
Published on Free Software Magazine (http://www.freesoftwaremagazine.com)

Haskell

A very different language

By John Goerzen
Many programmers are fluent in several programming languages. Most of these languages have some things
in common. Loops and variables are fundamental features of most languages.

I want to show you a different way of solving problems. Haskell takes a different approach than you’re used
to—to just about everything.

Why Haskell is interesting?
There are quite a few things about Haskell that make it interesting and unique:

Haskell has no loops because it doesn’t need them. There is no “for” or “while” in Haskell.•
Haskell has no equivalent of the variables that you’re used to; it doesn’t need them either.•
Haskell is a functional language. In a language like Java or Python, your primary view of the world is
an object. In Haskell, your primary view of the world is a function. I like to say that Haskell
manipulates functions with the same ease that Perl manipulates strings. In Haskell, it’s commonplace
to pass around bits of code. This is a powerful concept.

•

Haskell functions are also pure. Every time they’re called with the same arguments, they’ll return the
same result. Functions in most languages can return different results each time they’re called. The
results may depend on things like a global counter or I/O. Haskell functions also have no side-effects.
They won’t stomp over a global variable.

•

Haskell is a lazy language. It never performs a computation unless it needs to. This is not just an
optimization; it’s a powerful way to view the world. Code that could be infinite loops or consume vast
amounts of memory in other languages are simple, everyday tools in Haskell.

•

Haskell can be either interpreted or compiled to native machine code. It also interfaces easily with C.
You can call C functions from Haskell with a minimum of hassle. Usually, you’ll only need 2 or 3
lines of code to accomplish the call. Haskell also has interfaces to Java, .NET, and Python.

•

Haskell takes a different approach than you’re used to—to just about everything

Haskell lets you write code in a surprisingly intuitive way. Reading Haskell code is easy, and
reasoning about Haskell code is easy, too. You’ll have less need for a debugger with Haskell.

•

To get you started, here’s an example for a simplistic grep, written in Haskell:

import MissingH.List

main = do
 c <- getContents
 putStr (unlines(filter (\line -> contains "Haskell" line)
 (lines c)))

Haskell

Why Haskell is interesting? 1

http://www.freesoftwaremagazine.com
http://www.freesoftwaremagazine.com:80/user/23

This will simply read data from standard input and display all lines containing the word “Haskell” on standard
output. I’ll go through this example in more detail and show how it works later in this article.

The Haskell toolbox
To get started with Haskell, you’ll need a compiler or interpreter. The most popular compiler is GHC,
available from the GHC web site. Some Linux or BSD distributions have GHC packages available; look for a
package named ghc or ghc6. If your operating system doesn’t have packages available, sources and binaries
for many systems are available from the GHC homepage.

The GHC package actually includes a compiler (ghc) and an interpreter (ghci). Use whichever you like. If you
prefer a smaller package that includes only an interpreter, try Hugs also from the HUGS web site. Many
distributions also contain Hugs packages.

Both GHC and Hugs come with a basic library of Haskell code called fptools. A reference is available from
GHC’s site.

Haskell manipulates functions with the same ease that Perl manipulates strings

The examples in this article will also use functions from MissingH, a library of useful functions written in
Haskell. Many other Haskell libraries are also available for use. See the links at the end of this article for more
information.

To compile a Haskell program with ghc, you could use a command such as

ghc --make -o program program.hs

The examples here use MissingH, so you’ll need to add

-package MissingH

at the beginning of your ghc command line. You can run Haskell programs with Hugs by saying

runhugs program.hs

Laziness at work
The grep example at the beginning of this chapter probably doesn’t make much sense yet. Here’s another
version of it that does exactly the same thing, but breaks down the code into more manageable pieces:

import MissingH.List

filterfunc line = contains "Haskell" line

main = do
 c <- getContents
 let inputlines = lines c
 let outputlines = filter filterfunc inputlines
 let outputstring = unlines outputlines
 putStr outputstring

Haskell

Laziness at work 2

http://www.haskell.org/ghc/
http://www.haskell.org/hugs/
http://www.haskell.org/ghc/docs/latest/html/libraries/index.html
http://quux.org/devel/missingh/

Let’s analyze this version. First, I import the MissingH.List module. This module has the contains
function that I’ll be using.

