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Abstract

Expander2 is a flexible multi-purpose workbench for interactive term rewriting, graph
transformation, theorem proving, constraint solving, flow graph analysis and other procedures
that build up proofs or other rewrite sequences. Moreover, tailor-made interpreters display
terms as two-dimensional structures ranging from trees and rooted graphs to a variety of
pictorial representations that include tables, matrices, alignments, partitions, fractals and
various tree-like or rectangular graph layouts.

An Expander specification consists of a signature with functions, predicates, axioms, theo-
rems and conjectures (terms to be rewritten or formulas to be solved or proved). It describes
a set of algebraic (constructor-based) and/or coalgebraic (destructor-based) types (formerly
called swinging types). Syntactically, it follows Haskell (for presenting functions) and usual
mathematical notations (for presenting relations and propositional, predicate-logic, modal and
temporal operators). Predicates are interpreted as the least or greatest solutions of their Horn
clause or co-Horn clause axioms, respectively.

The user interacts with the system at three levels of control over proofs and computations.
At the top level, rules like Noetherian induction and incremental fixpoint co/induction are
applied locally and step by step. At the medium level, goals are co/resolved or narrowed, i.e,
axioms are applied exhaustively and iteratively. At the bottom level, built-in rules (some of
them executing Haskell programs) simplify, i.e., (partially) evaluate terms and formulas, and
thus hide routine steps of a proof or computation. Simplifications may be executed automati-
cally after each step performed at the top or medium level. As the co/Horn axioms co/resolved
or narrowed upon are part of the user-defined specification, so additional simplification rules
(equations or equivalences) may be entered into the specification. Recently, functional and
logical fixpoint operators have been integrated the simplifier along with corresponding (non-
incremental) co/induction rules. Proofs and other rewrite sequences are automatically trans-
lated into proof terms that can be evaluated and modified later. Of course, a textual record
listing all elements of the sequence and the rules producing them is also generated.

This paper presents an overview of Expander2 with particular emphasis on the system’s
prover and rewriter capabilities.

1 Introduction

The following design goals distinguish Expander2 from many other proof editors or tools using formal
methods:

• Expander2 provides several representations of formal expressions and allows the user to switch
between linear, tree-like and pictorial ones when executing a proof or computation on formulas or
terms.

• Proof and computation steps take place at three levels of interaction: the simplifier automates routine
steps, axiom-triggered computations are performed by narrowing and rewriting, analytical rules like
induction and coinduction are applied locally and stepwise.

• The underlying logic is general enough to cover a wide range of applications and to admit the easy
integration of special structures or methods by adding or exchanging signatures, axioms, theorems
or inference rules including built-in simplifications.

• Expander2 has an intelligent GUI that interprets user entries in dependence of the current values
of certain global variables. This frees the user from entering input that can be deduced from the
context in which the system actually works.

Proofs and computations performed with the system are correct with respect to the semantics of swinging
types [17, 18, 19]. A swinging type is a functional-logic specification consisting of a many-sorted signature
and a set of (generalized) Horn or co-Horn axioms (see section 3) that define relation symbols as least
or greatest fixpoints and function symbols in accordance with the initial resp. final model induced by the
specification.

Sortedness is only implicit because otherwise the proof and computation processes would become un-
necessarily complicated. If used as a specification environment, the main purpose of Expander2 is proof
editing and not type checking. Therefore, the syntax of signatures is kept as minimal as possible. The only
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explicit distinction between different types is the one between constants on the one hand and functions
and relations on the other hand, expressed by the distinction between first-order variables (fovars) and
higher-order variables (hovars). Proofs or computations that depend on a finer sort distinction can always
be performed by introducing and using suitable membership predicates.

The prover features of Expander2 do not aim at the complete automation of proof processes. Instead,
they support natural derivations, which humans can comprehend and thus control easily. Natural de-
duction avoids skolemization and other extensive normalizations that make formulas unreadable and thus
inappropriate for interactive proving. For instance, the simplifier (see Section 5), which turns formulas
into equivalent “simplified” ones, prefers implication to negation.

Of course, many conjectures can be proved both comprehensibly and efficiently without any human
intervention into the proof process. Such proofs often follow particular schemas and thus may be candidates
for derived inference rules. However, proofs of program correctness usually do not fall into this category,
especially if induction or coinduction is involved and the original conjecture must be generalized in a
particular way.

In fact, the simplifier of Expander2 performs certain normalizations. But they are in compliance with
natural deduction and deviate from classical normalizations insofar as, for instance, implications and
quantifiers are not eliminated by introducing negations and new signature symbols, respectively. On the
contrary, the simplifier eliminates negation symbols by moving them to literal positions and then are
removed completely by transforming negated (co)predicates into their complements. Axioms for relations
and their complements can be constructed from each other: If P is a predicate specified by Horn axioms,
then these axioms can be transformed systematically into co-Horn axioms for the copredicate not P, and
vice versa. This follows from the fact that relation symbols are interpreted by the least resp. greatest
solutions of their axioms provided that these are negation-free and thus induce monotonic consequence
operators [17, 18].

Expander2 has been written in O’Haskell [12], an extension of Haskell [8] with object-oriented features
for reactive programming and a typed interface to Tcl/Tk for developing GUIs. Besides providing a
comfortable GUI the overall design goals of Expander2 were to integrate testing, proving and visualizing
deductive methods, to admit several degrees of interaction and to keep the system open for extensions or
adaptations of individual components to changing demands.

2 System components

Figure 1. Components of Expander2
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The main components of Expander2 are two copies of a solver, a painter, a simplifier an enumerator
and a recorder that saves proofs and other computation sequences as well as executable proof terms. As
Fig. 1 indicates, the components work together via several interfaces. For instance, the painter is used for
drawing normal forms or solutions produced by the solver.

canvas

maximal number of visible nodes

position of the tree on the CANVAS in the list of all trees  

text field

entry field

TREE SIZE

label field

Figure 2. The solver window

The solver is accessed via a window for editing and displaying a list of trees that represents a disjunction
or conjunction of logical formulas or a sum of algebraic terms (see Fig. 2). By moving the slider below the
canvas of the solver window one selects the summand/factor to be shown on the canvas. If the parse text
resp. parse tree button is pushed, the linear representation of a term or formula in the solver’s text field
is translated into an equivalent tree representation on the canvas and vice versa. Both representations are
editable. As a linear representation is edited by selecting substrings, the tree representation is edited by
selecting subtrees or nodes or redirecting edges.

The painter consists of several widget interpreters from which one is selected and applied to the current
trees or parts of them. The resulting pictorial representations are displayed in a painter window. Pictures
can be edited in the painter window and completed to widget graphs. Widgets are built up of path, polygon
and turtle action constructors that admit the definition of a variety of pictorial representations ranging
from tables and matrices via string alignments, piles and partitions to complex fractals generated by turtle
systems [25]. The latter define pictures in terms of sequence of basic actions that a turtle would perform
when it draws the picture while moving over the canvas of a window. The turtle works recursively in two
ways: it maintains a stack of positions and orientations where it may return to, and it may create trees
whose pictorial representations are displayed at its current position.

The solver and its associated painter are fully synchronized: the selection of a tree in the solver window
is automatically followed by a selection of the tree’s pictorial representation in the painter window and
vice versa. Hence rewriting, narrowing and simplification steps can be carried out from either window.

The enumerator provides algorithms that enumerate trees or graphs and pass their results both to the
solver and the painter. Currently, two algorithms are available: a generator of all sequence alignments
[5, 22] satisfying constraints that are partly given by axioms, and a generator of all nested partitions of a
list with a given length and satisfying constraints given by particular predicates. The painter displays an
alignment in the way DNA sequences are usually visualized. A nested partition is displayed as a rectangular
dissection of a square where different levels are colored differently.

The user of Expander2 operates on specifications (consisting of signatures and axioms), theorems, substi-
tutions, trees (representing algebraic terms, logical formulas or transition systems to be evaluated, solved,
proved, or executed, respectively) via commands selected from the solver’s menus (see Fig. 2). Sliders
control the layout of a tree. With the slider in the middle of a solver window, one browses among several
trees. All these actions yield input for the solver and may modify its state variables. Hence the solver
can be regarded as a finite automaton whose actions are triggered not only by user input, but also by the
actual system state. Here are the main state variables:

• The current signature consists of symbols denoting basic specifications consisting of signatures,
axioms, theorems and/or conjectures, predicates interpreted as the least solutions of their (Horn)
axioms, copredicates interpreted as the greatest solutions of their (co-Horn) axioms, constructors for
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building up data, defined functions specified by (Horn) axioms or implemented as Haskell functions
called by the simplifier, first-order variables that may be instantiated by terms or formulas, and
higher-order variables that may be instantiated by functions or relations. Most built-in signature
symbols have the same syntax and semantics as synonymous Haskell functions (see [22]).

