s)) = ite(p(b), cons(x, filter (p)(s)), filter (p)(s)).

Let d : state→ (2X → state) ∈ V denote flip(filter) with the equations

d(α(z))(p) = α,

d(cons(x, s))(p) = ite(p(x), cons(x, d(s)(p)), d(s)(p)).

An A-equivalent inductive definition of d reads as follows:

d ◦ α = λz.λp.α,

d ◦ cons = (λ(x, f).λp.ite(p(x), cons(x, f (p)), f (p))) ◦ (idX × d)

where f : 2X → state ∈ V .

Hence g[flip(g(d))/filter] uniquely solves the above filter -equations.

534

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

15. Let f : Y Y×X ∈ V and foldl : Y Y×X × Y → (state → Y) be a variable denoting
the synonymous Haskell function with the equations

foldl(f, y)(α(z)) = y

foldl(f, y)(cons(x, s)) = foldl(f, f (y, x))(s).

Let d : state→ (Y Y×X × Y → Y) ∈ V denote flip(foldl) with the equations

d(α(z))(f, y) = y

d(cons(x, s))(f, y) = d(s)(f, f (y, x)).

An A-equivalent inductive definition of d reads as follows:

d ◦ α = λz.π2,

d ◦ cons = (λ(x, g).λ(f, y).g(f, f (y, x))) ◦ (idX × d)

where g : Y Y×X × Y → Y ∈ V .

Hence g[flip(g(d))/foldl] uniquely solves the above foldl -equations.

535

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

16. Let f : Y X×Y ∈ V and foldr : Y X×Y × Y → (state → Y) be a variable denoting
the synonymous Haskell function with the equations

foldr (f, y)(α(z)) = y

foldr (f, y)(cons(x, s)) = f (x, foldr (f, y)(s)).

Let d : state→ (Y X×Y × Y → Y) ∈ V denote flip(foldr) with the equations

d(α(z))(f, y) = y

d(cons(x, s))(f, y) = f (x, d(s)(f, y)).

An A-equivalent inductive definition of d reads as follows:

d ◦ α = λz.π2,

d ◦ cons = (λ(x, g).λ(f, y).f (x, g(f, y))) ◦ (idX × d)

where g : Y X×Y × Y → Y ∈ V .

Hence g[flip(g(d))/foldr] uniquely solves the above foldr -equations.

By the way, for all List(X)-algebras B,

foldrA(consB, αB) = foldB

(see section 9.11).

536

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

17. Let X = N and sorted : state → 2 denote the test on the sortedness of a list of
natural numbers with the equations

sorted(α(z)) = 1

sorted(cons(m,α(z))) = 1

sorted(cons(m, cons(n, s))) = m ≤ n ∧ sorted(cons(n, s)).

Let d : state→ 2N ∈ V denote λs.λn.sorted(cons(n, s)) with the equations

d(α(z)) = λn.1

d(cons(m, s)) = (λp.λn.m ≤ n ∧ p(n))(d(s)).
An A-equivalent inductive definition of d reads as follows:

d ◦ α = λz.λn.1,

d ◦ cons = (λ(m, p).λn.m ≤ n ∧ p(n)) ◦ (idN × d).

Let d′ : state→ (2×state) denote the product extension ⟨sorted, id⟩ with the equations

d′ ◦ α = ⟨1, α⟩
d′ ◦ cons = (λ(m, (b, s)).(d(s)(m), cons(m, s))) ◦ (idN × d′).

Hence, g[(π1 ◦ g(d′))/sorted] uniquely solves the above sorted-equations and π1 ◦ g(d′) is
a paramorphism (see chapter 14).

537

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

18. Suppose that Σ includes Bintree(L) and A|Bintree(L) is initial in AlgBintree(L) and thus
isomorphic to FBin(L) (see sample algebra 9.6.10).

Let d = subtree : state→ (btree→ btree) denote the function that maps a node s ∈ 2∗

of a finite binary tree t with node labels from L to the subtree of t with root s.

Let b : 2, lab : L, t, u, u′ : btree, f : btree→ btree ∈ V . d is specified by the equations

d(α(z))(t) = t, (1)
d(cons(b, s))(bjoin(x, t, u)) = ite(b, d(s)(t), d(s)(u)), (2)

d(cons(b, s))(empty) = empty. (3)

The conjunction of (2) and (3) is A-equivalent to the equation

d(cons(b, s)) = case{bjoin.λ(lab, t, u).ite(b, d(s)(t), d(s)(u)),
empty.λz.empty}.

An A-equivalent inductive definition of d reads as follows:

d ◦ α = λz.idbtree,

d ◦ cons = (λ(b, f).case{bjoin.λ(lab, t, u).ite(b, f (t), f (u)),
empty.λz.empty}) ◦ (id2 × d).

538

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

19. Suppose that Σ includes coBintree(L) and A|coBintree(L) is initial in AlgcoBintree(L)
and thus isomorphic to Bin(L) (see sample algebra 9.6.12).

Let d = subtreeC : state → (btree → btree) denote the function that maps a node
s ∈ 2∞ of a finite or infinite binary tree t with node labels from L to the subtree of t
with root s

Let b : 2, lab : L, t, u, u′ : btree, f : btree → btree ∈ V . d may be specified by the
conditional equations

d(α(z))(t) = t, (4)
d(cons(b, s))(t) = ite(b, d(s)(u), d(s)(u′)) ⇐ split(t) = ι1(lab, u, u

′), (5)
d(cons(b, s))(t) = t ⇐ split(t) = ι2(z). (6)

The conjunction of (5) and (6) is A-equivalent to the equation

d(cons(b, s)) = λt.[λ(lab, u, u′).ite(b, d(s)(u), d(s)(u′)), λz.t](split(t)).

An A-equivalent inductive definition of d reads as follows:

d ◦ α = λz.idbtree,

d ◦ cons = (λ(b, f).λt.[λ(lab, u, u′).ite(b, f (u), f (u′)), λz.t](split(t)))

◦ (id2 × d).

539

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Further inductively defined functions

20. The Brzozowski equations

Let CΣ = Reg(X) (see section 8.2), z : 1, b, c : 2, x : X, t, u : state, pt, pu :

stateX × state ∈ V , B ∈ P+(X) and (∈) : X × P(X) → 2 and max, (∗) : 2× 2 → 2 be
CΣ-arrows defined as usually.

Let d : state→ stateX × state denote the product extension ⟨δ, id⟩ with the equations

d(t + u) = (λx.(π1(d(t))(x) + π1(d(u))(x)), t + u),

d(t ∗ u) = (λx.(π1(d(t))(x) ∗ u + β̂(t) ∗ π1(d(u))(x)), t ∗ u)
d(star(t)) = (λx.π1(d(t))(x), star(t)),

d(B) = (λx.x̂ ∈ B, B),

d(̂b) = (λx.̂0, b̂)

(see sample algebra 9.6.23).

An A-equivalent inductive definition of d reads as follows:

d ◦ par = λ(pt, pu).(λx.(π1(pt)(x) + π1(pu)(x), π2(pt) + π2(pu)) ◦ (d× d)

: state× state→ stateX × state,

540

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

d ◦ seq = λ(pt, pu).(λx.((π1(pt)(x) ∗ π2(pu))+
(π̂2(pt) ∗ π1(pu)(x)), π2(pt) ∗ π2(pu)) ◦ (d× d),

: state× state→ stateX × state,

d ◦ iter = λpt.(λx.π1(pt)(x), star(π2(pt))) ◦ d : state→ stateX × state,

d ◦ = λB.(λx.x̂ ∈ B, B) : P(X) → stateX × state,

d ◦ _̂ = λb.(λx.̂0, b̂) : 2 → stateX × state.

Hence g[(π1 ◦ g(d))/δ] uniquely solves the δ-equations of the sample algebra 9.6.23 and
π1 ◦ g(d) is a paramorphism (see chapter 14).

Let d′ : state→ 2 denote the function β of sample algebra 9.6.23. An inductive definition
of d′ reads as follows:

β ◦ par = (λ(b, c).max(b, c)) ◦ (β × β),

β ◦ seq = (λ(b, c).b ∗ c) ◦ (β × β),

β ◦ iter = (λb.1) ◦ β,
β ◦ = 0,

β ◦ _̂ = id2.

541

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
21. Balanced binary trees ([53], Example 4.12)

Let X be a set and CΣ = Bintree(X) (see section 8.2), z : 1, x : X, m, n : N, b, c :

2, t, u : btree ∈ V and

max : N× N → N, (+1) : N → N, (∗) : 2× 2 → 2

be defined as usually. Let d : btree → N× 2 denote the product extension ⟨height, bal⟩
that maps a finite binary tree t with node labels from X to both the height of t and a
Boolean value that indicates whether t is balanced or not (see sample algebra 9.6.10).

Equations for d read as follows:

d(empty(z)) = (0, true),

d(bjoin(x, t, u)) = (λ((m, b), (n, c)).(max(m,n) + 1, b ∗ c ∗ (m = n)))(d(t), d(u)).

They are A-equivalent to the following inductive definition of d:

d ◦ bjoin = (λ(x, (m, b), (n, c)).(max(m,n) + 1, b ∗ c ∗ (m = n))) ◦ (idX × d× d)

: X btree× btree→ N× 2,

d ◦ empty = λz.(0, true) : 1 → N× 2.

Hence height = π1 ◦ g(d) and bal = π2 ◦ g(d).

542

16.3 Sample inductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

22. Flatten a finite tree ([72], Example 4), X be a set and CΣ = Tree(X) (see section
8.2). Suppose that Σ also includes List(X).

Let z : 1, x : X, t : tree, ts : trees ∈ V and conc : state×state→ state be interpreted
as in example 12 above. Let d : tree→ list, d′ : trees→ list ∈ V denote the functions
that map a (list of) finite tree(s) to its list of the node labels in depthfirst order (see
sample algebra 9.6.13).

Equations for d and d′ read as follows:

d(join(x, ts)) = cons(x, d′(ts)),

d′(nil(z)) = nil(z),

d′(cons(t, ts)) = conc(d(t), d′(ts)).

They are A-equivalent to the following inductive definition of {d, d′}:

d ◦ join = cons ◦ (idX × d′) : X × trees→ list,

d′ ◦ nil = nil : 1 → list,

d′ ◦ cons = conc ◦ (d× d′) : tree× trees→ list.

543

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

16.4 Sample coinductive definitions

Let the assumption of Theorem 16.2 hold true. It tells us that a coinductive definition∧
d:s→e∈D

d ◦ cs = Ce ◦ d. (1)

of C = {cs : es → s | s ∈ S} of polynomial constructors has a unique solution g in A.

Often the functions that satisfy (1) are sum extensions of the functions of E and a
further function f . If f is an identity, then E specifies a primitive corecursive function
or apomorphism (see chapter 14).

If the equations for C are given in some applicative form, “recursive calls” of C may
scatter around on the equations’ right-hand sides. In order to obtain the right-hand side
of (1), they must be bundled into a single term Ce : e[es/s | s ∈ S] → e.

Coinductively defined functions to natural numbers with infinity

Let DΣ = coNat (see section 8.3). For C = {c : e→ nat}, (1) reads as follows:

pred ◦ c = (c + id1) ◦ pred : e→ nat + 1. (2)

544

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
Let z : 1, m,m′, n, n′ : nat ∈ V .

1. Successor and zero in final coNat -algebras are defined non-recursively:

succ = obj{pred.ι1} : nat→ nat,

zero = obj{pred.ι2} : 1 → nat

(see section 15.2).

2. Let infinity : 1 → nat denote the ordinal number ω with the equation

pred(infinity(z)) = ι1(infinity(z)).

By equation (18), ι1 ◦ infinity = (infinity + id1) ◦ ι1, i.e., the injection ι1 can be pushed
inwards. This leads to an A-equivalent coinductive definition of infinity :

pred ◦ infinity = (infinity + id1) ◦ ι1.

3. Suppose that Σ includes coList(X) (see section 8.3) and A|coList(X) is final inAlgcoList(X).
Let x : X, s, s′ : state ∈ V . Let length : state→ nat denote the function that computes
the length of a colist. Its original defining Horn clauses read as follows:

pred(length(s)) = ι1(length(s
′)) = (length + id1)(ι1(s

′)) ⇐ split(s) = ι1(x, s
′),

pred(length(s)) = ι2(z) = (length + id1)(ι2(z)) ⇐ split(s) = ι2(z)

545

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
Their conjunction is A-equivalent to the equation

pred(length(s)) = (length + id1)[λ(x, s
′).ι1(s

′), ι2](split(s)).

An A-equivalent coinductive definition of length reads as follows:

pred ◦ length = (length + id1) ◦ [λ(x, s′).ι1(s′), ι2] ◦ split.

4. ([85], Example 2.6.6) Let add : nat × nat → nat denote the addition on Anat with
the Horn clauses
pred(add(m,n)) = ι1(add(m

′, n)) = (add + id1)(ι1(m
′, n)) ⇐ pred(m) = ι1(m

′),

pred(add(m,n)) = ι1(add(m,n
′)) = (add + id1)(ι1(m,n

′))

⇐ pred(m) = ι2(z) ∧ pred(n) = ι1(n
′),

pred(add(m,n)) = ι2(z) = (add + id1)(ι2(z)) ⇐ pred(m) = ι2(z) ∧ pred(n) = ι2(z).

Their conjunction is A-equivalent to the equation

pred(add(m,n)) = (add + id1)([λm′.ι1(m
′, n),

λz.[λn′.ι1(m,n
′), ι2](pred(n))](pred(m))).

An A-equivalent coinductive definition of add reads as follows:

pred ◦ add = (add + id1) ◦ λ(m,n).[λm′.ι1(m
′, n),

λz.[λn′.ι1(m,n
′), ι2](pred(n))](pred(m)).

546

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
Coinductively defined functions to streams

Let X, Y, Z be sets and DΣ = Stream(X). Suppose that

Stream ′(Y) = Stream(Y)[state′/state, head′/head, tail′/tail],

Stream ′′(Z) = Stream(Z)[state′′/state, head′′/head, tail′′/tail]

(see section 8.3) and A|Stream ′(Y) and A|Stream ′′(Z) are final in AlgStream ′(Y) and AlgStream ′′(Z),
respectively.

For C = {c : e→ state}, (1) reads as follows:

head ◦ c = head : e→ X, (3)
tail ◦ c = c ◦ tail : e→ state. (4)

Let z : 1, x : X, y : Y, m, n : N, s, s′ : state ∈ V and (+),min : R2 → R, (<), (≤) :

R2 → 2 be defined as usually.

5. ([179], Example 4) Let nats : N → state denote the function with the equations

head(nats(n)) = n

tail(nats(n) = nats(n + 1).

547

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
An A-equivalent coinductive definition of nats reads as follows:

head ◦ nats = idN,

tail ◦ nats = nats ◦ (+1).

6. Let evens : state → state denote the function that, given a stream s, returns the
stream of all elements of s at even positions. Equations for evens read as follows:

head(evens(s)) = head(s)

tail(evens(s)) = evens(tail(tail(s))).

An A-equivalent coinductive definition of evens reads as follows:

head ◦ evens = head,

tail ◦ evens = evens ◦ tail ◦ tail.

7. Let zip : state× state→ state denote the function with the equations

head(zip(s, s′)) = head(s)

tail(zip(s, s′)) = zip(s′, tail(s)).

An A-equivalent coinductive definition of zip reads as follows:

head ◦ zip = head ◦ π1,
tail ◦ zip = zip ◦ ⟨π2, tail ◦ π1⟩.

548

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

8. Let blink, blink′ : 1 → state denote the constants with the equations

head(blink) = 0

tail(blink) = blink′

head(blink′) = 1

tail(blink′) = blink.

Let c : 1 + 1 → state denote the sum extension [blink, blink′] with the equations

head(c(ι1(z))) = 0,

head(c(ι2(z))) = 1,

tail(c(ι1(z))) = c(ι2(z)),

tail(c(ι2(z))) = c(ι1(z)).

An A-equivalent coinductive definition of c reads as follows:

head ◦ c = [0, 1],

tail ◦ c = c ◦ [ι2, ι1].

Hence g[(g(c) ◦ ι1)/blink][(g(c) ◦ ι2)/blink′] uniquely solves the above equations for
{blink, blink′}.

549

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

9. Let X = R and appzeros : R → state denote the function that appends its argument
to the stream of zeros. Its original defining equations read as follows:

head(appzeros(x)) = x,

tail(appzeros(x)) = appzeros(0).

Here is an A-equivalent coinductive definition of appzeros:

head ◦ appzeros = idR,

tail ◦ appzeros = appzeros ◦ 0.

10. ([26], Example 2.5; [156], Theorem 3.1) Let X = R and add : state×state→ state

denote the addition on Astate with the equations

head(add(s, s′)) = head(s) + head(s′).

tail(add(s, s′)) = add(tail(s), tail(s′)).

An A-equivalent coinductive definition of add reads as follows:

head ◦ add = (+) ◦ (head× head),

tail ◦ add = add ◦ (tail × tail).

550

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

11. ([179], Example 14 - a futumorphism) Let exchange : state → state denote the
function with the equations

head(exchange(s)) = head(tail(s)),

head(tail(exchange(s))) = head(s),

tail(tail(exchange(s))) = exchange(tail(tail(s))).

Let c : state+ state→ state denote the sum extension [exchange, tail ◦ exchange] with
the equations

head(c(ι1(s))) = head(tail(s)),

head(c(ι2(s))) = head(s),

tail(c(ι1(s))) = c(ι2(s)),

tail(c(ι2(s))) = c(ι1(tail(tail(s)))).

An A-equivalent coinductive definition of c reads as follows:

head ◦ c = [head ◦ tail, head],
tail ◦ c = c ◦ [ι2, ι1 ◦ tail ◦ tail].

Hence g[(g(c) ◦ ι1)/exchange] uniquely solves the above equations for exchange.

551

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

12. ([72], Example 10) Let X = N and nats&squares : N → state denote the function
that maps n ∈ N to the ordered stream of all natural numbers ≥ n, interleaved with the
ordered stream of squares ≥ n. Equations for nats&squares read as follows:

head(nats&squares(n)) = n,

head(tail(nats&squares(n))) = n ∗ n,
tail(tail(nats&squares(n))) = nats&squares(n + 1).

Let c : N + N → state denote the sum extension [nats&squares, tail ◦ nats&squares]
with the equations

head(c(ι1(n))) = n,

head(c(ι2(n))) = n ∗ n,
tail(c(ι1(n))) = c(ι2(n))),

tail(c(ι2(n))) = c(ι1(n + 1))).

An A-equivalent coinductive definition of c reads as follows:

head ◦ c = [idN, λn.n ∗ n],
tail ◦ c = c ◦ [ι2, ι1 ◦ (+1)].

Hence g[(g(c)◦ι1)/nats&squares] uniquely solves the above equations for nats&squares.

552

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

13. Let iterate : XX ×X → state denote the function with the equations

head(iterate(f, x)) = x,

tail(iterate(f, x)) = iterate(f, f (x)).

An A-equivalent coinductive definition of iterate reads as follows:

head ◦ iterate = π2,

tail ◦ iterate = iterate ◦ λ(f, x).(f, f (x)).

14. ([37], Example 2.3) Let s′ : state′, f : Y X , g : ZX×Y ∈ V and

map : Y X × state→ state′,

zipWith : ZX×Y × state× state′ → state′′

be variables denoting the functions with the equations

head′(map(f, s)) = f (head(s)),

tail′(map(f, s)) = map(f, tail(s)),

head′′(zipWith(g, s, s′)) = g(head(s), head′(s′)),

tail′′(zipWith(g, s, s′)) = zipWith(g, tail(s), tail(s′)).

553

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
An A-equivalent coinductive definition of c reads as follows:

head′ ◦map = λ(f, s).f (head(s)),

tail′ ◦map = map ◦ λ(f, s).(f, tail(s)),
head′′ ◦ zipWith = λ(g, s, s′).g(head(s), head(s′)),

tail′′ ◦ zipWith = zipWith ◦ λ(g, s, s′).(g, tail(s), tail(s′)).

15. Let f : Y Y×X ∈ V and foldprefixes : Y Y×X × Y × state → state′ denote the
function wth the equations

head(foldprefixes(f, y, s)) = f (y, head(s)),

tail(foldprefixes(f, y, s)) = foldprefixes(f, f (y, head(s)), tail(s)).

Hence, if Astate = XN and Astate′ = Y N, then foldprefixes(f, y, s) denotes the function

λn.foldl(f, y)(take(n)(s)).

An instance of foldprefixes is given by [37], Example 2.5.

An A-equivalent coinductive definition of c reads as follows:

head ◦ foldprefixes = λ(f, y, s).f (y, head(s)),

tail ◦ foldprefixes = foldprefixes ◦ λ(f, y, s).(f, f (y, head(s)), tail(s)).

554

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

16. Suppose that Σ includes Nat and A|Nat is initial in AlgNat and thus isomorphic to N.
Define cycleNats : nat → state such that cycleNatsA is the function that maps n ∈ N
to the stream of repetitions of the list [n, n − 1, . . . , 0] (see [1], section 2.1). Together
with an auxiliary function c : nat × nat → state, cycleNats may be specified by the
equations

cycleNats(n) = c(n, n),

head(c(m,n)) = m,

tail(c(zero(z), n)) = c(n, n),

tail(c(succ(m), n)) = c(m,n).

An A-equivalent coinductive definition of c reads as follows:

head ◦ c = π1,

tail ◦ c = c ◦ λ(m,n).case{zero.λz.(n, n), succ.λm.(m,n)}(m).

17. ([37], Example 2.2) Let X = R and merge : state × state → state denote the
function with the equations

head(merge(s, s′)) = min(head(s), head(s′)),

555

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

tail(merge(s, s′)) = ite(head(s) < head(s′),merge(tail(s), s′),

ite(head(s) = head(s′),

merge(tail(s), tail(s′)),merge(s, tail(s′)))).

An A-equivalent coinductive definition of c reads as follows:

head ◦merge = λ(s, s′).min(head(s), head(s′)),

tail ◦merge = merge ◦ λ(s, s′).ite(head(s) < head(s′), (tail(s), s′),

ite(head(s) = head(s′),

(tail(s), tail(s′)), (s, tail(s′))).

18. ([179], Example 10) Let X = R and insert : R×state→ state denote the function
with the equations

head(insert(x, s)) = min(x, head(s)),

tail(insert(x, s)) = ite(x ≤ head(s), s, insert(x, tail(s))).

Let c : (R × state) + state → state denote the sum extension [insert, id] with the
equations

head(c(ι1(x, s))) = min(x, head(s)),

head(c(ι2(s))) = head(s),

556

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

tail(c(ι1(x, s))) = ite(x ≤ head(s), c(ι2(s)), c(ι1(x, tail(s)))),

tail(c(ι2(s))) = c(ι2(tail(s))).

An A-equivalent coinductive definition of c reads as follows:

head ◦ c = [λ(x, s).min(x, head(s)), head],

tail ◦ c = c ◦ [λ(x, s).ite(x ≤ head(s), ι2(s), ι1(x, tail(s))), ι2 ◦ tail].
Then g[(g(c) ◦ ι1)/insert] uniquely solves the above insert-equations and g(c) ◦ ι1 is an
apomorphism (see chapter 14).

Coinductively defined functions to colists

Let X, Y, Z be sets and DΣ = coList(X). Suppose that

coList ′(Y) = coList(Y)[state′/state, split′/split],

coList ′(Z) = coList(Z)[state′′/state, split′′/split]

(see section 8.3) and A|coList ′(Y) and A|coList ′′(Z) are final in AlgcoList ′(Y) and AlgcoList ′′(Z),
respectively. For C = {c : e→ state}, (1) reads as follows:

split ◦ c = (idX × c + id1) ◦ split : e→ X × state + 1. (5)

Let z : 1, x : X, y : Y, m, n : N, s, s′, s1, s2 : state ∈ V .

557

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

19. ([85], Example 2.6.5) The left-append function for colists and the empty colist are
defined non-recursively:

consC = obj{split.ι1} : X × state→ state,

nilC = obj{split.ι2} : 1 → state.

20. ([85], Example 2.6.5) Suppose that Σ includes List ′(X) = List(X)[state′/state]

(see section 8.2) and A|List ′(X) is initial in AlgList ′(X). Let inc : state′ → state ∈ V

denote the inclusion of Astate′ (lists) in Astate (lists and colists) with the equations

split(inc(cons(x, s))) = ι1(x, inc(s)) = ι1((idX × inc)(x, s))

= (idX × inc + id1)(ι1(x, s)),

split(inc(α(z))) = ι2(z) = ι2(id1(z)) = (idX × inc + id1)(ι2(z)).

An A-equivalent coinductive definition of inc reads as follows:

split ◦ inc = (idX × inc + id1) ◦ case{cons.ι1, α.ι2}.

558

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

21. Let zipWith : ZX×Y × state × state′ → state′′ denote the function that zips two
colists with a binary function f : X × Y → Z and thus A satisfies the equations

split(zipWith(f, s, s′)) = ι1(f (x, y), zipWith(s1, s2))

= (idX × zipWith + id1)(ι1(f (x, y), (s1, s2)))

⇐ split(s) = ι1(x, s1) ∧ split(s′) = ι1(y, s2)),

split(zipWith(f, s, s′)) = ι2(z) = (idX × zipWith + id1)(ι2(z))

⇐ split(s) = ι2(z) ∨ split(s′) = ι2(z).

Their conjunction is A-equivalent to the equation

split(zipWith(f, s, s′)) = (idX × zipWith + id1)([λ(x, s1).[λ(y, s2).ι1(f (x, y), (s1, s2)),

ι2](split(s
′)), ι2](split(s))).

An A-equivalent coinductive definition of zipWith reads as follows:

split ◦ zipWith = (idX × zipWith + id1) ◦
λ(f, s, s′).[λ(x, s1).[λ(y, s2).ι1(f (x, y), (s1, s2)),

ι2](split(s
′)),

ι2](split(s)).

559

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

22. ([85], Example 2.6.5) Let conc : state× state→ state denote the concatenation of
two colists and thus A satisfies the equations

split(conc(s, s′)) = ι1(x, conc(s1, s
′)) = (idX × conc + id1)(ι1(x, (s1, s

′)))

⇐ split(s) = ι1(x, s1),

split(conc(s, s′)) = ι1(x, conc(s, s1)) = (idX × conc + id1)(ι1(x, (s, s1)))

⇐ split(s) = ι2(z) ∧ split(s′) = ι1(x, s1),

split(conc(s, s′)) = ι2(z) = (idX × conc + id1)(ι2(z))

⇐ split(s) = ι2(z) ∧ split(s′) = ι2(z).

Their conjunction is A-equivalent to the equation

split(conc(s, s′)) = (idX × conc + id1)([λ(x, s1).ι1(x, conc(s1, s)),

λz.[λ(x, s1).ι1(x, conc(s, s1)),

ι2](split(s
′))](split(s))).

An A-equivalent coinductive definition of conc reads as follows:

split ◦ conc = (idX × conc + id1) ◦ λ(s, s′). [λ(x, s1).ι1(x, conc(s1, s)),
λz.[λ(x, s1).ι1(x, conc(s, s1)),

ι2](split(s
′))](split(s)).

560

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
23. Flatten a cotree

Suppose that Σ includes coTree(X) (see section 8.3) and A|coTree(X) is final in AlgcoTree(X)

and thus isomorpic to Tree∞(X) (see sample algebra 9.6.18).

Let t, u : tree, ts, us : trees ∈ V and

flatten : tree→ state, flattenL : trees→ state

be variables denoting the functions with the conditional equations

split(flatten(t)) = ι1(root(t),flattenL(subtrees(t))),

split(flattenL(ts)) = ι1(root(u),flattenL(conc(subtrees(u), us))

⇐ split(ts) = ι1(u, us),

split(flattenL(ts)) = ι2(z) ⇐ split(ts) = ι2(z).

Let c : tree+ trees→ state denote the sum extension [flatten,flattenL] with the condi-
tional equations

split(c(ι1(t))) = ι1(root(t), c(ι2(subtrees(t)))),

split(c(ι2(ts))) = ι1(root(u), c(ι2(conc(subtrees(u), us))))

⇐ split(ts) = ι1(u, us),

split(c(ι2(ts))) = ι2(z) ⇐ split(ts) = ι2(z).

561

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
or, equivalently, the uncondtional equations

split ◦ c ◦ ι1 = (idX × c + id1) ◦ λt.ι1(root(t), c(ι2(subtrees(t)))),
split ◦ c ◦ ι2 = (idX × c + id1) ◦ λts.[λ(u, us).ι1(root(u), ι2(conc(subtrees(u), us))),

ι2](split(ts)).

An A-equivalent coinductive definition of c reads as follows:

split ◦ c = [(idX × c + id1) ◦ λt.ι1(root(t), c(ι2(subtrees(t)))),
(idX × c + id1) ◦ λts.[λ(u, us).ι1(root(u), ι2(conc(subtrees(u), us))),

ι2](split(ts))]

= (idX × c + id1) ◦ [λt.ι1(root(t), c(ι2(subtrees(t)))),
λts.[λ(u, us).ι1(root(u), ι2(conc(subtrees(u), us))).

Then g[(g(c) ◦ ι1)/flatten][(g(c) ◦ ι2)/flattenL] uniquely solves the above flatten- and
flattenL-equations.

562

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Coinductively defined functions to infinite binary trees

Let R be a semiring and DΣ = infBintree(R). For C = {c : e → btree}, (1) reads as
follows:

root ◦ c = root : e→ R, (6)
left ◦ c = c ◦ left : e→ btree, (7)

right ◦ c = c ◦ right : e→ btree. (8)

Let x : R, t, t1, t2 : btree ∈ V and (+), (∗) : R2 → R be defined as usually.

24. (see [70], section 4.1) Let mirror : btree→ btree denote the function that mirrors
infinite binary trees, i.e., elements of Abtree. A coinductive definition of mirror reads as
follows:

root ◦mirror = root,

left ◦mirror = mirror ◦ right ,
right ◦mirror = mirror ◦ left .

563

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

25. (see [166], sections 4 and 5) Let appzeros : R → btree denote the function that
maps x ∈ R to the infinite binary tree whose root is labelled with its argument and its
other nodes are labelled with 0. A coinductive definition of appzeros reads as follows:

root ◦ appzeros = idR

left ◦ appzeros = appzeros ◦ 0,
right ◦ appzeros = appzeros ◦ 0.

Define add : btree × btree → btree such that addA is addition on Abtree. A coinductive
definition reads as follows:

root ◦ add = (+) ◦ (root× root),

left ◦ add = add ◦ (left × left),

right ◦ add = add ◦ (right × right).

Let pow : R → btree denote the function that maps x ∈ R to the infinite binary tree
whose nodes at level n are labelled with 2n ∗ x. A coinductive definition of pow reads as
follows:

root ◦ pow = idR,

left ◦ pow = pow ◦ λx.2 ∗ x,
right ◦ pow = pow ◦ λx.2 ∗ x.

564

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
Coinductively defined functions to cobintrees

Let X be a set and DΣ = coBintree(X) (see section 8.3). For C = {c : e→ btree}, (1)
reads as follows:

split ◦ c = (idX × c× c + id1) ◦ split : e→ X × btree× btree + 1. (9)

Let z : 1, x : X, y : Y, m, n : N and t, t1, t2 : btree ∈ V .

26. The root-append function for cobintrees and the empty cobintree are defined non-
recursively:

bjoinC = obj{split.ι1} : X × btree× btree→ btree,

emptyC = obj{split.ι2} : 1 → btree.

27. (see [82], section 5) Let mirror : btree→ btree denote the function that mirrors a
cobintree with the conditional equations

split(mirror(t)) = ι1(x,mirror(t2),mirror(t1))

= (idX ×mirror ×mirror + id1)(ι1(x, t2, t1))

⇐ split(t) = ι1(x, t1, t2),

split(mirror(t)) = ι2(z) = (idX ×mirror ×mirror + id1)(ι2(z)) ⇐ split(t) = ι2(z).

565

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Their conjunction is A-equivalent to the unconditional equation

split(mirror(t)) = (idX ×mirror ×mirror + id1)(split(t)).

An A-equivalent coinductive definition of mirror reads as follows:

split ◦mirror = (idX ×mirror ×mirror + id1) ◦ split.

A proof that the equationmirror◦mirror = id holds true in final coBintree(X)-algebras
is given in [137], section 23.

Coinductively defined functions to cotrees

Let X be a set and DΣ = coTree(X) (see section 8.3). For

C = {c : e→ tree, c′ : e′ → trees},

(1) reads as follows:

subtrees ◦ c = c′ ◦ subtrees : e→ trees, (10)
root ◦ c = root : e→ X, (11)
split ◦ c′ = (c× c′ + id1) ◦ split : e′ → tree× trees + 1. (12)

Let z : 1, x : X, t, t′, u, u′ : tree, ts, ts′, us, us′ : trees ∈ V .

566

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
28. Let

zipWith : XX×X × tree× tree→ tree,

zipWith ′ : XX×X × trees× trees→ trees

be variables that denote the functions that zip (two colists of) cotrees with a binary
function f : X × X → X (cf. Example 21 above for the analogous function on colists
and possibly different entry sets X , Y and Z) with the conditional equations

subtrees(zipWith(f, t, t′)) = zipWith ′(f, subtrees(t), subtrees(t′))

= zipWith ′(⟨π1, subtrees ◦ π2, subtrees ◦ π3⟩(f, t, t′)),
root(zipWith(f, t, t′)) = f (root(t), root(t′)),

split(zipWith ′(f, ts, ts′)) = ι1(zipWith(f, t, t′), zipWith ′(f, us, us′))

= (zipWith × zipWith ′ + id1)(ι1((f, t, t
′), (f, us, us′)))

⇐ split(ts) = ι1(t, us) ∧ split(ts′) = ι1(t
′, us′),

split(zipWith ′(f, ts, ts′)) = ι2(z) = (zipWith × zipWith ′ + id1)(ι2(z))

⇐ split(ts) = ι2(z) ∨ split(ts′) = ι2(z).

The conjunction of the last two equations is A-equivalent to the unconditional equation

split(zipWith ′(f, ts, ts′)) = (zipWith × zipWith ′ + id1)

([λ(t, us).[λ(t′, us′).ι1((f, t, t
′), (f, us, us′)),

ι2](split(ts
′)), ι2](split(ts))).

567

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

An A-equivalent coinductive definition of {zipWith, zipWith ′} reads as follows:

subtrees ◦ zipWith = zipWith ′ ◦ ⟨π1, subtrees ◦ π2, subtrees ◦ π3⟩,
root ◦ zipWith = λ(f, t, t′).f (root(t), root(t′)),

split ◦ zipWith ′ = (zipWith × zipWith ′ + id1) ◦
λ(f, ts, ts′).[λ(t, us).[λ(t′, us′).ι1((f, t, t

′), (f, us, us′)),

ι2](split(ts
′)),

ι2](split(ts))).

Coinductively defined functions to word languages

Let X be a set and DΣ = Acc(X) (see section 8.3).

For C = {c : e→ state}, (1) reads as follows:

δ ◦ c = c ◦ δ : e→ stateX , (13)
β ◦ c = β : e→ 2. (14)

568

16.4 Sample coinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

29. Let z : 1, x : X = Z ∈ V . Let esum, osum : 1 → state denote the constants with
the equations

δ(esum(z)) = λx.ite(even(x), esum(z), osum(z)),

β(esum(z)) = 1,

δ(osum(z)) = λx.ite(even(x), osum(z), esum(z)),

β(osum(z)) = 0.

Let c : 1 + 1 → state denote the sum extension [esum, osum] with the equations

δ(c(ι1(z))) = λx.ite(even(x), c(ι1(z)), c(ι2(z))),

δ(c(ι2(z))) = λx.ite(even(x), c(ι2(z)), c(ι1(z))),

β(c(ι1(z))) = 1,

β(c(ι2(z))) = 0.

An A-equivalent coinductive definition of c reads as follows:

δ ◦ c = c ◦ [λx.ite(even(x), ι1, ι2), λx.ite(even(x), ι2, ι1)],
β ◦ c = c ◦ [1, 0].

Hence g[(c◦ι1)/esum][(c◦ι2)/osum] uniquely solves the above {esum, osum}-equations.

569

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Let Q = 1+ 1. By Example 9.17, (B, ι1()) and (B, ι2()) accept all (x1, . . . , xn) ∈ Z∗ such
that

∑n
i=1 xi is even and odd, respectively.

16.5 Sample biinductive definitions

Let the assumption of Theorem 16.3 hold true. It tells us that a biinductive definition∧
c:ec→s∈C, d:s→e∈D

∀xc,1 . . . ∀xc,nc d(c(xc)) = tc,d (1)

of a set C of finitary and polynomial constructors has a unique solution g in A.

Biinductively defined functions to streams

Let X be a set and DΣ = Stream(X) (see section 8.3). Then C is a set of state-
constructors and (1) reads as follows:∧

c:e→s∈C, d∈{head,tail}

∀xc,1 . . . ∀xc,nc d(c(xc)) = tc,d. (2)

570

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Let X = R and x, y : X ∈ V . A biinductive definition of

C = {putElem : X → elem, ⊕ : elem× elem→ elem}

reads as follows:

getElem(putElem(x)) = x.

getElem(x⊕ y) = getElem(x) + getElem(y).

1. (see [1], section 3.4; [37], Example 2.10)

head(add(s, s′)) = head(s) + head(s′),

tail(add(s, s′)) = add(tail(s), tail(s′)).

Let X = R, z : 1 ∈ V and fibs : 1 → state denote the stream of Fibonacci numbers with
the equations

head(fibs(z)) = 0,

head(tail(fibs(z))) = 1,

tail(tail(fibs(z))) = add(fibs(z), tail(fibs(z))).

For turning these equations into a biinductive definition, we introduce a further construc-

571

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

tor tfibs : 1 → state and replace them by the following ones:

head(fibs(z)) = 0, (3)
tail(fibs(z)) = tfibs(z), (4)

head(tfibs(z)) = 1, (5)
tail(tfibs(z)) = add(fibs(z), tfibs(z)). (6)

By (4), the unique solution of (3)-(6) also yields a unique solution of the first three
equations.

572

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Since a biinductive definition includes equations for all constructors occuring on right-
hand sides, the first two equations of Example 16.4.10 must be added. Hence the complete
biinductive definition defines C = {add, fibs , tfibs} and reads as follows:

head(add(s, s′)) = head(s) + head(s′).

tail(add(s, s′)) = add(tail(s), tail(s′)),

head(fibs(z)) = 0,

tail(fibs(z)) = tfibs(z),

head(tfibs(z)) = 1,

tail(tfibs(z)) = add(fibs(z), tfibs(z)).

The coinductive definition of exchange : state → state of Example 16.4.11 cannot be
written as a biinductive one because DΣ-arrows with nested destructors are not flat.

2. (see [156, 158]; [26], Example 3.1)

A biinductive definition of appzeros : R → state is given by the first two equations of
Example 16.4.9.

573

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Let X = R, s, s′ : state ∈ V and (∗) : R2 → R be defined as usually and shuffle :

state× state→ state denote the function with the equations

head(shuffle(s, s′)) = head(s) ∗ head(s′), (7)
tail(shuffle(s, s′)) = add(shuffle(tail(s), s′), shuffle(s, tail(s′))). (8)

Together with the first two equations of Example 16.4.10, (7) and (8) yield a biinductive
definition of C = {add, shuffle}.

Let conv : state × state → state denote the function that computes the convolution
product of two streams of real numbers and is specified by the equations

head(conv(s, s′)) = head(s) ∗ head(s′) (9)
tail(conv(s, s′)) = add(conv(tail(s), s′), conv(appzeros(head(s)), tail(s′))). (10)

Together with the first two equations of Example 16.4.9 and the first two equations of Ex-
ample 16.4.10, (9) and (10) yield a biinductive definition of C = {appzeros, add, conv}.

574

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Biinductively defined functions to infinite binary trees

Let R be a semiring with addition + and multiplication ∗ and DΣ = infBintree(R) (see
section 8.3). Then C is a set of btree-constructors and (1) reads as follows:∧

c:e→s∈C, d∈{root,left ,right}

∀xc,1 . . . ∀xc,nc d(c(xc)) = tc,d. (11)

3. (see [166], section 4) Let x : R, t, t′ : btree ∈ V . and conv : btree× btree → btree

denote the convolution product of two binary trees with the equations

root(conv(t, t′)) = root(t) ∗ root(t′), (12)
left(conv(t, t′)) = add(conv(left(t), t′), conv(appzeros(root(t)), left(t′))), (13)

right(conv(t, t′)) = add(conv(right(t), t′), conv(appzeros(root(t)), right(t′))). (14)

For obtaining a biinductive definition of C = {conv, appzeros, add}, we turn the coin-
ductive definitions of appzeros : R → btree and add : btree × btree → btree (see
Example 16.4.25) into applicative equations:

root(appzeros(x)) = x, (15)
left(appzeros(x)) = appzeros(0), (16)

575

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

right(appzeros(x)) = appzeros(0), (17)
root(add(t, t′)) = root(t) + root(t′), (18)
left(add(t, t′)) = add(left(t), left(t′)), (19)

right(add(t, t′)) = add(right(t), right(t′)). (20)

(12)-(20) yield a biinductive definition of C.

4. (see [166], section 5) Let R = N, z : 1, x : N ∈ V and natt : 1 → btree denote the
infinite binary tree whose traversal in breadthfirst order produces the stream of positive
natural numbers, and is specified by the equations

root(natt(z)) = 1, (21)
left(natt(z)) = add(natt(z), pow(1)), (22)

right(natt(z)) = add(natt(z), pow(2)). (23)

For obtaining a biinductive definition of C = {natt, pow, add}, we turn the coinductive
definition of pow : R → btree (see Example 16.4.25) into applicative equations:

root(pow(x)) = x, (24)

576

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

left(pow(x)) = pow(2 ∗ x), (25)
right(pow(x)) = pow(2 ∗ x). (26)

(18)-(26) yield a biinductive definition of C.

Biinductively defined functions to word languages

Let X be a set and DΣ = Acc(X) (see section 8.3). Then C is a set of state-constructors
and (1) reads as follows: ∧

c:e→s∈C, d∈{δ,β}

∀xc,1 . . . ∀xc,nc d(c(xc)) = tc,d. (27)

5. (see [153], section 10) Let t, u : state, x : X ∈ V , max, (∗) : N2 → N be defined as
usually and par, shuffle : state× state→ state denote the parallel composition and the
shuffle product, respectively, of two word languages over X , which are specified by the
equations

δ(t + u) = (πx(δ(t)) + πx(δ(u)))x∈X , (28)
β(t + u) = max(β(t), β(s′)), (29)

577

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

δ(shuffle(t, u)) = shuffle(πx(δ(t)), u) + shuffle(t, πx(δ(u))), (30)
β(shuffle(t, u)) = β(t) ∗ β(u). (31)

(28)-(31) yield a biinductive definition of C = {par, shuffle}.

6. Let (S,C) = Reg(X) (see section 8.2). Then S = {state} and

C = {par, seq, star, , _̂}.

We turn the Brzozowski automaton (see sample algebra 9.6.23) into Reg(X)-equations
(see section 9.11) that form a biinductive definition of C: ****

Let t, u : state, x : X, c : 2 ∈ V and the Reg(X)-arrows (x ∈) : P(X) → 2 and
(∗) : 2× 2 → 2 be defined as usually.

578

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

δ(t ∗ u) = (πx(δ(t)) ∗ u + β̂(t) ∗ πx(δ(u)))x∈X ,
δ(star(t)) = (πx(δ(t)) ∗ star(t))x∈X ,

δ(B) = λx.x̂ ∈ B,

δ(ĉ) = λx.̂0,

β(t + u) = max(β(t), β(u)),

β(t ∗ u) = β(t) ∗ β(u),
β(star(t)) = 1,

β(B) = 0,

β(ĉ) = c.

Since Beh(X, 2) (see sample algebra 9.6.24) is final in AlgAcc(X) (see sample final algebra
9.18.12), Theorem 16.3 (13) implies

foldBeh(X,2) = unfoldBro(X) : TReg(X) → 2X
∗
. (29)

Since the characteristic function χ : P(X∗) → 2X
∗ is Reg(X)-homomorphic,

foldBeh(X,2) = χ ◦ foldLang(X) (30)

(see sample algebra 9.6.19). foldLang(X) represents the denotational semantics of reg-
ular expressions, unfoldBro(X) is their operational semantics.

579

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

The latter function yields a correct parser for regular languages because by its defi-
nition (see sample final algebra 9.18.12), for all t ∈ TReg(X) and w ∈ X∗,

foldBeh(X,2)(t)(w) = 1
(29)⇔ unfoldBro(X)(t)(w) = 1

⇔ if w = ϵ then βBro(X)(t) else unfoldBro(X)(δBro(X)(t)(head(w)))(tail(w)).
(31)

Since βBro(X) and δBro(X) are inductively defined (see sample algebra 9.6.23 and sample
inductive definition 16.3.20), the parser always terminates.

580

16.5 Sample biinductive definitions 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

It can be optimized by simplifying the arguments of βBro(X) and δBro(X) before executing
their recursive calls. For this purpose equations that hold true in Beh(X, 2) like the
following ones may be applied:

t + t = t

0̂ + t = t

t + 0̂ = t

1̂ ∗ t = t

t ∗ 1̂ = t

0̂ ∗ t = 0̂

t ∗ 0̂ = 0̂

Analogously to Example 13.5—but much faster, the validity of these equations in Beh(X, 2)

can be shown by algebraic coinduction.

The optimization goes as follows: Given a set E of CΣ-equations, if applications of E
lead from a CΣ-term t to a CΣ-term u, this means formally that (t, u) is in the deductive
theory DTh(E) of (CΣ, E) (see section 19.14).

Since DTh(E) is sound w.r.t. AlgCΣ,E, in particular, for all pairs of ground terms (t, u) ∈
DTh(E), foldBeh(X,2)(t) = foldBeh(X,2)(u) and thus

581

16.6 Direct construction of a minimal acceptor of a regular language 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

unfoldBro(X)(t) = foldBeh(X,2)(t) = foldBeh(X,2)(u) = unfoldBro(X)(t). (32)

Now suppose that, referring to (31), there is a simpler ground term v than

u =def δ
Bro(X)(t)(head(w))

such that (u, v) ∈ DTh(E). The optimized parser that replaces u by v is correct as well:

foldBeh(X,2)(t)(w) = 1
(31)⇔ if w = ϵ then βBro(X)(t) else unfoldBro(X)(u)(tail(w))

(32)⇔ if w = ϵ then βBro(X)(t) else unfoldBro(X)(v)(tail(w)).