Next, I create a function named filterfunc. It takes one parameter, line. It calls the contains
function, passing it two arguments: the string “Haskell” and line. The contains function returns a
boolean value (Bool type in Haskell). So, filterfunc takes a string and returns a Bool.

The next line has the main function. This is the entry point to the Haskell program, similar to main() in C
programs. In Haskell, main takes nothing and returns an IO action. Actions will be covered in more detail
later.

The main function starts by calling getContents. This returns the entire contents of standard input as a
string. getContents is an IO action, so the <- operator is used to cause c to represent the result of
evaluating the action.

Next, I set up several Haskell variables. The inputlines variable holds a list of strings. Each string
represents one line from the input. The lines function takes a string, separates it by newline characters, and
returns a list of the component lines.

The outputlines variable also holds a list of strings. It calls filter to eliminate all lines that don’t
contain “Haskell”. filter is a function that takes a function as an argument. In this case, I pass along
filterfunc. filter returns only those elements from the input list, for which, the passed function
returns a True value. This model is quite popular in Haskell, and is a very simple illustration of passing
functions around.

Then, the unlines function is called to combine this list of lines back into a string. Finally, this resulting
string is printed.

If this program is looked at from a traditional perspective, it will appear poorly written. It might appear that it
starts by reading the entire file into memory—a bad thing if your file is huge. Not so in Haskell.

In Haskell, a string is a list of characters. Because Haskell is lazy, elements of a list are only evaluated when
their contents are required for computation. And they can be garbage-collected whenever the compiler knows
they won’t be needed again. So, when you see c <- getContents, nothing actually happens right then.

In fact, nothing at all happens until the very last line in the program. That line demands the content from
outputstring, which in turn follows up until it reaches getContents. It’s only now that input is read.

Types and patterns
Haskell is a strongly-typed language like Java or C. However, you probably noticed that I supplied no typing
information at all in the grep example. That’s because Haskell has another unique feature: type inference. This
means that Haskell can automatically determine the type of a piece of data by looking at how it is created and
used in a program. Haskell can still catch type errors at compile time, but it saves you from the effort of
manually declaring types all the time.

Haskell can automatically determine the type of a piece of data by looking at how it is created and used

Types can be manually declared for clarity or to make the type more restrictive than the inferred type. Here’s
an example of the grep program with explicit types given:

Haskell

Types and patterns 3

import MissingH.List

filterfunc :: String -> Bool
filterfunc line = contains "Haskell" line

main :: IO ()
main = do
 c <- getContents
 putStr $ (unlines . filter filterfunc . lines) c

The declaration for filterfunc says that it takes a String and returns a Bool. If it took more
parameters, you could put more arrows and types in the line; the very last one is the return value.

Types are closely related to patterns. For example, say that you wanted to write your own filter. Here’s a
way it might be done:

import MissingH.List

filterfunc :: String -> Bool
filterfunc line = contains "Haskell" line

myfilter :: (a -> Bool) -> [a] -> [a]
myfilter _ [] = []
myfilter f (x:xs) =
 if f x
 then x : myfilter f xs
 else myfilter f xs

main :: IO ()
main = do
 c <- getContents
 putStr $ (unlines . myfilter filterfunc . lines) c

The myfilter function is the new and interesting one here. Before I discuss how it works, there are several
interesting things to note about its type declaration. This function is said to be polymorphic because it works
on items of many different types. In this case, it can take a list of any type of item, a function that takes one of
those items, and returns a list of the same type of items. The a in the type declaration represents this. The first
parameter to myfilter is given to be a function itself. The second parameter is a list of items, and the return
value is a list of the same type of items.

Next, I declare the function itself. The line myfilter _ [] = [] means that if myfilter is called with an
empty list, it returns an empty list. The underscore is a wildcard and means that it doesn’t matter what
function is supplied. In fact, _ [] is a simple instance of pattern matching in Haskell.

The next line contains myfilter f (x:xs). In Haskell, the colon represents the list you get by adding a
single item to the beginning of the list. So, this pattern will put the first item of the list into x, and the rest of
the list into xs. Note that xs may be empty if the list has only one item.

