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Partial orders, fixpoint theorems and co/induction

Let A be a set and R be a binary relation on A.

R is a partial order and A is a partially ordered set or poset if R is reflexive,
transitive and antisymmetric.

Let A be a poset with partial order ≤ and ≥=≤−1.

B = {ai | i < ω} ⊆ A is an ω-chain of A if for all i ∈ N, ai ≤ ai+1.

B = {ai | i < ω} ⊆ A is a ω-cochain of A if for alli ∈ N, ai ≥ ai+1.

A is ω-complete or an ω-CPO if A has a least element ⊥ w.r.t. ≤ and for each ω-chain
B of A, A contains the supremum tB of B.

A is ω-cocomplete or a ω-coCPO if A has a greatest element > w.r.t. ≤ and for each
ω-cochain B of A, A contains the infimum uB of B.
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Let A,B be posets.

f : A→ B is monotone if for all a, b ∈ A, a ≤ b implies f (a) ≤ f (b).

Let A,B be λ-CPOs.

f : A→ B is ω-continuous if for all ω-chains B of A,

f (tB) = t{f (b) | b ∈ B}.

f : A→ B is ω-cocontinuous if for all ω-cochains B of A,

f (uB) = u{f (b) | b ∈ B}.

If f is ω-co/continuous, then f is monotone.

If f is monotone and all ω-co/chains of A are finite, then f is ω-co/continuous.
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Kleene’s Fixpoint Theorem [1] (also known as Kleene’s first recursion theorem)

(1) Let A be an ω-CPO and f : A→ A be ω-continuous.

lfp(f ) = tn∈Nfn(⊥) is the least fixpoint of f .

(2) Let A be an ω-coCPO and f : A→ A be ω-cocontinuous.

gfp(f ) = un∈Nfn(>) is the greatest fixpoint of f .

A poset A is a complete lattice if each subset B of A has a supremum tB and an
infimum uB in A.

⊥ = t∅ is the least element and > = u∅ is the greatest element of A.

Let A,B be complete lattices.

f : A→ B is continuous if for all C ⊆ A, f (tC) = tc∈Cf (c).

f : A→ B is cocontinuous if for all C ⊆ A, f (uC) = uc∈Cf (c).

If f is continuous or cocontinuous, then f is monotone.
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Let A be a poset and f : A→ A.

a ∈ A is f-closed if f (a) ≤ a. a is f-dense if a ≤ F (a).

a is a fixpoint of f if f (a) = a.

Fixpoint Theorem of Knaster and Tarski [4]

Let A be a complete lattice and f : A→ A be monotone.

(1) lfp(f ) = u{a ∈ A | a is f -closed} is the least fixpoint of f .

(2) gfp(f ) = t{a ∈ A | a is f -dense} is the greatest fixpoint of f .
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Fixpoint induction

Let

(a) A be a complete lattice and f : A→ A be monotone or
(b) A be an ω-CPO and f be ω-continuous.

(1) For all f -closed a ∈ A, lfp(f ) ≤ a.
(2) For all a, b ∈ A, if b ≤ a and b is f -closed, then lfp(f ) ≤ a.
(3) For all n > 0 and fn-closed a ∈ A, lfp(f ) ≤ a.

Fixpoint coinduction

Let

(a) A be a complete lattice and f : A→ A be monotone or
(b) A be an ω-coCPO and f be ω-cocontinuous.

(1) For all f -dense a ∈ A, a ≤ gfp(f ).
(2) For all a, b ∈ A, if a ≤ b and b is f -dense, then a ≤ gfp(f ).
(3) For all n > 0 and fn-dense a ∈ A, a ≤ gfp(f ).
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Co-/Horn clauses, co/resolution and predicate co/induction

A signature Σ = (S,BS, F, P ) consists of

• a finite set S (of sorts),
• a finite set BS (of base sets),
• a (finite) set F of function symbols f : e→ e′,
• a (finite) set P of predicates p : e,

where e, e′ are types over S and BS (products, sums, base sets, function spaces, etc.).