16.6 Direct construction of a minimal acceptor of a regular language

For all t ∈ TReg(X),state, let L(t) be the language of t, i.e., L(t) = foldLang(t) (see sample
algebra 9.6.19). Hence for all B ∈ P+(X) and t, t′ ∈ TReg(X),state,

L(0̂) = ∅, L(1̂) = {ϵ} L(B) = B,

L(t + t′) = L(t) ∪ L(t′), L(t ∗ t′)) = L(t) · L(t′), L(star(t)) = L(t)∗.
(1)

A = P(X∗) is the carrier of A = Pow (X) (see sample algebra 9.6.20). A is final
in AlgAcc(X) (see sample final algebra 9.18.10) and thus by Theorem 9.13 (5), for all
L ⊆ X∗, (⟨L⟩, L) is a minimal acceptor of L.

582

16.6 Direct construction of a minimal acceptor of a regular language 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
By Theorem 9.13 (3), for all L ⊆ X∗,

⟨L⟩ = img(id#A(L)) = {id#A(L)(w) | w ∈ (δ ·X)∗} ⊆ A. (2)

For all w ∈ (δ · X)∗, w′ ∈ X∗ is obtained from w by removing all δs. Hence there
is an Acc(X)-homomorphism h from A to the product algebra AX∗ such that for all
w ∈ (δ ·X)∗, id#A(L)(w) = h(L)(w′), and thus by (2),

⟨L⟩ = {id#A(L)(w) | w ∈ (δ ·X)∗} = {h(L)(w) | w ∈ X∗} (3)

Moreover, for all w ∈ X∗ and x ∈ X , Theorem 9.13 (2) implies

h(L)(ϵ) = L,

h(L)(wx) = δA(h(L)(w))(x) = {v ∈ X∗ | xv ∈ h(L)(w)}.
(4)

Theorem 16.5 ([36], Thm. 4.3 (a); [156], Theorem 10.1; [83], Lemma 8; [159], Thm.
189)

For all t ∈ TReg(X),state, ⟨L(t)⟩ is finite.

Proof by induction on t. For all x ∈ X and B ∈ P+(X),

δA(L(0̂))(x) = δA(∅)(x) = {w ∈ X∗ | xw ∈ ∅} = ∅,
δA(L(1̂))(x) = δA({ϵ})(x) = {w ∈ X∗ | xw ∈ {ϵ}} = ∅,
δA(B)(x) = δA(B)(x) = {w ∈ X∗ | xw ∈ B} = if x ∈ B then {ϵ} else ∅

583

16.6 Direct construction of a minimal acceptor of a regular language 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
and thus

|⟨L(0̂)⟩| = |⟨L(∅)⟩| = |{∅}| = 1 < ω,

|⟨L(1̂)⟩| = |⟨L({ϵ}⟩| = |{{ϵ}, ∅}| = 2 < ω,

|⟨L(B)⟩| = |⟨B⟩| = |{B, {ϵ}, ∅}| = 3 < ω.

Suppose that for all L,L′ ⊆ X∗ and w ∈ X∗,

h(L ∪ L′)(w) = h(L)(w) ∪ h(L′)(w). (5)

Then

|⟨L ∪ L′⟩| (3)= |{h(L ∪ L′)(w) | w ∈ X∗}| (5)= |{h(L)(w) ∪ h(L′)(w) | w ∈ X∗}|
≤ |{h(L)(v) ∪ h(L′)(w) | v, w ∈ X∗}| ≤ |{(L1, L2) | L1 ∈ ⟨L⟩, L2 ∈ ⟨L′⟩}|
= |⟨L⟩ × ⟨L′⟩| = |⟨L⟩| ∗ |⟨L′⟩|

(6)

and thus

|⟨L(t + t′)⟩| (1)= |⟨L(t) ∪ L(t′)⟩|
(6)

≤ |⟨L(t)⟩| ∗ |⟨L(t′)⟩|
ind. hyp.
< ω.

Proof of (5) by induction on w.

h(L ∪ L′)(ϵ)
(4)
= L ∪ L′ (4)= h(L)(ϵ) ∪ h(L′)(ϵ),

h(L ∪ L′)(wx)
(4)
= {v ∈ X∗ | xv ∈ h(L ∪ L′)(w)}

ind. hyp.
= {v ∈ X∗ | xv ∈ h(L)(w) ∪ h(L′)(w)} (4)

= h(L)(wx) ∪ h(L′)(wx). ❏

584

16.6 Direct construction of a minimal acceptor of a regular language 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
For all w ∈ X∗, f (w) =def (if ϵ ∈ h(L)(w) then {ϵ} else ∅).

Suppose that for all L,L′ ⊆ X∗ and w ∈ X∗ there are n ∈ N and w1, . . . , wn ∈ X∗ such
that

h(L · L′)(w) = h(L)(w) · L′ ∪ h(L′)(w1) ∪ · · · ∪ h(L′)(wn). (7)
Then

|⟨L · L′⟩| (3)= |{h(L · L′)(w) | w ∈ X∗}|
(7)
= |{h(L)(w) · L′ ∪ h(L′)(w1) ∪ · · · ∪ h(L′)(wn) | w ∈ X∗}|
≤ |{(L′′, L1, . . . , Ln) | L′′ ∈ ⟨L⟩, L1, . . . , Ln ∈ ⟨L′⟩, n ∈ N}| = |⟨L⟩ × P(⟨L′⟩)|
= |⟨L⟩| ∗ 2|⟨L′⟩|

(8)

and thus

|⟨L(t ∗ t′)⟩| (1)= |⟨L(t) · L(t′)⟩|
(8)

≤ |⟨L(t)⟩| ∗ 2|⟨L(t′)⟩|
ind. hyp.
< ω.

Proof of (7) by induction on w.

h(L · L′)(ϵ)
(4)
= L · L′ (4)= h(L)(ϵ) · L′.

For all w ∈ X∗ and x ∈ X ,

h(L · L′)(wx)
(4)
= {v ∈ X∗ | xv ∈ h(L · L′)(w)}

ind. hyp.
= {v ∈ X∗ | xv ∈ h(L)(w) · L′ ∪ h(L′)(w1) ∪ · · · ∪ h(L′)(wn)}

585

16.6 Direct construction of a minimal acceptor of a regular language 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

= {v ∈ X∗ | xv ∈ h(L)(w) · L′} ∪
⋃n
i=1{v ∈ X∗ | xv ∈ h(L′)(wi)}

(4)
= {v ∈ X∗ | xv ∈ h(L)(w) · L′} ∪

⋃n
i=1 h(L

′)(wix)

= {v ∈ X∗ | xv ∈ h(L)(w)} · L′ ∪ f (w) · {v ∈ X∗ | xv ∈ L′} ∪
⋃n
i=1 h(L

′)(wix)
(4)
= h(L)(wx) · L′ ∪ f (w) · h(L′)(x) ∪

⋃n
i=1 h(L

′)(wix). ❏

Suppose that for all L ⊆ X∗ and w ∈ X+ there are n > 0 and w1, . . . , wn ∈ X∗ such
that

h(L∗)(w) = h(L)(w1) · L∗ ∪ · · · ∪ h(L)(wn) · L∗. (9)

Then

|⟨L∗⟩| (3)= |{h(L∗)(w) | w ∈ X∗}| = |{h(L∗)(ϵ)} ∪ {h(L∗)(w) | w ∈ X+}|
(4),(9)
= |{L∗} ∪ {h(L)(w1) · L∗ ∪ · · · ∪ h(L)(wn) · L∗ | w ∈ X+}|

≤ |{L∗}| + |{(L1, . . . , Ln) | L1, . . . , Ln ∈ ⟨L⟩, n > 0}| = 1 + |P(⟨L⟩)| − 1 = 2|⟨L⟩|

(10)
and thus

|⟨L(star(t))⟩| (1)= |⟨L(t)∗⟩|
(10)

≤ 2|⟨L(t)⟩|
ind. hyp.
< ω.

Proof of (9) by induction on w. For all x ∈ X ,

586

16.6 Direct construction of a minimal acceptor of a regular language 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

h(L∗)(x)
(4)
= {v ∈ X∗ | xv ∈ L∗} = {v ∈ X∗ | xv ∈ L · L∗}

= {v ∈ X∗ | xv ∈ L} · L∗ (4)
= h(L)(x) · L∗.

(11)

For all w ∈ X+ and x ∈ X ,

h(L∗)(wx)
(4)
= {v ∈ X∗ | xv ∈ h(L∗)(w)}

ind. hyp.
= {v ∈ X∗ | xv ∈ h(L)(w1) · L∗ ∪ · · · ∪ h(L)(wn) · L∗}

=
⋃n
i=1({v ∈ X∗ | xv ∈ h(L)(wi)} · L∗ ∪ f (wi) · {v ∈ X∗ | xv ∈ L∗})

=
⋃n
i=1({v ∈ X∗ | xv ∈ h(L)(wi)} · L∗ ∪ f (wi) · h(L∗)(x))

(11)
=

⋃n
i=1(h(L)(wix) · L∗ ∪ f (wi) · h(L)(x) · L∗). ❏

Theorem 16.5 tells us that, given a regular expression t ∈ Reg(X), the minimal accep-
tor (⟨L(t)⟩, L(t)) of L(t) is finite. It may be constructed stepwise by stepwise compute
Acc(X)-derivatives of L(t), checking for their equality with previously obtained deriva-
tives and thus building up ⟨L(t)⟩. Since L(t) and its derivatives are usually infinite sets,
the equality checks becomes tractable only if we turn from Pow (X) to Bro(X) (see sam-
ple algebra 9.6.23), stepwise compute Acc(X)-derivatives of the regular expression t itself
and perform the equality checks by algebraic or fixpoint coinduction (see chapter 13).

587

16.7 Guarded CFGs 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

By Lemma 13.3 (4), the kernel of unfoldBro(X) : Bro(X) → Pow (X) is the greatest
Acc(X)-congruence on Bro(X). Since for all t ∈ TReg(X),

L(t) = foldLang(X)(t) = unfoldBro(X)(t),

we conclude that the above procedure ends up with a minimal acceptor (T , t) of L(t)
such that T is a subalgebra of ⟨t⟩ and unfoldT is an Acc(X)-isomorphism from T to
⟨L(t)⟩.

This construction of a minimal acceptor of L(t) is direct insofar as it avoids the usual de-
tour via a non-deterministic automaton, its determinization and subsequent minimization
(see, e.g., [77], chapter 3).

16.7 Guarded CFGs

Let us extend the parser for regular languages given in section 16.5.6 to a parser for
context-free languages. As all recursive-descent parsers for CFLs, this parser works only
for non-left-recursive CFGs (see section 9.15).

In section 12.3, we have defined the representation of a CFG G = (S,X,R) as a set EG

of Reg(X)-equations over S.

588

16.7 Guarded CFGs 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

If G is non-left-recursive, then G can be transformed into an equivalent guarded CFG
G′ such that for each rule s→ w of G′, w = ϵ or the first element of w belongs to P+(X).

Guarded CFGs without non-singleton sets in rules agree with CFGs in weak Greibach
normal form in the sense of [188].

Let G be guarded. Each equation s = w1 + · · · + wn of EG satisfies one of the following
two cases:

• For all 1 ≤ i ≤ n, wi = Bi ∗ vi for some Bi ∈ P+(X) and vi ∈ S∗
X . (1)

• w1 = ϵ and for all 2 ≤ i ≤ n, wi = Bi∗vi for some Bi ∈ P+(X) and vi ∈ S∗
X . (2)

Given the above guarded CFG, a biinductive definition EG of C = {cs : 1 → state | s ∈
S} on Acc(X) reads as follows:

For all s ∈ S,

δ ◦ cs =

{
⟨
∑n

i=1(x̂ ∈ Bi ∗ vi)⟩x∈X in case (1),
⟨
∑n

i=2(x̂ ∈ Bi ∗ vi)⟩x∈X in case (2),
(3)

β ◦ s =

{
0 in case (1),
1 in case (2).

(4)

589

16.7 Guarded CFGs 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Note that x, Bi and x ∈ Bi in (3) are elements of X , P(X) and 2, respectively, and thus∑n
i=1(x̂ ∈ Bi ∗ vi) is a λ-Reg(X)-term over S.

Theorem 16.6

Let BRE be the set of equations of sample biinductive definition 16.5.6 and A be an
(Reg(X) ∪ Acc(X))-algebra with A|Reg(X) = Lang(X), A|Acc(X) = Pow (X) and g ∈
L(G)S be a solution of EG in A.

Then g′ = λz. satisfies BRE ∪ EG.

Proof. Pow (X) is final in AlgAcc(X) (see sample final algebra 9.18.10). Hence by Theorem
16.3, A satisfies the equations of BRE because they form a biinductive definition of the
arrows of Reg(X).

Suppose that A |= EG. Let s ∈ S and {w1, . . . , wn} = {w ∈ S∗
X | s→ w ∈ R}. Then

sA = (w1 + · · · + wn)
A =

n⋃
i=1

wi
A (5)

590

16.7 Guarded CFGs 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
and thus for all x ∈ X ,

δA(sA)(x) = δA(
⋃n
i=1wi

A)(x) = {w ∈ X∗ | ∃ 1 ≤ i ≤ n : x · w ∈ wi
A}. (6)

Let case (1) hold true. Then for all 1 ≤ i ≤ n there are Bi ∈ P+(X) and vi ∈ S∗
X such

that
x · w ∈ wi

A ⇔ x · w ∈ (Bi ∗ vi)A ⇔ x · w ∈ Bi · viA

⇔ x ∈ Bi ∧ w ∈ vi
A ⇔ x̂ ∈ Bi

A
= {ϵ} ∧ w ∈ vi

A ⇔ ϵ ∈ x̂ ∈ Bi

A
∧ w ∈ vi

A

⇔ ϵ · w ∈ (x̂ ∈ Bi ∗ vi)A ⇔ w ∈ (x̂ ∈ Bi ∗ vi)A. (7)

Hence

δA(sA)(x)
(6)
= {w ∈ X∗ | ∃ 1 ≤ i ≤ n : x · w ∈ wi

A}
(7)
= {w ∈ X∗ | ∃ 1 ≤ i ≤ n : w ∈ (x̂ ∈ Bi ∗ vi)A}
=
⋃n
i=1{w ∈ X∗ | w ∈ (x̂ ∈ Bi ∗ vi)A} =

⋃n
i=1(x̂ ∈ Bi ∗ vi)A = (

∑n
i=1(x̂ ∈ Bi ∗ vi))A

and thus

(δ ◦ s)A = ⟨
n∑
i=1

(x̂ ∈ Bi ∗ vi)⟩Ax∈X ,

i.e., (3) holds true. Moreover,

βA(sA)
(5)
= βA(

n⋃
i=1

wi
A)

(2)
= βA(

n⋃
i=1

(Bi ∗ vi)A) = βA(

n⋃
i=1

(Bi · viA)) = 0

591

16.7 Guarded CFGs 16 RECURSIVE FUNCTIONS

�� ��Recursive functions
and thus (β ◦ s)A = 0, i.e., (4) holds true.

Let case (2) hold true. Then w1 = ϵ and for all 2 ≤ i ≤ n there are Bi ∈ P+(X) and
vi ∈ S∗

X such that

x · w ∈ wi
A (7)⇔ w ∈ (x̂ ∈ Bi ∗ vi)A. (8)

Hence

δA(sA)(x)
(6)
= {w ∈ X∗ | ∃ 1 ≤ i ≤ n : x · w ∈ wi

A}
w1=ϵ= {w ∈ X∗ | ∃ 2 ≤ i ≤ n : x · w ∈ wi

A}
(8)
= {w ∈ X∗ | ∃ 2 ≤ i ≤ n : w ∈ (x̂ ∈ Bi ∗ vi)A}
=
⋃n
i=2{w ∈ X∗ | w ∈ (x̂ ∈ Bi ∗ vi)A} =

⋃n
i=2(x̂ ∈ Bi ∗ vi)A = (

∑n
2=1(x̂ ∈ Bi ∗ vi))A

and thus

(δ ◦ s)A = ⟨
n∑
i=2

(x̂ ∈ Bi ∗ vi)⟩Ax∈X ,

i.e., (3) holds true. Moreover,

βA(sA)
(5)
= βA(

⋃n
i=1wi

A)
(2)
= βA({ϵ} ∪

⋃n
i=2wi

A) = 1

and thus (β ◦ s)A = 1, i.e., (4) holds true. ❏

592

16.7 Guarded CFGs 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

Corollary 16.7

Let A,B be (Reg(X,S)∪Acc(X))-algebras with A|Reg(X,S) = Lang(X,G) (see Theorem
12.5), B|Reg(X) = Lang(X), A|Acc(X) = B|Acc(X) = Pow (X) and B |= EG.

Then A = B, i.e., for all s ∈ S, L(G)s = sB.

Proof. By Theorem 12.5 (i), A satisfies EG. Hence by Theorem 16.6, A and B satisfy
BRE ∪ EG. Since BRE ∪ EG is a biinductive definition of the arrows of Reg(X,S) on
Acc(X), Theorem 16.3 implies A = B. ❏

Example 16.8 Let G = (S,X,R) = SAB (see Example 9.10) and B be the (Reg(X,S)∪
Acc(X))-algebra with B|Reg(X) = Lang(X), B|Acc(X) = Pow (X) and

CB = {w ∈ X∗ | #a(w) = #b(w)},
AB = {w ∈ X∗ | #a(w) = #b(w) + 1},
BB = {w ∈ X∗ | #a(w) = #b(w)− 1}.

B satisfies EG (see Example 12.4).

Proof.

593

16.7 Guarded CFGs 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

CB = {w ∈ X∗ | #a(w) = #b(w)}
= a · {w ∈ X∗ | #a(w) + 1 = #b(w)} ∪ b · {w ∈ X∗ | #a(w) = #b(w) + 1} ∪ {ϵ}
= a ·BB ∪ b · AB ∪ {ϵ} = ({a} ∗B + {b} ∗ A)B

AB = {w ∈ X∗ | #a(w) = #b(w) + 1}
= a · {w ∈ X∗ | #a(w) = #b(w)} ∪ b · {w ∈ X∗ | #a(w) = #b(w) + 2}
= a · {w ∈ X∗ | #a(w) = #b(w)}
∪ b · {w ∈ X∗ | #a(w) = #b(w) + 1} · {w ∈ X∗ | #a(w) = #b(w) + 1}

= a · CB ∪ b · AB · AB = ({a} ∗ C + {b} ∗ A ∗ A)B,
BB = {w ∈ X∗ | #a(w) = #b(w)− 1}
= b · {w ∈ X∗ | #a(w) = #b(w)} ∪ a · {w ∈ X∗ | #a(w) = #b(w)− 2}
= b · {w ∈ X∗ | #a(w) = #b(w)}
∪ a · {w ∈ X∗ | #a(w) = #b(w)− 1} · {w ∈ X∗ | #a(w) = #b(w)− 1}

= b · CB ∪ a ·BB ·BB = ({b} ∗ C + {a} ∗B ∗B)B.

Since SAB is guarded, Corollary 16.7 implies L(SAB)s = sB for all s ∈ {S,A,B}. ❏

With the help of equations (3) and (4), the parser for regular languages presented in
section 16.5 can be extended to a parser for guarded CFGs.

594

16.7 Guarded CFGs 16 RECURSIVE FUNCTIONS

�� ��Recursive functions

For this purpose, we extend the Brzozowski automaton Bro(X) (see sample algebra
9.6.23) to the Reg(X,S)-algebra Bro(X,G) as follows: For all s ∈ S,

Bro(X,G)state = TReg(X,S),state,

δ(s) =

{
λx.

∑n
i=1(x̂ ∈ Bi ∗ vi) in case (1),

λx.
∑n

i=2(x̂ ∈ Bi ∗ vi) in case (2),
(10)

β(s) =

{
0 in case (1),
1 in case (2).

(11)

Since Beh(X, 2) (see sample algebra 9.6.24) is final in AlgAcc(X) (see sample final algebra
9.18.12), Theorem 16.3 (13) implies

foldBeh(X,2) = unfoldBro(X,G) : TReg(X,S) → 2X
∗
. (12)

unfoldBro(X,G) yields a correct parser for G because by its definition (see sample final
algebra 9.18.12), for all s ∈ S and w ∈ X∗,

foldBeh(X,2)(s)(w) = 1
(12)⇔ unfoldBro(X,G)(s)(w) = 1

⇔ if w = ϵ then βBro(X,G)(s) else unfoldBro(X,G)(δBro(X,G)(s)(head(w)))(tail(w)).

Since βBro(X) and δBro(X) are inductively defined (see sample algebra 9.6.23, sample in-
ductive definition 16.3.20 and (10/11) above, the parser always terminates.

595

16.8 Iterative equations I 16 RECURSIVE FUNCTIONS

16.8 Iterative equations I

By Corollary 16.7, the equational representation EG of a guarded CFG G (see section
12.3) has a unique solution in the final model of an appropriate destructive signature.

We obtain a similar result for sets E = {ci = ti}ni=1 of Σ-equations (in the sense of
section 9.11) with a constant on the left-hand side and right-hand sides ti ̸∈ {c1, . . . , cn}.
A biinductive definition E of C = {ci}ni=1 reads as follows: For all 1 ≤ i ≤ n,

596

17.1 Algebraic theories 17 ITERATIVE EQUATIONS II

�
�

�
17 Iterative equations II

17.1 Algebraic theories

Given a signature Σ = (S, F), iterative equations are Σ-equations with a single variable
on the left-hand side. They may represent circular Σ-terms or -flowcharts and can be
solved in algebraic or sorted theories [31, 183, 184], which can be regarded as Σ-algebras
from the subcategory Pow (Σ) or Sum(Σ) of K(Σ) to Set (see chapter 9).

In the case of Pow (Σ), F consists of constructors with product source and ArrΣ is
restricted to projections and product extensions. In the case of Sum(Σ), F consists of
destructors with sum target and ArrΣ is restricted to injections and sum extensions.
Hence for all Pow (Σ)-morphisms f : e → e′, e and e′ are sorts or product types, while
for all Sum(Σ)-morphisms f : e→ e′, e and e′ are sorts or sum types.

Accordingly, the algebraic theories PowA and SumA defined in [183] (Exs. 2.2, 2.3)
and [184] (Exs. 2.4.2, 2.4.7) correspond to Σ-algebras A : Pow (Σ) → Set and B :

Sum(Σ) → Set with carrier A and B, respectively. For all Pow (Σ)-morphisms f and
Sum(Σ)-morphisms g, fA : AI → AV and gA : V × A → O × A for sets I, V,O of
variables, which actually represent product or sum indices, respectively.

597

17.2 Term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

17.2 Term equations

Let Σ = (S,C) be a constructive polynomial signature, and V, I be finite S-sorted sets
of “internal” and “input variables”, respectively. An S-sorted function

E : V → TΣ(I + V)

is called a system of iterative Σ-equations if img(E) ∩ (I + V) = ∅.

Hence for all s ∈ S and x ∈ Vs, E(x) = c(t) for some c : e→ s ∈ C and t ∈ TΣ(I + V)s.

Let A be a Σ-algebra with carrier A. An S-sorted function f : AI → AV solves E in
A if for all h ∈ AI ,

[h, f (h)]∗ ◦ E = f (h),

in other words, if f is a fixpoint of the following step function:

EA : (AI → AV) → (AI → AV)

f 7→ λh.[h, f (h)]∗ ◦ E

598

17.3 The CPO approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

17.3 The CPO approach for solving term equations

Let A be ω-continuous. According to the section 15.6, the partial orders, least elements
and suprema of A can be lifted to AV and then to AI → AV , i.e., AV and AI → AV are
ω-CPOs.

EA is ω-continuous. Hence by Theorem 3.4 (1),

(EA)∞ =
⊔
n<ω

(EA)n(⊥) : AI → AV

is the least fixpoint of EA where ⊥ : AI → AV maps all functions of AI to the least
function of AV , which maps all elements of V to the least element of A.

Lemma 17.1 For all g : V → CTΣ(I),
[incI , g]

∗ ◦ E = g ⇒ fg solves E in A (1)

where fg : AI → AV maps h ∈ AI to V g→ CTΣ(I)
h∗ω→ A (see section 15.6).

Proof. Suppose that
[incI , g]

∗ ◦ E = g. (2)

599

17.3 The CPO approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
Then for all h ∈ AI ,

[h, fg(h)]
∗ ◦ E = [h, h∗ω ◦ g]∗ ◦ E = [h∗ ◦ incI , h∗ω ◦ g]∗ ◦ E = [h∗ω ◦ incI , h∗ω ◦ g]∗ ◦ E

= (h∗ω ◦ [incI , g])∗ ◦ E
Lemma 15 .8

= h∗ω ◦ [incI , g]∗ ◦ E
(2)
= h∗ω ◦ g = fg(h),

i.e., fg solves E in A. ❏

Theorem 17.2 (generalization of [55], Thm. 5.2; [182], Thm. 6.15; [116], Satz 17)

Let E : V → TΣ(I + V) be a system of iterative Σ-equations. There is exactly one
g : V → CTΣ(I) with (2).

Proof. Define the step function EC : CT⊥
Σ (I)

V → CT⊥
Σ (I)

V as follows:

For all g : V → CT⊥
Σ (I),

EC(g) = [incI , g]
∗ ◦ E.

Since EC is ω-continuous, Theorem 3.4 (1) implies that

E∞
C =

⊔
n<ω

En
C(⊥) : V → CT⊥

Σ (I)

is the least fixpoint of EC where ⊥ : V → CT⊥
Σ (I) maps every x ∈ V to Ω.

Hence it remains to show that every g : V → CTΣ(I) with (2) agrees with E∞
C .

600

17.3 The CPO approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

So let B =
⋃

I and g : V → CTΣ(I) satisfy (2). Since E∞
C is the least function that

satisfies (2),
E∞
C ≤ g. (3)

Below we show that for all t ∈ TΣ(I + V) and n ∈ N,

def ([incI , g]
∗(t)) ∩Bn ⊆ def ([incI , E

n+1
C (⊥)]∗(t)), (4)

in particular, for all x ∈ V ,

def (g(x)) ∩Bn ⊆ def (En+1
C (⊥)(x)). (5)

(5) implies

def (g(x)) ⊆
⋃
n<ω def (E

n
C(⊥)(x)) = def (

⊔
n<ω E

n
C(⊥)(x)) = def (E∞

C (x))

and thus g ≤ E∞
C . Hence by (3), g = E∞

C .

Proof of (4) by induction on n.

Let t ∈ TΣ(I + V), n ∈ N, h = [incI , g] and hn = [incI , E
n
C(⊥)].

Case 1: t = ∗. Then def ([incI , g]
∗(t))∩B0 = 1, for all n > 0, def ([incI , g]∗(t))∩Bn = ∅,

and for all n ∈ N, def ([incI , En+1
C (⊥)]∗(t)) = 1. Hence (4) holds true.

601

17.3 The CPO approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Case 2: t ∈ V and E(t) = c(u) for some c : e→ s ∈ C and u ∈ TΣ(I + V)e. By (2),

h∗(t) = g(t) = h∗(E(t)) = h∗(c(u)) = cA(h∗(u)) = c(h∗(u)), (6)

h∗n+1(t) = En+1
C (⊥)(t) = EC(E

n
C(⊥))(t) = h∗n(E(t)) = h∗n(c(u)) = cA(h∗n(u))

= c(h∗n(u)).
(7)

Case 2.1: n = 0. Then

def (h∗(t)) ∩Bn = def (h∗(t)) ∩B0 = def (h∗(t)) ∩ 1
(6)
= 1

(7)

⊆ def (h∗n+1(t)).

Case 2.2: n > 0. Let w ∈ def (h∗(t)) ∩ Bn. By (6), w ∈ def (c(h∗(u))) and thus w = bv

for some b ∈ B and v ∈ def (h∗(u)) ∩ Bn−1. By induction hypothesis, v ∈ def (h∗n(u)).
Hence

w = bv ∈ def (c(h∗n(u)))
(7)
= def (h∗n+1(t)).

Therefore, (4) holds true in both subcases.

Case 3: t ∈ I . Then def (h∗(t)) ∩Bn = def (t) ∩Bn = 1 = def (t) = def (h∗n+1(t)).

Case 4: t = c(u) for some c : e→ s ∈ C and u ∈ TΣ(I + V)e. Then

h∗(t) = h∗(c(u)) = cA(h∗(u)) = c(h∗(u)), (8)
h∗n+1(t) = h∗n+1(c(u)) = cA(h∗n+1(u)) = c(h∗n+1(u)) (9)

602

17.3 The CPO approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
Case 4.1: n = 0. Then

def (h∗(t)) ∩Bn = def (h∗(t)) ∩B0 = def (h∗(t)) ∩ 1
(8)
= 1

(9)

⊆ def (h∗n+1(t)).

Case 4.2: n > 0. Let w ∈ def (h∗(t)) ∩ Bn. By (8), w ∈ def (c(h∗(u))) and thus w = bv

for some b ∈ B and v ∈ def (h∗(u)) ∩ Bn−1. By induction hypothesis, v ∈ def (h∗n(u)).
Since hn ≤ hn+1 and CT⊥

Σ (I) ∈ PosetS, h∗n ≤ h∗n+1. Hence

w = bv ∈ def (c(h∗n(u))) ⊆ def (c(h∗n+1(u)))
(9)
= def (h∗n+1(t)).

Therefore, (4) holds true in both subcases.

Case 5: t = i(u) ∈ TΣ(I + V)e for some e =
∐

i∈I ei, i ∈ I and u ∈ TΣ(I + V)ei. Then
we obtain (4) as in Case 4 with i instead of c.

Case 6: t = (){i → ti | i ∈ I} ∈ TΣ(I + V)e for some e =
∏

i∈I ei and (ti)i∈I ∈
Xi∈ITΣ(I + V)ei. Then for all i ∈ I ,

πi(h
∗(t)) = h∗(ti) = πi((){i→ h∗(ti) | i ∈ I}),

πi(h
∗
n+1(t)) = πi((){i→ h∗n+1(ti) | i ∈ I}).

Hence

h∗(t) = (){i→ h∗(ti) | i ∈ I}, (10)
h∗n+1(t) = (){i→ h∗n+1(ti) | i ∈ I} (11)

603

17.3 The CPO approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
Case 6.1: n = 0. Then

def (h∗(t)) ∩Bn = def (h∗(t)) ∩B0 = def (h∗(t)) ∩ 1
(10)
= 1

(11)

⊆ def (h∗n+1(t)).

Case 6.2: n > 0. Let w ∈ def (h∗(t)) ∩ Bn. By (10), w ∈ def ((){i → h∗(ti) | i ∈ I})
and thus w = iv for some i ∈ I and v ∈ def (h∗(ti)) ∩ Bn−1. By induction hypothesis,
v ∈ def (h∗n(ti)). Since hn ≤ hn+1 and CT⊥

Σ (I) ∈ PosetS, h∗n ≤ h∗n+1. Hence

w = iv ∈ def ((){i→ h∗n(ti) | i ∈ I}) ⊆ def ((){i→ h∗n+1(ti) | i ∈ I}) (11)
= def (h∗n+1(t)).

Therefore, (4) holds true in both subcases. ❏

Let E : V → TΣ(V) be a system of iterative Σ-equations without input and A be a
Σ-algebra with carrier A. Then the above step function EA reduces to:

EA : AV → AV

g 7→ g∗ ◦ E,

and g ∈ AV solves E in A iff g∗ ◦ E = g.

Lemma 17.3 Let E,E ′ : V → TΣ(V) be systems of iterative Σ-equations and A,B be
Σ-algebras with carriers A and B, respectively.

604

17.3 The CPO approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

(i) For all Σ-homomorphisms f : A → B and g ∈ AV ,

f ◦ EA(g) = EB(f ◦ g).
(ii) For all strict and ω-continuous Σ-homomorphisms f : A → B,

f ◦ (EA)∞ = (EB)∞.

(iii) Suppose that for all x ∈ V , A satisfies the equation E(x) = E ′(x). Then E and E ′

have the same solutions.

Proof of (i).

f ◦ EA(g)
Def. EA
= f ◦ g∗ ◦ E Lemma 9 .9

= (f ◦ g)∗ ◦ E Def. EB
= EB(f ◦ g).

Proof of (ii). First we show

f ◦ (EA)n(λx.⊥A) = (EB)n(λx.⊥B) (4)

for all n ∈ N by induction on n. Since f is strict,

f ◦ (EA)0(λx.⊥A) = f ◦ (λx.⊥A) = λx.⊥B = (EB)0(λx.⊥B).

If n > 0, then by (i),

f ◦ (EA)n(λx.⊥A) = f ◦ EA((EA)n−1(λx.⊥A))
(i)
= EB(f ◦ (EA)n−1(λx.⊥A))

ind. hyp.
= EB((EB)n−1(λx.⊥B)) = (EB)n(λx.⊥B).

605

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Hence (4) holds true, and we conclude (ii) as follows:

f ◦ (EA)∞ = f ◦
⊔
n∈N(E

A)n(λx.⊥A)
f ω−continuous

=
⊔
n∈N(f ◦ (EA)n(λx.⊥A))

(4)
=

⊔
n∈N(E

B)n(λx.⊥B) = (EB)∞.

Proof of (iii). W.l.o.g. let g ∈ AV solve E in A. Then g∗(E ′(x)) = g∗(E(x)) = g(x), i.e.,
g solves E ′ as well. ❏

17.4 The coalgebraic approach for solving term equations

Theorem 17.2 can also be derived from the finality of CTΣ in AlgcoΣ (see section 15.4).

For this purpose, TΣ(V) is turned into the coΣ-algebra TΣ,E that is defined as follows:

• For all s ∈ S, TΣ,E(s) = TΣ(V)s.

• For all c : e→ s ∈ C and t ∈ TΣ(V)e, d
TΣ,E
s (c(t)) = c(t) ∈

∐
c:e→s TΣ(V)e.

• For all s ∈ S and x ∈ Vs, E(x) = c(t) implies dTΣ,Es (x) = c(t).

606

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
Theorem 17.4

E¬† =def V
incV→ TΣ(V)

unfold
TΣ,E

→ CTΣ solves E in CTΣ uniquely. Moreover,

unfoldTΣ,E ◦ incTΣ = foldCTΣ : TΣ → CTΣ. (1)

Since CTΣ is final in AlgcoΣ, E¬† yields a unique solution in every final coΣ-algebra.

Proof. First we show that the coΣ-homomorphism unfoldTΣ,E : TΣ(V) → CTΣ is also
Σ-homomorphic. Let c : e→ s ∈ C and t ∈ TΣ(V)e.

Since dTΣ,Es (c(t)) = c(t) = ιc(t), the definition of unfoldTΣ,E (see section 15.4) implies

unfold
TΣ,E
s (c(t)) = c(unfold

TΣ,E
e (t)). (2)

Hence

unfold
TΣ,E
s (cTΣ,E(t)) = unfold

TΣ,E
s (c(t))

(2)
= c(unfold

TΣ,E
e (t)) = cCTΣ(unfold

TΣ,E
e (t)).

Therefore, unfoldTΣ,E is Σ-homomorphic and thus by the definition of E¬†,
unfoldTΣ,E = (E¬†)∗ (3)

because there is only one Σ-homomorphism h : TΣ,E → CTΣ with h ◦ incV = E¬†.

Let x ∈ V , c : e → s ∈ C, t ∈ TΣ(V)e and E(x) = c(t). Then dTΣ,Es (x) = d
TΣ,E
s (c(t)) =

c(t) = ιc(t) and thus, again by the definition of unfoldTΣ,E ,

unfold
TΣ,E
s (x) = c(unfold

TΣ,E
e (t)). (4)

607

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
Hence

(E¬†)∗s(E(x)) = (E¬†)∗s(c(t))
(3)
= unfold

TΣ,E
s (c(t))

(2)
= c(unfold

TΣ,E
e (t))

(4)
= unfold

TΣ,E
s (x)

= E¬†(x),

i.e., E¬† solves E in CTΣ.

Let g : V → CTΣ solve E in CTΣ.
First we show that the Σ-homomorphism g∗ : TΣ,E → CTΣ is also coΣ-homomorphic.

Let c : e→ s ∈ C and t ∈ TΣ(V)e. Then

dCTΣs (g∗s(c(t))) = dCTΣs (c(g∗e(t))) = c(g∗e(t)) = g∗s(c(t)) = g∗e(d
TΣ,E
s (c(t)). (5)

Let x ∈ V , c : e→ s ∈ C, t ∈ TΣ(V)e and E(x) = c(t). Then

d
CTΣ
s (g∗s(x)) = d

CTΣ
s (gs(x))

g solves E
= d

CTΣ
s (g∗(E(x))) = d

CTΣ
s (g∗s(c(t)))

(5)
= g∗e(d

TΣ,E
s (c(t))) = g∗e(d

TΣ,E
s (E(x))) = g∗e(d

TΣ,E
s (x)).

(6)

By (5) and (6), g∗ is coΣ-homomorphic.

Suppose that g, h : V → CTΣ solve E in CTΣ. Since g∗ and h∗ are coΣ-homomorphic
and thus agree with each other because CTΣ is final in AlgcoΣ. Hence

g = g∗ ◦ incV = h∗ ◦ incV = h.

608

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Proof of (1): The restriction B of TΣ,E to TΣ is a coΣ-subalgebra of TΣ,E. Hence the in-
clusion incTΣ : TΣ → TΣ(V) is coΣ-homomorphic and thus unfoldTΣ,E ◦ incTΣ = unfoldB

because CTΣ is final in AlgcoΣ. Above we have shown that unfoldTΣ,E is Σ-homomorphic.
Hence unfoldB = unfoldTΣ,E◦incTΣ is also Σ-homomorphic. Therefore, unfoldB = foldCTΣ

because TΣ is initial in AlgΣ. ❏

A Σ-term that is representable as a component of the unique solution in CTΣ of a finite
system of iterative Σ-equations is rational (see chapter 2).

The case of empty input

By Theorem 17.2 (with I = ∅), the equation g∗ ◦ E = g has exactly one solution
g : V → CTΣ, namely E∞

C . Hence E¬† = E∞
C and thus triangle (7) in the following

diagram commutes.

Let A be an ω-continuous Σ-algebra with carrier A and foldA
ω be defined as in the proof

of Theorem 15.7.

Since foldA
ω is Σ-homomorphic and E∞

C agrees with (ECT⊥
Σ)∞, (8) follows from Lemma

17.3 (ii):

609

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

V
(EA)∞

≻A

TΣ(V)

incV (7)

⋎

unfoldTΣ,E
≻CT⊥

Σ

foldA
ω

⋏
(8)

E¬† = E∞
C ≻

Theorem 17.5 ****

Let the assumptions of Theorem 16.3 hold true, E : V → TCΣ(V) be a system of iterative
CΣ-equations,

ΣV = (S, F ∪ {cx : 1 → s | x ∈ Vs, s ∈ S}).

Theorem 16.3 provides an extension of the final DΣ-algebra A|DΣ with carrier A to a
ΣV -algebra:

For all x ∈ V , d : s→ e ∈ D and g ∈ AV , let Cx,d : e′ → e be a CΣ-arrow, Dx,d : 1 → e′

be a flat DΣ-arrow and Ag be the Σ-algebra with Ag|Σ = A|Σ and c
Ag
x = g(x) for all

x ∈ V .

610

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

If for all solutions g ∈ AV of E in A, Ag satisfies the biinductive definition∧
x∈V, d:s→e∈D

d ◦ cx = Cx,d ◦Dx,d (1)

of V , then E has at most one solution in A.

Proof. Let g, h ∈ AV solve E in A. Since A|DΣ is a final DΣ-algebra, Theorem 16.3 im-
plies that there is a unique extension of A to a ΣV -algebra that satisfies (1) and Theorem
16.3 (1). By assumption, both Ag and Ah satisfy (1). Moreover, A and thus Ag and Ah

satisfy Theorem 16.3 (1). Hence Ag and Ah agree with each other. In particular, for all
x ∈ V , g(x) = c

Ag
x = c

Ah
x = h(x). ❏

The case of nonempty input

We return to the general case where I may be nonempty, E maps V to TΣ(I + V) and
EA is an endofunction on AI → AV .

Let Σ(I) be the term grounding of Σ on I (see section 9.12), A be a Σ-algebra with
carrier A, g ∈ AI and Ag be the Σ(I)-algebra with Ag|Σ = A and valA

g

s = gs for all
s ∈ S.

611

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

For all g ∈ CT IΣ, the Σ(I)-homomorphism g′ : CTΣ(I) → CT gΣ is defined as follows:

• For all s ∈ S and i ∈ Is, g′s(vals(i)) = gs(i).
• For all t = x{i→ ti | i ∈ I} ∈ CTΣ(I) with x /∈ {vals | s ∈ S},

g′(t) = x{i→ g′(ti) | i ∈ I}.

The S-sorted substitution σ : I + V → TΣ(I)(V) assigns x to all x ∈ V and vals(i) to all
i ∈ Is, s ∈ S.

Theorem 17.6

Let A be a Σ-algebra with carrier A.

(1) If f : AI → AV solves E in A, then for all g ∈ AI , f (g) solves σ∗ ◦ E in Ag.

(2) Let B be a Σ(I)-algebra whose carrier includes A. If h ∈ AV solves σ∗ ◦E in B, then

[valB, h]∗ ◦ E = h.

(3) f : AI → AV solves E in A iff for all g ∈ AI , f (g) solves σ∗ ◦E in Ag. In particular,
for all g ∈ AI ,

(EA)∞(g) = ((σ∗ ◦ E)Ag
)∞.

612

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
(4) E¬† : CT IΣ → CT VΣ

g 7→ V
incV→ TΣ(I)(V)

unfold
TΣ(I),σ∗◦E
→ CTΣ(I)

g′→ CT gΣ
solves E in CTΣ uniquely.

Since CTΣ is final in AlgcoΣ, (4) implies that E has a unique solution E¬† in every final
coΣ-algebra A and thus (πx ◦E¬†)x∈V is the unique tuple (fx : A

I → A)x∈V of functions
that satisfies

fx(g) = E(x)[(fx(g)/x | x ∈ V][g(i) | i ∈ I]

for all x ∈ V and g ∈ AI where A is the carrier of A.

Proof. Let B be a Σ(I)-algebra whose carrier includes A and h ∈ AV . First we show

h∗ ◦ σ∗ = [valB, h]∗ : TΣ(I + V) → A (4)

by induction on TΣ(I + V): For all x ∈ V ,

h∗(σ∗(x)) = h∗(σ(x)) = h∗(x) = h(x) = [valB, h](x) = [valB, h]∗(x).

For all i ∈ I ,

h∗(σ∗(i)) = h∗(σ(i)) = h∗(val(i)) = valB(h∗(i)) = valB(i) = [valB, h](i) = [valB, h]∗(i).

For all c : e→ s ∈ C and t ∈ TΣ(I + V)e,

h∗(σ∗(c(t))) = h∗(c(σ∗(t))) = cB(h∗(σ∗(t)))
ind. hyp.

= cB([valB, h]∗(t)) = [valB, h]∗(c(t)).

613

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

For all sum types e =
∐

i∈J ei ∈ Tpo(S), i ∈ J and t ∈ TΣ(I + V)ei,

h∗(σ∗(i(t))) = h∗(i(σ∗(t))) = ιi(h
∗(σ∗(t)))

ind. hyp.
= ιi([val

B, h]∗(t)) = [valB, h]∗(c(i(t))).

For all product types e =
∏

i∈J ei ∈ Tpo(S) and t = (){i→ ti | i ∈ J} ∈ TΣ(I + V)e,

πi(h
∗(σ∗(t))) = πi(h

∗({i→ σ∗(ti) | i ∈ J})) = h∗(σ∗(ti))
ind. hyp.

= [valB, h]∗(ti)

= πi((){i→ [valB, h]∗(ti) | i ∈ J}) = [valB, h]∗(t).

Proof of (1). Suppose that f solves E in A. Then for all g ∈ AI ,

f (g)∗ ◦ σ∗ ◦ E (4)
= [valA

g
, f (g)]∗ ◦ E = [g, f (g)]∗ ◦ E = f (g),

i.e., f (g) solves σ∗ ◦ E in Ag.

Proof of (2). Suppose that h ∈ AV solves σ∗ ◦ E in B. Then

[valB, h]∗ ◦ E (4)
= h∗ ◦ σ∗ ◦ E = h.

(1) and (2) imply (3).

614

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Proof of (4). By Theorem 17.2 or 17.4,

h = (σ∗ ◦ E)∞C and h = unfoldTΣ(I),σ∗◦E ◦ incV
solve σ∗ ◦ E in CTΣ(I). Hence by (2), for all g ∈ CT IΣ,

[g, h]∗ ◦ E = [val
CT

g
Σ(I), h]∗ ◦ E = h. (5)

Since g′ is Σ(I)-homomorphic,

g′ ◦ h (5)
= g′ ◦ [g, h]∗ ◦ E Lemma 9 .9

= (g′ ◦ [g, h])∗ ◦ E = [g′ ◦ g, g′ ◦ h]∗ ◦ E
img(g)⊆CTΣ= [g, g′ ◦ h]∗ ◦ E,

i.e., f : CT IΣ → CT VΣ with f (g) = g′ ◦ h solves E in CTΣ.

Suppose that f, f ′ : CT IΣ → CT VΣ solve E in CTΣ. By (1), for all g ∈ CT IΣ, f (g) and
f ′(g) solve σ∗ ◦ E in CT gΣ. Hence by Theorem 17.2 or 17.4, f (g) = f ′(g). Therefore, E
has at most one solution in CTΣ. ❏

615

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
Examples

1. Let Σ = coStream(X), I = {x, y}, V = {blink, blink′} and

E : V → TΣ(I + V)

blink 7→ cons(x, blink′),

blink′ 7→ cons(y, blink).

The unique solution g : CT IΣ → CT VΣ of E in CTΣ is defined as follows:

For all h ∈ CT IΣ and w ∈ {(), 1, 2}∗,

g(h)(blink)(w) =

cons if w ∈ (()2)∗,

h(x) if ∃ n ∈ N : w = (()2)n()1 ∧ even(n),
h(y) if ∃ n ∈ N : w = (()2)n()1 ∧ odd(n),
⊥ otherwise,

g(h)(blink′)(w) = g(h)(blink)(()2w).

Moreover, cons : X × state → state and blink, blink′ : 1 → state can be defined
biinductively on every final Stream-algebra A with carrier A (e.g., on sample algebra
9.6.5, InfSeq(X)) as follows:

616

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

head ◦ cons = π1, tail ◦ cons = π2, (1)
head ◦ blink = 0, tail ◦ blink = blink′, (2)
head ◦ blink′ = 1, tail ◦ blink′ = blink. (3)

Let g ∈ AV solve E in A, i.e.,

g(blink) = consA(x, g(blink′)),

g(blink′) = consA(y, g(blink)).