• The current axioms and theorems are applied to conjectures and build up the top or medium
level steps of a computation or proof. Axioms and theorems are applied by narrowing or rewriting.
A narrowing/rewriting step starts with unifying/matching a subtree (the redex) with/against an
axiom. Narrowing applies (guarded) Horn or co-Horn clauses, rewriting applies only unconditional,
but possibly guarded equations. The guard of an axiom is a subformula to be solved before the
axiom is applied.

• The widget interpreter pictEval recognizes paintable terms or formulas and transforms them into
their pictorial representations (see above).

• The current proof records the sequence of derivation steps performed since the last initialization of
the list of current trees as a list of proof states each of which contains a description of the rule that
has been applied at last, the value of treeposs before the rule has been applied, the resulting list of
current trees and the resulting values of further state variables. One may browse among the proof
states of the list by pushing the ←− or −→ button. If you push a button that triggers a proof step,
the proof is continued in the state that you have switched to at last, i.e. subsequent states of the
original proof are overwritten.

• The current proof term represents the current proof as an executable expression for the purpose of
later proof checking. It is built up automatically in parallel to the construction of a derivation and
can be saved to a user-defined file. A saved proof term is loaded by writing its name into the entry
field and pushing check proof term from file. This action overwrites the current proof term. Starting
out from the current tree, the proof represented by the loaded proof term is carried out stepwise by
pushing the −→ button. Each click triggers a proof step and the proof term is entered into the text
field with the constant POINTER preceding the command that will be executed next. If the entry
field contains a positive natural number n, n proof steps are performed sequentially and only the
final proof state is displayed. By pushing the ←− button one goes backwards. If the stop button
is pushed, Expander2 leaves the proof check mode, i.e. the not-yet-evaluated part of the proof term
is removed and all buttons regain their original function. Whenever the contents of the text field is
parsed and thus turned into a new list of current trees, the proof term is initialized with commands
that set the current values of all state variables that control the proof.

• The current substitution maps the variables of its domain to terms over the current signature. It
is generated, modified and applied by particular commands.

• treeMode indicates whether the list trees of current trees (or other rooted graphs) is a singleton
or represents a disjunction or conjunction of formulas or a sum (= disjoint union) of terms. True,
False and () are the respective zero elements. The slider between the canvas and the text field of a
solver window allows one to browse among the current trees and to select the one to be displayed
on the canvas.

• The list treeposs consists of the positions of selected subtrees of the actually displayed tree. Subtrees
are selected (and moved) by pushing the left mouse button while placing the cursor over their roots.

• varCounter maps a variable x to the maximal index i such that xi occurs in the current proof.
varCounter is updated when new variables are needed.

Expander2 allows the user to control proofs and computations at three levels of interaction. At the top
level, analytic and synthetic inference rules and other syntactic transformations are applied individually
and locally to selected subtrees. The rules cover single axiom applications, substitution or unification
steps, Noetherian, Hoare, subgoal or fixpoint induction and coinduction. Derivations are correct if, in
the case of trees representing terms, their sum is equivalent to the sum of their successors or, in the case
of trees representing formulas, their disjunction/conjunction is implied by the disjunction/conjunction of
their successors. The underlying models are determined by built-in data types and the least/greatest
interpretation of Horn/co-Horn axioms. Incorrect deduction steps are recognized and cause a warning. All
proper tree transformations are recorded, be they correct proofs or other transformations.

At the medium level, rewriting and narrowing realize the iterated and exhaustive application of all axioms
for the defined functions, predicates and copredicates of the current signature. Rewriting terminates with
normal forms, i.e. terms consisting of constructors and variables. Terminating narrowing sequences
end up with the formula True, False or solved formulas that represent solutions of the initial formula
(see section 3). Since the axioms are functional-logic programs in abstract logical syntax, rewriting and
narrowing agree with program execution. Hence the medium level allows one to test such programs, while
the inference rules of the top level provide a ”tool box” for program verification. In the case of finite data
sets, rewriting and narrowing is often sufficient even for program verification. Besides classical relations
or deterministic functions, non-deterministic functions (e.g. state transition systems) and ”distributed”
transition systems like Maude programs [10] or algebraic nets [27] may also be axiomatized and verified by
Expander2. The latter are executed by applying associative-commutative rewriting or narrowing on bag
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terms, i.e. multisets of terms (see section 3).

At the bottom level, built-in Haskell functions simplify or (partially) evaluate terms and formulas and
thereby hide most routine steps of proofs and computations. The functions comprise arithmetic, list,
bag and set operations, term equivalence and inequivalence and logical simplifications (see section 5).
Evaluating a function f at the medium level means narrowing upon the axioms for f , Evaluating f at
the bottom level means running a built-in Haskell implementation of f . This allows one to test and
debug algorithms and visualize their results. For instance, translators between different representations of
Boolean functions were integrated into Expander2 in this way. In addition, an execution of an iterative
algorithm can be split into its loop traversals such that intermediate results become visible. Currently,
the computation steps of Gaussian equation solving, automata minimization, OBDD optimization, LR
parsing, data flow analysis and global model checking can be carried out and displayed.

Section 3 presents the syntax of the axioms and theorems that can be handled by Expander2 and describes
how they are applied to terms or formulas and how the applications build up proofs. Section 4 shows how
axiom applications are combined to narrowing or rewriting steps. Section 5 goes into the logical details of
the simplifier and lists the simplification rules for formulas. Section 6 provides induction, coinduction and
other rules that Expander2 offers at the top level of interaction. The correctness of the rules presented in
Sections 4, 5 and 6 follows almost immediately from corresponding soundness results given in [16, 17, 18].
The concluding section 7 focuses on future work.

3 Axioms, theorems, and derivations

Axioms and theorems to be applied in derivations are Horn clauses ((1)-(7)), co-Horn clauses ((8)-(12))
or tautologies ((13) and (14)):

(1) {guard⇒} (f(~t) = u {⇐= prem})
(2) {guard⇒} (t1

∧ . . . ∧tn → u {⇐= prem})
(3) {guard⇒} (p(~t) {⇐= prem})
(4) t = u {⇐= prem}
(5) q(~t) {⇐= prem}
(6) at1 ∧ . . . ∧ atn {⇐= prem}
(7) at1 ∨ . . . ∨ atn {⇐= prem}
(8) {guard⇒} (q(~t) =⇒ conc)

(9) t = u =⇒ conc

(10) p(~t) =⇒ conc

(11) at1 ∧ . . . ∧ atn =⇒ conc
(12) at1 ∨ . . . ∨ atn =⇒ conc
(13) conc
(14) ¬prem

Curly brackets enclose optional parts. f , p and q denote a defined function, a predicate and a copredicate,
respectively, of the current signature. In the case of a higher-order symbol f , p or q, (~t) may denote a

“curried” tuple (~t1) . . . (~tn). Usually, at1, . . . , atn are atoms, but may also be more complex formulas (see
section 6).

The underlined terms or atoms are called anchors. Each application of a clause to a redex, i.e. a
subterm or subformula of the current tree, starts with the search for a most general unifier of the redex
and the anchor of the clause. If the unification is successful and the unifier satisfies the guard, then the
redex is replaced by the reduct, i.e. the instance of prem, u or conc, respectively, by the unifier. Moreover,
the reduct is augmented with equations that represent the restriction of the unifier to the redex variables
(see section 4). If the current trees are terms, then the reducts must be terms and thus only premise-free,
but possibly guarded clauses of the form (1) or (2) can be applied.

A guarded clause is applied only if the instance of the guard by the unifier is solvable. The derived
(most general) solution extends the unifier. Guarded axioms are needed for efficiently evaluating ground,
i.e. variable-free, formulas. Axioms or theorems used as lemmas in proofs, however, should be unguarded.
Otherwise the search for a solution of the guard may block the proof process.

Axioms represent functional-logic programs and thus are of the form (1), (2), (3) or (8). Axioms determine
the least/greatest fixpoint model of a specification (see section 1). Theorems are supposed to be valid in
this model. Narrowing and rewriting consist of automatic axiom applications (see section 4). Applications
of individual axioms are restricted to the top level of interaction (see section 6).

Axiom (2) can be applied to a bag term t = u1
∧ . . . ∧um if the list [t1, . . . , tn] unifies with a list

[ui1 , . . . , uin ] of elements of t such that 1 ≤ i1 ≤ . . . ≤ in ≤ m, the unifier satisfies the guard and t is the
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left-hand side of a transitional atom t→ t′. This atom is then replaced by the formula

uσ∧uk1σ
∧ . . . ∧ukm−nσ = t′σ {∧ premσ}

where {k1, . . . , km−n} = {1, . . . ,m} \ {i1, . . . , in}. If the application of (2) to t fails, the elements of t are
permuted. If after 100 permutations (2) is still inapplicable, the last permutation of a will be returned as
result - and yield a new starting point for further attempts to apply (2).

For applying a clause of type (1)-(5) or (8)-10), select a term/atom at′ with positive/negative polarity
in the displayed tree such that the leading term/atom at is unifiable with at′. at′ is replaced by the
corresponding instance of prem/conc.