A Σ-algebra A consists of

• for each s ∈ S, a set As, the carrier of A,
• for each f : e→ e′ ∈ F , a function fA : Ae → Ae′,
• for each p : e ∈ P , a subset pA of Ae.

An S-sorted function h : A→ B between Σ-algebras is a Σ-homomorphism if

• for all f ∈ F , he′ ◦ fA = fB ◦ he,
• for all p ∈ P , he(pA) ⊆ pB.
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SetS denotes the category of S-sorted sets and S-sorted functions.
AlgΣ denotes the category of Σ-algebras and Σ-homomorphisms.

For any type e over S, Ae is the image of the functor Fe : SetS → Set that builds from
A an interpretation of e.

For instance, As1×···×sn = As1 × . . .× Asn and As1+···+sn = As1 + · · · + Asn.

Fe,Σ denotes the restriction of Fe to AlgΣ. For all f : e → e′ ∈ F , the interpretations
fA of f , A ∈ AlgΣ, form a natural transformation from Fe,Σ to Fe′,Σ. Each natural
transformations from Fe,Σ to Fe′,Σ is called a Σ-term of type e→ e′.

Σ-formulas built up on P and Σ-terms are usual predicate-logic formulas. As function
symbols are terms, so predicates are formulas. Every formula ϕ has a type that denotes
the domain of its solutions: Given a Σ-algebra A, the interpretation ϕA of ϕ : e in A is
a subset of Ae.

If ϕ : e has variables from a set V , e is supposed to be of the form
∏

x∈V ex, i.e., variables
are indices of a product. Accordingly, variable occurrences in ϕ stand for the respective
projections.
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Let Σ be a subsignature of a signature Σ′ and A be a Σ′-algebra.

The Σ-reduct A|Σ of A is the Σ-algebra defined as follows:

• For all s ∈ S, (A|Σ)s = As.
• For all f ∈ F ∪ P , fA|Σ = fA.

Let Σ = (S,BS, F, P ) and Σ′ = (S,BS, F, P ] P ′) be signatures and C be a Σ-algebra.

AlgΣ′,C denotes the category of all Σ′-algebras A with A|Σ = C.

AlgΣ′,C is a complete lattice:

For all A,B ∈ AlgΣ′,C ,

A ≤ B ⇐⇒ ∀ p ∈ P : pA ⊆ pB.

For all A ⊆ AlgΣ′,C and p : e ∈ P ,

p⊥ = ∅, p> = Ae, ptA =
⋃
A∈A

pA and puA =
⋂
A∈A

pA.
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Given a set AX of Σ′-formulas, AlgΣ′,AX denotes the category of all Σ-algebras A that
satisfy AX .

AlgΣ′,C,AX = AlgΣ′,AX ∩ AlgΣ′,C .

A Horn clause for p ∈ P ′ is a Σ′-formula of the form pt ⇐ ϕ such that ∨, ∧ and ∀
are the only logical operators of ϕ.

A co-Horn clause for p ∈ P ′ is a Σ′-formulas of the form pt⇒ ϕ such that ∨, ∧ and
∃ are the only logical operators of ϕ.

Let A,B ∈ AlgΣ′,C and pt⇐ ϕ resp. pt⇒ ϕ be a Horn resp. co-Horn clause. Since ϕ is
negation-free,

A ≤ B implies ϕA ⊆ ϕB. (3)

A Σ′-formula ϕ is finitely branching if for all A ∈ AlgΣ′,C and subformulas ∃x(ψ : e)

or ∀x(ψ : e) of ϕ and a ∈ Ae, the set {b | a[b/x] ∈ ψA} is finite.
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If ϕ is negation-free and finitely branching, then for all ω-chains {Ai ∈ AlgΣ′,C | i < ω}
and ω-cochains {Ai ∈ AlgΣ′,C | i < ω} of AlgΣ′,C ,

ϕti∈NAi ⊆
⋃
i∈N

ϕAi and
⋂
i∈N

ϕAi ⊆ ϕui∈NAi.