Now, the passed function is called, passing in the current item. If the function returns True, the return value
can be thought of as being the current item plus the result of filtering the rest of the list. Hence the line
containing x : myfilter x xs. This becomes the return value; the function calls itself. This is
recursion, and is the most common way to achieve in Haskell what would be looping in other languages.

You can also define your own data types in Haskell. Here’s an example:

data Maybe a = Nothing | Just a

Haskell

Types and patterns 4

This defines a new polymorphic type, Maybe a. A value of type Maybe a can be created in two ways.
First, you could simply say Nothing. Secondly, you could say Just x, where x is some value of type a.
Pattern matching works just as well with custom types as it does with built-in types.

The Maybe type is, in fact, such a useful pattern in Haskell that it is defined for you in the Haskell
Prelude—the set of functions and types available to every Haskell program. Functions that may either
compute a value or generate an error frequently use Nothing to indicate a problem, or Just x to indicate a
successful calculation.

Functions
A little bit of the versatility of Haskell’s functions has been seen already, when a function was passed to a
filter. I’ll now look at some other things you can do with functions.

In the first grep example, there was this line: \line -> contains “Haskell” line. It declared a
new function on the spot. The backslash begins a declaration. The function took one parameter (line), and
calculated its result by applying the part on the right. Functions declared like this are often called anonymous
functions because they are never bound to a name.

As you’ve probably noticed, to call a function, you list its name and all parameters to it, separated by a space.
There is a unique twist to that. The contains function is defined in MissingH with this type:

contains :: [a] -> [a] -> Bool

Since a String is a list of Char s in Haskell, this works well for filtering String s.

Say c ontains is called with only one argument. In most languages, that will generate an error. In Haskell,
however, it returns a new function, with the leading arguments no longer needing to be specified. This is
called partial application. So, the type of contains “Haskell” is String -> Bool. Note that the
type isn’t [a] -> Bool. Because the first argument was given as a String, we know the next argument
must also be a String.

So, instead of saying \line -> contains “Haskell” line, I could have said simply contains
“Haskell”.

Did you notice the last line of the last grep example looked unusual? That line was:

 putStr $ (unlines . myfilter filterfunc . lines) c

The period is a function composition operator. In general terms, where f and g are functions, (f . g) x
means the same as f (g x). In other words, the period is used to take the result from the function on the
right, feed it as a parameter to the function on the left, and return a new function that represents this
computation. The dollar sign is a bit of syntactic sugar that simply removed the need to put everything after
putStr in parenthesis.

Variables
Recall that I said that Haskell has no variables in the conventional sense. You might be wondering about the
let statements in the second grep example. Haskell does have “variables”, and let is one way to declare

Haskell

Variables 5

them. A Haskell variable doesn’t hold a value and can’t be modified. Instead, a Haskell variable tells the
compiler, “if you ever need to know the value of x, here’s how you calculate it.” Assigning something to a
variable doesn’t cause it to be calculated; in fact, if the value is never needed, it will never be calculated.
Thus, a variable in Haskell is just a shortcut, similar to a macro in some other languages.

Monads and I/O
You’ve seen a very small bit of the power of functions so far. Monads are used to combine functions together
in a way similar to the period operator, feeding the result of one to the input of the next. However, monads
provide more capabilities. For instance, a monad can abort the processing of an entire chain when there is a
problem anywhere along it. The Maybe monad, for instance, can receive Just 5 from one function, pass 5
to the next, receive Just 6 from it, pass 6 to the next, and continue doing that across many functions. If any
function returns Nothing, the computations stop, and the result of the entire computation becomes
Nothing. Otherwise, the result of the entire computation is the result of the last function in the chain.

I/O was historically a tricky problem for pure languages like Haskell. A function that reads data from the
keyboard obviously can’t be guaranteed to return the same thing each time it is invoked.

In Haskell, the IO monad is used. The IO type is opaque, meaning that a Haskell program can’t see “inside”
it. By using constructs like <-, however, things can be read and written. The <- operator extracts the value
from the inside of a monad type and assigns it to a variable. If you were using the Maybe monad and wrote x
<- Just 5, then x would evaluate to 5.