Then Ag (see Theorem 17.5) satisfies (2) and (3):

headA(g(blink)) = headA(g(blink)) = headA(consA(x, g(blink′)))
(1)
= x

2. Let Σ = coDAut(Z, 2), V = {esum, osum} and

E : V → TΣ(V)

esum 7→ new((){δ → (){x ▷ even(x) → esum, x ▷ odd(x) → osum | x ∈ Z}, β → 1})
osum 7→ new((){δ → (){x ▷ even(x) → osum, x ▷ odd(x) → esum | x ∈ Z}, β → 0}).

617

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

The unique solution g : V → CTΣ of E in CTΣ is defined as follows:

For all w ∈ ({(), δ, β} ∪ Z)∗,

g(esum)(w) =

new if ∃ n ∈ N, x1, . . . , xn ∈ Z : w ∈ (()δZ)∗,
1 if ∃ n ∈ N, x1, . . . , xn ∈ Z :

w = ()δx1 . . . ()δxn()β ∧ even(x1 + · · · + xn),

0 if ∃ n ∈ N, x1, . . . , xn ∈ Z :

w = ()δx1 . . . ()δxn()β ∧ odd(x1 + · · · + xn),

⊥ otherwise.

Here δ and β serve as indices of the domain stateX × 2 of new because 1 and 2 would
conflict with integer numbers that also occur as edge labels here.

CTΣ is a DAut(Z, 2)-algebra and {g(esum), g(osum)} is the carrier of a DAut(Z, 2)-
subalgebra of CTΣ that is isomorphic to sample algebra 9.6.7.

618

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

3. Let S = {cmd, exp, bexp}, X be a set of program variables that take values in some
set Val of values,

F = { skip : 1 → cmd, assign : X × exp→ cmd,

seq : cmd× cmd→ cmd,

cond : bexp× cmd× cmd→ cmd },
Σ = (S, F), I = {b, c}, V = {loop} and

E : V → TΣ(I + V)

loop 7→ cond(b, seq(c, loop), skip)

The unique solution g : CT IΣ → CT VΣ of E in CTΣ is defined as follows:

For all h ∈ CT IΣ and w ∈ {(), 1, 2, 3}∗,

g(h)(loop)(w) =

cond if w ∈ (()2()2)∗,

h(b)(w′′) if ∃ w′, w′′ : w = w′w′′ ∧ w′ ∈ (()2()2)∗()1,

seq if w ∈ (()2()2)∗()2,

skip if w ∈ (()2()2)∗()3,

h(c)(w′′) if ∃ w′, w′′ : w = w′w′′∧ ∈ ((()2()2)∗)()2()1,

⊥ otherwise.

619

17.4 The coalgebraic approach for solving term equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Let A be the ω-continuous Σ-algebra of “store states” that is defined as follows:

Let St = ValX . For all f : St → 2, g, h : St → St + 1, e : St → Val , x ∈ X and
st ∈ St,

A(cmd) = St→ St + 1,

A(exp) = St→ Val ,

A(bexp) = St→ 2,

skipA = idSt,

assignA(x, e)(st) = st[e(st)/x],

seqA(g, h) = h ◦ g,
condA(f, g, h)(st) = if f (st) = 1 then g(st) else h(st).

The least solution of E in A provides the usual semantics of the while-loop operator
while : bexp× cmd→ cmd: For all f : St→ 2 and g : St→ St + 1,

whileA(f, g) = (E ′Ah
)∞

where h ∈ AI maps b to f and c to g. ❏

620

17.5 Flowchart equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

17.5 Flowchart equations

Let Σ = (S,D) be a destructive polynomial signature and V,O be S-sorted sets of
“internal” and “output variables”, respectively. An S-sorted function

E : V → TΣ(V +O)

is called a system of iterative Σ-equations if img(E)∩(V +O) = ∅ (see section 9.19).

Hence for all s ∈ S and x ∈ Vs, E(x) = d(t) for some d : s→ e ∈ D and t ∈ TΣ(V +O)s.

Let A be a Σ-algebra with carrier A. A flowchart valuation g : V → AO solves E in A
if

[g, ηO]
◦ ◦ E = g,

in other words, if g is the fixpoint of the following step function:

EA : AV
O → AV

O

g 7→ [g, ηO]
◦ ◦ E

Since AV
O = (V → AO) ∼= (V × A) → (O × A), solutions of flowchart equations are dual

to solutions f : AI → AV of term equations (see section 17.2), a dualism that we already
know from algebraic theories (see section 17.1).

621

17.5 Flowchart equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Let A be ω-continuous. According to the section 15.6, the partial orders, least elements
and suprema of A can be lifted to AV

O, i.e., AV
O is an ω-CPO.

EA is ω-continuous. Hence by Theorem 3.4 (1),

(EA)∞ =
⊔
n<ω

(EA)n(⊥) : V → AO

is the least fixpoint of EA where for all s ∈ S, ⊥ : V → AO maps the elements of Vs
to the least element of AO,s = (O × A)As, which maps the elements of As to the least
element of the sum (!) O × A.

In contrast to Σ-terms, Σ-flowcharts need not form an algebra.

Lemma 17.7 **** For all g : V → CTΣ(O),

[g, incO]
∗ ◦ E = g ⇒ fg solves E in A

where fg : V ×A→ O×A maps (x, a) ∈ V ×A to (η+O)ω(g(x))(a) ∈ O×A (see section
15.6).

622

17.5 Flowchart equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
Proof. By definition,

curry(fg) = (η+O)ω ◦ g. (1)

Suppose that
[g, incO]

∗ ◦ E = g. (2)

Then
[curry(fg), ηO]

+ ◦ E (1)
= [(η+O)ω ◦ g, ηO]+ ◦ E

= [(η+O)ω ◦ g, η
+
O ◦ incO]+ ◦ E

= [(η+O)ω ◦ g, (η
+
O)ω ◦ incO]+ ◦ E = ((η+O)ω ◦ [g, incO])+ ◦ E

Lemma 15 .9
= (η+O)ω ◦ [g, incO]∗ ◦ E

(2)
= (η+O)ω ◦ g

(1)
= curry(fg),

i.e., fg solves E in A. ❏

Theorem 17.8 (“dualization” of Theorem SOLC)

Let E : V → TΣ(V + O) be a system of iterative Σ-equations. There is exactly one
g : V → CTΣ(O) with (2).

Proof. Define the step function EC : CT⊥
Σ (O)

V → CT⊥
Σ (O)

V as follows:

623

17.5 Flowchart equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

For all g : V → CT⊥
Σ (O), EC(g) = [g, incO]

∗ ◦ E. Since EC is ω-continuous, Theorem
3.4 (1) implies that

E∞
C =

⊔
n<ω

En
C(⊥) : V → CT⊥

Σ (O)

is the least fixpoint of EC where ⊥ : V → CT⊥
Σ (O) maps every x ∈ V to Ω.

Hence it remains to show that every g : V → CTΣ(O) with (1) agrees with E∞
C .

So let B =
⋃

I and g : V → CTΣ(O) satisfy (1). Since E∞
C is the least function that

satisfies (1),
E∞
C ≤ g. (3)

Below we show that for all t ∈ TΣ(V +O) and n ∈ N,

def ([g, incO]
∗(t)) ∩Bn ⊆ def ([En+1

C (⊥), incO]
∗(t)), (4)

in particular, for all x ∈ V ,

def (g(x)) ∩Bn ⊆ def (En+1
C (⊥)(x)). (5)

(5) implies

def (g(x)) ⊆
⋃
n<ω def (E

n
C(⊥)(x)) = def (

⊔
n<ω E

n
C(⊥)(x)) = def (E∞

C (x))

624

17.5 Flowchart equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
and thus g ≤ E∞

C . Hence by (3), g = E∞
C .

Proof of (4) by induction on n.

Let t ∈ TΣ(V +O), n ∈ N, h = [g, incO] and hn = [En
C(⊥), incO].

Case 1: t = ∗. Then def ([g, incO]
∗(t))∩B0 = 1, for all n > 0, def ([g, incO]∗(t))∩Bn = ∅,

and for all n ∈ N, def ([En+1
C (⊥), incO]

∗(t)) = 1. Hence (4) holds true.

Case 2: t ∈ V and E(t) = d(u) for some d : s→ e ∈ D and u ∈ TΣ(V +O)e.

By (2),

h∗(t) = g(t) = h∗(E(t)) = h∗(d(u)) = d(h∗(u)), (6)
h∗n+1(t) = En+1

C (⊥)(t) = EC(E
n
C(⊥))(t) = h∗n(E(t)) = h∗n(d(u)) = d(h∗n(u)). (7)

Case 2.1: n = 0. Then

def (h∗(t)) ∩Bn = def (h∗(t)) ∩B0 = def (h∗(t)) ∩ 1
(6)
= 1

(7)

⊆ def (h∗n+1(t)).

Case 2.2: n > 0. Let w ∈ def (h∗(t)) ∩ Bn. By (6), w ∈ def (d(h∗(u))) and thus w = bv

for some b ∈ B and v ∈ def (h∗(u)) ∩Bn−1. By induction hypothesis, v ∈ def (h∗n(u)).

Hence
w = bv ∈ def (d(h∗n(u)))

(7)
= def (h∗n+1(t)).

625

17.5 Flowchart equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Therefore, (4) holds true in both subcases.

Case 3: t ∈ O. Then def (h∗(t)) ∩Bn = def (t) ∩Bn = 1 = def (t) = def (h∗n+1(t)).

Case 4: t = d(u) for some d : s→ e ∈ D and u ∈ TΣ(V +O)e. Then

h∗(t) = h∗(d(u)) = d(h∗(u)), (8)
h∗n+1(t) = h∗n+1(d(u)) = d(h∗n+1(u)) (9)

Case 4.1: n = 0. Then

def (h∗(t)) ∩Bn = def (h∗(t)) ∩B0 = def (h∗(t)) ∩ 1
(8)
= 1

(9)

⊆ def (h∗n+1(t)).

Case 4.2: n > 0. Let w ∈ def (h∗(t)) ∩ Bn. By (8), w ∈ def (c(h∗(u))) and thus w = bv

for some b ∈ B and v ∈ def (h∗(u)) ∩ Bn−1. By induction hypothesis, v ∈ def (h∗n(u)).
Since hn ≤ hn+1 and CT⊥

Σ (O) ∈ PosetS, h∗n ≤ h∗n+1. Hence

w = bv ∈ def (d(h∗n(u))) ⊆ def (d(h∗n+1(u)))
(9)
= def (h∗n+1(t)).

Therefore, (4) holds true in both subcases.

Case 5: t = i(u) ∈ TΣ(V + O)e for some e =
∏

i∈I ei, i ∈ I and u ∈ TΣ(V + O)ei. Then
we obtain (4) as in Case 4 with i instead of d.

626

17.5 Flowchart equations 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Case 6: t = (){i → ti | i ∈ I} ∈ TΣ(V + O)e for some e =
∐

i∈I ei and (ti)i∈I ∈
Xi∈ITΣ(V +O)ei. Then for all i ∈ I ,

πi(h
∗(t)) = h∗(ti) = πi((){i→ h∗(ti) | i ∈ I}),

πi(h
∗
n+1(t)) = πi((){i→ h∗n+1(ti) | i ∈ I}).

Hence

h∗(t) = (){i→ h∗(ti) | i ∈ I}, (10)
h∗n+1(t) = (){i→ h∗n+1(ti) | i ∈ I} (11)

Case 6.1: n = 0. Then

def (h∗(t)) ∩Bn = def (h∗(t)) ∩B0 = def (h∗(t)) ∩ 1
(10)
= 1

(11)

⊆ def (h∗n+1(t)).

Case 6.2: n > 0. Let w ∈ def (h∗(t)) ∩ Bn. By (10), w ∈ def ((){i → h∗(ti) | i ∈ I})
and thus w = iv for some i ∈ I and v ∈ def (h∗(ti)) ∩ Bn−1. By induction hypothesis,
v ∈ def (h∗n(ti)). Since hn ≤ hn+1 and CT⊥

Σ (O) ∈ PosetS, h∗n ≤ h∗n+1. Hence

w = iv ∈ def ((){i→ h∗n(ti) | i ∈ I}) ⊆ def ((){i→ h∗n+1(ti) | i ∈ I}) (11)
= def (h∗n+1(t)).

Therefore, (4) holds true in both subcases. ❏

627

17.6 Word acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

17.6 Word acceptors

Let X be a set of “input elements” and A be a finite set of “states”.

A bottom-up X-word acceptor is a pair (A, B) that consists of a Dyn(X, 1)-algebra
A with carrier A and a subset B of Astate whose elements are called final states.

In chapter 9 we have seen that X∗ is the carrier of the initial List(X)-algebra (see sample
algebra 9.6.3).

(A, B) accepts the language L(A, B) =def {w ∈ X∗ | foldA(w) ∈ B}.

L ⊆ X∗ is bottom-up regular if there are a bottom-up X-word acceptor (A, B) such
that L(A, B) = L.

A deterministic (non-deterministic) top-down X-word acceptor is a pair (A, a)
that consists of an Acc(X)-algebra (NAcc(X)-algebra) A with carrier A and an element
a ∈ Astate for some s ∈ S that is called an initial state.

In chapter 9 we have seen that P(X∗) is the carrier of both the final Acc(X)-algebra
Pow (X) (see sample algebra 9.6.20) and the final NAcc(X)-algebra NPow (X) (see sam-
ple algebra 9.6.21).

628

17.6 Word acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Hence the unique {N}Acc(X)-homomorphism unfoldA : A → {N}Pow (X) maps states
to subsets of X∗.

(A, a) accepts the language L(A, a) =def unfold
A(a).

L ⊆ X∗ is regular (or deterministic regular) if there are a nondeterministic (or de-
terministic) top-down X-word acceptor (A, a) such that unfoldA(a) = L.

Bottom-up regular languages are regular and vice versa.

The Brzozowski automaton (see sample algebra 9.6.23) provides an acceptor for every
deterministic regular language:

Since TReg(X) is a Acc(X)-algebra, Pow (X) is a final one, Lang(X) is a Reg(X)-algebra
(see sample algebra 9.6.19) and

foldLang(X) : TReg(X) → Lang(X)

is Acc(X)-homomorphic,
foldLang(X) = unfoldBro(X). (1)

629

17.6 Word acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

(1) can also be derived from Theorem 16.3 (12) (see biinductively defined function 16.5.6.

Regular languages are deterministic regular and vice versa.

Proof. “⇐”: trivial.

“⇒”: Let A be a nondeterministic X-word acceptor and A′ be the deterministic X-word
acceptor with carrier P(A) whose operations are defined as follows:

δA
′
: P(A) → P(A)X

B 7→ λx.
⋃
a∈B δ

A(a)(x)

βA′
: P(A) → 2

B 7→ max{βA(a) | a ∈ B}

Suppose that for all B ⊆ A,

unfoldA′
(B) =

⋃
a∈B

unfoldA(a). (2)

630

17.6 Word acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Then in particular, unfoldA′
({a}) = unfoldA(a) for all a ∈ A, i.e., A′ and A accept the

same languages. (2) is equivalent to (3): For all w ∈ X∗,

w ∈ unfoldA′
(B) ⇔ ∃ a ∈ B : w ∈ unfoldA(a). (3)

Proof of (3) by induction on |w|.

ϵ ∈ unfoldA′
(B) ⇔ max{βA(a) | a ∈ B} = βA′

(B) = 1 ⇔ ∃ a ∈ B : βA(a) = 1

⇔ ∃ a ∈ B : ϵ ∈ unfoldA(a).

For all x ∈ X and w ∈ X∗,

x · w ∈ unfoldA′
(B) ⇔ w ∈ unfoldA′

(δA
′
(B)(x))

ind. hyp.⇔ ∃ b ∈ δA
′
(B)(x) =

⋃
a∈B δ

A(a)(x) : w ∈ unfoldA(b)

⇔ ∃ a ∈ B, b ∈ δA(a)(x) : w ∈ unfoldA(b) ⇔ ∃ a ∈ B : x · w ∈ unfoldA(a). ❏

(2) can also be derived from the fact that A and A′ correspond to equivalent systems of
regular equations:

631

17.6 Word acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
Let A be a set of “language variables”.

A system of regular (word) equations is a function E : A→ TReg(X)(A) such that for
all a ∈ A,

E(a) = par(. . . (par(seq(x1, a1), seq(x2, a2), . . .),

seq(xn, an)
(4)

or
E(a) = par(. . . (par(ϵ, seq(x1, a1)), seq(x2, a2)), . . .),

seq(xn, an)
(5)

for some x1, . . . , xn ∈ X and a1, . . . , an ∈ A. (4) and (5) are abbreviated as

E(a) = x1 · a1 + x2 · a2 + · · · + xn · an (6)

and
E(a) = 1 + x1 · a1 + x2 · a2 + · · · + xn · an, (7)

respectively.

g : A→ P(X∗) solves E in Lang(X) (see sample algebra 9.6.19) if g∗ ◦ E = g.

Let A be a nondeterministic X-word acceptor with carrier A and

E(A) : A→ TReg(X)(A)

be the system of regular equations that is defined as follows:

632

17.6 Word acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
For all a ∈ A,

E(A)(a) =

∑

{x · b | x ∈ X, b ∈ δA(a)(x)} if βA(a) = 0

1 +
∑

{x · b | x ∈ X, b ∈ δA(a)(x)} if βA(a) = 1

unfoldA solves E(A) in Lang(X) uniquely. (8)

Proof. By (1), h =def unfold
A : A→ P(X∗) is Reg(X)-homomorphic.

For the definition of unfoldA, see section 9.18.

Let a ∈ A and case (6) hold true. Then βA(a) = 0. Hence

h∗(E(A)(a)) = h∗(
∑

{x · b | x ∈ X, b ∈ δA(a)(x)})
=
⋃
{h∗(x) · h∗(b) | x ∈ X, b ∈ δA(a)(x)} =

⋃
{x · h(b) | x ∈ X, b ∈ δA(a)(x)}

= {x · w | x ∈ X, w ∈ h(b), b ∈ δA(a)(x)} = h(a).

Let a ∈ A and case (7) hold true. Then βA(a) = 1. Hence

h∗(E(A)(a)) = h∗(1 +
∑

{x · b | x ∈ X, b ∈ δA(a)(x)})
= h∗(1) ∪

⋃
{h∗(x) · h∗(b) | x ∈ X, b ∈ δA(a)(x)}

= 1 ∪
⋃
{x · h(b) | x ∈ X, b ∈ δA(a)(x)}

= 1 ∪ {x · w | x ∈ X, w ∈ h(b), b ∈ δA(a)(x)} = h(a).

633

17.6 Word acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
Hence unfoldA solves E(A).

Uniqueness follows from the fact that E(A) is a system of iterative Reg(X)-equations
(see chapter 17), which allows us to apply Theorem 17.5:

Let (S,C) = Reg(X),
CA = {a : 1 → state | a ∈ A}

and for all a ∈ A, opa,δ : 1 → stateX and opa,δ : 1 → 2 are defined as follows:

• E(A)(a) = x1 · a1 + x2 · a2 + · · · + xn · an implies

opa,δ = if ∗ ∗ ∗ ∗

Conversely, let E : A → TReg(X)(A) be a system of regular equations and A(E) be the
nondeterministic X-word acceptor with carrier A whose operations are defined as follows:

δA(E) : A → Pω(A)X

a 7→ λx.{ai | 1 ≤ i ≤ n, xi = x} if (6) or (7) holds true

βA(E) : A → 2

a 7→

 0 if (6) holds true

1 if (7) holds true

634

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

unfoldA(E) solves E in Lang(X) uniquely. (9)

Proof. Obviously, E(A(E)) = E. Hence (8) implies (9). ❏

17.7 Tree acceptors

The literature on tree acceptors spans over many decades (see, e.g., [178, 151, 32, 175,
148, 43, 46]). In contrast to word acceptors, (co)algebraic approaches avoiding grammars
or other rewrite systems are still rare. In the following, we give one that captures the
basic notions of [43], section 1.6, and [175], section 3.2.2.

The tree language to be accepted is a set of Σ-terms where Σ = (S, F) is a finitary
signature (see chapter 8).

A bottom-up Σ-term acceptor is a pair (A, B) that consists of a Σ-algebra A and an
S-sorted subset B of the carrier of A whose elements are called final states.

Above we have seen that TΣ is the carrier of an initial Σ-algebra.

(A, B) accepts the language L(A, B) =def {t ∈ TΣ | foldA(t) ∈ B}.

635

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

A deterministic (non-deterministic) top-down Σ-term acceptor is a pair (A, a)
that consists of a TAcc(Σ)-algebra (NTAcc(Σ)-algebra) A and an element of the carrier
of A that is called an initial state.

P(TΣ) is the carrier of both the final TAcc(Σ)-algebra TPow (Σ) (sample algebra 9.6.29)
and the final NTAcc(Σ)-algebra NTPow (Σ) (sample algebra 9.6.30). Hence the unique
{N}TAcc(Σ)-homomorphism unfoldA : A → {N}TPow (Σ) maps states to subsets of
TΣ.

(A, a) accepts the language L(A, a) =def unfold
A(a).

L ⊆ TΣ is regular if there is a bottom-up acceptor (A, B) or, equivalently, a non-
deterministic top-down acceptor (A, a) such that L(A, B) = L and L(A, a) = L, respec-
tively, and the carrier of A is finite.

L ⊆ TΣ is deterministic top-down regular if there is a deterministic top-down accep-
tor (A, a) of trees such that L(A, a) = L and the carrier of A is finite.

636

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Given L ⊆ TΣ, the path closure of L, cl(L), is the least subset T of TΣ that contains L
and satifies the following implication: for all c : s1×· · ·×sn → s ∈ C and 1 ≤ i < j ≤ n,

c(t1, . . . , ti−1, ui, ti+1, . . . , tn), c(t1, . . . , tj−1, uj, tj+1, . . . , tn) ∈ T

⇒ c(t1, . . . , ti−1, ui, ti+1, . . . , tj−1, uj, tj+1, . . . , tn) ∈ T.

Previous definitions of path closure can be found in [44], section 4, and [43], section 1.8.

L ⊆ TΣ is path closed if L = cl(L).

L ⊆ TΣ is deterministic top-down regular iff L is regular and path-closed. ****

Proof. “⇒”: Let (A, a) be a deterministic top-down tree acceptor with unfoldA(a) = L

and
c(t1, . . . , ti−1, ui, ti+1, . . . , tn), c(t1, . . . , tj−1, uj, tj+1, . . . , tn) ∈ L.

By the definition of unfoldA (see above), there are a1, . . . , an in the carrier of A such
that δc(a) = (a1, . . . , an), ui ∈ unfoldA(ai), uj ∈ unfoldA(ai) and for all 1 ≤ i ≤ n,
ti ∈ unfoldA(ai). Hence c(t1, . . . , ti−1, ui, ti+1, . . . , tj−1, uj, tj+1, . . . , tn) ∈ unfoldA(a) =

L. Therefore, L is path-closed.

637

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

“⇐”: Given an NTAcc(Σ)-algebra A with carrier A, there is TAcc(Σ)-algebra A′ with
carrier P(A) such that for all B ⊆ A,

L(A′, B) =
⋃
a∈B

cl(L(A, a)), (1)

or, equivalently, for all t ∈ TΣ,

t ∈ unfoldA′
(B) ⇔ ∃ a ∈ B : t ∈ cl(unfoldA(a)). (2)

The operations of A′ are defined as follows: For all c : s1 × · · · × sn → s ∈ C,

δA
′

c : P(A) → P(A)n

B 7→
⋃
a∈B δ

A
c (a)

Proof of (2) by induction on the number n of C-occurrences in t.

Case 1. t = c(a1, . . . , an) for some c : A1 × · · · × An → s, A1, . . . , An ∈ I and ai ∈ Ai

for all 1 ≤ i ≤ n. Hence for all B ⊆ A,
⋃
a∈B δ

A
c (a) = δA

′
c (B) = (B1, . . . , Bn) implies

t ∈ unfoldA′
(B) ⇔ ∀ 1 ≤ i ≤ n : ai ∈ unfoldA′

(Bi) = Bi.

638

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

[44], Theorem 5, characterizes deterministic top-down regular languages as the path closed
ones. The notions and lemmas leading to this result are as follows.

Given t ∈ TCΣ, the path language of t, paths(t), is the least set of nonempty lists over
X = (C ′ × N) ∪ C ′′ such that for all c ∈ C ′, c′ ∈ C ′′, i > 0 and p ∈ X∗,

• if t(ϵ) = c and p ∈ paths(λw.t(iw)), then (c, i) : p ∈ paths(t),
• if t(ϵ) = c′, then paths(t) = {c′}.

Given L ⊆ TCΣ,

paths(L) =def

⋃
{paths(t) | t ∈ L},

pclosure(L) =def {t ∈ TCΣ | paths(t) ⊆ paths(L)}

are called the path language and path closure of L, respectively. L is path closed if
L = pclosure(L).

(1) If L ⊆ TCΣ is top-down regular, then paths(L) is regular. (2) If L ⊆ TCΣ is top-down
regular, then pclosure(L) is deterministic top-down regular.
(3) If L ⊆ TCΣ is deterministic top-down regular, then L is path closed.

639

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

The converse of (3) immediately follows from (2).

Example Let C = {f : state2 → state, c, d : 1 → state}. The language

L =def {f (c, d), f (d, c)} ⊆ TCΣ

(mentioned in [43], Prop. 1.6.1, [175], Remark 3.35, and [46], Thm. 10) is not path closed
because f (c, c) /∈ L, although

paths(f (c, c)) = {[(f, 1), c], [(f, 2), c]} ⊆ {[(f, 1), c], [(f, 2), d], [(f, 1), d], [(f, 2), c]}
= paths(L).

It is also easy to see that for every initial automaton (A, a) with carrier A is a TAcc(C)-
algebra,

L ⊆ unfoldA(a) implies f (c, c) ∈ unfoldA(a) :

Let L ⊆ unfoldA(a). Then there are b, b′ ∈ A such that δAf (a) = (b, b′), βA
c (b) = 1 and

βA
d (b

′) = 1 (because f (c, d) ∈ unfoldA(a)), but also βA
d (b) = 1 and βA

c (b
′) = 1 (because

f (d, c) ∈ unfoldA(a)). βA
c (b) = 1 = βA

c (b
′) implies f (c, c) ∈ unfoldA(a). ❏

640

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

Path language for trees with infinite paths: Given t ∈ CTCΣ, the path language of t,
paths(t), is the greatest set of nonempty colists over X = (C ′ × N) ∪ C ′′ such that for
all c ∈ C ′, c′ ∈ C ′′, i > 0 and p ∈ X∗,

• (c, i) : p ∈ paths(t) implies t(ϵ) = c, t(i) ∈ src(t) and p ∈ paths(λw.t(iw)),
• c′ : p ∈ paths(t) implies def (t) = 1, t(ϵ) = c′ and p = ϵ.

Let L ⊆ TΣ, ∼L be the Nerode relation of L, i.e., the greatest Σ-congruence that is
contained in the kernel of χ(L) : TΣ → 2, Q = {[t]∼L

| t ∈ L} and F(L) =def (TΣ/∼L, Q).
Hence

L(F(L)) = {t ∈ TΣ | foldTΣ/∼L(t) ∈ Q} = {t ∈ TΣ | nat∼L
(t) ∈ Q}

= {t ∈ TΣ | t ∈ L} = L

and thus F(L) is a bottom-up tree acceptor of L.

Sets of terms that represent XML documents satisfying certain constraints can often
be described as regular term languages. Other formalizations of XML constraints use
second-order or modal logics.

641

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations
Top-down tree automata in Kleisli categories

Let Σ = (S, F) be a signature. A nondeterministic Σ-algebra A consists of an S-
sorted set A and a function fA : Ae → P(Ae′) for every f : e→ e′ ∈ F .

Let A,B be nondeterministic Σ-algebra with carriers A and B, respectively. A multival-
ued S-sorted function h : A→ B is a multivalued Σ-homomorphism from A to B if
for all f : e→ e′ ∈ F ,

he′ ◦P fA = fB ◦P he
where ◦P is the Kleisli composition of the powerset monad P (see chapter 24) and he and
he′ are instances of a lifting of h to a multivalued Tpo(S)-sorted function.

ndAlgΣ denotes the subcategory of MfnS (see chapter 7) that consists of all nondeter-
ministic Σ-algebras and multivalued Σ-homomorphisms.

Let Σ = (S,C) be a constructive signature, (S ′, D) = coΣ (see chapter 15). A nondeter-
ministic coΣ-algebra L(Σ) of tree languages may be defined as follows:

For all s ∈ S ′,

642

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Iterative equations

L(Σ)s = TΣ,s,

d
L(Σ)
s : TΣ,s → P(

∐
c:e→s∈C TΣ,e)

c{i→ ti | i ∈ I} 7→ {((ti)i∈I , c)}.

Provided that results of [84], section 5; [83], section 3.2; [68], section 3, can be adopted
here, there is a distributive law

(
∐

c:e→s∈C

_e) ◦ P → P ◦
∐

c:e→s∈C

_e

and thus L(Σ) is final in ndAlgcoΣ such that for all nondeterministic coΣ-algebras A with
carrier A and s ∈ S ′,

unfoldA
s : As → P(TΣ,s)

a 7→ (
⊔
n∈NΦ

n(λx.∅))(a, s) (see chapter 3)

Φ : P(TΣ)
∐

s∈S′ As → P(TΣ)
∐

s∈S′ As

f 7→ λ(a, s).f (a, s) ∪ {c{i→ ti | i ∈ I}
| (b, c :

∏
i∈I si → s) ∈ dAs (a),

ti ∈ f (πi(b), si) ∨ (si ∈ Set ̸=∅ ∧ ti ∈ si)}.

643

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�
�

�
18 Categorical Σ-algebra

Initial models of constructive polynomial signatures

Let Σ = (S, F) be a constructive polynomial signature, κ be the cardinality of the greatest
exponent occurring in the source of some f ∈ F and λ be the first regular cardinal number
> κ.

By Theorem 14.6 (2), HΣ is λ-cocontinuous and thus by Theorem 14.7, AlgHΣ
has an

initial object α : HΣ(µΣ) → µΣ. In other words, µΣ is the initial Σ-algebra (see (1)).

Since µΣ is the colimit of the λ-chain D of SetS defined in Theorem 14.7, Theorem 6.4
implies that for all s ∈ S,

µΣs = (
∐
i<λ

D(i)s)/∼s

where ∼s is the equivalence closure of

{(a,D(i, i + 1)(a)) | a ∈ D(i)s, i < λ}.

644

https://en.wikipedia.org/wiki/Regular_cardinal

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Categorical Σ-algebra

Let A be a Σ-algebra. The unique Σ-homomorphism foldA : µΣ → A is the unique
S-sorted function such that∐

i<λ

D(i)
[βi]i<λ→ A =

∐
i<λ

D(i)
nat∼→ µΣ

foldA→ A

where β0 is the unique S-sorted function from D(0) to A and for all i < λ and s ∈ S,

βi+1,s = [fA ◦ Fe(βi,s)]f :e→s∈F : D(i + 1)s → As.

HΣ is ω-cocontinuous and its object mapping reads as follows:

For all S-sorted sets A and s ∈ S,

HΣ(A)s =
∐

f :e1×···×en→s∈F
∏n

i=1Aei

= {((a1, . . . , an), f) | f : e1 × · · · × en → s ∈ F, ai ∈ Aei, 1 ≤ i ≤ n}.

Hence for all s ∈ S, k ∈ N and t ∈ D(k),

645

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Categorical Σ-algebra

D(0)s = ∅,
D(k + 1)s = HΣ(D(k))s

= {((t1, . . . , tn), f) | f : e1 × · · · × en → s ∈ F, ti ∈ D(k)ei, 1 ≤ i ≤ n},
D(k, k + 1)(t) = t,

and thus by Theorem 6.4,

µΣs = (
∐
k∈N

D(k)s)/∼s
∼=

⋃
k∈N

D(k)s

where ∼s is the equivalence closure of {(t,D(k, k+ 1)(t)) | t ∈ D(k)s, k ∈ N} = ∆D(k),s.

By Lemma 14.1 (1), α : HΣ(A) → A as defined in diagram (1) is iso and thus for all
f : e1 × · · · × en → s ∈ F and ti ∈ µΣei, 1 ≤ i ≤ n,

fµΣ(t1, . . . , tn) = ((t1, . . . , tn), f).

Hence for all Σ-algebras A,

foldA(((t1, . . . , tn), f)) = foldA(fµΣ(t1, . . . , tn)) = fA(foldA
e1
(t1), . . . , fold

A
en
(tn)).

646

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Categorical Σ-algebra

Moreover, for A = µΣ and all s ∈ S,

As
∼= HΣ(A)s = {((a1, . . . , an), f) | f : e1 × · · · × en → s ∈ F, ai ∈ Aei, 1 ≤ i ≤ n}.

Hence µΣ can be represented as a quotient of TΣ (see section 19.12).

f1

f3

f6f5

setf4

f7

f8

f1

b

f2

c

d

ε

εa

f6

c

A ground Σ-term with constructors f1, . . . , f8 and base elements a, b, c, d, ϵ.

647

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Categorical Σ-algebra

Final models of destructive polynomial signatures

Let Σ = (S, F) be a destructive polynomial signature, κ be the cardinality of the greatest
exponent occurring in the range of some f ∈ F and λ be the first regular cardinal number
> κ.

By Theorem 14.6 (1) implies that HΣ is λ-continuous and thus by Theorem 14.8, coAlgHΣ

has a final object α : νΣ → HΣ(νΣ). In other words, νΣ is the final Σ-algebra (see (1)).

Since νΣ is the limit of the ω-cochain D of SetS defined in Theorem 14.8, Theorem 6.2
implies that for all s ∈ S,

νΣs = {a ∈
∏
i<ω

D(i)s | ∀ i < ω : ai = D(i + 1, i)(ai+1)}.

648

https://en.wikipedia.org/wiki/Regular_cardinal

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Categorical Σ-algebra

Let A be a Σ-algebra. The unique Σ-homomorphism unfoldA : A → νΣ is the unique
S-sorted function such that

A
⟨βi⟩i<ω→

∏
i<ω

D(i) = A
unfoldA→ νΣ

inc→
∏
i<ω

D(i)

where β0 is the unique S-sorted function from A to D(0) and for all i < ω and s ∈ S,

βi+1,s = ⟨Fe(βi,s) ◦ fA⟩f :s→e∈F : As → D(i + 1)s.

HΣ is ω-continuous and its object mapping reads as follows:

For all S-sorted sets A and s ∈ S,

HΣ(A)s =
∏

f :s→(e1+···+en)X∈F (
∐n

i=1Aei)
X

= {t : F →
⋃
f :s→(e1+···+en)X∈F (

∐n
i=1Aei)

X |
∀ f : s→ (e1 + · · · + en)

X ∈ F : t(f) ∈ (
∐n

i=1Aei)
X}

= {t : F → (A× N)X | ∀ f : s→ (e1 + · · · + en)
X ∈ F ∀ x ∈ X

∃ 1 ≤ i ≤ n : t(f)(x) ∈ Aei × {i}}.

649

17.7 Tree acceptors 17 ITERATIVE EQUATIONS II

�� ��Categorical Σ-algebra

Hence for all s ∈ S, k ∈ N, t ∈ D(k + 1) and f ∈ F ,

D(0)s = 1,

D(k + 1)s = HΣ(D(k))s = {t : F → (D(k)× N)X |
∀ f : s→ (e1 + · · · + en)

X ∈ F ∀ x ∈ X

∃ 1 ≤ i ≤ n : t(f)(x) ∈ D(k)ei × {i}},
D(k + 1, k)(t)(f) = π1 ◦ t(f),

and thus by Theorem 6.2,

νΣs = {t ∈
∏

k∈ND(k)s | ∀ k ∈ N ∀ f ∈ F : D(k + 1, k)(πk+1(t))(f) = πk(t)(f)}
= {t ∈

∏
k∈ND(k)s | ∀ k ∈ N ∀ f ∈ F : π1 ◦ πk+1(t)(f) = πk(t)(f)}.

650

18.1 Bounded functors 18 CATEGORICAL Σ-ALGEBRA

�� ��Categorical Σ-algebra

18.1 Bounded functors

Let α : A→ F (A) be an F -coalgebra and B be a subset of A. If the inclusion mapping
inc : B → A is a coAlgF -morphism from an F -coalgebra β :B → F (B) to α then β is
an F -invariant or F -subcoalgebra of α.

Theorem 18.1 ([81], Prop. 6.2.4 (i)) Every union or intersection of F -invariants is an
F -invariant. Hence for all subsets of B of A there is a least F -invariant ⟨B⟩ : C → F (C)

such that C includes B. ❏

Let M be an S-sorted set. F : SetS → SetS is M-bounded if for all F -coalgebras
α : A→ F (A) and a ∈ A, |⟨a⟩s| ≤ |Ms| (see [59], section 4).

This section aims at Theorem 18.4, which tells us that for all M -bounded functors F ,
AlgF has a final object.

651

18.1 Bounded functors 18 CATEGORICAL Σ-ALGEBRA

�� ��Categorical Σ-algebra

Let λ be a cardinal number.

A category I is λ-filtered if for each class L of less than λ I-objects there is a cocone
{i→ j | i ∈ L} in I and for all I-objects i, j and each set Φ of less than λ I-morphisms
from i to j there is a coequalizing I-morphism h : j → k, i.e., for all f, g ∈ Φ, h◦f = h◦g.

A diagram D : I → K is λ-filtered if I is a λ-filtered category.

A functor F : K → L is λ-accessible if F preserves the colimits of all λ-filtered diagrams
D : I → K (see [10], section 5.2).

Theorem 18.2 ([11], Thm. 4.1; [12], 5.3)

Let M be an S-sorted set. F : SetS → SetS is M -bounded if F is |M |-accessible. Con-
versely, F is (|M | + 1)-accessible if F is M -bounded. ❏

By [155], Thm. 10.6, or [59], Cor. 4.9, for every destructive signature Σ there is an
S-sorted set M such that HΣ is M -bounded (see chapter 15).

652

18.1 Bounded functors 18 CATEGORICAL Σ-ALGEBRA

�� ��Categorical Σ-algebra

Examples

By [155], Ex. 6.8.2, or [59], Lemma 4.2, HDAut(X,Y) is X∗-bounded:

For all DAut(X, Y)-algebras A and a ∈ Astate,

⟨st⟩ = {id#A(a)(w), w ∈ X∗}

(see section 9.16). Hence |⟨st⟩| ≤ |X∗|.

BNAut(X,Y) (see chapter 15) is (X∗ × N)-bounded: For all BNAut(X,Y)-algebras

A
⟨δ,β⟩→ BNAut(X,Y)(A)

and a ∈ Astate,
⟨st⟩ = ∪{id#A(a)(w), w ∈ X∗}

where a ∈ Astate, id#A(a)(ϵ) = {st} and id#A(a)(x · w) = ∪{id#A(st′)(w) | st′ ∈ δA(a)(x)}
for all x ∈ X and w ∈ X∗. Since for all a ∈ Astate and x ∈ X , |δA(a)(x)| ∈ N,
|⟨st⟩| ≤ |X∗ × N|. If X = 1, then X∗ × N ∼= N and thus BNAut(1,Y) is N-bounded (see
[155], Ex. 6.8.1; [59], section 5.1). ❏

653

18.1 Bounded functors 18 CATEGORICAL Σ-ALGEBRA

�� ��Categorical Σ-algebra

A destructive signature Σ = (S, F) is Moore-like if there is an S-sorted set M such
that for all f : s→ e ∈ F , e = sMs or e ∈ I. Then M is called the input of Σ.

Lemma 18.3

Let Σ = (S, F) be a Moore-like signature with input M and

F ′ = {f : s→ e | e ∈ BT}.

Let κ be the cardinality of the greatest exponent occurring in the source of some f ∈ F

and λ be the first regular cardinal number > κ.

Since Σ is polynomial, Theorem 14.6 (1) implies that HΣ is λ-continuous and thus by
Theorem 14.8, coAlgHΣ

has a final object α : A → HΣ(A). In other words, AlgΣ has a
final object A.

Let Y =
∏

f :s→e∈F ′ e. If |S| = 1, then Σ agrees with DAut(Ms, Y) and thus

A ∼= Beh(Ms, Y)

(see sample algebra 9.6.24).

654

https://en.wikipedia.org/wiki/Regular_cardinal

18.1 Bounded functors 18 CATEGORICAL Σ-ALGEBRA

�� ��Categorical Σ-algebra

Otherwise A can be constructed as a straightforward extension of Beh(Ms, Y) to several
sorts: For all s ∈ S and h ∈ As,

As = M ∗
s → Y,

for all f : s→ e ∈ F ′, fA(h) = πg(h(ϵ)) and for all f : s→ sMs, fA(h) = λx.λw.h(x · w).

A can be visualized as the S-sorted set of trees such that for all s ∈ S and h ∈ As, the
root r of h has |Ms| outarcs, for all f : s → e ∈ F ′, r is labelled with fA(h), and for
all f : s → sMs and x ∈ Ms, fA(h)(x) = λw.h(x · w) is the subtree of h where the x-th
outarc of r points to. ❏

??MOORETAU

Let Σ = (S, F) be a destructive signature, M be an S-sorted set, HΣ be M -bounded and

F ′ = {fs : s→ sMs | s ∈ S} ∪ {f ′ : s→Me | f : s→ e ∈ F}.

Of course, Σ′ = (S, F ′) is Moore-like.

655

18.1 Bounded functors 18 CATEGORICAL Σ-ALGEBRA

�� ��Categorical Σ-algebra

Let the function τ : HΣ′ → HΣ be defined as follows: For all S-sorted sets A, a ∈ HΣ′(A)s
and f : s→ e ∈ F ,

πf(τA,s(a)) = Fe(πfs(a))(πf ′(a)).

τ is a surjective natural transformation.

Proof. The theorem generalizes [59], Thm. 4.7 (i)⇒(iv), from Set to SetS. ❏

Theorem 18.4

Let Σ = (S, F) be a destructive signature, M be an S-sorted set, HΣ be M -bounded and
the Σ-algebra A be defined as follows: For all s ∈ S,

As = M ∗
s →

∏
f :s→e∈F

Me,

and for all f : s→ e ∈ F and h ∈ As,

fA(h) = Fe(λx.λw.h(x · w))(πf(h(ϵ))).

A is weakly final and A/∼ is final in AlgΣ where ∼ is the greatest Σ-congruence on A.

656

18.1 Bounded functors 18 CATEGORICAL Σ-ALGEBRA

�� ��Categorical Σ-algebra

Proof. Let Σ′ and τ be defined as in Theorem ??. Let Y =
∏

f ′:s→Me∈F ′Me. Since Σ′ is
Moore-like, Lemma 18.3 implies that the following Σ′-algebra B is final:

For all s ∈ S, Bs = M ∗
s → Y .

For all f : s→ e ∈ F and h ∈ Bs, fBs (h) = λx.λw.h(x · w) and f ′B(h) = πf ′(h(ϵ)).

Hence by Lemma 15.3, A is weakly final:

For all s ∈ S,
∏

f :s→e∈F Me = Y and thus As = Bs.

For all f : s→ e ∈ F and h ∈ As,

fA(h) = Fe(λx.λw.h(x · w))(πf(h(ϵ))) = Fe(λx.λw.h(x · w))(πf ′(h(ϵ)))
= Fe(f

A
s (h))(f

′A(h)) = Fe(πfs(g1(h), . . . , gn(h)))(πf ′(g1(h), . . . , gn(h)))

= πf(τA,s(g1(h), . . . , gn(h))) = πf(τA,s(⟨g1, . . . , gn⟩(h))) = fB(h)

where {g1, . . . , gn} = {gA | g : s→ e′ ∈ F ′}.

Hence again by Lemma 15.3, A/∼ is final in AlgΣ where ∼ is the greatest Σ-congruence
on A.

A direct proof of the existence of a final Σ-algebra is given by [60], Thm. 3.5. ❏

657

18.1 Bounded functors 18 CATEGORICAL Σ-ALGEBRA

�� ��Categorical Σ-algebra

Example

Let Σ = NAut(X, Y), i.e., S = {state},

F = {δ : state→ set(state)X , β : state→ Y }

and P = ∅, and Mstate = X∗ ×N. Hence Mset(state)X = Pω(M)X and MY = Y . Since HΣ

is M -bounded, Theorem 18.4 implies that the following Σ-algebra A is weakly final:

Astate = M ∗ → Pω(M)X × Y.

For all h ∈ Astate and x ∈ X , h(ϵ) = (g, y) implies

δA(h)(x) = Fset(state)X(λm.λw.h(mw))(πδ(h(ϵ)))(x)

= Fset(state)X(λm.λw.h(mw))(g)(x) = Fset(state)(λm.λw.h(mw))(g(x))

= {Fstate(λm.λw.h(mw))(m) | m ∈ g(x)}
= {λm.λw.h(mw))(m) | m ∈ g(x)} = {λw.h(mw) | m ∈ g(x)},

βA(h) = FY (λx.λw.h(x · w))(πβ(h(ϵ))) = FY (λx.λw.h(x · w))(y) = idY (y) = y.

658

18.1 Bounded functors 18 CATEGORICAL Σ-ALGEBRA

�� ��Categorical Σ-algebra

Moreover, A/∼ is final in AlgΣ where ∼ is the greatest Σ-congruence on A, i.e., the union
of all S-sorted binary relations ∼ on A such that for all h, h′ ∈ Astate,

h ∼ h′ implies δA(h) ∼set(state)X δA(h′) ∧ βA(h) ∼Y βA(h′),

i.e., for all x ∈ X , h ∼ h′, h(ϵ) = (g, y) and h′(ϵ) = (g′, y′) imply

∀ m ∈ g(x) ∃n ∈ g′(x) : λw.h(mw) ∼ λw.h′(nw) ∧
∀ n ∈ g′(x) ∃m ∈ g(x) : λw.h(mw) ∼ λw.h′(nw) ∧ y = y′.

Let F ′ = {f : state→ stateM , δ : state→ Pω(M)X , β : state→ Y }
and Σ′ = (S, {X, Y,M,Pω(M)X}, F ′).

A is constructed from the following Σ′-algebra B with Bstate = Astate (see the proof of
Theorem 18.4): For all h ∈ Astate, fBstate(h) = λm.λw.h(mw) and ⟨δB, βB⟩(h) = h(ϵ).