For all p ∈ P ′, let AXp be a set of Horn clauses for p. Then AX = ∪p∈P ′AXp is a Horn
specification for P ′ and the elements of P ′ are called least predicates.

The step function Φ = ΦΣ′,C,AX : AlgΣ′,C → AlgΣ′,C is defined as follows: For all
A ∈ AlgΣ′,C and p : e ∈ P ′,

pΦ(A) = {tC(a) | pt⇐ ϕ ∈ AX, a ∈ ϕA}.

By (3), Φ is monotone and thus by the Fixpoint Theorem of Knaster and Tarski, Φ has
the least fixpoint

lfp(Φ) = u {A ∈ AlgΣ′,C | Φ(A) ≤ A}.
Moreover,

AlgΣ′,C,AX = {A ∈ AlgΣ′,C | Φ(A) ≤ A}. (4)
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Proof. Let A ∈ AlgΣ′,C,AX and b ∈ pΦ(A). Then b = tA(a) for some pt ⇐ ϕ ∈ AX and
a ∈ ϕA. Since A satisfies pt ⇐ ϕ, a ∈ (pt)A and thus b = tC(a) ∈ pA. Hence A is
Φ-closed.

Conversely, let A be Φ-closed, pt⇐ ϕ ∈ AX and a ∈ ϕA. Then tC(a) ∈ pΦ(A). Since A
is Φ-closed, tC(a) ∈ pA and thus a ∈ (pt)A. Hence A satisfies pt⇐ ϕ. o

Hence for all A ∈ AlgΣ′,C,AX ,
lfp(Φ) ≤ A. (5)

If the premises of all Horn clauses of AX are finitely branching, then Φ is ω-continuous.

For all p ∈ P ′, let AXp be a set of co-Horn clauses for p. Then AX = ∪p∈P ′AXp is a
co-Horn specification for P ′ and the elements of P ′ are called greatest predicates.

The step function Φ = ΦΣ′,C,AX : AlgΣ′,C → AlgΣ′,C is defined as follows: For all
A ∈ AlgΣ′,C and p : e ∈ P ′,

pΦ(A) = Ce\{tC(a) | pt⇒ ϕ : e′ ∈ AX, a ∈ Ce′\ϕA}.
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By (3), Φ is monotone and thus by the Fixpoint Theorem of Knaster and Tarski, Φ has
the greatest fixpoint

gfp(Φ) = t {A ∈ AlgΣ′,C | A ≤ Φ(A)}.

Moreover,
AlgΣ′,C,AX = {A ∈ AlgΣ′,C | A ≤ Φ(A)}. (6)

Proof. Let A ∈ AlgΣ′,C,AX and b 6∈ pΦ(A). Then b = tC(a) for some pt ⇒ ϕ ∈ AX and
a 6∈ ϕA. Since A satisfies pt ⇒ ϕ, a 6∈ (pt)A and thus b = tC(a) 6∈ pA. Hence A is
Φ-dense.

Conversely, let A be Φ-dense, pt ⇒ ϕ ∈ AX and a 6∈ ϕA. Then tC(a) 6∈ pΦ(A). Since A
is Φ-dense, tC(a) 6∈ pA and thus a 6∈ (pt)A. Hence A satisfies pt⇒ ϕ. o

Hence for all A ∈ AlgΣ′,C,AX ,
A ≤ gfp(Φ). (7)

If the conclusions of all co-Horn clauses of AX are finitely branching, then Φ is ω-
cocontinuous.
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Computation and proof in lfp(Φ) resp. gfp(Φ)

• Resolution Let p be a least predicate. AXp is applied to an atom pt:

pt∨k
i=1 ∃Zi : (ϕiσi ∧ ~x = ~xσi)

m

where AXp = {pt1 ⇐ ϕ1, . . . , ptn ⇐ ϕn},
(∗) ~x is a list of the variables of t,

for all 1 ≤ i ≤ k, tσi = tiσi and Zi = var(ti, ϕi),
for all k < i ≤ n, t is not unifiable with ti.