For applying a clause of type (6), (7), (11) or (12), select n subformulas at′1, . . . , at
′
n of a disjunc-

tion/conjunction ϕ with positive/negative polarity in the displayed tree such that for all 1 ≤ i ≤ n,
ati is unifiable with at′i. The summands/factors of ϕ where at′1, . . . , at

′
n are selected from must not con-

tain universal/existential quantifiers or negation or implication symbols. at′1, . . . , at
′
n are replaced by the

corresponding instance of prem/conc. The resulting summands/factors are combined conjunctively in the
case of a Horn clause and disjunctively in the case of a co-Horn clause (see section 6).

For applying a tautology conc or ¬prem, select a formula ϕ in the displayed tree and push the button
selection > specialize. In cases (13) and (14), ϕ is replaced by ∀~zconc ⇒ ϕ resp. ¬ϕ ⇒ ∃~zprem where
~z consists of the free variables of conc resp. prem. The replacement is usually followed by a substitution
of ~z by terms ~t of ϕ, i.e., ∀~zconc ⇒ ϕ is turned into conc[~t/~z] ⇒ ϕ, while ¬ϕ ⇒ ∃~zprem is turned into

¬ϕ⇒ prem[~t/~z].

Example 1 Finite lists are specified with a defined function flatten for flattening lists of lists and a
predicate part for generating list partitions:

constructs: [] :

defuncts: flatten

preds: part >>

fovars: x y s s’ s1 p

axioms: part([x],[[x]]) &

(part(x:y:s,[x]:p) <=== part(y:s,p)) &

(part(x:y:s,(x:s’):p) <=== part(y:s,s’:p)) &

flatten[] = [] &

flatten(s:p) = s++flatten(p) &

x >> x:s &

(s >> s’ <=== s >> s1 & s1 >> s’)

Example 2 Streams (infinite lists) are specified with defined functions head, tail and eq, a constant
stream blink and, given a Boolean function f , a predicate exists(f) and a copredicate fair(f) that check
whether f holds true for some element resp. infinitely many elements of the stream argument:1

specs: NAT BOOL

constructs: [] :

defuncts: head tail eq blink

preds: exists

copreds: fair

fovars: x y s

hovars: f

axioms: head(x:s) = x &

tail(x:s) = s &

head(blink) = 0 &

tail(blink) = 1:blink &

eq(x)(x) = true &

(x =/= y ==> eq(x)(y) = false) &

(f(head(s)) = true ==> exists(f)(s)) &

(f(head(s)) = false ==> (exists(f)(s) <=== exists(f)(tail(s)))) &

(fair(f)(s) ===> exists(f)(s) & fair(f)(tail(s)))

Example 3 Modal formulas are presented as first- or second-order state predicates (for least fixpoints)
and copredicates (for greatest fixpoints). The binary predicate→ denotes the underlying labelled transition
system:

constructs: a b

preds: P true OD Y ->

copreds: false OB X

1& and | denote conjunction and disjunction, respectively.
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fovars: x st st’

hovars: P

axioms: true(st) &

(false(st) ===> False) &

(OD(x)(P)(st) <=== (st,x) -> st’ & P(st’)) &

(OB(x)(P)(st) ===> ((st,x) -> st’ ==> P(st’))) &

(X(st) ===> Y(st)) &

(X(st) ===> OB(b)(X)(st)) &

(Y(st) <=== OD(a)(true)(st)) &

(Y(st) <=== OD(b)(Y)(st)) &

(2,b) -> 1 & (2,b) -> 3 & (3,b) -> 3 & (3,a) -> 4 & (4,b) -> 3

Example 4 Stack functions empty, push, pop and top are implemented in terms of array functions new,
upd and get:

constructs: index entry new upd

defuncts: pred get empty push pop top

fovars: i j x f s s’

copreds: ~

axioms: pred(0) = 0 &

pred(suc(i)) = i &

get(new,i) = index(i) &

get(upd(i,x,f),i) = entry(x) &

(get(upd(i,x,f),j) = get(f,j) <=== i =/= j) &

empty = (new,0) &

push(x,(f,i)) = (upd(suc(i),x,f),suc(i)) &

top(f,i) = get(f,i) &

pop(f,i) = (f,pred(i)) &

(s ~ s’ ===> top(s) = top(s’) & pop(s) ~ pop(s’))

Example 5 Relational algebra

preds: Q R S O L I notI \/ /\ C * T <= <=> dom star

fovars: x y z u

hovars: Q R S

axioms: L(x,y) &

(I(x,y) <=== x = y) &

(notI(x,y) <=== x =/= y) &

((R\/S)(x,y) <=== R(x,y) | S(x,y)) &

((R/\S)(x,y) <=== R(x,y) & S(x,y)) &

(C(R)(x,y) <=== Not(R(x,y))) &

((R*S)(x,y) <=== R(x,z) & S(z,y)) &

(T(R)(x,y) <=== R(y,x)) &

((R<=S)(x,y) <=== (R(x,y) ==> S(x,y))) &

((R<=>S)(x,y) <=== (R<=S)(x,y) & (S<=R)(x,y)) &

(dom(R)(x,y) <=== R(x,z)) &

star(R)(x,x) &

(star(R)(x,z) <=== R(x,y) & star(R)(y,z)) &

(x >> y <=== R(x,y)) &

(x >> z <=== R(x,y) & star(R)(y,z))

A derivation with Expander2 is a sequence of successive values of the state variable trees (see Section 2).
It is stored in the state variables proof and proof term. All three variables are initialized when the contents
of the text field is parsed and the resulting tree t is displayed on the canvas. Then the state variable trees
is set to the singleton [t].

A derivation is correct if the derived disjunction/conjunction (resp. sum) of the current trees implies
(resp. is a possible result of) the original one. The underlying semantics is described in section 1. Built-in
symbols are interpreted by the simplifier. Expander2 checks the correctness of each derivation step and
delivers a warning if the step may be incorrect.

A correct derivation that ends up with the formula True or False is a proof resp. refutation of the original
formula ϕ. Further possible results are solved formulas, which are conjunctions of existentially quantified
equations or universally quantified inequations that represent a substitution of the free variables of ϕ by
normal forms (see section 2). The substitution is a solution of ϕ if the derivation of the solved formula is
correct.

The correctness of a derivation step depends on the polarity of the redex with respect to its position
within the current trees. The polarity is positive if the number of preceding negation symbols or premise
positions is even. Otherwise it is negative. A rule is analytical or expanding if the reduct implies
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the redex. Here the redex must have positive polarity if the derivation step shall be correct. A rule is
synthetical or contracting if the redex implies the reduct. Here the redex must have negative polarity
if the derivation step shall be correct. Expander2 checks these applicability conditions automatically. Of
course, both analytical and synthetical rules transform a redex into an equivalent formula and thus may be
applied regardless of the polarity.

4 Narrowing and rewriting

The narrowing procedure of Expander2 applies axioms and simplification rules repeatedly from top to
bottom and from left to right, first to the currently displayed tree and then to other current trees. Usually,
all applicable axioms for the anchor of a redex are applied simultaneously. Hence narrowing steps within
a proof provide case distinctions.

Applying all applicable (Horn) axioms for a predicate or defined function simultaneously results in the
replacement of the redex by the disjunction of their premises together with equations representing the
computed unifiers (see Section 3). Applying all applicable (co-Horn) axioms for a copredicate simultane-
ously results in the replacement of the redex by the conjunction of their conclusions. The narrowing rules
read as follows:

• narrowing upon a predicate p 6=→

p(t)∨k
i=1 ∃Zi : (ϕiσi ∧ ~x = ~xσi)

where γ1 ⇒ (p(t1)⇐= ϕ1), . . . , γn ⇒ (p(tn)⇐= ϕn) are the axioms for p,

(∗) ~x is a list of the variables of t,
for all 1 ≤ i ≤ k, tσi = tiσi, γiσi ` True2and Zi = var(ti, ϕi),
for all k < i ≤ n, t is not unifiable with ti.

• narrowing upon a copredicate p

p(t)∧k
i=1 ∀Zi : (ϕiσi ∨ ~x 6= ~xσi)

where γ1 ⇒ (p(t1) =⇒ ϕ1), . . . , γn ⇒ (p(tn) =⇒ ϕn) are the axioms for p and (∗) holds true.

• narrowing upon a defined function f

r(. . . , f(t), . . .)∨k
i=1 ∃Zi : (r(. . . , ui, . . .)σi ∧ ϕiσi ∧ ~x = ~xσi) ∨∨l

i=k+1(r(. . . , f(t), . . .)σi ∧ ~x = ~xσi)

where r is a predicate or copredicate,
γ1 ⇒ (f(t1) = u1 ⇐= ϕ1), . . . , γn ⇒ (f(tn) = un ⇐= ϕn) are the axioms for f ,

(∗∗) ~x is a list of the variables of t,
for all 1 ≤ i ≤ k, tσi = tiσi, γiσi ` True and Zi = var(ti, ϕi),
for all k < i ≤ l, σi is a partial unifier of t and ti,
for all l < i ≤ n, t is not partially unifiable with ti.