The IO monad is inescapable, however. Once you call IO functions, your return value will be in the IO
monad. That is, your return type might be IO Int or IO String. This provides a neat way of segmenting
impurities.

Typically, Haskell programs are structured so that the outermost layers are in the IO monad, and
computations are outside of it. The main function returns IO ()—an empty value in the IO monad. So, to
execute a Haskell program, the compiler simply evaluates the I/O action that main represents, calling other
functions as needed along the way.

Typeclasses: OOP in reverse
Object-oriented programming (OOP) is a fixture of many languages. OOP, in general, permits you to write
code that accepts an object or any child of that object. It’s a way to conceptualize the view of the world.

Haskell provides something similar called typeclasses. Typeclasses let your functions take data of any type, so
long as a particular interface for that type exists. Instead of preventing access to the internal representation of
data in an object, typeclasses, Haskell provides a way to handle many different types of data in a generic way.

Instead of preventing access to the internal representation of data in an object, typeclasses, Haskell
provides a way to handle many different types of data in a generic way

For instance, there is a built-in function called show. The show function can generate a string representation
from many different data types. Its type is this:

show :: Show a => a -> String

Haskell

Typeclasses: OOP in reverse 6

This can be read as “The show function takes any value of type a, such that a is part of the typeclass Show,
and returns a String.” You can say show “Hi”, or show 5.0, or even show True, and get a valid
String.

You can add your own data types to the Show typeclass very easily:

data MyType = Red | Blue
instance Show MyType where
 show Red = "Red"
 show Blue = "Blue"

The Show class itself could be defined like this in the Prelude:

class Show a where
 showsPrec :: Int -> a -> ShowS
 show :: a -> String
 showList :: [a] -> ShowS

 showsPrec _ x s = show x ++ s
 show x = showsPrec 0 x ""
 showList = ...

Here, it can be seen that to be an instance of Show, normally three functions would have to be provided.
However, in this case, defaults are provided, so really, only one function is required.

Typeclasses are powerful abstractions in Haskell. The Num typeclass, for instance, is used to provide an
abstraction of arithmetic operators. The type of (+), the function representing the + operator, is Num a => a
-> a -> a. Numeric types are all instances of Num, and thus + can be used with many different types of
numbers. You can invent your own numeric types and, by simply making them instances of Num, all existing
numeric operators will work with them.

Conclusion
Haskell is a powerful and flexible language. Its approach to solving problems is unique and refreshing. The
ability to combine functions is powerful and time-saving. There is a great deal of power in Haskell, which is
easily tapped, but a magazine article such as this can barely scratch the surface. I encourage you to seek out
more detailed resources about Haskell.

Here are some resources for more information on Haskell.

For general information, look at:

The Haskell home page haskell.org•
The Haskell wiki haskell.org/hawiki•

Tutorials and references:

Haskell online resources•
Yet Another Haskell Tutorial, in my opinion the best Haskell tutorial available•

Libraries and code:

Haskell

Conclusion 7

http://www.haskell.org
http://www.haskell.org/hawiki
http://www.haskell.org/learning.html
http://www.isi.edu/~hdaume/htut/

Haskell at Freshmeat freshmeat.net/browse/834/•
Libraries in Haskell haskell.org/libraries•
Applications in Haskell haskell.org/practice.html•
Libraries wiki page haskell.org/hawiki/LibrariesAndTools•

Biography

John Goerzen (/user/23" title="View user profile.): John Goerzen is an avid programmer, developer for the
Debian GNU/Linux project, and a systems administrator. He is the author of several books, including the
recent Foundations of Python Network Programming. John is currently the president of Software in the Public
Interest, Inc., the legal parent organization of Debian.

Copyright information

This article is made available under the "Attribution-Sharealike" Creative Commons License 2.5 available
from http://creativecommons.org/licenses/by-sa/2.5/.

Source URL:
http://www.freesoftwaremagazine.com/articles/haskell

Haskell

Biography 8

http://freshmeat.net/browse/834/
http://haskell.org/libraries
http://haskell.org/practice.html
http://haskell.org/hawiki/LibrariesAndTools
http://www.freesoftwaremagazine.com:80/user/23
http://www.freesoftwaremagazine.com/articles/haskell

	Haskell