• Coresolution Let p be a greatest predicate. AXp is applied to an atom pt:

pt∧k
i=1 ∀Zi : (ϕiσi ∨ ~x 6= ~xσi)

m

where AXp = {pt1 ⇒ ϕ1, . . . , ptn ⇒ ϕn} and (∗) holds true.
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Let p : e be a least predicate of P ′ and ψp : e be a Σ-formula that shall be proved to
follow from p.

• Predicate induction A goal p⇒ ψp is applied to AXp:

p⇒ ψp∧
pt⇐ϕ∈AX(ϕ[ψp/p | p ∈ P ′]⇒ ψpt)

⇑ by (5)

Let p : e be a greatest predicate of P ′ and ψp : e be a Σ-formula that shall be proved to
imply p.

• Predicate coinduction A goal ψp ⇒ p is applied to AXp:

ψp ⇒ p∧
pt⇒ϕ∈AX(ψpt⇒ ϕ[ψp/p | p ∈ P ′])

⇑ by (7)
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Incremental versions

Let p : e be a least predicate of P ′ and ψp : e be a Σ-formula that shall be proved to
follow from p.

• Predicate induction

(1)
p⇒ ψp∧

pt⇐ϕ∈AX(ϕ[qp/p | p ∈ P ′]⇒ ψpt)
qp ⇒ ψp is added to AX

(2)
qp ⇒ δp∧

pt⇐ϕ∈AX(ϕ[qp/p | p ∈ P ′]⇒ δpt)
qp ⇒ δp is added to AX

The proof starts by adding to P a predicate qp, first for ψp and – when the second rule
is applied – for a generalization ψp ∧ δp of ψp.

Between the applications of (1) resp. (2), coresolution steps upon the added axiom
qp ⇒ ψp must be confined to redex positions with negative polarity, i.e., the number
of preceding negation symbols in the entire formula must be odd. Otherwise the axiom
added when (2) is applied might violate the soundness of the coresolution steps.
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Coresolution upon qp at any redex position becomes sound as soon as the set of axioms
for qp is not extended any more.

By inferring True from the conclusions of (1) and (2) one shows, roughly speaking, that
the predicate ψp ∧ δp solves the axioms for p. Since p itself represents the least solution,
we conclude p⇒ ψp ∧ δp, in particular the original goal p⇒ ψp.

Let p : e be a greatest predicate of P ′ and ψp : e be a Σ-formula that shall be proved to
imply p.

• Predicate coinduction

(1)
ψp ⇒ p∧

pt⇒ϕ∈AX(ψpt⇒ ϕ[qp/p | p ∈ P ′])

qp ⇐ ψp and – only if p denotes a
congruence relation – equivalence
axioms for qp are added to AX

(2)
δp ⇒ qp∧

pt⇒ϕ∈AX(δpt⇒ ϕ[qp/p | p ∈ P ′])
qp ⇐ δp is added to AX
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The proof starts by adding to P a predicate qp, first for ψp and – when the second rule
is applied – for a generalization ψp ∨ δp of ψp.

Between the applications of (1) resp. (2), resolution steps upon the added axiom qp ⇐ ψp
must be confined to redex positions with positive polarity, i.e., the number of preceding
negation symbols in the entire formula must be even. Otherwise the axiom added when
(2) is applied might violate the soundness of the resolution steps.

Resolution upon qp at any redex position becomes sound as soon as the set of axioms for
qp is not extended any more.

By inferring True from the conclusions of (1) and (2) one shows, roughly speaking, that
the predicate ψp∨ δp (or its equivalence closure if p denotes a congruence relation) solves
the axioms for p. Since p itself represents the greatest solution, we conclude ψp∨ δp ⇒ p,
in particular the original goal ψp ⇒ p.
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Examples

AXq = {q(0), q(1)} What is qlfp(Φ)?

AXNOT r = {NOT r(suc(suc(x)))} What is NOT rlfp(Φ)?

AXr = {q(suc(suc(x)))⇒ False} What is qgfp(Φ)?