• narrowing upon the predicate →

t ∧v → t′∨k
i=1 ∃Zi : ((ui

∧v)σi = t′σi ∧ ϕiσi ∧ ~x = ~xσi) ∨∨l
i=k+1((t ∧v)σi → t′σi ∧ ~x = ~xσi)

where γ1 ⇒ (t1 → u1 ⇐= ϕ1), . . . , γn ⇒ (tn → un ⇐= ϕn) are the axioms for →, (∗∗) holds true
and σi is a unifier modulo associativity and commutativity of ∧

• elimination of non-narrowable atoms and terms

p(t)

False

q(t)

True

r(. . . , f(t), . . .)

r(. . . , (), . . .)

t→ t′

()→ t′

where p 6=→ is a predicate, q is a copredicate, r is a predicate or copredicate, f is a defined function,
t is a normal form and for all axioms γ ⇒ (p(u) ⇐= ϕ), γ ⇒ (q(u) =⇒ ϕ), γ ⇒ (f(u) = v ⇐= ϕ)
and γ ⇒ (u→ v ⇐= ϕ), t and u are not unifiable.

2Hence σi solves the guard γi. Expander2 tries to solve γi by applying at most 100 narrowing steps.
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u1, . . . , un may be tuples of terms. In the case of narrowing upon a defined function, the unification of
t with ui may fail because at some position, the root symbols of t and ui are different and one of them
is a defined function f . Since the unification may succeed later, when subsequent narrowing steps have
replaced f by a constructor or a variable, we save the already obtained partial unifier σi and construct
a reduct that consists of the σi-instance of the redex and equations that represent σi. This version of
the narrowing rule has been derived from the needed narrowing strategy [1, 16]. If the underlying
specification is functional, the strategy of applying these narrowing rules iteratively from top to bottom
to a formula ϕ leads to a set S of solutions of ϕ such that each solution of ϕ is an instance of some s ∈ S
[17, 18]. Hence, in the context of this strategy, the narrowing rules are equivalence transformations.

If the current trees are terms, only rewriting steps can be applied. Rewriting is the special case of
narrowing upon defined functions where the unifiers σi do not instantiate redex variables:

• rewriting upon a defined function f

c(f(t))

c(u1σ1) <+> . . . <+> c(ukσk)

where γ1 ⇒ f(t1) = u1, . . . , γ1 ⇒ f(tn) = un are the axioms for f and

(∗) for all 1 ≤ i ≤ k, t = tiσi and γiσi ` True,
for all k < i ≤ n, t does not match ti.

• rewriting upon the predicate →

c(t)

c(u1σ1) <+> . . . <+> c(ukσk)

where γ1 ⇒ t1 → u1, . . . , γ1 ⇒ tn → un are the axioms for → and (∗) holds true.

• elimination of non-rewritable terms

f(t)

()

where f is a defined function, t is a normal form and for all axioms γ ⇒ f(u) = v and γ ⇒ u→ v, t
and u are not unifiable.

5 Simplification

Narrowing removes predicates, copredicates and defined functions from the current trees. The simplifier
does the same with logical operators, constructors and symbols of the built-in signature. Simplifications
realize the highest degree of automation and the lowest degree of interaction (see section 2). The reducts
of rewriting or narrowing steps are simplified automatically.

The evaluation rules used by the simplifier are equivalence transformations. Besides the partial evaluation
of built-in predicates and functions, the following rules are applied:

• True and False
ϕ ∧ True

ϕ

ϕ ∨ False

ϕ

ϕ ∧ False

False

ϕ ∨ True

True

()→ t

False

• Sum propagation. Let f be a function and r be a relation.

f(. . . , t1 <+> . . . <+> tn, . . .)

f(. . . , t1, . . .) <+> . . . <+> f(. . . , tn, . . .)

t <+> ()

t

r(. . . , t1 <+> . . . <+> tn, . . .)

r(. . . , t1, . . .) ∨ . . . ∨ r(. . . , tn, . . .)

• Equation or inequation splitting. Let c and d be different constructors.

c(t1, . . . , tn) = c(u1, . . . , un)

t1 = u1 ∧ . . . ∧ tn = un

c(t1, . . . , tn) = d(u1, . . . , un)

False

c(t1, . . . , tn) 6= c(u1, . . . , un)

t1 6= u1 ∨ . . . ∨ tn 6= un

c(t1, . . . , tn) 6= d(u1, . . . , un)

True

• Quantifier movement

∀~x(ϕ1 ∧ . . . ∧ ϕn)

∀~xϕ1 ∧ . . . ∧ ∀~xϕn
∃~x(ϕ1 ∨ . . . ∨ ϕn)

∃~xϕ1 ∨ . . . ∨ ∃~xϕn
∃~x(ϕ⇒ ψ)

∀~xϕ⇒ ∃~xψ
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Let ~x = θ( ~x1 ∪ . . . ∪ ~xn) and θ be a renaming of variables such that for all 1 ≤ i ≤ n, no variable of
θ(~xi) occurs freely in some θ(ϕj), 1 ≤ j ≤ n, j 6= i.

∃ ~x1ϕ1 ∧ . . . ∧ ∃ ~xnϕn
∃~xθ(ϕ1 ∧ . . . ∧ ϕn)

∀ ~x1ϕ1 ∨ . . . ∨ ∀ ~xnϕn
∀~xθ(ϕ1 ∨ . . . ∨ ϕn)

∃ ~x1ϕ1 ⇒ ∀ ~x2ϕ2

∀~xθ(ϕ1 ⇒ ϕ2)

• Removal of negation. Negation symbols are moved to literal positions where they are replaced by
complement predicates: ¬P (t) is reduced to not P (t), ¬not P (t) is reduced to P (t). Co-Horn/Horn
axioms for not P can be generated automatically from Horn/Co-Horn axioms for P .

• Removal of quantifiers. Unused bounded variables are removed. Successive quantifiers are
merged.

• Subsumption. Suppose that ϕ subsumes ψ.

ϕ⇒ ψ

True

ϕ⇔ ψ

ψ ⇒ ϕ

ψ ⇔ ϕ

ψ ⇒ ϕ

ϕ ∧ ψ
ϕ

ϕ ∨ ψ
ψ

ϕ ∧ (ψ ⇒ θ)

ϕ ∧ θ

Subsumption is the least binary relation on terms and formulas that satisfies the following impli-
cations: Let ∼ be the syntactic equality of formulas modulo the re-arrangement of arguments of
permutative operators and the renaming of variables.

ϕ ∼ ψ =⇒ ϕ subsumes ψ
ϕ subsumes ψ =⇒ ¬ψ subsumes ¬ϕ
ϕ′ subsumes ϕ and ψ subsumes ψ′ =⇒ ϕ⇒ ψ subsumes ϕ′ ⇒ ψ′

∃ 1 ≤ i ≤ n : ϕ subsumes ψi =⇒ ϕ subsumes ψ1 ∨ . . . ∨ ψn
∀ 1 ≤ i ≤ n : ϕi subsumes ψ =⇒ ϕ1 ∨ . . . ∨ ϕn subsumes ψ
∀ 1 ≤ i ≤ n : ϕ subsumes ψi =⇒ ϕ subsumes ψ1 ∧ . . . ∧ ψn
∃ 1 ≤ i ≤ n : ϕi subsumes ψ =⇒ ϕ1 ∧ . . . ∧ ϕn subsumes ψ
ϕ(~x) subsumes ψ(~x) =⇒ ∃~xϕ(~x) subsumes ∃~yψ(~y)
ϕ(~x) subsumes ψ(~x) =⇒ ∀~xϕ(~x) subsumes ∀~yψ(~y)
ϕ(~x) subsumes ψ(~x) and no variable of ~x occurs freely in ψ

=⇒ ∃~xϕ(~x) subsumes ψ
ϕ(~x) subsumes ψ(~x) and no variable of ~y occurs freely in ϕ

=⇒ ϕ subsumes ∀~yψ(~y)

∃~t : ϕ ∼ ψ(~t) =⇒ ϕ subsumes ∃~xψ(~x)

∃~t : ϕ(~t) ∼ ψ =⇒ ∀~xϕ(~x) subsumes ψ

∃~t, {i1, . . . , ik} ⊂ {1, . . . , n} : ϕi1 ∧ . . . ∧ ϕik ∼ ψ(~t)
=⇒ ϕ1 ∧ . . . ∧ ϕn subsumes ∃~xψ(~x)

∃~t, {i1, . . . , ik} ⊂ {1, . . . , n} : ϕ(~t) ∼ ψi1 ∨ . . . ∨ ψik
=⇒ ∀~xϕ(~x) subsumes ψ1 ∨ . . . ∨ ψn

• Elimination of equations and inequations. Let x ∈ ~x \ var(t).