Since Σ′ is Moore-like, Lemma 18.3 implies that A can be visualized as the set of trees
h such that the root r of h has |M | outarcs, r is labelled with h(ϵ) and for all m ∈ M ,
λw.h(mw) is the subtree of h where the m-th outarc of r points to. [62], section 5, shows
(for the case X = Y = 1) how these trees yield the quotient A/∼. ❏

659

19.1 Five equivalent definitions 19 ADJUNCTIONS

�
�

�
19 Adjunctions

19.1 Five equivalent definitions

Given two categories K and L, an adjunction from K to L is a quadruple (L,R, ϕ, ψ)

consisting of functors L : K → L, R : L → K and a (K × L)-sorted bijection

ϕ = (ϕA,B : K(A,RB) → L(LA,B))A∈K,B∈L

with inverse ψ such that for all A ∈ K and B ∈ L, ϕA,B is natural in A and B, i.e.,
for all f : A→ RB, a : A′ → A ∈ K and g : LA→ B, b : B → B′ ∈ L,

ϕA′,B(f ◦ a) = ϕA,B(f) ◦ La, (1)
ϕA,B′(Rb ◦ f) = b ◦ ϕA,B(f), (2)

or, equivalently,

ψA,B′(b ◦ g) = Rb ◦ ψA,B(g), (3)
ψA′,B(g ◦ La) = ψA,B(g) ◦ a (4)

We write L ⊣ R and call L a left adjoint of R and R a right adjoint of L (see, e.g.,
[100], section IV.1; [16], Def. 7.3.7).

660

19.1 Five equivalent definitions 19 ADJUNCTIONS

�� ��Adjunctions
Left adjoints preserve colimits and thus initial objects.
Right adjoints preserve limits and thus final objects.

Theorem 19.1 ([16], Theorem 7.3.12)

The following five conditions are equivalent:

(i) There is an adjunction (L,R, ϕ, ψ) from K to L such that for all f : A→ RB ∈ K
and g : LA→ B ∈ L,

ϕA,B(f) = ϕRB,B(idRB) ◦ Lf, (5)
ψA,B(g) = Rg ◦ ψA,LA(idLA). (6)

(ii) There is an adjunction (L,R, ϕ, ψ) from K to L.

(iii) Given functors L : K → L and R : L → K, there are natural transformations
η : IdK → RL, called unit, and ϵ : LR → IdL, called co-unit, such that for all a ∈ K
and B ∈ L,

ϵLA ◦ LηA = idLA, (7)
RϵB ◦ ηRB = idRB. (8)

661

19.1 Five equivalent definitions 19 ADJUNCTIONS

�� ��Adjunctions

(iv) Given a functor R : L → K, for all A ∈ K, there are an L-object LA, called free
over A, and a K-morphism ηA : A → RLA such that for every f : A → RB ∈ K there
is a unique L-morphism f ∗ : LA → B, called the left adjunct or L-extension of f ,
such that the following diagram commutes:

A
ηA ≻RLA LA

RB

R(f ∗)

⋎

(9)

f

≻
B

f ∗

⋎

(v) Given a functor L : K → L, for all B ∈ L, there are a K-object RB, called cofree
over B, and an L-morphism ϵB : LRB → B such that for every g : LA→ B ∈ L there
is a unique K-morphism g# : A→ RB, called the right adjunct or K-coextension of
g, such that the following diagram commutes:

662

19.1 Five equivalent definitions 19 ADJUNCTIONS

�� ��Adjunctions

B≺
ϵB

LRB RB

LA

L(g#)

⋏
(10)

g

≺

A

g#

⋏

Proof. “(ii)⇒(iii)”: Let ψ = ϕ−1. For all A ∈ K and B ∈ L, define

ϵB = ϕRB,B(idRB) : LRB → B, (11)
ηA = ψA,LA(idLA) : A→ RLA. (12)

ϵ is natural: For all h : B′ → B ∈ L,

ϵB ◦ LRh (11)
= ϕRB,B(idRB) ◦ LRh

(1)
= ϕRB′,B(idRB ◦Rh) = ϕRB′,B(Rh)

= ϕRB′,B(Rh ◦ idRB′)
(2)
= h ◦ ϕRB′,B′(idRB′)

(11)
= h ◦ ϵB′.

η is natural: For all h : A→ A′ ∈ L,

RLh ◦ ηA
(12)
= RLh ◦ ψA,LA(idLA)

(3)
= ψA,LA′(Lh ◦ idLA) = ψA,LA′(Lh)

= ψA,LA′(idLA′ ◦ Lh) (4)
= ψA′,LA′(idLA′) ◦ h (12)

= ηA′ ◦ h.

663

19.1 Five equivalent definitions 19 ADJUNCTIONS

�� ��Adjunctions
(7) holds true:

ϵLA ◦ LηA = ϕRLA,LA(idRLA) ◦ L(ψA,LA(idLA))
(1)
= ϕA,LA(idRLA ◦ ψA,LA(idLA)) = idLA.

(8) holds true:

RϵB ◦ ηRB = R(ϕRB,B(idRB)) ◦ ψRB,LRB(idLRB)
(3)
= ψRB,B(ϕRB,B(idRB) ◦ idLRB) = idRB.

“(iii)⇒(iv)+(v)”: For all f : A→ RB and g : LA→ B, define

f ∗ = ϵB ◦ Lf : LA→ B, (13)
g# = Rg ◦ ηA : A→ RB. (14)

Hence

R(f ∗) ◦ ηA
(13)
= R(ϵB ◦ Lf) ◦ ηA = RϵB ◦RLf ◦ ηA = RϵB ◦ ηRB ◦ f (6)

= f, (15)

ϵB ◦ L(g#) (14)
= ϵB ◦ L(Rg ◦ ηA) = ϵB ◦ LRg ◦ LηA = g ◦ ϵLA ◦ LηA

(5)
= g. (16)

Moreover, _∗ : K(A,RB) → L(LA,B) and _# : L(LA,B) → K(A,RB) are inverse to
each other:

(f ∗)#
(13)
= (ϵB ◦ Lf)# (14)

= R(ϵB ◦ Lf) ◦ ηA = RϵB ◦RLf ◦ ηA
= RϵB ◦ ηRB ◦ f (8)

= f,
(17)

664

19.1 Five equivalent definitions 19 ADJUNCTIONS

�� ��Adjunctions

(g#)∗
(14)
= (Rg ◦ ηA)∗

(13)
= ϵB ◦ L(Rg ◦ ηA) = ϵB ◦ LRg ◦ LηA

= g ◦ ϵLA ◦ LηA
(7)
= g.

(18)

Hence L-extensions and K-coextensions are unique:
Let g : LA→ B ∈ K satisfy Rg ◦ ηA = f . Then g

(18)
= (g#)∗ = (Rg ◦ ηA)∗ = f ∗.

Let f : A→ RB ∈ K satisfy ϵB ◦ Lf = g. Then f
(17)
= (f ∗)# = (ϵB ◦ Lf)# = g#.

“(iv)⇒(i)”: L is functor from K to L: For all a : A′ → A ∈ K, define

La = (ηA ◦ a)∗ : LA′ → LA. (19)

Consequently, η = (ηA : A→ RLA)A∈K is a natural transformation:

RLa ◦ ηA′ = R((ηA ◦ a)∗) ◦ ηA′ = ηA ◦ a. (20)

For all A ∈ K and B ∈ L, define ϕA,B : K(A,RB) → L(LA,B) and ψA,B : L(LA,B) →
K(A,RB) as follows: For all f : A→ RB ∈ K and g : LA→ B ∈ L,

ϕA,B(f) = f ∗ : LA→ B, (21)
ψA,B(g) = Rg ◦ ηA : A→ RB. (22)

665

19.1 Five equivalent definitions 19 ADJUNCTIONS

�� ��Adjunctions
ϕ and ψ are inverse to each other:

ψA,B(ϕA,B(f))
(21)
= ψA,B(f

∗)
(22)
= R(f ∗) ◦ ηA

(9)
= f,

R(ϕA,B(ψA,B(g))) ◦ ηA
(22)
= R(ϕA,B(Rg ◦ ηA)) ◦ ηA

(21)
= R((Rg ◦ ηA)∗) ◦ ηA

(9)
= Rg ◦ ηA

and thus ϕA,B(ψA,B(g)) = g by the uniqueness part of (9).

(1) holds true:

R(ϕA′,B(f ◦ a)) ◦ ηA′
(22)
= R((f ◦ a)∗) ◦ ηA′

(9)
= f ◦ a (9)

= R(f ∗) ◦ ηA ◦ a
(20)
= R(f ∗) ◦RLa ◦ ηA′ = R(f ∗ ◦ La) ◦ ηA′

and thus ϕA′,B(f ◦ a) = f ∗ ◦ La (21)
= ϕA,B(f) ◦ La by the uniqueness part of (9).

(2) holds true:

R(ϕA,B′(Rb ◦ f)) ◦ ηA
(22)
= R((Rb ◦ f)∗) ◦ ηA

(9)
= Rb ◦ f (9)

= Rb ◦R(f ∗) ◦ ηA
= R(b ◦ f ∗) ◦ ηA

(21)
= R(b ◦ ϕA,B(f)) ◦ ηA

and thus ϕA,B′(Rb ◦ f) = b ◦ ϕA,B(f) by the uniqueness part of (9).

(5) holds true:

ϕA,B(f)
(21)
= f ∗ = (idRB ◦ f)∗ (23)

= id∗RB ◦ (ηRB ◦ f)∗ (21),(19)
= ϕRB,B(idRB) ◦ Lf

where (23) follows from the uniqueness part of (9).

666

19.1 Five equivalent definitions 19 ADJUNCTIONS

�� ��Adjunctions
(6) holds true:

ψA,B(g)
(22)
= Rg ◦ ηA = Rg ◦ idRLA ◦ ηA = Rg ◦R(idLA) ◦ ηA

(22)
= Rg ◦ ψA,LA(idLA).

“(v)⇒(i)”: R is functor from L to K: For all a : B → B′ ∈ L, define

Rb = (b ◦ ϵB)# : LA′ → LA. (24)

Consequently, ϵ = (ϵB : B → LRB)B∈L is a natural transformation:

ϵB′ ◦ LRb = ϵB′ ◦ L((b ◦ ϵB)#) = b ◦ ϵB. (25)

For all A ∈ K and B ∈ L, define ϕA,B : K(A,RB) → L(LA,B) and ψA,B : L(LA,B) →
K(A,RB) as follows: For all f : A→ RB ∈ K and g : LA→ B ∈ L,

ϕA,B(f) = ϵB ◦ Lf : LA→ B, (26)
ψA,B(g) = g# : A→ RB. (27)

ϕ and ψ are inverse to each other:

ϕA,B(ψA,B(g))
(27)
= ϕA,B(g

#)
(26)
= ϵB ◦ L(g#) (10)

= g,

ϵB ◦ L(ψA,B(ϕA,B(f))) = ϵB ◦ L(ψA,B(ϵB ◦ Lf)) (27)
= ϵB ◦ L((ϵB ◦ Lf)#) (10)

= ϵB ◦ Lf,

and thus ψA,B(ϕA,B(f)) = f by the uniqueness part of (10).

667

19.1 Five equivalent definitions 19 ADJUNCTIONS

�� ��Adjunctions
(3) holds true:

ϵB′ ◦ L(ψA,B′(b ◦ g)) (27)
= ϵB′ ◦ L((b ◦ g)#) (10)

= b ◦ g (10)
= b ◦ ϵB ◦ L(g#)

(25)
= ϵB′ ◦ LRb ◦ L(g#) = ϵB′ ◦ L(Rb ◦ g#)

and thus ψA,B′(b ◦ g) = Rb ◦ g# (27)
= Rb ◦ ψA,B(g) by the uniqueness part of (10).

(4) holds true:

ϵB′ ◦ L(ψA,B′(g ◦ La)) (27)
= ϵB′ ◦ L((g ◦ La)#) (10)

= g ◦ La (10)
= ϵB ◦ L(g#) ◦ La

= ϵB ◦ L(g# ◦ a) (27)
= ϵB′ ◦ L(ψA,B(g) ◦ a)

and thus ψA,B′(g ◦ La) = ψA,B(g) ◦ a by the uniqueness part of (10).

(5) holds true:

ϕA,B(f)
(26)
= ϵB ◦ Lf = ϵB ◦ idLRB ◦ Lf = ϵB ◦ L(idRB) ◦ Lf

(26)
= ϕRB,B(idRB) ◦ Lf.

(6) holds true:

ψA,B(g)
(27)
= g# = (g ◦ idLA)#

(28)
= (g ◦ ϵLA)# ◦ id#LA

(24),(27)
= Rg ◦ ψA,LA(idLA).

where (28) follows from the uniqueness part of (10).

668

19.1 Five equivalent definitions 19 ADJUNCTIONS

�� ��Adjunctions
Finally, we show the equivalence of (1)+(2) and (3)+(4):

“(2)⇒(3)”:

ψA,B′(b ◦ g) = ψA,B′(b ◦ ϕA,B(ψA,B(g)))
(2)
= ψA,B′(ϕA,B′(Rb ◦ ψA,B(g))) = Rb ◦ ψA,B(g).

“(1)⇒(4)”:

ψA′,B(g ◦ La) = ψA′,B(ϕA,B(ψA,B(g)) ◦ La)
(1)
= ψA′,B(ϕA′,B(ψA,B(g) ◦ a)) = ψA,B(g) ◦ a.

“(4)⇒(1)”:

ϕA′,B(f ◦ a) = ϕA′,B(ψA,B(ϕA,B(f)) ◦ a)
(4)
= ϕA′,B(ψA′,B(ϕA,B(f) ◦ La)) = ϕA,B(f) ◦ La.

“(3)⇒(2)”:

ϕA,B′(Rb ◦ f) = ϕA,B′(Rb ◦ ψA,B(ϕA,B(f)))
(2)
= b ◦ ϕA,B(ψA,B(ϕA,B(f))) = b ◦ ϕA,B(f). ❏

No matter which one of the above five ways define a particular adjunction, (11)-(14),
(19), (21), (22), (24), (26) and (27) provide us with valid relationships, which allow us
to obtain L, R, ϕ, ψ, the unit, the co-unit, L-extensions and K-coextensions from each
other. Moreover, (17) and (18) motivate a rule-like notation:

A
f−→ RB

LA
f∗−→ B

LA
g−→ B

A
g#−→ RB

669

19.2 Identity functor 19 ADJUNCTIONS

�� ��Adjunctions

19.2 Identity functor

The identity functor IdK : K → K is left and right adjoint to itself.

A
f−→ IdK(B)

A
f∗=f−→ B

IdK(A)
g−→ B

A
g#=g−→ B

19.3 Monoid functor

Let Monoid be the full subcategory of AlgMon whose objects are monoids.

The monoid functor

MF : Set → Monoid ⊆ AlgMon

X 7→ (X∗, {λϵ.ϵ : 1 → X∗, λ(v, w).vw : (X∗)2 → X∗})
f : X → A 7→ MF (f) : X∗ → A∗

(see chapter 8; [16], section 7.2) where for all x ∈ X and w ∈ X∗,

670

19.3 Monoid functor 19 ADJUNCTIONS

�� ��Adjunctions

MF (f)(ϵ) =def ϵ,

MF (f)(x · w) =def f (x) ·MF (f)(w),

is left adjoint to the forgetful functor U : Monoid → Set (which maps a monoid to
its carrier), i.e., for all monoids A and functions f : X → U(A) there is a unique
Mon-homomorphism f ∗ : MF (X) → A such that (1) commutes:

X
ηX =def incX ≻X∗ MF (X) free monoid over X

U(A)

U(f ∗)

⋎

(1)

f
≻

A

f ∗

⋎
monoid

For all x ∈ X and w ∈ X∗,

f ∗(ϵ) =def oneA,

f ∗(x · w) =def mulA(f (x), f ∗(w)).

671

19.3 Monoid functor 19 ADJUNCTIONS

�� ��Adjunctions

Equivalently, for all monoids A and Mon-homomorphisms g : MF (X) → A there is a
unique function g# : X → U(A) such that (2) commutes:

A≺
ϵA

MF (U(A)) U(A)

MF (X)

MF (g#)

⋏
(2)

g

≺

X

g#

⋏

=def λx.g(x)

For all a ∈ U(A) and w ∈ U(A)∗,

ϵA(ϵ) =def oneA,

ϵA(aw) =def mulA(a, ϵA(w)).

Summing up:
X

f−→ U(A)

MF (X)
f∗−→ A

MF (X)
g−→ A

X
g#−→ U(A)

672

19.4 Sequence functor 19 ADJUNCTIONS

�� ��Adjunctions

19.4 Sequence functor

The sequence functor

SFX : Set → AlgcoStream(X)

Y 7→ (X∗ × Y, {consSeq(X,Y)})
f : Y → A 7→ λ(w, y).(w, f (y)) : X∗ × Y → X∗ × A

(see sample algebra 9.6.3; [16], section 7.2) is left adjoint to the forgetful functor U :

AlgcoStream(X) → Set , i.e., for all coStream(X)-algebras A and functions f : Y → U(A)

there is a unique coStream(X)-homomorphism f ∗ : SFX (Y) → A such that (3) com-
mutes:

Y
ηY = λy.(ϵ, y)

≻X∗ × Y SFX (Y)

free coStream(X)-algebra over Y

= initial Dyn(X, Y)-algebra

with αSFX (Y) = ηY

U(A)

U(f ∗)

⋎

(3)

f
≻

A

f ∗

⋎ coStream(X)-algebra

= Dyn(X, Y)-algebra with αA = f

673

19.4 Sequence functor 19 ADJUNCTIONS

�� ��Adjunctions
For all y ∈ Y , x ∈ X and w ∈ X∗,

f ∗(ϵ, y) =def f (y),

f ∗(xw, y) =def consA(x, f ∗(w, y)).

Equivalently, for all coStream(X)-algebras A and coStream(X)-homomorphisms g :

SFX (Y) → A there is a unique function g# : Y → U(A) such that (4) commutes:

A≺
ϵA

SFX (U(A)) U(A)

SFX (Y)

SFX (g
#)

⋏
(4)

g

≺

Y

g#

⋏

=def λy.g(ϵ, y)

For all a ∈ U(A), x ∈ X and w ∈ X∗,

ϵA(ϵ, a) =def a,

ϵA(xw, a) =def consA(x, ϵA(w, a)).

674

19.5 Behavior functor 19 ADJUNCTIONS

�� ��Adjunctions
Summing up:

Y
f−→ U(A)

SFX (Y)
f∗−→ A

SFX (Y)
g−→ A

Y
g#−→ U(A)

19.5 Behavior functor

BFX : Set → AlgMed(X)

Y 7→ (Y X∗
, {δBeh(X,Y)})

g : A→ Y 7→ λh.g ◦ h : AX∗ → Y X∗

(see sample algebra 9.6.24; [16], section 7.2; [17], section 3.1) is right adjoint to the
forgetful functor U : AlgMed(X) → Set , i.e., for all Med(X)-algebras A and functions
g : U(A) → Y there is a unique Med(X)-homomorphism g# : A → BFX (Y) such that
(5) commutes:

675

19.5 Behavior functor 19 ADJUNCTIONS

�� ��Adjunctions

Y ≺
ϵY = λh.h(ϵ)

Y X∗
BFX (Y)

cofree Med(X)-algebra over Y

= final DAut(X, Y)-algebra

with βBFX (Y) = ϵY

U(A)

U(g#)

⋏
(5)

g

≺

A

g#

⋏

Med(X)-algebra

= DAut(X, Y)-algebra with βA = g

For all a ∈ U(A), x ∈ X and w ∈ X∗,
g#(a)(ϵ) =def g(a),

g#(a)(x · w) =def g#(δA(a)(x))(w).

Equivalently, for all Med(X)-algebras A and Med(X)-homomorphisms
f : A → BFX (Y) there is a unique function f ∗ : U(A) → Y such that (6) commutes:

A
ηA ≻BFX (U(A)) U(A)

BFX (Y)

BFX (f
∗)

⋎

(6)

f
≻

Y

f ∗

⋎

=def λa.f (a)(ϵ)

676

19.6 Weighted-set functor 19 ADJUNCTIONS

�� ��Adjunctions

For all a ∈ U(A), x ∈ X and w ∈ X∗,

ηA(a)(ϵ) =def a,

ηA(a)(x · w) =def ηA(δ
A(a)(x))(w).

Summing up:
A f−→ BFX (Y)

U(A)
f∗−→ Y

U(A)
g−→ Y

A g#−→ BFX (Y)

19.6 Weighted-set functor

Let (R,+, 0, ∗, 1) be a semiring (see sample algebra 9.6.25). The weighted-set functor
R−
ω : Set → SModR is left adjoint to the forgetful functor U : SModR → Set .

For all R-semimodules A with R-action · : R × A → A and functions f : X → A there
is a unique linear function f ∗ : RX

ω → A such that (7) commutes:

For all g ∈ RX
R , f ∗(g) =def

∑
x∈supp(g) g(x) · f (x).

677

19.6 Weighted-set functor 19 ADJUNCTIONS

�� ��Adjunctions

X
λx.(λy.0)[1/x]

≻RX
ω free R-semimodule over X

A

(7) f ∗

⋎
f

≻
R-semimodule

Particular cases of this adjunction have a ring (= semiring with additive inverses) or a
field (= ring with commutative multiplication and multiplicative inverses) instead of a
semiring and thus provide the free R-module (= R-semimodule with ring R) or the free
R-vector space (= R-module with field R) over X .

Linearization (also called determinization) of weighted automata

Let A be anR-weighted automaton with carrierA and output inR, i.e., a WAut(X,R,R)-
algebra. The linearization of A, Lin(A), is the linear automaton, i.e., the DAut(X,R)-
algebra that is defined as follows:

Lin(A)state = RA
ω ,

δLin(A) = (δA)∗ : RA
ω → (RA

ω)
X ,

βLin(A) = (βA)∗ : RA
ω → R.

678

https://en.wikipedia.org/wiki/Ring_(mathematics)
https://en.wikipedia.org/wiki/Field_(mathematics)

19.7 Box and diamond functors 19 ADJUNCTIONS

�� ��Adjunctions

19.7 Box and diamond functors

Let A,B be sets, f : A → B and P(A),P(B) be the categories with subsets of A,B,
respectively, as objects and set inclusions as morphisms. The pre-images of f yield the
functor

f−1 : P(B) → P(A)

Y 7→ {a ∈ A | f (a) ∈ Y }.

The following functors are left or right adjoint to f−1:

3 : P(A) → P(B) 2 : P(A) → P(B)

X 7→ {b ∈ B | f−1(b) ∩X ̸= ∅} X 7→ {b ∈ B | f−1(b) ⊆ X}
= f (X) = {f (x) | x ∈ X}

X ⊂
(i)

≻ f−13X 3X X≺
(ii)

⊃ f−12X 2X

f−1Y
⋎

∩

(iii)

⊂

≻
Y

(iv)

⋎

∩

f−1Y
∪

⋏

(v)

≺

⊃
Y

(vi)

∪

⋏

679

19.7 Box and diamond functors 19 ADJUNCTIONS

�� ��Adjunctions
Proof.

(i) X ⊆ {a ∈ A | f (a) ∈ f (X) = 3X} = f−13X

(ii) f−12X = {a ∈ A | f (a) ∈ 2X = {b ∈ B | f−1(b) ⊆ X}}
= {a ∈ A | f−1(f (a)) ⊆ X} = {a ∈ A | {a′ ∈ A | f (a′) = f (a)} ⊆ X}
= {a ∈ A | ∀ a′ ∈ A : f (a′) = f (a) ⇒ a′ ∈ X} ⊆ X

(iii) X ⊆ f−1Y

⇒ 3X = {b ∈ B | f−1(b) ∩X ̸= ∅} ⊆ {b ∈ B | f−1(b) ∩ f−1Y ̸= ∅}
⇔ 3X ⊆ {b ∈ B | {a ∈ A | f (a) = b} ∩ {a ∈ A | f (a) ∈ Y } ≠ ∅}
⇔ 3X ⊆ {b ∈ B | {a ∈ A | f (a) = b ∈ Y } ≠ ∅}
⇔ (iv) 3X ⊆ {b ∈ B | {a ∈ A | f (a) = b ∈ Y } ≠ ∅} ⊆ Y

(v) f−1Y ⊆ X

⇒ {b ∈ B | f−1(b) ⊆ f−1Y } ⊆ {b ∈ B | f−1(b) ⊆ X} = 2X

⇔ {b ∈ B | {a ∈ A | f (a) = b} ⊆ {a ∈ A | f (a) ∈ Y }} ⊆ 2X

⇔ {b ∈ B | ∀ a ∈ A : (f (a) = b⇒ f (a) ∈ Y)} ⊆ 2X

⇔ (vi) Y ⊆ {b ∈ B | ∀ a ∈ A : (f (a) = b⇒ f (a) ∈ Y)} ⊆ 2X

680

19.8 Strongly connected components 19 ADJUNCTIONS

�� ��Adjunctions

19.8 Strongly connected components

Let G ∈ AlgGraph (see chapter 8). (e0, . . . , en−1) ∈ G+
edge is a cycle of G if for all

0 ≤ i < n, targetG(ei) = sourceG(e(i+1) mod n). cycles(G) denotes the set of cycles of G.

Let S = {node, edge}. The S-sorted equivalence relation ∼ relates all strongly connected
nodes of G to each other: For all e, e′ ∈ Gedge and a, b ∈ Gnode,

a ∼node b ⇔def a = b ∨

 ∃ (e0, . . . , en−1) ∈ cycles(G), 0 ≤ i, j < n :

a = sourceG(ei) ∧ b = sourceG(ej),

e ∼edge e
′ ⇔def e = e′ ∨ ∃ (e0, . . . , en−1) ∈ cycles(G), 0 ≤ i, j < n : e = ei ∧ e′ = ej.

∼G = (∼node,∼edge) is a Graph-congruence, i.e., for all e, e′ ∈ Gedge, e ∼edge e
′ implies

sourceG(e) ∼node source
G(e′) and targetG(e) ∼node target

G(e′).

Let Acyclic be the full subcategory of AlgGraph whose objects are the acyclic graphs.

The functor SC : AlgGraph → Acyclic that maps each graph G to the acyclic graph
G/∼G of the strongly connected components of G is left adjoint to the inclusion functor
Inc : Acyclic→ AlgGraph ([143], Ex. 2.4.10).

681

19.8 Strongly connected components 19 ADJUNCTIONS

�� ��Adjunctions

G
nat∼ ≻ Inc(SC(G)) SC(G) = G/∼

strongly connected components

of G

Inc(A)

Inc(f ∗)

⋎
f

≻
A

f ∗ = λ[e]∼.f (e)

⋎
acyclic graph

f ∗ is well-defined: Let e ∼edge e
′. If fedge(e) ̸= fedge(e

′), then e ̸= e′ and thus g has a
cycle (e0, . . . , en−1). Since f is a Graph-homomorphic, for all 0 ≤ i < n,

targetA(fedge(ei)) = fedge(target
G(ei)) = fedge(source

G(e(i+1) mod n))

= sourceA(fedge(e(i+1) mod n)).

Hence (fedge(e0), . . . , fedge(en−1)) is a cycle of the acyclic graph A.
We conclude fedge(e) = fedge(e

′).

Let a ∼node b. If fnode(a) ̸= fnode(b), then a ̸= b and thus G has a cycle. As above we
obtain a contradiction and thus conclude fnode(a) = fnode(b).

Since nat∼G
and f = f ∗ ◦ nat∼G

are graph homomorphisms and nat∼G
is surjective,

Lemma 9.1 (1) implies that f ∗ is also a graph homomorphism. Hence the uniqueness of
f ∗ satisfying f = f ∗ ◦ nat∼G

again follows from the fact that nat∼G
is epi.

682

19.9 Reader and writer 19 ADJUNCTIONS

�� ��Adjunctions

19.9 Reader and writer

Reader functors are left adjoint to writer functors.

A
f−→ CB

A×B
f∗−→ C

A×B
g−→ C

A
g#−→ CB

A
ηA ≻ (A×B)B

A×B

(f ∗)B = λh.f ∗ ◦ h
≺

f

≻

C≺
ϵC

CB ×B

A×B

g# × idB

≻

g

≺

683

19.10 Cartesian closure and fixpoints 19 ADJUNCTIONS

�� ��Adjunctions

This example suggests a notion of adjoint signatures Σ and Σ′ with the same set of sorts:

Σ is left (right) adjoint to Σ′ if HΣ is left (right) adjoint to HΣ′ (in Mod(S); see chapter
15).

For instance, Med(X) is left adjoint to coStream(X) (see chapter 8).

Indeed, for all Med(X)-algebras A and coStream(X)-algebras B, both with carrier A,
interpretations of δ : state×X → state in A and δ : state→ stateX in B are obtained
as the extension of δA and the coextension of δB, respectively:

A
δA−→ AX

A×X
(δA)∗−→ A

A×X
δB−→ A

A
(δB)#−→ AX

19.10 Cartesian closure and fixpoints

A category K is Cartesian closed if K has a final object Fin, binary products and for
all B ∈ K, the functor _ × B that maps A ∈ K to A × B and f : A → B ∈ K to
f × idB : A×B → B ×B has a right adjoint.

684

19.10 Cartesian closure and fixpoints 19 ADJUNCTIONS

�� ��Adjunctions

Unit, co-unit, L-extensions and K-coextensions of the corresponding adjunction are also
denoted by pair, apply, uncurry(f) : A × B → C (for all f : A → CB ∈ K) and
curry(g) : A→ CB (for all g : A×B → C ∈ K), respectively.

These notations are inspired by the definitions that render Set and SetS Cartesian closed
categories:

Let A,B,C be S-sorted sets.

• CB =def Set
S(B,C).

• For all S-sorted functions f : A→ C and g : B → A, fB(g) =def f ◦ g.
• ηA = pairA =def λa.λb.(a, b) and ϵC = applyC = λ(f, b).f (b).
• For all S-sorted functions g : A×B → C, g# = curry(g) =def λa.λb.g(a, b).
• For all S-sorted functions f : A→ CB, f ∗ = uncurry(f) =def λ(a, b).h(a)(b).

Let K be a Cartesian closed subcategory of SetS.

C ∈ K has the fixpoint property if every f : C → C ∈ K has a fixpoint (see section
3.2).

685

19.10 Cartesian closure and fixpoints 19 ADJUNCTIONS

�� ��Adjunctions
Theorem 19.2 (Cantor’s Diagonal Theorem; [168], Thm. 1)

If there is a surjective K-morphism h : A→ CA, then C has the fixpoint property.

Proof. Let f : C → C ∈ K, h : A→ CA ∈ K be surjective and g = f ◦h∗ ◦∆A : A→ C.
Since h is surjective, there is ag ∈ A such that for all a ∈ A, h(ag)(a) = g(a). Hence

h(ag)(ag) = g(ag) = f (h∗(ag, ag)) = f (h(ag)(ag)),

i.e., h(ag)(ag) is a fixpoint of f . ❏

Theorem 19.2 can be generalized to arbitrary Cartesian closed categories:

Let K be a Cartesian closed category.

C ∈ K has the fixpoint property if for every f : C → C there is c : Fin → C with
f ◦ c = c.

A K-morphism h : A → CB is weakly point-surjective if for every g : B → C ∈ K
there is ag : Fin → A such that for all b : Fin → B ∈ K, ϵC ◦ ⟨h ◦ ag, b⟩ = g ◦ b.

Theorem 19.3 (Lawvere’s Diagonal Theorem; [98], Thm. 1.1)

If there is a weakly point-surjective K-morphism h : A → CA, then C has the fixpoint
property.

686

19.10 Cartesian closure and fixpoints 19 ADJUNCTIONS

�� ��Adjunctions

Proof. Let f : C → C ∈ K, h : A → CA ∈ K be weakly point-surjective and
g = f ◦ h∗ ◦∆A : A→ C. Since h is weakly point-surjective, there is ag : Fin → A such
that for all a : Fin → A ∈ K, ϵC ◦ ⟨h ◦ ag, a⟩ = g ◦ a. Hence

ϵC ◦ ⟨h ◦ ag, ag⟩ = g ◦ ag = f ◦ h∗ ◦∆A ◦ ag = f ◦ h∗ ◦ ⟨ag, ag⟩
Theorem 19.1(13)

= f ◦ ϵC ◦ L(h) ◦ ⟨ag, ag⟩ = f ◦ ϵC ◦ (h× idA) ◦ ⟨ag, ag⟩
section 2.2(8)

= f ◦ ϵC ◦ ⟨h ◦ ag, idA ◦ ag⟩ = f ◦ ϵC ◦ ⟨h ◦ ag, ag⟩,

i.e., ϵC ◦ ⟨h ◦ ag, ag⟩ is a fixpoint of f . ❏

Corollary 19.4 (Diagonal Theorem for retractions)

If there is a retraction h : A → CA ∈ K (see section 4.2), then C has the fixpoint
property.

Proof. Let h : A → CA ∈ K be a retraction, i.e., h ◦ h′ = idAC for some h′ : AC →
A ∈ K. By Theorem 19.3, it is sufficient to show that h is weakly point-surjective. Let
g : B → C ∈ K and ag = h′ ◦ (g ◦ π2)# : Fin → A. Then for all b : Fin → B ∈ K,

687

19.10 Cartesian closure and fixpoints 19 ADJUNCTIONS

�� ��Adjunctions

ϵC ◦ ⟨h ◦ ag, b⟩ = ϵC ◦ ⟨h ◦ h′ ◦ (g ◦ π2)#, b⟩ = ϵC ◦ ⟨(g ◦ π2)#, b⟩
section 2.2(8)

= ϵC ◦ ((g ◦ π2)# × idB) ◦ ⟨idFin, b⟩ = g ◦ π2 ◦ ⟨idFin, b⟩ = g ◦ b,
i.e., h is weakly point-surjective. ❏

Corollary 19.5

For all sets A,C with |C| > 1, |A| < |CA|. In particular, 2N is uncountable.

Proof. Of course, |A| ≤ |CA|. Let c, d ∈ C with c ̸= d. Then g : C → C with g(c) = d

and g(e) = c for all e ∈ C \ {c} does not have a fixpoint. Hence by Theorem 19.4, there
is no surjective h : A→ CA and thus A ̸∼= CA.

A fixpoint argument is also used in the following result:

Proposition 19.6 (Russell’s paradox)

Let K be the category of classes, A be the class of all sets and χ : A→ 2A be the function
that maps each subclass B of A to its characteristic function χ(B) : A → 2. χ is not
surjective. In particular, the class B of all sets S with S ̸∈ S is not a set.

688

19.10 Cartesian closure and fixpoints 19 ADJUNCTIONS

�� ��Adjunctions

Proof. Let f = λS.g(χ(S)(S)) : A → 2 where g : 2 → 2 maps 0 to 1 and 1 to 0. Then
for all sets S,

f (S) = g(χ(S)(S)) = 1 ⇔ χ(S)(S) = 0 ⇔ S ̸∈ S.

Consequently, if the collection T of all sets S with S ̸∈ S were a set, then χ(T) = f

and thus χ(T)(T) = f (T) = g(χ(T)(T)), i.e., χ(T)(T) were a fixpoint of f , which is not
possible. Hence T is not a set and χ is not surjective. ❏

[168], section 1.3, and [191], ‚Ç¨3 and ‚Ç¨5, employ similar arguments for reformulat-
ing other “negative” results, like the unsolvability of the halting problem (Turing), the
incompleteness of arithmetic theories (Gödel) or the undefinability of truth (Tarski).

689

19.11 Product and coproduct 19 ADJUNCTIONS

�� ��Adjunctions

19.11 Product and coproduct

Products (and other limits) are right adjoint to diagonals.

A
f−→ B × C

(A,A)
f∗=(π1◦f,π2◦f)−→ (B,C)

(A,A)
(f,g)−→ (B,C)

A
(f,g)#=⟨f,g⟩−→ B × C

A
ηA = ⟨idA, idA⟩ ≻A× A (A,A)

B × C

(π1 ◦ f)× (π2 ◦ f)

⋎
f

≻
(B,C)

(π1 ◦ f, π2 ◦ f)

⋎

(B,C)≺
ϵ(B,C) = (π1, π2)

(B × C,B × C) B × C

(A,A)

(⟨f, g⟩, ⟨f, g⟩)

⋏

(f, g)

≺

A

⟨f, g⟩

⋏

690

19.11 Product and coproduct 19 ADJUNCTIONS

�� ��Adjunctions

R : KI → K with R((Bi)i∈I) =
∏

i∈I Bi for all KI-objects and -morphisms (Bi)i∈I is
right adjoint to the diagonal functor ∆I

K : K → KI (see section 5).

A
ηA = ⟨idA⟩i∈I ≻AI (A)i∈I

∏
i∈I

Bi

∏
i∈I(πi ◦ f)

⋎
f

≻
(Bi)i∈I

(πi ◦ f)i∈I
⋎

(Bi)i∈I≺
ϵ(Bi)i∈I = (πi)i∈I

(
∏
i∈I

Bi)i∈I
∏
i∈I

Bi

(A)i∈I

(⟨fi⟩i∈I)i∈I
⋏

(fi)i∈I

≺

A

⟨fi⟩i∈I
⋏

691

19.11 Product and coproduct 19 ADJUNCTIONS

�� ��Adjunctions
Coproducts (and other colimits) are left adjoint to diagonals.

(A,B)
(f,g)−→ (C,C)

A +B
(f,g)∗=[f,g]−→ C

A +B
f−→ C

(A,B)
f#=(f◦ι1,f◦ι2)−→ (C,C)

(A,B)
η(A,B) = (ι1, ι2)≻ (A +B,A +B) A +B

(C,C)

([f, g], [f, g])

⋎
(f, g)

≻
C

[f, g]

⋎

C≺
ϵC = [idC, idC]

C + C (C,C)

A +B

(f ◦ ι1) + (f ◦ ι2)

⋏

f

≺

(A,B)

(f ◦ ι1, f ◦ ι2)

⋏

692

19.11 Product and coproduct 19 ADJUNCTIONS

�� ��Adjunctions

L : KI → K with L((Ai)i∈I) =
∐

i∈I Ai for all LI-objects and -morphisms (Ai)i∈I is left
adjoint to the diagonal functor ∆I

K : K → KI (see section 5).

(Ai)i∈I
η(Ai)i∈I = (ιi)i∈I≻ (

∐
i∈I

Ai)i∈I
∐
i∈I

Ai

(B)i∈I

([fi]i∈I)i∈I

⋎
(fi)i∈I

≻
B

[fi]i∈I

⋎

B≺
ϵB = [idB]i∈I

B × I (B)i∈I

∐
i∈I

Ai

∐
i∈I(f ◦ ιi)

⋏

f

≺

(Ai)i∈I

(f ◦ ιi)i∈I

⋏

693

19.12 Term and flowchart functors 19 ADJUNCTIONS

�� ��Adjunctions

19.12 Term and flowchart functors

Let Σ = (S,C) be a constructive polynomial signature, US be the forgetful functor from
AlgΣ to SetS (see chapter 7), V, V ′ ∈ SetS and A be a Σ-algebra (see chapter 9).

ηV =def incV : V → TΣ(V).

V
g−→ US(A)

TΣ(V)
g∗−→ A

TΣ(V)
h−→ A

V
h#=h◦ηV−→ US(A)

The term functor

TΣ : SetS → AlgΣ

V 7→ TΣ(V)

f : V → V ′ 7→ (ηV ′ ◦ f)∗ : TΣ(V) → TΣ(V
′)

is left adjoint to US. Proof of the functor property: Let g : V ′ → V ′′. Then

(ηV ′′ ◦ g)∗ ◦ (ηV ′ ◦ f)∗ ◦ ηV = (ηV ′′ ◦ g)∗ ◦ ηV ′ ◦ f = ηV ′′ ◦ g ◦ f.
Hence by Theorem 9.7,

TΣ(g ◦ f) = (ηV ′′ ◦ g ◦ f)∗ = (ηV ′′ ◦ g)∗ ◦ (ηV ′ ◦ f)∗ = TΣ(g) ◦ TΣ(f).

694

19.12 Term and flowchart functors 19 ADJUNCTIONS

�� ��Adjunctions

For all Σ-algebras A with carrier A, the co-unit ϵA = id∗A : TΣ(A) → A folds each term
t over A into an element of A, usually called the value of t in A.

Since V ∈ SetS with Vs = ∅ for all s ∈ S is initial in SetS and left adjoints preserve
initial objects, TΣ is initial in AlgΣ, which also follows from the definition of the extension

foldA : TΣ → A

(see section 9.11).

TΣ(V) represents FV =def SetS(V, US(_)) (see chapter 5) because for all V ∈ SetS,
the (covariant) functors FV and AlgΣ(TΣ(V),_) are naturally equivalent, i.e., for all Σ-
algebras A, the set FV (A) of term valuations of V in (the carrier of) A and the set
AlgΣ(TΣ(V),A) of Σ-homomorphisms are isomorphic. Moreover, by Corollary 5.2 (7),
this applies as well to isomorphic representations of TΣ(V).

For concrete representations of terms and valuations in the area of database schemas and
schema instances, see [171], section 7.2.1.

695

19.12 Term and flowchart functors 19 ADJUNCTIONS

�� ��Adjunctions

Let Σ(V) be defined as in section 9.12. There we have proved that TΣ(V) is initial in
AlgΣ(V) and for all Σ(V)-algebras A with carrier A, foldA = (valA)∗. Hence by the
uniqueness of foldA, foldA = id∗A ◦ TΣ(valA).

For instance, let Σ = coStream(X). Then TΣ ∼= SFX = X∗ × _ (see section 19.4) and
Σ(Y) = Dyn(X, Y). Hence SFX (Y) is initial in AlgDyn(X,Y) and for all Dyn(X, Y)-
algebras A with carrier A, foldA = id∗A ◦ SFX (α

A) = id∗A ◦ (idX∗ × αA).

In particular, since Σ(1) = Dyn(X, 1) = List(X), SFX (1) ∼= X∗ is initial in AlgList(X)

(see sample initial algebra 9.13 (3)).

From flowchart to state functors

Let Σ = (S,D) be a destructive signature. The flowchart functor

TΣ : SetS → SetTpo(S)

V 7→ TΣ(V)

f : V → V ′ 7→ (incV ′ ◦ f)∗ : TΣ(V) → TΣ(V
′)

satisfies the functor property: Let g : V ′ → V ′′. Then

(incV ′′ ◦ g)∗ ◦ (incV ′ ◦ f)∗ ◦ incV = (incV ′′ ◦ g)∗ ◦ incV ′ ◦ f = incV ′′ ◦ g ◦ f.

696

19.12 Term and flowchart functors 19 ADJUNCTIONS

�� ��Adjunctions
Hence by Theorem 9.18,

TΣ(g ◦ f) = (ηV ′′ ◦ g ◦ f)∗ = (ηV ′′ ◦ g)∗ ◦ (ηV ′ ◦ f)∗ = TΣ(g) ◦ TΣ(f).

Let A be a Σ-algebra with carrier A and V ∈ SetS. The Tpo(S)-sorted function

η◦V : TΣ(V) → AV

(see section 9.19) defines a natural transformation from the term functor TΣ to the state
functor

(_ × A)A : SetTpo(S) → SetTpo(S)

V 7→ AV

f : V → V ′ 7→ λg.(f × A) ◦ g : AV → AV ′

TΣ(V)
η◦V ≻ (V × A)A

(1)

TΣ(V
′)

TΣ(f)

⋎

η◦V ′
≻ (V ′ × A)A

(f × A)A

⋎

697

19.12 Term and flowchart functors 19 ADJUNCTIONS

�� ��Adjunctions
Proof of (1) by structural induction. Let f ∈ SetS(V, V ′).

(f × A)A(η◦V ()) = (f × A)A(id1) = id1(id1) = id1 = η◦V ′() = η◦V ′(id1()) = η◦V ′(TΣ(f)()).

For all s ∈ S, x ∈ Vs and a ∈ As,

(f × A)A(η◦V (x))(a) = (f × A)A(ηV (x))(a) = (λ(z, a).(f (z), a) ◦ η(x))(a)
= (λ(z, a).(f (z), a))(η(x)(a) = (λ(z, a).(f (z), a))(x, a) = (f (x), a) = η◦V ′(f (x))(a)

= η◦V ′((incV ′ ◦ f)(x))(a) = η◦V ′((incV ′ ◦ f)∗(x))(a) = η◦V ′(TΣ(f)(x))(a).

For all d : s→ e ∈ D, t ∈ TΣ(V)e and a ∈ As,

(f × A)A(η◦V (d(t)))(a) = (f × A)A(η◦V (t) ◦ dA)(a)
= (λ(x, a).(f (x), a) ◦ η◦V (t) ◦ dA)(a) = (λ(x, a).(f (x), a) ◦ η◦V (t))(dA(a))
ind. hyp.

= η◦V ′(TΣ(f)(t))(d
A(a)) = η◦V ′(TΣ(f)(t) ◦ dA)(a) = η◦V ′(TΣ(f)(d(t)))(a).

For all e =
∐

i∈I ei ∈ Tpo(S), t = (ti)i∈I ∈ Xi∈ITΣ(V)ei, i ∈ I and a ∈ Aei,

(f × A)A(η◦V (t))(ιi(a)) = (λ(x, a).(f (x), a) ◦ η◦V (t))(ιi(a))
= (λ(x, a).(f (x), a) ◦ [η◦V (ti)]i∈I)(ιi(a)) = [λ(x, a).(f (x), a) ◦ η◦V (ti)]i∈I(ιi(a))
= [(f × A)A(η◦V (ti))]i∈I(ιi(a))

ind. hyp.
= [η◦V ′(TΣ(f)(ti))]i∈I(ιi(a))

= η◦V ′(TΣ(f)(ti))(a) = η◦V ′((TΣ(f)(ti))i∈I)(ιi(a)) = η◦V ′(TΣ(f)(t))(ιi(a)).

698

19.13 Varieties 19 ADJUNCTIONS

�� ��Adjunctions
For all e =

∏
i∈I ei ∈ Tpo(S), i ∈ I and t ∈ TΣ(V)ei and a ∈ Ae,

(f × A)A(η◦V (i(t)))(a) = (λ(x, a).(f (x), a) ◦ η◦V (i(t)))(a)
= (λ(x, a).(f (x), a) ◦ η◦V (t) ◦ πi)(a) = ((f × A)A(η◦V (t)) ◦ πi)(a)
ind. hyp.

= (η◦V ′(TΣ(f)(t)) ◦ πi)(a) = η◦V ′(TΣ(f)(i(t)))(a).