AXNOT q = {NOT q(0)⇒ False, NOT q(1)⇒ False} What is NOT qgfp(Φ)?

q$0 --> True -- resolution
q$suc$suc$x ==> False --> True -- induction
NOTq(0) --> False -- coresolution
NOTq(suc(suc(x))) --> True -- coinduction

r$0 --> True -- coinduction
r$suc$suc$x ==> False --> True -- coresolution
NOTr(0) ==> False --> True -- induction
NOTr(suc(suc(x))) --> True -- resolution
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q$x --> x = 0 | x = 1 -- resolution
q$!x ==> False --> !x =/= 0 & !x =/= 1 -- induction
NOTq(x) ==> False --> x = 0 | x = 1 -- coresolution
NOTq(!x) --> !x =/= 0 & !x =/= 1 -- coinduction

r$!x --> All y: !x =/= suc(suc(y)) -- coinduction
r$x ==> False --> Any y: x = suc(suc(y)) -- coresolution
NOTr(!x) ==> False --> All y: !x =/= suc(suc(y)) -- induction
NOTr(x) --> Any y: x = suc(suc(y)) -- resolution
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F(P)$s <=== P$s | F(P)$tail$s -- finally
G(P)$s ===> P$s & G(P)$tail$s -- generally
NatStream(x:s) ===> Nat(x) & NatStream(s)
s ~ s’ ===> head(s) = head(s’) & tail(s) ~ tail(s’)

-- stream equality
-- simplifications

head$blink == 0
tail$blink == 1:blink
head$x:s == x
tail$x:s == s
head(zip(s,s’)) == head(s)
tail(zip(s,s’)) == zip(s’,tail(s))
head(evens(s)) == head(s)
tail(evens(s)) == evens(tail(tail(s)))
odds == evens.tail
blink = 1:blink <==> False
not(F(P)) <==> G(not(P))
not(G(P)) <==> F(not(P))
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conjectures:

G(F$(=0).head)(blink) --> True
Not(G(F$(=0).head)(blink)) --> True
G(F$(=2).head)(blink) --> False
Not(G(F$(=2).head)(blink)) --> True
G(F$(=!x).head)(blink) --> !x=0 | !x=1
G(F$(=0).head)(mu s.(0:1:s)) --> True

NatStream(mu s.(1:2:3:s)) --> True
NatStream(1:2:3:!s) --> !s = (3:!s) | !s = (2:(3:!s)) |

!s = (1:(2:(3:!s)))

blink ~ zip(zero,one) --> True
evens$x:s ~ x:odds$s --> True
evens$zip(s,s’) ~ s --> True
odds$zip(s,s’) ~ s’ --> True
zip(evens$s,odds$s) ~ s --> True
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Co/induction in standard models

Let Σ = (S,BS, F, P ) be a signature.

Σ is constructive if all f : e→ e′ are constructors, i.e., e′ ∈ S.

Σ is destructive if all f : e→ e′ are destructors, i.e., e ∈ S.

Three examples Let X and Y be sets, Z be a finite set and CS be a finite set of
sets.

• DAut(X, Y ) 1 deterministic Moore automata

S = {state}, BS = {X, Y }, F = {δ : state→ stateX , β : state→ Y }.
Stream(Y ) = DAut(1, Y ). Acceptors of L ⊆ X∗ are DAut(X, 2)-algebras.
• Reg(Z,CS) 1 regular operators

S = { reg },
BS = { Z } ∪ CS,
F = { ∅, ε : 1→ reg, _ : Z → reg, star : reg → reg,

_|_, _ · _ : reg × reg → reg } ∪
{ C : 1→ reg | C ∈ CS }.
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• Σ(G) 1 abstract syntax of a context-free grammar G = (S,BS, Z,R) with nonter-
minals S, base sets BS, terminals Z and rules R ⊆ S × (S ∪BS ∪ Z)∗

F = {fr : e1 × · · · × en → s | r = (s, w0e1w1 . . . enwn) ∈ R,
w0, . . . , wn ∈ Z∗, e1, . . . , en ∈ S ∪BS

}

Under certain (weak) conditions on the types used in Σ,

• AlgΣ has an initial object if Σ is constructive,
• AlgΣ has a final object if Σ is destructive.