∃~x(x = t ∧ ϕ)

∃~xϕ[t/x]

∀~x(x 6= t ∨ ϕ)

∀~xϕ[t/x]

∀~x(x = t ∧ ϕ⇒ ψ)

∀~x(ϕ⇒ ψ)[t/x]

∀~x(ϕ⇒ x 6= t ∨ ψ)

∀~x(ϕ⇒ ψ)[t/x]

• Internal application of equations or inequations.

Let root(t) be a constructor and root(u) not be a constructor.

t = u ∧ ϕ(t)

t = u ∧ ϕ(u)
m t 6= u ∨ ϕ(t)

t 6= u ∨ ϕ(u)
m

t = u ∧ ϕ(t) ⇒ ψ(t)

t = u ∧ ϕ(u) ⇒ ψ(u)
m ϕ(t) ⇒ t 6= u ∨ ψ(t)

ϕ(u) ⇒ t 6= u ∨ ψ(u)
m

• Implication splitting

∀~x(ϕ1 ∨ . . . ∨ ϕn ⇒ ψ)

∀~x(ϕ1 ⇒ ψ) ∧ . . . ∧ ∀~x(ϕn ⇒ ψ)

∀~x(ϕ⇒ ψ1 ∧ . . . ∧ ψn)

∀~x(ϕ⇒ ψ1) ∧ . . . ∧ ∀~x(ϕ⇒ ψn)
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• Uncurrying
ϕ⇒ (θ ⇒ ψ1) ∨ ψ2

ϕ ∧ θ ⇒ ψ1 ∨ ψ2

Besides being an essential part of proof processes, simplification in Expander2 may be used for testing
algorithms, especially iterative ones, which change values of state terms during loop traversals [22].
Several such algorithms have been integrated into the simplifier by translating a loop traversal into a
simplification step. Consequently, intermediate results can be visualized in a painter window (see Section
2). The respective state terms are created by applying particular equational axioms.

Similarly to narrowing and rewriting, the simplifier pursues a top-down strategy that ensures termination
and the eventual application of all applicable rules. This is necessary because it usually works in the
background. For instance, narrowing reducts are simplified automatically before they are submitted to
further narrowing steps.

The notion of simplification differs from prover to prover. For instance, Isabelle [13] subsumes rewriting
upon equational axioms under simplification.

6 Rules at the top level of interaction

Narrowing steps and simplifications are both analytical and synthetical and thus turn formulas into seman-
tically equivalent ones. Instances of the rules that are accessible via the solver’s selection menu (see Fig.
2), however, may be strictly analytical or strictly synthetical. Hence they can be applied only individually
and only to subtrees with positive resp. negative polarity (see Section 3). We describe the main rules in
terms of the actions to be taken by the user in order to apply them.

• Instantiation. Select an existentially/universally quantified variable x. If the scope of x has
positive/negative polarity, then all occurrences of x in the scope are replaced by the term in the
solver’s entry field. Alternatively, the replacing term t may be taken from the dispalyed tree and
moved to a position of x in the scope. Again, all occurrences of x in the scope are replaced by t.

• Generalization. Select a subformula ϕ and enter a formula ψ into the solver’s entry field. If ϕ has
positive/negative polarity, then ϕ is combined conjunctively/disjunctively with ψ.

• Unification. Select two factors of a conjunction ϕ = ∃~x(ϕ1 ∧ . . . ∧ ϕn) or two summands of a
disjunction ψ = ∀~x(ϕ1 ∨ . . .∨ϕn). If they are unifiable and the unifier instantiates only variables of
~x, then one of them is removed and the unifier is applied to the remaining conjunction/disjunction.
The transformation is correct if ϕ/ψ has positive/negative polarity.

• Copy. Select a subtree ϕ. A copy of ϕ is added to the children of the subtree’s parent node. The
transformation is correct if the parent node holds a conjunction or disjunction symbol.

• Removal. Select subtrees φ1, . . . , φn. φ1, . . . , φn are removed from the displayed tree. The trans-
formation is correct if φ1, . . . , φn are summands/factors of the same disjunction/conjunction with
positive/negative polarity.

• Reversal. The list of selected subtrees is reversed. The transformation is correct if all subtrees are
arguments of the same occurrence of a permutative operator. Currently, the permutative operators
are:

&, |,=,= / =,∼,∼/∼,+, ∗, ∧, {}.
• Atom decomposition.

f(t1, . . . , tn) = f(u1, . . . , un)

t1 = u1 ∧ . . . ∧ tn = un
⇑ f(t1, . . . , tn) 6= f(u1, . . . , un)

t1 6= u1 ∨ . . . ∨ tn 6= un
⇓

• Internal application of equations or inequations.

t = u ∧ ϕ(t)

t = u ∧ ϕ(u)
m t 6= u ∨ ϕ(t)

t 6= u ∨ ϕ(u)
m

t = u ∧ ϕ(t)⇒ ψ(t)

t = u ∧ ϕ(u)⇒ ψ(u)
m ϕ(t)⇒ t 6= u ∨ ψ(t)

ϕ(u)⇒ t 6= u ∨ ψ(u)
m

• Transitivity. Select an atom tRt′ with positive polarity or n− 1 factors

t1Rt2, t2Rt3, . . . , tn−1Rtn

of a conjunction with negative polarity such that R is among <,≤, >,≥,=,∼ . The selected atoms
are decomposed resp. composed in accordance with the assumption that R is transitive.

• Constrained narrowing. Select subtrees φ1, . . . , φn and write axioms into the text field or a
signature symbol f into the solver’s entry field. Then narrowing/rewriting steps upon the axioms in
the text field or the axioms for f , respectively, are applied to φ1, . . . , φn.
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• Axiom/theorem application. Select subtrees φ1, . . . , φn and write the number of an axiom or
theorem into the solver’s entry field. The selected axiom or theorem ψ is applied from left to right or
from right to left to φ1, . . . , φn. Left/right refers to t resp. u if ψ has the form tRu⇐= prem where
R is symmetric and to the formula left/right of ⇐= resp. =⇒ in all other cases. The transformation
is correct if the conclusion/premise of ψ has positive/negative polarity.

A clause of type (6), (7), (11) or (12) is applied to atoms at′1, . . . , at
′
n each of which is part of

a conjunction or disjunction: Let ~z consist of the free variables of prem resp. conc that do not occur
in at1, . . . , atn.

application of (6)
ϕ1(at′1) ∧ . . . ∧ ϕn(at′n)

(
∧n
i=1 ϕi(∃~z(premσ ∧

∧
x∈dom(σ) x ≡ xσ)))

⇑

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain existential quantifiers or negation or
implication symbols.

application of (7)
ϕ1(at′1) ∨ . . . ∨ ϕn(at′n)

(
∧n
i=1 ϕi(∃~z(premσ ∧

∧
x∈dom(σ) x ≡ xσ)))

⇑

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain universal quantifiers or negation or
implication symbols.

application of (11)
ϕ1(at′1) ∧ . . . ∧ ϕn(at′n)

(
∨n
i=1 ϕi(∀~z(

∧
x∈dom(σ) x ≡ xσ ⇒ concσ)))

⇓

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain existential quantifiers or negation or
implication symbols.

application of (12)
ϕ1(at′1) ∨ . . . ∨ ϕn(at′n)

(
∨n
i=1 ϕi(∀~z(

∧
x∈dom(σ) x ≡ xσ ⇒ concσ)))

⇓

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain universal quantifiers or negation or
implication symbols.

• Noetherian induction. Select a list of free or universal induction variables x1, . . . , xn in the
displayed tree. If ϕ = (prem⇒ conc), then the induction hypotheses

conc′ ⇐= (x1, . . . , xn)� (x′1, . . . , x
′
n) ∧ prem′

prem′ =⇒ ((x1, . . . , xn)� (x′1, . . . , x
′
n) ⇒ conc′)

are added to the current theorems. If ϕ is not an implication, then

conc′ ⇐= (x1, . . . , xn)� (x′1, . . . , x
′
n)

is added. Primed formulas are obtained from unprimed ones by priming the occurrences of x1, . . . , xn.
� denotes the induction ordering. Each left-to right application of an added theorem corresponds
to an induction step and introduces an occurrence of �. After axioms for � have been added
to the current axioms, narrowing steps upon � should remove the occurrences of � because the
transformation is correct only if ϕ can be derived to True [15, 16].

• Vertical shift of quantifiers. Select quantified arguments of a propositional operator op, i.e.
op ∈ {∧,∨,¬,⇒}. The quantifiers are shifted in front of op after all bound variables that also occur
freely in some argument or in more than one argument of op have been renamed. For instance, a
clause of type (6) or (11) cannot be applied to existentially quantified factors and a clause of type
(7) or (12) cannot be applied to universally quantified summands (see above). Hence moving the
quantifiers out of the conjunction resp. disjunction may be necessary.