19.13 Varieties

Let Σ = (S, F) be a constructive signature, R be a Σ-congruence on TΣ(V) (or an
isomorphic Σ-algebra; see section 9.10), A be a Σ-algebra with carrier A and g ∈ AV

(see section 9.11) such that for all (t, t′) ∈ R and σ ∈ TΣ(V)V , (σ∗(t), (σ∗(t′)) ∈ R.

g solves R if g solves all elements of R.

A satisfies R, written as A |= R, if all g ∈ AV solve R.

TΣ(V)/R satisfies R: Let g ∈ (TΣ(V)/R)V . Then natR ◦ σ = g for some σ ∈ TΣ(V)V .

Hence for all (t, t′) ∈ R, Lemma 9.9 implies

g∗(t) = (natR ◦ σ)∗(t) = natR(σ
∗(t′)) = (natR ◦ σ)∗(t′) = g∗(t′).

AlgΣ,R, the full subcategory of all AlgΣ whose objects satisfy R, is called a variety.

699

19.13 Varieties 19 ADJUNCTIONS

�� ��Adjunctions

Hence g solves R iff R ⊆ ker(g∗) iff g∗R : TΣ(V)/R → A is well-defined by

g∗R(natR(t)) = g∗(t)

for all t ∈ TΣ(V) iff g∗ : TΣ(V) → A factors through TΣ(V)/R, i.e., there is g∗R such that
g∗ = g∗R ◦ natR.

V
incV ≻TΣ(V)

natR ≻TΣ(V)/R

A

g∗

⋎

(2)

g∗R

≺

(1)

g

≻

Since nat∼ is epi, Lemma 9.1 (1) implies that g∗ is Σ-homomorphic. Hence g∗R is unique
with (2), again because natR is epi.

We conclude that TΣ(V)/R is free in AlgΣ,R, i.e., for all A ∈ AlgΣ,R there is a unique
Σ-homomorphism from TΣ(V)/R to A with (2).

In particular, TΣ/R is initial in AlgΣ,R.

700

19.13 Varieties 19 ADJUNCTIONS

�� ��Adjunctions

Let B = A(AV). By equation 2.2.9,⋂
g∈AV

ker(g∗) = ker(⟨g∗⟩g∈AV : TΣ(V) → B).

The Σ-algebra B becomes a Σ(V)-algebra by defining valB(x)(g) = g(x) for all x ∈ V

and g ∈ AV . For the definition of Σ(V), see section 9.11.

V
incV ≻TΣ(V)

natR ≻TΣ(V)/R

A

g

⋎
≺

πg

(1)

g∗ (3)

≺ B

⟨g∗⟩

⋎

(4)

⟨g∗⟩R
≺

Hence the Σ-homomorphism ⟨g∗⟩ is compatible with val and thus is also Σ(V)-homomor-
phic: For all x ∈ V and g′ ∈ AV ,

valB(⟨g∗⟩(x))(g′) = valB(x)(g′) = g′(x)
(2)
= (g′)∗(x)

(3)
= πg′(⟨g∗⟩(x)) = ⟨g∗⟩(x)(g′)

= ⟨g∗⟩(valTΣ(V)(x))(g′).

Therefore, foldB = ⟨g∗⟩.

701

19.13 Varieties 19 ADJUNCTIONS

�� ��Adjunctions

Moreover, A |= R iff for all g ∈ AV , (2) holds true, iff R ⊆ ker(⟨g∗⟩) iff (4) holds true.

Example

Let Σ = coStream(X) and Y be a set. Then

Σ(Y) = ({state,X, Y }, {δ : state×X → state, val : Y → state})

and thus Σ(Y) is equivalent to Dyn(X, Y). Consequently,

TΣ(Y) ∼= Seq(X, Y) = (Y ×X∗, Op)

is initial in AlgDyn(X,Y) and for all Σ-algebras A with carrier Q, foldA(QY)
= ⟨g∗⟩g:Y→Q

(see sample algebra 9.6.3, Example 9.3 in chapter 9 and adjunction 19.3). ❏

Theorem 19.7 (Birkhoff’s variety theorem; special case of [11], Theorem 6.2)

A class of Σ-algebras is a Σ-variety iff it is closed under the formation of subalgebras,
homomorphic images and products. ❏

702

19.14 Equational theories 19 ADJUNCTIONS

�� ��Adjunctions

19.14 Equational theories

Let E be an S-sorted set of Σ-equations (see section 9.11).

For all s ∈ S, Es is supposed to consist of equations φ⇒ t = t′ with t, t′ ∈ TΣ(V)s.

A (Σ, E)-algebra is a Σ-algebra that satisfies (all equations of) E.

AlgΣ,E denotes the full subcategory of AlgΣ that consists of all (Σ, E)-algebras.

RAlgΣ,E =def AlgΣ,E ∩ RAlgΣ (see section 9.11).

The least Σ-congruence R on TΣ(V) such that for all
∧n
i=1 ti = t′i ⇒ t = t′ ∈ E and

σ ∈ TΣ(V)V ,
n∧
i=1

(σ∗(ti), σ
∗(t′i)) ∈ R implies (σ∗(t), σ∗(t′)) ∈ R, (5)

is called the deductive theory of (Σ, E) and denoted by DTh(E).

The notion was introduced in [117] (for not only conditional equations, but also other
Horn or Gentzen clauses; see chapter 10) to remind of the fact that DTh(E) captures
the rules of equational deduction.

703

19.14 Equational theories 19 ADJUNCTIONS

�� ��Adjunctions
Soundness of DTh(E) w.r.t. AlgΣ,E

For all e = (t, t′) ∈ TΣ(V)2, e ∈ DTh(E) implies AlgΣ,E |= t = t′. (6)

Proof. By definition, DTh(E) coincides with the least fixpoint of

Φ : Xs∈SP(TΣ(V)2s) → Xs∈SP(TΣ(V)2s)

R 7→ (inst(Rs) ∪ cong(Rs) ∪∆2
TΣ(V)s

∪R−1
s ∪RsRs)s∈S

where

inst(Rs) = {(σ∗(t), σ∗(t′)) |
∧n
i=1 ti = t′i ⇒ t = t′ ∈ Es, σ ∈ TΣ(V)V ,

∀ 1 ≤ i ≤ n : (σ∗(ti), σ
∗(t′i)) ∈ R},

cong(Rs) = {(ft, ft′) | f : e→ s ∈ F, (t, t′) ∈ Re}.

Let A be a (Σ, E)-algebra andR be the S-sorted set defined byRs = {(t, t′) ∈ TΣ(V)2s | A |=
t = t′} for all s ∈ S.

Since lfp(Φ) = DTh(E), fixpoint induction (see chapter 3) implies DTh(E) ⊆ R if R is
Φ-closed, i.e., if Φ(R) ⊆ R.

So let s ∈ S and (t, t′) ∈ Φ(Rs).

Case 1: (t, t′) ∈ inst(Rs). Then there are
∧n
i=1 ui = u′i ⇒ u = u′ ∈ Es and σ ∈ TΣ(V)V

such that t = σ∗(u), t′ = σ∗(u′) and (σ∗(ui), σ
∗(u′i)) ∈ R for all 1 ≤ i ≤ n.

704

19.14 Equational theories 19 ADJUNCTIONS

�� ��Adjunctions
Hence Lemma 9.9 implies

(g∗ ◦ σ)∗(ui) = g∗(σ∗(ui)) = g∗(σ∗(u′i)) = (g∗ ◦ σ)∗(u′i)

for all g ∈ AV . Since A satisfies E,

g∗(t) = g∗(σ∗(u)) = (g∗ ◦ σ)∗(t) = (g∗ ◦ σ)∗(t′) = g∗(σ∗(u′)) = g∗(t′),

i.e., (t, t′) ∈ Rs.

Case 2: (t, t′) ∈ cong(Rs). Then t = fu and t′ = fu′ for some f : e → s ∈ F and
(u, u′) ∈ Re. Hence Lemma 9.9 implies

g∗(t) = g∗(fu) = fA(g∗(u)) = fA(g∗(u′)) = g∗(fu′) = g∗(t′),

i.e., (t, t′) ∈ Rs.

Case 3: t = t′. Then (t, t′) ∈ Rs because Rs is reflexive.

Case 4: (t′, t) ∈ Rs. Then (t, t′) ∈ Rs because Rs is symmetric.

Case 5: (t, u), (u, t′) ∈ Rs. Then (t, t′) ∈ Rs because Rs is transitive.

We conclude that R is Φ-closed. ❏

705

19.14 Equational theories 19 ADJUNCTIONS

�� ��Adjunctions

TΣ,E(V) =def TΣ(V)/DTh(E) is a free (Σ, E)-algebra over V , i.e., for all (Σ, E)-
algebras A with carrierA and g ∈ AV there is a unique Σ-homomorphism g∗E : TΣ,E(V) →
A with g∗E ◦ natDTh(E) = g∗.

V
incV ≻TΣ(V)

natDTh(E) ≻TΣ,E(V)

A

g∗

⋎
g∗E

≺

(1)

g

≻

Proof. Since DTh(E) is a Σ-congruence, TΣ,E(V) is well-defined. Next we show that
TΣ,E(V) satisfies E. (7)

Let e = (
∧n
i=1 ti = t′i ⇒ u = u′) ∈ E and g ∈ TΣ,E(V)V such that g∗(ti) = g∗(t′i)

for all 1 ≤ i ≤ n. Then g = nat ◦ σ for some σ : V → TΣ(V) and the natural map
nat : TΣ(V) → TΣ,E(V). Since TΣ,E(V) is a Σ-quotient of TΣ(V), nat is Σ-homomorphic.
Hence by Lemma 9.9,

nat(σ∗(ti)) = (nat ◦ σ)∗(ti) = g∗(ti) = g∗(t′i) = (nat ◦ σ)∗(t′i) = nat(σ∗(t′i)),

706

19.14 Equational theories 19 ADJUNCTIONS

�� ��Adjunctions

i.e., (σ∗(ti), σ∗(t′i)) ∈ DTh(E). Therefore, (σ∗(t), σ∗(t′)) ∈ inst(DTh(E)) ⊆ Φ(DTh(E))

(see above).

Since DTh(E) = lfp(Φ) is Φ-closed, (σ∗(t), σ∗(t′)) ∈ DTh(E). Hence

g∗(t) = (nat ◦ σ)∗(t) = nat(σ∗(t)) = nat(σ∗(t′)) = (nat ◦ σ)∗(t′) = g∗(t′).

We conclude that TΣ,E(V) satisfies e.

Let A be a Σ-algebra with carrier A that satisfies E and g ∈ AV . Suppose that the
kernel of g∗ : TΣ → A is Φ-closed.

Since DTh(E) is the least Φ-closed subset of TΣ(V)2,

DTh(E) is a subset of ker(g∗). (8)

Hence g∗E : TΣ,E → A is well-defined by g∗E ◦ natDTh(E) = g∗.

Since g∗ is Σ-homomorphic and natDTh(E) is epi in AlgΣ, Lemma 9.1 (2) implies that g∗E
is Σ-homomorphic. Let h : TΣ,E → A be any Σ-homomorphism with h ◦ natDTh(E) = g∗.
Hence h ◦ natDTh(E) ◦ incV = g∗ ◦ incV . Since g∗ is the only Σ-homomorphism from TΣ
to A with g∗ ◦ incV = g, h ◦ natDTh(E) = g∗E ◦ natDTh(E). Since natDTh(E) is epi, h = g∗E.

It remains to show that R = ker(g∗) is Φ-closed. So let s ∈ S and (t, t′) ∈ Φ(Rs).

707

19.14 Equational theories 19 ADJUNCTIONS

�� ��Adjunctions

Case 1: There are
∧n
i=1 ui = u′i ⇒ u = u′ ∈ Es and σ ∈ TΣ(V)V such that t = σ∗(u),

t′ = σ∗(u′) and (σ∗(ui), σ
∗(u′i)) ∈ R for all 1 ≤ i ≤ n. Hence by Lemma 9.9,

g∗(t) = g∗(σ∗(u)) = (g∗ ◦ σ)∗(t) = (g∗ ◦ σ)∗(t′) = g∗(σ∗(u′)) = g∗(t′),

i.e., (t, t′) ∈ Rs.

Case 2: t = fu and t′ = fu′ for some f : e→ s ∈ F and (u, u′) ∈ Re. Hence by Lemma
9.9,

g∗(t) = g∗(fu) = fA(g∗(u)) = fA(g∗(u′)) = g∗(fu′) = g∗(t′),

i.e., (t, t′) ∈ Rs.

Case 3: t = t′. Then (t, t′) ∈ Rs because Rs is reflexive.

Case 4: (t′, t) ∈ Rs. Then (t, t′) ∈ Rs because Rs is symmetric.

Case 5: (t, u), (u, t′) ∈ Rs. Then (t, t′) ∈ Rs because Rs is transitive.

We conclude that R is Φ-closed. ❏

708

19.14 Equational theories 19 ADJUNCTIONS

�� ��Adjunctions

Soundness and completeness of DTh(E) w.r.t. AlgΣ,E and TΣ,E(V)

For all e = (t, t′) ∈ TΣ(V)2,

e ∈ DTh(E) iff AlgΣ,E |= t = t′ iff TΣ,E(V) |= t = t′.

Proof. Let e = (t, t′) ∈ DTh(E) and A ∈ AlgΣ,E. By (6), A satisfies t = t′.

Suppose that all (Σ, E)-algebras satisfy t = t′. By (7), TΣ,E(V) satisfies E. Hence
TΣ,E(V) satisfies t = t′.

Suppose that TΣ,E(V) satisfies t = t′. Let nat be the natural map from TΣ(V) to TΣ,E(V).
Then by Lemma 9.9,

nat(t) = nat(id(t)) = nat(inc∗V (t)) = (nat ◦ incV)∗(t) = (nat ◦ incV)∗(t′)
= nat(inc∗V (t

′)) = nat(id(t′)) = nat(t′),

i.e., (t, t′) ∈ DTh(E). ❏

Examples

1. Let Σ = Mon, x, y, z ∈ V and

E = {mul(x,mul(y, z)) = mul(mul(x, y), z), mul(x, one) = x, mul(one, x) = x},

709

19.14 Equational theories 19 ADJUNCTIONS

�� ��Adjunctions
Then TΣ,E(V) ∼= V ∗.

2. Let Σ = List(X), s ∈ Vlist and

E = {cons(x, cons(y, s)) = cons(y, cons(x, s)) | x, y ∈ X} ∪
{cons(x, cons(x, s)) = cons(x, s) | x ∈ X}.

Then TΣ,E ∼= Pω(X) is initial in AlgΣ,E where αPω(X) = ∅ and for all x ∈ X and finite
subsets S of X , consPω(X)(x, S) = S ∪ {x}.

3. Let Σ = ARRAY , s ∈ Vlist and **** ❏

ITh(E) =def {(t, t′) ∈ TΣ(V)2 | ∀ σ ∈ T VΣ : (σ∗(t), σ∗(t′)) ∈ DTh(E) ∩ T 2
Σ}

is called the inductive theory of (Σ, E), a notion introduced in [117, 118] to remind of
the fact that the equations of ITh(E) can be proved by induction on TΣ.

Soundness and completeness of ITh(E) w.r.t. RAlgΣ,E and TΣ,E

For all e = (t, t′) ∈ TΣ(V)2,

e ∈ ITh(E) iff RAlgΣ,E |= t = t′ iff TΣ,E |= t = t′.

710

19.14 Equational theories 19 ADJUNCTIONS

�� ��Adjunctions

Proof. Let e = (t, t′) ∈ ITh(E), A be a reachable Σ-algebra with carrier A and g ∈ AV .
Hence σ ∈ T VΣ is well-defined by g = foldA ◦ σ, and thus (σ∗(t), σ∗(t′)) ∈ DTh(E) and
by (8), (σ∗(t), σ∗(t′)) ∈ ker(foldA). Therefore, Lemma 9.9 implies

g∗(t) = (foldA ◦ σ)∗(t) = foldA(σ∗(t)) = foldA(σ∗(t′)) = (foldA ◦ σ)∗(t′) = g∗(t′).

Hence A satisfies t = t′.

Suppose that all reachable (Σ, E)-algebras satisfy t = t′. By (7), TΣ,E satisfies E. Since
TΣ is initial in AlgΣ and nat = nat∼E

: TΣ → TΣ,E is Σ-homomorphic, foldTΣ,E = nat.
Hence TΣ,E is reachable. We conclude that TΣ,E satisfies t = t′.

Suppose that TΣ,E satisfies t = t′. Let σ ∈ T VΣ . Hence by Lemma 9.9,

nat(σ∗(t)) = foldTΣ,E(σ∗(t)) = (foldTΣ,E ◦ σ)∗(t) = (foldTΣ,E ◦ σ)∗(t′)
= foldTΣ,E(σ∗(t′)) = nat(σ∗(t′)),

i.e., (σ∗(t), σ∗(t′)) ∈ DTh(E) and thus (t, t′) ∈ ITh(E). ❏

711

19.15 Coterm functors 19 ADJUNCTIONS

�� ��Adjunctions

19.15 Coterm functors

Let Σ = (S,D) be a destructive polynomial signature, US be the forgetful functor from
AlgΣ to SetS, C,C ′ ∈ SetS and A be a Σ-algebra (see chapter 9).

ϵC =def root =def λt.t(ϵ) : DTΣ(C) → C.

US(A)
g−→ C

A g#−→ DTΣ(C)

A h−→ DTΣ(C)

US(A)
h∗=ϵC◦h−→ C

The functor
DTΣ : SetS → AlgΣ

C 7→ DTΣ(C)

f : C ′ → C 7→ (f ◦ ϵC ′)# : DTΣ(C
′) → DTΣ(C)

is right adjoint to US. Proof of the functor property: Let g : C ′√ → C ′. Then

ϵC ◦ (f ◦ ϵC ′)# ◦ (g ◦ ϵC ′′)# = f ◦ ϵC ′ ◦ (g ◦ ϵC ′′)# = f ◦ g ◦ ϵC ′′.

Hence by Theorem 9.12,

DTΣ(f ◦ g) = (f ◦ g ◦ ϵC ′′)# = (f ◦ ϵC ′)# ◦ (g ◦ ϵC ′′)# = DTΣ(f) ◦DTΣ(g).

712

19.15 Coterm functors 19 ADJUNCTIONS

�� ��Adjunctions

For all Σ-algebras A with carrier A, the unit ηA = id#A : A → DTΣ(A) unfolds each
element a of A into its “behavior tree” whose nodes are labelled by the “successors” of a
w.r.t. the “transitions” induced by the interpretation in A of the destructors of Σ.

Since C ∈ SetS with Cs = 1 for all s ∈ S is final in SetS and right adjoints preserve final
objects, DTΣ is final in AlgΣ, which also follows from the definition of the coextension

unfoldA : A → DTΣ

(see section 9.16).

DTΣ(C) represents FC =def SetS(US(_), C) (see chapter 5) because for all C ∈ SetS,
the contravariant functors FC and AlgΣ(_, DTΣ(C)) are naturally equivalent, i.e., for
all Σ-algebras A, the set FC(A) of colorings of (the carrier of) A by C and the set
AlgΣ(A, DTΣ(C)) of Σ-homomorphisms are isomorphic. Moreover, by Corollary 5.2 (8),
this applies as well to isomorphic representations of DTΣ(C).

Let Σ(C) be defined as in section 9.17. There we have proved that DTΣ(C) is final in
AlgΣ(C) and for all Σ(C)-algebras A with carrier A, unfoldA = (colA)#.

Hence by the uniqueness of unfoldA, unfoldA = DTΣ(col
A) ◦ id#A .

713

19.16 Covarieties 19 ADJUNCTIONS

�� ��Adjunctions

For instance, let Σ = Med(X). Then DTΣ ∼= BFX = _X∗ (see section 19.5) and Σ(Y) =

DAut(X, Y). Hence BFX (Y) is final in AlgDAut(X,Y) and for all DAut(X, Y)-algebras A
with carrier A, (βA)# = unfoldA = BFX (β

A) ◦ id#A = (βA)X
∗ ◦ id#A .

In particular, since Σ(2) = DAut(X, 2) = Acc(X), BFX (2) ∼= Pow (X) is final in
AlgAcc(X) (see sample final algebra 9.18.10).

19.16 Covarieties

Let Σ = (S, F) be a destructive signature, I be a Σ-invariant ofDTΣ(C) (or an isomorphic
Σ-algebra; see section 9.9), A be a Σ-algebra with carrier A and g ∈ CA (see section
9.16) such that for all t ∈ I and σ ∈ CDTΣ(C), σ#(t) ∈ I .

g solves I in A if for all a ∈ A, g#(a) ∈ I .

A satisfies I , written as A |= I , if all g ∈ CA solve I .

DTΣ(C)|I satisfies I : Let g ∈ CI . Then σ ◦ incI = g for some σ ∈ CDTΣ(C). Hence for
all t ∈ I , Lemma 9.16 implies g#(t) = (σ ◦ incI)#(t) = σ#(t) ∈ I .

714

19.16 Covarieties 19 ADJUNCTIONS

�� ��Adjunctions

AlgΣ,I , the full subcategory of all AlgΣ whose objects satisfy I , is called a covariety.

Hence g solves I iff img(g#) ⊆ I iff g#I : A → I is well-defined by

g#I (a) = g#(a)

for all a ∈ A iff g# : A → DTΣ(C) factors through I , i.e., there is g#I such that
g# = incI ◦ g#I .

C≺
root

DTΣ(C)≺
incI

DTΣ(C)|I

A

g#

⋏
(2)

g#I

≻
(1)

g

≺

Since incI is mono, Lemma 9.1 (2) implies that g# is Σ-homomorphic. Hence g#I is
unique with (2), again because incI is mono.

We conclude that DTΣ(C)|I is cofree in AlgΣ,I , i.e., for all A ∈ AlgΣ,I there is a unique
Σ-homomorphism g#I : A → DTΣ(C)|I with (2).

In particular, DTΣ|I is final in AlgΣ,I .

715

19.16 Covarieties 19 ADJUNCTIONS

�� ��Adjunctions
Let B = A× CA. By equation 2.5.20,⋃

g∈CA

img(g#) = img([g#]g∈CA : B → DTΣ(C)).

The Σ-algebra B becomes a Σ(C)-algebra by defining colB(a, g) = g(a) for all a ∈ A and
g ∈ CA. For the definition of Σ(C), see section 9.16.

C≺
root

DTΣ(C)≺
incI

I

A

g

⋏

ιg
≻

(1)

g# (3)

≻

B

[g#]

⋏
(4)

[g#]I

≺

Hence the Σ-homomorphism [g#] is compatible with col and thus also Σ(C)-homomorphic:
For all a ∈ A and g′ ∈ CA,

[g#](colB(a, g′)) = colB(a, g′) = g′(a) = root((g′)#(a)) = root([g#](ιg′(a)))

= colDTΣ(C)([g#](ιg′(a))) = colDTΣ(C)([g#](a, g′)).

Therefore, unfoldB = [g#].

716

19.16 Covarieties 19 ADJUNCTIONS

�� ��Adjunctions

Moreover, A |= I iff for all g ∈ CA, (2) holds true, iff img([g#]) ⊆ I iff (4) holds true.

Example

Let Σ = Med(X) and Y be a set. Then

Σ(Y) = ({state,X, Y }, {δ : Q→ QX , col : state→ Y })

and thus Σ(Y) is equivalent to DAut(X, Y). Consequently,

DTΣ(Y) ∼= Beh(X, Y) = (Y X∗
, Op)

is final in AlgDAut(X,Y) and for all Σ-algebras A with carrier Q, unfoldA×Y Q
= [g#]g:Q→Y

(see sample algebra 9.6.24, Example 9.4 and section 19.5). ❏

Theorem 19.8 (Birkhoff’s covariety theorem; special case of [11], Theorem 6.15)

A class of Σ-algebras is a Σ-covariety iff it is closed under the formation of subalgebras,
homomorphic images and coproducts. ❏

717

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

19.17 Coequational theories

Let E be an S-sorted set of Σ-coequations (see section 9.16).

For all s ∈ S, Es is supposed to consist of coequations ex(t) ⇒ φ with t ∈ DTΣ(C)s.

A (Σ, E)-algebra is a Σ-algebra that satisfies (all coequations of) E.

AlgΣ,E denotes the full subcategory of AlgΣ that consists of all (Σ, E)-algebras.

OAlgΣ,E =def AlgΣ,E ∩OAlgΣ (see section 9.16).

The greatest Σ-invariant P of DTΣ(C) such that for all ex(t) ⇒
∨n
i=1 ex(ti) ∈ E and

σ ∈ CDTΣ(C),

σ#(t) ∈ P implies
n∨
i=1

σ#(ti) ∈ P (5)

is called the deductive theory of (Σ, E) and denoted by DTh(E).

Completeness of DTh(E) w.r.t. AlgΣ,E

For all t ∈ DTΣ(C), AlgΣ,E ̸|= ¬ex(t) implies t ∈ DTh(E). (6)

718

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

Proof. By definition, DTh(E) coincides with the greatest fixpoint of

Φ : Xs∈SP(DTΣ(C)s) → Xs∈SP(DTΣ(C)s)

P 7→ (coinst(Ps) ∩ inv(Ps))s∈S
where

coinst(Ps) = {t ∈ DTΣ(C)s | ∀ ex(u) ⇒
∨n
i=1 ex(ui) ∈ Es, σ ∈ CDTΣ(C) :

σ#(t) = u⇒ ∃ 1 ≤ i ≤ n, t′ ∈ P : σ#(t′) = ui},
inv(Ps) = {t ∈ DTΣ(C)s | ∀ f : s→ e ∈ F : fDTΣ(C)(t) ∈ Pe}.

Let P be the S-sorted set defined by Ps = {t ∈ DTΣ(C)s | AlgΣ,E ̸|= ¬ex(t)} for all
s ∈ S.

Since gfp(Φ) = DTh(E), fixpoint coinduction (see chapter 3) implies P ⊆ DTh(E) if P
is Φ-dense, i.e., if P ⊆ Φ(P).

So let s ∈ S, t ∈ Ps, ex(u) ⇒
∨n
i=1 ex(ui) ∈ Es and σ ∈ CDTΣ(C) such that σ#(t) = u.

Then AlgΣ,E ̸|= ¬ex(t), i.e., g#(a) = t for some (Σ, E)-algebra A with carrier A, g ∈ CA

and a ∈ As. Hence by Lemma 9.16,

(σ ◦ g#)#(a) = σ#(g#(a)) = σ#(t) = u

719

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions
and thus

σ#(g#(b)) = (σ ◦ g#)#(b) = ui

for some b ∈ A and 1 ≤ i ≤ n because A satisfies E. Therefore, t′ =def g
#(b) ∈ P and

thus t ∈ coinst(Ps).

Moreover, for all f : s→ e ∈ F ,

fDTΣ(C)(t) = fDTΣ(C)(g#(a)) = g#(fA(a)),

i.e., fDTΣ(C)(t) ∈ Pe. Hence t ∈ inv(Ps).

Therefore, t ∈ Φ(Ps) = coinst(Ps) ∩ inv(Ps). We conclude that P is Φ-dense. ❏

DTΣ,E(C) =def DTΣ(C)|DTh(E) is a cofree (Σ, E)-algebra over C, i.e., for all (Σ, E)-
algebras A with carrier A and g ∈ CA there is a unique Σ-homomorphism g#E : A →
DTΣ,E(C) with incDTh(E) ◦ g#E = g#.

C≺
root

DTΣ(C)≺
incDTh(E)

DTΣ,E(C)

A

g#

⋏

g#E

≻
(1)

g

≺

In particular, DTΣ,E is final in AlgΣ, E.

720

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

Proof. Since DTh(E) is a Σ-invariant, DTΣ,E is well-defined. Next we show that
DTΣ,E(C) is a (Σ, E)-algebra. (7)

Let e = (ex(u) ⇒
∨n
i=1 ex(ui)) ∈ E and g ∈ CDTh(E) such that g#(t) = u for some

t ∈ DTh(E). Then g = σ◦ inc for some σ ∈ CDTΣ(C) and the inclusion inc : DTh(E) →
DTΣ(C). Since DTΣ,E(C) is a Σ-subalgebra of DTΣ(C), inc is Σ-homomorphic. Hence
by Lemma 9.16,

u = g#(t) = (σ ◦ inc)#(t) = σ#(inc(t)) = σ#(t).

Since t ∈ DTh(E) and DTh(E) = gfp(Φ) is Φ-dense, t ∈ coinst(DTh(E)).

Therefore, σ#(t) = u implies σ#(t′) = ui for some 1 ≤ i ≤ n and t′ ∈ DTh(E). Hence
by Lemma 9.16,

g#(t′) = (σ ◦ inc)#(t′) = σ#(inc(t′)) = σ#(t′)= ui.

We conclude that DTΣ,E(C) satisfies e.

Let A be a Σ-algebra with carrier A that satisfies E and g ∈ CA. Suppose that the
image of g# : A→ DTΣ is Φ-dense.

Since DTh(E) is the greatest Φ-dense subset of DTΣ(C),

img(g#) is a subset of DTh(E). (8)

721

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

Hence g#E : A→ DTh(E) is well-defined by incDTh(E) ◦ g#E = g#.

Since g# is Σ-homomorphic and incDTh(E) is mono in AlgΣ, Lemma 9.1 (2) implies
that g#E is Σ-homomorphic. Let h : A → DTh(E) be any Σ-homomorphism with
incDTh(E) ◦ h = g#. Hence root ◦ incDTh(E) ◦ h = root ◦ g# = g. Since g# is the only
Σ-homomorphism from A to DTΣ(C) with root◦g# = g, incDTh(E) ◦h = incDTh(E) ◦g#E .
Since incDTh(E) is mono, h = g#E .

It remains to show that P = img(g#) is Φ-dense. So let s ∈ S, t ∈ Ps, ex(u) ⇒∨n
i=1 ex(ui) ∈ Es and σ ∈ CDTΣ(C) such that σ#(t) = u. Then t = g#(a) for some a ∈ A.

Hence by Lemma 9.16,

(σ ◦ g#)#(a) = σ#(g#(a)) = σ#(t) = u

and thus
σ#(g#(b)) = (σ ◦ g#)#(b) = ui

for some b ∈ A and 1 ≤ i ≤ n because A satisfies E. Therefore, t′ =def g
#(b) ∈ P and

thus t ∈ coinst(Ps).

Moreover, for all f : s→ e ∈ F ,

fDTΣ(C)(t) = fDTΣ(C)(unfoldA(a)) = unfoldA(fA(a)),

i.e., fDTΣ(C)(t) ∈ Pe. Hence t ∈ inv(Ps).

722

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

Therefore, t ∈ Φ(Ps) = coinst(Ps) ∩ inv(Ps). We conclude that P is Φ-dense. ❏

Soundness and completeness of DTh(E) w.r.t. AlgΣ,E and DTΣ,E(C)

For all t ∈ DTΣ(C),

AlgΣ,E ̸|= ¬ex(t) iff t ∈ DTh(E) iff DTΣ,E(C) ̸|= ¬ex(t).

Proof. Suppose that AlgΣ,E does not satisfy ¬ex(t). Then by (6), t ∈ DTh(E).

Let t ∈ DTh(E) and inc is the inclusion map from DTh(E) to DTΣ(C). Then by
Lemma 9.16, (root ◦ inc)#(t) = root#(inc(t)) = id(inc(t)) = t. Hence DTΣ,E(C) does
not satisfy ¬ex(t).

Suppose that DTΣ,E(C) does not satisfy ¬ex(t). By (7), DTΣ,E(C) satisfies E. Hence
AlgΣ,E does not satisfy ¬ex(t). ❏

Examples

1. Let Σ = ({state, 1}, {f : state → state}) and A be a Σ-algebra with carrier A and
δ = fA.

723

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

Then for all a ∈ A and n ∈ N,

g#(a)(fn) = (fDTΣ(C))n(g#(a))(ϵ) = g#(δn(a))(ϵ). (9)

Let Vstate = {(), x}, t = (){f → t′}, t′ = x{f → t′}, t1 = (){f → t} and t2 = x{f → t′}.

1.1 ([61], 6.1) Let K be the category of Σ-algebras A with carrier A and δ = fA such
that for all a ∈ A there is n > 0 with δn(a) = a.

K = AlgΣ,{¬ex(t)}.

Proof. Let A ∈ K \AlgΣ,{¬ex(t)}. Then a = δn(a) and g#(a) = t for some n > 0, g ∈ V A

and a ∈ A. Hence

() = t(ϵ) = g#(δn(a))(ϵ)
(9)
= g#(a)(fn) = t(fn) = x.

Conversely, let A ∈ AlgΣ \ K. Then a ̸= δn(a) for some a ∈ A and all n > 0. Let
g = λa′.if a′ = a then () else x. Hence g#(a)(ϵ) = g(a) = () = t(ϵ) and for all n > 0,

g#(a)(fn)
(9)
= g#(δn(a))(ϵ) = g(δn(a)) = x = t(f) = t(fn),

i.e., g#(a) = t. Therefore, A ̸∈ AlgΣ,{¬ex(t)}.

1.2 ([61], 6.2) Let K′ be the category of Σ-algebras A with carrier A and δ = fA such
that δ is surjective.

724

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions
K′ = AlgΣ,{ex(t)⇒ex(t1)∨ex(t2)}.

Proof. Let A ∈ K′.

Case 1: A ∈ K. Then by 1.1, A satisfies ¬ex(t) and thus ex(t) ⇒ ex(t1) ∨ ex(t2).

Case 2: A ̸∈ K. Then by 1.1, A does not satisfy ¬ex(t), i.e., g#(a) = t for some g ∈ V A

and a ∈ A. Since δ is surjective, there is b ∈ A such that δ(b) = a. Hence

g#(b) = g(b){f → g#(δ(b))} = g(b){f → g#(a)} = g(b){f → t}

and thus g#(b) = t1 or g#(b) = t2 because g(b) ∈ {(), x}.

We conclude that A satisfies ex(t) ⇒ ex(t1) ∨ ex(t2).

Conversely, suppose that A satisfies ex(t) ⇒ ex(t1)∨ex(t2) and a ∈ A. Case 1: a = δn(a)

and g#(a) = t for some n > 0. Then a = δ(b) for some b ∈ A.

Case 2: For all n > 0, a ̸= δn(a). Let g = λa′.if a′ = a then ∗ else x. Then g#(a) = t

(see the above proof of K = AlgΣ,{¬ex(t)}). By assumption, g#(b) = t1 or g#(b) = t2 for
some b ∈ A. Hence g#(δ(b)) = fDTΣ(C)(g#(b)) = t and thus g(δ(b)) = g#(δ(b))(ϵ) =

t(ϵ) = ∗. By the definition of g, δ(b) = a.

We conclude that δ is surjective, i.e., A ∈ K′.

725

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

1.3 ([11], Ex. 4.15 (a)) Let t = (){f → x{f → t}} and K be the category of Σ-algebras
A with carrier A and δ = fA such that for all a ∈ A there are k, n ∈ N such that
δk(a) = δk+2n+1(a).

K = AlgΣ,{¬ex(t)}.

Proof. Let A ∈ K\AlgΣ,{¬ex(t)}. Then there are a ∈ A and k, n ∈ N with g#(a) = t and
δk+2n+1(a) = δk(a). Hence

t(f k) = g#(a)(f k)
(9)
= g#(δk(a))(ϵ) = g#(δk+2n+1(a))(ϵ)

(9)
= g#(a)(f k+2n+1) = t(f k+2n+1).

Conversely, let A ∈ AlgΣ \ K. Then there is a ∈ A such that for all k, n ∈ N, if
δk(a) = δk+n(a), then n is even. Let g = λa′.if ∃ n ∈ N : a′ = δ2n(a) then () else x.

g is well-defined: Let k, n ∈ N such that δk(a) = δk+n(a). Then n is even. Hence k is
even iff k + n is even, and thus g(δk(a)) = g(δk+n(a)). Moreover, for all n ∈ N,

g#(a)(f 2n)
(9)
= g#(δ2n(a))(ϵ) = g(δ2n(a)) = ∗ = t(f 2n),

g#(a)(f 2n+1)
(9)
= g#(δ2n+1(a))(ϵ) = g(δ2n+1(a)) = x = t(f 2n+1),

i.e., g#(a) = t. Therefore, A ̸∈ AlgΣ,{¬ex(t)}.

726

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

2. ([7], 2.5; [11], Ex. 4.14; [162], Exs. 4.3 and 4.6) Let

Σ = ({state, {1, 2}}, {f : state→ 1 + (state× state)})

and Vstate = {(), x}.

2.1 Let t = (){f → 1(ϵ)} and K be the category of Σ-algebras A with carrier A and
δ = fA such that for all a ∈ A, δ(a) = ι2(b, c) for some b, c ∈ A.

K = AlgΣ,{¬ex(t)}.

Proof. Let A ∈ K \ AlgΣ,{¬ex(t)}. Then δ(a) = ι2(b, c) and g#(a) = t for some b, c ∈ A,
g ∈ V A and a ∈ A. Hence

(){1 → g#(b), 2 → g#(c)} = g#(b, c) = g#(δ(a)) = fDTΣ(C)(g#(a))

= fDTΣ(C)(t) = 1(ϵ).

Conversely, let A ∈ AlgΣ \ K and g = λa.ϵ . Then δ(a) = ϵ for some a ∈ A. Hence

g#(a) = g(a){f → 1(g#(ϵ))} = (){f → 1(ϵ)} = t

and thus A ̸∈ AlgΣ,{¬ex(t)}.

727

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

2.2 Let t = (){f → 2((){1 → t, 2 → t})}, t′ = x{f → 2((){1 → t, 2 → t})}, K be the
category of all Σ-algebras (A, {δ}) such that for all a ∈ A,

δ(b) = ϵ for some b ∈ ⟨a⟩, (10)

and K′ be the category of Σ-algebras A with carrier A and δ = fA such that for all
a ∈ A, (10) holds true or δ(a) = ι2(b) implies a ∈ ⟨b⟩.

K = AlgΣ,{¬ex(t)}.

Proof. Let A ∈ K \ AlgΣ,{¬ex(t)}. Then g#(a) = t and (10) holds true for some g ∈ V A

and a ∈ A. Hence g#(b) = (){f → 2(u)} for some subcoterm u ̸= ∗ of t. Therefore,

() = g#(ϵ) = g#(ϵ) = g#(δ(b)) = fDTΣ(C)(g#(b)) = fDTΣ(C)((){f → 2(u)}) = 2(u).

Conversely, let A ∈ AlgΣ\K and g = λa.∗. Then there is a ∈ A such that for all b ∈ ⟨a⟩,
δ(b) ̸= ϵ. In particular, δ(a) = ι2(b, c) for some b, c ∈ A.

Hence g#(a)(ϵ) = g(a) = () = t(ϵ). Moreover, for all w ∈ def (g#(a)) there is w′ ∈
{f, 1, 2}∗ such that w ∈ {f ∗ 1w′, f ∗ 2w′, f ∗ w′}.

728

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions
If w = f ()1w′, then

g#(a)(w) = g#(b)(w′)
ind. hyp.

= t(w′) = t(w).

If w = f ∗ 2w′, then g#(a)(w) = g#(c)(w′)
ind. hyp.

= t(w′) = t(w). If w = f ∗w′, then both
g#(a)(w) and t(w) are undefined. Hence g#(a) = t and thus A ̸∈ AlgΣ,{¬ex(t)}.

K′ = AlgΣ,{ex(t′)⇒False}.

Proof. Let A ∈ K \ AlgΣ,{¬ex(t)}.

2.3 Let K be the category of all Σ-algebras (A, {δ}) such that for all a, b, c ∈ A,

δ(a) = ι2(b, c) ⇒ δ(b) ̸= ϵ ∨ δ(c) ̸= ϵ, (11)

and t = (){f → 2((){1 → (){f → 1(ϵ)}, 2 → (){f → 1(ϵ)})}.

K = AlgΣ,{¬ex(t)}.

Proof. Let A ∈ K \ AlgΣ,{¬ex(t)}. Then g#(a) = t for some g ∈ V A and a ∈ A. Hence

g#(δ(a)) = fDTΣ(C)(g#(a)) = fDTΣ(C)(t) = λw.t(f ∗ w)
= (){1 → (){f → 1(ϵ)}, 2 → (){f → 1(ϵ)}}

(12)

and thus δ(a) = ι2(b, c) for some b, c ∈ A.

729

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions
Therefore,

(){1 → g#(b), 2 → g#(c)} = g#(b, c) = g#(δ(a))
(12)
= (){1 → (){f → 1(ϵ)}, 2 → (){f → 1(ϵ)}}.

(13)

Moreover, by (11) and w.l.o.g., δ(b) = ι2(d, e) for some d, e ∈ A.

By (13), g#(b) = (){f → 1(ϵ)}. Hence

(){1 → g#(d), 2 → g#(e)} = g#(d, e) = g#(δ(b)) = fDTΣ(C)(g#(b))

= λw.g#(b)(f ∗ w) = λw.if w = ϵ then ∗ else ().

Conversely, let A ∈ AlgΣ \ K and g = λa.∗. Then for some a ∈ A, (11) does not hold
true, i.e., there are a, b, c ∈ A such that δ(a) = ι2(b, c) and δ(b) = ϵ = δ(c). Hence

g#(a) = g(a){f → 2((){1 → g#(b), 2 → g#(c)})}
= (){f → 2((){1 → g(b){f → 1(ϵ)}, 2 → g(c){f → 1(ϵ)})}
= (){f → 2((){1 → (){f → 1(ϵ)}, 2 → (){f → 1(ϵ)})} = t

and thus A ̸∈ AlgΣ,{¬ex(t)}.

2.4 Let K be the category of all Σ-algebras A such that for all a, b, c ∈ A,

δ(a) = ι2(b, c) ∧ δ(b) = ϵ = δ(c) ⇒ b = c, (14)

730

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

and t = (){f → 2((){1 → (){f → 1(ϵ)}, 2 → x{f → 1(ϵ)})}.

K = AlgΣ,{¬ex(t)}.

Proof. Let A ∈ K \ AlgΣ,{¬ex(t)}. Then g#(a) = t for some g ∈ V A and a ∈ A. Hence

g#(δ(a)) = fDTΣ(C)(g#(a)) = fDTΣ(C)(t) = λw.t(f ∗ w)
= (){1 → (){f → 1(ϵ)}, 2 → x{f → 1(ϵ)}

(15)

and thus δ(a) = ι2(b, c) for some b, c ∈ A. Therefore,

(){π1 → g#(b), π2 → g#(c)} = g#(b, c) = g#(δ(a))
(15)
= (){1 → (){f → 1(ϵ)}, 2 → x{f → 1(ϵ)}

(16)

and thus δ(b) = ϵ = δ(c). By (14), b = c. Hence

(){f → 1(ϵ)} (16)
= g#(b) = g#(c)

(16)
= x{f → 1(ϵ)}.

Conversely, let A ∈ AlgΣ \K and g = λa′.if a′ = c then x else ∗. Then for some a ∈ A,
(14) does not hold true, i.e., there are a, b, c ∈ A such that δ(a) = ι2(b, c), δ(b) = ϵ = δ(c)

and b ̸= c. Hence

731

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

g#(a) = g(a){f → 2((){1 → g#(b), 2 → g#(c)})}
= (){f → 2((){1 → g(b){f → 1(ϵ)}, 2 → g(c){f → 1(ϵ)})}
= (){f → 2((){1 → (){f → 1(ϵ)}, 2 → x{f → 1(ϵ)})} = t

and thus A ̸∈ AlgΣ,{¬ex(t)}.

3. (See [7], 2.6; sample final algebra 9.18.6) Let L ⊆ X∗ and KL be the category of
Acc(X)-algebras A such that for all a ∈ A, unfoldA(a) ̸= L.

3.1 If L = X∗, then KL is the category of all Acc(X)-algebras A with βA ̸= λa.0.

3.2 If L = 1, then KL is the category of all Acc(X)-algebras A with carrier A such that
for all a ∈ A there is w ∈ def (id#A(a)) with w ̸= ϵ and βA(id#A(a)(w)) = 1.

4. Let Σ = coList(X), t = (){split → 1(x)} for some x ∈ X and E = {¬ex(t)}. Then
DTΣ,E ∼= XN is final in AlgΣ,E where splitXN

(f) = ι2(f (0), λn.f (n+ 1)) for all f ∈ XN.

5. Let Σ = coList(X), t = (){split → 2((){1 → x, 2 → t})} for some x ∈ X and
E = {¬ex(t)}. Then DTΣ,E ∼= X∗ is final in AlgΣ,E where splitX∗

(ϵ) = ϵ and for all
x ∈ X and w ∈ X∗, splitX∗

(x · w) = ι2(x, split
X∗
(w)). ❏

732

19.17 Coequational theories 19 ADJUNCTIONS

�� ��Adjunctions

CTh(E) =def {σ#(t) | t ∈ DTh(E) ∩DTΣ, σ ∈ V DTΣ}

is called the coinductive theory of (Σ, E).

Soundness and completeness of CTh(E) w.r.t. OAlgΣ,E and DTΣ,E

For all t ∈ DTΣ(C),

t ∈ CTh(E) iff DTΣ,E ̸|= ¬ex(t) iff OAlgΣ,E ̸|= ¬ex(t).

Proof. Let t ∈ CTh(E). Then σ#(u) = t for some t ∈ DTh(E) ∩DTΣ and σ ∈ V DTΣ.
Since DTh(E) ∩DTΣ is the carrier of DTΣ,E, we conclude that DTΣ,E does not satisfy
¬ex(t).

Let DTΣ,E ̸|= ¬ex(t). Since unfoldDTΣ,E = inc : DTh(E) ∩ DTΣ → DTΣ, DTΣ,E is
observable. By (7), DTΣ,E satisfies E. Hence OAlgΣ,E ̸|= ¬ex(t).

Suppose that some observable (Σ, E)-algebra A with carrier A does not satisfy ¬ex(t).
Then g#(a) = t for some a ∈ A and g ∈ V A. Since A is observable, σ ∈ V DTΣ is
well-defined by g = σ ◦ unfoldA. Hence by Lemma 9.16,

σ#(unfoldA(a)) = (σ ◦ unfoldA)#(a) = g#(a) = t. (17)

By (8), unfoldA(a) ∈ DTh(E) ∩DTΣ. Therefore, (17) implies t ∈ CTh(E). ❏

733

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Adjunctions

19.18 Base algebra extensions

Let Σ = (S, F) be a subsignature of a signature Σ′ = (S ′, F ′) and B be a Σ-algebra.

For all e ∈ Tpo(S), eB ∈ Tpo(S) is obtained from e by replacing each sort s ∈ S with Bs.
Let FB = {fB : eB → e′B | f : e→ e′ ∈ F ′},

ΣB = (S ′ \ S, FB).