A Σ-algebra A is initial in a full subcategory K of AlgΣ if for all B ∈ K there is exactly
one Σ-homomorphism foldB : A→ B.

A Σ-algebra A is final in a full subcategory K of AlgΣ if for all B ∈ K there is exactly
one Σ-homomorphism unfoldB : B → A.

Initial and final Σ-algebras are unique up to isomorphism.

The initial resp. final Σ-algebra is denoted by µΣ resp. νΣ.
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Let Σ = (S,BS, F, P ) be constructive and s ∈ S. All s-constructors can be combined
into a single one with domain e =

∐
f :ef→s∈F ef .

µΣ is a fixpoint of Fe: µΣ ∼= Fe(µΣ).

Given a signature Σ′ = (S,BS, F, P ] P ′) and a Horn specification AX ,
lfp(ΦΣ′,µΣ,AX) is initial in AlgΣ′,C,AX .

Let Σ = (S,BS, F, P ) be destructive and s ∈ S. All s-destructors can be combined into
a single one with range e =

∏
f :s→ef∈F ef .

νΣ is a fixpoint of Fe: νΣ ∼= Fe(νΣ).

Given a signature Σ′ = (S,BS, F, P ] P ′) and a co-Horn specification AX ,
gfp(ΦΣ′,νΣ,AX) is final in AlgΣ′,C,AX .
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Examples

• The set TReg(Z,CS) of regular expressions over X together with the free interpretation
of the regular operators is initial in AlgReg(Z,CS).

• Let ZCS = Z ∪
⋃
CS.

The set Lang(Z,CS) = P(Z∗CS) of languages over Z and CS together with the
following interpretation of δ and β is final in AlgDAut(ZCS ,2):
For all L ⊆ Z∗CS and x ∈ ZCS,

δLang(L)(x) = {w ∈ Z ′∗ | xw ∈ L}, βLang(L) = 1⇔ ε ∈ L.
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• T = TReg(Z,CS) is also a DAut(Z ′, 2)-algebra: For all x, y ∈ X und t, t′ ∈ T ,

δT (ε)(x) = ∅,
δT (∅)(x) = ∅,

δT (x, y) =

{
ε if x = y,

∅ if x 6= y,

δT (t|t′)(x) = δT (t)(x) | δT (t′)(x),

δT (t · t′)(x) =

{
δT (t)(x) · t′|δT (t′)(x) if βT (t) = 1,

δT (t)(x) · t′ if βT (t) = 0,

δT (star(t))(x) = δT (t)(x) · star(t),
βT (ε) = 1,

βT (∅) = 0,

βT (x) = 0,

βT (t|t′) = βT (t) + βT (t′),

βT (t · t′) = βT (t) ∗ βT (t′),

βT (star(t)) = 1.

δT (t)(x) is called the x-derivative of t.

28 of 35



�
�

�
�Co/induction in standard models

• Lang(Z,CS) is also a Reg(Z,CS)-algebra (the usual semantics of regular expres-
sions). Hence there is a unique Reg(Z,CS)-homomorphism

foldLang : TReg(Z,CS) → Lang(Z,CS).

foldLang is also DAut(Z ′, 2)-homomorphic.
This makes TReg(Z,CS) into a parser for regular expressions: For all w = x1 . . . xn ∈
Z∗CS,

parse(t, w) =def β
T (δT (. . . δT (t)(x1) . . . )(xn)) = 1 ⇐⇒ w ∈ foldLang(t).

• Let G = (S,BS, Z,R) be a context-free grammar. The set TΣ(G) of ground Σ(G)-
terms together with the free interpretation of all fr, r ∈ R, is initial in AlgReg(Z,BS).
The Σ(G)-algebra Word(G) is defined as follows:
For all s ∈ N ,r = (s, w0s1w1 . . . snwn) ∈ R and v1, . . . , vn ∈ Z∗BS,

Word(G)s = Z∗BS,

f
Word(G)
r (v1, . . . , vn) = w0v1w1 . . . vnwn.