• Horizontal shift of subformulas. Select an implication

prem1 ∧ . . . ∧ premm ⇒ conc1 ∨ . . . ∨ concn,

premises premi1 , . . . , premik and/or conclusions concj1 , . . . , concjl . The implication is turned into

premi′1
∧ . . . ∧ premi′r ∧ ¬concj1 ∧ . . . ∧ ¬concjl

⇒ ¬premi1 ∨ . . . ∨ ¬premik ∨ concj′1 ∨ . . . ∨ concj′s

where i′1, . . . , i
′
r = {1, . . . ,m} \ {i1, . . . , ik} and j′1, . . . , j

′
s = {1, . . . , n} \ {j1, . . . , jl}. Such a trans-

formation may be necessary if the original implication shall be proved by fixpoint induction or
coinduction (see below).
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The following rules are correct if the selected subformulas have positive polarity. For each predicate,
copredicate or function p, let AXp be the set of axioms for p.

• Coinduction on a copredicate p. Select subformulas

{prem1 ⇒} p(~t1)
∧ . . . (A)

∧ {premk ⇒} p(~tk)

such that p does not depend on any predicate or function occurring in premi. A is turned into

p(~x) ⇐= {prem1 ∧} ~x = ~t1
∨ . . . (A’)

∨ {premk ∧} ~x = ~tk

where ~x is a list of variables. Moreover, a new predicate p′ is added to the current signature and

p′(~x) ⇐= {prem1 ∧} ~x = ~t1
∨ . . . (*)

∨ {premk ∧} ~x = ~tk

becomes the axiom for p′. (*) is applied to AXp[p
′/p]. The conjunction of the resulting clauses

replaces the original conjecture A.

• Fixpoint induction on a predicate p. Select subformulas

p(~t1) ⇒ conc1
∧ . . . (B)

∧ p(~tk) ⇒ conck

such that p does not depend on any predicate or function occurring in conci. B is turned into

p(~x) =⇒ (~x = ~t1 ⇒ conc1)
∧ . . . (B’)

∧ (~x = ~tk ⇒ conck)

where ~x is a list of variables. Morever, a new predicate p′ is added to the current signature and

p′(~x) =⇒ (~x = ~t1 ⇒ conc1)
∧ . . . (*)

∧ (~x = ~tk ⇒ conck)

becomes the axiom for p′. (*) is applied to AXp[p
′/p]. The conjunction of the resulting clauses

replaces the original conjecture B.

• Fixpoint induction on a function f . Select subformulas

f(~t1) = u1 ⇒ conc1
∧ . . . (C)

∧ f(~tk) = uk ⇒ conck

or
f(~t1) = u1

∧ . . . (D)

∧ f(~tk) = uk

such that f does not depend on any predicate or function occurring in ui or conci. C is turned into

f(~x) = z =⇒ (~x = ~t1 ∧ z = u1 ⇒ conc1)
∧ . . . (C’)

∧ (~x = ~tk ∧ z = uk ⇒ conck),

D is turned into
f(~x) = z =⇒ (~x = ~t1 ⇒ z = u1)

∧ . . . (D’)

∧ (~x = ~tk ⇒ z = uk)
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where ~x is a list of variables and z is a variable. Moreover, a new predicate f ′ is added to the current
signature and

f ′(~x, z) =⇒ ((~x = ~t1 ∧ z = t1) ⇒ conc1)
∧ . . . (*)

∧ ((~x = ~tk ∧ z = tk) ⇒ conck)

resp.
f ′(~x, z) =⇒ (~x = ~t1 ⇒ z = t1)

∧ . . . (*)

∧ (~x = ~tk ⇒ z = tk)

becomes the axiom for f ′. (*) is applied to flat(AXf )[f ′/(f( ) ≡ )]. The conjunction of the
resulting clauses replaces the original conjecture C/D.

• Hoare induction. Select a subformula of the form

f(t1, . . . , tn) = t ⇒ conc (A)

or
f(t1, . . . , tn) = t {∧ conc} (B)

such that f is a derived function, i.e. f has a single axiom of the form

f(x1, . . . , xn) = g(u1, . . . , uk)

or, if the term ti in A/B has been selected (in addition to A/B itself), f has a single axiom of the
form

f(x1, . . . , xn) = g(xi, . . . , xn, u1, . . . , uk)

with distinct variables x1, . . . , xn. A is turned into INV 1 ∧ INV 2 where

INV (x1, . . . , xn, u1, . . . , uk) (INV1)
g(xi, . . . , xn, y1, . . . , yk) = z ∧ INV (x1, . . . , xn, y1, . . . , yk)

⇒ (x1 = t1 ∧ . . . ∧ xn = tn ∧ x = t ⇒ conc) (INV2)

while B is turned into INV 1 ∧ INV 3 where

g(xi, . . . , xn, y1, . . . , yk) = z ∧ INV (x1, . . . , xn, y1, . . . , yk)
⇒ (x1 = t1 ∧ . . . ∧ xn = tn ⇒ x = t {∧ conc} (INV3)

If ti has not been selected in A/B, then g(xi, . . . , xn, y1, . . . , yk) reduces to g(y1, . . . , yk). Usually,
the proof proceeds by narrowing INV1, shifting

INV (x1, . . . , xn, y1, . . . , yk)

from the premise to the conclusion of INV2/INV3 and submitting the resulting formula to fixpoint
induction.

• Subgoal induction works the same as Hoare induction except that a selected conjecture of the
form A is turned into INV 1 ∧ INV 2 where

INV (xi, . . . , xn, u1, . . . , uk, z)
⇒ (x1 = t1 ∧ . . . ∧ xn = tn ∧ x = t ⇒ conc (INV1)

g(xi, . . . , xn, y1, . . . , yk) = z ⇒ INV (xi, . . . , xn, y1, . . . , yk, z) (INV2)

while a selected conjecture of the form B is turned into INV 1 ∧ INV 3 where

g(xi, . . . , xn, y1, . . . , yk) = z ⇒ INV (xi, . . . , xn, y1, . . . , yk, z) (INV3)

Usually, the proof proceeds by narrowing INV1 and submitting INV2/INV3 to fixpoint induction.

7 Sample proofs

Example 1 (continued; see section 3) An Expander2 proof by fixpoint induction is presented. The
conjecture says that part returns only partitions of the given list.3

3All and Any denote the universal and existential quantifier, respectively.

14



part(s,p) ==> s = flatten(p)

Applying fixpoint induction w.r.t.

part([x],[[x]])

& (part(x:y:s,[x]:p) <=== part(y:s,p))

& (part(x:y:s,x:s’:p) <=== part(y:s,s’:p))

at position [] of the preceding formula leads to

All x:([x] = flatten[[x]]) &

All x y s p:(y:s = flatten(p) ==> x:y:s = flatten([x]:p)) &

All x y s p s’:(y:s = flatten(s’:p) ==> x:y:s = flatten(x:s’:p))

The reducts have been simplified.

Applying the axiom resp. theorem

flatten(s:p) = s++flatten(p)

at positions [2,0,1,1],[2,0,0,1],[1,0,1,1],[0,0,1] of the preceding formula leads to

[] = flatten[]

The reducts have been simplified.

Narrowing the preceding formula leads to

True

A proof by Noetherian induction of the same conjecture is less straightforward and needs more interaction.
The induction hypothesis must be applied two times:

part(s,p) ==> s = flatten(p)

Selecting induction variables at position [0,0] of the preceding formula leads to

All p:(part(!s,p) ==> !s = flatten(p))

Applying the axioms

flatten[] = []

& flatten(s:p) = s++flatten(p)

& part([x],[[x]])

& (part(x:y:s,[x]:p) <=== part(y:s,p))

& (part(x:y:s,x:s’:p) <=== part(y:s,s’:p))

at positions [0,1,1],[0,0] of the preceding formula leads to

All x:(!s = [x] ==> [] = flatten[]) &

All x y s p0:(!s = x:y:s & part(y:s,p0) ==> y:s = flatten(p0)) &

All x y s s’ p0:(!s = x:y:s & part(y:s,s’:p0) ==> y:s = s’++flatten(p0))

The reducts have been simplified.

Applying the axiom resp. theorem

flatten[] = []

at position [0,0,1,1] of the preceding formula leads to

All x y s p0:(!s = x:y:s & part(y:s,p0) ==> y:s = flatten(p0)) &

All x y s s’ p0:(!s = x:y:s & part(y:s,s’:p0) ==> y:s = s’++flatten(p0))

The reducts have been simplified.

Shifting subformulas at position [0,0,0,1] of the preceding formula leads to
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All x y s p0:(!s = x:y:s ==> (part(y:s,p0) ==> y:s = flatten(p0))) &

All x y s s’ p0:(!s = x:y:s & part(y:s,s’:p0) ==> y:s = s’++flatten(p0))

Applying the induction hypothesis

part(s,p) ===> (!s >> s ==> s = flatten(p))

at position [0,0,1,0] of the preceding formula leads to

All x y s p0:(!s = x:y:s & (x:y:s >> y:s ==> y:s = flatten(p0)) ==>

y:s = flatten(p0)) &

All x y s s’ p0:(!s = x:y:s & part(y:s,s’:p0) ==> y:s = s’++flatten(p0))

The reducts have been simplified.