Moreover, σB : Σ′ → ΣB denotes the signature morphism that maps s ∈ S to Bs,
s ∈ S ′ \ S to s and f ∈ F ′ to fB. Then for all ΣB-algebras A and s ∈ S,

(A|σB)s = AσB(s) = FσB(s)(A) =

 FBs(A) = Bs if s ∈ S,

Fs(A) = As otherwise.

Let UΣ denote the forgetful functor from AlgΣ′ to AlgΣ, A be a Σ′-algebra and B = UΣ(A)

(see section 5.1). A yields a ΣB-algebra AB that is defined as follows:

For all s ∈ S ′ \ S, AB,s = As, and for all f ∈ F ′, fAB,s

B = fA.

The σB-reduct of AB agrees with A: AB|σB = A.

734

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Adjunctions
Let ΣB be constructive and µΣ be initial in AlgΣB

.

UΣ has a left adjoint LΣ′ : AlgΣ → AlgΣ′:

For all Σ-algebras B, LΣ′(B) =def µΣ|σB is called the free Σ′-algebra over B.

The unit η : Id → UΣLΣ′ is defined as follows: For all b ∈ B, ηB(b) = b.

The co-unit ϵ : LΣ′UΣ → Id is defined as follows:For all Σ-algebras B and Σ′-algebras A,

LΣ′(B)
ϵA−→ A = µΣ|σB

foldAB |σB−→ AB|σB
where foldAB is the unique ΣB-homomorphism from µΣ to AB.

Let ΣB be destructive and νΣ be final in AlgΣB
.

UΣ has a right adjoint RΣ′ : AlgΣ → AlgΣ′:

For all Σ-algebras B, RΣ′(B) =def νΣ|σB is called the cofree Σ′-algebra over B.

The co-unit ϵ : UΣRΣ′ → Id is defined as follows: For all b ∈ B, ϵB(b) = b.

The unit η : Id → RΣ′UΣ is defined as follows: For all Σ-algebras B and Σ′-algebras A,

A
ηA−→ RΣ′(B) = AB|σB

unfoldAB |σB−→ νΣ|σB
where unfoldAB is the unique ΣB-homomorphism from AB to νΣ.

735

19.18 Base algebra extensions 19 ADJUNCTIONS

�
�

�
20 Stream calculus

Let X be a semiring, CΣ = ({list}, {X}, C, ∅), Σ = (CΣ, Stream(X), ∅),

C = {_ : X → list,

X : 1 → list,

≺: X × list→ list,

+, ∗,×,⊗, ◦ : list× list→ list,

_−1 : list→ list,

_−1 : list→ list,∑
n<ω : listN → list,

exp, sin, cos : list→ list}

and E be the following system of recursive equations: Let x, s, s′ ∈ V .

head(x) = x tail(x) = 0

head(X) = 0 tail(X) = 1

head(x ≺ s) = x tail(x ≺ s) = s

head(s + s′) = head(s) + head(s′) tail(s + s′) = tail(s) + tail(s′)

736

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

head(s ∗ s′) = head(s) ∗ head(s′) tail(s ∗ s′) = tail(s) ∗ tail(s′)
head(s× s′) = head(s) ∗ head(s′) tail(s× s′) = (tail(s)× s′) + (head(s)× tail(s′))

convolution product

head(s⊗ s′) = head(s) ∗ head(s′) tail(s⊗ s′) = (tail(s)⊗ s′) + (s⊗ tail(s′))

shuffle product

head(s ◦ s′) = head(s) tail(s ◦ s′) = tail(s′)× (tail(s) ◦ s′)
head(s−1) = head(s)−1 tail(s−1) = (−1× head(s)−1 × tail(s))× s−1

head(s−1) = head(s)−1 tail(s−1) = −1× (tail(s)⊗ s−1 ⊗ s−1)

head(
∑

n<ω sn) =
∑

n<ω head(sn) tail(
∑

n<ω sn) =
∑

n<ω tail(sn)

head(exp(s)) = exp(head(s)) tail(exp(s)) = tail(s)⊗ exp(s)

head(sin(s)) = sin(head(s)) tail(sin(s)) = tail(s)⊗ cos(s)

head(cos(s)) = cos(head(s)) tail(cos(s)) = tail(s)⊗−sin(s)

Let a, b ∈ XN. −1 and head(a)−1 are defined if X has unique additive and multiplicative
inverses, a−1 is defined if a(0) ̸= 0 and a ◦ b is defined if b(0) = 0 (see [156], p. 14).
−a = −1× a. exp(a), sin(a), cos(a) are defined if X ∈ {R,C}.

737

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

Given a0, a1, a2, · · · ∈ XN,
∑

n<ω head(an) is defined only if X is a complete semiring or
a0, a1, a2, . . . is summable, i.e., for all i ∈ N,

∑
n<ω an(i) = limn→∞

∑n
k=0 ak(i) ̸= ∞

(see [158], section 4).

For all x ∈ X , a, b ∈ XN and n ∈ N,

x(n) = if n = 0 then x else 0, (1)
X (n) = if n = 1 then 1 else 0, (2)

(x ≺ a)(n) = if n = 0 then x else a(n− 1), (3)
(a + b)(n) = a(n) + b(n), (4)

(a× b)(n) =

n∑
i=0

a(i) ∗ b(n− i) (5)

(a⊗ b)(n) =

n∑
i=0

(
n

i

)
∗ a(i) ∗ b(n− i) (6)

Proof.

Since XN is final in AlgStream(X), Theorem 16.3 implies that, if the interpretation of
_,X ,≺,+,×,⊗ in XN given by (1)-(6) satisfies E, then (1)-(6) is the only solution of
E in XN. Indeed, (1)-(6) satisfies E:

738

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

head(x) = x(0) = x,

tail(x)(n) = x(n + 1) = 0 = 0(n),

head(X) = X (0) = 0,

tail(X)(n) = X (n + 1) = if n + 1 = 1 then 1 else 0 = if n = 0 then 1 else 0 = 1(n),

head(x ≺ a) = (x ≺ a)(0) = x,

tail(x ≺ a)(n) = (x ≺ a)(n + 1) = if n + 1 = 0 then x else a(n)

= if n = −1 then x else a(n) = a(n)

head(a + b) = (a + b)(0) = a(0) + b(0) = head(a) + head(b),

tail(a + b)(n) = (a + b)(n + 1) = a(n + 1) + b(n + 1) = tail(a)(n) + tail(b)(n)

= (tail(a) + tail(b))(n),

739

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

head(a× b) = (a× b)(0) =
∑0

i=0 a(i) ∗ b(0− i) = a(0) ∗ b(0) = head(a) ∗ head(b),
tail(a× b)(n) = (a× b)(n + 1) =

∑n+1
i=0 a(i) ∗ b(n + 1− i)

= a(0) ∗ b(n + 1) +
∑n+1

i=1 a(i) ∗ b(n + 1− i)

= a(0) ∗ b(n + 1) +
∑n

i=0 a(i + 1) ∗ b(n + 1− (i + 1))

= a(0) ∗ b(n + 1) +
∑n

i=0 a(i + 1) ∗ b(n− i)

=
∑n

i=0 a(i + 1) ∗ b(n− i) + a(0) ∗ b(n + 1)

=
∑n

i=0 a(i + 1) ∗ b(n− i) + a(0) ∗ b(n + 1) +
∑n

i=1 0 ∗ b(n− i + 1)

=
∑n

i=0 a(i + 1) ∗ b(n− i) + a(0)(0) ∗ b(n + 1) +
∑n

i=1 a(0)(i) ∗ b(n− i + 1)

=
∑n

i=0 a(i + 1) ∗ b(n− i) +
∑n

i=0 a(0)(i) ∗ b(n− i + 1)

=
∑n

i=0 tail(a)(i) ∗ b(n− i) +
∑n

i=0 a(0)(i) ∗ tail(b)(n− i)

= (tail(a)× b)(n) + (a(0)× tail(b))(n)

= ((tail(a)× b) + (head(a)× tail(b)))(n),

head(a⊗ b) = (a⊗ b)(0) =
∑0

i=0

(
0

i

)
∗ a(i) ∗ b(0− i) = 1 ∗ a(0) ∗ b(0)

= a(0) ∗ b(0) = head(a) ∗ head(b),

740

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

tail(a⊗ b)(n) = (a× b)(n + 1) =
∑n+1

i=0

(
n+ 1

i

)
∗ a(i) ∗ b(n + 1− i)

=

(
n+ 1

0

)
∗ a(0) ∗ b(n + 1) +

∑n+1
i=1

(
n+ 1

i

)
∗ a(i) ∗ b(n + 1− i)

= a(0) ∗ b(n + 1) +
∑n

i=0

(
n+ 1

i+ 1

)
∗ a(i + 1) ∗ b(n− i)

= a(0) ∗ b(n + 1) +
∑n

i=0

(
n

i+ 1

)
∗ a(i + 1) ∗ b(n− i) +

∑n
i=0

(
n

i

)
∗ a(i + 1) ∗ b(n− i)

= a(0) ∗ b(n + 1) +
∑n

i=0

(
n

i+ 1

)
∗ a(i + 1) ∗ b(n− (i + 1) + 1)

+
∑n

i=0

(
n

i

)
∗ a(i + 1) ∗ b(n− i)

=
∑n

i=0

(
n

i

)
∗ a(i) ∗ b(n− i + 1) +

∑n
i=0

(
n

i

)
∗ a(i + 1) ∗ b(n− i)

=
∑n

i=0

(
n

i

)
∗ a(i + 1) ∗ b(n− i) +

∑n
i=0

(
n

i

)
∗ a(i) ∗ b(n− i + 1)

=
∑n

i=0

(
n

i

)
∗ tail(a)(i) ∗ b(n− i) +

∑n
i=0

(
n

i

)
∗ a(i) ∗ tail(b)(n− i)

= (tail(a)⊗ b)(n) + (a⊗ tail(b))(n) = ((tail(a)⊗ b) + (a⊗ tail(b)))(n). ❏

741

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

For all x ∈ X , a ∈ XN and summable {an}n<ω ⊆ XN,

x× a = λn.(x ∗ a(n)) = x⊗ a, ([156], p. 24)

tail(x× a) = x× tail(a),

X × a = 0 ≺ a, ([140], equation (11))

x× (y × a) = x ∗ y × a,

x× (y ≺ a) = x ∗ y ≺ (x× a),∑
n<ω an = a0 +

∑
n<ω an+1, (proof by coinduction)∑

n<ω a× an = a×
∑

n<ω an. (proof by coinduction)

For all n ∈ N, define a0 = a0 = 1, an+1 = a× an and an+1 = a⊗ an. By coinduction,

a(0) = 0 ⇒ tail(an+1) = tail(a)× an, (7)
tail(an+1) = n + 1⊗ tail(a)⊗ an. (8)

742

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

By (2) and since for all i, k ∈ N, X (i) ∗ X n(k − i) ̸= 0 ⇔ i = 1 ∧ k = n + 1, a proof by
induction on n yields

X n = λi.(if i = n then 1 else 0), X n = n!×X n

([156], Equation (30)) and thus for all x ∈ X :

x×X n = λi.(if i = n then x else 0).

Representations of XN

Let X be a group. Then B = XN is the carrier of a Stream(X)-algebra: headB(a) = a(0)

and tailB(a) = λn.(a(n + 1)− a(n)).

The function τ : ⟨headB, tailB⟩ → XN that maps a ∈ XN to the stream

λn.
∑n

i=0

(
−n
i

)
∗ a(i) is a Stream(X)-isomorphism ([140], section 1.2).

The inverse of τ maps a ∈ XN to λn.
∑n

i=0

(
n

i

)
∗ a(i).

743

https://en.wikipedia.org/wiki/Group_(mathematics)

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

The set A of functions f : R → R that are analytic at 0 provides the carrier of a
Stream(X)-algebra: headA(f) = f (0) and tailA(f) = Df (first derivative of f).

The Taylor transform T : A → RN that maps f ∈ A to the stream λn.(Dnf)(0) is a
Stream(X)-monomorphism ([140], section 2.2; [156], section 5; [157], section 3.4; [158],
section 12). The inverse T−1 of T is defined on the image of T and maps a ∈ T (A) to
the power series λx.

∑
i<ω a(i)x

i/i!. The streams of T (A) are called streams of Taylor
coefficients.

Sample analytic functions Let // denote integer division.

exp = λx.
∑

n<ω a(n) ∗ xn where a(n) = 1/n!

sin = λx.
∑

n<ω a(n) ∗ xn where a(n) = if even(n) then 0 else (−1)n//2/n!)

cos = λx.
∑

n<ω a(n) ∗ xn where a(n) = if odd(n) then 0 else (−1)n//2/n!)

744

https://en.wikipedia.org/wiki/Analytic_function

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

Proofs by coinduction yield for all f, g ∈ A:

T (f + g) = T (f) + T (g) (9)
T (f ∗ g) = T (f)⊗ T (g) (10)

T (λx.

∫ x

0

f) = X × T (f) (11)

The function g : RN → RN that maps a ∈ RN to the stream λn.(n! ∗ a(n)) is a bijection
that is compatible with the stream operators _, X , ≺ and + and satisfies

g(a× b) = g(a)⊗ g(b) and g(a−1) = g(a)−1

([140], section 3.1; [156], Thm. 6.4 where g = ∆RN; [158], Thm. 10.1 where g = Λc). The
inverse of g maps a ∈ RN to the stream λn.(a(n)/n!).

Hence the composition of T−1 ◦ g maps a stream a ∈ RN of Taylor coefficients to its
generating function λx.

∑
n<ω a(n) ∗ xn ([140], section 3.1). The inverse g−1 ◦T sends

f ∈ A to λn.(Dnf/n!).

745

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

Theorem 20.1 (fundamental theorem of Stream(X))

Let A be the final Stream(X)-algebra (with carrier XN). A satisfies the following set E
of equations: Let s, s′ ∈ V and for all n ∈ N, s(n) = head(tailn(s)).

s = head(s) + (X × tail(s)), (12)

s =
∑
n<ω

s(n)×X n, (13)

s =
∑
n<ω

s(n)/n!×X n, (14)

head(s′) = 0 ⇒ s ◦ s′ =
∑
n<ω

s(n)× s′n, (15)

exp(s) =
∑
n<ω

1/n!× sn, (16)

exp(s + s′) = exp(s)⊗ exp(s′), (17)
sin(s) =

∑
n<ω

(−1)n/(2n + 1)!× s2n+1, (18)

cos(s) =
∑
n<ω

(−1)n/(2n)!× s2n, (19)

746

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

sin(s)2 + cos(s)2 = 1. (20)

Proof.

We show that ∼= {(tA(a), uA(a)) | t = u ∈ E, a ∈ Asrc(t)} is a Stream(X)-bisimulation
modulo C. Hence by **** coinduction on ∼, A satisfies E.

Besides the equations given above, we also use some of those listed in [157], Thm. 2.4.1
or 3.1.1, and involving +, ×, ⊗, 0 or 1 and Let a, b ∈ XN. We identify the arrows of Σ
with their interpretations in A.

(12)

head(head(a) + (X × tail(a))) = head(a(0)) + head(X × tail(a))

= head(a(0)) + head(0 ≺ tail(a)) = head(a(0)) + 0 = head(a(0)) = a(0) = head(a),

tail(head(a) + (X × tail(a))) = tail(a(0)) + tail(X × tail(a)) = 0 + tail(X × tail(a))

= tail(X × tail(a)) = tail(0 ≺ tail(a)) = tail(a)

(see [156], Thm. 5.1; [158], Thm. 4.1).

747

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

(13)

head(
∑

n<ω a(n)×X n) =
∑

n<ω head(a(n)×X n) =
∑

n<ω head(a(n)) ∗ head(X n)

=
∑

n<ω a(n) ∗ head(X n) =
∑

n<ω a(n) ∗ X n(0) = a(0) = head(a),

tail(
∑

n<ω a(n)×X n) =
∑

n<ω tail(a(n)×X n) =
∑

n<ω a(n)× tail(X n)

= (a(0)× tail(X 0)) +
∑

n<ω a(n + 1)× tail(X n+1)

= (a(0)× 0) +
∑

n<ω a(n + 1)×X n =
∑

n<ω a(n + 1)×X n

=
∑

n<ω tail(a)(n)×X n ∼ tail(a)

(see [156], Thm. 5.2; [158], Thm. 4.3).

(14) By (13),

a =
∑

n<ω a(n)×X n =
∑

n<ω n! ∗ a(n)/n!×X n =
∑

n<ω a(n)/n!× (n!×X n)

=
∑

n<ω a(n)/n!×X n.

748

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

(15)

head(
∑

n<ω a(n)× bn) =
∑

n<ω head(a(n)× bn) =
∑

n<ω head(a(n)) ∗ head(bn)

=
∑

n<ω a(n) ∗ bn(0) =
∑

n<ω a(n) ∗ b(0)n
b(0)=0
= a(0) ∗ 1 = a(0) = head(a) = head(a ◦ b),

tail(
∑

n<ω a(n)× bn) =
∑

n<ω tail(a(n)× bn) =
∑

n<ω a(n)× tail(bn)

= (a(0)× tail(b0)) +
∑

n<ω a(n + 1)× tail(bn+1)

= (a(0)× 0) +
∑

n<ω a(n + 1)× tail(bn+1) =
∑

n<ω a(n + 1)× tail(bn+1)

(7)
=

∑
n<ω tail(a)(n)× (tail(b)× bn) = tail(b)×

∑
n<ω tail(a)(n)× bn

∼C tail(b)× (tail(a) ◦ b) = tail(a ◦ b)

(see [157], Thm. 2.5.3).

749

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

(16)

head(
∑

n<ω 1/n!× an) =
∑

n<ω head(1/n!× an) =
∑

n<ω head(1/n!) ∗ head(an)

=
∑

n<ω(1/n!) ∗ an(0) =
∑

n<ω(1/n!) ∗ a(0)n = exp(a(0)) = head(exp(a)),

tail(
∑

n<ω 1/n!× an) =
∑

n<ω tail(1/n!× an) =
∑

n<ω 1/n!× tail(an)

= 1/0!× tail(a0) +
∑

n<ω 1/(n + 1)!× tail(an+1)

= 1× 0 +
∑

n<ω 1/(n + 1)!× tail(an+1) =
∑

n<ω 1/(n + 1)!× tail(an+1)

(8)
=

∑
n<ω 1/(n + 1)!× (n + 1⊗ tail(a)⊗ an)

=
∑

n<ω 1/(n + 1)!⊗ n + 1⊗ tail(a)⊗ an

= tail(a)⊗
∑

n<ω 1/(n + 1)!⊗ n + 1⊗ an

= tail(a)⊗
∑

n<ω (n + 1)/(n + 1)!⊗ an = tail(a)⊗
∑

n<ω 1/n!⊗ an

∼C tail(a)⊗ exp(a) = tail(exp(a)).

750

19.18 Base algebra extensions 19 ADJUNCTIONS

(19)

head(exp(a + b)) = exp(head(a + b)) = exp(head(a) + head(b))

= exp(head(a)) ∗ exp(head(b)) = head(exp(a)) ∗ head(exp(b))

= head(exp(a)⊗ exp(b)),

tail(exp(a + b)) = tail(a + b)⊗ exp(a + b) = (tail(a) + tail(b))⊗ exp(a + b)

= (tail(a)⊗ exp(a + b)) + (tail(b)⊗ exp(a + b))

∼C (tail(a)⊗ exp(a)⊗ exp(b)) + (tail(b)⊗ exp(a)⊗ exp(b))

= (tail(a)⊗ exp(a)⊗ exp(b)) + (exp(a)⊗ tail(b)⊗ exp(b))

= (tail(exp(a))⊗ exp(b)) + (exp(a)⊗ tail(exp(b)))

= tail(exp(a)⊗ exp(b)).

(20)

head(sin(a)2 + cos(a)2) = head(sin(a)2) + head(cos(a)2)

= head(sin(a)⊗ sin(a)) + head(cos(a)⊗ cos(a))

= head(sin(a))2 + head(cos(a))2 = sin(head(a))2 + cos(head(a))2 = 1 = head(1),

751

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

tail(sin(a)2 + cos(a)2) = tail(sin(a)2) + tail(cos(a)2)

= tail(sin(a)⊗ sin(a)) + tail(cos(a)⊗ cos(a))

= (tail(sin(a))⊗ sin(a)) + (sin(a)⊗ tail(sin(a)))

+(tail(cos(a))⊗ cos(a)) + (cos(a)⊗ tail(cos(a)))

= (tail(a)⊗ cos(a)⊗ sin(a)) + (sin(a)⊗ tail(a)⊗ cos(a))

+(tail(a)⊗−sin(a)⊗ cos(a)) + (cos(a)⊗ tail(a)⊗−sin(a))

= (tail(a)⊗ cos(a)⊗ sin(a))− (tail(a)⊗ sin(a)⊗ cos(a))

+(sin(a)⊗ tail(a)⊗ cos(a))− (cos(a)⊗ tail(a)⊗ sin(a))

= (sin(a)⊗ (tail(sin(a)) + tail(sin(a)))) + (cos(a)⊗ (tail(cos(a)) + tail(cos(a))))

= (sin(a)⊗ ((tail(a)⊗ cos(a)) + (tail(a)⊗ cos(a))))

+(cos(a)⊗ ((tail(a)⊗−sin(a)) + (tail(a)⊗−sin(a))))

= 0 + 0 = 0 = tail(1)

(see [48], p. 32). ❏

752

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

Theorem 20.2 (fundamental theorem of calculus)

For all f ∈ A,

f = λx.(f (0) +

∫ x

0

Df). (21)

Proof.

T (λx.(f (0) +
∫ x
0 Df)) = T (λx.f (0) + λx.

∫ x
0 Df)

(9)
= T (λx.f (0)) + T (λx.

∫ x
0 Df)

(11)
= f (0) + (X × T (Df)) = f (0) + (0 ≺ T (Df)) = f (0) ≺ T (Df)

= head(T (f)) ≺ tail(T (f)) = T (f).

Since T is mono, (21) holds true. ❏

753

https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus

19.18 Base algebra extensions 19 ADJUNCTIONS

�� ��Stream calculus

Example Fibonacci sequence

fib(0) = 0 ∧ fib(1) = 1 ∧ fib = tail(tail(fib))− tail(fib)

⇐⇒ fib = 0 ≺ fib + (1 ≺ fib)

⇐⇒ fib = 0 ≺ fib ′ ∧ fib ′ = 1 ≺ fib + fib ′ ([73], p. 9)

⇐⇒ fib = X × (1−X − X 2)−1 ([158], p. 111)

⇐⇒ fib = 0 ≺ ((1 + X)× fib) + 1 ([48], p. 33)

754

21.1 Constructor extensions 21 CONSERVATIVE EXTENSIONS

�
�

�
21 Conservative extensions

Let Σ = (S, F, P) be a signature, Σ′ = (S ′, F ′, P ′) be a subsignature of Σ, AX be a set
of Σ-formulas, AX ′ ⊆ AX be a set Σ′-formulas, A be a Σ-algebra and B = A|Σ′.

21.1 Constructor extensions

Let Σ be constructor and µΣ and µΣ′ be initial in AlgΣ,AX and AlgΣ′,AX ′, respectively.

A is F ′-reachable (or F ′-generated) if foldB : µΣ′ → B is surjective.
A is equationally F ′-consistent if foldB is injective.

(Σ, AX) is a conservative extension of (Σ′, AX ′) if µΣ is F ′-reachable and equationally
F ′-consistent, i.e., if µΣ|Σ′ and µΣ′ are isomorphic.

Intuitively,

A is F ′-reachable if each element of A is obtained by folding an element of µΣ′;

A is equationally F ′-consistent if for each element a of A there is only one element of µΣ′

that folds into a.

A is F ′-reachable iff img(foldB) = B. (1)

755

21.1 Constructor extensions 21 CONSERVATIVE EXTENSIONS

�� ��Conservative extensions

A is equationally F ′-consistent iff ker(foldB) = ∆µΣ′.

Given a category K of Σ-algebras, the full subcategory of F -reachable objects of K is
denoted by gen(K).

Lemma 21.1

Let A be initial in AlgΣ,AX .

A is F ′-reachable iff img(foldB) is a Σ-invariant.

Proof. “⇒”: Let A be F ′-reachable. Then img(foldB) = B = A and thus img(foldB) is
a Σ-invariant.

“⇐”: Let img(foldB) be a Σ-invariant. By Lemma 12.3 (1), A is the least Σ-invariant of
A. Hence B = A ⊆ img(foldB) ⊆ B and thus by (1), A is F ′-reachable. ❏

Lemma 21.2

Let µΣ′ be extendable to a (Σ, AX)-algebra C.

756

21.1 Constructor extensions 21 CONSERVATIVE EXTENSIONS

�� ��Conservative extensions

Then (Σ, AX) is a conservative extension of (Σ′, AX ′).

Proof. Let foldC be the unique Σ-homomorphism from µΣ to C, A = µΣ/ker(foldC)

and B = A|Σ′. By Lemma 13.1 (2), there is a unique Σ-monomorphism h : A→ C such
that (ϵ) commutes:

µΣ
foldC

≻C

(ϵ)

A

h

≻

nat

≻

By Lemma 13.6 (4), A satisfies AX . Hence A ∈ AlgΣ,AX and thus B ∈ AlgΣ′,AX ′. Let
foldB be the unique Σ′-homomorphism from µΣ′ to B.

µΣ′ foldB→ B
h|Σ′→ C|Σ′ = µΣ′

agrees with the identity on µΣ′ because µΣ′ is initial. Since idµΣ′ is epi, Lemma 4.1 (1)
implies that h|Σ′ is also epi. We conclude that µΣ′ and B are Σ′-isomorphic and thus
(Σ, AX) is a conservative extension of (Σ′, AX ′). ❏

757

21.2 Destructor extensions 21 CONSERVATIVE EXTENSIONS

�� ��Conservative extensions

21.2 Destructor extensions

Let Σ be destructor and νΣ and νΣ′ be final in AlgΣ,AX and AlgΣ′,AX ′, respectively.

A is F ′-observable (or F ′-cogenerated) if unfoldB : B → νΣ′ is injective.
A is behaviorally F ′-complete if unfoldB is surjective.

(Σ, AX) is a conservative extension of (Σ′, AX ′) and F \F ′ is derived from F if νΣ
is F ′-observable and F ′-complete, i.e., νΣ|Σ′ and νΣ′ are isomorphic.

Intuitively,

A is F ′-observable if for each element a of A, all unfoldings of a in νΣ′ are the same;

A is behaviorally F ′-complete if each element of νΣ′ is the unfolding of an element of A.

A is F ′-observable iff ker(unfoldB) = ∆B. (3)

A is behaviorally F ′-complete iff img(unfoldB) = νΣ′.

758

21.2 Destructor extensions 21 CONSERVATIVE EXTENSIONS

�� ��Conservative extensions

Given a category K of Σ-algebras, the full subcategory of F -observable objects of K is
denoted by obs(K).

Lemma 21.3

Let A be final in AlgΣ,AX .

A is F ′-observable iff ker(unfoldB) is a Σ-congruence.

Proof. “⇒”: Let A be F ′-observable. Then ker(unfoldB) = ∆B = ∆A and thus
ker(unfoldB) is a Σ-congruence.

“⇐”: Let ker(unfoldB) be a Σ-congruence. By Lemma 13.3 (1), ∆A is the greatest
Σ-congruence on A. Hence ∆B ⊆ ker(unfoldB) ⊆ ∆A = ∆B and thus by (3), A is
F ′-observable. ❏

Lemma 21.4

Let νΣ′ be extendable to a (Σ, AX)-algebra C. Then (Σ, AX) is a conservative extension
of (Σ′, AX ′).

759

21.2 Destructor extensions 21 CONSERVATIVE EXTENSIONS

�� ��Conservative extensions

Proof. Let unfoldC be the unique Σ-homomorphism from C to νΣ, A = img(unfoldC)

and B = A|Σ′. By Lemma 12.1 (2), there is a unique Σ-epimorphism h : C → A such
that (∗) commutes:

C
unfoldC

≻ νΣ

(∗)

A

inc

≻

h

≻

By Lemma 12.7 (2), A satisfies AX . Hence A ∈ AlgΣ,AX and thus B ∈ AlgΣ′,AX ′. Let
unfoldB be the unique Σ′-homomorphism from B to µΣ′.

νΣ′ = C|Σ′
h|Σ′→ B

unfoldB→ νΣ′

agrees with the identity on νΣ′ because νΣ′ is final. Since idνΣ′ is mono, Lemma 4.1 (2)
implies that h|Σ′ is also mono. We conclude that νΣ′ and B are Σ′-isomorphic and thus
(Σ, AX) is a conservative extension of (Σ′, AX ′). ❏

760

21.2 Destructor extensions 21 CONSERVATIVE EXTENSIONS

�
�

�
22 Abstraction and restriction

Let Σ = (S, F, P) be a constructor signature, ??? Σ′ = (S, F) and µΣ′ be initial in AlgΣ′.

Lemma 22.1

Let h : A→ B be a Σ-homomorphism that preserves all p : e ∈ P , i.e.,

pA = {a ∈ Ae | h(a) ∈ pB},

e =
∏

x∈V ex ∈ Tpo(S) and φ be a negation-free Σ-formula over V .

If φ does not contain universal quantifiers, then

h(φA) ⊆ φB. (1)

If h is epi, then
h−1(φB) ⊆ φA. (2)

761

21.2 Destructor extensions 21 CONSERVATIVE EXTENSIONS

�� ��Abstraction and restriction

Proof of (1) by induction on the size of φ.

Let p : e ∈ P , x ∈ Vs. W.l.o.g. we assume that r is unary.

f ∈ r(t)A ⇔ tA(f) ∈ rA ⇔ tB(h ◦ f) Lemma 9 .9
= h(tA(f)) ∈ rB ⇔ h ◦ f ∈ r(t)B.

f ∈ (φ ∧ ψ)A = φA ∩ ψA i.h.⇒ h ◦ f ∈ φB ∩ ψB = (φ ∧ ψ)B.

f ∈ (φ ∨ ψ)A = φA ∪ ψA i.h.⇒ h ◦ f ∈ φB ∪ ψB = (φ ∨ ψ)B.

f ∈ (∃xφ)A ⇔ ∃ a ∈ As : upd(f, x, a) ∈ φA

i.h.⇒ ∃ a ∈ As : upd(h ◦ f, x, h(a)) = h ◦ upd(f, x, a) ∈ φB

⇒ ∃ b ∈ Bs : upd(h ◦ f, x, b) ∈ φB ⇔ h ◦ f ∈ (∃xφ)B.

762

21.2 Destructor extensions 21 CONSERVATIVE EXTENSIONS

�� ��Abstraction and restriction

Proof of (2) by induction on the size of φ.

Let r ∈ R, s ∈ S and x ∈ Vs. W.l.o.g. we assume that r is unary.

h ◦ f ∈ r(t)B ⇔ h(tA(f))
Lemma 9 .9

= tB(h ◦ f) ∈ rB ⇔ tA(f) ∈ rA ⇔ f ∈ r(t)A.

h ◦ f ∈ (φ ∧ ψ)B = φB ∩ ψB i.h.⇒ f ∈ φA ∩ ψA = (φ ∧ ψ)A.

h ◦ f ∈ (φ ∨ ψ)B = φB ∪ ψB i.h.⇒ f ∈ φA ∪ ψA = (φ ∨ ψ)A.

h ◦ f ∈ (∃xφ)B ⇔ ∃ b ∈ Bs : upd(h ◦ f, x, b) ∈ φB

h epi⇒ ∃ a ∈ As : h ◦ upd(f, x, a) = upd(h ◦ f, x, h(a)) ∈ φB

i.h.⇒ ∃ a ∈ As : upd(f, x, a) ∈ φA ⇔ f ∈ (∃xφ)A.

h ◦ f ∈ (∀xφ)B ⇔ ∀ b ∈ Bs : upd(h ◦ f, x, b) ∈ φB

⇒ ∀ a ∈ As : h ◦ upd(f, x, a) = upd(h ◦ f, x, h(a)) ∈ φB

i.h.⇒ ∀ a ∈ As : upd(f, x, a) ∈ φA ⇔ f ∈ (∀xφ)A. ❏

763

22.1 Abstraction with a least congruence 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

22.1 Abstraction with a least congruence

Let AX consist of ∀-free Horn clauses and K = AlgΣ,AX such that for all A ∈ K, =A is
a Σ-congruence, and C = lfp(µΣ′,Σ, AX).

Then ∼ =def =
C is the least Σ-congruence on µΣ′.

By Lemma 13.6, C/∼∈ K.

Let A ∈ K. We define B ∈ AlgΣ as the foldA-pre-image of the interpretation of R in A,
i.e., for all r : w ∈ R,

rB =def {b ∈ µΣ′
w | foldA(b) ∈ rA}.

Use induction on N and Theorem 3.4 (or transfinite induction and Theorem 3.8) to show
that foldA extends to a Σ-homomorphism!

764

22.1 Abstraction with a least congruence 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

B satisfies AX and thus B ∈ AlgΣ,AX .

Proof. Let φ = (r(t1, . . . , tn) ⇐ ψ) ∈ AX and g ∈ ψB. By Lemma 22.1 (1), foldA ◦ g ∈
ψA. Since A satisfies φ, foldA ◦ g ∈ r(t1, . . . , tn)

A, i.e.,

(foldA(tB1 (g)), . . . , fold
A(tBn (g)))

Lemma 9 .9
= (tA1 (fold

A ◦ g), . . . , tAn (foldA ◦ g)) ∈ rA.

Hence (tB1 (g), . . . , t
B
n (g)) ∈ rB and thus g ∈ r(t1, . . . , tn)

B. ❏

Theorem 22.2 C/∼ is initial in K.

Proof. Since C is the least D ∈ AlgΣ,AX with D|Σ′ = µΣ′, we obtain C ≤ B. In
particular,

∼ = =C ⊆ =B = {(t, u) ∈ (µΣ′)2 | foldA(t) =A foldA(u)}

= ker(foldA)

because =A= ∆A. Hence h : C/∼→ A is well-defined by h ◦ nat∼ = foldA ◦ idµΣ′.

765

22.1 Abstraction with a least congruence 22 ABSTRACTION AND RESTRICTION

C
nat∼ ≻C/∼

B

idµΣ′

⋎

foldA
≻A

h

⋎

Since nat∼ is epi and reflects predicates and foldA ◦ idµΣ′ is Σ-homomorphic, Lemma 9.1
(1) implies that h is also Σ-homomorphic.

Let h′ be any Σ-homomorphism from C/∼ to A. Since B|BΣ = BA is initial in AlgΣ,
h′ ◦ nat∼ = h ◦ nat∼ and thus h′ = h because nat∼ is epi. ❏

766

22.2 Abstraction with a greatest congruence 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

22.2 Abstraction with a greatest congruence

Let AX consist of co-Horn clauses and K = AlgΣ,AX such that for all A ∈ K, =A is a
Σ-congruence, C = gfp(µΣ′,Σ, AX) and ∼ =def =C be a Σ-congruence on µΣ′. Hence
C ∈ gen(K).

By Lemma 13.6, C/∼∈ gen(K).

Let A ∈ gen(K). We define B ∈ AlgΣ as the foldA-pre-image of the interpretation of R
in A, i.e., for all r : w ∈ R,

rB =def {b ∈ µΣ′
w | foldA(b) ∈ rA}.

Use induction on N and Theorem 3.4 (or transfinite induction and Theorem 3.8) to show
that foldA extends to a Σ-homomorphism!

767

22.2 Abstraction with a greatest congruence 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

B satisfies AX and thus B ∈ gen(K).

Proof. Let r ∈ R, φ = (r(t1, . . . , tn) ⇒ ψ) ∈ AX and g ∈ r(t1, . . . , tn)
B. Hence

(tB1 (g), . . . , t
B
n (g)) ∈ rB and thus

(tA1 (fold
A ◦ g), . . . , tAn (foldA ◦ g)) Lemma 9 .9

= (foldA(tB1 (g)), . . . , fold
A(tBn (g))) ∈ rA.

Hence foldA ◦ g ∈ r(t1, . . . , tn)
A. Since A satisfies φ, foldA ◦ g ∈ ψA. Since A is Σ-

reachable, foldA is epi and thus Lemma 22.1 (2) implies g ∈ ψB. ❏

Theorem 22.3 C/∼ is final in gen(K).

Proof. Since C is the greatest D ∈ AlgΣ,AX with D|BΣ = µΣ′, we obtain
B ≤ C. In particular,

ker(foldA) = {(t, u) ∈ (µΣ′)2 | foldA(t) =A foldA(u)} = =B ⊆ =C = ∼

because =A= ∆A.

Hence for all t, u ∈ µΣ′, foldA(t) = foldA(u) implies t ∼ u. Since A is Σ-reachable, foldA

is epi and thus for all a ∈ A there is t ∈ µΣ′ with foldA(t) = a.

768

22.2 Abstraction with a greatest congruence 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

Hence h : A→ C/∼ is well-defined by h ◦ foldA = nat∼ ◦ idµΣ′.

B
foldA

≻A

C

idµΣ′

⋎

nat∼
≻C/∼

h

⋎

Since foldA is epi and reflects predicates and nat∼ ◦ idµΣ′ is Σ-homomorphic, Lemma 9.1
(1) implies that h is also ΣBA′-homomorphic.

Let h′ be any Σ-homomorphism from A to C/∼. Since B|BΣ = νΣ′ is initial in AlgΣ,
h′ ◦ foldA = h ◦ foldA and thus h′ = h because foldA is epi. ❏

Let Σ = (S, F, P) be a destructor signature, ??? Σ′ = (S, F) and νΣ′ be final in AlgΣ′.

769

22.2 Abstraction with a greatest congruence 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction
Lemma 22.4

Let h : A→ B be a Σ-homomorphism that preserves all p ∈ P , i.e.,

pB = h(pA)

and φ be a negation-free Σ-formula.

If φ does not contain universal quantifiers, then

f ∈ φA implies h ◦ f ∈ φB. (3)

If h is mono and for all atomic subformulas r(t1, . . . , tn) of φ, t1, . . . , tn are variables,
then

g ∈ φB implies ∃ f ∈ φA : h ◦ f =free(φ) g. (4)

Let r ∈ R, s ∈ S and x ∈ Vs. W.l.o.g. we assume that r is unary.

Proof of (3) by induction on the size of φ.

f ∈ r(t)A ⇔ tA(f) ∈ rA ⇔ tB(h ◦ f) Lemma 9 .9
= h(tA(f)) ∈ rB ⇔ h ◦ f ∈ r(t)B.

770

22.2 Abstraction with a greatest congruence 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

f ∈ (φ ∧ ψ)A = φA ∩ ψA i.h.⇒ h ◦ f ∈ φB ∩ ψB = (φ ∧ ψ)B.

f ∈ (φ ∨ ψ)A = φA ∪ ψA i.h.⇒ h ◦ f ∈ φB ∪ ψB = (φ ∨ ψ)B.

f ∈ (∃xφ)A ⇔ ∃ a ∈ As : upd(f, x, a) ∈ φA

i.h.⇒ ∃ a ∈ As : upd(h ◦ f, x, h(a)) = h ◦ upd(f, x, a) ∈ φB

⇒ ∃ b ∈ Bs : upd(h ◦ f, x, b) ∈ φB ⇔ h ◦ f ∈ (∃xφ)B.

Proof of (4) by induction on the size of φ.

Let r ∈ R, s ∈ S and x ∈ Vs. W.l.o.g. we assume that r is unary.

g ∈ r(z)B ⇔ g(z) ∈ rB ⇔ ∃ a ∈ rA : h(a) = g(z)

⇔ ∃ f ∈ AX : f (z) ∈ rA ∧ h ◦ f ={z} g ⇔ ∃ f ∈ r(z)A : h ◦ f =free(r(z)) g.

g ∈ (φ ∧ ψ)B = φB ∩ ψB i.h.⇒ ∃ f ∈ φA : h ◦ f =free(φ) g ∧ ∃ f ′ ∈ ψA : h ◦ f ′ =free(ψ) g

h mono⇒ ∃ f ∈ φA ∩ ψA : h ◦ f =free(φ)∪free(ψ) g

⇔ ∃ f ∈ (φ ∧ ψ)A : h ◦ f =free(φ∧ψ) g.

771

22.2 Abstraction with a greatest congruence 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

g ∈ (φ ∨ ψ)B analogously⇒ ∃ f ∈ (φ ∨ ψ)A : h ◦ f = g.

g ∈ (∃xφ)B ⇔ ∃ b ∈ Bs : upd(g, x, b) ∈ φB

i.h.⇒ ∃ b ∈ Bs : ∃ f ∈ φA : h ◦ f =free(φ) upd(g, x, b)

⇒ ∃ f ∈ AX : ∃ a ∈ As : upd(f, x, a) ∈ φA ∧ h ◦ f =free(φ)\{x} g

⇒ ∃ f ∈ (∃xφ)A : h ◦ f =free(∃xφ) g.

g ∈ (∀xφ)B ⇔ ∀ b ∈ Bs : upd(g, x, b) ∈ φB

i.h.⇒ ∀ b ∈ Bs : ∃ f ∈ φA : h ◦ f =free(φ) upd(g, x, b)

h mono⇒ ∃ f ∈ AX : ∀ a ∈ As : upd(f, x, a) ∈ φA ∧ h ◦ f =free(φ)\{x} g

⇒ ∃ f ∈ (∀xφ)A : h ◦ f =free(∀xφ) g. ❏

772

22.3 Restriction with a greatest invariant 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

22.3 Restriction with a greatest invariant

Let AX consist of co-Horn clauses r(t1, . . . , tn) ⇒ ψ and K = AlgΣ,AX such that for
all A ∈ K, ∈A is a Σ-invariant, t1, . . . , tn are variables, free(ψ) ⊆ {t1, . . . , tn} and ψ

is ∀-free and constraint compatible. Let C = gfp(νΣ′,Σ, AX). Then inv =∈C is the
greatest Σ-invariant of νΣ′.

By Lemma 12.7, inv ∈ K.

Let A ∈ K. We define B ∈ AlgΣ as the unfoldA-image of the interpretation of R in A,
i.e., for all r ∈ R,

rB =def unfoldA(rA).

Use induction on N and Theorem 3.4 (or transfinite induction and Theorem 3.8) to show
that unfoldA extends to a Σ-homomorphism!

B satisfies AX and thus B ∈ K.

Proof. W.l.o.g. let φ = (r(x1, . . . , xn) ⇒ ψ) ∈ AX and g ∈ r(x1, . . . , xn)
B. Hence

(g(x1), . . . g(xn)) ∈ rB and thus (f (x1), . . . , f (xn)) ∈ rA and unfoldA ◦ f ={x1,...,xn} g

for some f ∈ AX . Hence f ∈ ψA because A satisfies φ, and thus by Lemma 22.4 (1),

773

22.3 Restriction with a greatest invariant 22 ABSTRACTION AND RESTRICTION

unfoldA ◦ f ∈ ψB. Therefore, free(ψ) ⊆ {x1, . . . , xn} implies g ∈ ψB. ❏

774

22.3 Restriction with a greatest invariant 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction
Theorem 22.5 inv is final in K.

Proof. Since C is the greatest D ∈ AlgΣ,AX with D|Σ′ = νΣ′, we obtain B ≤ C. In
particular,

img(unfoldA) = {unfoldA(a) | a ∈ A} = {unfoldA(a) | a ∈ memA}

= ∈B ⊆ ∈C = inv

because ∈A= A. Hence h : A→ inv is well-defined by inc ◦ h = idνΣ′ ◦ unfoldA.

inv
inc

≻C

A

h

⋏

unfoldA
≻B

idνΣ′

⋏

Since inc is mono and reflects predicates and idνΣ′ ◦ unfoldA is Σ-homomorphic, Lemma
9.1 (2) implies that h is also Σ-homomorphic.

Let h′ be any Σ-homomorphism from A to inv. Since B|Σ′ = νΣ′ is final in AlgΣ,
inc ◦ h′ = inc ◦ h and thus h′ = h because inc is mono. ❏

775

22.3 Restriction with a greatest invariant 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

Example Length of a colist

Let Σ = (S, F ′ ∪ {length : list → nat}, {∈: list}), Σ′ = (S, F ′ ∪ {length}, ∅) and AX
be a set of co-Horn clauses such that for all A ∈ AlgΣ,AX , pAlist is a Σ-invariant, and AX
includes the following co-Horn clauses:

plist(s) ⇒ length(s) = λ{ι1.zero, ι2(x, s).succ(length(s))}(split(s)).

Let A = gfp(Σ, νΣ′, AX). By Theorem 22.5, ∈A is final in AlgΣ,AX . Since the final
coList(X)-algebra is a (Σ, AX)-algebra, we conclude from Lemma 21.4 that (Σ, AX) is
a conservative extension of (coList(X), ∅). ❏

Example Subtree of a cobintree

Let Σ = (S, F ′ ∪ {subtree′ : btree→ (2∗ → btree)}, {∈: btree}),
Σ′ = (S, F ′ ∪ {subtree′}, ∅) and AX be a set of co-Horn clauses such that for all A ∈
AlgΣ,AX , pAbtree is a Σ-invariant, and AX includes the following co-Horn clauses:

776

22.3 Restriction with a greatest invariant 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

pbtree(t) ⇒ subtree′(t)(ϵ) = t,

pbtree(t) ⇒ (split(t) = (x, u, u′) ⇒ subtree′(t)(0 :w) = subtree′(u)(w)),

pbtree(t) ⇒ (split(t) = (x, u, u′) ⇒ subtree′(t)(1 :w) = subtree′(u′)(w)).

Let A = gfp(Σ, νΣ′, AX). By Theorem 22.5, ∈A is final in AlgΣ,AX . Since the final
coBintree(X)-algebra is a (Σ, AX)-algebra, we conclude from Lemma 21.4 that (Σ, AX)

is a conservative extension of (coBintree(X), ∅). ❏

Example Infinite trees, AG and EG (see chapter 9)

Let Σ = (S, F ′, {infinite, AG,EG}) and AX be set of co-Horn clauses such that for all
A ∈ AlgΣ,AX , ∈A is a Σ-invariant. Moreover, let AX include the following axioms:

infinite(t) ⇒ ∃ x, u, u′ : split(t) = (x, u, u′) ∧ (infinite(u) ∨ infinite(u′))

AG(P)(t) ⇒ ∃ x, u, u′ : (split(t) = (x, u, u′) ⇒ (P (x) ∧ AG(P)(u) ∧ AG(P)(u′)))

EG(P)(t) ⇒ ∃ x, u, u′ : (split(t) = (x, u, u′) ⇒ (P (x) ∧ (EG(P)(u) ∨ EG(P)(u′))))

where P is a predicate variable.