The language of G, L(G), is the image algebra foldWord(G)(TΣ(G)).
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Let A be a Σ-algebra.

An S-sorted binary relation ∼ on A is a Σ-congruence if for all f : e → e′ ∈ F and
a, b ∈ Ae,

a ∼e b implies fA(a) ∼e′ fA(b).

∆νΣ = {(a, a) | a ∈ νΣ} is the only (and thus the greatest) Σ-congruence on νΣ. (1)

Hence νΣ has no proper Σ-quotients.

Coinduction for proving equality

Let P ′ = {∼s: s× s | s ∈ S}, Σ′ = (S, F, P ] P ′),
AX = {x ∼e y ⇒ fx ∼e′ fy | f : e→ e′ ∈ F},

R be an S-sorted binary relation on νΣ and ψ be an S-sorted set of Σ-formulas such that
for all s ∈ S, ψνΣ

s = Rs. By (1),

R ⊆ ∆νΣ ⇐⇒ the greatest Σ-congruence ∼ contains R
⇐= the succedent of predicate coinduction is valid

for P ′, AX and ψ defined as above.
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An S-sorted subset inv of A is a Σ-invariant or Σ-subalgebra of A if for all
f : e→ e′ ∈ F and a ∈ Ae,

a ∈ inve implies fA(a) ∈ inve′.

µΣ is the only (and thus the least) Σ-invariant of µΣ. (2)

Hence µΣ has no proper Σ-subalgebras.

Induction for proving membership

Let P ′ = {invs : s | s ∈ S}, Σ′ = (S, F, P ] P ′),

AX = {inve′(fx)⇐ inve(x) | f : e→ e′ ∈ F},

R be an S-sorted subset of µΣ and ψ be an S-sorted set of Σ-formulas such that for all
s ∈ S, ψµΣ

s = Rs. By (2),

R = µΣ ⇐⇒ R contains the least Σ-invariant of µΣ

⇐= the succedent of predicate induction is valid
for P ′, AX and ψ defined as above.
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Examples

Induction: A partial function f : TReg(Z,CS) → A is total iff the domain of f contains a
Reg(X)-invariant of TReg(Z,CS) iff f is defined inductively.

Coinduction: L = L′ ∈ Z∗CS iff some DAut(ZCS, 2)-congruence on Lang(Z,CS) contains
(L,L′).
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Further impacts of initiality and finality

• A function f in an initial model is defined in terms of equations, which express that
its extension f ∗ – with respect to an appropriate adjunction – is a fold (unique ho-
momorphism from the initial model).

• A function f in a final model is defined in terms of equations, which express that
its extension f# – with respect to an appropriate adjunction – is an unfold (unique
homomorphism to the final model).

• Each constructive signature Σ induces a destructive signature coΣ such that recursive
(also called guarded or iterative) Σ-equations have unique solutions in the final coΣ-
algebra (whose carriers consist of all finite or infinite Σ-terms).
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• Each context-free grammar G = (S,BS, Z,R) induces a set of recursive Reg(Z,BS)-
equations with variables from S, given as a function E(G) : S → TReg(Z,BS)(S): For
all s ∈ S,

E(G)(s) =
∑
{w | (s, w) ∈ R}.

Given a Reg(Z,BS)-algebra A, a solution of E(G) in A is a function f : S → A

such that f = f ∗ ◦ E.
L(G) is the least solution of E(G) in Lang(Z,CS).
Suppose that the interpretations of δT and βT in TReg(Z,BS) can be extended to in-
terpretations in TReg(Z,BS)(S) – and thus parse to a parser for G – such that for all
s ∈ S,

δT (s) = δT (E(G)(s)) and βT (s) = βT (E(G)(s)).

(We conjecture that this is possible if and only if G is not left-recursive.)
Then all solutions of E(G) in Lang(Z,BS) coincide.
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