Applying the axioms

x:s >> s

& (x >> y <=== x > y)

at position [0,0,0,1,0] of the preceding formula leads to

All x y s s’ p0:(!s = x:y:s & part(y:s,s’:p0) ==> y:s = s’++flatten(p0))

The reducts have been simplified.

Shifting subformulas at position [0,0,1] of the preceding formula leads to

All x y s s’ p0:(!s = x:y:s ==> (part(y:s,s’:p0) ==> y:s = s’++flatten(p0)))

Applying the induction hypothesis

part(s,p) ===> (!s >> s ==> s = flatten(p))

at position [0,1,0] of the preceding formula leads to

All x y s s’ p0:(!s = x:y:s & (x:y:s >> y:s ==> y:s = flatten(s’:p0)) ==>

y:s = s’++flatten(p0))

The reducts have been simplified.

Applying the axioms

x:s >> s

& (x >> y <=== x > y)

at position [0,0,1,0] of the preceding formula leads to

All x y s s’ p0:(!s = x:y:s & y:s = flatten(s’:p0) ==> y:s = s’++flatten(p0))

The reducts have been simplified.

Applying the axiom resp. theorem

s++flatten(p) = flatten(s:p)

at position [0,1,1] of the preceding formula leads to

True

Example 2 (continued; see section 3) An Expander2 proof by coinduction is presented. The conjec-
ture says that blink and 1:blink contain infinitely many zeros.

fair(eq(0))(blink) & fair(eq(0))(1:blink)

Applying coinduction w.r.t.

(fair(f)(s) ===> exists(f)(s) & fair(f)(tail(s)))
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at position [] of the preceding formula leads to

exists(eq(0))(1:blink) & tail(blink) = 1:blink & exists(eq(0))(blink) |

exists(eq(0))(1:blink) & tail(blink) = blink & exists(eq(0))(blink)

The reducts have been simplified.

Narrowing the preceding formula (3 steps) leads to

True

Example 3 (continued; see section 3) An Expander2 proof by coinduction is presented. The conjec-
ture says that states 3 and 4 satisfy the predicate X.

X(3) & X(4)

Applying coinduction w.r.t.

(X(st) ===> Y(st))

& (X(st) ===> OB(b)(X)(st))

at position [] of the preceding formula leads to

Y(3) & Y(4) & OB(b)(X0)(3) & OB(b)(X0)(4)

The reducts have been simplified.

Narrowing the preceding formula (25 steps) leads to

True

Example 4 (continued; see section 3) An Expander2 proof by coinduction is presented. The conjec-
ture says that updating an array f above index j, which represents the top pointer of the stack implemented
by f , does not change the semantics of f as a stack.

i > j ==> (upd(i,x,f),j) ~ (f,j)

Applying coinduction w.r.t.

s ~ s’ ===> top(s) = top(s’) & pop(s) ~ pop(s’)

at position [] of the preceding formula leads to

All i j x f:(i > j ==> top(upd(i,x,f),j) = top(f,j)) &

All i j x f:(i > j ==>

Any i0 j0 x0 f0:(i0 > j0 & pop(upd(i,x,f),j) = (upd(i0,x0,f0),j0) &

pop(f,j) = (f0,j0)))

The reducts have been simplified.

Applying the axioms

pop(f,i) = (f,pred(i))

& top(f,i) = get(f,i)

at positions [1,0,1,0,2,0],[1,0,1,0,1,0],[0,0,1,1],[0,0,1,0] of the preceding

formula leads to

All i j:(i > j ==> i > pred(j)) &

All i j x f:(i > j ==> get(upd(i,x,f),j) = get(f,j))

The reducts have been simplified.

Applying the axioms

get(upd(i,x,f),i) = entry(x)

& (get(upd(i,x,f),j) = get(f,j) <=== i =/= j)
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at position [1,0,1,0] of the preceding formula leads to

All i j:(i > j ==> i > pred(j))

The reducts have been simplified.

Applying the theorem

i > j ===> i > pred(j)

at position [0,0] of the preceding formula leads to

True

Example 5 (continued; see section 3) At first, the logical equivalence between two relational inclu-
sions is proved.

All x y:(((Q*R)<=S)(x,y)) <==> All x y:(((T(Q)*C(S))<=C(R))(x,y))

Narrowing the preceding formula (7 steps) leads to

All x y z:(Q(x,z) & R(z,y) ==> S(x,y)) <==>

All x y z0:(Q(z0,x) & notS(z0,y) ==> notR(x,y))

The reducts have been simplified.

Shifting subformulas at positions [1,0,0,1],[1,0,1] of the preceding formula leads to

All x y z:(Q(x,z) & R(z,y) ==> S(x,y)) <==>

All x y z0:(R(x,y) & Q(z0,x) ==> S(z0,y))

Simplifying the preceding formula (2 steps) leads to

True

Secondly, the equality of the domains of two relations is derived to a formula that expresses the property
that R is right-unique. Hence the derivation proves that the equality holds true whenever R is right-unique.

All x y:((dom((R/\(R*C(I)))/\(C(I)*R))<=>dom((((C(I)*R)/\R)*C(I))/\R))(x,y))

Narrowing the preceding formula (33 steps) leads to

All x z:(R(x,z) & Any z0:(R(x,z0) & z0 =/= z) ==>

Any z1:(Any z2:(Any z3:(x =/= z3 & R(z3,z2)) & R(x,z2) & z2 =/= z1) &

R(x,z1)))

The reducts have been simplified.

Substituting z for z1 at position [0,0,0,1] of the preceding formula leads to

All x z:(R(x,z) & Any z0:(R(x,z0) & z0 =/= z) ==>

Any z2:(Any z3:(x =/= z3 & R(z3,z2)) & R(x,z2) & z2 =/= z))

The reducts have been simplified.

Substituting z for z2 at position [0,0,0,1] of the preceding formula leads to

All x z:(R(x,z) & Any z0:(R(x,z0) & z0 =/= z) ==> Any z3:(x =/= z3 & R(z3,z))) &

All x z:(R(x,z) & Any z0:(R(x,z0) & z0 =/= z) ==> False)

The reducts have been simplified.

Substituting x for z3 at position [0,0,0,0,0] of the preceding formula leads to

All x z:(R(x,z) & Any z0:(R(x,z0) & z0 =/= z) ==> False)

The reducts have been simplified.
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The third derivation is a proof of Newman’s Lemma by Noetherian induction: R is confluent if R is
well-founded and locally confluent. Local confluence is used in the proof at (*). The well-foundedness of
R enters the proof in terms of the fact that the induction ordering � is defined as the transitive closure
of R (see Example 5 in section 3).

star(R)(x,y) & star(R)(x,z) ==> Any u:(star(R)(y,u) & star(R)(z,u))

Selecting induction variables at position [0,0,1] of the preceding formula leads to

All R y z:(star(R)(!x,y) & star(R)(!x,z) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

Applying the axioms

star(R)(x,x)

& (star(R)(x,z) <=== R(x,y) & star(R)(y,z))

at positions [0,0,1],[0,0,0] of the preceding formula leads to

All R y z:(Any y0:(R(!x,y0) & star(R)(y0,y)) &

Any y1:(R(!x,y1) & star(R)(y1,z)) ==>

Any u:(star(R)(y,u) & star(R)(z,u))) &

All R y y0:(R(!x,y0) & star(R)(y0,y) ==> Any u:(star(R)(y,u) & star(R)(!x,u))) &

All R:(Any u:(star(R)(!x,u)))

The reducts have been simplified.

Substituting !x for u at position [2,0,0,1] of the preceding formula leads to

All R y z:(Any y0:(R(!x,y0) & star(R)(y0,y)) &

Any y1:(R(!x,y1) & star(R)(y1,z)) ==>

Any u:(star(R)(y,u) & star(R)(z,u))) &

All R y y0:(R(!x,y0) & star(R)(y0,y) ==> Any u:(star(R)(y,u) & star(R)(!x,u))) &

All R:(star(R)(!x,!x))

The reducts have been simplified.

Substituting y for u at position [1,0,1,0,0,1] of the preceding formula leads to

All R y z:(Any y0:(R(!x,y0) & star(R)(y0,y)) &

Any y1:(R(!x,y1) & star(R)(y1,z)) ==>

Any u:(star(R)(y,u) & star(R)(z,u))) &

All R y y0:(R(!x,y0) & star(R)(y0,y) ==> star(R)(y,y)) &

All R y y0:(R(!x,y0) & star(R)(y0,y) ==> star(R)(!x,y)) &

All R:(star(R)(!x,!x))

The reducts have been simplified.

Applying the axioms

star(R)(x,x)

& (star(R)(x,z) <=== R(x,y) & star(R)(y,z))

at positions [3,0],[2,0,1],[1,0,1] of the preceding formula leads to

All R y z:(Any y0:(R(!x,y0) & star(R)(y0,y)) &

Any y1:(R(!x,y1) & star(R)(y1,z)) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

The reducts have been simplified.