777

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

Let A = lfp(νcoBintree,Σ, AX). By Theorem 22.5, ∈A is final in AlgΣ,AX , the category
of Σ-algebras B such that B satisfies AX and ∈B= B. ❏

22.4 Restriction with a least invariant

Let AX consist of Horn clauses r(t1, . . . , tn) ⇐ ψ and K = AlgΣ,AX such that for all
A ∈ K, ∈A is a Σ-invariant, free(r(t1, . . . , tn)) ⊆ free(ψ), ψ is constraint compatible
and for all atomic subformulas p(u1, . . . , um) of ψ, u1, . . . , um are variables. Let C =

lfp(νΣ′,Σ, AX) and inv =∈C be a Σ-invariant of νΣ′. Hence C ∈ obs(K).

By Lemma 12.7, inv ∈ obs(K).

Let A ∈ K. We define B ∈ AlgΣ as the unfoldA-image of the interpretation of R in A,
i.e., for all r ∈ R,

rB =def unfoldA(rA).

Use induction on N and Theorem 3.4 (or transfinite induction and Theorem 3.8) to show
that unfoldA extends to a Σ-homomorphism!

778

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction
B satisfies AX and thus B ∈ obs(K).

Proof. Let φ = (r(t1, . . . , tn) ⇐ ψ) ∈ AX and g ∈ ψB. Since A is Σ-observable, unfoldA

is mono and thus Lemma 22.4 (2) implies g =free(ψ) unfold
A ◦ f for some f ∈ ψA. Since

A satisfies φ, f ∈ r(t1, . . . , tn)
A and thus (tA1 (f), . . . , tAn (f)) ∈ rA. Hence

(tB1 (unfold
A ◦ f), . . . , tBn (unfoldA ◦ f))

Lemma 9 .9
= (unfoldA(tA1 (f)), . . . , unfold

A(tAn (f))) ∈ rB

and thus unfoldA ◦ f ∈ r(t1, . . . , tn)
B. Therefore, free(r(t1, . . . , tn)) ⊆ free(ψ) implies

g ∈ r(t1, . . . , tn)
B. ❏

Theorem 22.6 inv is initial in obs(K).

Proof. Since C is the least D ∈ K with D|Σ′ = νΣ′, we obtain C ≤ B. In particular,

inv = ∈C ⊆ ∈B = {unfoldA(a) | a ∈ memA} = {unfoldA(a) | a ∈ A}

= img(unfoldA) (∗)

because ∈A= A. Since A is Σ-observable, unfoldA is mono and thus for all a, b ∈ A,
unfoldA(a) = unfoldA(b) implies a = b.

779

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

Hence by (∗), h : inv → A with h(b) = (unfoldA)−1(b) for all b ∈ inv is well-defined.
Therefore, unfoldA ◦ h = idνΣ′ ◦ inc.

A
unfoldA

≻B

inv

h

⋏

inc
≻C

idνΣ′

⋏

Since unfoldA is mono and reflects predicates and idνΣ′ ◦ inc is Σ-homomorphic, Lemma
9.1 (2) implies that h is also Σ-homomorphic.

Let h′ be any Σ-homomorphism from inv to A. Since B|BΣ = BA is final in AlgΣ,
unfoldA ◦ h′ = unfoldA ◦ h and thus h′ = h because unfoldA is mono. ❏

Example Finite trees, EF and AF (see chapter 9)

Let Σ = (S, F ′, {finite, EF,AF}) and AX be a set of Σ-Horn clauses such that for all
A ∈ AlgΣ,AX , ∈A is a Σ-invariant. Moreover, let AX include the following axioms:

780

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�� ��Abstraction and restriction

finite(t) ⇐ split(t) = ϵ ∨ (split(t) = (x, u, u′) ∧ finite(u) ∧ finite(u′))

EF (P)(t) ⇐ split(t) = (x, u, u′) ∧ (P (x) ∨ EF (P)(u) ∨ EF (u′))

AF (P)(t) ⇐ split(t) = (x, u, u′) ∧ (P (x) ∨ (AF (P)(u) ∧ AF (u′)))
where P is a predicate variable.

Let A = lfp(Σ, νcoBintree, AX). By Theorem 22.6, ∈A is initial in obs(AlgΣ,AX), the
category of F ′-observable Σ-coalgebras B such that B satisfies AX and ∈B= B. ❏

Example Cotrees with finite outdegree

Let AX be given by the following Horn clauses over coTree:

istree(t) ⇐ istrees(subtrees⟨t⟩)

istrees(ts) ⇐ [[x, y]split]ts = [x]p ∨

([[x, y]split]ts = [y]p ∧ istree(π1⟨p⟩) ∧ istrees(π2⟨p⟩))

AX satisfies the assumptions of Restriction with a least invariant (see section 22.4).
Hence inv =∈lfp(AX) is initial in obs(AlgcoTree,AX), the category of coTree-observable
coTree-coalgebras A such that A satisfies AX and ∈A= A. ❏

781

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�
�

�
23 λ-bialgebras

Given two endofunctors T,D on K, a distributive law of T over D is a natural
transformation λ : TD → DT .

Given a distributive law λ of T over D, a pair of K-morphisms

(α : TA→ A, β : A→ DA),

is a λ-bialgebra if the following diagram, called pentagonal law, commutes:

TA
α

≻A
β

≻DA

TDA

Tβ

⋎ λA ≻DTA

Dα

⋏

λ lifts T and D to endofunctors on coAlgT and AlgT , respectively (see, e.g., [26, 90, 73]):

Tλ : coAlgD → coAlgD

A
β−→ DA 7→ TA

Tβ−→ TDA
λA−→ DTA

h : A→ B 7→ Th : TA→ TB

782

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�� ��λ-bialgebras

Dλ : AlgT → AlgT

TA
α−→ A 7→ TDA

λA−→ DTA
Dα−→ DA

h : A→ B 7→ Dh : DA→ DB

Hence the pentagonal law can also be written as the following square (1), which shows
that α is a coAlgD-morphism from Tλβ to β, or as the square (2), which shows that β is
an AlgT -morphism from α to Dλα:

TA
α

≻A A
β

≻DA

(1) (2)

DTA

Tλβ

⋎ Dα
≻DA

β

⋎
TA

α

⋏

Tβ
≻TDA

Dλα

⋏

783

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�� ��λ-bialgebras

biAlgλ denotes the category of λ-bialgebras and biAlgλ-morphisms:

A biAlgλ-morphism h from a λ-bialgebra TA α−→ A
β−→ DA to a λ-bialgebra

TB
γ−→ B

δ−→ DB is a K-morphism h : A → B such that the following diagrams
commute: h ◦ α = γ ◦ Th and Dh ◦ β = δ ◦ h.

TA
α

≻A
β

≻DA

TB

Th

⋎

γ
≻B

h

⋎

δ
≻DB

Dh

⋎

Bialgebras generalize both algebras and coalgebras: Let idT , idD be the identity transfor-
mations on T,D, respectively, and IdK be the identity functor on K. idT is a distributive
law of T over IdK, while idD is a distributive law of IdK over D. Hence every T -algebra
is an idT -bialgebra and every D-coalgebra is an idD-bialgebra.

784

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�� ��λ-bialgebras

Lemma 23.1

(3) Let T (µT) α−→ µT be initial in AlgT . Then

T (µT)
α−→ µT

foldD
λα

−→ D(µT)

is initial in biAlgλ. Conversely, all solutions β of the pentagonal law with A = µT agree
with foldD

λα.

(4) Let νD β−→ D(νD) be final in coAlgD. Then

T (νD)
unfoldTλβ−→ νD

β−→ D(νD)

is final in biAlgλ. Conversely, all solutions α of the pentagonal law with A = νD agree
with unfoldTλβ.

Proof. See [90], section 4; or [73], section 6. The second part of (3) follows from the fact
that the pentagonal law commutes iff diagram (2) with A = µT commutes iff β is an
AlgT -morphism. The second part of (4) follows from the fact that the pentagonal law
commutes iff diagram (1) with A = νD commutes iff α is a coAlgD-morphism. ❏

785

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�� ��λ-bialgebras

In particular, there is a unique biAlgλ-morphism h from the initial λ-bialgebra to the
final one:

T (µT)
α

≻µT
foldD

λα

≻D(µT)

(5) (6)

T (νD)

Th

⋎

unfoldTλβ
≻ νD

h

⋎

β
≻D(νD)

Dh

⋎

Since unfoldTλβ equips νD with a T -algebra structure and µT is the initial T -algebra,
h = fold νD. Since foldD

λα equips µT with a D-coalgebra structure and νD is the final
D-coalgebra, h = unfoldµT . Hence fold νD = h = unfoldµT .

786

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�
�

�
24 Monads and comonads

A monad (or algebraic theory in monoid form) in K is a triple M = (T, η, µ)

consisting of a functor T : K → K and natural transformations η : IdK → T (unit) and
µ : TT → T (multiplication) such that the following diagrams commute:

T
ηT

≻TT ≺
Tη

T TTT
µT

≻TT

T

µ

⋎
idT

≺

idT
≻

TT

Tµ

⋎

µ
≻T

µ

⋎

If η and µ are clear from the context, M is abbreviated to T .

A monad in K is a monoid in the category KK with functors as objects and natural
transformations as morphisms.

A Kleisli triple (T, η,_∗) consists of a function T : K → K, sets

η = {ηA : A→ TA | A ∈ K} and _∗ = {f ∗ : TA→ TB | A,B ∈ K, f : A→ TB}
such that for all A ∈ K, f : A→ TB and g : B → TC,

η∗A = idTA, f ∗ ◦ ηA = f, (g∗ ◦ f)∗ = g∗ ◦ f ∗.

787

22.4 Restriction with a least invariant 22 ABSTRACTION AND RESTRICTION

�� ��Monads and comonads

A Kleisli triple (T, η,_∗) defines the monad (T, η, µ) with Tf = (ηB ◦f)∗ and µA = id∗TA
for all A ∈ K and f : A→ B.

Conversely, a monad (T, η, µ) defines the Kleisli triple (T, η,_∗) with f ∗ = µB ◦ Tf for
all f : A→ TB.

Haskell implements _∗ by the bind operator

bind = (>>=) : TA→ (A→ TB) → TB :

bind(t)(f) =def f
∗(t).

In Haskell, η and µ are called return and join, respectively (see here).

The Kleisli composition

◦T : (B → TC)× (A→ TB) → (A→ TC)

combines bind with function composition: g ◦T f =def g
∗ ◦ f .

η and ◦T induce the Kleisli category over K, KT , whose objects are the objects of K
and whose morphisms from A to B are the K-morphisms from A to TB. Composition
is the Kleisli composition ◦T and for all A ∈ K, the KT -identity on A is defined as the
unit instance ηA : A→ TA.

788

https://haskell.org
https://hackage.haskell.org/package/base-4.8.0.0/docs/Control-Monad.html

24.1 Sample monads 24 MONADS AND COMONADS

�� ��Monads and comonads

24.1 Sample monads

Many functors defined in chapter 5 are monads. Unit, multiplication and bind are defined
as follows:

• identity functor: ηA = µA = idA, bind = λa.λf.f (a).
• list functor:
ηA : A → A∗ µA : (A∗)∗ → A∗ bind : A∗ → (A→ B∗) → B∗

a 7→ (a) (w1, . . . , wn) 7→ w1 · . . . · wn s 7→ λf.µB(map(f)(s))

• powerset functor:

ηA : A → P(A) µA : P(P(A)) → P(A)

a 7→ {a} S 7→
⋃
S

bind : P(A) → (A→ P(B)) → P(B)

S → λf.
⋃
{f (s) | s ∈ S}

◦P : (B → P(C))× (A→ P(B)) → (A→ P(C))

(g, f) 7→ λa.
⋃
{g(b) | b ∈ f (a)}

789

24.1 Sample monads 24 MONADS AND COMONADS

�� ��Monads and comonads

• finite-set functor Pω: analogously

• M -weighted-set functor: Let (M,+, 0, ∗, 1) be a semiring.

ηA : A → MA
ω µA :M

MA
ω

ω → MA
ω

a 7→ (λx.0)[1/a] g 7→ λa.
∑

{g(h) ∗ h(a) | h ∈ supp(g)}

bind :MA
ω → (A→MB

ω) →MA
ω

h 7→ λf.λb.
∑

{h(a) ∗ f (a)(b) | a ∈ supp(g)}

Kleisli composition is matrix multiplication:

◦M_
ω
: (B →MC

ω)× (A→MB
ω) → (A→MC

ω)

(g, f) 7→ λa.
∑

{g(b) ∗ f (a) | b ∈ supp(g)}

• distribution functor:

ηA : A → D(A) µA : D(D(A)) → D(A)

a 7→ (λx.0)[1/a] g 7→ λa.
∑

{g(h) ∗ h(a) | h ∈ supp(g)}

790

24.1 Sample monads 24 MONADS AND COMONADS

�� ��Monads and comonads

bind : D(A) → (A→ D(B)) → D(B)

h 7→ λf.λb.
∑

{h(a) ∗ f (a)(b) | a ∈ supp(g)}
• exception functor:

ηA : A → A +X µA : (A +X) +X → A +X

a 7→ (a, 1) ((a, 1), 1) 7→ (a, 1)

((x, 2), 1) 7→ (x, 2)

(x, 2) 7→ (x, 2)

If X = 1, then Kleisli composition is composition of partial functions:

◦_+1 : (B → C + 1) × (A→ B + 1) → (A→ C + 1)

g 7→ λf.λa.

{
(g(f (b)), 1) if f (a) = (b, 1) for some b ∈ B

(ϵ, 2) if f (a) = (ϵ, 2)

• reader functor:

ηA : A → AX µA : (AX)X → AX bind : AX → (A→ BX) → BX

a 7→ λx.a g 7→ λx.g(x)(x) h 7→ λf.λx.f (h(x))(x)

791

24.1 Sample monads 24 MONADS AND COMONADS

�� ��Monads and comonads

• writer functor: Let (X,+, 0) be a monoid.

ηA : A → A×X µA : (A×X)×X → A×X

a 7→ (a, 0) ((a, x), y) 7→ (a, x + y)

bind : A×X → (A→ B ×X) → B ×X

(a, x) 7→ λf.(λ(b, y).(b, x + y))(f (a))

• state functor:

ηA : A → (A×X)X µA : ((A×X)X ×X)X → (A×X)X

a 7→ λx.(a, x) g 7→ apply ◦ g

bind : (A×X)X → (A→ (B ×X)X) → (B ×X)X

h 7→ λf.uncurry(f) ◦ h

For the state functor T = (_ ×X)X and f : A → TB, the equation f ∗ = µB ◦ Tf
(see above) entails the following definition of f ∗ : TA→ TB:

For all g : X → A×X and x ∈ X ,

f ∗(g)(x) = f (π1(gx))(π2(gx)).

792

24.1 Sample monads 24 MONADS AND COMONADS

�� ��Monads and comonads
Let (T : Set → Set , η, µ) be a monad.

The state monad transformer

(T (_ ×X)X , η′, µ′)

combines T with the state monad: It maps a set A to the set T (A×X)X and a function
f : A→ B to the function

T (f ×X)X : T (A×X)X → T (B ×X)X

g 7→ (λ(a, x).η(f (a), x))◦Tg

η′A : A → T (A×X)X µ′A : (T (A×X)X ×X)X → T (A×X)X

a 7→ λx.η(a, x) g 7→ (λ(h, x).h(x))◦Tg
bind′ : T (A×X)X → (A→ T (B ×X)X) → T (B ×X)X

h 7→ λf.uncurry(f)◦Th

Let (L,R, ϕ, ψ) be an adjunction from K to L with unit η and co-unit ϵ (see section
19.1).

M(L,R, ϕ, ψ) = (RL, η,RϵL : RLRL → RL) is a monad, called the monad induced
by (L,R, ϕ, ψ).

793

24.1 Sample monads 24 MONADS AND COMONADS

�� ��Monads and comonads

The monoid monad

The list functor _∗ : Set → Set coincides with UMF and thus (_∗, η, UϵMF) is the
monad induced by the adjunction of section 19.3.

The sequence monad

Given the adjunction of section 19.4, the writer functor X∗ × _ : Set → Set coincides
with USFX and thus (X∗ × _, η, UϵSFX) is the monad induced by this adjunction.

794

24.2 Term monads 24 MONADS AND COMONADS

�� ��Monads and comonads

24.2 Term monads

Let Σ = (S,C) be a constructive polynomial signature.

The monad induced by the adjunction adjΣ of section 19.12 is called the monad freely
generated by Σ (see).

The categories AlgM(adjΣ) and AlgΣ are isomorphic.

Let V, V ′ ∈ SetSb (see chapter 7) and g ∈ TΣ(V
′)V .

The equation bind(t)(g) = g∗(t) (see above) yields the following definition of

bind : TΣ(V) → (V → TΣ(V
′)) → TΣ(V

′).

• For all s ∈ S and x ∈ Vs, bind(x)(g) = g(x).
• For all c : e→ s ∈ C and t ∈ TΣ(V)e, bind(c(t))(g) = cA(bind(t)(g)).
• For all e =

∏
i∈I ei ∈ Tpo(S), t = (ti)i∈I ∈ Xi∈ITΣ(V)ei and i ∈ I ,

πi(bind(t)(g)) = bind(ti)(g).

• For all e =
∐

i∈I ei ∈ Tpo(S), i ∈ I and t ∈ TΣ(V)ei,

bind(i(t))(g) = i(bind(t)(g)).

795

24.2 Term monads 24 MONADS AND COMONADS

�� ��Monads and comonads

Hence for all t ∈ TΣ(V) and g : V → TΣ(V
′), bind(t)(g) ∈ TΣ(V

′) is obtained from t by
replacing each leaf of t labelled with a variable x by g(x).

Let T = USTΣ and V ∈ SetSb .

The equation µV = id∗TV (see above) yields the following definition of the multiplication
µ : TT → T :

• For all s ∈ S and t ∈ TΣ(V)s, µV (t) = t.
• For all c : e→ s ∈ C and t ∈ TΣ(TΣ(V))e,

µV (c(t)) = c(µV (t)).

• For all e =
∏

i∈I ei ∈ Tpo(S) and t = (ti)i∈I ∈ Xi∈ITΣ(TΣ(V))ei and i ∈ I ,

πi(µV (t)) = µV (ti).

• For all e =
∐

i∈I ei ∈ Tpo(S), i ∈ I and t ∈ TΣ(TΣ(V))ei,

µV (i(t)) = i(µV (t)).

Hence for all t ∈ TΣ(TΣ(V)), µV (t) ∈ TΣ(V) is obtained from t by replacing the leaves of
t with their labels.

796

24.2 Term monads 24 MONADS AND COMONADS

�� ��Monads and comonads

f1

f3

f7f6

f5f4

f8

f9

f0

f2

b0

b1

*

*

A term t over TΣ(V)

797

24.2 Term monads 24 MONADS AND COMONADS

�� ��Monads and comonads

f1

f3

f7f6

f5f4

f8

f9

f0

f2

b0

b1

*

*

The term over V that results from applying µV : TΣ(TΣ(V)) → TΣ(V) to t

798

24.2 Term monads 24 MONADS AND COMONADS

�� ��Monads and comonads

Let M = (T : K → K, η, µ) be a monad.

An M-algebra or Eilenberg-Moore algebra is a T -algebra α : TA → A such that
the following diagrams commute:

A
ηA ≻TA TTA

Tα
≻TA

A

α

⋎
idA

≻
TA

µA

⋎

α
≻A

α

⋎

The category of M -algebras is denoted by AlgM . AlgM is a full subcategory of AlgT .

The forgetful functor U : AlgM → K has a left adjoint L : K → AlgM .

Let adjM = (L,U, ϕ, ψ) be the corresponding adjunction.

The monad induced by adjM coincides with M : M(adjM) =M .

Let Σ = (S,C) be a constructive polynomial signature and A be a Σ-algebra with carrier
A. Then id∗A : TΣ(A) → A is an Eilenberg-Moore TΣ-algebra.

799

24.2 Term monads 24 MONADS AND COMONADS

�� ��Monads and comonads

A comonad in K is a triple CM = (D, ϵ, δ) consisting of a functor D : K → K and
natural transformations ϵ : D → IdK (co-unit) and δ : D → DD (comultiplication)
such that the following diagrams commute:

D≺
ϵD

DD
Dϵ

≻D DDD≺
δD

DD

D

δ

⋏

idD

≻

idD

≺

DD

Dδ

⋏

≺
δ

D

δ

⋏

A co-Kleisli triple (D, ϵ,_#) consists of a function D : K → K, sets

ϵ = {ϵA : DA→ A | A ∈ K} and _# = {f# : DA→ DB | A,B ∈ K, f : DA→ B}
such that for all A ∈ K, f : DA→ B and g : DB → C,

ϵ#A = idDA, ϵB ◦ f# = f, (g ◦ f#)# = g# ◦ f#.

A co-Kleisli triple (D, ϵ,_#) defines the comonad (D, ϵ, δ) with Df = (f ◦ ϵA)# and
δA = id#DA for all A ∈ K and f : A→ B.

800

24.2 Term monads 24 MONADS AND COMONADS

�� ��Monads and comonads

Conversely, a comonad (D, ϵ, δ) defines the co-Kleisli triple (D, ϵ,_#) with f# = Df ◦δA
for all f : DA→ B.

Haskell implements _# by the cobind operator

cobind = (<<=) : (DA→ B) → (DA→ DB) :

cobind(f)(d) =def f
#(d).

In Haskell, ϵ and δ are called retract and duplicate, respectively (see here).

The co-Kleisli composition

◦D = (=>=) : (DB → C)× (DA→ B) → (DA→ C)

combines cobind with function composition: g ◦D f =def g ◦ f#.

ϵ and ◦D induce the co-Kleisli category over K, KD, whose objects are the objects of
K and whose morphisms from A to B are the K-morphisms from DA to B. Composition
is the co-Kleisli composition ◦D and for all A ∈ K, the KD-identity on A is defined as
the co-unit instance ϵA : DA→ A.

801

https://haskell.org
https://hackage.haskell.org/package/comonad-0.1.1/docs/Control-Comonad.html

24.3 Sample comonads 24 MONADS AND COMONADS

�� ��Monads and comonads

24.3 Sample comonads

Many functors defined in chapter 5 are also comonads. Co-unit, comultiplication and
cobind are defined as follows:

• identity functor: ϵA = δA = idA. cobind = idA→B.
• list functor:

ϵA : A+ → A δA : A+ → (A+)+

(a1, . . . , an) 7→ a1 (a1, . . . , an) 7→ ((a1, . . . , an), (a2, . . . , an), . . . , an)

cobind : (A+ → B) → (A+ → B+)

f 7→ λ(a1, . . . , an).(f (a1, . . . , an), f (a2, . . . , an), . . . , f (an))

• reader functor: Let (X,+, 0) be a monoid.

ϵA : AX → A δA : AX → (AX)X

h 7→ h(0) h 7→ λx.λy.h(x + y)

cobind : (AX → B) → (AX → BX)

f 7→ λh.λx.f (λy.h(x + y))

802

24.3 Sample comonads 24 MONADS AND COMONADS

�� ��Monads and comonads

• writer functor:

ϵA : A×X → A δA : A×X → (A×X)×X

(a, x) 7→ a (a, x) 7→ ((a, x), x)

cobind : (A×X → B) → (A×X → B ×X)

f 7→ λ(a, x).(f (a, x), x)

• costate functor:

ϵA : AX ×X → A δA : AX ×X → (AX ×X)X ×X

(h, x) 7→ h(x) (h, x) 7→ (λy.(h, y), x)

cobind : (AX ×X → B) → (AX ×X → BX ×X)

f 7→ λ(h, x).(λy.f (h, y), x)

• labelled-tree functor:

ϵA : ltr(X,A) → A δA : ltr(X,A) → ltr(X, ltr(X,A))

t 7→ t(ϵ) t 7→ λv.λw.t(vw)

cobind : (ltr(X,A) → B) → (ltr(X,A) → ltr(X,B))

f 7→ λt.λv.f (λw.t(vw))

803

24.3 Sample comonads 24 MONADS AND COMONADS

�� ��Monads and comonads

• pointed-tree functor:
ϵA : ltr(X,A)×X∗ → A

(t, w) 7→ t(w)

δA : ltr(X,A)×X∗ → ltr(X, ltr(X,A)×X∗)×X∗

(t, v) 7→ (λw.(t, w), v)

cobind : (ltr(X,A)×X∗ → B) → (ltr(X,A)×X∗ → ltr(X,B)×X∗)

f 7→ λ(t, v).(λw.f (t, w), v)

Let (L,R, ϕ, ψ) be an adjunction from K to L with unit η and co-unit ϵ (see section
19.1).

CM(L,R, ϕ, ψ) = (LR, ϵ, LηR : LR → LRLR) is a comonad, called the comonad
induced by (L,R, ϕ, ψ).

The behavior comonad

Let X be a set. Given the adjunction of section 19.5, the reader functor _X∗
: Set →

Set coincides with UBFX and thus (_X∗
, ϵ, UηBFX) is the comonad induced by this

adjunction.

804

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Monads and comonads

24.4 Coterm comonads

Let Σ = (S,D) be a destructive polynomial signature and B =
⋃
I.

The comonad induced by the adjunction adjΣ of section 19.15 is called the comonad
cofreely generated by Σ.

The categories coAlgCM(adjΣ) and coAlgΣ are isomorphic.

Let C,C ′ be as in section 19.15 and g ∈ C ′DTΣ(C).

The equation cobind(g)(t) = g#(t) (see above) yields the following definition of

cobind : (DTΣ(C) → C ′) → DTΣ(C) → DTΣ(C
′) :

• For all s ∈ S and t ∈ DTΣ(C)s,

cobind(g)(t) = g(t){d→ cobind(g)(dA(t)) | d : s→ e ∈ D}.

• For all e =
∏

i∈I ei ∈ Tpo(S) and t = (ti)i∈I ∈ Xi∈IDTΣ(C)ei,

πi(cobind(g)(t)) = cobind(g)(ti).

• For all e =
∐

i∈I ei ∈ Tpo(S), i ∈ I and t ∈ DTΣ(C)ei,

cobind(g)(i(t)) = i(cobind(g)(t)).

805

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Monads and comonads

Hence for all g : DTΣ(C) → C ′ and t ∈ DTΣ(C), cobind(g)(t) ∈ DTΣ(C
′) is obtained

from t by replacing t(w) with the g-image of the subtree of t with root position w, i.e.,

cobind(g)(t)(w) = g(λv.t(wv)).

Let D = USDTΣ and C ∈ SetSb .

The equation δC = id#DC (see above) yields the following definition of the comultiplication
δ : D → DD:

• For all s ∈ S and t ∈ DTΣ(C)s,

δC(t) = t{d→ δC(td)(w) | d : s→ e ∈ D}.

• For all e =
∏

i∈I ei ∈ Tpo(S), i ∈ I and t = (ti)i∈I ∈ Xi∈IDTΣ(C)ei,

πi(δC(t)) = δC(ti).

• For all e =
∐

i∈I ei ∈ Tpo(S), i ∈ I and t ∈ DTΣ(C)ei, δC(i(t)) = i(δC(t)).

For all t ∈ DTΣ(C), δC(t) ∈ DTΣ(DTΣ(C)) is obtained from t by replacing t(w) with
the subtree of t with root position w, i.e.,

δC(t)(w) = λv.t(wv)

806

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Monads and comonads
(see section 9.3).

x2

x5

x4

x7

x3

x4

x6

x5

x0

x1

b1

b0

*

f1,i1

f0,i0

f2,i2

f5,i5
f6,i6

f3,i3

f4,i4

f7,i7
f8,i8

f9,i9

x0

b1

f10,i10

A coterm t over C

807

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Monads and comonads

b1

b0

*

f1,i1

f0,i0

f2,i2

f5,i5

f6,i6

f3,i3

f4,i4

f7,i7

f8,i8

f9,i9

b1

f10,i10

x6

x0

x4

x5x7 x5

x3
x6

x0

x4
x4

x5x7x5

x4
x4x2

x5x7x5

x3
x6

x0

x1

x4
x4x2

x5x7x5

x3
x6

x0

x1

x0

The coterm over DTΣ(C) that results
from applying δV : DTΣ(C) → DTΣ(DTΣ(C)) to t

808

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Monads and comonads
Let CM = (D : K → K, ϵ, δ) be a comonad.

A CM-coalgebra or Eilenberg-Moore coalgebra is a D-coalgebra β : A→ DA such
that the following diagrams commute:

A≺
ϵA

DA DDA≺
Dβ

DA

A

β

⋏

idA

≺

DA

δA

⋏

≺
β

A

β

⋏

The category of CM -coalgebras is denoted by coAlgCM . coAlgCM is a full subcategory
of coAlgD.

The forgetful functor U : coAlgCM → K has a right adjoint R : K → coAlgCM .

Let adjCM = (U,R, ϕ, ψ) be the corresponding adjunction.

The comonad induced by adjCM coincides with CM : CM(adjCM) = CM .

Let Σ = (S,D) be a destructive polynomial signature and A be a Σ-algebra with carrier
A. Then id#A : A→ DTΣ(A) is an Eilenberg-Moore DTΣ-coalgebra.

809

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Monads and comonads

Given a monad M = (T, η, µ), a distributive law λ : TD → DT is M-compatible if
the following diagrams commute:

D
ηD

≻TD TTD
Tλ

≻TDT
λT

≻DTT

DT

λ

⋎
Dη

≻
TD

µD

⋎ λ
≻DT

Dµ

⋎

Given a comonad CM = (D, ϵ, δ), a distributive law λ : TD → DT is CM-compatible
if the following diagrams commute:

T ≺
ϵT

DT DDT ≺
Dλ

DTD≺
λD

TDD

TD

λ

⋏

Tϵ

≺

DT

δT

⋏

≺
λA

TD

Tδ

⋏

810

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Monads and comonads

Examples

Given a monad M = (T, η, µ) in Set , the strength stT,A of T and A is M -compatible
(see Example 3 in section 5.1).

Given a monoid A with multiplication · and unit e,

CM = ((−)A, ϵ, δ)

with ϵB(f) = f (e) and δB(f) = λa.λb.f (a · b) for all sets B and f ∈ BA is a comonad
and stT,A is CM -compatible.

Given a T -algebra α : TB → B, let D = (−)A ×B.

λ : TD → DT

with

λX : TDX = T (XA ×B)
⟨T (π1),T (π2)⟩−→ T (XA)× TB

st
T,A
X ×α
−→ (TX)A ×B = DTX

is an M -compatible distributive law. ❏

811

24.4 Coterm comonads 24 MONADS AND COMONADS

�
�

�
25 Recursive functions as adjunctions or distributive laws

Theorem 25.1 (inspired by [72])

Let Σ = (S,C) be a constructive signature, (L,R, ϕ, ψ) be an adjunction from Mod(S)

to K, A be an initial Σ-algebra with carrier A and B ∈ K such that R(B) is a Σ-algebra.

There is a unique K-morphism d : LA→ B such that for all c : e→ s ∈ C,

d#s ◦ cA = cR(B) ◦ d#e . (1)

d is (L,R)-recursive if (1) holds true for all c ∈ C.

Proof. Let d = ϵB ◦ L(foldRB). There is a unique S-sorted function d# : A → RB such
that ϵB ◦ L(d#) = d. Hence d# = foldRB and thus d# is Σ-homomorphic, i.e., (1) holds
true.

Let f, g : LA→ B be two K-morphisms such that f# and g# are Σ-homomorphic. Since
A is initial in AlgΣ, f# = foldRB = g#. Hence f = ϵB ◦ L(f#) = ϵB ◦ L(g#) = g. ❏

812

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Recursive functions II

Like Theorem 16.1, Theorem 25.1 covers the simultaneous definition of the elements of a
function tuple (fi : A→ Bi)i∈I . Provided that S is a singleton,

(∆I : Set→ SetI ,
∏
i∈I

: SetI → Set, λf.(πi ◦ f)i∈I , λ(fi)i∈I .⟨fi⟩i∈I)

is the appropriate adjunction (see section 19.11). Theorem 25.1 (1) can be turned into
Theorem 16.1 (1).

In the following example, Theorem 25.1 is applied to the reader-writer adjunction (see
section 19.9) in order to define a binary function inductively.

Example

Let Σ = Nat , L = _ × N and R = _N. Then L(N) = N2 R(N) = NN and we interpret
the arrows zero : 1 → nat and succ : nat → nat on R(N) as follows: zeroR(N) = λn.n

and succR(N) = λf.λn.f (n) + 1. The addition of natural numbers, add : L(N) → N,
satisfies the equations

add(0, n) = n, (2)
add(m + 1, n) = add(m,n) + 1 (3)

813

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Recursive functions II

for all m,n ∈ N iff add# = curry(add) : N → R(N) satisfies (1), i.e.,

add#(0) = zeroR(N), (4)
add#(m + 1) = succR(N)(add#(m)) (5)

for all m ∈ N.

Proof. “⇒”: Let (2) and (3) hold true. Then

add#(0) = curry(add)(0) = (λm.λn.add(m,n))(0) = λn.add(0, n)
(2)
= λn.n = zeroR(N),

and for all m ∈ N,

add#(m + 1) = curry(add)(m + 1) = (λm′.λn.add(m′, n))(m + 1) = λn′.add(m + 1, n)
(3)
= add(m,n) + 1 = d#(m)(n) + 1 = (λf.λn.f (n) + 1)(d#(m)) = succR(N)(d#(m)),

i.e., (4) and (5) are valid.

“⇐”: Let (4) and (5) hold true. Then (2) and (3) follow from a rearrangement of the
preceding equations.

Hence by Theorem 25.1, add is uniquely defined by (2) and (3). ❏

814

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Recursive functions II

Exercise 21 Let Σ, L,R and the Σ-algebra R(N) be defined as in the previous example.
Show the following equivalence:

The multiplication of natural numbers, mult : L(N) → N, satisfies the equations

mult(0, n) = 0, (6)
mult(m + 1, n) = mult(m,n) + n (7)

for all m,n ∈ N iff mult# = curry(mult) : N → R(N) satisfies (4) and (5) with mult

instead of add.

Hence by Theorem 25.1, mult is uniquely defined by (6) and (7). ❏

It must be noted that the transformation of the equations for the binary functions add and
mult into inductive definitions of their curried versions is simple because the equations
exhibit an inductive definition only in the first argument. For binary functions where the
inductive definition extends over several arguments, the transformation is more difficult
and may lead to nested folds (see, e.g., sample inductive definition 16.3.8).

815

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Recursive functions II

Theorem 25.2 (inspired by [72])

Let Σ = (S,D) be a destructive signature,

(L : K → Mod(S), R : Mod(S) → K, ϕ, ψ)

be an adjunction, A be a final Σ-algebra with carrier A and B ∈ K such that L(B) is a
Σ-algebra.

There is a unique K-morphism c : B → R(A) such that for all d : s→ e ∈ D,

dA ◦ c∗s = c∗e ◦ dA. (2)

c is (L,R)-corecursive if (2) holds true for all d ∈ D.

Proof. Let c = R(unfoldL(B)) ◦ ηB. Since (L,R, η, ϵ) is an adjunction, there is a unique
S-sorted function c∗ : L(B) → A such that R(c∗) ◦ ηB = c. Hence c∗ = unfoldL(B) and
thus c∗ is Σ-homomorphic.

Let f, g : B → R(A) be two K-morphisms such that f ∗ and g∗ are Σ-homomorphic.
Since A is final in AlgΣ, f ∗ = unfoldL(B) = g∗. Hence f = R(f ∗) ◦ ηB = R(g∗) ◦ ηB = g.
❏

816

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Recursive functions II

Like Theorem 16.2, Theorem 25.2 covers the simultaneous definition of the elements of a
function tuple (fi : Bi → A)i∈I . Provided that S is a singleton,

(
∐
i∈I

: SetI → Set, ∆I : Set→ SetI , λ(fi)i∈I .[fi]i∈I , λf.(f ◦ ιi)i∈I

is the appropriate adjunction (see section 19.11). Theorem 25.2 (1) can be turned into
Theorem 16.2 (1).

Given a constructive or destructive signature Σ, Lemma 23.1 suggests to define operations
on the initial or final Σ-algebra in terms of distributive laws of or over HΣ, respectively:

Theorem 25.3

Let Σ = (S, F) be a constructive signature and λ : HΣD → DHΣ be a distributive law
of HΣ over some endofunctor D on SetS.

Let µΣ be initial in AlgΣ. Then α : HΣ(µΣ) → µΣ with HΣ(µΣ)s =
∐

c:e→s∈F µΣe and
αs = [cµΣ]c:e→s∈F for all s ∈ S is initial in AlgHΣ

(see chapter 15).

817

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Recursive functions II

An S-sorted function f : µΣ → D(µΣ) is λ-recursive if (α, f) is a λ-bialgebra, i.e.,

f ◦ α = Dα ◦ λµΣ ◦HΣ(f)

or, equivalently, for all c : e→ s ∈ F ,

f ◦ cµΣ = (Dα)s ◦ λµΣ,s ◦ ιc ◦ fe.

There is a unique λ-recursive function f : µΣ → D(µΣ).

Proof. Lemma 23.1 (3). ❏

Theorem 25.4

Let Σ = (S, F) be a destructive signature and λ : THΣ → HΣT be a distributive law of
some endofunctor T on SetS over HΣ.

Let νΣ be final in AlgΣ. Then β : νΣ → HΣ(νΣ) with HΣ(νΣ)s =
∏

d:s→e∈F νΣe and
βs = ⟨dνΣ⟩d:s→e∈F for all s ∈ S is final in coAlgHΣ

(see chapter 15).

An S-sorted function f : T (νΣ) → νΣ is λ-corecursive if (f, β) is a λ-bialgebra, i.e.,

β ◦ f = HΣ(f) ◦ λνΣ ◦ Tβ

818

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Recursive functions II
or, equivalently, for all d : s→ e ∈ F ,

dνΣ ◦ f = fe ◦ πd ◦ λνΣ,s ◦ (Tβ)s.

There is a unique λ-corecursive function f : T (νΣ) → νΣ.

Proof. Lemma 23.1 (4). ❏

Example (sum of streams; see section 20 and [26])

Let X be a semiring. The functions in : X → XN and + : XN ×XN → XN are defined
as follows: Let β = ⟨head, tail⟩ : XN → HStream(X)(X

N) = X ×XN.

Define T : Set → Set and λ : THStream(X) → HStream(X)T as follows:

For all A ∈ Set , h ∈Mor(Set) and ((x, a), (y, b)) ∈ (X×A)× (X×A) = THStream(X)A,

T (A) = A× A, T (h) = h× h,

λA((x, a), (y, b)) = (x + y, (a, b)) ∈ X × (A× A) = HStream(X)TA.

A function + : XN ×XN → XN satisfies the equations

head(s + s′) = head(s) + head(s′) (1)
tail(s + s′) = tail(s) + tail(s′) (2)

819

24.4 Coterm comonads 24 MONADS AND COMONADS

�� ��Recursive functions

iff + is a λ-corecursive, i.e., the following equations hold true:

head ◦ + = πhead ◦ λνΣ ◦ (β × β)

tail ◦ + = + ◦ πtail ◦ λνΣ ◦ (β × β)

Proof. For all s, s′ ∈ XN,

(head ◦ +)(s, s′) = head(s + s′),

(πhead ◦ λνΣ ◦ (β × β))(s, s′)

= πhead(λνΣ((head(s), tail(s)), (head(s
′), tail(s′))))

= πhead(head(s) + head(s′), (tail(s), tail(s′))) = head(s) + head(s′),

(tail ◦ +)(s, s′) = tail(s + s′),

(+ ◦ πtail ◦ λνΣ ◦ (β × β))(s, s′)

= +(πtail(λνΣ((head(s), tail(s)), (head(s
′), tail(s′)))))

= +(πtail(head(s) + head(s′), (tail(s), tail(s′)))) = tail(s) + tail(s′).

Hence by Theorem 25.4, equations (1) and (2) have a unique solution +.

820

26.1 Queues 26 MORE EXAMPLES

�
�

�
26 More examples

26.1 Queues

(see [150], p. 185)

A specification of queues with entries from a set A:

821

26.1 Queues 26 MORE EXAMPLES

�� ��More examples
Signature Queue = (S, F):

S = {queue}, F = { new : queue,

top : queue→ 1 + (A× queue),

put : queue× A→ queue }

Axioms for Queue:

top(new) = ϵ

∀ q, x, a : (top(q) = (x, 1) ⇒ top(put(q, a)) = ((a, q), 2)

∀ q, q′, a, a′ : (top(q) = ((a, q′), 2) ⇒ top(put(q, a′)) = ((a, put(q′, a′)), 2))

The model M of Queue (following [150], p. 181):

Mqueue = (N ∪ {ω})× (N → A),

newM = (0, λi.a) for some a ∈ A.

For all (n, f) ∈Mqueue and a ∈ A,

topM(n, f) =

{
(ϵ, 1) if n = 0,

((f (0), λi.f (i + 1)), 2) otherwise,

putM((n, f), a) =

{
(n, f) if n = ω,

(n + 1, λi.if i = n then a else f (i)) otherwise.

822

26.2 Arithmetic expressions 26 MORE EXAMPLES

�� ��More examples

Hutton’s motto:
denotational semantics = folding of syntax trees = evaluation in an algebra
operational semantics = unfolding to transition trees = execution in a coalgebra

26.2 Arithmetic expressions

([78], sections 2-4)

Let B be a set, Σ = (S, F) with

S = {exp}, F = {add : exp× exp→ exp},
Σ (B) = (S, F) with

S = {exp}, F = { val : B → exp,

add : exp× exp→ exp }.
Σ (B ,V) = (S, F) with

S = {exp}, F = { val : B → exp,

var : V → exp,

add : exp× exp→ exp }.

823

26.2 Arithmetic expressions 26 MORE EXAMPLES

�� ��More examples
Hence for all sets and functions X ,

HΣ(X) = X ×X,

HΣ(B)(X) = B + (X ×X),

HΣ(B,V)(X) = B + V + (X ×X)

(see chapter 15).

Let A be a Σ(B)-algebra.

Then [valA, addA] : HΣ(B)(A) → A is the corresponding HΣ(B)-algebra.

Let A be a Σ-algebra and TΣ(B) be the set of all finite trees whose inner nodes are
labelled with F and whose leaves are labelled with B.

TΣ(B) is the free Σ-algebra over B:

B
inc

≻TΣ(B) ∼= Expr(B) (see [78], p.2)

=

Aexp

f ∗

≺
f

≻

824

26.2 Arithmetic expressions 26 MORE EXAMPLES

�� ��More examples

For all t, t′ ∈ TΣ(B), addTΣ(B)(t, t′) = add(t, t′).

For all t, t′ ∈ TΣ(B) and b ∈ B,

f ∗(val(b)) = f (b) and f ∗(add(t, t′)) = addA(f ∗(t), f ∗(t′)).

TΣ(B) is also a initial Σ(B)-algebra:

For all b ∈ B, valTΣ(B)(b) = val(b).

Let A be a Σ(B)-algebra.

The unique Σ(B)-homomorphism foldA : TΣ(B) → A is defined as follows: For all b ∈ B

and t, t′ ∈ TΣ(B),

foldA(val(b)) = valA(b) and foldA(add(t, t′)) = addA(foldA(t), foldA(t′)).

foldA = deno (see [78], p.2) for f = valA and g = addA.

The functor TΣ = Expr : Set → AlgΣ is left adjoint to the forgetful functor from AlgΣ
to Set . For all functions f : A→ C, TΣ(f) = (inc ◦ f)∗ : TΣ(A) → TΣ(C).

Let A be a Σ(B)-algebra.

825

26.2 Arithmetic expressions 26 MORE EXAMPLES

�� ��More examples

HΣ(B)(TΣ(B))
[valTΣ(B), addTΣ(B)]

≻TΣ(B)

HΣ(B)(A)

HΣ(B)(fold
A)

⋎ [valA, addA]
≻A

foldA

⋎

The Σ(Z)-algebra Z of integers: valZ = idZ, addZ = (+)

foldZ = id∗Z = eval : TΣ(Z) → Z (see [78], p.2)

The Σ(Z, V)-algebra ZV of integer stores:

valZ
V

= λn.λs.n,

varZ
V

= λx.λs.s(x),

addZ
V

= λ(f, g).λs.f (s) + g(s).

The Σ(Z, V)-algebra Com∗ of assembler programs:

valCom
∗
= λn.Push(n),

varCom
∗
= λx .Load(x),

addCom
∗
= λ(c, c′).c · c ′ · Add .

826

26.2 Arithmetic expressions 26 MORE EXAMPLES

�� ��More examples

Let B be a set, Σ′ = (S, F) with

S = {state}, F = {δ : state→ state∗},

Σ ′(B) = (S, F) with

S = {state}, F = { β : state→ B,

δ : state→ state∗ }.

Hence the functors HΣ′, HΣ′(B) : Set → Set (see chapter 15) are defined as follows:

For all sets and functions X ,

HΣ′(X) = X∗,

HΣ′(B)(X) = B ×X∗.

Let A be a Σ′(B)-algebra.

Then ⟨βA, δA⟩ : A→ HΣ′(B)(A) is the corresponding HΣ′(B)-coalgebra.

Let A be a Σ′-algebra and coTΣ′(B) be the set of all finite and infinite trees whose nodes
are labelled with B.

coTΣ′(B) is the cofree Σ′-algebra over B:

827

26.2 Arithmetic expressions 26 MORE EXAMPLES

�� ��More examples

B≺
root

coTΣ′(B) ∼= Tree(B) (see [78], p.3)

=

Astate

f#

≻

f

≺

For all b ∈ B, t1, . . . , tn ∈ coTΣ′(B), δcoTΣ′(B)(b(t1, . . . , tn)) = (t1, . . . , tn).

For all a, a1, . . . , an ∈ Astate,

δA(a) = (a1, . . . , an) ⇒ f#(a) = f (a)(f#(a1), . . . , f
#(an)).

coTΣ′(B) is also a final Σ′(B)-algebra:

For all t ∈ coTΣ′(B), βcoTΣ′(B)(t) = root(t).

Let A be a Σ′(B)-algebra.

The unique Σ′(B)-homomorphism unfoldA : A → coTΣ′(B) is defined as follows: For all
a, a1, . . . , an ∈ Astate,

δA(a) = (a1, . . . , an) ⇒ unfoldA(a) = βA(a)(unfoldA(a1), . . . , unfold
A(an)).

unfoldA = oper (see [78], p.4) for f = βA and g = δA.

828

26.2 Arithmetic expressions 26 MORE EXAMPLES

�� ��More examples

The functor coTΣ′ = Tree : Set → AlgΣ′ is right adjoint to the forgetful functor from
AlgΣ′ to Set .