Moving up quantifiers at positions [0,0,0],[0,0,1] of the preceding formula leads to

All R y z:(Any y1 y0:(R(!x,y0) & star(R)(y0,y) & R(!x,y1) & star(R)(y1,z)) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

Applying the theorem

R(x,y) & R(x,z) ===> Any u:(star(R)(y,u) & star(R)(z,u))
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at positions [0,0,0,0],[0,0,0,2] of the preceding formula leads to

All R y z y1 y0:(R(!x,y0) & R(!x,y1) & Any u0:(star(R)(y0,u0) & star(R)(y1,u0)) &

star(R)(y0,y) & star(R)(y1,z) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

The reducts have been simplified.

Moving up quantifiers at position [0,0,2] of the preceding formula leads to

All R y z y1 y0:(Any u0:(R(!x,y0) & R(!x,y1) & star(R)(y0,u0) & star(R)(y1,u0) &

star(R)(y0,y) & star(R)(y1,z)) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

Applying the induction hypothesis

star(R)(x,y) & star(R)(x,z) ===>

(!x >> x ==> Any u:(star(R)(y,u) & star(R)(z,u)))

at positions [0,0,0,2],[0,0,0,4] of the preceding formula leads to

All R y z y1 y0 u0:(star(R)(y0,u0) & star(R)(y0,y) &

(!x >> y0 ==> Any u1:(star(R)(u0,u1) & star(R)(y,u1))) &

R(!x,y0) & R(!x,y1) & star(R)(y1,u0) & star(R)(y1,z) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

The reducts have been simplified.

Applying the induction hypothesis

star(R)(x,y) & star(R)(x,z) ===>

(!x >> x ==> Any u:(star(R)(y,u) & star(R)(z,u)))

at positions [0,0,5],[0,0,6] of the preceding formula leads to

All R y z y1 y0 u0:(star(R)(y1,u0) & star(R)(y1,z) &

(!x >> y1 ==> Any u2:(star(R)(u0,u2) & star(R)(z,u2))) &

star(R)(y0,u0) & star(R)(y0,y) &

(!x >> y0 ==> Any u1:(star(R)(u0,u1) & star(R)(y,u1))) &

R(!x,y0) & R(!x,y1) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

The reducts have been simplified.

Applying the axioms

(x >> y <=== R(x,y))

& (x >> z <=== R(x,y) & star(R)(y,z))

at positions [0,0,5,0],[0,0,2,0] of the preceding formula leads to

All R y z y1 y0 u0:(R(!x,y0) & R(!x,y1) & star(R)(y1,u0) & star(R)(y1,z) &

Any u2:(star(R)(u0,u2) & star(R)(z,u2)) & star(R)(y0,u0) &

star(R)(y0,y) & Any u1:(star(R)(u0,u1) & star(R)(y,u1)) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

The reducts have been simplified.

Moving up quantifiers at positions [0,0,4],[0,0,7] of the preceding formula leads to

All R y z y1 y0 u0:(Any u1 u2:(R(!x,y0) & R(!x,y1) & star(R)(y1,u0) &

star(R)(y1,z) & star(R)(u0,u2) & star(R)(z,u2) &

star(R)(y0,u0) & star(R)(y0,y) & star(R)(u0,u1) &

star(R)(y,u1)) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

Applying the induction hypothesis
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star(R)(x,y) & star(R)(x,z) ===>

(!x >> x ==> Any u:(star(R)(y,u) & star(R)(z,u)))

at positions [0,0,0,4],[0,0,0,8] of the preceding formula leads to

All R y z y1 y0 u0 u1 u2:((!x >> u0 ==>

Any u3:(star(R)(u2,u3) & star(R)(u1,u3))) &

R(!x,y0) & R(!x,y1) & star(R)(y1,u0) & star(R)(y1,z) &

star(R)(z,u2) & star(R)(y0,u0) & star(R)(y0,y) &

star(R)(y,u1) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

The reducts have been simplified.

Applying the axioms

(x >> y <=== R(x,y))

& (x >> z <=== R(x,y) & star(R)(y,z))

at position [0,0,0,0] of the preceding formula leads to

All R y z y1 y0 u0 u1 u2:(R(!x,y0) & R(!x,y1) & star(R)(y1,u0) & star(R)(y1,z) &

star(R)(z,u2) & star(R)(y0,u0) & star(R)(y0,y) &

star(R)(y,u1) &

Any u3:(star(R)(u2,u3) & star(R)(u1,u3)) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

The reducts have been simplified.

Moving up quantifiers at position [0,0,8] of the preceding formula leads to

All R y z y1 y0 u0 u1 u2:(Any u3:(R(!x,y0) & R(!x,y1) & star(R)(y1,u0) &

star(R)(y1,z) & star(R)(z,u2) &

star(R)(y0,u0) & star(R)(y0,y) &

star(R)(y,u1) & star(R)(u2,u3) &

star(R)(u1,u3)) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

Applying the theorem

star(R)(x,y) & star(R)(y,z) ===> star(R)(x,z)

at positions [0,0,0,7],[0,0,0,9] of the preceding formula leads to

All R y z y1 y0 u0 u2 u3:(star(R)(y,u3) & R(!x,y0) & R(!x,y1) & star(R)(y1,u0) &

star(R)(y1,z) & star(R)(z,u2) & star(R)(y0,u0) &

star(R)(y0,y) & star(R)(u2,u3) ==>

Any u:(star(R)(y,u) & star(R)(z,u)))

The reducts have been simplified.

Applying the theorem

star(R)(x,y) & star(R)(y,z) ===> star(R)(x,z)

at positions [0,0,5],[0,0,8] of the preceding formula leads to

True

8 Conclusion

We have given an overview of Expander2 with special focus on the system’s prover capabilities. Other features,
such as the generation, editing and combination of pictorial term representations or the use of state terms by the
simplifier are described in detail in [22]. Future work on Expander2 and on the underlying Swinging Types approach
will concentrate on the following:
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â Representation of coalgebraic data types in terms of coinductively defined functions and of corresponding
subtypes defined in terms of co-Horn clauses for membership predicates or coequalities. First steps towards this
extension can be found in [19]. Coalgebraic specifications are also dealt with in, e.g., [6, 24, 9, 11]. O’Haskell records
[12] may be suitable for embedding standard coalgebraic data types into the simplifier.

â Compilers that translate functional or relational programs written in, e.g., Haskell, Maude [10], Prolog or Curry
[7] into simplification rules. This might involve the combination of particular programming language constructs and
their semantics with the pure algebraic-logic semantics of Expander2 specifications. Related work has been done by
combining the algebraic specification language CASL [3] with Haskell [26].

â A compiler of UML class diagrams and OCL constraints into Expander2 specifications has been developed in a
students’ project. This yields a basis for proving invariants, reachabilities and other safety or liveness properties of
object-oriented specifications within Expander2.

â Commands for the automatic generation of particular axioms, theorems or simplification rules. Such commands
are already available for specifying complement predicates, deriving “generic” lemmas from the least/greatest fix-
point semantics of relations and for turning co-Horn axioms into equivalent Horn axioms (see [22], Axioms menu).

â Simplification rules that cooperate with other theorem provers [2, 23, 28, 29, 30] or constraint solvers [4] via
tailor-made interfaces.

φ(x)  ==> p(x)

φ(x)  ==> q(x)

p(x) ==> φ(x)

q(x) ==> φ(x)

True / False /
solved formula

axioms(p)[φ/p]

axioms(q)[φ/q]

fixpoint induction

coinduction

narrowing

predicate predicate

copredicatecopredicate

proof

proof

evaluation

evaluation

narrowing

narrowing

narrowing

Figure 3. Narrowing versus (co)induction

â Narrowing and fixpoint (co)induction complement each other with respect to the direction axioms are combined
with conjectures: In the first case, axioms are applied to conjectures, and the proof proceeds by transforming the
modified conjectures. In the second case, conjectures are applied to axioms and the proof proceeds by transforming
the modified axioms. Moreover, narrowing on a predicate p is, at first, a computation rule, i.e. a rule for evaluating
p, while fixpoint induction on p is a proof rule, i.e. a rule for proving something about p. Strinkingly, the situation
turns upside down for copredicates: narrowing on a copredicate q is rather a proof rule, whereas coinduction on q is
used as a computation rule (see 3). This observation makes it worthwhile to look for a uniform proof/computation
strategy that uses fixpoint (co)induction already at the medium level of interaction.

â The range of applications of Expander2 will be investigated and extended by further case studies. Most
specifications designed and proofs and computations performed with the system up to now are listed and classified
in the Examples section of the manual [22]. So far, the above-mentioned students’ project for translating UML/OCL
specifications into Expander2 has led to the most extensive examples.
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[26] L. Schröder, T. Mossakowski, Monad-Independent Dynamic Logic in HasCASL, Proc. WADT 2002, Springer
LNCS 2755 (2003) 425-441
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