For all functions f : A→ C, coTΣ′(f) = (f ◦ root)# : coTΣ′(A) → coTΣ′(C).

Let A be a Σ′(B)-algebra.

coTΣ′(B)
⟨βcoTΣ′(B), δcoTΣ′(B)⟩

≻HΣ′(B)(coTΣ′(B))

A

unfoldA

⋏

⟨βA, δA⟩
≻HΣ′(B)(A)

HΣ′(B)(unfold
A)

⋏

829

26.2 Arithmetic expressions 26 MORE EXAMPLES

�� ��More examples

The Σ′(TΣ(Z))-algebra TΣ(Z):

βTΣ(Z) = idTΣ(Z)
δTΣ(Z) : TΣ(Z) → TΣ(Z)∗ =

trans :: Expr Int -> [Expr Int] (see [78], p.3)
val(n) 7→ ϵ,

add(t, t′) 7→

val(m + n) if ∃ m,n ∈ Z :

val(m) = t ∧ val(n) = t′,

map(λx.add(x, t′))(δTΣ(Z)(t))·
map(λx.add(t, x))(δTΣ(Z)(t′)) otherwise

unfoldA = id#TΣ(Z) = exec : TΣ(Z) → coTΣ′(TΣ(Z)) (see [78], p.4)

830

26.2 Arithmetic expressions 26 MORE EXAMPLES

�� ��More examples

The Σ(Z)-algebra A = coTΣ′(Z):

Let Ψ = Σ(Z) ∪ Σ′(Z). Since TΣ(Z) is initial in AlgΣ′(Z) and A is final in AlgΣ′(Z),
Theorems 16.1 and 16.3 imply that the conjunction of the following equations has unique
solutions both in TΣ(Z) and A:

Let n, x, y be variables.
β(val(n)) = n

β(add(x, y)) = β(x) + β(y)

δ(val(n)) = ϵ

δ(add(x, y)) = δ(x) · δ(y)
Moreover, Theorem 16.3 (12) implies

unfoldTΣ(Z) = foldA : TΣ(Z) → A.

831

26.3 CCS 26 MORE EXAMPLES

�� ��More examples

26.3 CCS

(see Calculus of Communicating Systems; [110]; [78], sections 5-8; [125], section 4.4)

FMS version ([124], p. 161)

a(x).P
a(v)−→ P [v/x] (read)

a(e).P
a(val(e))−→ P (write)

P1 + P2
a−→ Q ⇐⇒ P1

a−→ Q ∨ P2
a−→ Q (select)

P |P ′ a−→ Q|P ′ ⇐⇒ P
a−→ Q (parallelize)

P ′|P a−→ P ′|Q ⇐⇒ P
a−→ Q

P1|P2
τ−→ Q1|Q2 ⇐⇒ P1

a−→ Q1 ∧ P2
a−→ Q2 (communicate)

P \M a−→ Q \M ⇐⇒ P
a−→ Q ∧ a ∈ Act \M \ {b | b ∈M} (restrict)

A
a−→ Q ⇐⇒ P

a−→ Q if A is defined by the equation A = P (call)

832

https://en.wikipedia.org/wiki/Calculus_of_communicating_systems

26.3 CCS 26 MORE EXAMPLES

�� ��More examples

HProc(Act) = λA.Act + A2 + A2 + A× Act + A× ActAct

TProc(Act) is an initial Proc(Act)-algebra.

HTrans(Act) = λA.(Act× A)∗

The Trans(Act)-algebra DTree(Act) is defined as follows:

• DTree(Act)tree is the set of <-based labelled trees t over (N, Act + 1) such that
t(w) = () only if w = ϵ.

• For all t ∈ DTree(Act)tree,

denodeDTree(Act)(t) = ((t(i), λw.t(iw)))ni=1

where n = max(def (t) ∩ N).

833

26.3 CCS 26 MORE EXAMPLES

�� ��More examples
DTree(Act) is final in AlgTrans(Act).

Proof. Let A be a Trans(Act)-algebra. A function unfoldA : A→ DTree(Act) is defined
as follows:

For all a ∈ Atree, i > 0 and w ∈ N+, denodeA(a) = ((xi, ai))
n
i=1 implies

unfoldA(a)(i) =

{
xi if 1 ≤ i ≤ n,

⊥ otherwise,

unfoldA(a)(iw) =

{
unfoldA(ai)(w) if 1 ≤ i ≤ n,

⊥ otherwise.

Let a ∈ Atree and
denodeA(a) = ((xi, ai))

n
i=1. (1)

unfoldA is Trans(Act)-homomorphic: By (1) and the definition of unfoldA,

max(def (unfoldA(a)) ∩ N) = n.

Hence

denodeDTree(Act)(unfoldA(a))
Def. denodeDTree(Act)

= ((unfoldA(a)(i), λw.unfoldA(a)(iw)))ni=1,
Def. unfoldA

= ((xi, λw.unfold
A(ai)(w)))

n
i=1 = ((xi, unfold

A(ai)))
n
i=1

= unfoldA(((xi, ai))
n
i=1)

(1)
= unfoldA(denodeA(a)).

834

26.3 CCS 26 MORE EXAMPLES

�� ��More examples

unfoldA is unique: Let h : A→ DTree(Act) be a Trans(Act)-homomorphism. Then

denodeDTree(Act)(h(a))
h Trans(Act)−hom.

= h(denodeA(a))
(1)
= h(((xi, ai))

n
i=1) = ((xi, h(ai)))

n
i=1.

(2)
For all w ∈ N+,

h(a)(w) = unfoldA(a)(w) (3)

Proof by induction on |w|. For all 1 ≤ i ≤ n,

h(a)(i)
Def. denodeDTree(Act)

= π1(πi(denode
DTree(Act)(h(a))))

(2)
= π1(πi(((xi, h(ai)))

n
i=1))

= π1(xi, h(ai)) = xi
Def. unfoldA

= unfoldA(a)(i).

By (2) and the definition of denodeDTree(Act),

max(def (h(a)) ∩ N) = n. (4)

Hence for all i > n and w ∈ N∗,

h(a)(iw)
(4)
= ⊥ Def. unfoldA

= unfoldA(a)(iw).

835

26.3 CCS 26 MORE EXAMPLES

�� ��More examples
Moreover, for all 1 ≤ i ≤ n and w ∈ N∗,

h(a)(iw) = (λw.h(a)(iw))(w)
Def. denodeDTree(Act)

= π2(πi(denode
DTree(Act)(h(a))))(w)

(2)
= π2(πi(((xi, h(ai)))

n
i=1))(w) = π2(xi, h(ai))(w) = h(ai)(w)

ind. hyp.
= unfoldA(ai)(w)

Def. unfoldA
= unfoldA(a)(iw).

Hence (3) holds true. ❏

Trace semantics of processes = final nondeterministic acceptor

Let Path =
⋃
{def (t) | t ∈ otr (Act × N, 1)} (see chapter 3). The NMed∗(Act)-algebra

Traces is defined as follows (see chapter 8):

• Traces(state) = P(Path).
• For all W ⊆ Path and x ∈ Act,

δTraces(W)(x) = ({w ∈ Path | ∃ i > 0 : (x, i)w ∈ W})ni=1

where n = max{i > 0 | (x, i)w ∈ W}.

836

26.3 CCS 26 MORE EXAMPLES

�� ��More examples
Traces is final in AlgNMed∗(Act).

Proof. Let A be an NMed∗(Act)-algebra. A function unfoldA : A → Traces is defined
as follows: For all a ∈ Astate,

unfoldA(a) = 1 ∪ {(x, i)w | x ∈ Act, δA(a)(x) = (a1, . . . , an),

1 ≤ i ≤ n, w ∈ unfoldA(ai)}.

Let a ∈ Astate, x ∈ Act and

δA(a)(x) = (a1, . . . , an). (1)

unfoldA is NAcc-homomorphic: By (1) and the definition of unfoldA,

max{i > 0 | (x, i) ∈ unfoldA(a)} = n.

Hence

δTraces(unfoldA(a))(x)
Def. δTraces

= ({w ∈ Path | (x, i)w ∈ unfoldA(a)})ni=1

Def. unfoldA
= ({w ∈ Path | w ∈ unfoldA(ai)})ni=1 = (unfoldAstate(ai))

n
i=1

= unfoldAstate∗(a1, . . . , an)
(1)
= unfoldAstate∗(δ

A(a)(x)) = unfoldA(state∗)Act(δ
A(a))(x).

837

26.3 CCS 26 MORE EXAMPLES

�� ��More examples

unfoldA is unique: Let h : A→ Traces be an NMed∗(Act)-homomorphism. Then

δTraces(h(a))(x)
h NMed∗(Act)−hom.

= h(state∗)Act(δA(a))(x) = hstate∗(δ
A(a)(x))

(1)
= hstate∗(a1, . . . , an) = (h(a1), . . . , h(an)).

(2)

For all w ∈ Path,
w ∈ h(a) ⇔ w ∈ unfoldA(a). (3)

Proof by induction on |w|. By the definition of Traces , (3) holds true for w = ϵ.

By (2) and the definition of δTraces ,

max{i > 0 | (x, i) ∈ h(a)} = n. (4)

Let i > n and v ∈ Path. By the definition of unfoldA, (x, i)v ̸∈ unfoldA(a). By (4),
(x, i)v ̸∈ h(a). We conclude that (3) holds true for w = (x, i)v.

Moreover, for all 1 ≤ i ≤ n and v ∈ Path,

(x, i)v ∈ h(a)
Def. δTraces⇔ v ∈ πi(δ

Traces(h(a))(x))
(2)⇔ v ∈ h(ai)

ind. hyp.⇔ v ∈ unfoldA(ai)
Def. unfoldA⇔ (x, i)v ∈ unfoldA(a).

Hence (3) holds true for w = (x, i)v. ❏

838

26.3 CCS 26 MORE EXAMPLES

�� ��More examples

The following Haskell functions trans’ and trans implement the T -coalgebra

denodeTProc(Act) : TProc(Act) → T (TProc(Act)) = (Act× TProc(Act))
∗

(see [78], p.6):

839

26.3 CCS 26 MORE EXAMPLES

�� ��More examples

840

26.3 CCS 26 MORE EXAMPLES

�� ��More examples
The following Haskell function comb implements the P -algebra

[preDTree(Act), choDTree(Act), parDTree(Act), resDTree(Act), relDTree(Act)] :

Act + DTree(Act)2 + DTree(Act)2 + DTree(Act)× Act + DTree(Act)× ActAct

→ DTree(Act)

(see [78], p.7):

841

26.3 CCS 26 MORE EXAMPLES

�� ��More examples
Moreover, Theorem 16.3 (12) implies
(unfold trans′ =) unfoldTProc(Act) = foldDTree(Act) (= fold comb) : TProc(Act) → DTree(Act).

In and out implement
[preTProc(Act), choTProc(Act), parTProc(Act), resTProc(Act), relTProc(Act)] :

Act + T 2
Proc(Act) + T 2

Proc(Act) + TProc(Act) × Act + TProc(Act) × ActAct → Proc(Act)

and denodeDTree(Act) : DTree(Act) → T (DTree(Act)) = (Act × DTree(Act))∗, respec-
tively.

842

26.3 CCS 26 MORE EXAMPLES

�� ��More examples

Let E : V → TProc(Act)(V) be a system of iterative Proc(Act)-equations.

E turns TProc(Act)(V) into a Trans(Act)-algebra: Let F be the set of arrows of Proc(Act).

For all f : e→ proc ∈ F , t ∈ TProc(Act)(V)e and x ∈ Vproc,

denodeTProc(Act)(V)(ft) = (t, f),

denodeTProc(Act)(V)(x) = denodeTProc(Act)(V)(E(x)).

(1) V
incV→ TProc(Act)(V)

unfold
TProc(Act)(V)

→ DTree(Act) solves E in DTree(Act).

Proof. Let x ∈ Vproc, E(x) = ft and t = (t1, . . . , tn). Hence

denodeTProc(Act)(V)(x) = (t, f) (2)

and thus for all i > 0 and w ∈ N+
>0,

(unfoldTProc(Act)(V) ◦ incV)∗(E(x))(i) = (unfoldTProc(Act)(V) ◦ incV)∗(ft)(i)

= fDTree(Act)((unfoldTProc(Act)(V) ◦ incV)∗(t))(i)
Def. fDTree(Act)

= f

Def. unfold
TProc(Act)(V)

,(2)
= unfoldTProc(Act)(V)(x)(ϵ)

843

26.3 CCS 26 MORE EXAMPLES

�� ��More examples

and for all i ∈ N and w ∈ N∗,

(unfoldTProc(Act)(V) ◦ incV)∗(E(x))(iw) = (unfoldTProc(Act)(V) ◦ incV)∗(ft)(iw)
= fCTΣ((unfoldTProc(Act)(V) ◦ incV)∗(u))(iw)
Def. fCTΣ

=

{
(unfoldTProc(Act)(V) ◦ incV)∗(ui)(w) if u = (u1, . . . , un) and 1 ≤ i ≤ n

⊥ otherwise

}
Def. unfold

TProc(Act)(V)
,(2)

= unfoldTProc(Act)(V)(x)(iw).

Therefore, ECTΣ(unfold
TProc(Act)(V) ◦ incV) = (unfoldTProc(Act)(V) ◦ incV)∗ ◦ E

= unfoldTProc(Act)(V) ◦ incV , i.e., (1) holds true. ❏

844

REFERENCES REFERENCES

�
�

�
27 Bibliography

[1] A. Abel, B. Pientka, D. Thibodeau, A. Setzer, Copatterns: Programming Infinite
Structures by Observations, Proc. ACM POPL (2013) 27-38

[2] P. Aczel, An Introduction to Inductive Definitions, in: J. Barwise, ed., Handbook
of Mathematical Logic, North-Holland (1977) 739-782

[3] P. Aczel, J. Adamek, J. Velebil, A Coalgebraic View of Infinite Trees and Iteration,
Proc. Coalgebraic Methods in Computer Science, Elsevier ENTCS 44 (2001) 1-26

[4] J. Adamek, Free algebras and automata realizations in the language of categories,
Commentat. Math Univers. Carolinae 15 (1974) 589-602

[5] J. Adamek, Final coalgebras are ideal completions of initial algebras, Journal of
Logic and Computation 12 (2002) 217-242

[6] J. Adamek, Introduction to Coalgebra, Theory and Applications of Categories 14
(2005) 157-199

[7] J. Adamek, A Logic of Coequations, Proc. CSL 2005, Springer LNCS 3634 (2005)
70-86

[8] J. Adamek, M. Haddadi, S. Milius, Corecursive Algebras, Corecursive Monads and
Bloom Monads, Logical Methods in Computer Science 10 (2014) 1-51

845

REFERENCES REFERENCES

[9] J. Adamek, D. Lücke, S. Milius, Recursive Coalgebras of Finitary Functors, Theor.
Inform. and Appl. 41 (2007) 447-462

[10] J. Adamek, S. Milius, L.S. Moss, Initial algebras and terminal coalgebras: a survey,
draft of Feb. 7, 2011, TU Braunschweig

[11] J. Adamek, H.-E. Porst, On varieties and covarieties in a category, Math. Struc-
tures in Computer Science 13 (2003) 201-232

[12] J. Adamek, H.-E. Porst, On Tree Coalgebras and Coalgebra Presentations, Theo-
retical Computer Science 311 (2004) 257-283

[13] Th. Altenkirch, Naive Type Theory, in: Reflections on the Foundations of Mathe-
matics, Springer (2019) 101-136

[14] S. Antoy, R. Echahed, M. Hanus, A Needed Narrowing Strategy, Journal ACM 47
(2000) 776-822

[15] M.A. Arbib, Free dynamics and algebraic semantics, Proc. Fundamentals of Com-
putation Theory, Springer LNCS 56 (1977) 212-227

[16] M.A. Arbib, E.G. Manes, Arrows, Structures, and Functors, Academic Press 1975

[17] M.A. Arbib, E.G. Manes, Parametrized Data Types Do Not Need Highly Con-
strained Parameters, Information and Control 52 (1982) 139-158

[18] E. Astesiano, H.-J. Kreowski, B. Krieg-Brückner, eds., Algebraic Foundations of
Systems Specification, IFIP State-of-the-Art Report, Springer 1999

846

https://www.springer.com/computer/swe/book/978-3-642-64151-0?otherVersion=978-3-642-59851-7
https://www.springer.com/computer/swe/book/978-3-642-64151-0?otherVersion=978-3-642-59851-7

REFERENCES REFERENCES

[19] S. Awodey, Category Theory, Oxford University Press (2009)

[20] A. Ballester-Bolinches, E. Cosme-Llópez, J. Rutten, The dual equivalence of equa-
tions and coequations for automata, Information and Computation 244 (2015)
49-75

[21] M. Barr, Terminal coalgebras in well-founded set theory, Theoretical Computer
Science 114 (1993) 299-315

[22] M. Barr, Terminal coalgebras for endofunctors on sets, ftp://ftp.math.mcgill.ca/
pub/barr/pdffiles/trmclg.pdf, McGill University, Montreal 1999

[23] M. Barr, Coequalizers and Free Triples, Math. Zeitschrift 116 (1970) 307-322

[24] M. Barr, Ch. Wells, Category Theory, Lecture Notes for ESSLLI, 1999

[25] M. Barr, Ch. Wells, Category Theory for Computing Science, Reprints in Theory
and Applications of Categories 22, 2012.

[26] F. Bartels, Generalised Coinduction, Proc. CMCS 2001, Elsevier ENTCS 44 (2001)

[27] A. Bauer, What is algebraic about algebraic effects and handlers?, submitted

[28] M. Benedikt, C. Koch, XPath Leashed, ACM Computing Surveys 41 (2009) 3:1-
3:54

[29] R. Bird, Introduction to Functional Programming, Prentice Hall 1998

[30] R. Bird, O. de Moor, Algebra of Programming, Prentice Hall 1997

847

https://fldit-www.cs.tu-dortmund.de/~peter/barrwells.pdf

REFERENCES REFERENCES

[31] S.L. Bloom, E.G. Wagner, Many-sorted theories and their algebras with some ap-
plications to data types, in: Maurive Nivat, John C. Reynolds: Algebraic Methods
in Semantics, Cambridge University Press (1985) 133-168

[32] L.S. Bobrow, M.A. Arbib, Discrete Mathematics: Applied Algebra for Computer
and information Science, W.B. Saunders Company 1974

[33] F. Bonchi, M. Bonsangue, M. Boreale, J. Rutten, A. Silva, A coalgebraic per-
spective on linear weighted automata, Information and Computation 211 (2012)
77-105

[34] M. Bonsangue, J. Rutten, A. Silva, An Algebra for Kripke Polynomial Coalgebras,
Proc. 24th LICS (2009) 49-58

[35] M. Brandenburg, Einführung in die Kategorientheorie, Springer 2016

[36] J.A. Brzozowski, Derivatives of regular expressions, Journal ACM 11 (1964) 481-
494

[37] D. Cancila, F. Honsell, M. Lenisa, Generalized Coiteration Schemata, Elsevier
ENTCS 82 (2003)

[38] V. Capretta, T. Uustalu, V. Vene, Recursive coalgebras from comonads, Informa-
tion and Computation 204 (2006) 437-468

[39] V. Capretta, T. Uustalu, V. Vene, Corecursive algebras: A study of general struc-
tured corecursion, Springer LNCS 5902 (2009) 84-100

848

REFERENCES REFERENCES

[40] C. Cirstea, A coalgebraic equational approach to specifying observational struc-
tures, Theoretical Computer Science 280 (2002) 35-68

[41] R. Cockett, T. Fukushima, About Charity, Yellow series report 92/480/18, Dept.
of Comput. Sci., Univ. of Calgary (1992)

[42] J.R.B. Cockett, D. Spencer, Strong categorical datatypes II: A term logic for cat-
egorical programming, Theoretical Computer Science 139 (1995) 69-113

[43] H. Comon et al., Tree Automata: Techniques and Applications, Inria 2008

[44] J. Cristau, C. Löding, W. Thomas, Deterministic automata on unranked trees,
Proc. 15th FCT, Springer LNCS 3623 (2005) 68-79

[45] A. Cunha, Recursion Patterns as Hylomorphisms, Technical Report DI-PURe-
03.11.01, Department of Informatics, University of Minho, Portugal 2003

[46] F. Drewes, ed., Tree Automata, Course notes, Ume◦a University, Sweden 2009

[47] M. Droste, P. Gastin, Weighted automata and weighted logics, Theoretical Com-
puter Science 380 (2007) 69-86

[48] A. Dudenhefner, Untersuchung und Implementierung des coinduktiven
Stromkalküls, Bachelor thesis, TU Dortmund 2011

[49] H. Ehrig, B. Mahr, F. Cornelius, M. Große-Rhode, P. Zeitz, Mathematisch-
strukturelle Grundlagen der Informatik, Springer 2001

849

https://tata.gforge.inria.fr
https://www8.cs.umu.se/kurser/5DV023/VT09/final.pdf
https://www.springer.com/computer/theoretical+computer+science/book/978-3-540-41923-5
https://www.springer.com/computer/theoretical+computer+science/book/978-3-540-41923-5

REFERENCES REFERENCES

[50] M. Erwig, Categorical Programming with Abstract Data Types, Proc. AMAST’98,
Springer LNCS 1548, 406-421

[51] B. Fong, D.I. Spivak, Seven Sketches in Compositionality: An Invitation to Applied
Category Theory, https://math.mit.edu/ dspivak/teaching/sp18/7Sketches.pdf

[52] M.M. Fokkinga, E. Meijer, Program Calculation Properties of Continuous Alge-
bras, CWI Report CS-R9104, Amsterdam 1991

[53] J. Gibbons, G. Hutton, Th. Altenkirch, When is a function a fold or an unfold?,
Elsevier ENTCS 44 (2001) 146-160

[54] J.A. Goguen, R. Burstall, Institutions: Abstract Model Theory for Specification
and Programming, Journal ACM 39 (1992) 95-146

[55] J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright, Initial Algebra Semantics
and Continuous Algebras, Journal ACM 24 (1977) 68-95

[56] R. Goldblatt, A Calculus of Terms for Coalgebras of Polynomial Functors, Elsevier
ENTCS 44 (2001) 161-184

[57] Andrew D. Gordon, Bisimilarity as a Theory of Functional Programming, Theo-
retical Computer Science 228 (1999) 5-47

[58] G. Gottlob, C. Koch, R. Pichler, XPath Processing in a Nutshell, SIGMOD Record
32 (2003) 21-27

850

REFERENCES REFERENCES

[59] H.P. Gumm, T. Schröder, Coalgebras of bounded type, Math. Structures in Com-
puter Science 12 (2002) 565-578

[60] H.P. Gumm, State Based Systems are Coalgebras, Cubo - Matematica Educacional
5 (2003) 239-262

[61] H.P. Gumm, Equational and implicational classes of coalgebras, Theoretical Com-
puter Science 260 (2001) 57-69

[62] H.P. Gumm, Universelle Coalgebra, in: Th. Ihringer, Allgemeine Algebra, Helder-
mann Verlag 2003

[63] G. Gupta et al., Infinite Computation, Co-induction and Computational Logic,
Proc. CALCO 2011, Springer LNCS 6859 (2011) 40-54

[64] J.V. Guttag, E. Horowitz, and D.R. Musser, Abstract Data Types and Software
Validation, Communications of the ACM Vol. 21 (1978) 1048-1064

[65] T. Hagino, Codatatypes in ML, J. Symbolic Computation 8 (1989) 629-650

[66] H.H. Hansen, C. Kupke, J. Rutten, Stream Differential Equations: Specification
Formats and Solution Methods, 2016

[67] H.H. Hansen, J. Rutten, Symbolic Synthesis of Mealy Machines from Arithmetic
Bitstream Functions, Scientific Annals of Computer Science (2010) 97-130

[68] I. Hasuo, B. Jacobs, A. Sokolova, Generic Trace Theory, Proc. CMCS 2006, Else-
vier ENTCS 164, 47-65

851

REFERENCES REFERENCES

[69] M. Hauhs, B. Trancón y Widemann, Applications of Algebra and Coalgebra in
Scientific Modelling Illustrated with the Logistic Map, Elsevier ENTCS 264 (2010)
105-123

[70] D. Hausmann, T. Mossakowski, L. Schröder, Iterative Circular Coinduction for
CoCasl in Isabelle/HOL, Proc. FASE 2005, Springer LNCS 3442 (2005) 341-356

[71] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, R. Paige, Th. Rauhe, A.
Sandholm, Mona: Monadic second-order logic in practice, Proc. TACAS 1995,
Springer LNCS 1019, 89-110

[72] R. Hinze, Adjoint Folds and Unfolds—An extended study, Science of Computer
Programming 78 (2013) 2108-2159

[73] R. Hinze, Reasoning about codata, Third Central European Functional Program-
ming School, Springer LNCS 6299 (2010) 42-93

[74] R. Hinze, Functional Pearl: Streams and Unique Fixed Points, Proc. 13th ICFP
(2008) 189-200

[75] R. Hinze, D.W.H. James, Proving the Unique-Fixed Point Principle Correct, Proc.
16th ICFP (2011) 359-371

[76] R. Hinze, N. Wu, J. Gibbons, Conjugate Hylomorphisms, Proc. ACM POPL (2015)
527-538

852

REFERENCES REFERENCES

[77] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Prentice Hall 2006

[78] G. Hutton, Fold and unfold for program semantics, Proc. 3rd ICFP (1998) 280-288

[79] G. Hutton, A tutorial on the universality and expressiveness of fold, J. Functional
Programming 9 (1999) 355-372

[80] B. Jacobs, Invariants, Bisimulations and the Correctness of Coalgebraic Refine-
ments, Proc. Algebraic Methodology and Software Technology, Springer LNCS
1349 (1997) 276-291

[81] B. Jacobs, Introduction to Coalgebra, Cambridge University Press 2017

[82] B. Jacobs, Exercises in Coalgebraic Specification, in [?], pp. 237-280

[83] B. Jacobs, A Bialgebraic Review of Deterministic Automata, Regular Expressions
and Languages, in: K. Futatsugi et al. (eds.), Goguen Festschrift, Springer LNCS
4060 (2006) 375-404

[84] B. Jacobs, Trace Semantics for Coalgebras, CMCS 2004

[85] B. Jacobs, J. Rutten, An introduction to (co)algebras and (co)induction, in: D.
Sangiorgi, J. Rutten (eds), Advanced topics in bisimulation and coinduction, Cam-
bridge Univ. Press (2012) 38-99

[86] R. Y. Kain, Automata theory: machines and languages, McGraw-Hill 1972

853

REFERENCES REFERENCES

[87] S. Kamin, Final data types an their specification extension, ACM Trans. on Prog.
Lang. and Systems Comp. Syst. Sci. 5 (1983) 97-123

[88] S.C. Kleene, Introduction to Metamathematics, Van Nostrand 1952

[89] B. Klin, Structural Operational Semantics for Weighted Transition Systems,
Mosses Festschrift, Springer LNCS 5700 (2009) 121-139

[90] B. Klin, Bialgebras for structural operational semantics: An introduction, Theo-
retical Computer Science 412 (2011) 5043-5069

[91] D. Kozen, Realization of Coinductive Types, Proc. Math. Foundations of Prog.
Lang. Semantics 27, Carnegie Mellon University, Pittsburgh 2011

[92] C. Kupke, M. Niqui, J. Rutten, Stream Differential Equations: concrete formats
for coinductive definitions, 2011

[93] C. Kupke, Y. Venema, Coalgebraic automata theory: basic results, Logical Methods
in Computer Science 4 (2008) 1-43

[94] A. Kurz, Specifying coalgebras with modal logic, Theoretical Computer Science 260
(2001) 119-138

[95] A. Kurz, J. Velebil, Relation lifting, a survey, Journal of Logical and Algebraic
Methods in Programming 85 (2016) 475-499

[96] J. Lambek, A fixpoint theorem for complete categories, Math. Zeitschrift 103 (1968)
151-161

854

REFERENCES REFERENCES

[97] J.-L. Lassez, V.L. Nguyen, E.A. Sonenberg, Fixed Point Theorems and Semantics:
A Folk Tale, Information Processing Letters 14 (1982) 112-116

[98] F.W. Lawvere, Diagonal arguments in cartesian closed categories, Reprints in The-
ory and Applications of Categories 15 (2006) 1-13

[99] D.J. Lehmann, M.B. Smyth, Algebraic Specification of Data Types: A Synthetic
Approach, Math. Systems Theory 14 (1981) 97-139

[100] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math-
ematics. Springer 1971,1997

[101] Z. Manna, Mathematical Theory of Computation, McGraw-Hill 1974

[102] E.G. Manes, M.A. Arbib Algebraic Approaches to Program Semantics, Springer
1986

[103] G. Markowsky, Chain-complete posets and directed sets with applications, Algebra
Universalis 6 (1976) 53-68

[104] M. Marx, M. de Rijke, Semantic Characterizations of Navigational XPath, SIG-
MOD Record 34 (2005) 41-46

[105] B. Mazur, When is One Thing Equal to Some Other Thing?, in: B. Gold, R.A. Si-
mons, eds., Proof and other Dilemmas, The Mathematical Association of America
2008

855

REFERENCES REFERENCES

[106] E. Meijer, M. Fokkinga, and R. Paterson, Functional programming with bananas,
lenses, envelopes and barbed wire, Proc. FPCA 1991, Springer LNCS 523 (1991)
124-144

[107] E. Meijer, G. Hutton, Bananas in Space: Extending Fold and Unfold to Exponen-
tial Types, Proc. FPCA ’95, ACM Publications (1995) 324-333

[108] B. Milewski, Category Theory for Programmers, https://
bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface

[109] D.A. Miller, G. Nadathur, Higher-order logic programming, Proc. ICALP 1986,
Springer LNCS (1986) 448-462

[110] R. Milner, Communication and Concurrency, Prentice-Hall 1989

[111] E. Moggi, Notions of computation and monads, Information and Computation 93
(1991) 55-92

[112] F.L. Morris, Advice on Structuring Compilers and Proving Them Correct, Proc.
ACM POPL (1973) 144-152

[113] T. Mossakowski, L. -, M. Roggenbach, H. Reichel, Algebraic-coalgebraic specifica-
tion in CoCASL, J. Logic and Algebraic Programming 67 (2005) 146-197

[114] G. Nadathur, D. Miller, Higher-Order Logic Programming, D.M. Gabbay, C.J.
Hogger, eds., Handbook of Logic in Artificial Intelligence and Logic Programming
5, Clarendon Press (1998) 499-590

856

https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface
https://fldit-www.cs.tu-dortmund.de/~peter/MorrisCompiler.pdf

REFERENCES REFERENCES

[115] D. Orchard, Should I use a Monad or a Comonad?, submitted to MSFP 2012

[116] P. Padawitz, Church-Rosser-Eigenschaften von Graphgrammatiken und Anwen-
dungen auf die Semantik von LISP, Diplomarbeit, TU Berlin 1978

[117] P. Padawitz, Computing in Horn Clause Theories, EATCS Monographs on Theo-
retical Computer Science 16, Springer-Verlag, 1988 (free copies are available from
the author)

[118] P. Padawitz, Deduction and Declarative Programming, Cambridge Tracts in The-
oretical Computer Science 28, Cambridge University Press, 1992

[119] P. Padawitz, Inductive Theorem Proving for Design Specifications, J. Symbolic
Computation 21 (1996) 41-99

[120] P. Padawitz, Proof in Flat Specifications, in: [18], pp. 321-384

[121] P. Padawitz, Swinging Types = Functions + Relations + Transition Systems,
Theoretical Computer Science 243 (2000) 93-165

[122] P. Padawitz, Expander2: program verification between interaction and automation,
slides for [130], WFLP 2006

[123] P. Padawitz, Expander2: Two inductive proofs, Video, TU Dortmund 2017

[124] P. Padawitz, Formale Methoden des Systementwurfs, TU Dortmund 2007

[125] P. Padawitz, Swinging Types At Work, TU Dortmund 2008

857

https://www.springer.com/de/book/9783642738265
https://www.cambridge.org/gb/knowledge/isbn/item1141500
https://fldit-www.cs.tu-dortmund.de/~peter/Expander2/MadridSlides.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/Expander2/PAFL.mp4
https://fldit-www.cs.tu-dortmund.de/~peter/TdP96.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/BehExa.pdf

REFERENCES REFERENCES

[126] P. Padawitz, Swinging Data Types, TU Dortmund 2009

[127] P. Padawitz, Dialgebraic Specification and Modeling, TU Dortmund 2010

[128] P. Padawitz, Algebraic Model Checking, in: F. Drewes, A. Habel, B. Hoffmann, D.
Plump, eds., Manipulation of Graphs, Algebras and Pictures, Electronic Commu-
nications of the EASST Vol. 26 (2010)

[129] P. Padawitz, From grammars and automata to algebras and coalgebras, Proc. CAI
2011, Springer LNCS 6742 (2011) 21-43

[130] P. Padawitz, Expander2 as a Prover and Rewriter, TU Dortmund 2012

[131] P. Padawitz, From fixpoint to predicate co/induction and its use in standard mod-
els, TU Dortmund 2014

[132] P. Padawitz, (Co)Algebraic Specification with Base Sets, Recursive and Iterative
Equations, IFIP WG 1.3 Meeting 2014

[133] P. Padawitz, Modeling and reasoning with I-polynomial data types, IFIP WG 1.3
Meeting + CMS 2016

[134] P. Padawitz, Modellieren und Implementieren in Haskell, Technical Report No.
868, TU Dortmund

[135] P. Padawitz, Übersetzerbau (Algebraic Compiler Construction), TU Dortmund
2016

858

https://fldit-www.cs.tu-dortmund.de/~peter/Swing.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/Dialg.pdf
https://journal.ub.tu-berlin.de/eceasst/issue/view/36
https://journal.ub.tu-berlin.de/eceasst/issue/view/36
https://fldit-www.cs.tu-dortmund.de/~peter/Expander2/Prover.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/CoInd.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/CoInd.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/IFIP2014.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/IFIP2014.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/IFIP2016.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/EssenR.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/CbauFolien.pdf

REFERENCES REFERENCES

[136] P. Padawitz, Logik für Informatiker (Logic for Computer Scientists), Technical
Report No. 867, TU Dortmund

[137] P. Padawitz, From Modal Logic to (Co-)Algebraic Reasoning, TU Dortmund 2017

[138] D. Pattinson, An Introduction to the Theory of Coalgebras, Course notes for the
North American Summer School in Logic, Language and Information (NASSLLI),
LMU München, Germany 2003

[139] D. Pattinson, L. Schröder, Program Equivalence is Coinductive, Proc. 21st LICS
(2016), 337-346

[140] D. Pavlovic and M. Escardó, Calculus in coinductive form, Proc. 13th LICS (1998),
408-417

[141] S. Phillips, W.H. Wilson, G.S. Halford, What Do Transitive Inference and Class
Inclusion Have in Common? Categorical (Co)Products and Cognitive Develop-
ment, PLoS Computational Biology 5 (2009)

[142] S. Phillips, W.H. Wilson, Categorial Compositionality: A Category Theory Expla-
nation for the Systematicity of Human Cognition, PLoS Computational Biology 6
(2010)

[143] B. Pierce, Basic Category Theory for Computer Scientists, MIT Press 1991

[144] G.D. Plotkin, J. Power, Tensors of comodels and models for operational semantics,
Elsevier ENTCS 218 (2008) 295-311

859

https://fldit-www.cs.tu-dortmund.de/~peter/LogikPadR.pdf
https://fldit-www.cs.tu-dortmund.de/~peter/CTL.pdf

REFERENCES REFERENCES

[145] C. Pulte, Natürliche Transformationen, Lecture in the Proseminar Kategorienthe-
oretische Grundlagen, TU Dortmund 2012

[146] H. Reichel, An Approach to Object Semantics based on Terminal Coalgebras, Math-
ematical Structures in Computer Science 5 (1995) 129-152

[147] H. Reichel, Dialgebraic Logics, Elsevier ENTCS 11 (1998) 1-9

[148] H. Reichel, An Algebraic Approach to Regular Sets, in: K. Futatsugi et al., Goguen
Festschrift, Springer LNCS 4060 (2006) 449-458

[149] J. Reiterman, The Birkhoff theorem for finite algebras, Algebra Universalis 14
(1982) 1-10

[150] J. Rothe, H. Tews, B. Jacobs, The Coalgebraic Class Specification Language CCSL,
Journal of Universal Computer Science 7 (2001) 175-193

[151] W.C. Rounds, Mappings and Grammars on Trees, Mathematical Systems Theory
4 (1970) 256-287

[152] J. Rutten, Processes as terms: non-wellfounded models for bisimulation, Math.
Struct. in Comp. Science 15 (1992) 257-275

[153] J. Rutten, Automata and Coinduction (an exercise in coalgebra), Proc. CONCUR
’98, Springer LNCS 1466 (1998) 194-218

[154] J. Rutten, Automata, Power Series, and Coinduction: Taking Input Derivatives
Seriously, Proc. ICALP ’99, Springer LNCS 1644 (1998) 645-654

860

REFERENCES REFERENCES

[155] J. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science
249 (2000) 3-80

[156] J. Rutten, Behavioral differential equations: a coinductive calculus of streams,
automata, and power series, Theoretical Computer Science 308 (2003) 1-53

[157] J. Rutten, On Streams and Coinduction, in: Mathematical Techniques for Ana-
lyzing Concurrent and Probabilistic Systems, CRM Monograph Series 23 (2004)
1-92

[158] J. Rutten, A coinductive calculus of streams, Math. Struct. in Comp. Science 15
(2005) 93-147

[159] J. Rutten, The Method of Coalgebra: exercises in coinduction, CWI Amsterdam
(2019)

[160] J. Salamanca, M. Bonsangue, J. Rutten, Equations and Coequations for Weighted
Automata, Proc. MFCS 2015, Springer LNCS 9234 (2015) 444-456

[161] D. Sannella, A. Tarlecki, Foundations of Algebraic Specification and Formal Soft-
ware Development, Springer 2012

[162] D. Schwencke, Coequational logic for accessible functors, Information and Compu-
tation 208 (2010) 1469-1489

[163] T. Schwentick, XPath query containment, SIGMOD Record 33 (2004) 101-109

861

https://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17335-6
https://www.springer.com/computer/theoretical+computer+science/book/978-3-642-17335-6

REFERENCES REFERENCES

[164] K. Sen, G. Rosu, Generating Optimal Monitors for Extended Regular Expressions,
Proc. Runtime Verification 2003, Elsevier ENTCS 89 (2003) 226-245

[165] L. Simon, Coinductive Logic Programming, Ph.D. thesis, University of Texas at
Dallas (2006)

[166] A. Silva, J. Rutten, A coinductive calculus of binary trees, Information and Com-
putation 208 (2010) 578-593

[167] A. Silva, F. Bonchi, M. Bonsangue, J. Rutten, Quantitative Kleene coalgebras,
Information and Computation 209 (2011) 822-849

[168] J. Soto-Andrade, F.J. Varela, Self-Reference and Fixed Points: A Discussion and
an Extension of Lawvere’s Theorem, Acta Applicandae Mathematicae 2 (1984)
1-19

[169] D.I. Spivak, T. Giesa, E. Wood, M.J. Buehler, Category Theoretic Analysis of
Hierarchical Protein Materials and Social Networks, www.plosone.org 2011

[170] D.I. Spivak, R.E. Kent, Ologs: A Categorical Framework for Knowledge Represen-
tation, www.plosone.org 2012

[171] D.I. Spivak, Category Theory for the Sciences, MIT Press 2014

[172] Th. Streicher, Introduction to Category Theory and Categorical Logic, University
of Darmstadt 2003

862

REFERENCES REFERENCES

[173] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J.
Math. 5 (1955), 285-309

[174] W. Thomas, Languages, Automata, and Logic, in: Handbook of Formal Languages,
Vol. 3: Beyond Words, Springer (1997) 389-456

[175] W. Thomas, Applied Automata Theory, Course Notes, RWTH Aachen (2005)

[176] D. Turi, G. Plotkin, Towards a Mathematical Operational Semantics, Proc. 12th
LICS (1997) 280-291

[177] J.W. Thatcher, E.G. Wagner, J.B. Wright, More on Advice on Structuring Com-
pilers and Proving Them Correct, Theoretical Computer Science 15 (1981) 223-249

[178] J.W. Thatcher, J.B. Wright, Generalized Finite Automata Theory with an Applica-
tion to a Decision Problem of Second-Order Logic, Theory of Computing Systems
2 (1968) 57-81

[179] T. Uustalu, V. Vene, Primitive (Co)Recursion and Course-of-Value (Co)Iteration,
INFORMATICA 10 (1999) 5-26

[180] Ph. Wadler, Theorems for free!, Proc. FPLCA ’89, ACM Press (1989) 347-359

[181] E.G. Wagner, J.B. Wright, J.A. Goguen, J.W. Thatcher, Some Fundamentals of
Order-Algebraic Semantics, IBM Research Report 6020 (1976)

[182] E.G. Wagner, J.W. Thatcher, J.B. Wright, Free continuous theories, IBM Research
Report 6906 (1977)

863

https://www.sciencedirect.com/science/article/pii/0304397581900803
https://www.sciencedirect.com/science/article/pii/0304397581900803

REFERENCES REFERENCES

[183] E.G. Wagner, S.L. Bloom, J.W. Thatcher, Why algebraic theories?, in: Maurive
Nivat, John C. Reynolds: Algebraic Methods in Semantics, Cambridge University
Press (1985) 607-634

[184] E.G. Wagner, Algebraic semantics, in: Handbook of Logic in Computer Science 3:
Semantic Structures, Clarendon Press (1994) 323-393

[185] M. Wand, Final algebra semantics and data type extension, J. Comp. Syst. Sci. 19
(1979) 27-44

[186] R.F.C. Walters, Categories and Computer Science, Cambridge University Press
1992

[187] J. Winter, Coalgebraic Characterizations of Automata-Theoretic Classes, Ph.D.
thesis, Radboud University Nijmegen 2014

[188] J. Winter, M.M. Bonsague, J. Rutten, Context-Free Languages, Coalgebraically,
Proc. CALCO 2011

[189] M. Wirsing, Structured Algebraic Specifications: A Kernel Language, Theoretical
Computer Science 42 (1986) 123-249

[190] M. Wirsing, Algebraic Specification, in: J. van Leeuwen, ed., Handbook of Theo-
retical Computer Science, Elsevier (1990) 675-788

[191] N.S. Yanofsky, A Universal Approach to Self-Referential Paradoxes, Incomplete-
ness and Fixed Points, The Bulletin of Symbolic Logic 9 (2003) 362-386

864

	 Contents
	 The tai chi of (co)algebraic modeling
	 Preliminaries
	 Products
	 Product equations
	 Product characterizations
	 Sums
	 Sum equations
	 Sum characterizations
	 Words and streams
	 Power and weighted sets
	 Labelled trees

	 Relations, posets and fixpoints
	 Sample CPOs
	 Fixpoints

	 Categories
	 From posets to categories
	 Basic definitions, examples and results

	 Functors and natural transformations
	 Sample functors
	 The Yoneda lemma

	 Limits and colimits
	 Limits
	 Colimits

	 Sorted sets and types
	 Type models
	 Sorted relations

	 Signatures
	 Σ-arrows
	 Sample constructive signatures
	 Sample destructive signatures

	 Σ-algebras
	 Algebras and homomorphisms
	 Algebras as functors and the Yoneda Lemma
	 Σ-terms and -coterms
	 Sample terms and coterms
	 Term and coterm algebras
	 Sample algebras
	 Product algebras
	 Sum algebras
	 Invariant algebras
	 Quotient algebras
	 Term folding
	 Term grounding
	 Sample initial algebras
	 Context-free grammars and their models
	 Removing left recursion
	 State unfolding
	 Coterm grounding
	 Sample final algebras
	 Σ-flowcharts
	 From flowcharts to terms

	 Σ-formulas
	 Syntax
	 Derived terms and formulas
	 Semantics
	 Realization in Expander2
	 Automata for satisfiability
	 Institutions

	 Predicate specifications
	 Syntax and semantics
	 When Kleene closures are fixpoints
	 Deduction in sequent logic
	 Rule applicability
	 Resolution and narrowing

	 Induction rules
	 Fixpoint induction upon a predicate
	 Invariants and algebraic induction
	 CFGs as equations between regular expressions
	 Algebraic induction as fixpoint induction
	 Fixpoint induction upon a function
	 Invariants are monotone

	 Coinduction rules
	 Fixpoint coinduction upon a predicate
	 Congruences and algebraic coinduction
	 Algebraic coinduction as fixpoint coinduction
	 Coinduction modulo constructors
	 Quotients are monotone
	 Duality of (co)resolution and (co)induction

	 F-algebras and -coalgebras
	 Invariants and congruences
	 Complete categories and continuous functors
	 Initial F-algebras and final F-coalgebras

	 Σ-functors
	 Functors for constructive signatures
	 Functors for destructive signatures
	 Final models of destructive non-polynomial signatures
	 From constructors to destructors
	 From destructors to constructors
	 Continuous algebras

	 Recursive functions
	 Three criteria
	 Bisimulation modulo constructors
	 Sample inductive definitions
	 Sample coinductive definitions
	 Sample biinductive definitions
	 Direct construction of a minimal acceptor of a regular language
	 Guarded CFGs
	 Iterative equations I

	 Iterative equations II
	 Algebraic theories
	 Term equations
	 The CPO approach for solving term equations
	 The coalgebraic approach for solving term equations
	 Flowchart equations
	 Word acceptors
	 Tree acceptors

	 Categorical Σ-algebra
	 Bounded functors

	 Adjunctions
	 Five equivalent definitions
	 Identity functor
	 Monoid functor
	 Sequence functor
	 Behavior functor
	 Weighted-set functor
	 Box and diamond functors
	 Strongly connected components
	 Reader and writer
	 Cartesian closure and fixpoints
	 Product and coproduct
	 Term and flowchart functors
	 Varieties
	 Equational theories
	 Coterm functors
	 Covarieties
	 Coequational theories
	 Base algebra extensions

	 Stream calculus
	 Conservative extensions
	 Constructor extensions
	 Destructor extensions

	 Abstraction and restriction
	 Abstraction with a least congruence
	 Abstraction with a greatest congruence
	 Restriction with a greatest invariant
	 Restriction with a least invariant

	 λ-bialgebras
	 Monads and comonads
	 Sample monads
	 Term monads
	 Sample comonads
	 Coterm comonads

	 Recursive functions as adjunctions or distributive laws
	 More examples
	 Queues
	 Arithmetic expressions
	 CCS

	 Bibliography

